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Abstract

We consider the problem of decomposing a higher-order tensor with binary entries. Such
data problems arise frequently in applications such as neuroimaging, recommendation sys-
tem, topic modeling, and sensor network localization. We propose a multilinear Bernoulli
model, develop a rank-constrained likelihood-based estimation method, and obtain the the-
oretical accuracy guarantees. In contrast to continuous-valued problems, the binary tensor
problem exhibits an interesting phase transition phenomenon according to the signal-to-
noise ratio. The error bound for the parameter tensor estimation is established, and we
show that the obtained rate is minimax optimal under the considered model. Furthermore,
we develop an alternating optimization algorithm with convergence guarantees. The effi-
cacy of our approach is demonstrated through both simulations and analyses of multiple
data sets on the tasks of tensor completion and clustering.

Keywords: binary tensor, CANDECOMP /PARAFAC tensor decomposition, constrained
maximum likelihood estimation, diverging dimensionality, generalized linear model

1. Introduction

1.1. Motivation

Multiway arrays, a.k.a. tensors, have gained increasing attention in numerous fields, such
as genomics (Hore et al., 2016), neuroscience (Zhou et al., 2013), recommender systems (Bi
et al., 2018), social networks (Nickel et al., 2011), and computer vision (Tang et al., 2013).
An important reason of the wide applicability is the effective representation of data using
tensor structure. One example is recommender system (Bi et al., 2018), the data of which
can be naturally described as a three-way tensor of user x item X context and each entry
indicates the user-item interaction under a particular context. Another example is the
DBLP database (Zhe et al., 2016), which is organized into a three-way tensor of author x
word X venue and each entry indicates the co-occurrence of the triplets.

Despite the popularity of continuous-valued tensors, recent decades have witnessed many
instances of binary tensors, in which all tensor entries are binary indicators encoded as 0/1.
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Examples include click/no-click action in recommender systems, presence/absence of edges
in multi-relational social networks (Nickel et al., 2011), and connection/disconnection in
brain structural connectivity networks (Wang et al., 2019). These binary tensors are often
noisy and high-dimensional. It is crucial to develop effective tools that reduce the dimen-
sionality, take into account the tensor formation, and learn the underlying structures of
these massive discrete observations. A number of successful tensor decomposition methods
have been proposed (Kolda and Bader, 2009; Anandkumar et al., 2014; Wang and Song,
2017), revitalizing the classical methods such as CANDECOMP /PARAFAC (CP) decom-
position (Hitchcock, 1927) and Tucker decomposition (Tucker, 1966). These methods treat
tensor entries as continuous-valued, and therefore they are not suitable to analyze binary
tensors. There is a relative paucity of decomposition methods for binary tensors compared
to continuous-valued tensors.

In this article, we develop a general method and the associated theory for binary tensor
decomposition. Let Y = [yi, ..i ] € {0, 1}41%*dx he an order-K (dy, ..., df)-dimensional
binary data tensor, where the entries y;, . ;. are either 1 or 0 that encodes the presence
or absence of the event indexed by the K-tuplet (i1,...,ix). We consider the following
low-rank Bernoulli model,

Y|© ~ Bernoulli{ f(©)}, where rank(©)= R, (1)

where, for ease of notation, we have allowed the operators (~, f, etc) to be applied to
tensors in an element-wise manner. That is, the entries of ) are realizations of independent
Bernoulli random variables with success probability f(6;, .. i.), where f is a suitable func-
tion that maps R to [0, 1]. The parameter tensor, © = [6;, ., is of the same dimension as
Y but its entries are continuous-valued, and we assume © admits a low-rank CP structure.
Our goal is to estimate © from one instance of the binary tensor ). In particular, we are
interested in the high dimensional setting where dmin = minge (g dy, grows. Our primary
focus is to understand (i) the statistical estimation error of binary tensor decomposition;
(ii) the statistical hardness, in terms of minimax rate and signal-to-noise ratio, of the bi-
nary problem compared to its continuous-valued counterpart; and (iii) the computational
properties of associated estimation algorithms.

1.2. Related Work

Our work is closely related to but also clearly distinctive from several lines of existing
research. We survey the main related approaches for comparison.

Continuous-valued tensor decomposition. In principle, one can apply the existing de-
composition methods designed for continuous-valued tensor (Kolda and Bader, 2009; Wang
and Song, 2017) to binary tensor, by pretending the 0/1 entries were continuous. How-
ever, such an approach will yield an inferior performance: flipping the entry coding 0 < 1
would totally change the decomposition result, and the predicted values for the unobserved
entries could fall outside the valid range [0,1]. Our method, in contrast, is invariant to
flipping, because reversing the entry coding of ) changes only the sign but not the decom-
position result of the parameter ©. Moreover, as we show in Section 3.3, binary tensor
decomposition exhibits a “dithering” effect (Davenport et al., 2014) that necessitates the
presence of stochastic noise in order to estimate ©. This is clearly contrary to the behavior
of continuous-valued tensor decomposition.
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Binary matriz decomposition. When the order K = 2, the problem reduces to binary
or logit principal component analysis (PCA), and a similar model as (1) has been pro-
posed (Collins et al., 2002; De Leeuw, 2006; Lee et al., 2010). While tensors are conceptual
generalization of matrices, matrix decomposition and tensor decomposition are fundamen-
tally different (Kolda and Bader, 2009). Under the matrix case, the rank R is required to be
no greater than min(dy, da), and the factor matrices are constrained to be orthogonal for the
identification purpose. Both constraints are unnecessary for tensors, since the uniqueness
of tensor CP decomposition holds under much milder conditions (Bhaskara et al., 2014). In
fact, factors involved in tensors may be nonorthogonal, and the tensor rank R may exceed
the dimension. These differences make the earlier algorithms built upon matrix decompo-
sition unsuitable to tensors. Moreover, as we show in Section 3.1, if we were to apply the
matrix version of binary decomposition to a tensor by unfolding the tensor into a matrix,
the result is suboptimal with a slower convergence rate.

Binary tensor decomposition. More recently, Mazgut et al. (2014); Rai et al. (2015);
Hong et al. (2020) studied higher-order binary tensor decomposition, and we target the
same problem. However, our study differs in terms of the scope of the results. In general,
there are two types of properties that an estimator possesses. The first type is the algorithm-
dependent property that quantifies the impact of a specific algorithm, such as the choice
of loss function, initialization, and iterations, on the final estimator. The second type is
the statistical property that characterizes the population behavior and is independent of
any specific algorithm. FEarlier solutions of Mazgut et al. (2014); Rai et al. (2015); Hong
et al. (2020) focused on the algorithm effectiveness, but did not address the population
optimality. By contrast, we study both types of properties in Sections 3 and 4. This allows
us to better understand the gap between a specific algorithm and the population optimality,
which may in turn offer a useful guide to the algorithm design.

1-bit completion. Our work is also connected to 1-bit matrix completion (Cai and Zhou,
2013; Davenport et al., 2014) and its recent extension to 1-bit tensor completion (Gha-
dermarzy et al., 2018). The completion problem aims to recover a matrix or tensor from
incomplete observations of its entries. The observed entries are highly quantized, some-
times even to a single bit. We first show in Section 2.2 that our Bernoulli tensor model has
an equivalent interpretation as the threshold model commonly used in 1-bit quantization.
Then, the two methods are compared in Section 3.1. We achieve a faster convergence rate
than that in 1-bit tensor completion (Ghadermarzy et al., 2018), assuming the signal rank
is of constant order. The optimality of our estimator is safeguarded by a matching minimax
lower bound.

Boolean tensor decomposition. Boolean tensor decomposition (Miettinen, 2011; Erdos
and Miettinen, 2013a; Rukat et al., 2018) is a data-driven algorithm that decomposes a
binary tensor into binary factors. The idea is to use logical operations to replace arithmetic
operations such as addition and multiplication in the factorization. These methods also
study binary tensors, same as we do, but they took an empirical approach to approximate
a particular data instance. One important difference is that we focus on parameter esti-
mation in a population model. The population interpretation offers useful insight on the
effectiveness of dimension reduction. Having a population model allows us to tease apart the
algorithmic error versus the statistical error. We numerically compare the two approaches
in Section 5.
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Bayesian binary tensor decomposition. There have been a number of Bayesian binary
tensor decomposition algorithms (Nickel et al., 2011; Rai et al., 2014, 2015). Most of these
algorithms focus on the specific context of multi-relational learning. Although we take
multi-relational learning as one of our applications, we address a general binary tensor
decomposition problem, and we study the statistical properties of the problem, such as
the SNR phase diagram and minimax rate. Besides, we provide a frequentist-type solution
which is computationally more tractable than a Bayesian one.

1.3. Our Contributions

The primary goal of this paper is to study both the statistical and computational properties
of binary tensor problem. Our contributions are summarized below.

First, we quantify the differences and connections between binary tensor problem and
continuous-valued tensor problem. We show that the Bernoulli tensor model (1) is equivalent
to entrywise quantization of a latent noisy, continuous-valued tensor. The impact of latent
signal-to-noise ratio (SNR) on the tensor recovery accuracy is characterized, and we identify
three different phases for tensor recovery according to SNR; see Table 1 in Section 3.3. When
SNR is bounded by a constant, the loss in binary tensor decomposition is comparable to
the case of continuous-valued tensor, suggesting very little information has been lost by
quantization. On the other hand, when SNR is sufficiently large, stochastic noise turns
out to be helpful, and is in fact essential, for estimating the signal tensor. The later effect
is related to “dithering” (Davenport et al., 2014) and “perfect separation” (Albert and
Anderson, 1984) phenomenon, and this is clearly contrary to the behavior of continuous-
valued tensor decomposition.

Second, we propose a method for binary tensor decomposition and establish its statistical
properties, including the upper bound and the minimax lower bound on the tensor recovery
accuracy. These properties characterize the population optimality of the estimator. Note
that, in our problem, the tensor dimensions (di,...,dr) diverge, and so does the number
of unknown parameters. As such, the classical maximum likelihood estimation (MLE)
theory does not directly apply. We leverage the recent development in random tensor
theory and high-dimensional statistics to establish the error bounds of the tensor estimation.
The matching information-theoretical lower bounds are correspondingly provided. To our
knowledge, these statistical guarantees are among the first for binary tensor decomposition.

Lastly, we supplement the above general statistical properties by proposing an alter-
nating optimization algorithm and establish the corresponding algorithmic properties. Our
algorithm-dependent error bound reveals an interesting interplay between statistical and
computational efficiency. We illustrate the efficacy of our algorithm through both simula-
tions and data applications.

1.4. Notation and Organization

We adopt the following notation throughout the article. We use Y = [y, i ] € [Fdax-xdg

to denote an order-K (di,...,dx)-dimensional tensor over a filed F. We focus on real
or binary tensors, i.e., F = R or F = {0,1}. The Frobenius norm of ) is defined as
Ve = i ix yfhm,iK)l/Q, and the maximum norm of ) is defined as ||| max =

Maxi, ix |Yii,...ix|- We use uppercase letters (e.g., ©, Y, A) to denote tensors and matri-
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ces, and use lowercase letters (e.g., 0, a) to denote scales and vectors. The vectorization of
tensor ), denoted vec()), is defined as the operation rearranging all elements of ) into a
column vector. We use a® b to denote the kronecker product of vectors a and b, and A® B
for the Khatri-Rao product of matrices A and B. We use S~ ! = {z € R?: |z|, = 1} to
denote the (d — 1)-dimensional unit sphere, and the shorthand [n] := {1,...,n} to denote
the n-set for n € N;.

The rest of the article is organized as follows. Section 2 presents the low-rank Bernoulli
tensor model, its connection with 1-bit observation model, and the rank-constrained MLE
framework. in Section 3, we establish the statistical estimation error bounds and the phase
transition phenomenon. We next develop an alternating optimization algorithm and estab-
lish its convergence guarantees in Section 4. We present the simulations in Section 5 and
data analyses in Section 6. All technical proofs are deferred to Section 7 and Appendix A.
We conclude the paper with a discussion in Section 8.

2. Model
2.1. Low-rank Bernoulli Model

Let YV = [yi,..ix] € {0,1}9% XK be a binary data tensor. We assume the tensor entries
are realizations of independent Bernoulli random variables, such that, for all (i1,...,ix) €
[di] x -+ x [dk],

P(Yir,in = 1) = [(0i,.ic)- (2)

In this model, f: R — [0, 1] is a strictly increasing function. We further assume that f(6)
is twice-differentiable in 6 € R/{0}; f(#) is strictly increasing and strictly log-concave; and
1/(#) is unimodal and symmetric with respect to # = 0. All these assumptions are fairly mild.
In the context of generalized linear models (GLMs), f is often referred to as the “inverse
link function.” When no confusion arises, we also call f the “link function.” The parameter
tensor © = [0, i ] € R4 x%di {5 continuous-valued and unknown; it is the main object
of interest in our tensor estimation inquiry. The entries of ) are assumed to be mutually
independent conditional on O, which is commonly adopted in the literature (Collins et al.,
2002; De Leeuw, 2006; Lee et al., 2010). Note that this assumption does not rule out the
marginal correlations among the entries of ).
Furthermore, we assume the parameter tensor © admits a rank-R CP decomposition,

where A\ > ... > Az > 0 and @™ € S%~1 for all 7 € [R], k € [K]. Without loss of
generality, we assume that © cannot be written as a sum of fewer than R outer products.
The CP structure in (3) is frequently used in tensor data analysis, and the rank R determines
the tradeoff between model complexity and model flexibility. For the theory, we assume the
true rank R is known; the adaptation to unknown R is addressed in Section 4.3. The low-
rank structure dramatically reduces the number of parameters in ©, from the order of [ [, dj
to the order of ), di. More precisely, the effective number of parameters in (3) is p. =
R (dy + dg) — R? for matrices (K = 2) after adjusting for the nonsingular transformation
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indeterminacy, and p. = R (3, di — K + 1) for higher-order tensors (K > 3) after adjusting
for the scaling indeterminacy.

Combining (2) and (3) leads to our low-rank Bernoulli model. We seek to estimate
the rank-R tensor © given the observed binary tensor ). The model can be viewed as a
generalization of the classical CP decomposition for continuous-valued tensors to binary
tensors, in a way that is analogous to the generalization from a linear model to a GLM.
When imposing low-rank structure to a continuous-valued tensor ) directly, the problem
amounts to seeking the best rank-R approximation to ), in the least-squares sense. The
least-squares criterion is equivalent to the MLE for the low-rank tensor © based on a
noisy observation Y = O + &, where £ € R4**d collects independent and identically
distributed (i.i.d.) Gaussian noises. In the next section, we present a close connection
between a continuous-valued tensor problem and a binary tensor problem.

2.2. Latent Variable Model Interpretation

We show that our binary tensor model (2) has an equivalent interpretation as the threshold
model commonly used in 1-bit quantization (Davenport et al., 2014; Bhaskar and Javan-
mard, 2015; Cai and Zhou, 2013; Ghadermarzy et al., 2018). The later viewpoint sheds
light on the nature of the binary (1-bit) measurements from the information perspective.

Consider an order-K tensor © = [6;,, ] € Ré*Xdrx with a rank-R CP structure.
Suppose that we do not directly observe ©. Instead, we observe the quantized version
YV = [Wiy...ix ] € {0,1}8X%d& following the scheme

" o 1 it 0 g +Eir,ixe =0, @
P00 i 05y i F i i <0,

where €& = [e;,...i.] is a noise tensor to be specified later. Equivalently, the observed
binary tensor is ) = sign(© + &), and the associated latent tensor is © + £. Here the

sign function sign(x) def 1{z>0y is applied to tensors in an element-wise manner. In light of
this interpretation, the tensor © serves as an underlying, continuous-valued quantity whose
noisy discretization gives ).

The latent model (4) in fact is equivalent to our Bernoulli tensor model (2), if the link
f behaves like a cumulative distribution function. Specifically, for any choice of f in (2), if
we define £ as having i.i.d. entries drawn from a distribution whose cumulative distribution
function is P(e < ) = 1 — f(—0), then (2) reduces to (4). Conversely, if we set the link
function f(f) = P(¢ > —6), then model (4) reduces to (2). Such relationship gives a
one-to-one correspondence between the error distribution in the latent model and the link
function in the Bernoulli model. We describe three common choices of f, or equivalently,
the distribution of &£.

Example 1. (Logistic link/Logistic noise). The logistic model is represented by (2) with
f(o) = (1 + 6*9/")_1 and the scale parameter o > 0. Equivalently, the noise €;, . _;, in (4)

follows i.i.d. logistic distribution with the scale parameter o.

K

Example 2. (Probit link/Gaussian noise). The probit model is represented by (2) with
f(@) = ®(0/0), where ® is the cumulative distribution function of a standard Gaussian.
Equivalently, the noise &;, i, in (4) follows i.i.d. N(0,0?).
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Example 3. (Laplacian link/Laplacian noise). The Laplacian model is represented by (2)
with
£(6) = Texp (%), if § <0,
1-— %exp(—g), if 6 >0,

and the scale parameter o > 0. Equivalently, the noise ¢;, ;. in (4) follows i.i.d. Laplace

distribution with the scale parameter o.

K

The above link functions are common for the Bernoulli model, and the choice is informed
by several considerations (McCullagh, 1980). The probit is the canonical link based on the
Bernoulli likelihood, and it has a direct connection with the log-odds of success. The probit
is connected to threshold latent Gaussian tensors. The Laplace has a heavier tail than the
normal distribution, and it is more suitable for modeling long-tail data.

2.3. Rank-constrained Likelihood-based Estimation

We propose to estimate the unknown parameter tensor © in model (2) using a constrained
likelihood approach. The log-likelihood function for (2) is

Ly©)= ) []l{yil iae=11108 F(Oir i) + Ly,

,,,,,

iKZO} lOg{l - f(e’h,...,ikv)}

,,,,,

15yl
= Z 1ng [(2y’il,...,iK - 1)9’i1,...,i}(]5
115l K

where the second equality is due to the symmetry of the link function f. To incorporate
the CP structure (3), we propose a constrained optimization,

OmLe = argmax £y(0), where D C S = {0: rank(0) = R, and [|O||max < @}, (5)
0eD

for a given rank R € N} and a bound o € R;. Here the search space D is assumed to be
a compact set containing the true parameter O.,. The candidate tensor of our interest
satisfies two constraints. The first is that © admits the CP structure (3) with rank R. As
discussed in Section 2.1, the low-rank structure (3) is an effective dimension reduction tool
in tensor data analysis. The second constraint is that all the entries of ® are bounded in
absolute value by a constant @ € Ry. We refer to o as the “signal” bound of ©. This
maximum-norm condition is a technical assumption to aid the recovery of © in the noiseless
case. Similar techniques have been employed for the matrix case (Davenport et al., 2014;
Bhaskar and Javanmard, 2015; Cai and Zhou, 2013).

In the next section, we first investigate the statistical error bounds for the global opti-
mizer éMLE. These bounds characterize the population behavior of the global estimator and
weave three quantities: tensor dimension, rank, and signal-to-noise ratio. We then com-
pare these properties to the information-theoretical bound and reveal a phase-transition
phenomenon. In Section 4, we develop a specific algorithm for the optimization problem in
(5), and we derive the convergence properties of the empirical estimator resulting from this
algorithm.
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3. Statistical Properties
3.1. Performance Upper Bound

We define two quantities L, and 7, to control the “steepness” and “convexity” of the link
function f. Let

L #(6) . 20) o)
La‘wg%{f(e)(l—f(e))}’ ‘ %“_|e<fa{f2(9) f<e>}’

where f(#) = df(0)/df, and « is the bound on the entrywise magnitude of ©. When « is
a fixed constant and f is a fixed function, all these quantities are bounded by some fixed
constants independent of the tensor dimension. In particular, for the logistic, probit and
Laplacian models, we have

L 1 e/o
LOngth model: La = g, Yo = W,
. ) 2 ra 1 a LY 252
Probit model: L, < p (E + 1) , Ya 2 Noroe (0 + 6) e ,
2 ea/o
Laplacian model: Ly < —, 74> —5.
o 202

We assess the estimation accuracy using the deviation in Frobenius norm. For the true
coefficient tensor Ogue € R41X%dK and its estimator ©, define

1
\/Hk dp,

The next theorem establishes the upper bound for éMLE under model (2).

LOSS(@, @true) = ||é - @trueHF'

Theorem 1 (Statistical convergence). Suppose Y € {0, 1}4X %4 s an order-K binary
tensor following model (2) with the link function f and the true coefficient tensor O e €
D. Let @MLE be the constrained MLE in (5). Then, there exists an absolute constant
C1 > 0, and a constant Cy > 0 that depends only on K, such that, with probability at least

1 —exp(—Cilog K ), dy),

A . CoLg RE-1 Zk dy;
Loss(© , Otrue) < min | 2, . 6
(OMLE, Otrue) < o~ \/ T, dx (6)

Note that f is strictly log-concave if and only if f(0)f(0) < f(0)? (Boyd and Vandenberghe,
2004). Henceforth, v, > 0 and L, > 0, which ensures the validity of the bound in (6).

In fact, the proof of Theorem 1 (see Section 7) shows that the statistically optimal
rate holds, not only for the MLE OwmLe, but also for any estimators O in the level set
{@ € D: Ly(0) > ,Cy(@true)}

To compare our upper bound to existing results in literature, we consider a special
setting where the dimensions are the same in all modes; i.e., d; = --- = dxg = d. In such a
case, our bound (6) reduces to

1

Loss(OMLE, Otrue) < O <d(K—1)/2

>,asd—>oo, (7)

8
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for a fixed rank R and a fixed signal bound «. The MLE thus achieves consistency with
polynomial convergence rate. Our bound has a faster convergence rate than that in 1-bit
tensor recovery (Ghadermarzy et al., 2018),

Loss(©, Otrue) < O <d(K31)/4> , as d — 0.

The rate improvement comes from the fact that we impose an exact low-rank structure on
O, whereas Ghadermarzy et al. (2018) employed the max norm as a surrogate rank measure.

Our bound also generalizes the previous results on low-rank binary matrix completion.
The convergence rate for rank-constrained matrix completion is O(1/v/d) (Bhaskar and
Javanmard, 2015), which fits into our special case when K = 2. Intuitively, in the tensor
data analysis problem, we can view each tensor entry as a data point, and sample size is
the total number of entries. A higher tensor order has a larger number of data points and
thus exhibits a faster convergence rate as d — oo.

We compare the results (7) to the scenario if we apply the matrix version of binary
decomposition to a tensor by unfolding the tensor into a matrix. The “best” matricization
solution that unfolds a tensor into a near-square matrix (Mu et al., 2014) gives a convergence

rate O(d~ = ), with |K/2| being the integer part of K /2. The gap between the rates
highlights the importance of decomposition that specifically takes advantage of the multi-
mode structure in tensors.

As an immediate corollary of Theorem 1, we obtain the explicit form of the upper bound

(6) when the link f is a logistic, probit, or Laplacian function.

Corollary 1. Assume the same setup as in Theorem 1. There exists an absolute constant
C" > 0 such that with probability at least 1 — exp (—C"log K >~ di),

) K-15° ¢
Loss(© g, Otrye) < min 2a, C(o, @) Rim , (8)
11 d

where C(a, o) is a scaler factor,

Cio (2 +ev + 67%) for the logistic link,

aQ
Cla,0) = Cyo ato > esz  for the probit link,
6+ o

Csaes for the Laplacian link,

and C1,Cs,C3 > 0 are constants that depend only on K.

The dependency of the above error bounds on the signal bound « and the noise level o will
be discussed in Section 3.3.

3.2. Information-theoretical Lower Bound

We next establish two lower bounds. The first lower bound is for all statistical estimators
O, including but not limited to the estimator Oyg in (5), under the binary tensor model
(2). The result is based on the information theory and is thus algorithm-independent. We



WANG AND L1

show that this lower bound nearly matches the upper bound on the estimation accuracy of
OMLE, thereby implying the rate optimality of OMLE-

With a little abuse of notation, we use D(R, ) to denote the set of tensors with the
rank bounded by R and the maximum norm bounded by «. The next theorem establishes
this first lower bound for all estimators © in D(R, ) under the model (2).

Theorem 2 (Minimax lower bound for binary tensors). Suppose Y € {0,1}41x*dx
is an order-K binary tensor generated from the model ) = sign(O e + &), where Oppye €
D(R,«) is the true parameter tensor and & is a noise tensor of i.i.d. Gaussian entries.
Suppose that R < ming dy and the dimension maxy dr > 8. Let infg denote the infimum
over all estimators © € D(R,«) based on the binary tensor observation Y. Then, there
exist absolute constants By € (0,1) and ¢y > 0, such that

inf sup P Loss(é,@tme) > comin | o, o Rda > f. 9)
© ©uu.ED(R,0) I, dx

Here we only present the result for the probit model, while similar results can be obtained
for the logistic and Laplacian models. In this theorem, we assume that R < ming di. This
condition is automatically satisfied in the matrix case, since the rank of a matrix is always
bounded by its row and column dimension. For the tensor case, this assertion may not
always hold. However, in the most applications, the tensor rank is arguably smaller than
its dimension. We view this as a mild condition. Note that the earlier Theorem 1 places no
constraint on the rank R. In Section 5, we will assess the empirical performance when the
rank exceeds dimension.

We next compare the lower bound (9) to the upper bound (8), as the tensor dimension
dy — oo while the signal bound « and the noise level o are fixed. Since dmax < Y ) di <
K dpax, both the bounds are of the form C'v/dmax ([ 4 dk)_l/Q, where C is a factor that does
not depend on the tensor dimension. Henceforth, our estimator éMLE is rate-optimal.

The second lower bound is for all estimators © based on the “unquantized” observation
(© + &), which enables the evaluation of information loss due to binary quantization ) =
sign(©+¢&). Recall that Section 2.2 introduces a latent variable view of binary tensor model
as an entrywise quantization of a noisy continuous-valued tensor. We seek an estimator ©
by “denoising” the continuous-valued observation (© +&). The lower bound is obtained via
an information-theoretical argument and is again applicable to all estimators © € D(R, a).

Theorem 3 (Minimax lower bound for continuous-valued tensors). Suppose ye
Réxxdi s an order-K continuous-valued tensor generated from the model Y= Oprye + &,
where Oyye € D(R, ) is the true parameter tensor and € is a noise tensor of i.i.d. Gaussian
entries. Suppose that R < ming dy, and maxy dy > 8. Let infg denote the infimum over all
estimators © € D(R, a) based on the continuous-valued tensor observation Y. Then, there
exist absolute constants By € (0,1) and ¢y > 0 such that

A Rdm X
inf  sup  PX Loss(©,0Oye) > comin | a, 0 = > Bo. (10)
6 OuueD(R,) 11 dx

This lower bound (10) quantifies the statistical hardness of the tensor estimation problem.
In the next section, we compare the information loss of tensor estimation, based on the data
with quantization, sign(© + &), vs. the data without quantization, (© + &).

10
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Figure 1: Phase diagram according to the SNR. (A) “Noise helps” region: the estimation
error decreases with the noise . (B) “Noise hurts” region: the error increases with
the noise. (C) Impossible region: a consistent estimator of © is impossible. The
dashed line between regions (B) and (C) depicts the boundary d—(K=1/2 as K
varies. Note that the origin in the x-axis corresponds to the high-dimensional
region, d~(E=1/2 5 0, which is of our main interest.

3.3. Phase Diagram

The error bounds we have established depend on the signal bound « and the noise level o. In
this section, we define three regimes based on the signal-to-noise ratio (SNR) = ||0||max/0,
in which the tensor estimation exhibits different behaviors. Table 1 and Figure 1 summarize
the error bounds of the three phrases under the case when dy = --- = dg = d. Our
discussion focuses on the probit model, but similar patterns also hold for the logistic and
Laplacian models.

The first phase is when the noise is weak, in that ¢ < « equivalently SNR > O(1).
In this regime, the error bound in (8) scales as o exp(a?/0?), suggesting that increasing
the noise level would lead to an improved tensor estimation accuracy. This “noise helps”
region may seem surprising; however it is not an artifact of our proof. It turns out this
phenomena is intrinsic to 1-bit quantization, and we confirm this behavior in simulations in

Tensor type SNR > O(1) O(1) 2 SNR > O(d—(K—l)/2) O(d_(K_l)/Q) > SNR
Binary ge® /o? g—(K-1)/2 od—E-1)/2 o
Continuous od~(K-1)/2 od—(K-1/2 5

Table 1: Error rate for low-rank tensor estimation. For ease of presentation, we omit the
constants that depend on the order K or rank R.
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Section 5. As the noise level o goes to zero, the problem essentially reverts to the noiseless
case where an accurate estimation of © becomes impossible. To see this, we consider a
simple example with a rank-1 signal tensor in the latent model (4) in the absence of noise.
Two different coefficient tensors, ©1 = a1 ® a2 ® ag and Oy = sign(a;) ®sign(az) @sign(as),
would lead to the same observation ), and thus recovery of © from ) becomes hopeless.
Interestingly, adding a stochastic noise £ to the signal tensor prior to 1-bit quantization
completely changes the nature of the problem, and an efficient estimator can be obtained
through the likelihood approach. In the 1-bit matrix/tensor completion literature, this
phenomenon is referred to as “dithering” effect of random noise (Davenport et al., 2014).

The second phase is when the noise is comparable to the signal, in that O(1) 2 SNR >
O(d~K=1/2), In this regime, the error bound in (8) scales linearly with o. We find that
the lower bound (10) from the unquantized tensor matches with the upper bound (8) from a
quantized one. This suggests that 1-bit quantization induces very little loss of information
towards the estimation of ©. In other words, @MLE, which is based on the quantized
observation, can achieve the similar degree of accuracy as if the completely unquantized
measurements were observed.

The third phase is when the noise completely dominates the signal, in that SNR <
O(d~K=1D/2), A consistent estimation of © becomes impossible. In this regime, a trivial
zero estimator achieves the minimax rate.

4. Algorithm and Convergence Properties

4.1. Alternating Optimization Algorithm

In this section, we introduce an algorithm to solve (5) and study the algorithmic conver-
gence. For notational convenience, we drop the subscript ) in £3(©) and simply write
L(0). The optimization (5) is a non-convex problem in © due to the non-convexity in the
feasible set D. We use the CP representation of © in (3) and turn the optimization into a
block-wise convex problem. Algorithm 1 summarizes the full optimization procedure, and
we discuss the individual steps in the next paragraph.

Specifically, write the mode-k factor matrices from (3) as

Ap=[aP . aP] e R®E for ke [K—1], and Ag = AlagK),...,ARa;K)} € RIKXR

(11)
where, without loss of generality, we choose to collect Ax’s into the last factor matrix.
Let A = (A4,...,Ak) denote the collection of all block variables satisfying the above
convention. Then the optimization problem (5) is equivalent to

mgxﬁ{@(A)}, subject to ©(A) € D. (12)

Although the objective function in (12) is in general not concave in the K factor matrices
jointly, the problem is concave in each factor matrix individually with all other factor matri-
ces fixed. This feature enables a block relaxation type minimization, where we alternatively
update one factor matrix at a time while keeping the others fixed. In each iteration, the
update of each factor matrix involves solving a number of separate GLMs. To see this, let
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Algorithm 1 Binary tensor decomposition

Input: Binary tensor Y € {0,1}%>*dx link function f, rank R, and entrywise bound a.
Output: Rank-R coefficient tensor ©, along with the factor matrices A = (Ay, ..., Ag).

1: Initialize random matrices A(®) = {Ago), ey Ag)} and iteration index ¢ = 0.

2: while the relative increase in objective function £(A) is less than the tolerance do
3: Update iteration index ¢ <t 4 1.
for k =1to K do
Obtain A,(fH) by solving dj, separate GLMs with link function f.
end for
Line search to obtain ~*.
Update A,(:H) — ’y*A,(:) +(1- "y*)AgH), for all k € [K].

Normalize the columns of A,(ctH) to be of unit-norm for all £k < K — 1, and absorb

)

the scales into the columns of A%H .
10: end while

AS) denote the kth factor matrix at the tth iteration, and
A" :A§t+1)®...®A’(€tjl1)@Al(fll@m@A%), k=1 . K

Let Y(:,j(k),:) denote the subtensor of ) at the jth position of the kth mode. Then
the update A,(fﬂ) can be obtained row-by-row by solving dj separate GLMs, where each
GLM takes vec{Y(:,j(k),:)} € RULize 4> 45 the “response”, A(_tzc e RULize d)XB ag the
“predictors”, and the jth row of Ay as the “regression coefficient”, for all j € [d], k € [K].
In each GLM, the effective number of predictors is R, and the effective sample size is H#k d;.
These separable, low-dimensional GLMs allow us to leverage the fast GLM solvers as well
as parallel processing to speed up the computation. After each iteration, we post-process

the factor matrices A,(fﬂ) by performing a line search,

~* = argmax Ly {’yAg) + (1 - 'y)AgH)} , subject to ||O||max < a.
~v€[0,1]

We then update A,(Ctﬂ) = V*A,(f) +(1- 7*)A§€t+1) and normalize the columns of A,(;H).
In practice, we run the algorithm from multiple initializations to locate a final estimate
with the highest objective value.

4.2. Algorithmic Properties

We study the convergence of Algorithm 1. The convergence of the objective function £
is guaranteed whenever the £ is bounded from above, due to the monotonic nature of £
over iterations. We next study the convergence of the iterates A® and @) = @{A®},
To simplify the analysis, we assume the optimization path is in the interior of the search
domain {©: ||O|max < a}. We drop the dependence of « for technical convenience, but
all the results should be interpreted with this assumption imposed. In practice, a can
be adjusted via probing the MLE frontier (Sur and Candes, 2019). One may start with
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a reasonably large a and check whether MLE is in the interior of the search domain. If
perfect separation occurs, one may want to reduce « to a smaller value in order to control
the estimation error. We refer to Sur and Candes (2019) for more discussions on adjusting
« via probing the MLE frontier.

We need the following assumptions for algorithmic convergence.

(A1) (Regularity condition) The log-likelihood £(A) is continuous and the set {A: L(A) >
L(AO)} is compact.

(A2) (Strictly local maximum condition) Each block update in Algorithm 1 is well-defined;
i.e., the GLM solution exists and is unique, and the corresponding sub-block in the
Hession matrix is non-singular at the solution.

(A3) (Local uniqueness condition) The set of stationary points of £(A) are isolated module
scaling.

(A4) (Local Lipschitz condition) Let A* be a local maximizer of £. The rank-R CP rep-
resentation © = ©(A) is locally Lipschitz at A*; namely, there exist two constants
c1,co > 0 such that

al|A" = A" < [|8(A") = O(A")|[F < o A" = A",

for A’, A” sufficiently close to A*. Here A’, A” represent the block variables subject
to convention (11).

These conditions are mild and often imposed in the literature. Specifically, Assumption
(A1) ensures the upper boundedness of log-likelihood and the existence of global optimum.
Therefore, the stopping rule of Algorithm 1 is well defined. Assumption (A2) asserts the
negative-definiteness of the Hessian in the block coordinate Aj. Note that the full Hes-
sion needs not to be negative-definite in all variables simultaneously. We consider this
requirement as a reasonable assumption, as similar conditions have been imposed in various
non-convex problems (Uschmajew, 2012; Zhou et al., 2013). Assumptions (A2)—(A4) guar-
antee the local uniqueness of the CP representation ©® = ©(A). The conditions exclude the
case of rank-degeneracy; e.g., the case when the tensor © can be written in fewer than R
factors, or when the columns of A(_tL are linearly dependent in the GLM update.

We comment that the local uniqueness condition is fairly mild for tensors of order three
or higher. This property reflects the fundamental difference between tensor and matrix
decomposition, in that the same property often fails for the matrix case. Consider an
example of a 2-by-2 matrix. Suppose that the local maximizer is ©* = ©*(ej,ez) =
e¥? + e5? where eq, ey are canonical vectors in R2. The variable A* = (eq,ez) is a non-
attracting point for the matrix problem. Indeed, one can construct a point A = (a1, as),
with a1 = (sinf,cosf)’, and ay = (cos#, —sinf)’. The point A can be made arbitrarily
close to A* by tuning 6, but the algorithm iterates initialized from A(®) would never converge
to A*. In contract, a 2-by-2-by-2 tensor problem with the maximizer ©* = ©*(ey, es) =
e??’ + 658)3 possesses locally unique decomposition. For more discussion on decomposition
uniqueness and its implication in the optimization, we refer to Kruskal (1977); Uschmajew
(2012); Zhou et al. (2013).
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Proposition 1 (Algorithmic convergence). Suppose Assumptions (A1)-(A3) hold.

(i) (Global convergence) Every sequence A = {Agt), e Ag?} generated by Algorithm 1

converges to a stationary point of L(A).

(ii) (Locally linear convergence) Let A* be a local mazximizer of L. There exists an -
neighborhood of A*, such that, for any staring point A©) in this neighborhood, the
iterates A®) of Algorithm 1 linearly converge to A*,

1AY — A" p < p|A© — A" p,

where p € (0,1) is a contraction parameter. Furthermore, if Assumption (A4) holds
at A*, then there exists a constant C' > 0 such that

18(AY) —6(A")|F < Cp'|6(A?) — O(A")|F.

Proposition 1(ii) shows that every local maximizer of £ is an attractor of Algorithm 1.
This property ensures an exponential decay of the estimation error near a local maximum.
Combining Proposition 1 and Theorem 1, we have the following theorem.

Theorem 4 (Empirical performance). Let ) € {0,1}4% %4k be g binary data tensor
under the Bernoulli tensor model (2) with parameter ©yye = O(Ayme). Let AW denote
a sequence of estimators generated from Algorithm 1, with the limiting point A*. Suppose
A* is a local mazimizer satisfying that L(©(A*)) > L(Oywe). Furthermore, Assumptions
(A1)-(A4) hold. Then, with probability at least 1 — exp(—C"log K >, dy), there exists an

iteration number Ty > 0, such that,

[ pK—1
Loss (@(A(t)), @tme> < Clpt*TOLoss(@(A(To)), O true) + CiLa l 0 Xd:k dk, (13)
« k Uk

Vv
algorithmic error

statistical error

for allt > Ty, where p € (0,1) is a contraction parameter, and C1,Cy > 0 are two constants.

Theorem 4 provides the estimation error of the empirical estimator from our Algorithm 1
at each iteration. The bound (13) consists of two terms: the first term is the computational
error, and the second is the statistical error. The computational error decays exponentially
with the number of iterations, whereas the statistical error remains the same as t grows.
The statistical error is unavoidable, as it reflects the statistical error due to estimation with
noise; see also Theorem 2. For tensors with d; = --- = dx = d, the computational error is
dominated by the statistical error when the iteration number satisfies

C1Loss(0(AT0), O4rue)
CoLe [RE-TS. dp
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4.3. Missing Data, Rank Selection, and Computational Complexity

When some tensor entries y;, . ;, are missing, we replace the objective function £y(©) with
Z(il7._.7iK)€Q log f(Gin,....ixOir,....ixc ), Where Q C [dq] X - - X [dk] is the index set for non-missing
entries. The same strategy has been used for continuous-valued tensor decomposition (Acar
et al., 2010). For implementation, we modify line 5 in Algorithm 1, by fitting GLMs to the
data for which y;, ;. are observed. Other steps in Algorithm 1 are amendable to missing
data accordingly. Our approach requires that there are no completely missing subtensors
Y(:,j(k),:), which is a fairly mild condition. This requirement is similar to the coherence
condition in the matrix completion problem; for instance, the recovery of true decomposition
is impossible if an entire row or column of a matrix is missing.

As a by-product, our tensor decomposition output can also be used for missing value
prediction. That is, we predict the missing values y;, . i, using f(éil,...,ix)a where © is
the coefficient tensor estimated from the observed entries. Note that the predicted values
are always between 0 and 1, which can be interpreted as a prediction for P(Y;, i, = 1).
For accuracy guarantees with missing data, we refer to Lee and Wang (2020) for detailed
results.

Algorithm 1 takes the rank of © as an input. Estimating an appropriate rank given the
data is of practical importance. We adopt the usual Bayesian information criterion (BIC)
and choose the rank that minimizes BIC; i.e.,

R = arg 1?61%@2 BIC(R) = arg }%relleri —2Ly{O(R)} + pe(R)log (1;[ dk>] ,

where @(R) is the estimated coefficient tensor © under the working rank R, and pe(R) is the
effective number of parameters. This criterion aims to balance between the goodness-of-fit
for the data and the degree of freedom in the population model. The empirical performance
of BIC is investigated in Section 5.

Finally, the computational complexity of our algorithm is O(R? ] i i) for each iteration.
The per-iteration computational cost scales linearly with the tensor dimension, and this
complexity matches with the classical continuous-valued tensor decomposition (Kolda and
Bader, 2009). More precisely, the update of Ay involves solving dj, separate GLMs. Solving
these GLMs requires O(R3dj, + R? [], di), and therefore the cost for updating K factors in
total is O(R®>", di, + R*K ], di). We further report the computation time in Section 5.

5. Simulations
5.1. CP Tensor Model

In this section, we first investigate the finite-sample performance of our method when the
data indeed follows the CP tensor model. We consider an order-3 dimension-(d, d, d) binary

tensor ) generated from the threshold model (4), where Oye = 25:1 aﬁ” ® a,(n2) ® a7(n3),

and the entries of a'*) are ii.d. drawn from Uniform[—1,1] for all £ € [3] and r € [R].
Without loss of generality, we scale Oy such that ||O¢ue|max = 1. The binary tensor )
is generated based on the entrywise quantization of the latent tensor (©'"° + &), where &£

consists of i.i.d. Gaussian entries. We vary the rank R € {1,3,5}, the tensor dimension
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a. Estimation error (o = 107%%) b. Estimation error (d = 50)
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Figure 2: Estimation error of binary tensor decomposition. (a) Estimation error as a func-
tion of the tensor dimension d = d; = ds = ds3. (b) Estimation error as a function
of the noise level.

d € {20,30,...,60}, and the noise level o € {1072,10725,...,10%%}. We use BIC to select
the rank and report the estimation error based on logistic link averaged across ngiy, = 30
replications.

Figure 2(a) plots the estimation error Loss(Otrye, @MLE) as a function of the tensor
dimension d while holding the noise level fixed at o = 107%5 for three different ranks
R € {1,3,5}. We find that the estimation error of the constrained MLE decreases as the
dimension increases. Consistent with our theoretical results, the decay in the error appears
to behave on the order of d~!. A higher-rank tensor tends to yield a larger recovery error,
as reflected by the upward shift of the curves as R increases. Indeed, a higher rank means
a higher intrinsic dimension of the problem, thus increasing the difficulty of the estimation.

Figure 2(b) plots the estimation error as a function of the noise level o while holding the
dimension fixed at d = 50 for three different ranks R € {1,3,5}. A larger estimation error
is observed when the noise is either too small or too large. The non-monotonic behavior
confirms the phase transition with respect to the SNR. Particularly, the random noise is
seen to improve the recovery accuracy in the high SNR regime. This is consistent to our
theoretical result on the “dithering” effects brought by stochastic noise.

We next assess the tensor rank selection by BIC. We consider the tensor dimension
d € {20,40,60} and rank R € {5,10,20,40}. Note that, in some of the combinations, the
rank equals or exceeds the tensor dimension. We set the noise level o € {0.1,0.01} such
that the noise is neither negligible nor overwhelming. For each combination, we simulate
the tensor data following the Bernoulli tensor model (2). We minimize BIC using a grid
search from R — 5 to R+ 5. Table 2 reports the selected rank averaged over ngm = 30
replications, with the standard error shown in the parenthesis. We find that, when d = 20,
the selected rank is slightly smaller than the true rank, whereas for d > 40, the selection
is accurate. This agrees with our expectation, as the total number of entries corresponds
to the sample size in tensor decomposition. A larger d implies a larger sample size, so the
BIC selection becomes more accurate.
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oc=0.1 o =0.01
True rank d:20 d =40 d=06 d=20 d =40 d =60
R=5 9(0.2)  5(0) 5(0 ) 4.8 (1.0)  5(0) 5 (0)
R=10 7 (0.9) 10 (0) 10 (0) 8.8 (0.4) 10 (0) 10 (0)
R=20 17 7(1.7) 20.4(0.5) 20.2(0.5) | 16.4(0.5) 20.4(0.5) 20.6(0.5)
R =40 36.8(1.1) 39.6(1.7) 40.2(0.4) | 36.0(1.2) 38.8(1.6) 40.3(1.1)

Table 2: Rank selection in binary tensor decomposition via BIC. The selected rank is aver-
aged across 30 simulations, with the standard error shown in the parenthesis.
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Figure 3: Trajectory of the objective function over iterations with varying d and R.

We also evaluate the numerical stability of our optimization algorithm. Although Algo-
rithm 1 has no theoretical guarantee to land at the global optimum, in practice, we often
find that the convergence point O is satisfactory, in that the corresponding objective value
Ey(@) is close to and actually slightly larger than the objective function evaluated at the
true parameter L£y(Oye). As an illustration, Figure 3 shows the typical trajectories of the
objective function under different tensor dimensions and ranks. The dashed line is the ob-
jective value at the true parameter, L£y(O¢e). We find that, upon random initializations,
the algorithm lands at a good convergence point and converges quickly. It usually takes
fewer than 8 iterations for the relative change in the objective to be below 3%, even for a
large d and R. The average computation time per iteration is shown in the plot legend.
For instance, when d = 60 and R = 10, each iteration of Algorithm 1 takes fewer than 3
seconds on average.

5.2. Stochastic Multi-way Block Model

We next evaluate our method under the stochastic multi-way block model, which can be
viewed as a higher-order generalization of the stochastic block model commonly used for
random graphs, network analysis, and community detection. Under this model, the signal
tensor does not have an explicit CP structure with known rank. Specifically, we generate )
of dimension d = dy = dg = ds, where we vary d € {20, 30,40, 50,60}. The entries in ) are
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realizations of independent Bernoulli variables with a probability tensor ©. The probability
tensor © has five blocks along each of the modes,

PI‘Obit_l(@) =C X1 N1 X9 N2 X3 Ng,

where N1, No, N3 € {0,1}%*5 are membership matrices indicating the block allocation
along each of the mode, xj denotes the tensor-by-matrix multiplication (Kolda and Bader,
2009) for k € [3], and C = [emymams] € R?*°*5 is a core tensor corresponding to the block-
means on a probit scale, and mj, me, m3 € {1,...,5} are block indices. We generate the
block means ¢y, mym; in the following ways:

e Combinatorial-mean model: ¢ moms b Uniform[—1, 1]; i.e., each three-way block
has its own mean, independent of each other.

e Additive-mean model: pymymy = Chy, + K2y, + 13, where pt  p2,and g3, are iid.
drawn from Unif[—1, 1].

e Multiplicative-mean model: ¢, myms = Cb “72712 u%%, and the rest of setup is the same

mi
as the additive-mean model.

We evaluate our method in terms of the accuracy of recovering the latent tensor ©
given the binary observations. Table 3 reports the relative loss, the estimated rank, and the
running time, averaged over ng, = 30 data replications, for the above three sub-models.
The relative loss is computed as ||é)MLE — Otruel| /|| Otrue|| F- Our method is able to recover
the signal tensors well in all three scenarios. As an illustration, we also plot one typical
realization of the true signal tensor, the input binary tensor, and the recovered signal tensor
for each sub-model in Table 3. It is interesting to see that, not only the block structure but
also the tensor magnitude are well recovered. We remark that, the data has been generated
from a probit model, but we always fit with a logistic link. Our method is shown to maintain
a reasonable performance under this model misspecification.

5.3. Comparison with Alternative Methods

We next compare our method with a number of alternative solutions for binary tensor
decomposition.

e Boolean tensor factorization (BooleanTF) (Miettinen, 2011; Erdos and Miettinen,
2013b; Rukat et al., 2018). This method decomposes a binary tensor into binary
factors and then recovers the binary entries based on a set of logical rules among the
factors. We use the implementation of Rukat et al. (2018).

e Bayesian tensor factorization (BTF_Bayeisan) (Rai et al., 2014). This method uses
expectation-maximization to decompose a binary tensor into continuous-valued fac-
tors. The algorithm imposes a Gaussian prior on the factor entries and a multiplicative
gamma process prior on the factor weights {\,}.

e Bernoulli tensor factorization with gradient descent (BTF_Gradient) (Hong et al.,
2020). This method uses a gradient descent algorithm to decompose a binary tensor
into continuous-valued factors. We use the implementation in the toolbox of Matlab.
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Block model Experiment Relative Rank Time
True signal ~ Input tensor ~ Output tensor Loss Estimate (sec)
T
Additive jﬂ“:: * g 0.23(0.05) | 1.9(0.3) | 4.23(1.62)
Multiplicative : _l ? 0.22(0.07) | 1.0(0.0) | 1.70(0.09)
Combinatorial 0.48(0.04) | 6.0(0.9) | 10.4(3.4)
| DI | H O
-1 -0.5 0 0.5 1 1 0
Continuous-valued tensor Binary-valued tensor

Table 3: Latent tensor recovery. Figures in the column of “Experiment” are color images
of the simulated tensor under different block mean models. Reported are the
relative loss, estimated rank, and running time, averaged over 30 data replications.
Standard error is shown in the parenthesis.

For easy reference, we denote our method by BTF_Alternating®. These four methods
differ in several ways. BooleanTF is different from the other three in both the cost function
and the output format. The rest are all based on the Bernoulli model (2), but with different
implementations. BTF _Bayesian employs a Bayesian approach, whereas the other two are
frequentist solutions. BTF _Gradient and our method, BTF_Alternating, share the same
model, but utilize different optimization algorithms. So the two methods complement each
other. On the other hand, we provide not only the algorithm-specific convergence properties,
but also algorithm-independent statistical properties including the statistical convergence
rate, SNR phase diagram, and mini-max rate. These results are not available in the proposal
of BTF _Gradient (Hong et al., 2020).

We apply the four methods with default parameters, while selecting the rank R using
the recommended approach of each. For our method BTF _Alternating, we use the proposed
BIC to select the rank. Because BTF_Gradient does not provide any rank selection criterion,
we apply the same R selected by our BIC. For BTF_Alternating, we set the hyper-parameter
« to infinity, which essentially poses no prior on the tensor magnitude. Besides, because
BTF Bayesian only supports the logistic link, we use the logistic link in all three BTF
methods.

We evaluate each method by two metrics. The first metric is the root mean square er-

—

ror, RMSE = (\/T], dk)_l HI@ —E(Y)||F, where E()) denotes the estimated probability
tensor. For BooleanTF, this quantity is represented as the posterior mean of ) (Mietti-

~

nen, 2011), and for the other three methods, E()) = logit(©). The second metic is the

1. Software implementation: https://github.com/Miaoyanwang/Binary-Tensor
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misclassification error rate, MER = ([, dj) " H]I]E/(\y)>o s — Le(y)>05llo- Here the indicator

function is applied to tensors in an element-wise manner, and |[|-||p counts the number of
non-zero entries in the tensor. These metrics reflect two aspects of the statistical error.
RMSE summarizes the estimation error in the parameters, whereas MER summarizes the
classification errors among 0’s and 1’s.

We simulate data from two different models, and in both cases, the signal tensors do
not necessarily follow an exact low-rank CP structure. Therefore, in addition to method
comparison, it also allows us to evaluate the robustness of our method under potential
model misspecification.

The first model is a boolean (logical) tensor model following the setup in Rukat et al.
(2018). We first simulate noiseless tensors Y = [y;;x] from the following model,

R

Yijk = \/ /\ airbjrCr, with ag ~ Ber(pf,.), bj, ~ Bernoulli(p?r), ckr ~ Bernoulli(pf,),
r=1ijk

where the binary factor entries {a;, }, {b;r}, {ckr} are mutually independent with each other,
the factor probabilities {pg.}, {p?r}, {p§,} are generated i.i.d. from Beta(2,4), and V and
A denote the logical OR and AND operations, respectively. Equivalently, the tensor entry
is 1 if and only if there exists one or more components in which all corresponding factor
entries are 1. It is easy to verify that

R
b b
E(yijel {pfy. oy v ) = 1= T (1 = Pl )

r=1

We then add contamination noise to ) by flipping the tensor entries 0 < 1 i.i.d. with
probability 0.1. We consider the tensor dimension d; = dy = d3 = 50 and the boolean rank
R € {10, 15, 20, 25, 30}.

Figure 4(a)-(b) shows the performance comparison based on ngm = 30 replications.
We find that the three BTF methods outperform BooleanTF in RMSE. The results shows
the advantage of a probabilistic model, upon which all three BTF methods are built. In
contrast, BooleanTF seeks patterns in a specific data realization, but does not target for
population estimation. For classification, BooleanTF performs reasonably well in distin-
guishing 0’s versus 1’s, which agrees with the data mining nature of BooleanTF. It is also
interesting to see that MER peaks at R = 20. Further investigation reveals that this set-
ting corresponds to the case when the Bernoulli probabilities E())) concentrate around 0.5,
which becomes particularly challenging for classification. Actually, the average Bernoulli
probability for R =10, 15, 20, 25, 30 is 0.31, 0.44, 0.53, 0.61, 0.68, respectively. Figure 4(b)
also shows that BTF _Alternating and BTF_Gradient achieve a smaller classification error
than BTF Bayesian. One possible explanation is that the normal prior in BTF_Bayesian
has a poor distinguishing power around 6 ~ 0, which corresponds to the hardest case when
Bernoulli probability = 0.5.

The second model is the stochastic multi-way block model considered in Section 5.2,
with the block means {¢p,moms} generated from the combinatorial-mean sub-model. Fig-
ure 4(c)-(d) shows the performance comparison, and a similar pattern is observed. The two
frequentist-type BTF methods, BTF _Gradient and BTF_Alternating, behave numerically
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Figure 4: Performance comparison in terms of root mean squared error and misclassification
error rate. (a)-(b) Estimation errors under the boolean tensor model. (c)-(d) Es-
timation errors under the stochastic multiway block model. Error bars represent
one standard error around the mean.

similarly, and they outperform the other alternatives. In particular, the BTF methods ex-
hibit decaying estimation errors, whereas BooleanTF appears to flatten out as dimension
grows. This observation suggests that, compared to the algorithmic error, the statistical
error is likely more dominating in this setting.

6. Data Applications

We next illustrate the applicability of our binary tensor decomposition method on a number
of data sets, with applications ranging from social networks, email communication networks,
to brain structural connectivities. We consider two tasks: one is tensor completion, and the
other is clustering along one of the tensor modes. The data sets include:

e Kinship (Nickel et al., 2011): This is a 104 x 104 x 26 binary tensor consisting of 26
types of relations among a set of 104 individuals in Australian Alyawarra tribe. The
data was first collected by Denham and White (2005) to study the kinship system
in the Alyawarra language. The tensor entry )(i,j, k) is 1 if individual ¢ used the
kinship term k to refer to individual j, and 0 otherwise.

e Nations (Nickel et al., 2011): This is a 14 x 14 x 56 binary tensor consisting of 56

political relations of 14 countries between 1950 and 1965. The tensor entry indicates
the presence or absence of a political action, such as “treaties”, “sends tourists to”,

22



BiNARY TENSOR DECOMPOSITION

between the nations. We note that the relationship between a nation and itself is not
well defined, so we exclude the diagonal elements Y (i, i, k) from the analysis.

e Enron (Zhe et al., 2016): This is a 581 x 124 x 48 binary tensor consisting of the
three-way relationship, (sender, receiver, time), from the Enron email data set. The
Enron data is a large collection of emails from Enron employees that covers a period
of 3.5 years. Following Zhe et al. (2016), we take a subset of the Enron data and
organize it into a binary tensor, with entry )(7, j, k) indicating the presence of emails
from a sender ¢ to a receiver j at a time period k.

e HCP (Wang et al., 2019): This is a 68 x 68 x 212 binary tensor consisting of struc-
tural connectivity patterns among 68 brain regions for 212 individuals from Human
Connectome Project (HCP). All the individual images were preprocessed following a
standard pipeline (Zhang et al., 2018), and the brain was parcellated to 68 regions-of-
interest following the Desikan atlas (Desikan et al., 2006). The tensor entries encode
the presence or absence of fiber connections between those 68 brain regions for each
of the 212 individuals.

The first task is binary tensor completion, where we apply tensor decomposition to
predict the missing entries in the tensor. We compare our binary tensor decomposition
method using a logistic link function with the classical continuous-valued tensor decompo-
sition. Specifically, we split the tensor entries into 80% training set and 20% testing set,
while ensuring that the nonzero entries are split the same way between the training and test-
ing data. The entries in the testing data are masked as missing, and we predict them based
on the tensor decomposition from the training data. The training-testing split is repeated
five times, and we report the average area under the receiver operating characteristic curve
(AUC) and RMSE across five splits in Table 4. It is clearly seen that the binary tensor
decomposition substantially outperforms the classical continuous-valued tensor decomposi-
tion. In all data sets, the former obtains a much higher AUC and mostly a lower RMSE.
We also report in Table 4 the percentage of nonzero entries for each data. We find that
our decomposition method performs well even in the sparse setting. For instance, for the
Enron data set, only 0.01% of the entries are non-zero. The classical decomposition almost
blindly assigns 0 to all the hold-out testing entires, resulting in a poor AUC of 79.6%. By
comparison, our binary tensor decomposition achieves a much higher classification accuracy,
with AUC = 94.3%.

The second task is clustering. We perform the clustering analyses on two data sets,
Nations and HCP. For the Nations data set, we utilize a two-step procedure by first applying
the proposed binary tensor decomposition method with the logistic link, then applying the
K-means clustering along the country mode from the decomposition. In the first step, the
BIC criterion suggests R = 9 factors, and in the second step, the classical elbow method
selects 5 clusters out of the 9 components. Figure 5(a) plots the 9 tensor factors along
the country mode. It is interesting to observe that the countries are partitioned into one
group containing those from the communist bloc, two groups from the western bloc, two
groups from the neutral bloc, and Brazil forming its own group. We also plot the top four
relation types based on their loadings in the tensor factors along the relationship mode in
Figure 5(b). The partition of the countries is consistent with their relationship patterns
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Tensor decomposition method

Data set Non-zeros | Binary (logistic link) | Continuous-valued
AUC RMSE AUC RMSE
Kinship 3.80% | 09708 1.2x107* |0.9436 1.4x 1073
Nations 21.1% | 0.9169 1.1x1072 | 0.8619 2.2x 1072
Enron 0.01% | 0.9432 6.4 x 1073 | 0.7956 6.3 x 107
HCP 35.3% ] 0.9860 1.3x1073 |0.9314 1.4 x 1072

Table 4: Tensor completion for the four binary tensor data sets using two methods: the
proposed binary tensor decomposition, and the classical continuous-valued tensor

decomposition.
a. Binary tensor components ay, ..., ag b. Relation types with large loadings
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Figure 5: Analysis of the Nations data set. (a) Top nine tensor components in the country
mode from the binary tensor decomposition. The overlaid box depicts the results
from the K-means clustering. (b) Relation types with large loadings. Top four
relationships identified from the top tensor components are plotted.

in the adjacency matrices. Indeed, those countries belonging to the same group tend to
have similar linking patterns with other countries, as reflected by the block structure in
Figure 5(b).

We also perform the clustering analysis on the data set HCP. We apply the decom-
position method with the logistic link and BIC-selected rank R = 6. Figure 6 plots the
heatmap for the top 6 tensor components across the 68 brain regions, and Figure 7 shows
the edges with high loadings based on the tensor components. Edges are overlaid on the
brain template BrainMesh ICBM152 (Xia et al., 2013), and nodes are color coded based
on their regions. We see that the brain regions are spatially separated into several groups
and that the nodes within each group are more densely connected with each other. Some
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Figure 6: Heatmap for binary tensor components across brain regions in the HCP analysis.
The connection matrix A, = A\ra, ® a, is plotted for component r € [6].
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Figure 7: Edges with high loadings in the HCP analysis. The top 10% edges with positive
loadings A..(i, j) are plotted, for € [6] and (4, j) € [68]>. The width of the edge
is proportional to the magnitude of A, (i, 7).

interesting spatial patterns in the brain connectivity are observed. For instance, the edges
captured by tensor component 2 are located within the cerebral hemisphere. The detected
edges are association tracts consisting of the long association fibers, which connect different
lobes of a hemisphere, and the short association fibers, which connect different gyri within
a single lobe. In contrast, the edges captured by tensor component 3 are located across
the two hemispheres. Among the nodes with high connection intensity, we identify superior
frontal gyrus, which is known to be involved in self-awareness and sensory system (Goldberg
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et al., 2006). We also identify corpus callosum, which is the largest commissural tract in the
brain that connects two hemispheres. This is consistent with brain anatomy that suggests
the key role of corpus callosum in facilitating interhemispheric connectivity (Roland et al.,
2017). Moreover, the edges shown in tensor component 4 are mostly located within the
frontal lobe, whereas the edges in component 5 connect the frontal lobe with parietal lobe.

7. Proofs

7.1. Proof of Theorem 1
Proof. Tt follows from the expression of £y (0) that

aﬁy = f(e“’ ’K) . (e -
21, ) 7417 i {yzl ..... i } 1— f(ell, viK) {yzl ,,,,, i }s
82£y _ 911, ,zK B f(gil,---,iK) ]1{ | . _1}
89121, i F2Oir) [0 i) | Wirin=
f(ez f2(0i1 ZK)
— e, . —
[1 21, Wi ) + {1 — f( 117._.72-1()}2 {yzl ,,,,, 7,K——1}7
82,Cy . | .
00i,...ix 00 __ir =0, if (i1,...,ix) # (@1, k)

Define

T oLy - 9Ly
Sy(gtrue) = Haeil,...,i;{ﬂ ‘(—):etrue’ and /Hy(gtrue) = ﬁaen,,lxaez’l,,z’}(]] ‘9:9true’

where Sy (Oyye) is the collection of the score functions evaluated at Oye, and Hy(Otrye)
is the collection of the Hession functions evaluated at Oine. We organize the entries in
5y (Otrue) and treat Sy(Oyrye) as an order-K dimension-(dy, ..., dx) tensor. Similarly, we
organize the entries in Hy(Oue) and treat Hy(Ogrue) as a [ [ di-by-] [, di matrix. By the
second-order Taylor’s theorem, we expand £y (0) around O¢ye and obtain

1 .
Ly(0) = Ly(Otrue) + (Sy(Otruc ), © — Otrue) + 3 vec(O — Orue) L Hy (0) vec(© — Otrue ), (14)

where © = YOye + (1 — )0 for some v € [0,1], and Hy(O) denotes the [], di-by-[], dk
Hession matrix evaluated at ©.
We first bound the linear term in (14). Note that, by Lemma 1,

‘<Sy(@true); O — @true>‘ < HS)J<9true)HUH® - GtrueH*~ (15)

Define
0Ly

U1yl K

Sitysing = 9

lo—o,,,, forall (i,....ix) € [di] x - x [dg].

It follows from model (2) and the expression for L, that Sy(Oue) = [Si;,....ix ] is @ random
tensor whose entries are independently distributed and satisfy

E(Sil,...,iK) = 0, |5i1,...,iK’ < La, for all (il, A ,iK) S [dl] X oo X [dK] (16)
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By Lemma 6, with probability at least 1 — exp(—C1log K ), di), we have

15y (Otrue)llo < CaLa /Z d, (17)

where C1, Cy are two positive constants. Furthermore, note that rank(@)) < R, rank(Oypye) <

R, so rank(© — Oye) < 2R. By Lemma 2, ||© — Ogpyel« < (2R)7 |© — Otrue||p- Combin-
ing (15), (16) and (17), we have that, with probability at least 1 — exp(—C1log K ), dy),

|<Sy(®true)a O — ®true>| < CQLa RK*I Z dk’H@ - @true||F> (18)
v k

where the constant Cy absorbs all factors that depend only on K.
We next bound the quadratic term in (14). Notice that

. 0L
vec(0 — Oyrue)’ Hy(0) vec(© — Opye) = Z ((%Qy‘@:®> (Oiy...ire — Otruesiy,.ix )’

yeeii Bl ooy K

< —Ya Z (®i1,...,iK - @truc,i1,...,iK)2

ek

= —7l© - GtrueH%ﬁ (19)

where the second line comes from the fact that ||©||max < @ and the definition of .

Combining (14), (18) and (19), we have that, for all © € D, with probability at least
1 —exp(=Crlog K, dy),

1/2
Ey(@) S Ey(@true) + CQLa (RK_l de> H@ - @trueHF - ’Y?O[H@ - @trueH%‘a
k
In particular, the above inequality also holds for © € D. Therefore,
1/2
Ey(@) < Ey(@true) + Ca L, <RK_1 de> Hé - @trueHF - %”é o @truen%'
k
Since © = arg maxgep Ly(0), Ly(0) — Ly(Otrue) > 0, which gives

1/2
CQLa (RKl de> ||é - @true”F - %Hé - etme”%7 > 0.
k

Henceforth,

1 A 209L v/ RE-1 d RE-1 d
—=——=—1© — Oprue||F < 2 Zk £ = 20 o % k
A dek \/dek Hk k

Remark 1. Based on the proof of Theorem 1, we can relax the global optimum assumption
on the estimator ©. The same convergence rate holds in the level set {© € D: Ly(©) >

Ey(@true)}'
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7.2. Proof of Theorem 2

Proof. Without loss of generality, we assume di = dmax, and denote by diotal = [[1>1 di-
Let v € [0,1] be a constant to be specified later. Our strategy is to construct a finite set
of tensors X = {0;: i = 1,...} C D(R, a) satisfying the properties of (i)-(iv) in Lemma 8.
By Lemma 8, such a subset of tensors exist. For any given tensor © € X, let Pg denote
the distribution of )|O, where ) is the observed binary tensor. In particular, Pg is the
distribution of ) induced by the zero parameter tensor 0; i.e., the distribution of ) condi-
tional on the coefficient tensor © = 0. Then conditioning on © € X, the entries of ) are
independent Bernoulli random variables. In addition, we note that (c.f. Lemma 3),

4
for the logistic link: KL(Pe,Po) < — 0|7,
g

for the probit link: KL(Pg,Pg) < 0%, (20)

=

o2
1

for the Laplacian link: KL(Pg,Pg) < —QH@H%,
o

where o is the scale parameter. Therefore, under these link functions, the KL divergence
between Pg and Py satisfies

2 2
KL(Pg.Py) < —|0]|% < ZRd~? 21
(Po, o)_mQH HF—Tr 177, (21)

where the first inequality comes from (20), and the second inequality comes from property
(iii) of X. From (21) and the property (i), we conclude that the inequality

Card(lX)—l Z KL(Pg,Pp) < elog {Card(X) — 1} (22)
OcXx

is satisfied for any £ > 0, wheny € [0,1] is chosen to be sufficiently small depending on &,

eg.,v< \/EIOTﬂ. By applying Tsybakov (2009, Theorem 2.5) to (22), and in view of the
property (iv), we obtain that

. 1 1
iI}f sup P (HG - GtrueHF > %min {Oé\/ diotal, O Rd1}> > 5 (1 — 2¢e — 66) .

O OpuccX Rdy log 2
(23)
Note that Hé) — Otruel|lF = \/dtotalLoss((:), Otrue) and X C D(R, o). By taking e = 1/10 and
v = 1/11, we conclude from (23) that

. A 1 . Rdmax 1 <4 1.6 )
inf su P | Loss(©, 0 > —min< a,0 Z-lc—\5=—=],
&) @trueer(R,a) ( ( tl‘ue) 882 { dtotal }) 2\5 Rdmax log 2

which is > 1/8. [
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7.3. Proof of Theorem 3

Proof. The argument is similar as that in the proof of Theorem 2. Specifically, we construct
a set of tensors X C D(R, «) such that, for all © € X, © satisfies the properties (i) to (iv)
of Lemma 8. Given a continuous-valued tensor ), let Pg denote the distribution of Y|©
according to the Gaussian model; that is, Y = [yi,,.ix]|© ~iid. N(0,02). Note that, for
the Gaussian distribution,

”@”F 1 2
= < — .
KL(Pe,Po) = = 5~ < Tl
So the condition
71 E KL(Pg,Pg) < elog (Card(X) — 1) (24)
Card(X) — 1 ©,%0) = £log {hat

OISy ¢

is satisfied for any e > 0 when ~ € [0, 1] is chosen to be sufficiently small depending on e.
In view of the property (iv) and (24), the conclusion follows readily from the application of
Tsybakov (2009, Theorem 2.5). |

7.4. Proof of Proposition 1

Proof. The proof of the global convergence is similar to that of Zhou et al. (2013, Proposition
1). We present the main ideas here for completeness. By Assumption (A2), the block update
is well-defined and differentiable. The isolation of stationary points ensures that there are
only finite number of stationary points. It suffices to show that every sub-sequence of A®
convergences to a same limiting point.

Let A() be one subsequence with limiting point A*. We aim to show that A* is the
only limiting point for all possible subsequences in A®). As the algorithm monotonically
increases the objective value, the limiting point A* is a stationary point of £. Now take
the set of all limiting points, which is contained in the set {A: £L(A) > L(A©®)}, and is
thus compact due to (Al). The compactness of the set of limiting points implies that the
set is also connected (Lange, 2010, Propositions 8.2.1 and 15.4.2). Note that a connected
subset of the finite stationery points is a single point. Henceforth, every subsequence of
A® convergences to a stationary point of L.

The local convergence follows from Uschmajew (2012, Theorem 3.3) and Zhou et al.
(2013, Proposition 1). Here we elaborate on the contraction parameter p € (0,1) in our
context. Let H denote the Hession matrix of the log-likelihood £(A) at the local maximum
A*. We partition the Hession into H = L + D + L”, where L is the strictly block lower
triangular part and D is the block diagonal part. By Assumption (A2), each sub-block of
the Hession is negative definite, so the diagonal entries of D are strictly negative. This
ensures that the block lower triangular matrix L + D is invertible. The differential of
the iteration map M: A® — AD can be shown as M’ = —(L + D)~ 'L (Bezdek and
Hathaway, 2003, Lemma 2). Therefore p = max; |A; {(L + D)~ 'L}| € (0,1), where \i{-}
denotes the i-th singular value of the matrix. By the contraction principle,

1AW — A%||p < p'| A — A",
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for A sufficiently close to A*. Because © = ©(A) is local Lipschitz at A* with constants
c1,co > 0, we have

al|AY — A*|[r < |6(AY) - 6(A")|F < o] A — A*|p,
for all sufficiently large ¢ € N,. Therefore
16(A®) —e|r < p'Cle(A”) - o*|r,
where C > 0 is a constant. |

7.5. Proof of Theorem 4

Proof. Based on Remark 1 after Theorem 1, we have

L K—1
Loss(0, Otrye) < Cola R 2 .
Ve Hk dp,

Meanwhile, Proposition 1 implies that, there exists an iteration number Ty > 0, such that

Loss(0®),0%) < C1p'Loss(0), ©%),
holds for all ¢ > T. Combining the above two results yields

Loss(@(t), Otrue) < Loss(@(t), ©%) + Loss(Orye, O)

K—1
< C1p'Loss(0©) %) + CiLa R N %k dk7
(6% k} k

for all t > Tj. [ |

8. Conclusions

Many data tensors consist of binary observations. This article presents a general method and
the associated theory for binary tensor decomposition. We have shown that the unknown
parameter tensor can be accurately and efficiently recovered under suitable assumptions.
When the maximum norm of the unknown tensor is bounded by a constant, our error bound
is tight up to a constant and matches with the best possible error bound for the unquantized
observations.

We comment on a number of possible extensions. Our method leverages on the al-
ternating updating algorithm for the optimization. Although a non-convex optimization
procedure such as Algorithm 1 has no guarantee on global optimality, our numerical ex-
periments have suggested that, upon random initializations, the convergence point O is
often satisfactory, in that the corresponding objective value Ey(é) is close to the objec-
tive value L£y(Oye). We have shown in Theorem 1 that the same statistically optimal
convergence rate holds, not only for the MLE, but also for every local maximizer O with
sufficiently large objective values. When starting from random initializations, there could
be multiple estimates, whose objective values are all greater than £y(©gye). In theory,
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any of those choices perform equally well in estimating Oyye. In this sense, local optimal-
ity is not necessarily a severe concern in our context. On the other hand, characterizing
global optimality for non-convex optimization problem of this type is itself of great inter-
est. There has been recent progress investigating the landscape of non-convex optimization
involving tensors (Anandkumar et al., 2014; Richard and Montanari, 2014; Ge and Ma,
2017). The problem is challenging, as the geometry can depend on multiple factors includ-
ing the tensor rank, dimension, and factorization form. In some special cases such as rank-1
or orthogonally decomposable tensors, one may further obtain the required asymptotical
number of initializations, however, at the cost of more stringent assumptions on the target
tensor (Anandkumar et al., 2014; Richard and Montanari, 2014). We leave the pursuit of
optimization landscape as future research.

For the theory, we assume the true rank R is known, whereas for the application, we
propose to estimate the rank using BIC given the data. It remains an open and challenging
question to establish the convergence rate of the estimated rank (Zhou et al., 2013). We
leave a full theoretical investigation of the rank selection consistency and the decomposition
error bound under the estimated rank as future research.

Finally, although we have concentrated on the Bernoulli distribution in this article, we
may consider extensions to other exponential-family distributions, for example, count-valued
tensors, multinomial-valued tensors, or tensors with mixed types of entries. Moreover, our
proposed method can be thought of as a building block for more specialized tasks such as
exploratory data analysis, tensor completion, compressed object representation, and net-
work link prediction. Exploiting the benefits and properties of binary tensor decomposition
in each specialized task warrants future research.
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Appendix A. Technical Lemmas

We summarize technical lemmas that are useful for the proofs of the main theorems.
Lemma 1. Let A, B be two order-K tensors of the same dimension. Then,

(A, B)| < [|Allo]1B]]+

Proof. By Friedland and Lim (2018, Proposition 3.1), there exists a nuclear norm decom-
position of B, such that

T )

B=)Y Mal@--@al, al) cS%(R), foralke K]
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and || B« = 3, |\|. Henceforth we have
(A, B)| = [(A, Z)\rafnl) R ® aan)>| < Z A [(A, af}) QR ® agK)H

<> Al = 1406 1Bl

Lemma 2. Let A € ROX*4K pe an order-K tensor with rank(A) < R. Then,

K-1
Al < B2 | A
where ||-||« denotes the nuclear norm of the tensor.

Proof. Let rank(-) denote the regular matrix rank, and A denote the mode-k matri-
cization of A, k € [K]. Define ranky(A) = (R1,...,Rk) as the Tucker rank of A, with
Ry, = rank( A ). The condition rank(A) < R implies that Ry < R for all k € [K]. Without
loss of generality, assume R; = miny Ri. By Wang et al. (2017, Corollary 4.11) and the
invariance relationship between a tensor and its Tucker core (Jiang et al., 2017, Section 6),

we have
HkK—z By K2
x < = x < * 9
4 <= Al < BT g | (25)

where A(q) is a dl—by—l_[k22 di, matrix with rank bounded by R. Furthermore, the relation-

ship between the matrix norms implies that [|Ay [« < \/EHA(U |F = VR||A| r. Combining
this fact with the inequality (25) yields the final claim. |

Lemma 3. Let Y € {0,1}4X %45 pe q binary tensor. Let Pg denote the distribution of
Y|© based on the Bernoulli model (2) with the link function f and the parameter tensor ©.
Let Pg denote the distribution of V|0 induced by the zero parameter tensor. Then

KL(Pe,Po) < 4f%(0)|©][%-
Proof. We have that

(£, ire) — £(0))?
£(0)(1 = £(0))

KL(Po,Po) = Y KLy, ig 01, oige: Vir i) <

Bl l K B1 sl
f2(77z‘1 ikeil iK) (Gil sl T 0)2 ) 2
= e — — < 4f2(0 9i i
p3 FO)(1 - 7(0) 2 AT
01,0yl K 11,y K
= 4f%(0)|10]%,

where the first inequality comes from Lemma 4, the next equality comes from the first-order
Taylor expansion with 7;, ;. € [0, 1], and the last inequality uses the fact that f(0) = 1/2
and f’ peaks at zero for an unimodal and symmetric density function. |
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Lemma 4. Let X,Y be two Bernoulli random vartables with means p and q, 0 < p,q < 1,
respectively. Then, the Kullback-Leibler (KL) divergence satisfies that

(p—q)?
KL(X,Y) < P

where KL(X,Y) = =37, (13 Px(z)log { gﬁig }

Proof. 1t is straightforward to verify that

p l—p _ p—gq g—p _ (p—q)?
KL(X,Y)=plog=+ (1 —p)log <0 + (1 — = ,
&) q (1-2) 1—q q ( )1—q q(1—q)

where the inequality is due to the fact that logax < x — 1 for > 0. |

Lemma 5 (Tomioka and Suzuki (2014)). Suppose that S = [si,.. i, ] € ROX XK jg
an order-K tensor whose entries are independent random variables that satisfy

E(siy..ix) =0, and E(ei-ix) < et L?/2,
Then, the spectral norm ||S||, satisfies that

1Sl < \/8L2 log(12K) Y " dy + log(2/9),

k

with probability at least 1 — 6.

Remark 2. The above lemma provides the bound on the spectral norm of random ten-
sors. Similar results were presented in Nguyen et al. (2015), and we adopt the version
from Tomioka and Suzuki (2014).

Lemma 6. Suppose that S = [si, . i, ] € RAX %K s qn order-K tensor whose entries
are independent random variables that satisfy

E(Silw-wiK) =0 and ’5i1,~~-,ik| < L.

P [Slle>CoL [> dy| <exp <_Cl IOgKde> ;
\ & k

where Cp > 0 is an absolute constant, and Cy > 0 is a constant that depends only on K.

Then, we have

Proof. Note that the random variable L™1s;, ;. is zero-mean and supported on [—1,1].

Therefore, L™1s;, is sub-Gaussian with parameter 17(271) =1;ie.,

)'“72‘K
E(L 'siy.ix) =0 and B snin) < /2,
It follows from Lemma 5 that, with probability at least 1 — ¢,

IL7LS, < \/(co log K +c1) > dy, +log(2/6),

k

where cp,c¢; > 0 are two absolute constants. Taking 0 = exp(—Cilog K ), di,) yields the
final claim, where C5 = cglog K + ¢; + 1 > 0 is another constant. [ |
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Lemma 7 (Varshamov-Gilbert bound). Let Q = {(w1,...,wp): w; € {0,1}}. Suppose
m > 8. Then, there exists a subset {w®), ... ,w(M)} of Q such that w® = (0,...,0) and

[wD —w® o> = for0<j<k<M,

m
8
where ||-||o denotes the Hamming distance, and M > 2™/8,

Lemma 8. Assume the same setup as in Theorem 2. Without loss of generality, suppose
d1 = dmax, and define dipia = Hk21 di. For any given constant 0 < v < 1, there exist a
finite set of tensors X = {0;:i=1,...} C D(R,«) satisfying the following four properties:

(i) Card(X) > 284/8 11 where Card(-) denotes the cardinality of the set;

(ii) X contains the zero tensor 0 € R >xdx .

dtotal

(713) [|O||maz < ymin {a,a Rd, } for all elements © € X;

(iv) |8; — Oj|lr > I min {a/diorar, ov/Rd1 } for any two distinct elements ©; # ©; € X.

Remark 3. Lemma 8 is a special case of Lee and Wang (2020, Lemma 9). We provide the
proof here for completeness.

Proof. Given a constant 0 < v < 1, we define a set of matrices,

C= {M = (myj) € RT*E: ;€ {O,Wmin{a,a Ry }}, V(i,7) € [di] % [R]}

dtotal
We then consider the associated set of block tensors,

B=B(C)={0 cRW XK. 9 =401y, @ 1g4,,
where A = (M| ---|M|0) € Rh*% M e ¢},

where 1, denotes a length-d vector with all entries 1, O denotes the d; x (d2 — R|d2/R])
zero matrix, and |da/R]| is the integer part of da/R. In other words, the subtensor
O(I,1,is,...,ix) € R1*% are the same for all fixed (i3, ...,ix) € [d3] X - - - x [d], and fur-
thermore, each subtensor O(I, I, i3, ...,ix) itself is filled by copying the matrix M € R41*£
as many times as would fit.

By construction, all tensors in B, as well as the difference of any two tensors in B,
has tensor rank at most R. Furthermore, the entrywise magnitudes of tensor entries in B
are bounded by «. Thus, B C D(R,«). By Lemma 7, there exists a subset X C B with
cardinality Card(X) > 291%/8 4 1 containing the zero dy x --- x dg tensor, such that, for
any two distinct elements ©; and ©; in &,

d ?Rd, | d ?min {2 dyotal, 0> Rd
16,6513 2 2 min [, ZIOY |2 T g, » T v 700

7
dtotal k>3 16

In addition, each entry of © € X' is bounded by v min {a, o M}. Therefore, the Prop-

dtotal
erties (i)—(iv) are satisfied. [
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