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Abstract

An accurate model of a patient’s individual survival distribution can help determine the ap-
propriate treatment for terminal patients. Unfortunately, risk scores (for example from Cox
Proportional Hazard models) do not provide survival probabilities, single-time probability
models (for instance the Gail model, predicting 5 year probability) only provide for a single
time point, and standard Kaplan-Meier survival curves provide only population averages for
a large class of patients, meaning they are not specific to individual patients. This motivates
an alternative class of tools that can learn a model that provides an individual survival
distribution for each subject, which gives survival probabilities across all times, such as
extensions to the Cox model, Accelerated Failure Time, an extension to Random Survival
Forests, and Multi-Task Logistic Regression. This paper first motivates such “individual
survival distribution” (isd) models, and explains how they differ from standard models. It
then discusses ways to evaluate such models — namely Concordance, 1-Calibration, Inte-
grated Brier score, and versions of L1-loss — then motivates and defines a novel approach,
“D-Calibration”, which determines whether a model’s probability estimates are meaningful.
We also discuss how these measures differ, and use them to evaluate several isd prediction
tools over a range of survival data sets. We also provide a code base for all of these survival
models and evaluation measures, at https://github.com/haiderstats/ISDEvaluation.
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1. Introduction

When diagnosed with a terminal disease, many patients ask about their prognosis (Gwilliam
et al., 2012): “How long will I live?”, or “What is the chance that I will live for 1 year... and
the chance for 5 years?”. Here it would be useful to have a meaningful “survival distribu-
tion” S( t | ~x ) that provides, for each time t ≥ 0, the probability that this specific patient ~x
will survive at least an additional t months. Unfortunately, many of the standard survival
analysis tools cannot accurately answer such questions: (1) risk scores (e.g., Cox propor-
tional hazard (Cox, 1972)) provide only relative survival measures, but not the calibrated
probabilities desired; (2) single-time probability models (e.g., the Gail model (Costantino
et al., 1999)) provide a probability value but only for a single time point; and (3) class-based
survival curves (like Kaplan-Meier, km (Kaplan and Meier, 1958)) are not specific to the
patient, but rather an entire population.

To explain the last point, Figure 1[left] shows the km curve for patients with stage-4
stomach cancer. Here, we can read off the claim that 50% of the patients will survive
11 months, and 95% will survive at least 2 months.1 While these estimates do apply to the
population, on average, they are not designed to be “accurate” for an individual patient
since these estimates do not include patient-specific information such as age, treatments
administered, or general health conditions. It would be better to directly, and correctly,
incorporate these important factors ~x explicitly in the prognostic models.

This heterogeneity of patients, coupled with the need to provide probabilistic estimates
at several time points, has motivated the creation of several individual survival time distri-
bution (isd) tools, each of which can use this wealth of healthcare information from earlier
patients, to learn a more accurate prognostic model, which can then predict the isd of a
novel patient based on all available patient-specific attributes. Many (e.g., Henderson and
Keiding, 2005; Hollnagel, 1999) have argued that such survival distributions are better than
simple point estimates — e.g., a risk score or the probability of surviving to a single specified
time — for explaining patient survival, as the distribution provides more information.

This paper considers several isd models: the Kalbfleisch-Prentice extensions of the Cox
(cox-kp) (Kalbfleisch and Prentice, 2002) and the elastic net Cox (coxen-kp) (Yang and
Zou, 2013) models, the Accelerated Failure Time (aft) model
(Kalbfleisch and Prentice, 2002), the Random Survival Forest model with Kaplan-Meier
extensions (rsf-km) (Ishwaran et al., 2008), and the Multi-task Logistic Regression (mtlr)
model (Yu et al., 2011). Figure 1[middle, right] shows survival curves (generated by mtlr)
for two of these stage-4 stomach cancer patients, which incorporates other information about
these individuals such as their age, gender, blood work, etc. We see that these prognoses are
very different; in particular, mtlr predicts that [middle] Patient #1’s median survival time
is 20.2 months, while [right] Patient #2’s is only 2.6 months. The blue vertical dashed-lines
show the actual times of death; we see that each of these patients passed away very close
to mtlr’s predictions of their respective median survival times.

1. In general, a survival curve is a plot where each [x, y ] point represents (the curve’s claim that) there
is a y% chance of surviving at least x time. Hence, in Figure 1[left], the [ 11 months, 50% ] point means
this curve predicts a 50% chance of living at least 11 months (and hence a 100−50 = 50% chance of
dying within the first 11 months). The [ 2 months, 95% ] point means a 95% chance of surviving at least
2 months, and the [ 51 months, 5% ] point means a 5% chance of surviving at least 51 months.
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Figure 1: [left] Kaplan-Meier curve, based on 128 patients with stage-4 stomach cancer.
[middle, right] Two personalized survival curves, for two patients (#1 and #2)
with stage-4 stomach cancer. The blue dashed lines indicate the true time of
death.

One could then use such curves to make decisions about the individual patient. Of
course, these decisions will only be helpful if the model is providing accurate information —
i.e., only if it is appropriate to tell a patient that s/he has a 50% chance of living more than
the median survival time of this predicted curve, and a 25% chance of living more than the
time associated with the 25% on the curve, etc.

We focus on ways to learn such models from a “survival data set” (see below), describing
earlier individuals. Survival prediction is similar to regression as both involve learning a
model that regresses the covariates of an individual to estimate the value of a dependent
real-valued response variable — here, that variable is “time to event” (where the standard
event is “death”). But survival prediction differs from the standard regression task as its
response variable is not fully observed in all training instances — this task allows many
of the instances to be “right censored”, in that we only see a lower bound of the response
value. This might happen if a subject was alive when the study ended, meaning we only
know that s/he lived at least (say) 5 years after the starting time (see P#3 in Figure 2), but
do not know whether she actually lived 5 years and a day, or 20 years. This also happens if
a subject drops out of a study, after say 4 years, and is then lost to follow-up (e.g., P#4),
etc. Moreover, one cannot simply ignore such instances as it is common for many (or often,
most) of the training instances to be right-censored; see second row of Table 5.

Such “partial label information” is problematic for standard regression techniques, which
assume the label is completely specified for each training instance. Fortunately, there are
survival prediction algorithms that can learn an effective model, from a cohort that includes
such censored data. Each such “survival data set” contains descriptions of a set of instances
(e.g., patients), as well as two “labels” for each: one is the time, corresponding to the time
from diagnosis to a final date (either death, or time of last follow-up) and the other is
the status bit, which indicates whether the patient was alive at that final date. Section 2
summarizes several popular models for dealing with such survival data. We also note
that there are many survival analysis tools that instead use a survival data set to identify
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Figure 2: Example to illustrate censoring: Here, a 5-year study began in 1990. Over this
time, P#1 and P#2 died, but P#3 survived until the end, and P#4 and P#5
were lost to follow-up.

biomarkers — each a feature that, by itself, is related to an individual’s survival. We will
later use this facility to reduce the number of features considered by our survival prediction
models.

This paper provides three contributions: (1) Section 2 motivates the need for such isd
models by showing how they differ from more standard survival analysis systems. (2) Sec-
tion 3 then discusses several ways to evaluate such models, including standard measures
(Concordance, 1-Calibration, Brier score), variants/extensions to familiar measures (e.g.,
L1-loss), and also a novel approach, “D-Calibration”, which can be used to assess the
quality of the individual survival curves generated by isd models. (3) Section 4 evaluates
several isd (and related) models (standard: km, cox-kp, aft and more recent: rsf-
km, coxen-kp, mtlr) on 8 diverse survival data sets, in terms of all 5 evaluation measures.
We will see that mtlr does well — typically outperforming the other models in the various
measures, and often showing vast improvement in terms of calibration metrics.

The appendices provide relevant auxiliary information: Appendix A describes some
important nuances about survival curves. Appendix B provides further details concerning
all the evaluation metrics and in particular, how each addresses censored observations. It
also contains some relevant proofs about our novel D-Calibration metric. Appendix C
then explains some additional aspects of the isd models considered in this paper. Lastly,
Appendix D gives the detailed results from empirical evaluation — e.g., providing detailed
tables corresponding to the results shown as figures in Section 4.2.

For readers who want an introduction to survival analysis and prediction, we recom-
mend Applied Survival Analysis by Hosmer et al. (2011). Wang et al. (2017) also surveyed
machine learning techniques and evaluation metrics for survival analysis. However, that
work primarily overviewed the standard survival analysis models, then briefly discussed
some of the evaluation techniques and application areas. Our work, instead, focuses on
the isd-based models — first motivating why they are relevant for survival prediction then
providing empirical results showing the strengths and weaknesses of each of the models
considered.
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Figure 3: Machine Learning paradigm for learning, then using an isd (Individual Survival
Distribution) model.

2. Summary of Various Survival Analysis/Prediction Systems

There are many different survival analysis/prediction tools, designed to deal with various
different tasks. We focus on tools that learn the model from a survival data set,

D = { [~xi, ti, δi] | i = 1 , · · · , n}i (1)

which provides the values for features ~xi = [x
(1)
i , · · · , x(k)

i ] for each member of a cohort of
historical patients, as well as the actual time of the “event” ti ∈ <≥0 which is either death
(uncensored) or the last visit (censored), and a bit δ ∈ {0, 1} that serves as the indicator
for death.2 See Figure 3, in the context of our isd framework.

Here, we assume ~x is a vector of feature values describing a patient, using information
that is available when that patient entered the study — e.g., when the patient was first
diagnosed with the disease, or started the treatment. Additionally, we assume each patient
has a death time, di, and a censoring time, ci, and assign ti := min{di, ci} and δi =
I [ di ≤ ci ] where I [ · ] is the Indicator function – i.e., δi := 1 if di ≤ ci or δi := 0 if di > ci.
We follow the standard convention that di and ci are assumed independent.

To help categorize the space of survival prediction systems, we consider 3 independent
characteristics that reflect the functionality of the performance system:

2. Throughout this work we focus only on Right-Censored survival data. Additionally, we constrain our
work to the standard machine-learning framework, where our predictions are based only on information
available at fixed time t0 (e.g., start of treatment). While these descriptions all apply when dealing with
the time to an arbitrary event, our descriptions will refer to “time to death”.
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• [R vs P] whether the system provides, for each patient, a risk score r(~x) ∈ < versus
a probabilistic value ∈ [0, 1] (perhaps Ŝ( t | ~x )).

• [1t∗ vs 1∀ vs ∞] whether the system returns a single value for each patient (associated
either with a single time “1t∗” or with the overall survival “1∀”), versus a range of
values, one for each time. Here 1t∗ might refer to Ŝ( t∗ | ~x ) ∈ [0, 1] for a single time t∗

and 1∀ if there is a single “atemporal” value (think of the standard risk score, which
is not linked to a specific time), vs ∞ that refers to the set { [t, Ŝ( t | ~x )] }t≥0 over all
future times t ≥ 0.

• [i vs g] whether the prediction is “i ” meaning it is specific to a single individual patient
(i.e., based on a large number of features ~x) or is “g ” meaning it is general to the
population. This g also applies if the model deals with a fixed set of subpopulations
— perhaps each contains all patients with certain values of only one or two features
(e.g., subpopulation p1 is all men under 50, p2 are men over 50, and p3 and p4 are
corresponding sets of women), or each subpopulation is a specified range of some
computation (e.g., p1′ are those with BMI<20, p2′ with BMI∈ [20, 30] and p3′, with
BMI>30).

This section summarizes 5 (of the 2× 3× 2 = 12) classes of survival analysis tools (see Fig-
ure 4), giving typical uses of each, then discusses how they are interrelated. Of course, there
are other dimensions for structuring survival prediction models — e.g., non-parametric,
semi-parametric and parametric models (Wey et al., 2015). That split was more related
to the assumptions of the learning process rather than the characteristics of the learned
model.3

2.1. [R,1∀,i]: 1-value Individual Risk Models (cox)

An important class of survival analysis tools compute “risk” scores, r(~x) ∈ < for each
patient ~x, with the understanding that r(~xa) > r(~xb) corresponds to predicting that the
patient described by ~xa will die before the patient ~xb.

4 Hence, this is a discriminative tool
for comparing pairs of patients, or perhaps for “what if” analysis of a single patient (e.g., if
s/he continues smoking, versus if s/he quits). These systems are typically evaluated using
a discriminative measure, such as “Concordance” (discussed in Section 3.1). Notice these
tools each return a single real value for each patient.

One standard generic tool here is the Cox Proportional Hazard (cox) model (Cox, 1972),
which is used in a wide variety of applications. This models the hazard function5 as

hcox( t, ~x ) = λ0(t) exp(~βT~x) (2)

where ~β are the learned weights for the features, and λ0(t) is the baseline hazard function.
We view this as a Risk Model by ignoring λ0(t) (as λ0(t) is the same for all patients), and

3. We will see that the rsf-km model is non-parametric and aft is parametric, but both are isds — i.e.,
[P,∞,i].

4. To simplify notation, from here on, we will use ~xi to refer to both the ith patient, and the feature vector
describing that patient.

5. The hazard function (also known as the failure rate, hazard rate, or force of mortality) h(t; ~x) =
p(t | ~x)/S( t | ~x ) is essentially the chance that ~x will die at time t, given that s/he has lived until this
time, using the survival PDF p(t | ~x). When continuous, h(t, ~x) = − d

dt
logS( t | ~x ).
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Figure 4: Dimensions for cataloging types of Survival Analysis/Prediction tools [left] —
and examples of certain tools [right].

focusing on just exp(~βT~x) ∈ <+. (But see the cox-kp model below, in [P,∞,i].) There are
many other tools for predicting an individual’s risk score, typically with respect to some
disease; see for example, the Colditz and Rosner (2000) model and the myriad of others
appearing on the Disease Risk Index website6, as well as some models (like DeepSurv)
that use deep nets (Katzman et al., 2018). For all of these models, the value returned is
atemporal — i.e., it does not depend on a specific time. There are also tools that produce
[R,∞,i] models, which return a risk score associated across all time points; see Section 3.1.

2.2. [R,1t∗,g]: Single-time Group Risk Predictors: Prognostic Scales (PPI,
PaP)

Another class of risk predictions explicitly focus on a single time, leading to prognostic
scales, some of which are computed using Likert scales (Rogers et al., 2001). For example,
the Palliative Prognostic Index (PPI; Morita et al., 1999) computes a risk score for each ter-
minally ill patient, which is then used to assign that patient into one of three groups. It then
uses statistics about each group to predict that patients in one group will do better at this
specific time (here, 3 weeks), than those in another group. Similarly, the Palliative Prog-
nostic Score (PaP; Pirovano et al., 1999) uses a patient’s characteristics to assign him/her
into one of 3 risk groups, which can be used to estimate the 30-day survival risk. (There are
many other such prognostic scales, including (Chuang et al., 2004; Anderson et al., 1995;
Haybittle et al., 1982).) Again, these tools are typically evaluated using Concordance.7

6. https://siteman.wustl.edu/prevention/ydr. The cancer scores, for example, use models that are
based on group consensus among researchers to identify risk factors, with risk points allocated according
to the strength of the causal association, obtained from population average risk of cancer and cumulative
10-year risk obtained from SEER data (Colditz et al., 2000).

7. Here, they do not compare pairs of individuals from the same group, but only patients from different
groups, whose events are comparable (given censoring); see Section 3.1.
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2.3. [P,1t∗,i]: Single-time Individual Probabilistic Predictors (Gail,
PredictDepression)

Another class of single-time predictors each produce a survival probability Ŝ( t∗ | ~x ) ∈ [0, 1]
for each individual patient ~x, for a single fixed time t∗ — which is the probability ∈ [0, 1]
that ~x will survive to at least time t∗. For example, the Gail model [Gail] (Costantino et al.,
1999)8 estimates the probability that a woman will develop breast cancer within 5 years
based on her responses to a number of survey questions. Similarly, the PredictDepression
system [PredDep] (Wang et al., 2014)9 predicts the probability that a patient will develop
a major depressive episode in the next 4 years based on a small number of responses. The
Apervita10 and R-calc11 websites each include dozens of such tools, each predicting the
survival probability for 1 (or perhaps 2) fixed time points for certain classes of diseases.

Notice these probability values have semantic content, and are labels for individual
patients (rather than risk-scores, which are only meaningful within the context of other
patients’ risk scores). These systems should be evaluated using a calibration measure, such
as 1-Calibration or Brier score (discussed in Sections 3.3 and 3.4).

2.4. [P,∞,g]: Group Survival Distribution (km)

There are many systems that can produce a survival distribution: a graph of [t, Ŝ( t )],
showing the survival probability Ŝ( t ) ∈ [0, 1] for each time t ≥ 0; see Figure 1. The
Kaplan-Meier analytic tool (km) is at the “class” level, producing a distribution designed
to apply to everyone in a sub-population: Ŝ( t | ~x ) = Ŝ( t ), for every ~x in some class — e.g.,
the km curve in Figure 1[left] applies to every patient ~x with stage-4 stomach cancer. The
SEER website12 provides a set of Kaplan-Meier curves for various cancers. While patients
can use such information to get a crude estimate of their survival probabilities, the original
goal of that analysis is to better understand the disease itself, perhaps by seeing whether
some specific feature made a difference, or if a treatment was beneficial. For example, we
could produce one curve for all stage-4 stomach cancer patients who had treatment tA,
and another for the disjoint subset of patients who had no treatment; then run a log-rank
test (Harrington, 2005) to determine whether (on average) patients receiving treatment tA
survived statistically longer than those who did not. Section 3 below describes various ways
to evaluate [P,∞,i] models; we will use these measures to evaluate km models as well.

2.5. [P,∞,i]: Individual Survival Distribution, isd (cox-kp, coxen-kp, aft,
rsf-km, mtlr)

The previous two subsections described two frameworks:

• [P,1t∗ ,i] tools, which produce an individualized probability value Ŝ( t∗ | ~xi ) ∈ [0, 1], but
only for a single time t∗; and

8. Available at https://bcrisktool.cancer.gov/.
9. Available at http://predictingdepression.com/.

10. Available at https://community.apervita.com/community.
11. Available at http://riskcalc.org/.
12. Available at http://seer.cancer.gov/.
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• [P,∞,g] tools, which produce the entire survival probability curve [t, Ŝ( t )] for all
points t ≥ 0, but are not individuated — i.e., the same curve for all patients { ~xi }.

Here, we consider an important extension: a tool that produces the entire survival probability
curve { [t, Ŝ( t | ~xi )] }t for all points t ≥ 0, specific to each individual patient ~xi. As noted in
the previous section, this is required by any application that requires knowing meaningful
survival probabilities for many time points. This model also allows us to compute other
useful statistics, such as a specific patient’s expected survival time.

We call each such system an “Individual Survival Distribution” model (isd). While
the Cox model is often used just to produce the risk score, it can be used as an isd,
given an appropriate (learned) baseline hazard function λ0(t); see Equation 2. We estimate
this using the Kalbfleisch-Prentice estimator (Kalbfleisch and Prentice, 2002), and call this
combination “cox-kp”; we also consider a regularized Cox model, namely the elastic net
Cox with the Kalbfleisch-Prentice extension (coxen-kp). We also explore three other
models: Accelerated Failure Time model (Kalbfleisch and Prentice, 2002) with the Weibull
distribution (aft), Random Survival Forests with the Kaplan-Meier extension (rsf-km,
described in Appendix C.2) (Ishwaran et al., 2008) and Multi-task Logistic Regression
system (mtlr; Yu et al., 2011). Figure 5 shows the curves from these various models, each
over the same set of individuals.

Above, we briefly mentioned three evaluation methods: Concordance, 1-Calibration,
and Brier score. We show below that we can use any of these methods to evaluate a
isd model. In addition, we can also use variants of “L1-loss” to see how far a predicted
single-time differs from the true time of death; see Section 3.2. Each of these 4 methods
considers only a single time point of the distribution, or an average of scores, each based
on only a single time, or a single statistic (such as its median value). We also consider a
novel evaluation measure, “D-Calibration”, which uses the entire distribution of estimated
survival probabilities; see Section 3.5.

2.6. Other Issues

The goal of many Survival Analysis tools is to identify relevant variables, which is different
from our challenge here of making a prediction about an individual. Some researchers
use km to test whether a variable is relevant — e.g., they partition the data into two
subsets, based on the value of that variable, then run km on each subset and declare
that variable to be relevant if a log-rank test claims these two curves are significantly
different (Harrington, 2005). It is also a common use of the basic Cox model — in essence,
by testing if the β̂i coefficient associated with feature xi (in Equation 2) is significantly
different from 0 (Therneau and Grambsch, 2013). We will later use this approach to select
features, as a pre-processing step, before running the actual survival prediction model; see
Section 4.1.

Note this “g vs i ” distinction is not always crisp, as it depends on how many variables
are involved — e.g., models that “describe” each instance using no variables (like km) are
clearly “g ”, while models that use dozens or more variables — enough to distinguish each
patient from one another — are clearly “i ”. But models that involve 2 or 3 variables
typically will place each patient into one of a small number of “clusters”, and then assign

9
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Figure 5: Survival curves (within one of 5 folds) of 10 cancer patients for the km model
and all 5 isd models considered here, evaluated on the NACD data set (described
in Section 4.1). As the km curve (top left) is the same for all patients by defini-
tion, we provide only 1 curve — here smoothed. Note that the set of curves for
aft (with the Weibull distribution), cox-kp, and coxen-kp each have roughly
the same shape, and do not cross, due to the proportional hazards assumption,
whereas the curves for rsf-km and mtlr can cross.
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the same values to each member of a cluster. By convention, we will catalog those models
as “g ” as the decision is not intended to be at an individual level.

The “1t∗” vs “∞” distinction can be blurry, if considering a system that produces a
small number k > 1 of predictions for each individual — e.g., the Gail model provides
a prediction of both 5 year and 25 year survival. We consider this system as a pair of
“1t∗”-predictors, as those two models are different. (Technically, we could view them as
“Gail[5year]” versus “Gail[25year]” models.)

Finally, recall there are two types of frameworks that each return a single value for each
instance: the single value returned by the [R,1∀,i]-model cox is atemporal — i.e., applies
to the overall model — while each single value returned by the [P,1t∗ ,i]-model Gail and
the [R,1t∗ ,g]-model PaP, is for a specific time, t∗. (Note there can also be [P,1∀,i]- and
[R,1∀,g]-models that are atemporal.)

2.7. Relationship of Distributional Models to Other Survival Analysis Systems

We will use the term “Distributional Model” to refer to algorithms within the [P,∞,g] and
[P,∞,i] frameworks — i.e., both km and isd models. Note that such models can match the
functionality of the first 3 “personalized” approaches. First, to emulate [P,1t∗ ,i], we just
need to evaluate the distribution at the specified single time t∗ — i.e., Ŝ( t∗ | ~x ). So for
Patient #1 (from Figure 1), for t∗ = “48 months”, this would be 20%. Second, to emulate
[R,1t∗ ,i], we can just use the negative of this value as the time-dependent risk score — so the
4-year risk for Patient #1 would be -0.20. Third, to deal with [R,1∀,i], we need to reduce the
distribution to a single real number, where larger values indicate shorter survival times. A
simple candidate is the individual distribution’s median value, which is where the survival

curve crosses 50%.13 So for Patient #1 in Figure 1, the median is t̂
(0.5)
1 = 16 months. We

can then view (the negative of) this scalar as the risk score for that patient. So for Patient
#1, the “risk” would be r(~x1) = −16 . Fourth, to view the isd model in the [R,1∀,g]
framework, we need to place the patients into a small number of “relatively homogeneous”
bins. Here, we could quantize the (predicted) mean value — e.g., mapping a patient to
Bin #1 if that mean is in [0, 15), Bin #2 if in [15, 27), and Bin #3 if in [27, 70]. (Here,
this patient would be assigned to Bin #2.) Fifth, to view the isd model in the [R,1t∗ ,g]
framework, associated with a time t∗, we could quantize the t∗-probability — e.g., quantize
the Ŝ( t∗ = 48 months | ~x ) into 4 bins corresponding to the probability intervals [0, 0.20),
[0.20, 0.57), [0.57, 0.83], and [0.83, 1.0].

These simple arguments show that a distributional model can produce the scalars used
by five other frameworks [P,1t∗ ,i], [R,1t∗ ,i], [R,1∀,i], [R,1∀,g], and [R,1t∗ ,g]. Of course, a
distributional model can also provide other information about the patient — not just the
probability associated with one or two time points, but at essentially any time in the future,
as well as the mean/median value. Another advantage of having such survival curves is
visualization (see Figure 1): it allows the user (patient or clinician) to see the shape of the
curve, which provides more information than simply knowing the median, or the chance of
surviving 5 years, etc.

13. Another candidate is the mean value of the distribution, which corresponds to the area under the survival
curve; see Theorem B.1.
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There are some subtle issues related to producing meaningful survival curves — e.g.,
many curves end at a non-zero value: note the km curve in Figure 5(top left) stops at [83,
0.12], rather than continuing to intersect the x-axis at, perhaps [103, 0.0]. This is true for
many of the curves produced by the isds. Indeed, some of the curves do not even cross
y = 0.5, which means the median time is not well-defined; cf. the top orange line on the aft
curve (top right), which stops at (83, 0.65), as well as many of the other curves throughout
that figure. This causes many problems, in both interpreting and evaluating isd models.
Appendix A describes how we address this.

3. Measures for Evaluating Survival Analysis/Prediction Models

The previous section mentioned 5 ways to evaluate a survival analysis/prediction model:
Concordance, 1-Calibration, Brier score, L1-loss, and D-Calibration. This section will de-
scribe these: quickly summarizing the first four (standard) evaluation measures (and leaving
the details, including discussion of censoring, for Appendix B) then providing a more thor-
ough motivation and description of the fifth, D-Calibration. The next section shows how
the 6 distribution-learning models (the 5 isd models, and km; see Figure 5) perform with
respect to these evaluations.

For notation, we will assume models were trained on a training data set, formed from the
same triples as shown in Equation 1, that is D = DU ∪DC where DU = { [~xj , dj , δj = 1] }j
is the set of uncensored instances (notice the event time, tj , here is written as dj), and
DC = { [~xk, ck, δk = 0] }k is the set of censored instances (tk, here is written as ck). Note
also that this training data set D is disjoint from the validation data set, V . Since models
are evaluated on V and we save discussion of censoring for Appendix B, we assume here
that all of V is uncensored— i.e., for now, V = VU = { [~xj , dj , δj = 1] }j ≈ { [~xj , dj ] }j
(to simplify notation).

3.1. Concordance

As noted above, each individual risk model [R,1·,-] (i.e., [R,1·,i] or [R,1·,g], where “1·”
can be either “1t∗” or “1∀”) assigns to each individual ~xi a “risk score” r(~xi) ∈ <, where
r(~xa) > r(~xb) means the model is predicting that ~xa will die before ~xb. Concordance
(a.k.a. C-statistic, C-index) is commonly used to validate such risk models. Specifically,
Concordance considers each pair of patients, and asks whether the predictor’s values for
those patients matches what actually happened to them. In particular, if the model gives
~xa a higher score than ~xb, then the model gets 1 point if ~xa dies before ~xb. If instead ~xb
were to die before ~xa, the model gets 0 points for this pair. Concordance computes this for
all pairs of comparable patients, and returns the average.

When considering only uncensored patients, every pair is comparable, which means there
are

(
n
2

)
= n·(n−1)

2 pairs from n = |VU | elements. Given these comparable pairs, Concordance
is calculated as:

C
∧

(VU , r(·) ) =
1

|VU | · (|VU |−1)
2

·
∑

[~xi,di]∈VU

∑
[~xj ,dj ]∈VU : di<dj

I [ r(~xi) > r(~xj) ] . (3)
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Id di Riski
1 1 6
2 3 3
3 4 5
4 6 2
5 9 4

1 2 3 4 5

1
2 +
3 + 0
4 + + +
5 + 0 + 0

Table 1: Simple example to illustrate Concordance (here, with only uncensored patients).
Left: time of death, and risk score, for 5 patients. Right: “+” means the row-
patient had a lower risk, and died after, the column-patient; otherwise “0”.

As an example, consider the table of death times {di} and risk scores for 5 patients, shown
in Table 1[left]. Table 1[right] shows that these risk scores are correct in 7 of the

(
5
2

)
= 10

pairs, so the Concordance here is 7/10 = 0.7.
This Concordance measure is very similar to the area under the receiver operating curve

(AUC) and equivalent when di is constrained to values {0, 1} (Li et al., 2016).
This Concordance measure is relevant when the goal is to rank or discriminate between

patients — e.g., when one wants to know who will live longer between a pair of patients. For
example, if we want to transplant an available liver to the patient who will die first — this
corresponds to “urgency”. Concordance is the desired metric here due to its interpretation,
i.e. given two randomly selected patients, ~xa and ~xb, if a model with Concordance of 0.9
assigns a higher risk score to ~xa than ~xb, then there is a 90% chance that ~xa will die before
~xb.

While [R,1∀,i] models (such as cox) provide a risk score that is independent of time,
there are also [R,∞,i] models that produces a risk score r(~x, t) for an instance ~x that
depends on time t, such as Aalen’s additive regression model (Aalen et al., 2008) or time-
dependent Cox (td-Cox; Fisher and Lin, 1999), which uses time-dependent features. These
models can be evaluated using time-dependent Concordance (aka, “time-dependent ROC
curve analysis”; Heagerty and Zheng, 2005).

Finally, the [R,−,g] systems compute a risk score, but then bin these scores into a small
set of intervals. When computing Concordance, they then only consider patients in different
bins. For example, if Bin1 = [0, 10] and Bin2 = [11, 20], then this evaluation would only
consider pairs of patients (~xa, ~xb) where one is in Bin1 and the other is in Bin2 — e.g.,
r(~xa) ∈ [0, 10] and r(~xb) ∈ [11, 20]. Hence, it will not consider the pair (~xc, ~xd) if both
r(~xc), r(~xd) ∈ [11, 20].

See Appendix B.1 for more details, including a discussion of how this measure deals
with censored instances and tied risk scores/death times.

3.2. L1-loss

Survival prediction is very similar to regression: given a description of a patient, predict
a real number (his/her time of death). With this similarity in mind, one can evaluate
a survival model using the techniques used to evaluate regression tasks, such as L1-loss
— the average absolute value of the difference between the true time of death, di, and the
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Figure 6: Example of a survival curve (in red), superimposed (in blue) with a degenerate
curve that puts all of its weight on a single time point, which means it assigns
100% chance of dying at exactly this time.

predicted time d
∧

i:
1
n

∑
i |di−d

∧

i|. We consider the L1-loss, rather than L2-loss which squares
the differences, as the distribution of survival times is often right skewed, and L1-loss is less
swayed by outliers than L2-loss.

One challenge in applying this measure to our [P,∞,-] models is identifying the predicted

time, d
∧

i. Here, we will use the predicted median survival time t̂
(0.5)
i — that is we set

d̂i = t̂
(0.5)
i — leading to the following measure:

L1( VU , { Ŝ( · | ~xi ) }i ) =
1

|VU |
∑

[~xi,di]∈VU

∣∣∣di − t̂(0.5)
i

∣∣∣ . (4)

While we would like this value to be small, we should not expect it to be 0: if the
distribution is meaningful, there should be a non-zero chance of dying at other times as
well. For example, while the L1-loss is 0 for the Heaviside distribution at the time of death
(shown in blue in Figure 6), this is unrealistic.

While this L1-loss is not a proper scoring rule (Gneiting and Raftery, 2007), we in-
clude this measure as it is intuitive in understanding the error of predicted survival times.
However, reducing the survival distribution to a single value has shown to be fairly inaccu-
rate (Henderson and Keiding, 2005); this finding is consistent with our empirical results in
Section 4.2. Appendix B.2 discusses many other issues with the L1-loss measure, related
to censored data.

3.3. 1-Calibration

The [P,1t∗ ,i] tools estimate the survival probability Ŝ( t∗ | ~x ) ∈ [0, 1] for each instance ~x
at a single time point t∗. For example, the PredictDepression system (Wang et al., 2014)
predicts the chance that a patient will have a major depression episode within the next 4
years, based on their current characteristics — i.e., this tool produces a single probability
value Ŝ( 4yr | ~xi ) ∈ [0, 1] for each patient described as ~xi. We can use 1-Calibration to
measure the effectiveness of such predictors. To help explain this measure, consider the
“weatherman task” of predicting, on day t, whether it will rain on day t + 1. Given the
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Figure 7: The binned observed versus expected probabilities associated with two 1-
Calibration computations, for the mtlr [left] and the rsf-km [right] model ap-
plied to the GBM data set for the 50th percentile of time (369.5 days).

uncertainty, forecasters provide probabilities. Imagine, for example, there were 10 times
that the weatherman, Mr.W, predicted that there was a 30% chance that it would rain
tomorrow. Here, if Mr.W was calibrated, we expect that it would rain 3 of these 10 times
— i.e., 30%. Similarly, of the 20 times Mr.W claims that there is an 80% chance of rain
tomorrow, we expect rain to occur 16 = 20 × 0.8 of these 20 times.

Here, we have described a binary probabilistic prediction problem — i.e., predicting the
chance that it will rain the next day. One of the most common calibration measures for
such binary prediction problems is the Hosmer-Lemeshow goodness-of-fit test (Hosmer and
Lemesbow, 1980). First, we sort the predicted probabilities for this time t∗ for all patients
{ Ŝ( t∗ | ~xi ) }i and group them into a number (B) of “bins”; commonly into deciles, i.e.,
B = 10 bins. Suppose there are 200 patients; the first bin would include the 20 patients
with the largest Ŝ( t∗ | ~xi ) values, the second bin would contain the patients with the next
highest set of values, and so on, for all 10 bins. Next, within each bin, we calculate the
expected number of events, p̄j = 1

|Bj |
∑

~xi∈Bj
(1 − Ŝ( t∗ | ~xi )). We also let nj = |Bj | be the

size of the jth bin (here, n1 = n2 = · · · = n10 = 200/10 = 20), and Oj be the number of
patients (in the jth bin) who died before t∗. Recalling that di denotes Patient i’s time of
death and letting oi = I [ di ≤ t∗ ] denote the event status of the ith patient at t∗: for the
jth bin, Bj , we have Oj =

∑
~xi∈Bj

oi. Figure 7 graphs the 10 values of observed Oj and

expected nj p̄j for the deciles, for two different tests (corresponding to two different isd-
models, on the same data set and t∗ time). Additionally, see Appendix B.3 for an example
walking through 1-Calibration and Algorithm 1 which summarizes this complete process
(with censoring included).
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For each test, we can then compute the Hosmer-Lemeshow test statistic:

HL
∧

(VU , Ŝ( t∗ | · ) ) =

B∑
j=1

(Oj − nj p̄j)2

nj p̄j (1− p̄j)
. (5)

If the model is 1-Calibrated, then this statistic follows a χ2
B−2 distribution, which can

then be used to find a p-value. For a given time t∗, finding p < 0.05 suggests the survival
model is not well calibrated at t∗ — i.e., the predicted probabilities of survival at t∗ may
not be representative of the patient’s true survival probability at t∗.

Returning to Figure 7, the HL statistics are 5.99 and 321.44, for the left and right,
leading to the p-values p =0.741 and p < 0.001 — meaning the left one passes but the right
one does not. This is not surprising, given that each pair of bars on the left are roughly the
same height, while the pairs of the right are not.

Note that a [P,∞,i] model, which gives probabilities for multiple time points, may be
calibrated at one time t1, but not be calibrated at another time t2, since Oj , as the p̄j
values are dependent on the chosen time point. This issue motivated us to define a notion of
calibration across a distribution of time points, D-Calibration, in Section 3.5. Appendix B.3
provides further details about 1-Calibration, including ways to handle censored patients.

3.4. [Integrated] Brier Score

We often want a model to be both discriminative (high Concordance) and calibrated (passes
the 1-Calibration test). While one can rank Concordance scores to compare two models’
discriminative abilities, 1-Calibration cannot rank models besides suggesting one model is
calibrated (p ≥ 0.05) but another is not (p < 0.05) (as p-values are not intended to be
ranked). The Brier score (Brier and Allen, 1951) is a commonly used metric that measures
both calibration and discrimination (Murphy, 1972, 1973; DeGroot and Fienberg, 1983).
Mathematically, the Brier score is the mean squared error between the {0, 1} event status
at time t∗ and the predicted survival probability at t∗. Given a fully uncensored validation
set VU , the Brier score, at time t∗, is

BSt∗
(
VU , Ŝ( t∗ | · )

)
=

1

|VU |
∑

[~xi,di]∈VU

(
I [ di ≤ t∗ ] − Ŝ( t∗ | ~xi )

)2
. (6)

Here, a perfect model (that only predicts 1s and 0s as survival probabilities and is correct in
every case) will get the perfect score of 0, whereas a reference model that gives Ŝ( t∗ | · ) = 0.5
for all patients will get a score of 0.25.

An extension of the Brier score to an interval of time points is the Integrated Brier score,
which will give an average Brier score across a time interval,

IBS( τ, VU , Ŝ( · | · ) ) =
1

τ

∫ τ

0
BSt

(
VU , Ŝ( t | · )

)
dt . (7)

We will use this measure for our analysis, where τ is the maximum event time of the
combined training and validation data sets — this way, the interval evaluated is equivalent
across cross-validation folds.
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As noted above, the Brier score measures both calibration and discrimination, implying
it should be used when seeking a model that must perform well on both calibration and
discrimination, or when one is investigating the overall performance of survival models.
Appendix B.4 shows how to incorporate censoring into the Brier score.

3.5. D-Calibration

The previous sections summarized several common ways to evaluate standard survival pre-
diction models, that produce only a single value for each patient — e.g., the patient’s risk
score, perhaps with respect to a single time, or the mean survival time. (Each is a [-,1·,-]
model.) However, the [P,∞,-] tools produce a distribution — i.e., each is a function that
maps [0,∞] to [0, 1] (with some constraints of course), such as the ones shown in Figure 5;
see Footnote 1. It would be useful to have a measure that examines the entire distribution
as a distribution.14

A distributional calibration (D-Calibration) (Andres et al., 2018) measure addresses the
critical question:

Should the patient believe the predictions implied by the survival curve? (8)

First, consider population-based models [P,∞,g], like Kaplan-Meier curves — e.g., Fig-
ure 1[left], for patients with stage-4 stomach cancer. If a patient has stage-4 stomach cancer,
should s/he believe that his/her median survival time is 11 months, and that s/he has a
75% chance of surviving more than 4 months? To test this, we could take 1000 new pa-
tients (with stage-4 stomach cancer) and ask whether ≈500 of these patients lived at least
11 months, and if ≈750 lived more than 4 months.

For notation, given a data set, D, and [P,∞,g]-model Θ, and any interval [a, b] ⊂ [0, 1],
let

DΘ( [a, b] ) = { [~xi, di, δi = 1] ∈ D | ŜΘ( di ) ∈ [a, b] } (9)

be the subset of (uncensored) patients in D whose time of death is assigned a probability
(by Θ) in the interval [a, b]. For example, DΘ( [0.5, 1.0] ) is the subset of patients who
lived at least the median survival time (using ŜΘ( · )’s median), and DΘ( [0.25, 1.0] ) is the
subset who died after the 25th percentile of ŜΘ( · ). By the argument above, we expect
DΘ( [0, 0.5] ) to contain about 1/2 of D, and DΘ( [0.25, 1.0] ) to contain about 3/4 of D.
Indeed, for any interval [a, 1.0], we expect

|DΘ( [a, 1.0] )|
|D|

= 1− a (10)

or in general
|DΘ( [a, b] )|
|D|

= b− a (11)

This leads to the idea of a survival distribution [P,∞,g] model, Θ, being D-Calibrated:
for each uncensored patient ~xi, we can observe when s/he died di, and also determine the
probability for that time, based on Θ: ŜΘ( di ). If Θ is D-Calibrated, we expect roughly

14. While the Integrated Brier score does consider all the points across the distribution, it simply views that
distribution as a set of (x, y) points; see Section 3.5.2 for further explanation.
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Figure 8: Four patients from the complete NACD data set. Notice each died in a different
quartile (shown with a vertical dashed line); see Table 2.

10% of the patients to die in the [90%, 100%] interval — i.e., |DΘ( [0.9, 1.0] )|
|D| ≈ 1− 0.9 = 0.1

— and another 10% to die in the [80%, 90%) interval, and so forth for each of the 10
different 10%-intervals. More precisely, the set { Ŝi( di ) } over all of the patients should be
distributed uniformly on [0, 1], which means that each of the 10 buckets would contain 10%
of D.

This suggests a measure to evaluate a distributional model: see how close each of these
10 buckets is to the expected 10%. The next subsection provides a statistical test to evaluate
this condition.

3.5.1. Dealing with Individual Survival Distributions, isd

Everything above was for a population-based distributional model [P,∞,g]. These specific
results do not apply to individual survival distributions [P,∞,i]: for example, consider a
single patient, Patient #1, whose curve is shown in Figure 1[middle]. Should he believe
this plot, which implies that his median survival time is 18 months, and that he has a 75%
chance of surviving more than 13 months?

If we could observe 1000 patients exactly identical to this Patient #1, we could verify
this claim by seeing their actual survival times: this survival curve is meaningful if its
predictions matched the outcomes of those copies — e.g., if around 250 died in the first 13
months, another ≈250 in months 13 to 18, etc.

Unfortunately, however, we do not have 1000 “copies” of Patient #1. But here we do
have many other patients, each with his/her own characteristic survival curve, including
the 4 curves shown in Figure 8. Notice each patient has his/her own distribution, and
hence his/her own quartiles — e.g., the predicted median survival times for Patient A
(resp., B, C, and D), are 28.6 (resp., 65.7, 11.4, and 13.9) months; see Table 2. For these
historical patients, we know the actual event time for each.15 Here, if our predictor is
working correctly, we would expect that 2 of these 4 would pass away before respective
median times, and the other 2 after their median times. Indeed, we would actually expect
1 to die in each of the 4 quartiles; the blue vertical lines (the actual times of death) show
that, in fact, this does happen. See also Table 2.

15. Here we just consider uncensored patients; Appendix B.5 extends this to deal with censoring.
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Patient ID Median Survival Time Event time Event Percentage Quartile

A 85.5 43.4 84.7 #1
B 39.6 31.1 59.8 #2
C 4.7 7.5 30.4 #3
D 13.9 48.3 12.8 #4

Table 2: Description of 4 patients from the NACD data set; see also Figure 8.

With a slight extension to the earlier notation (Equation 9), for a data set D and
[P,∞,i]-model Θ, and any interval [a, b] ⊂ [0, 1], let

DΘ( [a, b] ) = { [~xi, di, δ = 1] ∈ D | ŜΘ( di | ~xi ) ∈ [a, b] } (12)

be the subset of (uncensored) patients in the data set D whose times of death are assigned
a probability (based on their individual distribution, computed by Θ) in the interval [a, b].

As above, we could put these ŜΘ( di | ~xi ) into “10%-buckets”, and then ask if each bucket
holds about 10% of the patients. The right side of Figure 9 plots that information — for
the isd Θ learned by mtlr from the NACD data set (described in Section 4.1) — as a
sideways histogram.16 (The rust-colored intervals correspond to the censored patients; see
Appendix B.5 for the details.) We see that each of these intervals is very close to 10%.

This leads to a straightforward evaluation, based on Pearson’s χ2 test: compute the
χ2-statistic with respect to the ten 10% intervals, and ask whether the buckets appear
uniform at (say) the p > 0.05 level. Here, this χ2 goodness-of-fit test yields p = 0.433, which
suggests that this isd is sufficiently uniform that we can believe that this survival model is
D-calibrated. Algorithm 2 in Appendix B.5 summarizes the algorithm itself.

Theorem B.3 (in Appendix B.5) proves the appropriateness of this D-calibration
test by showing that the “correct” conditional survival distribution will be D-
calibrated. This addresses the question posed at the start of this subsection (Question 8):

Yes, a patient should believe the prediction from the survival curve

whenever this goodness-of-fit test reports p > 0.05.

That appendix also proves that the simple km framework is asymptotically D-calibrated;
see Lemma B.4.

3.5.2. Further motivating D-calibration

This subsection provides additional arguments motivating D-calibration, by showing that it
is useful for evaluating if a given isd model is meaningful, and it is fundamentally different
from the other measures, especially 1-Calibration and IBS.

As noted at the start of Section 3.5, most evaluations measures deal only with survival
analysis models that produce only a single number (“scalar”) for each patient: e.g., Concor-
dance deals with models that produce a scalar risk score, L1-loss with models that produce

16. This figure actually shows 5-fold cross-validation results: the survival distribution for each patient was
computed based on the model learned from the other 4/5 of the data, which is then applied to this
patient (Witten et al., 2011).
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Figure 9: The right side shows the (sideways) “calibration histogram” associated with the
model learned for the NACD data set. The left portion shows the survival curve
for a patient ~x27 — here we see that this patient’s event d27 =12.7 months,
corresponds to Ŝ( d27 | ~x27 ) = 39.4%, which means the patient contributed to
the [30, 40) bin. In a completely D-calibrated model, each of these horizontal
bars would be 10%; here, we see that each of the 10 bars is fairly close. See also
Figure 15.

an estimated scalar time-to-death, and 1-calibration (and [single-time] Brier score) with
models that produce a scalar probability of surviving until a given single time t∗. While
isd-models can produce such numbers, they actually produce more: an entire distribution,
giving a survival probability for each time point.

D-calibration vs IBS: The Integrated Brier Score does deal with many time points,
by averaging the values of the [single time] Brier score, over the entire time interval; see
Equation 7. However, this measure still does not view these curves as (conditional) survival
distributions, in that it does not prefer models where one can interpret S( t | ~x ) in the

obvious way. In particular, as explained above, S( t̂
(0.5)
i | ~xi ) = 0.5 should mean there is a

50% chance that ~xi will live at least t̂
(0.5)
i months, in that half of all patients {~xi} should

die before their respective median times {t̂(0.5)
i } — that is, if each patient ~xi dies at di,

then half of the {S( di | ~xi )} values should be under 0.5, and the other half should be over.
Recall this is what it means to claim that the set of survival curves are meaningful, when
discussing how to answer Question 8, discussed above.

Now consider the plot on the left of Figure 10, where each “∗” indicates when each person
died, di. Here, we see ŜLeft( dQ | ~xQ ) = 1.0 and ŜLeft( dG | ~xG ) = 0.5 — i.e., half of the

patients had ŜLeft( di | ~xi ) ∈ [0, 0.5] and half had ŜLeft( di | ~xi ) ∈ (0.5, 1], as desired. Here,

if a third patient ~x3, with predicted curve ŜLeft( · | ~x3 ), found ŜLeft( 20months | ~x3 ) = 0.5,
s/he would have reason to believe that s/he had a 50% chance of living 20 months.
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Figure 10: (left) isd model showing the survival curves for two patients (Q and G), where
the “*” shows when each died. This model is D-calibrated (with respect to two
buckets), but has a relatively bad IBS score of 0.125. (right) Another isd model,
over the same two patients, that is not D-calibrated, but has a much better IBS
score of 0.00521. (See Proposition B.5, in Appendix B.5.1, for details.)

Now consider the right plot, where ŜRight( dQ | ~xQ ) = ŜRight( dG | ~xG ) = 0.75 — that
is, 100% of the patients died in the (0.5, 1] interval. Given this, it is not clear what the
patient ~x3 can infer about ŜRight( 20months | ~x3 ) = 0.5.

This argues that a measure that regards the survival curves as distribution should prefer
ŜLeft( · | · ) over ŜRight( · | · ). However, Table 3 shows that this is not true for the IBS score,

as the IBS score of the D-calibrated ŜLeft( · | · ) is significantly worse than IBS score of the

non-D-calibrated ŜRight( · | · ). This pair of examples also illustrates that D-calibation is
fundamentally different from IBS as they are evaluating significantly different criteria, and
so can have different preferences between models. Another distinction is interpretation: we
explained above how to interpret the claim that a model is D-calibrated, however, it is not
clear how one can interpret the claim that, say, a model’s IBS=0.2.17

Indeed, it was these arguments that motivated us to introduce D-Calibration, to de-
termine whether a proposed isd-model produces meaningful distributions — i.e., that the
probabilities produced truly reflect the likelihood of death over the population.

Finally, to see that these two metrics are measuring different aspects, we will later see
that the IBS scores for the {aft, cox-kp, coxen-kp, mtlr} models are all well within

17. We also note an IBS score is (near) 0 only if each of the curves is essentially a Heaviside function — like
Figure 6 (or a variant, as shown in Figure 10) — where the (near) vertical transition occurs precisely
at the time of death. Of course, this model is not robust, as the IBS score would be significantly larger
if the Heaviside function was even slightly off — with a per-patient error of |ηi| for each patient whose
Heaviside was at di + ηi, while the time of death was actually di. There are similarly large penalties
associated with censored instances.
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model⇓ D-calibrated ? IBS

Left: ŜLeft( · | · ) Yes 0.125

Right: ŜRight( · | · ) No 0.00521

Table 3: Comparing models, from Figure 10.

1 standard error of one another for the GBM data set, but only coxen-kp and mtlr are
D-Calibrated. (This is also true for the GLI data set.)

D-Calibration vs 1-Calibration: This standard notion of 1-Calibration appears similar
to D-Calibration, as both involve binning probability values and applying a goodness-of-fit
test. However, 1-Calibration involves a single prediction time — here Ŝ( t∗ | ~xi ), which is
the probability that the patient ~xi will survive at least to the specified time, t∗. Patients
are then sorted by these probabilities, partitioned into equal-size bins, and assessed as
to whether the observed survival rates for each bin match the predicted rates using a
Hosmer-Lemeshow test. By contrast, D-Calibration considers the entire curve, Ŝ( t | ~xi )
over all times t, producing curves like the ones shown in Figures 1, 5, and 8. Each curve
corresponds to a patient who has an associated time of death, di. Here, we are considering
the model’s (estimated) probability of the patient’s survival at his/her time of death, given
by Ŝi( di | ~xi ). These patients are then placed into B = 10 buckets,18 based on the values
of their associated probabilities, Ŝi( di | ~xi ). Here the goodness-of-fit test measures whether
the resulting buckets are approximately equal-sized, as would be expected if this model
accurately estimated the true survival curves (argued further in Appendix B.5).

Note D-Calibration tests the proportion of instances in buckets across the entire [0, 1]
interval, but this is not required for the “single probability” 1-Calibration. For example,
the single probability estimates for the rsf-km curve in Figure 4, at time 20, ranges only
from 0.05 to 0.62. That is, the distribution calibration { Ŝi( di | ~xi ) } should match the uni-
form distribution over [0,1], while the single probability calibration { Ŝi( t∗ | ~xi ) } is instead
expected to match the empirical percentage of deaths. Table 4 summarizes the differences
between D-Calibration and 1-Calibration.19

To see that they are measuring different aspects, Figure 11 presents one simple model
that is perfectly D-Calibrated but not 1-Calibrated, and another model that is perfectly
1-Calibrated but not D-Calibrated; see proof of Proposition B.6, in Appendix B.5.1. In
addition, we will see several examples below of this difference — e.g., coxen-kp is D-
Calibrated for the GLI data set, but it is not 1-Calibrated at any of the 5 time points
considered, and aft is 1-Calibrated for the 50th and 75th percentiles of GBM but is not
D-Calibrated.

18. Note the number of buckets does not have to be 10 — we chose 10 to match the typical value chosen for
the 1-Calibration test.

19. Further differences occur when considering how censored patients are handled; see Appendices B.3
and B.5.
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Figure 11: Simple examples to illustrate: [left] a model can have perfect 1-Calibration
for a time, but not be D-Calibrated, and [right] a model can have perfect D-
Calibration, but not be 1-Calibrated for a time. Each curve represents four
apparently-identical patients, whose deaths are indicated by “*”s. (See Propo-
sition B.6, in Appendix B.5.1, for details.)

1-Calibration D-Calibration

Objective Evaluate Single Time Probabilities Evaluate Entire Survival Curve

Values considered { p̂( t∗ | ~xi) } { p̂( di | ~xi) }
Should match Empirical number of deaths Uniform

Statistical Test Hosmer-Lemeshow test Pearson’s χ2 test

Table 4: Summary of differences between 1-Calibration and D-Calibration.
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4. Evaluating isd Models

Sections 2.4 and 2.5 listed several distributional models (km, and the isds: cox-kp, coxen-
kp, aft, mtlr, and rsf-km), and Section 3 provided 5 different evaluation measures:
Concordance, L1-loss, 1-Calibration, Integrated Brier score, and D-Calibration. This section
provides an empirical comparison of these 6 models, with respect to all 5 of these measures,
over 8 data sets.

Of course, these 6 models do not include all possible survival models; they instead serve
as a sample of the types of models available. The km, cox-kp, and aft model are all very
common — these are standard approaches used throughout survival analysis and represent
non-parametric, semi-parametric, and parametric models, respectively. As our preliminary
studies with cox-kp suggested it was overfitting, we also included a regularized extension,
using elastic net, coxen-kp. Since Random Survival Forests (rsf) were introduced in
2008, they have had a large impact on the survival analysis community. However, as the
Kaplan-Meier extension to transform rsf into an isd is not well known, it is summarized
in Appendix C.2. More recent still is the mtlr technique (Yu et al., 2011) that directly
learns a survival distribution, by essentially learning the associated probability mass func-
tion (whose sequential right-to-left sum, when smoothed, is the survival distribution). We
found some subsequent similar models, including “Multi-Task Learning for Survival Analy-
sis” (MTLSA; Li et al., 2016), some deep learning variants (Ranganath et al., 2016; Katzman
et al., 2018; Luck et al., 2017), and a computationally demanding Bayesian regression trees
model (Sparapani et al., 2016), but for brevity, we focused on just the first such model,
mtlr.20

Note the distribution class D chosen for aft certainly influences its performance —
e.g., it is possible that aft[Weibull] on a data set may fail D-Calibration whereas aft[Log-
Logistic] may pass; similarly for 1-Calibration at some time t∗, and the scores for Concor-
dance, L1-loss and Integrated Brier score will depend on that distribution class. This paper
will focus on aft[Weibull] because, while still being parametric, the Weibull distribution is
versatile enough to fit many data sets.

4.1. Datasets and Evaluation Methodology

There are many different survival data sets; here, we selected 8 publicly available medical
data sets in order to cover a wide range of sample sizes, number of features, and proportions
of censored patients. We excluded small data sets (with fewer than 150 instances) to reduce
the variance in the evaluation metrics. Our data sets ranged from 170 to 2402 patients,
from 12 to 7401 features, and percentage of censoring from 17.23% to 86.21%; see Table 5.

Note that we have not included extremely high-dimensional data (with tens of thousands
of features, often found in genomic data sets), as such data raises additional challenges
beyond the scope of standard survival analysis; see Witten and Tibshirani (2010) and
Kumar and Greiner (2019) for methods to handle such extremely high-dimensional data.

The Northern Alberta Cancer Dataset (NACD), with 2402 patients and 53 features, is
a conglomerate of many different cancer patients, including lung, colorectal, head and neck,

20. In addition, our empirical analysis in Haider’s MSc thesis (Haider, 2019) found that DeepHit (Katzman
et al., 2018) performs comparably to mtlr in many data sets, for these measures, but worse on the
smaller data sets.
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GBM GLI Nacd-Col NACD READ BRCA DBCD DLBCL

Number of patients: N 592 1105 950 2402 170 1095 295 240
% Censored 17.23 44.34 51.89 36.59 84.12 86.21 73.22 42.50

Maximum Follow-up time 3881 d 6432 d 83 m 84.3 m 3932 d 8605 d 18.34 y 21.8 y
# Features Originally: fraw 12 13 53 53 18 61 4921 7401

# Features Post-Processing: fproc 9 10 45 53 13 59 4921 7401
# Features Selected: ffinal 6 10 34 46 8 28 2330 1771

ffinal /N 0.010 0.009 0.036 0.019 0.047 0.026 7.898 7.379

Table 5: Overview of data sets used for empirical evaluations. From top to bottom: (1) the
number of patients in each data set, (2) the percent of patients censored, (3) the
“Maximum Follow-up time”, (4) the number of features contained in the original
data set, (5) the number of features after removal of features containing over 25%
missing data or only 1 unique value, (6) the number of features after univariate
Cox selection, and (7) the feature-to-sample size ratio.

esophagal, stomach, and other cancers. In addition to using the complete NACD data set,
we considered the subset of 950 patients with colorectal cancer (Nacd-Col) with the same
53 features.

Another four data sets were retrieved from data generated by The Cancer Genome
Atlas (TCGA) Research Network (Genome Data Analysis Center, 2016): Glioblastoma
multiforme (GBM; 592 patients, 12 features), Glioma (GLI; 1105 patients, 13 features),
Rectum adenocarcinoma (READ; 170 patients, 18 features), and Breast invasive carcinoma
(BRCA; 1095 patients, 61 features). To ensure a variety of feature/sample-size ratios, we
consider only the clinical features in our experiments.

Lastly, we included two high-dimensional data sets: the Dutch Breast Cancer Dataset (DBCD;
van Houwelingen et al., 2006) contains 4919 microarray gene expression levels for 295 women
with breast cancer, and the Diffuse Large B-Cell Lymphoma (DLBCL; Li et al., 2016) data
set contains 7401 features focusing on Lymphochip DNA microarrays for 240 biopsy sam-
ples.

We applied the following pre-processing steps to each data set: we first removed any
feature that was missing over 25% of its values, as well as any features containing only 1
unique value. For the remaining features, we “one-hot encoded” each nominal feature and
then passed each feature to a univariate Cox filter, and removed any feature that was not
significant at the p ≤ 0.10 level. Following feature selection, we replaced any missing value
with the respective feature’s mean value. (Note this feature selection was found to benefit
all isd models across all performance metrics; data not shown.) Table 5 provides the data
set statistics and a full breakdown of feature numbers in each step.

Following feature selection, the data was partitioned into 5 disjoint folds by first sort-
ing the instances by time and censorship, then placing each censored (resp., uncensored)
instance sequentially into the folds — meaning all folds had roughly the same distribution
of times and censorships. The values of each feature were then normalized (transformed to
zero mean with unit variance) within each fold.

25



Haider, Hoehn, Davis, and Greiner

For coxen-kp, rsf-km, and mtlr, we used an internal 5CV for hyper-parameter se-
lection. There were no hyper-parameters to tune for the remaining models: cox, km, and
aft.

As 1-Calibration required specific time points, and as models might perform well on
some survival times but poorly on others, we chose five times to assess the calibration
results of each model: the 10th, 25th, 50th, 75th, and 90th percentiles of survival times for
each data set. Here, we used the D’Agostino-Nam translation to include censored patients
for these evaluation results — see Appendix B.3. Appendix D.4 presents all 240 values (6
models × 8 data sets × 5 time-points); here we instead summarize the number of data sets
that each model passed as 1-Calibrated (at p ≥0.05) for each percentile.

For all evaluations, we report the averaged 5CV results for Concordance, Integrated
Brier score, and L1-loss. As Concordance requires a risk score, we use the negative of
the median survival time and similarly use the median survival time for predictions for
the L1-loss. To adjust for presence of censored data, we used the L1-Margin loss, given in
Appendix B.2, which extends the “Uncensored L1-loss” given in Section 3.2 (which considers
only uncensored patients). Additionally, as 1-Calibration (resp., D-Calibration) results are
reported as p-values, and it is not appropriate to average over the folds, so we combined the
predicted survival curves from all cross-validation folds for a single evaluation, and report
the resulting p-value.

Empirical evaluations were completed in R version 3.4.4. The implementations of km,
aft, and cox-kp can all be found in the survival package (Therneau, 2015) whereas coxen-
kp uses the cocktail function found in the fastcox package (Yang and Zou, 2017). Both rsf
and rsf-km come from the randomForestSRC package (Ishwaran and Kogalur, 2018). An
implementation of mtlr can be found in the MTLR package and all code used in this
analysis is publicly available on the GitHub account21 of the lead author.

4.2. Empirical Results

Below, we consider a data set to be “Nice” if its feature-to-sample-size ratio was less
than 0.05 (for the final feature set) and its censoring was less than 55%; this includes
four of the 8 data sets: GBM, Nacd-Col, GLI, NACD, which are shown first in all of
our empirical studies. We let “High-Censor” data sets refer to READ and BRCA and
“High-Dimensional” data sets refer to the other two (DLBCL and DBCD).

4.2.1. Concordance, Integrated Brier score, and L1-loss Results

Figures 12, 13 and 14 give the empirical results for Concordance, Integrated Brier score,
and L1-Margin loss respectively, where each circle is the score of the associated model on
the data set, and lines correspond to one standard deviation (over the 5 cross-validation
folds). Appendix D provides the exact empirical results for these measures.

Best Performance: The blue circles represent the best performing models, for each data
set; here we find that mtlr performs best on a majority of data sets: six of eight for
Concordance and L1-loss, and seven of eight for the Integrated Brier score.

21. https://github.com/haiderstats/ISDEvaluation
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Nice Data Sets: Recall that the first 4 data sets are Nice. Here, we find that most
models performed comparably — in particular, aft and cox-kp perform nearly as well as
the other, more complex, models. aft even performs best in terms of L1-loss on GBM. The
only exception was rsf-km, which did much worse on GBM and GLI, in all three measures.

km was worse than the various isd-models for all 3 measures. (The only exception was
rsf-km, which was worse on for the data sets GLI and GBM for Integrated Brier score,
and for those data sets and also Nacd-Col for L1-loss.)

High-Censor data sets — READ and BRCA: Note first that the variance in the
evaluation metrics is generally higher on READ for all models (except km) due to the
small number of uncensored patients within each test fold — this is not present in BRCA
due to the larger sample size (1095). Again we find that coxen-kpand mtlr are similar
for all three measures, but rsf-km performs consistently worse across all three metrics
for both READ and BRCA. aft and cox-kp are either comparable (or inferior) to the
other three isd-models: Concordance: worse performance but within error-bars for READ
and BRCA; Integrated Brier score: similar for both READ and BRCA; L1-loss: slightly
worse for READ and BRCA. Additionally, aft and cox-kp tend to show higher variance
in evaluation estimates on READ than other models for all three measures.

km is worse than all 5 isd-models for Concordance, but comparable to the best for
Integrated Brier score and L1-loss (actually scoring better than cox-kp and aft for L1-
loss on READ and beating cox-kp on BRCA).

High-Dimensional Data sets — DBCD and DLBCL: There are no entries for cox-
kp for these two data sets as it failed to run on them, likely due to the large number
of features. As aft is unregularized, it is not surprising that it does poorly across all
measures for these high-dimensional data sets — indeed, even worse than km, which did
not use any features! We see that the other three isd-models — coxen-kp, mtlr and rsf-
km — perform similarly to one another here, and km also achieves similar results (ignoring
Concordance where km always achieves 0.5, as it gives identical predictions for all patients).

4.2.2. 1-Calibration Results

Table 6 gives the number of data sets each model passed for 1-Calibration, for each time
of interest. We see that mtlr is typically 1-Calibrated across the percentiles of survival
times. Specifically, mtlr is 1-Calibrated for at a minimum of four of eight data sets for
the 10th, 25th, 50th, and 90th percentiles, outperforming all other models considered. The
90th percentile appear to be the most challenging in general, as some models (aft, cox-
kp, rsf-km) are not 1-Calibrated for any data sets, coxen-kp is 1-Calibrated for two, and
mtlr is 1-Calibrated for four. The 75th percentile was also challenging; however aft, cox-
kp, and rsf-km were 1-Calibrated for one, coxen-kp is 1-Calibrated for two, and mtlr is
1-Calibrated for three. The most challenging data sets for rsf-km once again were GBM,
GLI, BRCA, and READ, for which rsf-km was 1-Calibrated only at the 10th percentile for
READ – see Appendix D.4. Additional challenging data sets include the complete NACD
and DBCD, which were challenging for all models. As km assigns an identical prediction for
all patients, it cannot partition patients into different bins, meaning it cannot be evaluated
by 1-Calibration.

27



Haider, Hoehn, Davis, and Greiner

Figure 12: Concordance means and one standard deviation are given by circles and error bars,
respectively. The best (highest Concordance) scoring model is given in blue; all other
models are in red. We included km so this figure would “line up” with Figures 13
and 14, but left the value blank, as the Concordance scores for km are always 0.5.
For these 3 figures: As cox-kp failed to run for data sets DBCD and DLBCL, those
entries are blank. summarizes the 1-Calibration algorithm. The description at the right
gives the name of the data set, and the 3 numbers “under” each data set name are
(ffinal, % Censored, N).
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Figure 13: Integrated Brier score means and one standard deviation are given by circles
and error bars, respectively. The best (lowest Integrated Brier score) scoring
model is given in blue; all other models in red.
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Figure 14: L1-loss means and one standard deviation are given by circles and error bars,
respectively. The best (lowest L1-loss) scoring model is given in blue, all other
models in red. As different data sets use different time units, we simply give the
units of L1-loss as “Time” rather than days/months/years.
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10th 25th 50th 75th 90th

aft 4 2 1 1 0
cox-kp 4 2 2 1 0

coxen-kp 4 3 1 2 2
rsf-km 4 2 2 1 0
mtlr 6 8 6 3 4

Table 6: Results from 1-Calibration evaluations. Columns represent percentiles used for
each time point and rows indicate the model used. Recall there are 8 data sets —
meaning no model performed perfectly for any of the percentiles.

GBM GLI Nacd-Col NACD READ BRCA DBCD DLBCL Total

km 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 8
aft 0.000 0.017 0.290 0.000 0.807 0.988 0.000 0.000 3

cox-kp 0.046 0.049 0.107 0.000 0.939 0.995 - - 3
coxen-kp 0.447 0.128 0.691 0.000 1.000 1.000 0.430 0.758 7

rsf-km 0.000 0.000 0.403 0.000 0.974 0.757 0.911 0.574 5
mtlr 0.688 0.883 0.656 0.411 1.000 0.995 0.994 0.755 8

Table 7: Results for D-Calibration evaluations. Columns correspond to the data set and
rows to the model. Results are the p-value from the goodness-of-fit test. Bold
values indicate that a model passed D-Calibration, i.e., p ≥ 0.05; and “-” means
the algorithm did not return an answer.

4.2.3. D-Calibration Results

Table 7, which gives the D-Calibration p-values for each model and data set, shows that
both km and mtlr pass D-Calibration for every data set, with km receiving the highest
possible p-value, p =1.000, for each. (In fact, Lemma B.4 in Appendix B.5 proves that
km is asymptotically D-Calibrated.) While km will tend to be D-Calibrated, it is also the
least informative model, since it assigns all patients the same survival curve. mtlr is also
D-Calibrated for all data sets, but in addition, it also provides each patient with his/her
own survival curve.

Following km and mtlr, coxen-kp performed next best, only failing to be D-Calibrated
for one data set: NACD. rsf-km followed closely behind, being D-Calibrated for five of eight
data sets, failing on GBM, GLI, and NACD. aft performed similarly to cox-kp, each of
which were D-Calibrated on three of eight data sets.

Figure 15 provides (sideways) histograms, to help visualize D-calibration. For each
subfigure, each of the 10 horizontal bars should be 10%; we see a great deal of variance for
the not-D-Calibrated cox-kp [left], a small (but acceptable) variability for the D-Calibrated
mtlr [middle], and essentially perfect alignment for the D-Calibrated km [right]. See also
Figure 9.
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Figure 15: These figures show the (sideways) decile histogram used for the D-Calibration
test. Each of these is run on the NACD data set; from left to right: running
cox-kp, mtlr and km.

5. Discussion

Comparing different isd-models: Steyerberg et al. (2010) noted two different types of
performance measures of a survival analysis model — calibration and discrimination —
each of which can be assessed separately:

Calibration: “Of 100 patients with a risk prediction of x%, do close to x experience the
event?”

Discrimination: “Do patients with higher risk predictions experience the event sooner
than those who have lower risk predictions?”

Discrimination is a very important measure for some situations — e.g., if we have 2 patients
who each need a kidney transplant, but there is only a single kidney donor, then we want
to know which patient will die faster without the transplant (Kamath and Kim, 2007). As
discussed in Section 3.1, Concordance measures how well a predictor does, in terms of this
discrimination task.

This paper, however, motivates and studies models that produce an individual survival
curve for a specific patient. Such isd tools may not be optimal for maximizing discrimination
(and therefore Concordance); even tools like cox and rsf, that were originally developed
for discrimination, were then extended to produce these individual survival curves. Given
this qualifier, we see (over the set of isd tools tested), mtlr scored best on Concordance
for six of the eight data sets tested and rsf-km scored the best on the other two. (The
relatively low performance of cox-kp is unexpected given the claim that “a method designed
to maximize the Cox’s partial likelihood also ends up (approximately) maximizing the
[Concordance]” (Steck et al., 2008).) However, when we look at the Nice data sets, 4 of
the 5 isd-models give nearly identical results (rsf-km differs by giving noticeably lower
performance on GBM and GLI). These findings suggest that, for Nice data sets, more
complex models (mtlr, rsf-km, and coxen-kp) do not offer large benefits in terms of
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Concordance. For the High-Dimensional data sets, mtlr and coxen-kp performed only
marginally better than rsf-km for DBCD but noticeably better than rsf-km on DLBCL.
Although these are only two data sets, this suggests that rsf-km may not be optimal for
these high-dimensional data sets, in terms of Concordance. For the High-Censor data sets,
rsf-km saw much worse performance for Concordance (among other metrics) suggesting
rsf-km may not be suitable for data sets with a high proportion of censored data.

As noted above, Concordance is only one measure for an isd tool. Given that an isd
tool can produce a survival curve for each patient (and not just a single real-valued score),
it can be used for various tasks, with various associated evaluations. For example, consider
patients who are deciding whether to undergo an intensive medical procedure. Using the
plots from Figure 8, note that Patient C has a very steep survival curve with a low median
survival time, while Patient A has a shallow survival curve with a large median survival time.
If we were to use this to predict the outcome of a procedure, we might expect Patient C
to opt-out of the procedure, but Patient A to go through with it. Note the decision for
Patient C is completely independent of Patient A, in that we could give the procedure
to one, both, or neither of them. As these patients are not being ranked for a limited
procedure, Concordance is not an appropriate metric; instead we need to evaluate such
predictors using a calibration score — perhaps 1-Calibration or D-Calibration, as discussed
in Sections 3.3 and 3.5.

As discussed in Section 3.3, 1-Calibration is particularly relevant for [P,1t∗ ,i] models —
i.e., models that produce a probability score for only 1 time point (for each patient). We
also noted that isd models, which produce individual survival curves, can also be evaluated
using 1-Calibration, once the evaluator has identified the relevant specific time t∗. Here,
we evaluated a variety of time points: the 10th, 25th, 50th, 75th, and 90th percentiles of
survival times for each data set. We found mtlr to be superior to all the models considered
here for all percentiles. The observation that mtlr was 1-Calibrated for a range of time
points, across a large number of diverse data sets, suggests that the probabilities assigned
by mtlr’s survival curves are representative of the patients’ true survival probabilities; the
observation that the other models were not 1-Calibrated as often, calls into question their
effectiveness here.

Of course, our analysis is performing the 1-Calibration test for 5 models (km is excluded)
across 8 data sets and 5 percentiles, meaning we are performing 200 statistical tests. We
considered applying some p-value corrections — e.g., the Bonferroni correction — to reduce
the chance of “false-positives”, which here would mean declaring a model that was truly
calibrated as not. However, the actual p-values (see Appendix D.4) show that including
these corrections would actually benefit mtlr the most, further strengthening the claim
that mtlr has excellent 1-Calibration performance.

Our D-Calibration results further support the use of mtlr’s individual survival curves
over other isd-models, by showing that mtlr was the only isd-model to be D-Calibrated
for all data sets. (Recall that km is technically not an isd since it gives one curve for all
patients.) We see that different isd-models are quite different for this measure — e.g., aft
and cox-kp produce significantly worse performance for D-Calibration, being D-Calibrated
for only three data sets. As discussed in Section 4.2, aft is a completely parametric model,
which means it cannot produce different shapes (see Figure 5[top-right]), likely impacting its
ability to be D-Calibrated. (Our analysis showed only that aft[Weibull] is not D-Calibrated
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for these data sets; aft[χ] for some other distribution class χ, might be D-Calibrated for
more data sets.)

In addition to discussing discrimination (Concordance) and calibration (1-Calibration,
D-Calibration) separately, we can also consider a hybrid evaluation metric — the Integrated
Brier score — which measures a combination of both calibration and discrimination — see
Section 3.4.We see mtlr performing the best for seven of the eight data sets, however,
mtlr is no longer superior for DBCD, one of the high-dimensional data sets, even though it
was superior for Concordance. Instead, coxen-kp, rsf-km, and mtlr all perform nearly
identical for these High-Dimensional data sets.

The Integrated Brier scores, along with 1-Calibration and D-Calibration results, collec-
tively show mtlr outperforms other models (for calibration), and is followed by coxen-
kp and rsf-km. Specifically, coxen-kp and rsf-km are competitive to mtlr for High-
Dimensional data sets — the 1-Calibration metric shows that both coxen-kp and rsf-km
match the performance of mtlr for DLBCL: coxen-kp and mtlr are 1-Calibrated across
all percentiles and rsf-km is 1-Calibrated across three of five, though p-values are very
close to the 0.05 threshold for the other two. DBCD appeared to be the more challenging
High-Dimensional data set — mtlr and coxen-kp were 1-Calibrated for only two of
five percentiles and rsf-km was 1-Calibrated for one. This, coupled with the findings for
Integrated Brier Score and D-Calibration, suggest that coxen-kp, rsf-km and mtlr are
equally competitive for modeling individual patients’ survival probabilities when dealing
with a large number of features. However, this does not apply to smaller-dimensional data
sets.

rsf-km was not 1-Calibrated across any percentiles for GBM, GLI, or BRCA, and only
1-Calibrated at the 10th percentile for READ, and was not D-Calibrated for GBM and GLI.
This, along with the poor performance of rsf-km for all measures of GBM, GLI, READ,
and BRCA suggests that rsf-km does not produce effective individual survival curves for
low-dimensional data sets. Other experiments (not shown) suggest that rsf-km tends to
overfit to the training set when given too few features. Additional meta-parameter tuning
in these experiments was unable to correct for overfitting.

Given that survival prediction looks very similar to regression, it is tempting to evaluate
such models using measures like L1-loss (which can lead to models like censored support
vector regression (Shivaswamy et al., 2008)). A small L1-loss shows that a model can help
with many important tasks, such as decisions about hospice, and for deciding about various
treatments, based on their predicted survival times. However, simply because a model has
the best performance for L1-loss does not mean the estimates are useful — consider the
complete NACD data set, where the best performing model, mtlr, still had an average
L1-loss of 43.97 months. While this is the lowest average error, predicting the time of death
with an expected error of 43.97 months is likely not helpful to a patient, especially as the
maximum follow-up time was 84.3 months. Indeed, for many of the data sets, many of the
best models had L1-Losses that were half of the maximum follow-up; this disappointing
performance is consistent with previous findings (Henderson and Keiding, 2005).

While the best model may not represent a “good” model, our empirical results still
showed mtlr had the lowest L1-loss on six of eight data sets, although all isd models per-
formed comparably for the four Nice data sets (with the exception of rsf-km). We see that
km is also competitive for the High-Censor data sets, but given the construction of the L1-
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Characteristic of Dataset Applicable Datasets Evaluation

%Censored #Dimensionality Name Calibration Discrimination

Low Low GBM, GLI, Nacd-Col, NACD mtlr cox-kp/aft
High Low READ, BRCA mtlr/coxen-kp mtlr/coxen-kp
Low High DLBCL mtlr/coxen-kp/rsf-km mtlr/coxen-kp
High High DBCD mtlr/coxen-kp/rsf-km mtlr/coxen-kp/rsf-km

Table 8: Our recommendation for isd models, for different types of data sets. The first row
[Low, Low] corresponds to the Nice data sets. We also have divided the High-
Dimensional set into Low versus High censoring. (DBCD is 73.22% censored.)

Margin loss, this is not surprising; see Appendix B.2. Moreover, the three complex models
(coxen-kp, rsf-km, mtlr) appear comparable for the High-Dimensional data sets.

Which isd-Model to Use?: As shown above, which isd-model works best depends on
properties of the data set, and on what we mean by “best”. Table 8 summarizes our results
here.

In general, for Nice data sets, mtlr was superior for calibration but for discrimination,
all isd-models were equivalent, leading us to recommend using the simplest models: cox-
kp, aft. As we found that rsf-km would overfit to the training data when the number of
features was small (here, less than 34), we recommend avoiding rsf-km when there are so
few features.

For High-Censor data sets, we recommend mtlr or coxen-kp when there are not
many features (e.g., READ, BRCA) for both calibration and discrimination. Typically
cox-kp and aft had poor performance and high variability for High-Censor data sets.
For High-Dimensional data sets with low censoring (less than 70%; e.g., DLBCL), mtlr,
coxen-kp, and rsf-km had the best performance for calibration. For discrimination, rsf-
km seemed slightly worse for Concordance and Brier score, suggesting it may be a weaker
model.

To explore whether these findings hold in general, we examined 33 other public data
sets — 16 (Low Dimension, Low Censoring), 12 (Low Dimension, High Censoring), 4 (High
Dimension, Low Censoring) and 1 (High Dimension, High Censoring) where High Cen-
soring is ≥ 70%. Note that all Low Dimensional data sets were taken from the TCGA
website whereas the other (High Dimensional) data sets arise from a variety of sources.
The results from these 33 data sets are consistent with the findings reported here; specific
results can be found on the lead author’s RPubs site22. Given the low overall number of
High-Dimensional data sets, these findings should be examined on further data sets.

Why use isd-Models?: As noted above, this paper considers only models that generate
isds (i.e., [P,∞,i]). This is significantly different from models that only generate risk scores
([R,1∀,i]), as those models can only be evaluated using a discriminatory metric. While
this discrimination task (and hence evaluation) is helpful for some situations (e.g., when
deciding which patients should receive a limited resource), it is not helpful for others (e.g.,
deciding whether a patient should go to a hospice, or terminate a treatment). A patient’s

22. See http://rpubs.com/haiderstats/ISDEvaluationSupplement
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primary focus will be on his/her own survival, not how they rank among others; hence the
risk score such models produce do not meaningfully inform individual patients.

The single point probability models, [P,1t∗ ,i], are a step in the direction for benefiting
patients, but they are still often inadequate as they apply only to a single time-point. While
hospital administrators may want to know about specific time intervals (e.g., t∗ =“30-
day readmission” probabilities), medical conditions seldom, if ever, are so precise. This is
problematic as these probabilities can change dramatically over a short time interval — i.e.,
whenever a survival curve has a very steep drop. For example, consider Patient #5 (P5)
in Figure 5 for the mtlr model. Here, we would be optimistic about this patient if we
considered the single point probability model at t∗= 6months, as ŜMTLR( 6months |P5 ) =
0.8, but very concerned if we instead used t∗= 12months, as ŜMTLR( 12months |P5 ) = 0.3.
Note this trend holds for the other isd-models shown, and also for many of the patients,
including P6, P7, P10.

This suggests a model based on only a single time point may lead to inappropriate
decisions for a patient. Note also that such a model might not even provide consistent
relative rankings over a pair of patients — i.e., it might provide different discriminative
conclusions. Consider patients P2 and P9 in Figure 5[mtlr]. Here, at t∗= 20months, we
would conclude that the purple P9 is doing worse (and so should get the available liver),
but at t∗= 30months, that the orange P2 is more needy. We see similar inversions for a few
other pairs of patients in mtlr, and also for several pairs in the rsf model.

Of course, one could argue that we just need to use multiple single-time models. Even
here, we would need to a priori specific the set of time points — should we use 6 months
and 12 months, and perhaps also 30 months? And maybe 20 months?

This becomes a non-issue if we use individual survival distribution (isd; [P,∞,i]) models,
which produce an entire survival curve, specifying probability values for every future time
point. Moreover, while risk score models can only be evaluated using a discrimination
metric, these isd models can be evaluated using all metrics, making them an overall more
versatile method for survival analysis.

Bottom line: In general, a survival task is based on both a data set, and an objective,
corresponding to the associated evaluation measure. Our isd framework is an all-around
more flexible approach, as it can be evaluated using any of the 5 measures discussed here
(Section 3) — both commonly-used and alternative. Importantly, when evaluating isd
models discriminatively (using Concordance), the risk scores we advocate (mean/median
survival time) have meaning to clinicians and patients, whereas a general risk score, in
isolation, has no clinical relevance. Moreover, the resulting survival curves are easy to
visualize, which adds further appeal.

6. Conclusion

Future Work: This paper has focused on the most common situation for survival analysis:
where (1) all instances in the training data are described using a fixed number of features
(see the matrix in Figure 3), (2) there are no missing values, and (3) each instance either
has a specified time of death, or is right-censored — i.e., we have a lower bound on that
patient’s time of death. There are many techniques for addressing the first two issues — such
as ways to “encode” a time series of EMRs (Electronic Medical Records) as a fixed number
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of features, or using mean imputations. There are also relatively easy extensions to some of
the models (e.g., mtlr) to address the third point: handle left-censored instances (where
the data set specifies an upper-bound on the patient’s time of death), or interval-censored.
These extensions, however, are beyond the scope of the current paper.

Contributions: This paper has surveyed several different approaches to survival analysis,
including assigning individualized risk scores [R,1∀,i], assigning individualized survival prob-
abilities for a single time point [P,1t∗ ,i], modeling a population-level survival distribution
[P,∞,g], and computing individual survival distributions (isd) [P,∞,i]. We discussed the
advantages of computing an individual survival distribution for each patient, as this can
help patients and clinicians make informed decisions about treatments, lifestyle changes,
and end-of-life care. We discussed how isd models can be used to compute Concordance
measures for discrimination and L1-loss, but noted they should primarily be evaluated using
calibration metrics (Sections 3.3 and 3.5), as these measure how well the individual survival
curves represent the “true” survival of patients.

Next, we identified various types of isd-models, and empirically evaluated them over a
wide range of survival data sets — over a range of #features, #instances and %censoring.
This analysis showed that mtlr was typically superior for the L1-loss, Integrated Brier
score, and Concordance, but most importantly, showed it outperformed or matched all
other models for the calibration metrics.

We also provide formal analyses related to D-calibration, proving that the true sur-
vival distribution is D-calibrated (Theorem B.3), that the Kaplan-Meier distribution is
asymptotically D-calibrated (Lemma B.4) and that D-calibration is fundamentally differ-
ent from IBS (Proposition B.5) and from 1-Calibration (Proposition B.6). To be self-
contained, this paper provides high-level descriptions of the survival analysis algorithms,
and also of the evaluation measures. (Note that the code base is also available, from
https://github.com/haiderstats/ISDEvaluation.)

In conclusion, this paper explains why we encourage researchers and practitioners to
use isd-models (and especially ones similar to mtlr) to produce meaningful survival anal-
ysis tools, by showing how this can help patients and clinicians make informed healthcare
decisions.

Acknowledgements

We gratefully acknowledge funding from NSERC (Discovery Grant), Amii, and Borealis
AI, through an NSERC Engage Grant. We also thank Chun-Nam Yu, Ping Jin and Vickie
Baracos for insights leading to this investigation, and Adam Kashlak for his insightful
discussions regarding D-Calibration.

37



Haider, Hoehn, Davis, and Greiner

Appendix A. Extending Survival Curves to 0

In practice, survival curves often stop at a non-zero probability — see Figure 5 and Fig-
ure 16[left] below. This is problematic as it means they do not correspond to complete
distribution (recall a survival curve should be “1−CDF(t)”, where CDF is the Cumulative
Distribution Function) which leads to problems for many of the metrics, as it is not clear
how to compute the mean or the median value of the distribution. One approach is to
extend each of the curves, horizontally, to some arbitrary time and then drop each to zero
(the degenerate case being dropping the survival probability to zero at the last observed
time point). This approach has downsides: Dropping the curve to zero at the last observed
time point produces curves whose mean survival times are actually a lower bound on the
patient’s mean survival time, which is likely too small. In the event that the last survival
probability is above 0.5 (as is often the case for highly censored data sets) this may bias
our estimate of the L1-loss, which is based on the median value. Alternatively, if we instead
extend each curve to some arbitrary time and then drop the curve to zero, we need to decide
on that extension, which also could bias the L1-loss.

Since both standard approaches have clear downsides (and there is no way of knowing
how the survival curves act beyond the sampled survival times), we chose to simply extrap-
olate survival curves using a simple linear fit: for each patient ~xi, draw a line from (0, 1)
— i.e., time is zero and survival probability is 1 — to the last calculated survival proba-
bility, (tmax, Ŝ( tmax | ~xi )), then extend this line to the time for which survival probability
equals 0 — i.e., (t0(~xi), 0) — see Figure 16[right]. Note that curves cannot cross within the
extended interval, which means this extension will not change the discriminatory criteria.

Figure 16: On left, survival curves generated from mtlr for the Nacd-Col data set. Left
shows this model’s survival curves end at 68.9 months. On right, linear exten-
sions of those survival curves go as far as 118 months.

There are extreme cases where a survival model will predict a survival curve with survival
probabilities of 1 (up to machine precision) for all survival times (think “a horizontal line,
at p = 1”) — this occurred for unregularized models on high-dimensional data sets. In
these cases, this linear extrapolation will never reach 0. To address this, we fit the Kaplan-
Meier curve with the linear extension described above to compute t0KM ; we then replace any
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infinite prediction with this value. Additionally, as the Kaplan-Meier curve is to represent
the survival curve on a population level, we also truncated any patient’s median survival
time by t0KM .

Appendix B. Evaluation Measures Supplementary Information

This appendix provides additional information about the various evaluation measures.

B.1. Concordance

As discussed in Section 3.1, Concordance is designed to measure the discriminative ability of
a model. This is challenging for censored data. For example, suppose we have two patients
who were censored at t1 and t2, respectively. Since both patients were censored, there is
no way of knowing which patient died first, and hence, the risk scores for these patients
are incomparable. However, if one patient’s censored time is later than the death time of
another patient, we do know the true survival order of this pair: the second patient died
before the first.

To be precise, we first need to define the set of comparable pairs CP(V ), which is the
subset of pairs of indices (here using the validation data set V and recalling that δ = 1
indicates a patient who died (uncensored)) containing all pair of instances when we know
which patient died first:

CP(V ) = { [i, j] ∈ V × V | ti < tj and δi = 1 } (13)

Notice when the earlier event is uncensored (a death), we know the ordering of the deaths
(whether the second time is censored or not); see Figure 17. The ti < tj condition is to

prevent double-counting such that |CP(V )| ≤
(|V |

2

)
.

We then consider how many of the possible pairs our predictor put in the correct order:
That is, of all [i, j] pairs in CP(V ), we want to know how often r(~xi) > r(~xj) given that
ti < tj . Hence, the Concordance score of V , with respect to the risk scores, r(·), is

Ĉ(V, r(·) ) =
1

|CP(V )|
∑
i:δi=1

∑
j: ti<tj

I [ r(~xi) > r(~xj) ] . (14)

One issue is how to handle ties, in either risk scores or death times – i.e., for two
patients, Patient A and Patient B, consider either r(~xA) = r(~xB) or dA = dB. The two
standard approaches are (1) to give the model a score of 0.5 for ties (of either risk scores or
death times), or (2) to remove tied pairs entirely (Yan and Greene, 2008). The first option
is equivalent to Kendall’s tau, while the second leads to the Goodman-Kruskal gamma.
The empirical evaluations (given in Section 4.2) use the first, as this gives Kaplan-Meier a
Concordance index of 0.5 for all models. If we use the second option (excluding ties), then
the Concordance for the Kaplan-Meier model is not well-defined.

B.2. L1-loss, and variants

As discussed in Section 3.2, survival analysis can be viewed as a regression problem that
is attempting to minimize the difference between an estimated time of death and the true
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Figure 17: Depiction of Concordance comparisons, including censored patients. Black and
white circles indicate uncensored and censored patients, respectively. Each di is
the death time for an uncensored patient, and each cj is the censoring time for
a censored patient. We can only compare: uncensored patients who died prior
to a censored patient’s censoring time, or an uncensored patient’s death time.
Here, time increases as we go left-to-right; hence d1 < c2 < d3 < c4 < d5. Here,
we can compare 6 of the

(
5
2

)
= 10 pairs of patients. Figure adapted from (Wang

et al., 2017).

time of death. However, typical regression problems require having precise target values
for each instance; here, many instances are censored — i.e., providing only lower bounds
for the target values. One option is to simply remove all the censored patients and use the
L1-loss given by Equation 4 (which we call “Uncensored L1-Loss”); however, this will likely
bias the true loss.

One way to incorporate censoring is to use the Hinge loss for censored patients, which
assigns 0 loss to any patient whose censoring time ck is prior to the estimated median

survival time, t̂
(0.5)
k — i.e., a loss of 0 if ck < t̂

(0.5)
k — and a loss of ck− t̂

(0.5)
k if the censoring

time is greater than t̂
(0.5)
k . That is:

L1hinge(V, {t̂
(0.5)
j }j ) =

1

|V |

 ∑
j∈VU

|dj − t̂(0.5)
j | +

∑
k∈VC

[ck − t̂
(0.5)
k ]+

 . (15)

where VU is the subset of the validation data set that is uncensored, and VC is the censored
subset, and [a]+ is the positive part of a, i.e.,

[a]+ = max{a, 0} =

{
a if a ≥ 0
0 otherwise

.

This formulation is an optimistic lower bound on the L1-loss for two reasons: (1) it gives a

loss of 0 if the censoring occurs prior to the estimated survival time, implying that dk = t̂
(0.5)
k ,

and (2) it gives a loss of ck − t̂
(0.5)
k if the censoring time occurs after the estimated survival

time, which assumes that dk = ck. Both are the best possible values for the unknown dk,
given the constraints.

One weakness of the L1-Hinge loss is that if a model predicts very large survival times
for all patients (both censored and observed), the hinge loss will give 0 loss for the censored
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patients; in data sets with a large proportion of censored patients, this leads to an optimistic
score overall. Thus the hinge loss will favor models that tend to largely overestimate survival
times as opposed to those models underestimating survival time.

A third variant of L1-loss, the L1-Margin loss, assigns a “Best-Guess” value to the death
time corresponding to ck, which is the patient’s conditional expected survival time given
they have survived up to ck — given by

BG(ck) = ck +

∫∞
ck
S(t) dt

S(ck)
(16)

where S(·) is the survival function; Theorem B.1 proves this value corresponds to the
conditional expectation. In practice we use Kaplan-Meier estimate, ŜKM ( · ), generated
from the training data set (disjoint from the validation data set) as our estimate of S(·) in
Equation 16.

We also realized that these BG(ck) estimates are more accurate for some patients than
for others. If ck ≈ 0 — that is, if the patient was censored near the beginning time —
then we know very little about the true timing of when the death occurred, so the estimate
BG(ck) is quite vague, which suggests we should give very little weight to the associated

loss, |BG(ck)− t̂
(0.5)
k |. Letting αk be the weight associated with these terms, we would like

αk ≈ 0. On the other hand, if cr is large — towards the longest survival time observed
(call it dmax) — then there is a relatively narrow gap of time where this ~xr could have died
(probably within the small interval (cr, dmax)); here, we should give a large weight to loss
associated with this estimate.

This motivates us to define

L1margin(V, t̂
(0.5)
j ) =

1

|VU |+
∑

k∈VC αk

∑
j∈VU

|dj − t̂(0.5)
j | +

∑
k∈VC

αk|BG(ck)− t̂
(0.5)
k |

 (17)

where αk reflects the confidence in each Best-Guess estimate. To implement this, we set
αk = 1 − ŜKM (ck), which gives little weight to instances with early censor times but
considers late censor times to be almost equivalent to an observed death time. Note this is
the version of L1-loss we presented in Figure 14, with details in Table 12.

For completeness, we prove Equation 16. (This claim is also proven by Gupta and
Bradley (2004), which uses mean residual life rather than expected total life.)

Theorem B.1. The conditional expectation of time of death, D, given that a patient was

censored at time c, is given by: E[D |D > c] = c+
∫∞
c S(x) dx

S(c) .

Proof. Let D be the r.v. for the time when a patient dies, and define

S(c) = P (D > c) =

∫ ∞
c

P (D = t) dt
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as the survival function — i.e., the probability that the patient dies after time c. Given
this, the conditional probability is

P (D = t |D > c ) =
P (D = t, D > c )

P (D > c )

=
P (D = t, D > c )

S( c )

=

{
0 if t < c

P (D=t )
S( c ) otherwise

.

Hence,

E[D |D > c ] =

∫ c

0
t × 0 dt +

∫ ∞
c

t
P (D = t )

S( c )
dt

=
1

S( c )

[∫ ∞
c

c P (D = t ) dt +

∫ ∞
c

(t− c)P (D = t ) dt

]
=

1

S( c )

[
c S( c ) +

∫ ∞
c

(∫ t

c
dx

)
P (D = t) dt

]
= c +

1

S( c )

[∫ ∞
c

(∫ ∞
x

P (D = t) dt

)
dx

]
(18)

= c +

∫∞
c S(x ) dx

S( c )
.

Step 18 is an application of Tonelli’s theorem (Saks, 1937), which lets us swap the order of
integration for a non-negative function. As desired, this quantity, E[D |D > c ], is always
at least c. Moreover, when c = 0, this is

0 +

∫∞
0 S( t ) dt

1
=

∫ ∞
0

S( t ) dt = E[D ]

which is the expected value of the distribution for this survival curve (and exactly the claim
of the Theorem).

A further discussion of L1-Loss (and variants such as log L1-Loss) is available in Haider’s
MSc thesis (Haider, 2019).

B.3. 1-Calibration

To demonstrate the description from Section 3.3, consider the following example: If there
are n = 50 patients, then 50/10 = 5 will be in each bin, and the first bin B1 will contain
the 5 with lowest predicted probability values, and the second bin B2 will contain the next
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smallest 5 values, and so forth — e.g.,

B1 = {0.32, 0.34, 0.43, 0.43, 0.48}
B2 = {0.55, 0.56, 0.61, 0.61, 0.72}

...

B10 = {0.85, 0.85, 0.86, 0.87, 0.87}

Now consider the 5 patients who belong to B1. As the average of their probabilities is
0.32+0.34+0.43+0.43+0.48

5 = 0.4, we should expect 40% of these 5 individuals to die in the
next 5 years — that is, 2 should die. We can then compare this prediction (0.40×5 = 2) with
the actual number of these B1 patients who died. We can similarly compare the number
of B2 patients who actually died to the number predicted (based on the average of these 5
probability values, which here is 0.61× 5 = 3.05), and so forth.

In general, we say that the predictor is 1-Calibrated if these B predictions, for the
B = 10 bins, are sufficiently close to the actual number of deaths with respect to these
bins. Here, we use the Hosmer–Lemeshow statistical test (given in Section 3.3) to see if the
observed results were significant, repeating Equation 5:

HL
∧

(VU , Ŝ( t∗ | · ) ) =
B∑
j=1

(Oj − nj p̄j)2

nj p̄j (1− p̄j)
,

where Oj is the number of observed events, nj is the number of patients, p̄j is the average
predicted probability, and subscript j refers to within the jth of B bins.

B.3.1. Incorporating Censoring into 1-Calibration

Survival data typically contains some amount of censoring, making the exact number of
deaths for the jth bin, Oj , unobservable when the bin contains patients censored before
t∗. That is, given a censored patient whose censoring time occurred before the time of
interest (ci < t∗), the patient may or may not have died by t∗. There are many standard
techniques for incorporating censoring (Guffey, 2013); we use the D’Agostino-Nam transla-
tion (d’Agostino and Nam, 2003), which uses the within bin Kaplan-Meier curve in place
of Oj . Specifically, the test statistic is given by,

HL
∧

DN (V, Ŝ( t∗ | · ) ) =

B∑
j=1

( nj (1−KMj(t
∗)) − nj p̄j)

2

nj p̄j (1− p̄j)
, (19)

where KMj(t
∗) is the height of the Kaplan-Meier curve generated by the patients in the

jth bin, evaluated at t∗. We use 1 − KMj(t
∗) as we are predicting the number of deaths

and not KMj(t
∗), which instead gives the probability of survival at t∗. Note also that

HL
∧

DN follows a χ2
B−1 distribution, as opposed to the χ2

B−2 distribution for Equation 5.
Algorithm 1 summarizes the 1-Calibration algorithm.
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Algorithm 1: 1-Calibration Process (Demonstrated with B = 10 bins)

Input: ISD model θ that generates Ŝθ( t |x ), dataset D = { [xi, ei, δi] | i = 1..n },
specific time t∗, P-value p∗

Result: Success or Failure
——————
for i = 1..n do

pi ← 1− Sθ( t∗ |xi ) // predicted probability of event before t∗ for

instance with feature values xi
end
Set

B1 ← { k | pk in the 10% of pi values that are the lowest}
... // ties broken randomly

B10 ← { k | pk in the 10% of pi values that are the largest}
for j = 1..10 do

p̄j ← 1
|Bj |

∑
i∈Bj

pi // average of the pi’s within Bj

KMj ← KM({ [xi, ei, δi] | i ∈ Bj }) // Kaplan Meier distribution based

on the elements of Bj

Oj ← 1−KMj( t
∗ ) // probability that KMj assigns to

event occurring by time t∗

end

h←
∑10

j=1
n
10

(Oj−p̄j)2

p̄j(1−p̄j) // HL statistic (Equation 19) based on the predicted

counts n
10
× {p̄1, ..., p̄10} vs observed n

10
× {O1, ..., O10}

p← P-value corresponding to h from χ2
9 dist’n // B − 1 degrees of freedom

if p > p∗ then
return Success

else
return Failure

end
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B.4. Brier Score

This section supplements the description of the Brier score given in Section 3.4, discussing
the incorporation of censoring into the Brier score.

In 1999, Graf et al. (1999) proposed a way to compute the Brier Score for censored
data, by using inverse probability of censoring weights (IPCW), which requires estimating
the censoring survival function, denoted as Ĝ(t) over time points t. We can estimate Ĝ(t)
by the Kaplan-Meier curve of the censoring distribution — i.e., swapping those who are
censored with those who are not (δCensi = 1− δi), and building the standard Kaplan-Meier
model. Intuitively, this IPCW weighting counteracts the sparsity of later observations —
if a patient dies early, there is a good chance that di < ci, meaning the event is observed,
but if the patient survives for a long time, it becomes more likely that ci < di, meaning this
patient will be censored. Gerds et al. (2008; 2006) formalizes and proves this intuition.

The censored version of the Brier score for a given time, t∗, is calculated as

BSt∗

(
V, Ŝ(t∗|·)

)
=

1

|V |

|V |∑
i=1

I [ ti ≤ t∗, δi = 1 ]
(

0− Ŝ(t∗|~xi)
)2

Ĝ(ti)
+
I [ ti > t∗ ]

(
1− Ŝ(t∗|~xi)

)2

Ĝ(t∗)

 , (20)

where ti = min{di, ci}. The first part of Equation 20 considers only uncensored patients
whereas the second part counts all patients whose event time is greater than t∗. The
patients who were censored prior to t∗ are not explicitly included, but contribute based on
their influence in Ĝ(·).

As Ĝ(t) is a decreasing step function of t, 1
Ĝ(t)

is increasing, which means that patients

who survive longer than t∗ have larger weights than patients that died earlier, since the
longer surviving patients were more likely to become censored.

B.5. D-Calibration

We begin this section by (1) showing that, given only uncensored patients, the distribution
of the true survival function, S(t|x)}t, should follow a uniform distribution, then (2) showing
how to incorporate censored patients into the D-Calibration estimate, and then (3) prov-
ing that this combination of censored and uncensored patients should produce a uniform
distribution, motivating a goodness-of-fit test. We then show that the Kaplan-Meier dis-
tribution is asymptotically D-calibrated, then prove two propositions (discussed earlier)
that show that D-calibration is fundamentally different from two other measures: IBS and
1-Calibration.

For this analysis, we assume each patient ~xi has a true survival function, S( t | ~xi ), which
is the probability that this patient will die after time t. Assume each patient has a time of
death, di and a censoring time, ci, and ti = min {di, ci} is the observed event time. Given
a validation set V , we first examine the case of all uncensored patients — i.e., ti = di for
i = 1, . . . , |V |.

Lemma B.2. The distribution of a patient’s survival probability at the time of death
S( di | ~xi ) is uniformly distributed on [0,1].

Proof. The probability integral transform (Angus, 1994) states that, for any random contin-
uous variable, X, with cumulative distribution function given by Fx(·), the random variable
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Y = Fx(X) will follow a uniform distribution on [0,1], denoted as U(0, 1). Thus, given
randomly sampled event times, di, we have F ( di | ~xi ) ∼ U(0, 1). As the survival function is
simply S( di | ~xi ) = 1− F ( di | ~xi ), its distribution is 1− U(0, 1), which also follows U(0, 1)
and hence, S( di | ~xi ) ∼ U(0, 1).

This Lemma shows that, given the true survival model, producing S( · | ~xi ) curves,
the distribution of S( di | ~xi ) should be uniform over event times. Thus if a learned model
accurately learns the true survival function, ŜΘ( · | · ) ≈ S(·|·), we will expect the distribution
across event times to be uniform. This is then tested using the goodness-of-fit test assuming
each bin contains an equal proportions of patients.

Of course, conditions become more complicated when considering censored patients.
Here, we employ the standard assumption that censoring time is independent of death
time, ci ⊥ di | ~xi (Kaplan and Meier, 1958). Suppose we have a censored patient — i.e.,
ti = ci — such that S( ci | ~xi ) = 0.25. Since the censoring time is a lower bound on the
true death time, we know that S( di | ~xi ) ≤ 0.25, since ci < di and survival functions
monotonically decrease as event time increases. If we are using deciles, we would like
to know the probability that the time of death occurred in the [0.2,0.3) bucket — i.e.,
P (S( di | ~xi ) ∈ [0.2, 0.3) | S( di | ~xi ) ≤ 0.25 ). Using the rules of conditional probability,
this is computationally straightforward23:

P (S(di) ∈ [0.2, 0.3) |S(di) < 0.25 ) =
P (S(di) ∈ [0.2, 0.3), S(di) < 0.25 )

P (S(di) < 0.25 )

=
P (S(di) ∈ [0.2, 0.25)) )

P (S(di) < 0.25 )

=
0.05

0.25
(as S(·) ∼ U(0, 1))

= 0.2

Similarly, we can use the same logic as above to compute these probabilities for the other
two buckets, [0.1, 0.2) and [0.0, 0.1):

P (S(di) ∈ [0.1, 0.2) | S(di) < 0.25 ) =
P ( S(di) ∈ [0.1, 0.2), S(di) < 0.25 )

P ( S(di) < 0.25 )

=
P ( S(di) ∈ [0.1, 0.2) )

P ( S(di) < 0.25 )

=
0.1

0.25
(as S(·) ∼ U(0, 1))

= 0.4

and similarly for the [0.0, 0.1) bucket. Note that these probabilities sum to one, (0.2+0.4+
0.4) = 1, as desired.

23. To simplify notation, we drop the conditioning on ~xi of S(·|·).
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This example motivates the following procedure to incorporate censored patients into
the D-Calibration process: Given B buckets that equally divide [0,1] into intervals of width
W = 1/B, suppose a patient is censored at time c with associated survival probability
S(c). Let `1 be the infimum probability of the bucket that contains S(c) — e.g., 0.2 for
the example above where S(ci) = 0.25 ∈ [0.2, 0.3). Then we assign the following weights to
buckets:

(α) Bucket [`1, `2) (which contains S(c)): S(c)−`1
S(c) = 1− `1

S(c)

(β) All following buckets (i.e., the buckets whose survival probabilities are all less than
`1): W

S(c) = 1
B·S(c) ,

Algorithm 2 summarizes the D-calibration process.

Note this formulation follows directly from the example above. This weight assign-
ment effectively “blurs” censored patients across the buckets following the bucket where the
patient’s learned survival curve, ŜΘ( ci | ~xi ), placed the censored patient.

To further illustrate this concept of blurring a patient across buckets, consider a patient
who is censored at t = 0 with S(ci) = 1. This patient is then blurred across all (B = 10)
buckets, adding a weight of 0.1 to all 10 buckets. Alternatively, if a patient is censored very
late, with S(ci) ≤ 0.1 then the patient is not blurred at all — only a weight of 1 is added
to the last bucket.24

To perform the goodness-of-fit test, we must first calculate the observed proportion of
patients within each bucket. Let bk represent the observed proportion of patients within
the interval [pk, pk+1) — e.g., [pk, pk+1) = [0.2, 0.3) in the example above. There are six
categories of patients; see Table 9. We focus on the 3 cases that contribute a non-0 amount
to the value of bk. We can formally calculate:

bk =
1

|V |

|V |∑
i=1

[
1 · I [S(di) ∈ [pk, pk+1) ∧ di ≤ ci ] (21)

+
S(ci)− pk
S(ci)

· I [S(ci) ∈ [pk, pk+1) ∧ ci < di ] (22)

+
(pk+1 − pk)

S(ci)
· I [S(ci) ≥ pk+1 ∧ ci < di ]

]
. (23)

Above, (21) refers to the weight that the patients with observed events contribute to the kth

bucket — i.e., each uncensored patient whose survival probability at time of death lands
in [pk, pk+1) contributes a value of 1. Here, we consider di = ci to be an uncensored event.
Next, (22) gives the weight from the censored patients whose survival probability at time
of censoring is within the kth bucket (item (α) above). Lastly, (23) gives the weights from

24. This identifies a weakness of D-Calibration: if a validation set contains N0 patients censored at time 0,
then all buckets are given an equal weight of N0/B; if N0 is large relative to the total number of patients,
then the buckets may appear uniform, no matter how the other patients are distributed, which means
any model based on such heavily “time 0 censored” data would be considered to be D-Calibrated.
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Algorithm 2: D-Calibration Process (demonstrated with B = 10 buckets)

Input: ISD model θ that generates Ŝθ( t |x ), dataset D = { [xi, ei, δi] | i = 1..n },
P-value p∗

Result: Success or Failure
——————
for j = 1..10 do

bj ← 0 // initialize buckets

end

for i = 1..n do

si ← max{ Ŝθ( ei |xi ), 10−5} // predicted probability that instance with

features xi survives beyond event time ei
j∗ ← d10× sie // index of bucket associated with si

if δi = 1 then // instance is uncensored ⇒ credit bucket bj∗

bj∗ ← bj∗ + 1
else // instance is censored ⇒ spread credit among possible buckets

for k = 1 .. (j∗−1) do
bk ← bk + 1

10si

end

bj∗ ← bj∗ + [1− (j∗−1)
10si

]

end

end

s← 10
n

∑10
j=1(bj − n

10)2 // Compute χ2 statistic based on observed

counts {b1, ..., b10} vs { n
10
, ..., n

10
}

p← P-value corresponding to s from χ2
9 dist’n // B − 1 degrees of freedom

if p > p∗ then
return Success

else
return Failure

end
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δi ŜΘ( di | ~xi ) ŜΘ( ci | ~xi ) Value Eqn

1 < pk 0.0

1 ∈ [pk, pk+1) 1.0 (21)

1 ≥ pk+1 0.0

0 < pk 0.0

0 ∈ [pk, pk+1) S( ci )−pk
S( ci ) (22)

0 ≥ pk+1
pk+1−pk
S( ci ) (23)

Table 9: Summary of 6 types of patients, wrt each interval Ik = [pk, pk+1), using S(ci) to
abbreviate ŜΘ( ci | ~xi )

censored patients whose survival probability was contained in a previous bucket (item (β)
above).

Theorem B.3 below proves that the expected value of bk for the correct distribution is
equal for all buckets — i.e., E[bk] = pk+1−pk — which allows us to apply the goodness-of-fit
test with uniform proportions.

We assume that all survival curves are strictly monotonically decreasing, meaning we
have the equivalence, di ≤ ci ⇐⇒ S(di) ≥ S(ci), which allows us to replace di ≤ ci
with S(di) ≥ S(ci), within the indicator functions in bk. To simplify notation, we define
Ik := [pk, pk+1), Sc := S( c | ~x ), and Sd := S( d | ~x ). The proof below shows that the
expected value of the summand within Equations (21) – (23) above is equal to pk+1 − pk
for the true survival function — i.e., we ignore 1

|V |
∑|V |

i=1[·] and take the expected value of
the term inside the summation.

Theorem B.3. Given the formula for bk (Equations (21) – (23)), if the true survival
function S(·|·) is strictly monotonically decreasing then the proportions are equal across all
bins — i.e., E[bk] = pk+1 − pk.
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Proof.

E[ bk ] =E
[

1 · I [Sd ∈ Ik ∧ Sd ≥ Sc ]

+
Sc − pk
Sc

· I [Sc ∈ Ik ∧ Sc > Sd ]

+
(pk+1 − pk)

Sc
· I [Sc > Sd ∧ Sc ∈ [pk+1, 1] ]

]

= E
[
I [Sd ∈ Ik ∧ Sd ≥ Sc ]

]
+ E

[
Sc − pk
Sc

· I [Sc ∈ Ik ∧ Sc > Sd ]

]
+ E

[
(pk+1 − pk)

Sc
· I [Sc > Sd ∧ Sc ≥ pk+1 ]

]

= Pr[Sd ∈ Ik ∧ Sd ≥ Sc ]

+ Pr[Sc ∈ Ik ∧ Sc > Sd] − pk E
[

1

Sc
· I [Sc > Sd ∧ Sc ∈ Ik ]

]
+ (pk+1 − pk) E

[
1

Sc
· I [Sc > Sd ∧ Sc ≥ pk+1 ]

]

= Pr[ Sd ∈ Ik ∧ Sd ≥ Sc ] + Pr[ Sc ∈ Ik ∧ Sc > Sd ] (I)

− pk E
[

1

Sc
· I [Sc > Sd ∧ Sc ≥ pk ]

]
(II)

+ pk+1 E
[

1

Sc
· I [Sc > Sd ∧ Sc ≥ pk+1 ]

]
(III)

Focusing on the second probability in line (I), note Sc ∈ Ik = [pk, pk+1) and Sc > Sd imply
that Sd ∈ [0, pk+1), which can be expanded to the cases for Sd < pk and Sd ∈ Ik. Using
this, we reformulate the probability by noting the equivalence of the event space,

Pr[ Sc ∈ Ik ∧ Sc > Sd] = Pr[Sc ∈ Ik ∧ Sd < pk] + Pr[(Sc ∧ Sd) ∈ Ik ∧ Sc > Sd ].

Combining the second addend above with the first probability in line (I), we again simplify
by noting these probabilities bound Sc < pk+1,

Pr[Sd ∈ Ik ∧ Sd ≥ Sc] + Pr[(Sc ∧ Sd) ∈ Ik ∧ Sc > Sd] = Pr[Sd ∈ Ik ∧ Sc < pk+1].

Using this simplification we can rewrite the entirety of line (I),

Pr[ Sd ∈ Ik ∧ Sd ≥ Sc ] + Pr[ Sc ∈ Ik ∧ Sc > Sd ]
= Pr[ Sd ∈ Ik ∧ Sc < pk+1 ] + Pr[ Sc ∈ Ik ∧ Sd < pk ]
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Recalling the independence assumption, c ⊥ d (recall everything is conditioned on the
instance ~x), we have the following equalities:

Pr[Sd ∈ Ik ∧ Sc < pk+1] = Pr[Sd ∈ Ik] · Pr[Sc < pk+1] = (pk+1 − pk) Pr[Sc < pk+1],

Pr[Sc ∈ Ik ∧ Sd < pk] = Pr[Sc ∈ Ik] · Pr[Sd < pk] = Pr[Sc ∈ Ik] pk ,

where the final equalities are due to the uniformity of the survival function on d, S(d) ∼
U(0, 1) — see Lemma B.2. This then leaves the final simplification of line (I) as,

Pr[Sd ∈ Ik ∧ Sd ≥ Sc] + Pr[Sc ∈ Ik ∧ Sc > Sd] = (pk+1 − pk) Pr[Sc < pk+1]

+ pk Pr[Sc ∈ Ik].

Now we address line (II):

−pk E
[

1

Sc
· I [Sc > Sd ∧ Sc > pk ]

]
= −pk

(∫ 1

pk

∫ Sc

0

1

Sc
f(Sc) dSd dSc

)
(Def. of E[·])

= −pk
(∫ 1

pk

Sc
Sc
f(Sc) dSc

)

= −pk Pr[Sc > pk]

where f( · ) is the probability distribution function (PDF) for the distribution generated by
the survival function applied to a censored observation. As the censoring distribution is
unknown, f(Sc ) is also unknown, whereas f(Sd ) is the PDF of the uniform distribution.

Following the steps above for line (III) analogously gives us

pk+1 E
[

1

Sc
· I [Sc > Sd ∧ Sc > pk+1 ]

]
= pk+1 Pr[Sc > pk+1]

Combining the simplifications of lines (I), (II) and (III), we have the following,

E[bk] = (pk+1 − pk) Pr[Sc < pk+1] + pk Pr[Sc ∈ Ik] (I)

− pk Pr[Sc > pk] (II)

+ pk+1 Pr[Sc > pk+1] (III)

= pk+1 (Pr[Sc < pk+1] + Pr[Sc > pk+1])

− pk (Pr[Sc < pk+1]− Pr[Sc ∈ [pk, pk+1) + Pr[Sc > pk])

= pk+1 − pk
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This proof requires the assumption that survival curves are strictly monotonically de-
creasing on [0,1]. This means survival curves will not contain any large flat areas; this
means there will not be non-zero probability mass for S(ci) = S(di) when ci 6= di, which
means certain terms in the proof below would fail to cancel with one another, leaving us
with non-equivalent proportions within each bucket (specifically higher proportions within
buckets that contain these flat lines).

A natural corollary of Theorem B.3 is that all consistent estimators of the true survival
distribution will be D-Calibrated (if the true survival distribution is strictly monotonic).
Furthermore, if survival time is independent and identically distributed (i.i.d.) across pa-
tients, then there will only be one true survival curve for all patients, and thus, Kaplan-Meier
is uniformly consistent (Breslow and Crowley, 1974; CsörgŐ and Horváth, 1983):

Lemma B.4. The Kaplan-Meier distribution is asymptotically D-Calibrated.

This is consistent with the results given in Section 4.2, which showed that km always
passed the D-Calibration test with a p-value 1.000, in all 8 data sets. If all of the data
was uncensored, we would expect the typical 5% Type I error rate for claiming p <0.05
as significant; however, in the presence of censored data, the proportion of patients within
buckets become smoothed, boosting the p-value.

B.5.1. D-Calibration is Different from IBS and 1-Calibration

The next two propositions prove that D-calibration is different from other, more standard
models.

Proposition B.5. Given a single set of survival data subjects, it is possible for one isd
model Ŝ1 to be perfectly D-calibrated but have a worse IBS score than another model Ŝ2 that
is not D-calibrated.

Proof. Figure 10 shows two isd models, for two patients: ~xQ who died at time 1 and ~xG
who died at time 2. The left model ŜLeft is clearly D-calibrated, for 2 buckets, as it includes

1 patient whose probability at the time of death ŜLeft( di | ~xi ) is in each of [0, 0.5], and

(0.5, 1.0]. However the right model ŜRight( · | · ) is not D-calibrated, as both patients are in
the single bucket (0.5, 1.0].

To compute the IBS scores: We first compute the relevant “( Ŝ( t |x ) − I[t;x] )2”
integrals for each patient, then divide by the total time tmax considered (which here is
tmax = 2), then take the average over the 2 patients. First, for the ŜLeft( · | · ) model on the
left: the IBS integrals for these 2 patients are

V (ŜLeft, ~xQ) =
∫ 1

0 (1− 1)2dt +
∫ 2

1 (1
2 − 0)2dt = 0 + 1

4 = 1
4

V (ŜLeft, ~xG) =
∫ 1

0 (1− 1)2dt +
∫ 2

1 (1
2 − 1)2dt = 0 + 1

4 = 1
4

Hence, the IBS score, for this ŜLeft model over these 2 patients, is

IBS(ŜLeft, {~xQ, ~xG} ) =
1

tmax

1

2

∑
i

V (ŜLeft, ~xi) =
1

8
= 0.125 .
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Now consider the ŜRight model, on the right. Here, we assume the horizontal bar, at

height ŜRight( · | · ) = 3/4, has width ε = 1/6. (Of course, the patient died at the right end.)
Here,

V (ŜRight, ~xQ) =
∫ 1−ε

0 (1− 1)2dt +
∫ 1

1−ε(
3
4 − 1)2dt +

∫ 2
1 (0− 0)2dt = 0 + 1

16ε+ 0 = ε
16

V (ŜRight, ~xG) =
∫ 2−ε

0 (1− 1)2dt +
∫ 2

2−ε(
3
4 − 1)2dt = 0 + 1

16ε = ε
16

Here,

IBS(ŜRight, {~xQ, ~xG} ) =
1

tmax

1

2

∑
i

V (ŜRight, ~xi) =
ε

32
≈ 0.00521

for this value of ε. Notice this is a factor of 24 smaller (“better”) than the IBS score for
ŜLeft. See Table 3.

Proposition B.6. It is possible for an isd model to be perfectly D-calibrated but not 1-
calibrated at a time t∗, and for (another) isd model to be perfectly 1-calibrated at time t∗

but not D-calibrated.

Proof. “1-Calibration 6⇒D-Calibration”: Consider the model shown in Figure 11[left].
Here, the green curve corresponds to 4 apparently-identical patients {~xg,1, . . . , ~xg,4}, and
the red curve, to apparently-identical {~xr,1, . . . , ~xr,4}. The “∗”s mark the time when each
patient died, denoted as d~x for ~x. We intentionally use simple examples, with no censored
patients, with curves that go to 0. Note this model assigns Ŝ(T1 | ~xg,i ) = 0.75 for each of
the 4 green patients, and Ŝ(T1 | ~xr,j ) = 0.25 for each of the 4 red patients.

To show that this model is 1-Calibrated, with respect to T1: Recall we first sort the
set of all 8 { Ŝ(T1 | ~x ) } values, then partition them into k bins. Here, we consider k = 2,
rather than the deciles earlier. The first bin contains the 4 patients with Ŝ(T1 | ~x ) = 0.75
(note this includes exactly the 4 “green” patients ~xg,i); and the second, the 4 patients with
Ŝ(T1 | ~x ) = 0.25 (corresponding to the 4 “red” patients ~xg,i). Now note that 3 of the 4
“Ŝ(T1 | ~x ) = 0.75 patients” are alive at T1; and 1 of the 4 “Ŝ(T1 | ~x ) = 0.25 patients” are
alive at T1 — which means this model is perfectly 1-Calibrated at T1.

However, this model is not D-Calibrated: to be consistent with the earlier 1-Calibration
analysis, we split the [0,1] probability interval into 2 buckets (not 10), as shown in Figure 11.
Here, Ŝ( d~x | ~x ) ∈ [0.5, 1] holds for only 1 patient (just ~xr,1), and Ŝ( d~x | ~x ) ∈ [0, 0.5] holds
for 7; if the model was D-Calibrated, each of these two buckets should contain 4 patients.

“D-Calibration 6⇒ 1-Calibration”: See Figure 11[right], where again, each curve
represents 4 distinct, but indistinguishable patients; notice the outcomes are different from
those on the left. To see that this model is D-Calibrated, note there are 4 patients with
Ŝ( d~x | ~x ) ∈ [0.5, 1] (which happen to be the green patients), and 4 with Ŝ( d~x | ~x ) ∈ [0, 0.5)
(the red patients). However, the model is not 1-Calibrated, at T1: Of the 4 patients with
Ŝ(T1 | ~x ) = 0.75, 2 are alive at T1 (these are the 2 right-most green patients); and of the 4
patients with Ŝ(T1 | ~x ) = 0.25, 2 are alive at T1 (these are the 2 right-most red patients).
To be 1-Calibrated, there should be 3 living patients in the first bin, and 1 in the second;
hence, this model is not 1-Calibrated at T1.
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Appendix C. Comments about Various isd’s

C.1. Overview of mtlr

Consider25 modeling the probability of survival of patients at each of a vector of time points
τ = [t1, t2, . . . , tm] — e.g., τ could be the 60 monthly intervals from 1 month up to 60 months.
We can set up a series of logistic regression models: For each patient, represented as ~x,

S~θi(T ≥ ti | ~x ) =
(

1 + exp(~θi · ~x)
)−1

, 1 ≤ i ≤ m, (24)

where ~θi are the time-specific parameter vectors. While the input features ~x stay the same
for all these classification tasks, the binary labels yi = [T ≥ ti] can change depending on
the threshold ti. We encode the survival time d of a patient as a sequence of binary values:
y = y(d) = [y1, y2, . . . , ym], where yi = yi(d) ∈ {0, 1} denotes the survival status of the
patient at time ti, so that yi = 0 (no death event yet) for all i with ti < d, and yi = 1
(death) for all i with ti ≥ d. Here there are m + 1 possible legal sequences of the form26

[0, 0, . . . , 1, 1, . . . , 1], including the sequence of all ‘0’s and the sequence of all ‘1’s. Our mtlr
model extends Equation 24 by computing the probability of observing the survival status
sequence y = [y1, y2, . . . , ym] as:

SΘ(Y=[y1, y2, . . . , ym] | ~x ) =
exp(

∑m
i=1 yi × ~θi · ~x)∑m

k=0 exp(fΘ(~x, k))
,

where Θ = [~θ1, . . . , ~θm], and fΘ(~x, k) =
∑m

i=k+1(~θi · ~x) for 0 ≤ k ≤ m is the score of
the sequence with the event occurring in the interval [tk, tk+1) before taking the logistic
transform, with the boundary case fΘ(~x,m) = 0 being the score for the sequence of all ‘0’s.
Given a data set of n patients {~xr} with associated time of deaths {dr}, we find the optimal
parameters (for the mtlr model) Θ∗ as

Θ∗ = arg max
Θ

n∑
r=1

[
m∑
i=1

yj(dr)(~θi ·~xr)− log
m∑
k=0

exp fΘ(~xr, k)

]
− C

2

m∑
j=1

‖~θj‖2 (25)

where the C (for the regularizer) is found by an internal cross-validation process. (The
original Yu et al. (2011) paper also included a smoothing regulatrizer,

∑m−1
j=1 ‖~θj+1−~θj‖2;

however, Jin (2015, Appendix) proved this was not necessary.)
There are many details here — e.g., to insure that the survival function starts at 1.0,

and decreases monotonically and smoothly until reaching 0.0 for the final time point; to deal
appropriately with censored patients; to decide how many time points to consider (m); and
to minimize the risk of overfitting (by regularizing), and by selecting the relevant features.
The paper by Yu et al. (2011) provides the details.

Afterwards, the isd-Predictor can use the learned mtlr-model Θ∗ = [~θ1, . . . , ~θm] to
produce a curve for a novel patient, who is represented as the vector of his/her covariates
~xj . This involves computing the m values, [f1(~xj , ~θ1), . . . , fr(~xj , ~θm)]; the running sum of

25. This paragraph is paraphrased from (Yu et al., 2011); reprinted with permission of publisher/author.
26. Notice there are no ‘0’s after a ‘1’. This is the ‘no zombie’ rule: once someone dies, that person stays

dead.
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these values is essentially the survival curve. We then use splines to produce a smooth,
monotonically decreasing curve — such as the 10 such curves shown in Figure 5 [bottom-
right].

C.2. Extension to Random Survival Forests (rsf-km)

Given a labeled data set, a random survival forest learner will produce a set of T decision
trees from T different bootstrapped samples of the training data. It grows each tree recur-
sively, starting from the root — identifying each position with the set of patients who arrive
there. For each position, the growth stops if there are fewer than d0 deaths (where d0 is
chosen via cross-validation). Otherwise, it identifies an appropriate feature for this node:
it first randomly draws a small random subset of the features to consider, then selects the
feature (from that subset) that maximizes the difference in survival between two daughter
nodes, based on the lo-grank test statistic (or some other chosen splitting rule). This be-
comes the “rule” of that node; the learner then considers its two daughters, by splitting on
the node’s feature.

Each leaf node in each tree corresponds to the set of training instances that reached
that node. Given these learned trees, to classify a novel instance ~x, the random forest
performance system will drop ~x into each of the trees, which will lead to T different leaf
nodes; it will then use the T subsets of training instances to make a decision. Since each
terminal node in the random survival forest contains a set of instances, we can use these
instances to produce a Kaplan-Meier curve.27

Once the survival forest has been learned (with T trees), a patient is dropped into each
of the T survival trees, leading to T leaf nodes, which produces T Kaplan-Meier curves.
The rsf-km implementation then “averages” these curves, by taking a point-wise average
across the curve for all time points; see Figure 18.28

Note that the risk score generated by the median of the individual survival curves
(produced here) does not necessarily result in the same ordering of patients as the risk
scores of the original rsf implementation, which uses averaged cumulative hazards as a risk
score. For this reason, we also applied the original rsf process to the data sets presented in
the paper. We found that the Concordance scores were similar to that of rsf-km; mtlr still
outperformed rsf on the data sets where mtlr outperformed rsf-km (data not shown).

Appendix D. Detailed Empirical Results

This sub-appendix includes the tables that correspond to the figures given in Section 4.2.
Further, Appendix D.4 provides the all p-values for the 1-Calibration tests.

D.1. Concordance

See Table 10 for the results corresponding to Figure 12.

27. While the original paper does not consider survival curves, documentation https://kogalur.github.

io/randomForestSRC/theory.html#section8.1 describing the inner workings of the R package states
that survival curves in terminal nodes are created via the Kaplan-Meier estimator.

28. The method for generating individual survival curves could not be found in any of the literature by the
authors of random survival forests. Survival curves were reverse-engineered by the authors of this paper
— all survival curves tested matched the methodology explained here.
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Figure 18: This figure illustrates how to combine two different survival curves to produce a
new one. (rsf-km uses this idea to “merge” the curves obtained from the various
leaf nodes reached by a novel instance.) Here, two survival curves, given in blue,
are averaged to produce the survival curve shown in dark orange. Note that
the averaged curve is generated from a point-wise average, i.e., new calculations
must only be computed at each death time — i.e., , whenever there is a drop in
either (blue) Kaplan-Meier curve.

GBM GLI Nacd-Col NACD READ BRCA DBCD DLBCL

km 0.500 (0.000) 0.500 (0.000) 0.500 (0.000) 0.500 (0.000) 0.500 (0.000) 0.500 (0.000) 0.500 (0.000) 0.500 (0.000))
aft 0.692 (0.026) 0.802 (0.011) 0.722 (0.015) 0.755 (0.008) 0.700 (0.183) 0.738 (0.041) 0.474 (0.056) 0.558 (0.046)

cox-kp 0.696 (0.026) 0.805 (0.01) 0.722 (0.015) 0.755 (0.008) 0.716 (0.157) 0.747 (0.030) - -
coxen-kp 0.698 (0.032) 0.801 (0.006) 0.726 (0.024) 0.754 (0.009) 0.731 (0.141) 0.761 (0.032) 0.744 (0.055) 0.695 (0.038)

rsf-km 0.650 (0.038) 0.776 (0.021) 0.743 (0.024) 0.758 (0.005) 0.582 (0.093) 0.704 (0.036) 0.738 (0.060) 0.639 (0.038)
mtlr 0.703 (0.032) 0.812 (0.013) 0.734 (0.023) 0.757 (0.008) 0.768 (0.091) 0.770 (0.027) 0.766 (0.065) 0.704 (0.034)

Table 10: Concordance results corresponding to Figure 12. Bold values indicate the best
(highest Concordance) performing model, for each data set.

D.2. Brier Score

See Table 11 for the results corresponding to Figure 13.
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GBM GLI Nacd-Col NACD READ BRCA DBCD DLBCL

km 0.046 (0.001) 0.034 (0.000) 0.083 (0.001) 0.089 (0.000) 0.027 (0.005) 0.017 (0.001) 0.097 (0.003) 0.109 (0.004)
aft 0.041 (0.003) 0.021 (0.002) 0.066 (0.003) 0.065 (0.002) 0.026 (0.017) 0.0133 (0.002) 0.254 (0.023) 0.295 (0.038)

cox-kp 0.040 (0.003) 0.022 (0.003) 0.066 (0.003) 0.067 (0.002) 0.026 (0.017) 0.014 (0.002) - -
coxen-kp 0.040 (0.003) 0.021 (0.002) 0.064 (0.003) 0.065 (0.001) 0.024 (0.011) 0.015 (0.002) 0.070 (0.004) 0.078 (0.013)

rsf-km 0.059 (0.009) 0.051 (0.009) 0.079 (0.006) 0.079 (0.001) 0.047 (0.013) 0.028 (0.002) 0.077 (0.003) 0.095 (0.013)
mtlr 0.039 (0.004) 0.019 (0.002) 0.062 (0.003) 0.063 (0.001) 0.023 (0.006) 0.012 (0.001) 0.070 (0.003) 0.078 (0.011)

Table 11: Integrated Brier score results corresponding to Figure 13. Bold values indicate
the best performing model for each data set — with the lowest Integrated Brier
score. Note that this table (and all following tables) may show ties (up to three
digits), but will only bold the one with the best performance, even if based on
the additional digits not shown.

D.3. Empirical Values of L1-Loss, and Variants

Table 12 provides the results for the Margin-L1-loss, shown in Figure 14.

GBM GLI Nacd-Col NACD READ BRCA DBCD DLBCL

km 1431.31 (59.25) 2746.70 (91.85) 56.45 (1.95) 61.97 (0.50) 3677.90 (222.77) 5392.04 (128.19) 24.88 (0.78) 20.28 (2.06)
aft 1240.60 (57.38) 1838.20 (105.23) 47.89 (1.85) 43.99 (1.44) 4068.72 (1451.14) 5156.1 (264.50) 47.01 (4.38) 27.29 (3.31)

cox-kp 1278.18 (44.02) 1824.06 (127.49) 45.53 (2.23) 44.26 (1.29) 4799.91 (1460.52) 6247.01 (612.3) - -
coxen-kp 1347.36 (51.6) 1683.04 (110.82) 45.25 (1.94) 45.72 (1.43) 3564.01 (1163.92) 4593.52 (370.75) 24.28 (2.14) 15.97 (1.10)

rsf-km 1399.17 (99.06) 4503.49 (465.47) 58.81 (2.28) 49.69 (1.38) 6805.00 (1710.50) 10934.45 (579.44) 26.58 (2.35) 17.68 (1.81)
mtlr 1271.73 (37.71) 1582.72 (131.1) 43.48 (2.52) 43.97 (1.20) 3417.49 (256.83) 4669.55 (153.50) 20.01 (1.47) 15.52 (1.97)

Table 12: Margin-L1-loss results corresponding to Figure 14. Bold values indicate the best
performing model for each data set — with the lowest Margin-L1-loss.

D.4. 1-Calibration

Each table in this subappendix corresponds to a different percentile of event times for each
data set, showing the 10th, 25th, 50th, 75th, and 90th percentiles. Bolded values indicate
models that passed 1-Calibration (p > 0.05). The “Total” column of each table gives the
total number of data sets passed by each model — that is, the values in those columns
correspond to Table 6.

GBM GLI Nacd-Col NACD READ BRCA DBCD DLBCL Total

aft 0.001 0.159 0.794 0.012 1.000 0.919 0.000 0.000 4
cox-kp 0.001 0.140 0.794 0.008 0.999 0.782 - - 4

coxen-kp 0.000 0.033 0.043 0.000 0.999 0.561 0.454 0.646 4
rsf-km 0.000 0.000 0.078 0.016 0.998 0.000 0.164 0.273 4
mtlr 0.908 0.450 0.440 0.047 1.000 0.929 0.000 0.177 6

Table 13: 1-Calibration Results at t∗ = 10th Percentile of Event Times
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GBM GLI Nacd-Col NACD READ BRCA DBCD DLBCL Total

aft 0.000 0.040 0.586 0.009 0.000 0.205 0.000 0.000 2
cox-kp 0.000 0.008 0.379 0.003 0.000 0.535 - - 2

coxen-kp 0.000 0.002 0.003 0.000 0.238 0.044 0.436 0.547 3
rsf-km 0.000 0.000 0.312 0.006 0.000 0.000 0.042 0.227 2
mtlr 0.963 0.312 0.645 0.254 0.449 0.448 0.177 0.052 8

Table 14: 1-Calibration Results at t∗ = 25th Percentile of Event Times

GBM GLI Nacd-Col NACD READ BRCA DBCD DLBCL Total

aft 0.117 0.030 0.035 0.043 0.000 0.000 0.000 0.000 1
cox-kp 0.495 0.005 0.038 0.124 0.000 0.017 - - 2

coxen-kp 0.019 0.000 0.000 0.000 0.049 0.000 0.025 0.822 1
rsf-km 0.000 0.000 0.761 0.001 0.000 0.000 0.000 0.068 2
mtlr 0.796 0.306 0.813 0.112 0.995 0.013 0.041 0.262 6

Table 15: 1-Calibration Results at t∗ = 50th Percentile of Event Times

GBM GLI Nacd-Col NACD READ BRCA DBCD DLBCL Total

aft 0.378 0.000 0.002 0.002 0.000 0.000 0.000 0.000 1
cox-kp 0.008 0.000 0.003 0.004 0.087 0.016 - - 1

coxen-kp 0.338 0.000 0.000 0.000 0.001 0.000 0.003 0.436 2
rsf-km 0.000 0.000 0.070 0.003 0.000 0.000 0.002 0.038 1
mtlr 0.140 0.565 0.044 0.045 0.026 0.000 0.036 0.218 3

Table 16: 1-Calibration Results at t∗ = 75th Percentile of Event Times

GBM GLI Nacd-Col NACD READ BRCA DBCD DLBCL Total

aft 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0
cox-kp 0.000 0.000 0.000 0.000 0.000 0.000 - - 0

coxen-kp 0.050 0.000 0.004 0.000 0.000 0.000 0.010 0.112 2
rsf-km 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.023 0
mtlr 0.109 0.148 0.000 0.001 0.000 0.000 0.098 0.157 4

Table 17: 1-Calibration Results at t∗ = 90th Percentile of Event Times
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