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Abstract

We study the convergence rate of the optimal quantization for a probability measure se-
quence (fin )nen+ on R? converging in the Wasserstein distance in two aspects: the first one
is the convergence rate of optimal quantizer (™) € (R%)X of y,, at level K; the other one
is the convergence rate of the distortion function valued at (™, called the “performance”
of (™. Moreover, we also study the mean performance of the optimal quantization for the
empirical measure of a distribution g with finite second moment but possibly unbounded
support. As an application, we show an upper bound with a convergence rate O(li’fﬁ") of

the mean performance for the empirical measure of the multidimensional normal distribu-
tion A (m, ) and of distributions with hyper-exponential tails. This extends the results
from Biau et al. (2008) obtained for compactly supported distribution. We also derive an
upper bound which is sharper in the quantization level K but suboptimal in n by applying
results in Fournier and Guillin (2015).

Keywords: clustering performance, convergence rate of optimal quantization, distortion
function, empirical measure, optimal quantization

1. Introduction

The K-means clustering procedure in the unsupervised learning area was first introduced by
MacQueen (1967), which consists in partitioning a data set of observations {ny, ...,nn} C R?
into K classes Gi, 1 < k < K with respect to a cluster center x = (x1,...,xx) in order to
minimize the quadratic distortion function D, defined by

1 N

T = (xla 7'TK) € (Rd)K — DK,H(x) = N k}{lian(nnaxk)2a (1)

n=1
where d denotes a distance on R%. The classification of the observations {71, ...,nx} C R?
in MacQueen (1967) can be described as follows

= : < mi j
G { Mn € {7717 777N} d(1n, 1) < legan(Um%) }7
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= : < i i
g2 { M € {7717 777N} d(nna-xQ) = lgjrélll(r,l]#2 d(77m333) } \g17

Ok = { Nn € {7717 ""nN} : d(’r/namK) < 1<jnéi;(1_1 d(nﬂvxj) } \ (gKfl U---u gl) (2)
If a cluster center z* = (z7, ..., 7)) satisfies Dy (z*) = inf, ¢ gayx D y(y), we call 2* an
optimal cluster center (or K-means) for the observation n = (11, ...,mx). Such an optimal
cluster center always exists but is generally not unique.

K-means clustering has a close connection with quadratic optimal quantization, origi-
nally developed as a discretization method for the signal transmission and compression by
the Bell laboratories in the 1950s (see IEEE Transactions on Information Theory (1982)
and Gersho and Gray (2012)). Nowadays, optimal quantization has also become an effi-
cient tool in numerical probability, used to provide a discrete representation of a probability
distribution. To be more precise, let |-| denote the Euclidean norm on R? induced by the
canonical inner product (-|-) and let X be an R%valued random variable defined on (9, F,P)
with probability distribution g having a finite second moment. The quantization method
consists in discretely approximating p by using a K-tuple z = (21, ...,xx) € (RY)X and its
weight w = (w1, ..., wk) as follows,

K
= ﬁx = Zwk6$k7
k=1

where §, denotes the Dirac mass at a, the weights w; are computed by wy = ,u(Ck(ac)) k=
1,..., K, and (C’k(x)) is a Voronoi partition induced by x, that is, a Borel partition

on R? satisfying

— d _ — i — T =

1<k<K

The value K in the above description is called the quantization level and the K-tuple above
x = (z1,...,2x) is called a quantizer (or quantization grid, codebook in the literature).
Moreover, we define the (quadratic) quantization error function ex , of p (or of X) at level
K by
( Je @Y ey = [ [ min -2 )] @)
x=(x1,..,x e () = min | —x .
1y TK Ko ot 1902 H

The set argmin eg ,, is not empty (see e.g. Graf and Luschgy, 2000, Theorem 4.12) and any
element z* = (z7,...,2%) in argmineg , is called a (quadratic) optimal quantizer for the
probability distribution p at level K. Moreover, we call
€K p = inf exu(y) (4)

R R S L
the optimal (quadratic) quantization error (optimal error for short) at level K.

The connection between K-means clustering and quadratic optimal quantization is the
following: if the distance d in (1) and (2) is the Euclidean distance and if we consider the
empirical measure iy of the data set {n,...,ny} defined by

1 N
:L_LN = Nzlcsnn?
n=
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then the distortion function Dk, defined in (1) is in fact e%y N and argmin D ,, = argmin eg j; .
That is, an optimal quantizer of fiy is in fact an optimal cluster center for the data set
{m, v}

In Figure 1, we show an optimal quantizer and its weights for the standard normal
distribution N (O, 12) in R? at level 60, where I; denotes the identity matrix of size d x d.
The color of the cells in the figure represents the weight of each point zp in the quantizer
x = (x1,....,xx). In Figure 2, we show an optimal cluster center at level K = 20 for an i.i.d

simulated sample {11, ..., 500} of the N'(0,1I5) distribution.
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Figure 1: An optimal quantizer for N/ (0,12) Figure 2: An optimal cluster center (blue
points) for an  observation

at level 60.
i
{7717 "'777500} = N(0712) (grey
points).

For p € [1,400), let P,(RY) denote the set of all probability measures on R? with a finite
p''-moment. Let u,v € P,(RY) and let II(p, v) denote the set of all probability measures on
(RY x R, Bor(R%)®2) with marginals y and v, where Bor(R%) denotes the Borel o-algebra
on R%. For p > 1, the LP-Wasserstein distance W, on P,(R?) is defined by

1

W) = (it [ o=yl wtdn.ay)’
X

mell(p,v)
1
- inf{[JE X — Yﬂ "UX,Y 1 (A4, P) — (R Bor(RY)) with Py = p, Py = v }
The space Pp(Rd) equipped with the Wasserstein distance W, is a Polish space, i.e. is
separable and complete (see Bolley, 2008). If u, v € P,(R?), then for any ¢ < p, W,(p, v) <

Wp(:u’: V)'
With a slight abuse of notation, we define the distortion function for the optimal quan-

tization as follows.

Definition 1 (Distortion function) Let K € N* be the quantization level. Let u €
Po(RY). The (quadratic) distortion function Dk, of o at level K is defined by
_ d\K _ . 2 _ 2
T = (xlv 7xK) € (R ) — DK7[A($) - Rd 1211,1%1]( ’g - xl’ ,u(df) - eK,u(x)'
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For a fixed (known) probability distribution u, its optimal quantizers can be computed
by several algorithms such as the CLV(Q algorithm (see e.g. Pages (2015, Section 3.2))
or the Lloyd I algorithm (see e.g. Lloyd (1982), Kieffer (1982) and Pages and Yu (2016)).
However, another situation exists: the probability distribution g is unknown but there exists
a known sequence (f)n>1 converging in the Wasserstein distance to p. A typical example
is the empirical measure of an i.i.d. p-distributed sequence random vectors (see (5) below).
The empirical measure of non i.i.d. random vectors appears for example when dealing with
the particle method associated to the McKean-Vlasov equations (see Liu, 2019, Section
7.1 and Section 7.5) or the simulation of the invariant measure of the diffusion process
(see Lamberton and Pages (2002) and Lemaire (2005, Chapter 4)). This leads us to study
the consistency and the convergence rate of the optimal quantization for a W,-converging
probability distribution sequence (pn,)n>1-

There exist several studies in the literature. The consistency of the optimal quantizers
was first proved in Pollard (1982b).

Theorem (Pollard’s Theorem)® Let 1, € Po(R?),n € N* U {00} with Wa(pin, fieo) — 0
as n — 4o0o. Assume card(supp(pn)) > K, for n € N* U {+o0}. Forn > 1, let () =

(:Ugn), ...,xg?)) be a K-optimal quantizer for u,, then the quantizer sequence (x(”))nzl 18
bounded in R¢ and any limiting point of (:v(”))nzl, denoted by 2% is an optimal quantizer
of poo-

Let pn, € Po(RY), n € NU {oo} with Wh(pin, tiee) — 0 as n — +oo. Let z(™ denote
an optimal quantiser of u,. There are two ways to study the convergence rate of the
optimal quantizers. The first way is to directly evaluate the distance between z(™ and
argmin D , . The second way is called the quantization performance, defined by

DKyHoo (1‘(”)) _ xei(ﬁg)K DK,uoo (l’)

This quantity describes the distance between the optimal error of p, and the quantization
error of z(™ considered as a quantizer of jiso (even (™ is obviously not “optimal” for
loo)- Several results of convergence rate exist in the framework of the empirical measure.
Let X1,...,X,,... be u-distributed i.i.d. random vectors defined on the probability space
(©,A,P) and let

w 1 =
My = n Z 0, (w) (5)
i=1

be the empirical measure of p. The almost sure convergence of Wh(1&, 1) has been proved
in Pollard (1982b, Theorem 7). Let z(™* denotes an optimal quantizer of  at level K.
In Pollard (1982a), the author has proved that if 1 has a unique optimal quantizer x at

1. In Pollard (1982b, Theorem 9), the author used
ux € P(K) = {u € P2(R?) such that card (supp(v)) < K}
to represent a “quantizer” at level K. Such a quantizer ux is called “quadratic optimal” for a probability

measure  if Wa(ur, u) = ek, ,. We propose an alternative proof in Appendix A by using the usual
representation of the quantizer = € (R*)* but still call this theorem “Pollard’s Theorem”.
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level K, then the convergence rate (convergence in distribution) of ‘x(")"" — x| is O(n=1/?)
under appropriate conditions. Moreover, if p has a support contained in B(0, R), where
B(0, R) denotes the ball in R? centered at 0 with radius R, an upper bound of the mean
performance has been proved in Biau et al. (2008), shown as follows,

) _ 12K - R?
EDK’“(CE( ' )= IGEEE)K DK’”(x) = 7

Note that there always exists an A-measurable selection w — (™ relying on the Kura-
towski and Ryll-Nardzewski measurable selection theorem (see e.g. Kuratowski and Ryll-
Nardzewski (1965), Srivastava (1998, Section 5.2) and Graf (1982, Theorem 2.1)). We will
always assume in what follows that we consider such a measurable selection. Otherwise
all the stated results remain true by simply replacing the regular expectation by the inner
expectation in the sense of Van Der Vaart and Wellner (1996).

In this paper, we extend the convergence results in Pollard (1982a) and in Biau et al.
(2008) in two perspectives: first, we give an upper bound of the quantization performance

D ™)~ inf D x
Kvﬂoo( ) zE(Rd)K K,H/oo( )
and that of related optimal quantizers for any probability distribution sequence (fin)n>1
converging in the Wasserstein distance. Then, we generalize the clustering performance
results in Biau et al. (2008) to empirical measures in Py (R?) possibly having an unbounded
support.

Our main results are as follows. We obtain in Section 2 a non-asymptotic upper bound
for the quantization performance: for every n € N*,

DK, oo (x(n)) - xei(ﬂr{}S)K DK, oo (r) < 46?(41001/\)2(:“7% fhoo) + 4W22(Nm fhoo)- (6)

Moreover, if Dy, is twice differentiable at
Fr ={z = (21,..,2K) € (RHE ‘ xi £y, ifi#j} (7)

and if the Hessian matrix Hp, , of Dk, is positive definite in the neighbourhood of

every K-level optimal quantizer z(°) of . having the eigenvalues lower bounded by a
A* > 0, then, for n large enough,

n 2 8 % 8
d(x( ),GK(,Uoo)) < EQK,;LOO Wa(pin, poo) + Ith W%(leuoo}a

where d(€, A) := mingec4 |€ — a| denotes the distance between a point & € R? and a set
A CRY

Several criterions for the positive definiteness of the Hessian matrix Hp, , of the dis-
tortion function Dy , are established in Section 3. We show in Section 3.1 the conditions
under which the distortion function Dk, is twice differentiable in every x € Fi and give
the exact formula of the Hessian matrix Hp,. ,. Moreover, we also discuss several sufficient
and necessary conditions for the positive definiteness of the Hessian matrix in dimension
d > 2 and in dimension 1.
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In Section 4, we give two upper bounds for the clustering performance E Dy M(x(”)’“’) —
inf ¢ (rayx Dk, u(x), where 2"« is an optimal quantizer of u¥ defined in (5). If u € P, (R?)
for some ¢ > 2, a first upper bound is established in Proposition 13

EDg (™) — inf Dg, .(x)

zE(RY)K
n~V4 4 n=(a-2)/2 ifd<4andq#4
< Cagur X §n Y4 (log(1 + n))l/2 +n@2/20 ifd=4andq+#4 :
n~1/d 4 p=la=2)/2a ifd>4andq#d/(d—2)

where Cy 4,k is a constant depending on d, ¢, 4 and the quantization level K. This result
is a direct application of the non-asymptotic upper bound (6) combined with results in
Fournier and Guillin (2015) about the mean convergence rate of the empirical measure for
the Wasserstein distance. If d > 4 and ¢ > dQ—fiQ, this constant Cy 4,k is roughly decreasing

as K—1/d (see Remark 14). This upper bound is sharper in K compared with the upper
bound (8) below, although it suffers from the curse of dimensionality.

Meanwhile, we establish another upper bound for the clustering performance in Theorem
15, which is sharper in n but increasing faster than linearly in K. This upper bound is

n),w . 2K
E Dy, u(x™*) — xe}ES)K D, () < 7n 50+ prc(1)? + 2r1 (r2n + PK(M))} , (8)

where r, = H maxj<i<n | Xi H2 and pg(p) is the maximum radius of optimal quantizers for
1, defined by

pr(p) = max{ max |zy|, (x7,...,2%) is an optimal quantizer of u at level K} (9)

In particular, we give a precise upper bound for i = N'(m, X), the multidimensionnal normal
distribution

2K 2
(n)vw — ] R “
E Dk, (x'"*) xe%ﬁg)KDK’”(x) <Cy \/ﬁ[1+1ogn+'yK log K (1 + d)}’
where limsupy vx = 1 and C), = 12 [1 Vlog (2 [paexp(} ]§\4)M(d§))]. If = N(0,1y),
C,=12(1+ %) -log2.

We start our discussion with a brief review on the properties of optimal quantization.

1.1. Classical Properties of Optimal Quantization

Let Gk () = argmin D, denote the set of all optimal quantizers at level K of y and let
€k, denote the optimal quantization error of u defined in (4).

Proposition 2 Let K € N*. Let p € Po(R?) and card(supp(p)) > K.

(i) If K > 2, then e}, <€j_q -



CONVERGENCE RATE OF OPTIMAL QUANTIZATION AND CLUSTERING PERFORMANCE

(ii) (Ezistence and boundedness of optimal quantizers) The set G (u) is nonempty and
compact so that px(p) defined in (9) is finite for any fized K. Moreover, if x =
(x1,...,2x) is an optimal quantizer of i, then x € Fi, where F is defined in (7).

(11i) If the support of u, denoted by supp(u), is a compact, then for every optimal quantizer
x = (x1,...,2x) € Gr(u), its elements z,1 < k < K are contained in the closure of

convez hull of supp(u), denoted by H,, = conv(supp(,u)).

For the proof of Proposition 2-(i) and (ii), we refer to Graf and Luschgy (2000, Theorem
4.12) and for the proof of (iii) to Appendix B. Now we present an upper bound of the
optimal quantization error (see Luschgy et al. (2008) and Pages (2018, Theorem 5.2))).

Theorem (Non-asymptotic Zador’s Theorem) Let n > 0. If u € Paiy(R?), then for
every quantization level K, there exists a constant Cq,, € (0,400) which depends only on d
and n such that

Cicp < Cay - o2 K14, (10)

where for r € (0,+00), o, (1) = mingepa | fpa | — al” ,u(dﬁ)]l/r.

When g has an unbounded support, we know from Pages and Sagna (2012) that
limg pr () = +o0o. The same paper also gives an asymptotic upper bound of px when
w1 has a polynomial tail or a hyper-exponential tail.

Theorem (Pagés and Sagna, 2012, Theorem 1.2) Let u € P,(R?) be absolutely contin-
uous with respect to the Lebesque measure \g on R¢ and let f denote its density function.

(i) Polynomial tail. Forp > 2, if i has a c-th polynomial tail with ¢ > d + p in the sense
that there exists T > 0,6 € R and A > 0 such that V¢ € R%, €] > A = f(£) =

‘gic (log ‘§|)57 then

i 08Pk ptd (11)
K logK d(c—p—d)

(7i) Hyper-exponential tail. If u has a (9, k)-hyper-exponential tail in the sense that there
exists T > 0,k,9 > 0,¢c > —d and A > 0 such that V¢ € R |¢| > A = f(&) =
7 |€|° e~ K" then

. PK —1/k 2\ /=
L — .
lim sup (log K)1/" 219 (1 + d) (12)
Furthermore, if d = 1, limg (logp% = (%)1/5'

We give now the definition of the radially controlled distribution, which will be useful
to control the convergence rate of the density function f(x) to 0 when x converges in every
direction to infinity.

Definition 3 Let i € Po(R?) be absolutely continuous with respect to the Lebesgue measure
Aq on R? having a continuous density function f. We call pu is k-radially controlled on R?
if there exists A > 0 and a continuous non-increasing function g : Ry — Ry such that

VEERLIEZ A fO<glehand [ ot gl < o
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Note that the c-th polynomial tail with ¢ > k 4 d and the hyper-exponential tail are
sufficient conditions to satisfy the k-radially controlled assumption. A typical example of
hyper-exponential tail is the multidimensional normal distribution A (m, ).

For u,v € P2(R?%) and for every K € N*, we have

’sup = Ssup ‘eK,,u(x) - eK,u(x)’ < WQ(M? V)
z€(RI)K

leru — exp

by a simple application of the triangle inequality for the L?—norm (see e.g. Graf and
Luschgy, 2000, Formula (4.4) and Lemma 3.4). Hence, if (y1,)n>1 is a sequence in Po(R9)
converging for the Wh-distance to jioo € P2(R?), then for every K € N*,

n—-+oo

”eK,un - eK,uooHSllp < Wa(pins foo) 0. (13)

2. General Case

In this section, we first establish in Theorem 4 a non-asymptotic upper bound of the quan-
tization performance Dy (z(m) — inf,cmayk DK o (). Then we discuss the convergence
rate of the optimal quantizer sequence in Theorem 5.

Theorem 4 (Non-asymptotic upper bound for the quantization performance) Let
K € N* be the quantization level. For every n € N* U {oco}, let u, € Po(RY) with
card (supp(un)) > K. Assume that Wa(pn, ftoc) — 0 as n — +oo. For every n € N,
let 2™ be an optimal quantizer of tn. Then

DKyNoo (‘T(n)) - xe%&g)K DK,,uoo (.T) < 46*](,“00 Wo (Nna Moo) + ZJLVVZ2 (Nnv Noo)a

where ej(,uoo is the optimal error of ps at level K defined in (4).

Proof Let 2(°) be an optimal quantizer of loo- Remark that here we do not need that
2(%) is the limit of (™). First, we have (see e.g. Gyorfi, 2002, Corollary 4.1)

ey (™) = €5 = ko (™) = ey (@™ + ex i (™) = ek o, (215

where the first inequality is due to the fact that for any p,v € P2(R?) with respective
K-level optimal quantizers z* and z”, if ex ,(2*) > ek, (x"), we have

ler (@) — ek (@”)] = expu(a") — exp(a”) < erxpu(@”) — exw(2”) < ek o — €xpnllgyp -
If ex p(2#) < er(2”), we have the same inequality by the same reasoning.

Moreover,

DKJ»‘LOO (x(n)) - xe%ﬂ%g)K DKHU‘OO (x) = DKJ-LOO (x(n)) - DK,,“«)O (x(OO))

< [ert i () 51 ()] (e e (2) — e s (209)
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S 2[6K7Noo (x(n)) - eKvMoo (x(OO)) + 26K7Hoo (x(OO))] ’ WZ(M”? /’LOO) (by <14))
< 4[W2(Mn7 MOO) + e?(,,uoo} ' WQ(M?% ,LLOO) (by (14))
< 46*K’HOOW2(M7L:/~’LOO) +4W22(Nnvﬂoo)‘ n

Let B(z,r) denote the ball centered at x with radius . Recall that Fx = {z =
(71, ...,xx) € (RHE ! x; # xj, ifi # j}. Remark that if 2 € Fg, then every y €
B(:U, % ming <; j<ki4j [T — wj\) still lies in F. In the following theorem, we give an esti-
mate of the convergence rate of the optimal quantizer sequence z(™, n € N*.

Theorem 5 (Convergence rate of optimal quantizers) Let K € N* be the quantiza-
tion level. For every n € N* U {oco}, let p, € Po(R?) with card(supp(pn)) > K. Assume
that Wha(pin, pioo) — 0 as n — +oo. For every n € N*, let ™ be an optimal quantizer of i,

and let Gk (11oo) denote the set of all optimal quantizers of ps. If the following assumptions
hold

(a) the distortion function D, is twice differentiable at every x € Fi;
(b) card(Gr(poo)) < +00;

(c) for every (™) € G (o), the Hessian matriz of DK oy » denoted by Hp,. , , is positive
definite in the neighbourhood of (%) having eigenvalues lower bounded by some \* > 0,

then, for n large enough,

A, Grcl1))? < 35l - Wlpins ioe) + 35 - WE i ).

Remark 6 Section 3 provides a detailed discussion of the conditions in Theorem 5 and
their relation between each other.

(1) First, in Section 3, we establish that if peo is 1-radially controlled, then its distortion
function Dy, is twice continuously differentiable at every x € Fg and give an evact
formula of the Hessian matriz Hp,. , (z) in Proposition 8. Thus, one may obtain Condition
(c) either by an explicit computation or by numerical methods. Moreover, if Hp,, is
positive definite at x € Fi, it is also positive definite in its neighbourhood. In Section
8.2, we establish several sufficient conditions for the positive definiteness of the Hessian
matriz Hp, , in the neighbourhood of z(®) e Gk (poo) in one dimension.

(2) If the distribution peo is 1-radially controlled, a necessary condition for Condition (c)
is Condition (b) (see Lemma 9). Thus, if card(Gg(pes)) = 400, it is more reasonable
to consider the non-asymptotic upper bound of the performance (Theorem 4) to study the
convergence rate of the optimal quantization. A typical example is the standard multidimen-
sional normal distribution s = N (0, Iy): it is 1-radially controlled and any rotation of an
optimal quantizer x is still optimal so that card(GK(,uoo)) = 400.

Proof [Proof of Theorem 5| Since the quantization level K is fixed throughout the proof,
we will drop the subscripts K and p of the distortion function Dy ,, and we will denote by
D,, (respectively, D) the distortion function of p, (resp. pioo)-
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After Pollard’s theorem, ((™),cn+ is bounded and any limiting point of z(™ lies in
Gk (poo). We may assume that, up to the extraction of a subsequence of (™ still denoted
by 2™, we have (™ — (%) € G (1100). Hence d(:v(”), Gk (ps)) < ‘:L‘(") - x(oo)}.

Proposition 2 implies that 2(°°) € F. As Dy is twice differentiable at 2(>), the second
order Taylor expansion of Dy at z(°°) reads:

1
Do (") = Do (#%) + (VDo (¢*)) | 2" —2>) 4 2 Hp, (¢1) (@™ —2>),

where Hp__ denotes the Hessian matrix of D, (™ lies in the geometric segment (™), (%))
and for a matrix A and a vector u, Au®? stands for u’ Au.
As () € Gk (pioo) = argmin Dy, and card (supp(poac)) > K, one has VDo (2()) = 0.
Hence
Do (2™ — Doy (2059 = % Hp_ (¢™M) (2 — 582,

It follows from Theorem 4 that
Hp. (()(a — 20)2 = 9(Dye (1) — D (a!°)
S 86*K,MOOW2 (MTH ,UOO) + 8W22(:unﬁ :UJOO)

By Condition (c), Hp,, is assumed to be positive definite in the neighbourhood of all
(™) e @ K (ftoo) having eigenvalues lower bounded by some A* > 0. As ( (") lies in the
geometric segment (™, 2(°)) and z(™ — (%) there exists an ng(2(°)) such that for all
n > ng, Hp_ (C™) is a positive definite matrix. It follows that, for n > ng,

2
A* [ _x<oo>‘ < Hp_ (¢()(2™ — g(o))e2

< 8€*K,M<X,W2 (Hny proo) + 8W22(ﬂm Hoo)-
Thus, one can directly conclude by multiplying at each side of the above inequality by /\% |

Based on conditions in Theorem 5, if we know the exact limit of the optimal quantizer
sequence 2™ we have the following result whose proof is similar to that of Theorem 5.

Corollary 7 Let K € N* be the quantization level. For every n € N* U {oco}, let u, €
Po(R?) with card(supp(un)) > K. Assume that Wa(fin, tleo) — 0 as n — +oo. Let
™ € argmin Dk, u, such that lim, ™ — () If the Hessian matriz of DK, poo 18
positive definite in the neighbourhood of (%), then, for n large enough,

2
’xm) _x<oo>‘ < CN Wt proo) + C2 - Wi (i, o),

1)

where Cfloo and C’fil are real constants only depending on -

3. Hessian Matrix Hp, , of the Distortion Function D ,

Let 1 € Po(R?) with card(supp(p)) > K and let 2* be an optimal quantizer of y at
level K. In Section 3.1, we show conditions under which the distortion function D ,, is
twice differentiable and give the exact formula of its Hessian matrix Hp, ,. In Section 3.2,
we give several criterions for the positive definiteness of the Hessian matrix Hp, , in the
neighbourhood of an optimal quantizer z* in dimension 1.

10



CONVERGENCE RATE OF OPTIMAL QUANTIZATION AND CLUSTERING PERFORMANCE

3.1. Hessian Matrix HDK#‘ on R?

If 41 is absolutely continuous with respect to the Lebesgue measure Aq on R? with the density
function f, then the distortion function Dk, is differentiable (see Pages, 1998) at all point
x = (x1,...,xx) € Fg with

8DK7M

k() —2/%(x)(xi—§)f(§)>\d(d§), fori=1,.. K. (15)

In the following Proposition, we give a criterion for the twice differentiability of the distor-
tion function D .

Proposition 8 Let yu € Po(RY) be absolutely continuous with respect to the Lebesgue mea-
sure g on R with a continuous density function f. If u is 1-radially controlled, then

(¢) the distortion function Dk, is twice differentiable at every x € Fi and the Hessian

matriz Hp, ,(r) = [%(w)} i is defined by
390 Jicicj
PDi . | | 1 o
T @=2] @989 I N, it (16)
0Dy _ : _ o o e
) = 2uia = 3 Lo E 00 im0 @)
1<j<K

where in (16) and (17), u ® v = [u'v7]1<; j<q for any two vectors u = (u,...,ud) and
v=(v,..,v%) in RY;

.. ?Dy . . . .
(ii) every element axjam:‘ of the Hessian matriz Hp, , is continuous at every x € Fi.

The proof of Proposition 8 is postponed to Appendix C. The following lemma shows
that under the condition of Proposition 8, Condition (c) in Theorem 5 implies Condition

(b).

Lemma 9 Let pn € P2(R?) be absolutely continuous with the respect to the Lebesque mea-
sure Ag on R® with a continuous density function f. If pse is 1-radially controlled and
card(GK(uoo)) = 400, then there ezists a point x € Gk (o) such that the Hessian matrix
Hpy .. of Dk ., at x has an eigenvalue 0.

Proof We denote by Hp,, instead of Hp, , = to simplify the notation. Proposition 2
implies that G (ueo) is a compact set. If card(GK(uoo)) = 400, there exists z,z*) €

Gr(fioo), k € N* such that z® — 2 when k — +o00. Set uy, = yﬁgﬁ k > 1, then we

have |uy| = 1 for all k € N*. Hence, there exists a subsequence (k) of k such that u,)
converges to some u with |u| = 1.
The Taylor expansion of D ;. at x reads:

Dt (279) = D (2) + (Vi () | 20 — ) 4 2 Hp (P9 (@70 — ),

11
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where ¢#(¥) lies in the geometric segment (29 z). Since z, 2", k € N* € G (iso), then
VDk .. (2) = 0 and for any k € N*, Dg,, (2¥*%)) = Dy, (2). Hence, for any k € N*,
Hp__ (¢?HF)(2#*) — 2)®2 = 0. Consequently, for any k € N*,

w@(k) — ®2
Hp, (¢7H) (Wx’> =0

Thus we have Hp__ (2)u®? = 0 by letting k — +o00, so that Hp__(x) has an eigenvalue 0. B

3.2. A Criterion for Positive Definiteness of Hp_(z*) in 1-dimension

Let p € P2(R) with card(supp(p)) > K. Assume that p is absolutely continuous with
respect to the Lebesgue measure having a density function f. In the one-dimensional case,
it is useful to point out a sufficient condition for the uniqueness of optimal quantizer. A
probability distribution w is called strongly unimodal if its density function f satisfies that
I = {f > 0} is an open (possibly unbounded) interval and log f is concave on I. Let
F;{' = {J: = (21,..,2x5) ERE | oo <21 <1y < ... <2 < —i—oo}.

Lemma 10 For K € N*, if u is strongly unimodal with card(supp(u)) > K, then there is
only one stationary (then optimal) quantizer of level K in Fk1r

We refer to Kieffer (1983), Trushkin (1982), Bouton and Pages (1993) and Graf and
Luschgy (2000, Theorem 5.1) for the proof of Lemma 10 and for more details.

Given a K-tuple z = (z1,...,2x) € FE, the Voronoi region Vj(z) can be explicitly
written: V;(z) = (—oo, LH22], Vi (2) = [7mK*12+mK,+oo) and V;(z) = [7“*1;“,7“*;”1] for
i=2,...,K—1. For all x € Fg, Dk, . is differentiable at x and by (15) and

VDK#@>=[[%)2@r—@f@m4
T i=1,...K

Therefore, as VD ,(z*) = 0, one can solve the optimal quantizer z* € F; as follows,

o (60
 u(Vi(ar)

*

fori=1,.. K. (18)

For any x € F;’, the Hessian matrix Hp, , of Dk , at x is a tridiagonal symmetry
matrix and can be calculated as follows,

Ay —By2 —Bip
Hp, ,(v) = —Bi_1; Ai—DBi1,;—Biix1 —Biin

—Brx-1,k Ax —Bx_1k
(19)

12
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where A; = 2M(Ci(x)) for 1 <i< K and B; j = %(x] —xl)f(wTac’) for1 <i<j<K. Let
F,, be the cumulative distribution function of p, then

T +332)

A1 = 2#(01(.%)) = 2F’u( 9

Ai = 2u(Ci(x)) = Q[F”(%) - Fu(%)} for i=2,. K —1,
Ag = 21(Cic () = 2|1~ FKW)]

Then the continuity of each term in the matrix Hp, ,(z) can be directly derived from the
continuity of F),.

9°D
For 1 < i < K, we define L;(z) = Z K” (). The following proposition gives
sufficient conditions to obtain the positive definiteness of Hp, , (z*).

Proposition 11 Let p € P2(R) with card(supp(p)) > K. Assume that p is absolutely
continuous with respect to the Lebesgue measure having a density function f. Any of the
following two conditions implies the positive definiteness of Hp, , (z*),

(i) w is the uniform distribution,
(ii) f is differentiable and log f is strictly concave.
In particular, (ii) also implies that Li(z*) >0,i=1,..., K.

Proposition 11 is proved in Appendix D. Remark that, under the conditions of Propo-
sition 11, u is strongly unimodal so that there is exactly one optimal quantizer in F' I'(F for p
at level K. The conditions in Proposition 11 directly imply the following convergence rate
results.

Theorem 12 Let K € N* be the quantization level. For everyn € N*U{oo}, let pi, € Pa(R)
with card (supp(py)) > K be such that Wa(fin, o) — 0 as n — +o00. Assume that pso is
absolutely continuous with respect to the Lebesgue measure, written oo (d§) = f(§)d€. Let
£ be an optimal quantizer of pu, converging to (°. Then any one of the following two
conditions

(1) poo is the uniform distribution

(ii) f is differentiable and log f is strictly concave

implies the existence of constants ijj) and C’fil only depending on s such that for n large
enough,

2
| < Walgans o) + 2 - W3 (s poc).

Proof Let Dk ,. denote the distortion function of js and let Hp_ denote the Hessian
matrix of Dk, .-

13
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(7) Let gx(z) be the k-th leading principal minor of Hp__ (x) defined in (19), then gx(x), k =
1,..., K, are continuous functions in z since every element in this matrix is continuous.
Proposition 11 implies gk(x(oo)) > 0, thus there exists r > 0 such that for every x €
B(z(*®),7), gr(z(>)) > 0 so that Hp_ () is positive definite. What remains can be directly
proved by Corollary 7.

(7i) The function L;( Z o Pk, 2 T He is continuous on x and Proposition 11 implies
8@8%

that L;(z(>)) > 0. Hence, there exists 7 > 0 such that Vo € B(z(®),r), Li(x) > 0. From

(19), one can remark that the i-th diagonal elements in Hp__(x) is always larger than L;(z)

for any x € R¥ then after Gershgorin Circle theorem, we derive that Hp__ () is positive

definite for every = € B (.CC(OO), r). What remains can be directly proved by Corollary 7. W

4. Empirical Measure Case

Let K € N* be the quantization level. Let y € Pai.(R?) for some € > 0 and card (supp(u)) >
K. Let X be a random variable with distribution p and let (X;),>1 be a sequence of in-
dependent identically distributed R%valued random variables with probability distribution
. The empirical measure is defined for every n € N* by

1 n
= - ;dmw), w e, (20)

where 4, is the Dirac mass at a. For n > 1, let (" be an optimal quantizer of e
The superscript w is to emphasize that both p and (M are random and we will drop w
when there is no ambiguity. We cite two results of the convergence of Wa (1%, 1) among so
many researches in this topic: the a.s. convergence in Pollard (1982b, Theorem 7) and the
LP-convergence rate of Wy(p, ) in Fournier and Guillin (2015).

Theorem (Fournier and Guillin, 2015, Theorem 1) Let p > 0 and let u € Py(R?)
for some q > p. Let ;i denote the empirical measure of y defined in (20). There exists a
constant C only depending on p,d,q such that, for allm > 1,

n=1/? 4 n-(a-p)/a if p>d/2andq#2p
]E<W5(u¢i,u)> < OMP/(p) x § n=Y/2log(14n) +n~17P)/7 if p = d/2 and q # 2p 7
n~P/d 4 p=(a=p)/a itp e (0,d/2)and q # d/(d — p)

(21)
where My(p) = [ga |€|? p(dE).

Let Dk, denote the distortion function of ;4 and let D ,,, denote the distortion fuction
of u for any n € N*. Recall by Definition 1 that for ¢ = (c, ..., cx) € (R9)E

2 . 2
Dic.u(e) =E min |X — i’ =E[IX] + min_ (= 2(Xe) + [exf*)].
d Dy, (0) 12"3 Xi— exf? = fjrxm (<25 (Ko + fal?
an C) = — mll’l — C ; min _— i|1C C .
K pn £ 1<k<K K n < t 1SkSK \ sk K

14
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The a.s. convergence of optimal quantizers for the empirical measure has been proved
in Pollard (1981). We give a first upper bound of the clustering performance by applying
directly Theorem 4 and (21).

Proposition 13 Let K € N* be the quantization level. Let u € Py(R?) for some q > 2 with
card(supp(p)) > K and let y& be the empirical measure of p defined in (20). Let 2™ be
an optimal quantizer at level K of uy. Then for any n > K,

EDg (™) — inf Dg ,(x)

ze(RA)K
n—V4 4 n=(a-2)/2q ifd<4andq#4
< Cagpr ¥ 4 =4 (log(1+n)) " + n=(@2/20 ifd=dandq+#4
n~Yd 4 n—(a-2)/2q ifd>4andq#d/(d—2)

where Cq 4,k 15 a constant depending on d,q, pu and the quantization level K.

The reason why we only consider n > K is that for a fixed n € N*, the empirical
measure fi, defined in (20) is supported by n points, which implies that, if n < K, the
optimal quantizer of p, at level K, viewed as a set, is in fact supp(u,). This makes the
above bound of no interest. Following the remark after Theorem 1 in Fournier and Guillin
(2015), one can remark that if the probability distribution p has sufficiently large moments
(namely if ¢ > 4 when d < 4 and ¢ > 2d/(d — 2) when d > 4), then the term n~(972)/24 ig
negligible and can be removed.

Proof [Proof of Proposition 13| For every w € Q and for every n > K, Theorem 4 implies
that
n),w : * w 20, w
DK,u(x( ) ) - xe}%g)K ,DK,,U('CC) < 4€K,,uW2 (Mn? :u’> + 4W2 (/’Lna :U’)
Thus,
EDicu(@™*) = inf Dicu(w) < defe EWa(piy, 1) + AEW3 (3, ).

It follows from (21) applied with p = 2 that

n~Y2 4 p=(a-2)/a ifd<4andq#4
EW3 (1%, 1) < Cagp x { n~2log(14+n) +n~@2/4 if d =4and g # 4 , (22)
n~2/d 4 n-(a=2)/q ifd>4andq#d/(d—2)

where Cyq, = C - Mg/q(u) and C is the constant in (21). Moreover, as EWs(p&, u) <
(IEW%(;L‘;, u))l/2 and va + b < \/a + /b for any a,b € R, Inequality (21) also implies

n~ V4 4 (a-2)/2 ifd<4andq#4
EWa (s, i) < Ccll’/j# x 3 n~4(log(1 + n))1/2 +n~@=2/20 ifd=4andq#4
n~Yd 4 p=(1-2)/2q ifd>4andq#d/(d—2)

Consequently,

BDicy(200) il Dicue) < deie E Wl ) + ABWE (i, ).

15



Liu AND PAGES

58(05/2 KV Caqu)x

’q“ueK,y,
n=1/4 4 n=(a-2)/2q ifd<4andq+#4
n 4 (log(1 4+ n))"? +n~@2/20 ifd = 4andq#4 - (23)
n-1/d 4 p—(a-2)/2 itd>4andq#d/(d—2)
One can conclude by setting Cq g,k = 8(0;7/(12#6},“ V Caqpu)- u

Remark 14 When d > 4, if %2 > % i.e. q > dQwa Inequality (22) can be upper bounded
as follows,

1
~4log(1 ifd=4andq # 4
EWE(p, 1) < 2Cq0,m Y4 x " | og(1 +n) 1 and q #
a5 n-d ifd>4andq#d/(d—2)
_1 .
§20quK—1/dX n_ilog(l—l—n) ?fd:4andq?é4 |
95 n-d ifd>4andq#d/(d—2)

since we consider only n > K and if ¢ > d%dé, the term n~9=2/24 becomes negligible as n
grows. Consequently, (23) can be bounded by

E Dic,pu(*) — inf  Dr(@) < deic EWa(iaz, 1) + 4EWS (1, ).

< 8(C42 etV 2Ca g, KV x

{n}t [(log(1 + n))% +log(l+n)] ifd=4andq+#4

1 : - (24)
2n~d ifd>4andq#d/(d—2)

By the non-asymptotic Zador theorem (10), one has
s, <C K—1/d
Crpu S d,q(M)Uq(N)

with oq(p) = mingega [ [ga [€ — al? ,u(df)]l/q. Thus, Inequality (24) can be upper-bounded
as follows,

EDpu(z™%) = inf D, (x) < defe EWa (i, p) + AEW3 (s, ).

z€(RIK
< 8KVUCH2 Cag(1)og(1) V 2Caq,) %
n—i [(log(l + n))% + log(1 + n)] ifd=4andq#4
2 ifd>4andq#d/(d—2)

from which one can remark that the constant Cq 4, i in Proposition 15 is roughly decreasing
as K14,

A second upper bound of the clustering performance is provided in the following theorem.

16
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Theorem 15 Let K € N* be the quantization level. Let p € Po(R?) with card(supp(u)) >
K and let i be the empirical measures of u defined in (20), generated by i.i.d observations
X1, Xp, ... We denote by (M ¢ (RHE an optimal quantizer of u at level K. Then,

(a) General upper bound of the performance.

2K
E D (o)~ int Dicue) S |7 prc)? + 201 (ran + ()

where 1y, = H max<j<n | Xi| H2 and pr (u) is the mazimum radius of optimal quantizers
of u, defined in (9).

(b) Asymptotic upper bound for distribution with polynomial tail. For p > 2, if u has a
c-th polynomial tail with ¢ > d + p, then
K

_2pa)
E D, () - pef  Prl@) = 22 [ 1p12/P 4 6K W= VK] :

where Cy,;, is a constant depending pu,p and limg vy = 1.

(c) Asymptotic upper bound for distribution with hyper-exponential tail. Recall that u has
a hyper-exponential tail if p = f - Ag and there exists 7 > 0,k,9% > 0,¢ > —d and A > 0
such that Y& € R |€] > A = f(&) = 7¢|°e PEI". If k > 2, we can obtain a more
precise upper bound of the performance

E[DK,M(x(n),w)_xei(Iﬂég)K DK,M(QC)] < Cyppr \/»

where Cy . ,, 15 a constant depending 9, k, v and limsupy yx = 1.
In particular, if p = N(m,X), the multidimensional normal distribution, we have

[H—(log n)2/”+7K(log K)Z/"‘ (1+ d)Q/R}

E[Dk, (™) — inf Dy ,(z)] <C

2
ze(RA)K ’ H \f{1+10gn+71< (logK)(1+g)}’

where limsupy vyx =1 and C), = 24 - (1 V log 2Ee|X|2/4) where X is a random variable
with distribution p. Moreover, when p = N(0,13), C, = 24(1 + %) -log 2.

The proof of Theorem 15 relies on the Rademacher process theory. A Rademacher
sequence (0;)ie(1,... 0} 1S a sequence of i.i.d random variables with a symmetric {£1}-valued
Bernoulli distribution, independent of (X7, ..., X,,) and we define the Rademacher process
Ru(f), f € F by Ru(f) = 3" | 0;f(X;). Remark that the Rademacher process R, (f)
depends on the sample { X1, ..., X;,} of the probability measure pu.

Theorem (Symmetrization inequalites) For any class F of p-integrable functions, we
have
E ||pn — ,U”]-' <2E ||Rn||]-‘a

where for a probability distribution v, |v|z = supser|v(f)] = Sque]—‘URd fdu‘ and
IRl 7 = supser [Rn(f)]-

17
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For the proof of the above theorem, we refer to Koltchinskii (2011, Theorem 2.1). An-
other more detailed reference is Van Der Vaart and Wellner (1996, Lemma 2.3.1). We will
also introduce the Contraction principle in the following theorem and we refer to Boucheron
et al. (2013, Theorem 11.6) for the proof.

Theorem (Contraction principle) Let 1, ...,x, be vectors whose real-valued components
are indexed by T, that is, x; = (x;s)seT. For each i = 1,...,n, let p; : R = R be a
Lipschitz function such that ¢;(0) = 0. Let o1, ...,0, be independent Rademacher random

wi(z)—pi(y)

= be the uniform Lipschitz constant of

variables and let cj, = maxi<;<, SUPz yeR
TFY
the function @;. Then

[s11p§:mg0Z xls)} <ey - E[SupZJm s} (25)

seT seT 2

Remark that, if we consider random variables (Y1 s, ..., Yy, s)se7 independent of (o1, ..., 0y
and for all s € T and i € {1,...,n}, Yi s is valued in R, then (25) implies that

[SUPZ%% zs}: { [SUPZU#PZ ’LS Yl,Sv"an,S)SGTi|}

<cy, E{ [SUPZ% .8 ‘ (Yi Sy - Yn,s)sET]} <cr- E[SUPZ% i,5 (26)

seT

The proof of Theorem 15 is inspired by that of Theorem 2.1 in Biau et al. (2008).

Proof [Proof of Theorem 15| (a) In order to simplify the notation, we will denote by D
(respectively Dy,) instead of D, ,, (resp. Dk, ,,, ) the distortion function of p (resp. ). For
any ¢ = (c1,...,cx) € (RY)X note that the distortion function D(c) of u can be written as

2
D(c) = E[lgllglgl]( X — ] =E[|X|* + 1£r}€mK(—2(X]ck> + lek])]-

We define D(c) = minj<p<x (— 2(X]|cx) + |ex|? ). Similarly, for the distortion function D,
of the empirical measure pi,,

n n

1 2 )
Dy(c) = — Ellg}gKlX — el =~ El X + min (- §1<Xz|c/<;>+lck| )s
(2 1 1=

we define Dy, (¢) = minj<p<x (—2 Y11 (Xilex)+ EXE ). We will drop w in (M to alleviate
the notation throughout the proof. Let x € argmin D ,,. It follows that

E[D(z™) - D(z)] = E[D(z™) — D(z)] = E[D(z™) — D, (z™)] + E[Dy (™) — D(2)]
<E[D(z™) — Dp(z'™)] + E[Dn(z) — D(2)].

Define for n,z € R¢, In(x) = =2(njx) + |77|2'

18
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Part (i): Upper bound of E[D(z™) — D, (z™)]. Let R,(w) == max;<;<y, | Xi(w)|. Remark
that for every w € Q, R, (w) is invariant with the respect to all permutations of the com-
ponents of (X1, ..., X,,). Let Br denote the ball centred at 0 with radius R. Then, owing
to Proposition 2-(iii), z() = (xgn), ...,x%)) € Bgn. Hence,

E[D(a™)~D,™)] <E sup (D(c) — Da(c))

CGBgn
:E[C?;I; (Elglclélf(fc’“ 7721?/161?1(]0 )]

n n

1 1
:E[ E XN - - N X1, X } 27
op B2 i fa (X0 =0 2 it fa (X0 X X0 2

where X7/, ..., X], are i.i.d random variable with the distribution p, independent of (X1, ..., X,,).
Let Ray, := maxi<i<n | X;| V| X]|, then (27) becomes
n

E] (x(n))—fn(m(n))]SE[ sup E[lz min fe, (X]) — 12 min_f, ( i)‘Xl,...,Xn]]

1<k<K 1<k<K
cEBK on i=1 i=1

n

1 1
SE[E[ sup (*Zlglcngfck( ’)—*Zlgngfck )\Xl,---,X]]
CeBgzn i=1 i=1

=E[ sup lZ:( min_fe, (X{) — min_f., (X;))].

1<k<K 1<k<K
CGBEQH i=1 ==

The distribution of (X7, ..., Xy, X1, ..., X)) and that of Ry, are invariant with the respect
to all permutation of the components in (X1, ..., X, X1, ..., X},). Hence,

n

E[i(gg(”))—ﬁn(x(n))]:E[ sup %ZU’( min_fe, (X )— min_fe, ( Z))]

CEBK im1 1<k<K 1<k<K

sup ZUZ mln fe (XD + sup ZU’ min _fe, (Xi)]

CeB 1<k< ceBRK , 1<k<K

= sup Zal min_fe, (X;)]. (28)

cEB 1<k<K

In the second line of (28), we can change the sign before the second term since —o; has
the same distribution of az, and we will continue to use this property throughout the proof.

Let S :E[ } d id bound for Sk b
et Sk ) es;lg Zazlgng fe,(Xi)| and we provide an upper bound for Sk by

induction on K in What follows.
» For K =1,

n

1 2
=Bl gp n ;"Zé%(f ) =E[ sup 3 oi( - 20 + )]
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<2E[ sup ZUZ c|X;)] +E[ sup Z(IZ[C\

CEBR2 i=1 CEBR2 i=1

2 n

< —E[ sup (C\ZUZX >} + E{ ZUZ | Rop | }
W tceBr,, 4 i=1
2

< —E[ sup ZO’Z c|} + E ZU’ E\R2n|
n CEBR2”

(by Cauchy—SChwarz inequality and 1ndependence of o; and X;)

2
n
< MBonlly + — 1> 0| ([ Ranll
2 =1 2
2 1 2 _ [ Ronl
< VX, Vol + = Rl < R Xl + [ Realls). (29
The first inequality of the last line of (29) follows from E[> 7 ; o Xi|* = EY " 02X? =
nEX? since the (01,...,0,) is independent of (X7,...,X,) and Eo; = 0. For n € N*,
define 7, = [|maxi<j<y |Yil||y, where Yi,..., Y}, are ii.d random variables with probabil-
ity distribution p. Hence, 12, = |[Ra2n||y, since (Y1, ..., Ys,) has the same distribution as
(X1, .oy Xy X1, ...y XI). Therefore,
51 < 7127”(2 1 X1ly + r2n)-
f
» For K =2,
1 n
So=E[  sup =D 0i(for (Xi) A for (X0))]
62(01702)6312%271 n i=1
1 1 atb la—b
B[ s 53 (£ (K0 FX0) e (K0 — f(X0)]) | (as anp = S0 10
2 Lecp n& 2 2
o =
1 I
< S{E[ sup — 3" 0i(f (X)) + fo(X0)] +E[ sup Zaz\fq )~ fa (X011}
663123271 n i=1 CGB

gﬁum[mplzmmx> m(»ﬁ(w@w

C632 ni 1

IN

IN

%{251 + E sup Zngcl sup ZUZfCQ } <257

Cl EBR2n =1 02 EBRQn =1

» Next, we will show by induction that Sx < K5 for every K € N*. Assume that
Sk < KSyp, for K 41,

1 n
Ski1=E[ sup —Za 1<k<K+1 fer (X3)]
1

K41 T
EB+ i=

20



CONVERGENCE RATE OF OPTIMAL QUANTIZATION AND CLUSTERING PERFORMANCE

=E[ sup lzdi( min fe, (Xi) A fere, (X3))]

<k<
ceB;f;;l n P 1<k<K

1 1 — , .
<5B{ s 3o min o (X0 o (X0) | i S (60 = feea (X0 |}
RQn =
1 1 &
2n -
1 n
b 20| B (XD S (X0
Rop -
1
< §(SK+SI+SK+SI) < Sk + 851 < (K+1)5.
Hence,
o . 2K - Ton

E [D(x(n)) - Dn(x("))] <25k <2KS5; < (2 1 X1y + 7«2n)'

4D
—D(z)]. As = (21,...,7x) is an optimal quantizer of
owing to the definition of px (p) in (9). Consequently,

Part (ii): Upper bound of E [Dy(x
w, we have maxi<p< g k| < pr(p

E[Dn(z) = D(z)] <E sup [Dn(c) — D(c)]

K
CGBPK(M)

)
)

By the same reasoning of Part (I), we have E[D,(z) —D(z)] < 2K p (1) (2| X1 |lo + pr (1))

= Vn
Hence
. 2K 2K
E[D(") = Dla)] < Z2ran (2131l + 120) + i) 2111, + o (1)
2K
< 7 [T’Sn + pic(p) + 2r1 (ron + PK(U))} : (30)
The proof of (b) and (c¢) is postponed in Appendix E. [ |

Appendix A: Proof of Pollard’s Theorem

Proof Since the quantization level K is fixed, in this proof, we drop the subscript K of
the distortion function and denote by D,, (respectively, D) the distortion function of wu,
(resp. poo)-

We know z(™ € argmin D,, owing to Proposition 2, that is, for all y € (Y1, .-, YK) €
(R X we have D, (™) < D, (y). For every fixed y = (y1, ..., yx ), we have D,,(yy) — Doo(y)
after (13) so that "

. n .
limsup Dy (2") < yea%g)K Doo(y)- (31)

Assume that there exists an index set Z C {1, ..., K} and Z¢ # & such that (ffz(n))iez,nzl

is bounded and (a:(n)

. )iezen>1 is not bounded. Then there exists a subsequence v(n) of n
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such that
{xf(") 53 et

x?(n)‘ — 400, 1€ I

After (13), we have Dy, (zWIN/2 > D ()12 Wa(Hap(n), Moo )- Hence,
lim inf Dy, (gc(w(n)))l/2 > lim inf Doo(x(w(n)))lﬂ
so that

lim inf Dy, ()2 > lim inf Do (z(¥(7))1/2

2
N

)

:[liminf min
n ie{l,...,.K}

- . @n) _ |2 1/2
> / lim inf ofnin ‘wz 5’ oo (d€)]

_ | (e0) ‘2 1/2
[ [ min ‘wl £ poo(d€)] 7, (32)
where we used Fatou’s Lemma in the third line. Thus, (31) and (32) imply that

O <
min o™ — | poclde) < inf | Docly). (33)

This implies that Z = {1, ..., K} after Proposition 2 (otherwise, (33) implies that el*(j150) <

e®*(1so) with |Z| < K, which is contradictory to Proposition 2-(i)). Therefore, (z(™) is
bounded and any limiting point () e argming ¢ gayx Doo (). [ |

Appendix B: Proof of Proposition 2 - (iii)
We define the open Voronoi cell generated by x; with respect to the Euclidean norm |- | by

Vi) ={¢eR ¢ —mil < min_[¢—u;l}.
It follows from Graf and Luschgy (2000, Proposition 1.3) that intV,,(z) = V7 (x), where
int A denotes the interior of a set A. Moreover, if we denote by \; the Lebesgue measure on
R?, we have A\q(0Vy,(2)) = 0, where A denotes the boundary of A (see Graf and Luschgy,
2000, Theorem 1.5). If 4 € Py(R%) and z* is an optimal quantizer of u, even if y is not
absolutely continuous with the respect of A4, we have u(@Vmi(x*)) =0forallie{l,.. K}
(see Graf and Luschgy, 2000, Theorem 4.2).
Proof Assume that there exists an z* = (z],...,2%) € Gg(p) in which there exists
ke {1,...,K} such that x} ¢ H,.
Case (1): ,u(VIO}t (T*) N'supp(p)) = 0. The distortion function can be written as

K K
*\ o >§<2 _ - >}<2
Drca) =3 [ le-aifua =3 /V;i(x)’f ;P (de)
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(since * is optimal and || is Euclidean, p(0V;,(I'*)) = 0 and intV,, (I') = V2 (T))

K
-y /m 16 =il u(d) = Drc @),

i=1,i#k g

where 7 = (ﬁ’"-,xz—lvxZ-;-p“vx}()- Therefore, I = {x“{,...,xz_l,xzﬂ,...,x*K} is also a
K-level optimal quantizer with card(I") < K, contradictory to Proposition 2 - (i).
Case (1I): M(VI"Z (I'*) N'supp(p)) > 0. Since zj # H,, there exists a hyperplane H strictly
separating x7 and H,. Let 27 be the orthogonal projection of z}, on H. For any z € H,,, let
b denote the point in the segment joining z and x}, which lies on H, then (b—2} |z} —2}) = 0.
Hence,

i — b = & — b + |of — 257 > |25 — b

Therefore, [z — 23| < |z = b+ |b— 2| < |2z = b| + |2} — b] = |2z — x|

Let B(x,r) denote the ball on R? centered at z with radius r. Since ,LL(V;Z(F*) N
supp(p)) > 0, there exists a € Vx"z (I'*) N'supp(p) such that 37 > 0, p(B(a,r)) > 0 (when
r =0, B(a,r) = {r}). Moreover,

VB € B(a,r), Iﬁ—f2|<lﬂ—x2|<g;gglﬁ—ﬁl- (34)

Let & := (o7, ...,x}_, %}, T} 1, TF), (34) implies Dk, () < Dk, p(x*). This is contra-
dictory with the fact that z* is an optimal quantizer. Hence, z* € H,,. |

Appendix C: Proof of Proposition 8
We use Lemma 11 in Fort and Pages (1995) to compute the Hessian matrix Hp, , of Dk .
Lemma 16 (Fort and Pages, 1995, Lemma 11) Let ¢ be a countinous R-valued function

defined on [0,1]%. For every x € Dy = {y € ([0, l]d)K | yi £ yj ifi #j}, let ®i(z) =
fw(x) o(w)dw. Then ®; is continuously differentiable on Dk and

0P; 1y, 1 i + T .
iz i G = | PO {27 +  (BET )y (ag
0P; B 0P;
and oz, () = — Z e (z),
1<G<K,j#i
where T4 = éj:iz‘,

:ri—{—xj

M = {uE]RdHu— |xi—xj>=0} (35)

and Afg(dﬁ) denotes the Lebesque measure on the affine hyperplane M.
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Note that one can simplify the result of Lemma 16 as follows,

0d;
@ = [ POIE "
Ox; Vi(@)V; (2) 4 75 —ai|  |wy— @

1 Ti— X; ml+x i
-/ P (©) {(F+ =5 -
Vi(@)NVj ()

1$j—1‘2‘ 1 (ngx]_g)}/\?(dé)

Vi # J,

|z — @il
1
= [P — XY (d 36
Lo PO~ ) (36)
Proof [Proof of Proposition 8] (i) Set "M (€) = (z; — &) f(&)xar(€) with
1 <M
xm(l) =X M+1—1] M<|({|<M+1.
0 €] > M +1
Set @M = Jvia) M (€)d¢ and @;( = Jvi(a) &) f(&)de for i = 1,..., K. Then (15)

6DKH_

1mphes that 20;, 1=1,..., K.
For j =1,. K and j # i, it follows from (36) that

M ..
0(1)1-' (z) = / (i =@ (x;—¢§)- %f(f)XM(f))\?g(df)v (37)
Oz Vi@)nV; (=) |zj — il

and fori =1,..., K,

Pr@=[([ sewedu- Y | (2~ (2:-€) - FEar(©ONI ()
O Vi(8) ity Vil@)nV(x) |1’j — x4 *
1<j<K
(38)
where in (37) and (38), u ® v = [u'v/];<; j<q for any two vectors u = (ul,...,u?) and

v= (vl ..., v%) in R
We prove now the differentiability of ®; in three steps.
» Step 1: We prove in this part that for every x € F,

hiy(o) = [ (21— €)@ (27 — €) - (NI (dE) < +oo.
Vi(@)V; () |

XTj — SL‘Z|
If Vi(z)NVj(z) = @, it is obvious that h;j(x) = 0 < +00. Now we assume that V;(z)NVj(z) #
@. Without loss of generality, we assume that Vi(x) N Va(z) = @ and we prove in the
following hio is well defined i.e. (hi2(x) € R.

Let
1

w2 — 1]

a(z,§) = (21 =) @ (r2 = &) - f&). (39)

Then
o) = | (@, E)\2(d).
V1( )ﬂVQ(Z‘)

Let (eq,...,eq) denote the canonical basis of RY. Set u® = \ﬁ:igl' As z1 # 19, there

exists at least one ig € {1,...,d} s.t. (u” | e;,) # 0. Then (u”,e;,1 < i < d,i # ip) forms a
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new basis of R%. Applying the Gram-Schmidt orthonormalization procedure, we derive the
existence of a new orthonormal basis (uf,...,u}) of R such that u¥ = u®. Moreover, the
Gram-Schmidt orthonormalization procedure also implies that u,1 <7 < d is continuous
in z. With respect to this new basis (uf, ...,uJ), the hyperplane MY, defined in (35) can be

written by
T+ X2

M5 = —|—span(uf, i:2,...,d),

where span(S) denotes the vector subspace of R? spanned by S. Moreover, note that

Vi(e) 0 V(@) = {€ € My | min o — €] 2 for — € = a2 — €] }.

Then, for every fixed £ ¢ d(Vi(z) N Va(x)), the function & — Ly, ()nvs(x)(£) is continuous
inz € Fg and

A2 (0(Vi(2) N Va(@) ) =0 (40)

since Vi (x) N Va(z) is a polyhedral convex set in M.
Now by a change of variable £ = xlzﬂ + 27:2 riug

T+ x2

d
hia(z) = /Rd_1 ]lvu(x)((rg, s rd))a<a:, — + Zrmf) dro...drg, (41)
i=2

where

d
_ ) T+ T2
Via(z ::{r T GRdl‘ min ‘x — —E riu?
12() (2a ad) 3<k<K k 9 ,211
1=

d

Tr1 — X2 z

= ‘ 2 Z Tt
=2

3

(42)
Let 0Via(x) be the boundary of Via(z) given by

d
- . 1+ T
OVia(x) = {(rg, 1) € RO ‘ [ in ‘xk —— - z;nuff
1=

d
_ ‘331 . T2 72”%3; }
i=2
Then (40) implies that Aga-1(9Vi2(z)) = 0 where Aga-—1 denotes the Lebesgue measure of
the subspace span(uf,i =2, .., d).
It is obvious that for any a = (a1, ..., ag), b = (b1, ..., bq) € RY, we have |a;b;| < |a|[b],1 <
1,7 < d. Thus the absolute value of every term in the matrix

d
T+ x2
a(z, — + E 2 riug)
1=

d

mowe SN ) @ (2258 S ) o+
_( 2 Zl—? ? 2) ( 2 21—2 2 z)f( 12 2+Zﬁ‘uf)

a w2 — 1]

i=2
can be upper-bounded by

‘ r1—I2

d — d d
S RITIC IS VIR

‘372 —a;1| 2
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_ d ?
_ (=52 + | St ra]) FEEE S )

T
7
‘372 — a:1| 2 i—

d
L1+ S (m”z Zn 0) (43)
=2

where C, > 0 is a constant depending only on z.
The distribution p is assumed to be 1-radially controlled i.e. there exist a constant
A > 0 and a continuous and decreasing function g : R, — R, such that

VeeRL I A f(6) < g(le) and / Plg(w)de < +oc. (44)
Ry
Now let K = % |zq + 22| V A and let r := Zd_Q ryuf. As ¢ is a non-increasing function, it

follows that

(1+zd:r2) ($1+x2 Zr )
A1+ iu

( ) 4 gl d

< Cx(l + ’T|2) sup f(§)1{|r|§2K} =+ Cx(l + |r\2)g(‘ = + § iU )ﬂ{\r|>2K}
£€B(0,3K)
Co(L+[r[*)  sup  f(E)Lqr<ary + Cul(Ll + |r)g(|r] - )ﬂwzm
£€B(0,3K)

Switching to polar coordinates, one obtains by letting s = |r|
/Rdl Cx |T"2 g( |7"‘ - K)H{MZQK}d?”Q...de
o
< Cx,d/ $%g(s — K)oy s 2ds < Cz,d/ (s + K)%g(s)ds
R K
o
< Qdvad/ (K% + 5% g(s)ds < +o0,
K
where the last inequality follows from (44). Thus one obtains

/ [Cx(1+|r\2) sup f(f)ll{MQK}—i—Cx(l—l—\7’]2)g(\r]—K)ILWBZK}]CZTZ...drd<—i—oo.
Rd4—1 £€B(0,3K)

Hence hio is well-defined since
/ e, )] A (d€) < +oc. (45)
Vi(z)NVa(z)

» Step 2: Now we prove that for any x € F,

a(I)M M—+oo
sup (y) — hij(y)
Ox; J

yEB(z,e5)
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where ¢, = % mini<;<j<r |¢; — ;| and (46) means every term in the matrix converges to 0.
First, for every fixed y € B(z,¢;), the absolute value of every term in the following
matrix

ooy =W =8 oo
o) —ho) = [ S RO ()N )

can be upper bounded by

lyi — &lly; — |

fu(y) = /
Vi) n (R\Bo,M+1) Y5 — Vil

FON (d9)-
Moreover, the inequality (45) implies that fys(y) converges to 0 for every y € B(x,e,) as
M — +00. As (far)ar is a monotonically decreasing sequence, one can obtain

sup ‘fM(y)‘ —0
yEB(z,e)

owing to Dini’s theorem, which in turn implies the convergence in (46).
» Step 3: Tt is obvious that ®M (z) converges to ®;(z) for every x € R? as M — 400 since
p € Po(RY). Hence %(m) = hi2(z). Then one can directly obtain (16) since %DK’“ =

XTjTq
2‘%" = 2h;; by applying (15). The proof for (17) is similar.

2
(ii) We will only prove the continuity of axpax“ and T PKu ot o point € Fx. The proof

0x3
for % é;j for others i,j € {1,..., K} is similar. We take the same definition of a(z,&) in

(39), then

"Dy () = 2/ a(z, )N (dE)
0x10%2 Vi (z)NVa(z)

and by the same change of variable (41) as in (i), we have

Dk, R
7 = 1 "
T @ =2 [ () 5 +Zr )y

with the same definition of Vis(x) as in (42).
Let us now consider a sequence z(™ = ,...,:c%)) € (RHE converging to a point
x = (x1,...,xx) € Fg satisfying that for every n € N*,
1

|2 — 2] <6, = 31505 R ins i =l o

N

so that (™ € Fy for every n € N*. For a fixed (ro,...,7q) € R=1 the continuity of
x — oz, % + Ef:z riuf) in Fi can be obtained by the continuity of (z,&) — a(z,€)
and the continuity of Gram-Schmidt orthonormalization procedure.

By the same reasoning as in (43), the absolute value of every term in the matrix

a(x(n) (n)ﬂfz Z (n) x<n>>
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can be upper bounded by

Oml —— |+‘Zz i ;,;m)
’ (n) (n)‘

Loy " — g

2
)" am
+ 2! n m(n)
f( 2 Z (n) )
where there exists a constant C, depending only on x such that

(1575 4 s, ™)) ‘o,
‘ ) _  (n) < Ca(l+) 1))
o -

)

since by (47), one can get

¥ne N*,Vi,j € {1,.., K} with i #j, 0, < |ot™ — 2| < max |z; — 2| + 24,

1<ij<K

Moreover, if we take K = 3 sup,, mgn) + acgn)’ V A and take ry, = Zf 9 Zu:’*"< " then
d (n) | .(n)
2y p(T1 t 2o MO
Cx(1+zn-)f< Y )
1=2 =2
2 L SR A S e
Coll+1rP) sup  F(©)Lpcary + Coll+ [rP)g (| P72 + D riad ™ ) L rizany
£€B(0,3K) i=2

Co(1+1r)*)  sup FEOLr<ory + Ca(1 + ’7”|2)g( 7| — K)ﬂ{\r\zzK}-
¢€B(0,3K)

By the same reasoning as in (i)-Step 1, we have

/Rd1 [Cx(1+|7"|2) sup f(ﬁ)]l{mgm}+Cx(1+|7“|2)9(|7°|—K)ﬂ{|r\zzK}]d?“2.-.de < +o0,

£€B(0,3K)
. . . 62DK,u (’VL) 8 DK m . 5 .
which implies 72~ (™) — 05 0 () as n — +oo by applying Lebesgue’s dominated

8°Dg .
convergence theorem. Thus ) 835“ is continuous at xz € Fi.

It remains to prove the continuity of 2 — u(Vi(z)) = [pa Lv; () (€)f(€)Aa(d€) to obtain
the continuity of DK £ defined in (17). Remark that

Vite) = {e € B! | g~ m < min |€ | .
and by Graf and Luschgy (2000, Proposition 1.3),
Vi(w) = {€ € R | € — 21| = min |€ — ;] }.

1<j<K

Then for any & ¢ 9Vi(z), the function x +— Ly, (,(§) is continuous. As the norm |-| is the
Euclidean norm, then \;(0V;(z)) = 0 (see Graf and Luschgy, 2000, Proposition 1.3 and The-
orem 1.5). For any = € Fx and a sequence z(™) converging to z, we have Ly, () (§) f(§) <

f(€) € L*(Ag). Thus the continuity of z — p(Vi(z)) = [pa Ly, () (§) f(€)Aa(d€) is a direct
application of Lebesgue’s dominated convergence theorem. |
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Appendix D: Proof of Proposition 11

Proof [Proof of Proposition 11] (i) We will only deal with the uniform distribution U([0, 1]).
The proof is similar for other uniform distributions.
In Graf and Luschgy (2000, Example 4.17 and 5.5) and Benaim et al. (1998), the authors
show that I'* = {Z=1 : i — 1,.., K} is the unique optimal quantizers of U([0,1]). Let
1

x* = (ﬁ, s 251_{ s 222;1), then one can compute explicitly Hp(x*):
- ) -
K IR 0
*) _ 11 1
Hp(z") = “3K K TIK ;
13
L 0 “3K 2K |

The matrix Hp(z*) is tridiagonal. If we denote by fi(z*) its k-th leading principal
minor and we define fo(z*) = 1, then

file) = e fir (o) — g fiala®) fork =2, K — 1, (48)

and f1(x*) = % and fx(x*) = |Hp(x*)| = %fK_l(x*) — ﬁf[(_g(x*) (see El-Mikkawy,
2003). One can solve from the three-term recurrence relation that

L 2k 41
fk(m ):W, fOI?kZl,...,K—l
o 2K+1 1

In fact, (49) is true for k = 1. Suppose (49) holds for k < K — 2, then owing to (48)

1 2k+1 1 2k-1)+1 2(k+1)+1

= K okKk AK2  9k—1gk—1 — ok+lpk+1

Sr1(z)

Then it is obvious that fr(z*) > 0 for k =1, ..., K. Thus, Hp(z*) is positive definite.

(ii) We define for i =2, ..., K, =} = xi*l;xi , then the Voronoi region V;(z*) = [z}, 7, ] for

i=2,...,.K -1, Vi(z*) = (—o0,z3] and Vi (z*) = [z}, +00).
For2 <:i< K -1,

Li(x*) = A; —2B;_1,; — 2B; i1

* * * *
Ti_q T X5 T + T

= 2M(Vi(x*)) — (@] — xf—l)f(T) - (x:-s-l - mf)f(#)
= 2u(Vi(2")) = 2(a; — 3}) (7)) — 2Ty — o) f(T740)

B M» {n(Vi")* = etu(vie)

=z p(Vi(@")]f(@F) — [@7 0 (Vi(™)) - xi‘u(Vi(x*))]f(%E‘H)}
2 2

Zm{ﬂ(‘@(w*D —[/Vi(m*ﬁf@)d&—5f/w(z*)f(§)d§]f(i;f)
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i [, S@k- [ @G (oving to (15)
2

2
— s (@)’ - p@ [ e-an@ds ) [ - maned).
Ty A =S @D [ (€ ENOME @) [ (€= T S©de)
In order to study the positivity of L;(z*), we define a function ¢;(u) for any i € {1,..., K}
and for any u = (uq,...,ux41) € FI}F—H by

Ui+1 Ui+1

(€ —us) F(€)dE+F (i) / (€ —uip) F(E)dE, (50)

Us

ety = [ [ fie)ae =) [

i Usg

Lemma 17 If f is positive and differentiable and if log f is strictly concave, then for all
u= (U1, ..., Ug1+1) € FI—<F+17 we have the following results for p;(u) defined in (50),

(a) for everyi=1,..,K, p;(u) > 0;

(b) 925 (u) < 0;

(¢) 222K (u) > 0.

Oug 41

Proof [Proof of lemma 17] For a fixed i € {1, ..., K}, the partial derivatives of ¢; are

gij (u) = =2 /u wis1 FE)dE] f(ui) = f'(us) /u U+ (& — wi) F(E)dE + flus) f(wir)(uis1 — ug)

T
Ui+1

gfzﬂ (u) = 2[/:M FE)E] f(uiv1) + [ (uig1) /u (& —uip1) f(E)dE
— flui) f(uiv1)(wir1 — ;)

(u) =0, foralll#iandl#i+ 1.

i
ouy

The second derivatives of ¢; are
32902‘ o 82%
8ui+18ui - 8ui6ui+1
e ) i
u) =
Oou 0u; Ou; Ouy

= —fuip1) f(ui) + (wirr — wi) (f (wi) f'(uwig1) = f'(ui) f(ig1))

(u)=0 foralll#iandl#i+ 1.

/!
If log f is strictly concave, then (log f)" = S is strictly decreasing. For u € FI—EH’ we

f

have w;y1 > u;, then

frluivr)  fu)  f (i) f(ua) = f(uigr) f (i)

— = < 0.

fluiv1)  f(uw) Jug) f(uip)

2.,
Thus f/(uiy1)f(u;) — f(uit1)f (u;) < 0 and from which one can get %(u) < 0.
Ouiy10u;

only depend on the variables u; and w;1.

i 09i .04 %p;

In fa.Ct, Dis Ou; * Ouit Ou;+10u;
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(a) For 1 < i < K, ¢i(uit1,ui+1) = 0. After the Mean value theorem, there exists v €
(ui, Ui—i—l) such that

1 0p;

m(%(ui,uiﬂ) - %(uz’+1,ui+1)) = aiui(%uz’—i—ﬁ- (51)
Moreover, there exists ¢ € (7, ui+1) such that
1 i i A
p— 7(8% (v uien) = 5o (v,7) = TR

2 .

As v < (, 325:10(;%(%0 < 0. Thus g(’Z(%uiH) < 0, since gi: (7,7) = 0. Then
dpi
u

@i(u;, ui+1) > 0 by applying —— (v, ui+1) <0 in (51).

(b) After the Mean value theorem, there exists 7/ € (uy,uz) such that

7(’&1, U2) — %(ul,ul)).

2
s 831211@ (u1,7") < 0 and gii(uhul) =0, one can get Zii(“lv“?) <0.

(c) In the same way, there exists ¢’ € (ux,ux+1) such that

A

e (¢ urt1) = ! Opx (UK, uk+1) — Opi (UK+1,UK+1))
Ougdugi1 Ug — Uk+1 Ougy1 OuK 41 ’
Dok / K B K
As ——————(¢",ux41) <0 and (ugt1,ux+1) = 0, one gets (ug, up41) >
0 Our Ouk 11 UK +1 UK 41 .

Proof [Proof of Proposition 11, continuation]
We set 29M == (—M, 75, oy Tje, M) with M large enough such that oM ¢ FEH, then

for 2 <i < K -1, Li(z*) = W%(‘f*%. Thus L;(z*) > 0, i = 2,..., K — 1 owing to
Lemma 17-(a).
For:=1,

- Ty e s [ @ -osu)
If we denote Dy (z*) == M(Vi(m’*))2 — f(@3) fvl(x*)(fg — &) f(&)d¢E, then
D)= Jim @) M) [ (- (M) S

where VM (2*) = [~ M, T3).
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For all M such that —M < 75, f(—M) /VM( , (& = (—=M)) f(£)dE > 0, then

lim  f(—M) (&= (=M)) f(&)dg > 0.

M—+oc0 VlM (z*)

0
It follows from Lemma 17-(b) that a—wl(u) < 0 foru e FEH, so that for a fixed M; such
uy
that z%M ¢ Fl'a_l, we have @1 (") < lim  ¢1(Z%M). We also have ¢ (Z5M1) > 0 by
M—+00

applying Lemma 17-(a). It follows that

*) : ~x, M : . s
D) = Jim i@+ Jim S [ (e (00) e
> @) 4t fCM) [ (€ (-MD) (€
— 400 VlM(w*)
> 0.
Then L (z*) 2 Di(z") >0
1(z*) = 1 :
p(Vi(z*))
The proof of Li(x*) is similar by applying Lemma 17-(c). Thus Hp(z*) is positive
definite owing to Gershgorin circle theorem. |

Appendix E: Proof of Theorem 15 - (b) and (¢)

Proof (b) If x has a c-th polynomial tail with ¢ > d+p, then u € P,(R%). Let X, X1, ..., X,
be i.i.d random variable with probability distribution p. Then,

o= ||Rnll3 = E[max (|X1], ..., |X,|)?] = E[max(|X1|", ..., |Xn|p)2/1’]

n

<E([301xP17) < [B(3 1)) = [nE1xp " = ne 2.

i= =1

where the last line is due to the fact that Xi,..., X, have the same distribution as X.
Moreover, we have

+d
prc(p) = KT 07 with  lim g =1 (52)
K—+o00

owing to (11). It follows from (30) that

2K
E[D@™) —D(@)] < = |38, + ((2ma) V prc() - prc(a)
since rg, > my after the definitions of ry, and my. In addition, (52) implies that px(u) —
+00 as K — 400 and, for large enough K, pg (1) > 2meo. Therefore,

2K p+d
(n) - < — . 2/]) 2 (c—p— )’YK
E[D(z™) D(:U)]_\/ﬁ(S (20)7 | X |} + 3K T
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:\I/(ﬁ (Cu,p n?/P + GKCKCZ%%'DWK) ;
where C),, = 6 - 22/P ||X||122 and limg yx = 1.
(¢) The distribution p is assumed to have a hyper-exponential tail, that is, u = f - A\q with
(&) = 7[€°e " for || large enough with ¢ > —d. The real constant  is assumed to
be greater than or equal to 2. Let X be a random variable with probability distribution .
Therefore, for every A € (0,9), EeM¥I" < 400 and

o = ||Rnll3 = E[max(|X1], ..., | Xn])?] = E[max(|X1]", ..., an|“)2/”]

" 2/k . . K
:IEq% log(max(e’\‘xl‘ﬁ,...,6A|X”|N))]2/ ) < <i> [logEmax(e)‘lel o, Xl Y
2/k " 2/k
<(3) " (e = (5) oz
_(1 2/H(10 ENXI" 11 2/k
={x glhe + Ogn) ) (53)

where the last line of (53) is due to the fact that X, ..., X, have the same distribution than
X. Under the same assumption as before, it follows from (12) that

pic (1) < i (log K)V* . 29~ 1/”“(1 + )UH with limsupyg < 1. (54)
d K—4o00
Moreover, it follows from (30) that

E[D@") = D) < 2= [3r3, + (2ma) ¥ ox (1) - (1)

since rg, > my after the definitions of ry, and my. In addition, (54) implies that px(u) —

+o00 as K — +o00 and, for large enough K, pg () > 2mso. Therefore,
n 2K r 2/k 1 2/k K
E[D(x( )) - D(JU)] 3%{3 : (1 V log (2IE M X ) ) (X) / [(logn)Q/ + 1]}

_{_4,19 Q/H,YK(IOgK)Q/H(l 4 d)Q/N

(55)
Inequality (55) is true for all A € (0, 19). We may take \ = g. It follows that

E[D(z™) - D(z)] < Cy.x [1 + (log n)*/" + 7k (log K)*/" (1 + 3)%}’

N \/>
where Cy ., = [(3(%)2/"C - (1V log 2E ¢?IXI” /2)] v 89~2/% and limsupy vk = 1.

Multi-dimensional normal distribution is a special case of hyper-exponential tail distri-
bution, i.e. if 4 = N (m,X), we have k = 2,9 = % and ¢ = 0. By the same reasoning as
before,

E[D(z™) - D(z)] < C, f[l +logn + vk log K (1 + z)}

Where2 C,=24-(1V 10g2Ee‘X| /4). When p = N(0,1y), C, = 24(1 + 5) - log 2, since
E elXI"/4 = 24/2 1y the moment-generating function of a y? distribution. |
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