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Abstract
Modern learning algorithms excel at producing accurate but complex models of the data.
However, deploying such models in the real-world requires extra care: we must ensure their
reliability, robustness, and absence of undesired biases. This motivates the development of
models that are equally accurate but can be also easily inspected and assessed beyond their
predictive performance. To this end, we introduce contextual explanation networks (CENs)—
a class of architectures that learn to predict by generating and utilizing intermediate,
simplified probabilistic models. Specifically, CENs generate parameters for intermediate
graphical models which are further used for prediction and play the role of explanations.
Contrary to the existing post-hoc model-explanation tools, CENs learn to predict and to
explain simultaneously. Our approach offers two major advantages: (i) for each prediction,
valid, instance-specific explanation is generated with no computational overhead and (ii)
prediction via explanation acts as a regularizer and boosts performance in data-scarce
settings. We analyze the proposed framework theoretically and experimentally. Our results
on image and text classification and survival analysis tasks demonstrate that CENs are not
only competitive with the state-of-the-art methods but also offer additional insights behind
each prediction, that can be valuable for decision support. We also show that while post-hoc
methods may produce misleading explanations in certain cases, CENs are consistent and
allow to detect such cases systematically.

1. Introduction

Model interpretability is a long-standing problem in machine learning that has become quite
acute with the accelerating pace of the widespread adoption of complex predictive algorithms.
While high performance often supports our belief in the predictive capabilities of a system,
perturbation analysis reveals that black-box models can be easily broken in an unintuitive
and unexpected manner (Szegedy et al., 2013; Nguyen et al., 2015). Therefore, for a machine
learning system to be used in a social context (e.g., in healthcare) it is imperative to provide
sound reasoning for each prediction or decision it makes.

To design such systems, we may restrict the class of models to only human-intelligible
(Caruana et al., 2015). However, such an approach is often limiting in modern practical
settings. Alternatively, we may fit a complex model and explain its predictions post-hoc,
e.g., by searching for linear local approximations of the decision boundary (Ribeiro et al.,
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Figure 1: High-level functionality of CENs: The context is represented by satellite imagery and used
to generate instance-specific linear models (explanations). The latter act on a set of interpretable
attributes from regional survey data and produce predictions.

2016). While such methods achieve their goal, explanations are generated a posteriori require
additional computation per data instance and, most importantly, are never the basis for the
predictions made in the first place, which may lead to erroneous interpretations, as we show
in this paper, or even be exploited (Dombrowski et al., 2019; Lakkaraju and Bastani, 2019).

Explanation is a fundamental part of the human learning and decision process (Lombrozo,
2006). Inspired by this fact, we introduce contextual explanation networks (CENs)—a class
of architectures that learn to predict and to explain jointly, alleviating the drawbacks of the
post-hoc methods. To make a prediction, CENs operate as follows (Figure 1). First, they
process a subset of inputs and generate parameters for a simple probabilistic model (e.g.,
sparse linear model) which is regarded interpretable by a domain expert. Then, the generated
model is applied to another subset of inputs and produces a prediction. To motivate such an
architecture, we consider the following example.

A motivating illustration. One of the tasks we consider in this paper is classification of
households into poor and not poor having access to satellite imagery and categorical data
from surveys (Jean et al., 2016). If a human were to solve this task, to make predictions, they
might assign weights to features in the categorical data and explain their predictions in terms
of the most relevant variables (i.e., come up with a linear model). Moreover, depending on
the type of the area (as seen from the imagery), they might select slightly different weights
for different areas (e.g., when features indicative of poverty are different for urban, rural,
and other types of areas).

The CEN architecture given in Figure 1 imitates this process by making predictions using
sparse linear models applied to interpretable categorical features. The weights of the linear
models are contextual, generated by a learned encoder that maps images (the context) to
the weight vectors. The learned encoder is sensitive to the infrastructure presented in the
input images and generates different linear models for urban and rural areas. The generated
models not only are used for prediction but also play the role of explanations and can encode
arbitrary prior knowledge. CENs can represent complex model classes by using powerful
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encoders. At the same time, by offsetting complexity into the encoding process, we achieve
simplicity of explanations and can interpret predictions in terms the variables of interest.

The proposed architecture opens a number of questions: What are the fundamental
advantages and limitations of CEN? How much of the performance should be attributed to
the context encoder and how much to the explanations? Are there any degenerate cases
and do they happen in practice? Finally, how do CEN-generated explanations compare to
alternatives, e.g., produced with LIME (Ribeiro et al., 2016)? In the rest of this paper, we
formalize our intuitions and answer these questions theoretically and experimentally.

1.1 Contributions

The main four contributions of this paper are as follows:

(i) We formally define CENs as a class of probabilistic models, consider special cases, and
derive learning and inference algorithms for scalar and structured outputs.

(ii) We design CENs in the form of new deep learning architectures trainable end-to-end for
prediction and survival analysis tasks.

(iii) Empirically, we demonstrate the value of learning with explanations for both prediction
and model diagnostics. Moreover, we find that explanations can act as a regularizer and
result in improved sample efficiency.

(iv) We also show that noisy features can render post-hoc explanations inconsistent and
misleading, and how CENs can help to detect and avoid such situations.

Our code is available at https://github.com/alshedivat/cen.

1.2 Organization

The paper is organized as follows. Section 2 presents the notation and some background on
post-hoc interpretability methods. In Sections 3, we introduce the general CEN framework,
describe specific implementations, learning, and inference. In Section 4, we overview broadly
related work. In Section 5, we discuss and analyze properties of CEN theoretically. Section 6
presents a number of case studies: experimental results for scalar prediction tasks (Section 6.1),
an empirical analysis of consistency of linear explanations generated by CEN vs. alternatives
(Section 6.2), and finally how CENs with structured explanations can efficiently solve survival
analysis tasks (Section 6.3).

2. Background

We start by introducing the notation and reviewing post-hoc model explanations, with a
focus on LIME (Ribeiro et al., 2016) as one of the most popular frameworks to date.

Given a collection of data where each instance is represented by inputs, c ∈ C, and targets,
y ∈ Y, our goal is to learn an accurate predictive model, f : C 7→ Y . To explain predictions,
we can assume that each data point has another set of features, x ∈ X . We construct
explanations in the form of simpler models, gc : X 7→ Y , so that they are consistent with the
original model in the neighborhood of the corresponding data instance, i.e., gc(x) = f(c).
While the original inputs, c, can be of complex, low-level, unstructured data types (e.g., text,
image pixels, sensory inputs), we assume that x are high-level, meaningful variables (e.g.,
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categorical features). In the post-hoc explanation literature, it is assumed that x are derived
from c and are often binary (Lundberg and Lee, 2017) (e.g., c can be images, while x can
be vectors of binary indicators over the corresponding super-pixels). We consider a more
general setting where c and x are not necessarily derived from each other. Throughout the
paper, we call c the context and x the attributes or variables of interest.

Locally Interpretable Model-agnostic Explanations (LIME)

Given a trained model, f , and a data instance with features (c,x), LIME constructs an
explanation, gc, as follows:

gc = arg min
g∈G

L(f, g, πc) + Ω(g) (1)

where L(f, g, πc) is the loss that measures how well g approximates f in the neighborhood
defined by the similarity kernel, πc : X 7→ R+, in the space of attributes, X , and Ω(g) is
the penalty on the complexity of explanation.1 Now more specifically, Ribeiro et al. (2016)
assume that G is the class of linear models, gc(x) := bc + wc · x, and define the loss and the
similarity kernel as follows:

L(f, g, πc) :=
∑
x′∈X

πc(x′)
(
f(c′)− g(x′)

)2
, πc(x′) := exp

{
−D(x,x′)2/σ2

}
(2)

where the data instance of interest is represented by (c,x), x′ and the corresponding c′ are
the perturbed features, D(x,x′) is some distance function, and σ is the scale parameter of
the kernel. The regularizer, Ω(g), is often chosen to favor sparse explanations.

The model-agnostic property is the key advantage of LIME (and variations)—we can
solve (1) for any trained model, f , any class of explanations, G, at any point of interest,
(c,x). While elegant, predictive and explanatory models in this framework are learned
independently and hence never affect each other. In the next section, we propose a class of
models that ties prediction and explanation together in a joint probabilistic framework.

3. Contextual Explanation Networks

We consider the same problem of learning from a collection of data represented by context
variables, c ∈ C, attributes, x ∈ X , and targets, y ∈ Y. We denote the corresponding
random variables by capital letters, C, X, and Y, respectively. Our goal is to learn a model,
Pw (Y | x, c), parametrized by w that can predict y from x and c. We define contextual
explanation networks as probabilistic models that assume the following form (Figure 2):2

y ∼ P (Y | x,θ) , θ ∼ Pw (θ | c) , Pw (Y | x, c) =

∫
P (Y | x,θ)Pw (θ | c) dθ (3)

1. Ribeiro et al. (2016) argue that only simple models of low complexity (e.g., sufficiently sparse linear
models) are human-interpretable and support that by human studies.

2. While we focus on predictive modeling, CENs are applicable beyond that. For example, instead of
learning a predictive distribution, Pw (Y | x, c), we may want to learn a contextual marginal distribution,
Pw (X | c), over a set random variables X, where P (X | θ) is defined by an arbitrary graphical model.
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Figure 2: (a) A graphical model for CEN with a context encoder parameterized by w and linear
explanations. (b) A graphical model for CEN with context encoder and CRF-based explanations.
The model is parameterized by w. (c) A graphical model for CEN with context autoencoding via
the inference, q, and generator, p, networks and CRF-based explanations.

Table 1: Different types of encoders and explanations used in CEN.

Encoder Parameter distribution, P (θ | c)

Deterministic δ (φ(c),θ) where φ(c) is arbitrary
Constrained δ (φ(c),θ) where φ(c) := α(c)>D

MoE
∑K

k=1 P (k | c) δ(θ,θk)

Explanation Predictive distribution, P (y | x,θ)

Linear softmax
(
θ>x

)
Structured ∝ exp {−Eθ(x,y)} where Eθ(·, ·) is

some energy function, linear in θ

where P (Y | x,θ) is a predictor parametrized by θ. We call such predictors explanations,
since they explicitly relate interpretable attributes, x, to the targets, y. For example, when
the targets are scalar and binary, explanations may take the form of linear logistic models;
when the targets are more complex, dependencies between the components of y can be
represented by a graphical model, e.g., conditional random field (Lafferty et al., 2001).

CENs assume that each explanation is context-specific: Pw (θ | c) defines a conditional
probability of an explanation θ being valid in the context c. To make a prediction, we
marginalize out θ. To interpret a prediction, ŷ, for a given data instance, (x, c), we infer
the posterior, Pw (θ | ŷ,x, c). The main advantage of this approach is to allow modeling
conditional probabilities, Pw (θ | c), in a black-box fashion while keeping the class of expla-
nations, P (Y | x,θ), simple and interpretable. For instance, when the context is given as
raw text, we may choose Pw (θ | c) to be represented with a recurrent neural network, while
P (Y | x,θ) be in the class of linear models.

Implications of these assumptions are discussed in Section 5. Here, we continue with a
discussion of a number of practical choices for Pw (θ | c) and P (Y | x,θ) (Table 1).

3.1 Context Encoders

In practice, we represent Pw (θ | c) with a neural network that encodes the context into
the parameter space of the explanation models. There are two simple ways to construct an
encoder, which we consider below.
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3.1.1 Deterministic encoding

Let Pw (θ | c) := δ (φw(c),θ), where δ(·, ·) is a delta-function and φw(·) is the network that
maps c to θ. Collapsing the conditional distribution to a delta-function makes θ depend
deterministically on c and results into the following conditional likelihood:

P (y | x, c; w) =

∫
P (y | x,θ) δ (φw(c),θ) dθ = P (y | x,θ = φw(c)) (4)

Modeling Pw (θ | c) with a delta-function is convenient since the posterior, Pw (θ | y,x, c) ∝
P (y | x,θ) δ (φw(c),θ) also collapses to θ? = φw(c), hence the inference is done via a single
forward pass and the posterior can be regularized by imposing L1 or L2 losses on φw(c).

3.1.2 Constrained deterministic encoding

The downside of deterministic encoding is the lack of constraints on the generated explanations.
There are multiple reasons why this might be an issue: (i) when the context encoder is
unrestricted, it might generate unstable, overfitted local models, (ii) when we want to reason
about the patterns in the data as a whole, local explanations are not enough. To address
these issues, we constrain the space of explanations by introducing a context-independent,
global dictionary, D := {θk}Kk=1, where each atom, θk, is sparse. The encoder generates
context-specific explanations using soft attention over the dictionary (Figure 3):

φw,D(c) :=

K∑
k=1

Pw (k | c)θk = αw(c)>D,

K∑
k=1

α
(k)
w (c) = 1, ∀k : α

(k)
w (c) ≥ 0, (5)

where αw(c) is the attention over the dictionary produced by the encoder. Attention-based
construction of explanations using a global dictionary (i) forces the encoder to produce
models shared across different contexts, (ii) allows us to interpret the learned dictionary
atoms as global “explanation modes.” Again, since Pw (θ | c) is a delta-distribution, the
likelihood is the same as given in (4) and inference is conveniently done via a forward pass.
The two proposed context encoders represent P (θ | c) with delta-functions, which simplifies
learning, inference, and interpretation of the model, and are used in our experiments. Other
ways to represent P (θ | c) include: (i) using a mixture of delta-functions (which makes CEN
function similar to a mixture-of-experts model and further discussed in Section 5.1), or (ii)
using variational autoencoding. We leave more complex approaches to future research.

3.2 Explanations

In this paper, we consider two types of explanations: linear that can be used for regression
or classification and structured that are suitable for structured prediction.

3.2.1 Linear Explanations

In case of classification, CENs with linear explanations assume the following P (Y | x,θ):

P (Y = i | x,θ) :=
exp {(Wx + b)i}∑
j∈Y exp {(Wx + b)j}

, (6)
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Figure 3: An example of a CEN architecture. In this example, the context is represented by an
image and transformed by a convnet encoder into an attention vector, which is used to softly select
parameters for a contextual linear probabilistic model.

where θ := (W,b) and i, j index classes in Y . If x is d-dimensional and we are given m-class
classification problem, then W ∈ Rm×d and b ∈ Rm. The case of regression is similar.

In Section 5.4, we show that if we apply LIME to interpret CEN with linear explanations,
the local linear models inferred by LIME are guaranteed to recover the original CEN-generated
explanations. In other words, linear explanations generated by CEN have similar properties,
e.g., local faithfulness (Ribeiro et al., 2016). However, we emphasize the key difference
between LIME and CEN: the former regards explanation as a post-processing step (done
after training) while the latter integrates explanation into the learning process.

3.2.2 Structured Explanations

While post-hoc methods, such as LIME, can easily generate local linear explanations for
scalar outputs, using such methods for structured outputs is non-trivial. At the same time,
CENs let us represent P (Y | x,θ) using arbitrary graphical models. To be concrete, we
consider the case where the targets are binary vectors, y ∈ {0, 1}m, and explanations are
represented by CRFs (Lafferty et al., 2001) with linear potential functions.

The predictive distribution P (Y | x,θ) represented by a CRF takes the following form:

P (Y | x,θ) :=
1

Zθ(x)

∏
a∈A

Ψa(ya,xa;θ) (7)

where Zθ(x) is the normalizing constant and a ∈ A indexes subsets of variables in x and y
that correspond to the factors:

Ψa(ya,xa;θ) := exp

{
K∑
k=1

θakfak(xa,ya)

}
, (8)

where {fak(xa,ya)}Kk=1 is a collection of feature vectors associated with factor Ψa(ya,xa;θ).
For interpretability purposes, we are interested in CRFs with feature vectors that are linear
or bi-linear in x and y. There is a variety of application-specific CRF models developed
in the literature (e.g., see Sutton et al., 2012). While in the following section, we discuss
learning and inference more generally, in Section 6.3 we develop a CEN model with linear
chain CRF explanations for solving survival analysis tasks.
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3.3 Inference and Learning

CENs with deterministic encoders are convenient since the posterior, P (θ | y,x, c), collapses
to a point θ? = φ(c). Inference in such models is done in two steps: (1) first, compute θ?,
then (2) using θ? as parameters, compute the predictive distribution, P (y | x,θ?). To train
the model, we can optimize its log likelihood on the training data. To make a prediction using
a trained CEN model, we infer ŷ = arg maxy P (y | x,θ?). For classification (and regression)
computing predictions is straightforward. Below, we show how to compute predictions for
CEN with CRF-based explanations.

3.3.1 Inference for CEN with Structured Explanations

Given a CRF model (7), we can make a prediction ŷ for inputs (c,x) by performing inference:

ŷ(θ?) = arg max
y∈Y

P (y | x,θ?) = arg max
y∈Y

A∑
a=1

K∑
k=1

θ?akfak(xa,ya) (9)

Depending on the structure of the CRF model (e.g., linear chain, tree-structured model,
etc.), we could use different inference algorithms, such the Viterbi algorithm or variational
inference, in order to solve (9) (see Ch. 4, Sutton et al., 2012, for an overview and examples).
The key point here is that having P (y | x,θ?) or ŷ(θ?) computable in an (approximate)
functional form, lets us construct different objective functions, e.g., L({yi,xi, ci}Ni=1,w), and
learn parameters of the CEN model end-to-end using gradient methods, which are standard in
deep learning. In Section 6.3, we construct a specific objective function for survival analysis.

3.3.2 Learning via Likelihood Maximization and Posterior Regularization

In this paper, we use the negative log likelihood (NLL) objective for learning CEN models:

L({yi,xi, ci}Ni=1,w) :=
1

N

N∑
i=1

logP (yi | xi,θ = φw(ci)) (10)

L1, L2, and other types of regularization imposed on θ can be added to the objective (10).
Such regularizers, as well as the dictionary constraint introduced in Section 3.1.2, can be seen
as a form of posterior regularization (Ganchev et al., 2010) and are important for achieving
the best performance and interpretability.

4. Related work

Contextual explanation networks combine multiple threads of research that we discuss below.

4.1 Deep graphical models

The idea of combining deep networks with graphical models has been explored extensively.
Notable threads of recent work include: replacing task-specific feature engineering with task-
agnostic general representations (or embeddings) discovered by deep networks (Collobert et al.,
2011; Rudolph et al., 2016, 2017), representing energy functions (Belanger and McCallum,
2016) and potential functions (Jaderberg et al., 2014) with neural networks, encoding learnable
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structure into Gaussian processes with deep and recurrent networks (Wilson et al., 2016;
Al-Shedivat et al., 2017), or learning state-space models on top of nonlinear embeddings of
the observations (Gao et al., 2016; Johnson et al., 2016; Krishnan et al., 2017). The goal
of this body of work is to design principled structured probabilistic models that enjoy the
flexibility of deep learning. The key difference between CENs and the previous art is that the
latter directly integrate neural networks into graphical models as components (embeddings,
potential functions, etc.). While flexible, the resulting deep graphical models could no longer
be interpreted in terms of crisp relationships between specific variables of interest.3 CENs,
on the other hand, preserve the simplicity of the explanations and shift complexity into
conditioning on the context.

4.2 Context representation

Generating probabilistic models after conditioning on a context is the key aspect of our
approach. Previous work on context-specific graphical models represented contexts with a
discrete variable that enumerated a finite number of possible contexts (Koller and Friedman,
2009, Ch. 5.3). CENs, on the other hand, are designed to handle arbitrary complex context
representations. Context-specific approaches are widely used in language modeling where
the context is typically represented with trainable embeddings (Rudolph et al., 2016). We
also note that few-shot learning explicitly considers a setup where the context is represented
by a small set of labeled examples (Santoro et al., 2016; Garnelo et al., 2018).

4.3 Meta-learning

The way CENs operate resembles the meta-learning setup. In meta-learning, the goal is to
learn a meta-model which, given a task, can produce another model capable of solving the
task (Thrun and Pratt, 1998). The representation of the task can be seen as the context while
produced task-specific models are similar to CEN-generated explanations. Meta-training a
deep network that generates parameters for another network has been successfully used for
zero-shot (Lei Ba et al., 2015; Changpinyo et al., 2016) and few-shot (Edwards and Storkey,
2016; Vinyals et al., 2016) learning, cold-start recommendations (Vartak et al., 2017), and
a few other scenarios (Bertinetto et al., 2016; De Brabandere et al., 2016; Ha et al., 2016),
but is not suitable for interpretability purposes. In contrast, CENs generate parameters
for models from a restricted class (potentially, based on domain knowledge) and use the
attention mechanism (Xu et al., 2015) to further improve interpretability.

4.4 Model interpretability

While there are many ways to define interpretability (Lipton, 2016; Doshi-Velez and Kim,
2017), our discussion focuses on explanations defined as simple models that locally approxi-
mate behavior of a complex model. A few methods that allow to construct such explanations
in a post-hoc manner have been proposed recently (Ribeiro et al., 2016; Shrikumar et al.,

3. To see why this is the case, consider graphical models given in Figure 2 which relate input, X, and target,
Y, variables using linear pairwise potential functions. Linearity allows to directly interpret parameters
of the model as associations between the variables. Substituting inputs, X, with deep representations
or defining potentials via neural networks would result in a more powerful model. However, precise
relationships between the variables will be no longer directly readable from the model parameters.

9



Al-Shedivat, Dubey, Xing

2017; Lundberg and Lee, 2017), some of which we review in the next section. In contrast,
CENs learn to generate such explanations along with predictions. There are multiple other
complementary approaches to interpretability ranging from a variety of visualization tech-
niques (Simonyan and Zisserman, 2014; Yosinski et al., 2015; Mahendran and Vedaldi, 2015;
Karpathy et al., 2015), to explanations by example (Caruana et al., 1999; Kim et al., 2014,
2016; Koh and Liang, 2017), to natural language rationales (Lei et al., 2016). Finally, our
framework encompasses the so-called personalized or instance-specific models that learn to
partition the space of inputs and fit local sub-models (Wang and Saligrama, 2012).

5. Analysis

In this section, we dive into the analysis of CEN as a class of probabilistic models. First, we
mention special cases of CEN model class known in the literature, such as mixture-of-experts
(Jacobs et al., 1991) and varying-coefficient models (Hastie and Tibshirani, 1993). Then, we
discuss implications of the CEN structure, a potential failure mode of CEN with deterministic
encoders and how to rectify it using conditional entropy regularization, and finally analyze
relationship between CEN-generated and post-hoc explanations. Readers who are mostly
interested in empirical properties and applications may skip this section.

5.1 Special Cases of CEN

Mixtures of Experts. So far, we have represented Pw (θ | c) by a delta-function centered
around the output of the encoder. It is natural to extend Pw (θ | c) to a mixture of delta-
distributions, in which case CENs recover the mixtures-of-experts model (MoE, Jacobs
et al., 1991). To see this, let D be a dictionary of experts, and define Pw,D (θ | c) :=∑K

k=1 Pw (k | c) δ(θ,θk). The log-likelihood for CEN in such case is the same as for MoE:

X1 X2 X3 X4

Y1 Y2 Y3 Y4

Y1 Y2 Y3 Y4

X1 X2 X3 X4

Y1 Y2 Y3 Y4

X1 X2 X3 X4

Y1 Y2 Y3 Y4

Mixture of Experts

dot
Attention

logPw,D (yi | xi, ci)

= log

∫
P (yi|xi,θ)Pw,D (θ|ci) dθ

= log
K∑
k=1

Pw (k|ci)P (yi|xi,θk)

(11)

As in Section 3.1.2, Pw (k | C) is represented with a soft attention over the dictionary, D,
which is now used to combine predictions of the experts with parameters {θk}Kk=1 instead of
constructing a single context-specific explanation. Learning of MoE models is done either by
optimizing the likelihood or via expectation maximization (EM). Note another difference
between CEN and MoE is that the latter assumed that c ≡ x and that both P (y | x,θ) and
P (θ | c) can be represented by arbitrary complex model classes, ignoring interpretability.
Varying-Coefficient Models. In statistics, there is a class of (generalized) regression
models, called varying-coefficient models (VCMs, Hastie and Tibshirani, 1993), in which
coefficients of linear models are allowed to be smooth deterministic functions of other
variables (called the “effect modifiers”). Interestingly, the motivation for VCM was to increase
flexibility of linear regression. In the original work, Hastie and Tibshirani (1993) focused on
simple dynamic (temporal) linear models and on nonparametric estimation of the varying
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coefficients, where each coefficient depended on a different effect variable. CEN generalizes
VCM by (i) allowing parameters, θ, to be random variables that depend on the context,
c, nondeterministically, (ii) letting the “effect modifiers” to be high-dimensional context
variables (not just scalars), and (iii) modeling the effects using deep neural networks. In
other words, CEN alleviates the limitations of VCM by leveraging the probabilistic graphical
models and deep learning frameworks.

5.2 Implications of the Structure of CENs

CENs represent the predictive distribution in a compound form (Lindsay, 1995):

P (Y | X,C) =

∫
P (Y | X,θ)P (θ | C) dθ

and we assume that the data is generated according to Y ∼ P (Y | X,θ), θ ∼ P (θ | C). We
would like to understand:

Can CEN represent any conditional distribution, P (Y | X,C), when the class of
explanations is limited ( e.g., to linear models)? If not, what are the limitations?

Generally, CEN can be seen as a mixture of predictors. Such mixture models could be quite
powerful as long as the mixing distribution, P (θ | C), is rich enough. In fact, even a finite
mixture exponential family regression models can approximate any smooth d-dimensional
density at a rate O(m−4/d) in the KL-distance (Jiang and Tanner, 1999). This result suggests
that representing the predictive distribution with contextual mixtures should not limit the
representational power of the model. However, there are two caveats:

(i) In practice, P (θ | C) is limited, since we represent it either with a delta-function, a
finite mixture, or a simple distribution parametrized by a deep network.

(ii) Classical predictive mixtures (including MoE) do not separate input features into two
subsets, c and x. We do this intentionally to produce explanations in terms of specific
variables of interest that could be useful for interpretability or model diagnostics down
the line. However, it could be the case that x contains only some limited information
about y, which could limit the predictive power of the full model.

To address point (i), we consider P (θ | c) that fully factorizes over the dimensions of θ:
P (θ | c) =

∏
j P (θj | c), and assume that explanations, P (Y | x,θ), also factorize according

to some underlying graph, GY = (VY, EY). The following proposition shows that in such
case P (Y | x, c) inherits the factorization properties of the explanation class.

Proposition 1 Let P (θ | c) :=
∏
j P (θj | c) and let P (Y | x,θ) factorize according to

some graph GY = (VY, EY). Then, P (Y | x, c) defined by CEN with P (θ | c) encoder
and P (Y | x,θ) explanations also factorizes according to G.
Proof The statement directly follows from the definition of CEN (see Appendix A.1).

Remark 2 All encoders, P (θ | c), considered in this paper, including delta functions and
their mixtures, fully factorize over the dimensions of θ.
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Remark 3 The proposition has no implications for the case of scalar targets, y. However,
in case of structured prediction, regardless of how good the context encoder is, CEN will
strictly assume the same set of independencies as given by the explanation class, P (Y | x,θ).

As indicated in point (ii), CENs assume a fixed split of the input features into context, c,
and variables of interest, x, which has interesting implications. Ideally, we would like x to
be a good predictor of y in any context c. For instance, following our motivation example
(see Figure 1), if c distinguishes between urban and rural areas, x must encode enough
information for predicting poverty within urban or rural neighborhoods. However, since the
variables of interest are often manually selected (e.g., by a domain expert) and limited, we
may encounter the following (not mutually exclusive) situations:

(a) c may happen to be a strong predictor of y and already contain information available
in x (e.g., it is the case when x is derived from c).

(b) x may happen to be a poor predictor of y, even within the context specified by c.

In both cases, CEN may learn to ignore x, leading to essentially meaningless explanations.
In the next section, we show that, if (a) is the case, regularization can help eliminate such
behavior. Additionally, if (b) is the case, i.e., x are bad features for predicting y (and for
seeking explanation in terms of these features), CEN must indicate that. It turns out that
the accuracy of CEN depends on the quality of x, as empirically shown in Section 6.2.3.

5.3 Conditional Entropy Regularization

CEN has a failure mode: when the context c is highly predictive of the targets y and the
encoder is represented by a powerful model, CEN may learn to rely entirely on the context
variables. In such case, the encoder would generate spurious explanations, one for each
target class. For example, for binary targets, y ∈ {0, 1}, CEN may learn to always map c to
either θ0 or θ1 when y is 0 or 1, respectively. In other words, θ (as a function of c) would
become highly predictive of y on its own, and hence P (Y | x,θ) ≈ P (Y | θ), i.e., Y would
be (approximately) conditionally independent of X given θ. This is problematic from the
interpretation point of view since explanations would become spurious, i.e., no longer used
to make predictions from the variables of interest.

Note that such a model would be accurate only when the generated θ is always highly
predictive of Y, i.e., when the conditional entropyH(Y | θ) is low. Following this observation,
we propose to regularize the model by approximately maximizing H(Y | θ). For a CEN with
a deterministic encoder (Sections 3.1.1 and 3.1.2), we can compute an unbiased estimate of
H(Y | θ) given a mini-batch of samples from the dataset as follows:

H(Y | θ) =

∫
P (y,θ) logP (y | θ) dydθ (12)

= E(c,x)∼P(C,X)

[∫
P (y | x, φ(c)) logEx′∼P(X|c)

[
P
(
y | x′, φ(c)

)]
dy

]
(13)

≈ 1

|B|
∑
i∈B

∫
P (y | xi, φ(ci)) log

 ∑
x′∼P(X|ci)

P
(
y | x′, φ(ci)

) dy (14)
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Figure 4: A toy synthetic dataset and two linear explanations (green and orange) produced by a
CEN model trained (a) with no regularization or (b) with conditional entropy regularization.

In the given expressions, elements of B index training samples (e.g., B represents a mini-
batch), (13) is obtained by using the definition of CEN and marginalizing out θ, (14)
is a stochastic estimate that approximates expectations using a mini-batch and samples
from P (X | ci). In practice, approximate samples x′ from the latter distribution can be
obtained either by simply perturbing xi or first learning P (X | C) and then sampling from
it. Intuitively, if the predictions are accurate while H(Y | θ) is high, we can be sure that
CEN learned to generate contextual θ’s that are uncorrelated with the targets but result
into accurate conditional models, P (Y | x,θ).

An illustration on synthetic data. To illustrate the problem, we consider a toy synthetic
3D dataset with 2 classes that are not separable linearly (Figure 4). The coordinates along
the vertical axis C correspond to different contexts, and (X1, X2) represent variables of
interest. Note we can perfectly distinguish between the two classes by using only the
context information. CEN with a dictionary of size 2 learns to select one of the two linear
explanations for each of the contexts. When trained without regularization (Figure 4a),
selected explanations are spurious hyperplanes since each of them is used for points of a
single class only. Adding entropy regularization (Figure 4b) makes CEN select hyperplanes
that meaningfully distinguish between the classes within different contexts.

Quantifying contribution of the explanations. Starting from the introduction, we
have argued that explanations are meaningful when they are used for prediction. In other
words, we would like explanations have a non-zero contribution to the overall accuracy of the
model. The following proposition quantifies the contribution of explanations to the predictive
performance of entropy-regularized CEN.

Proposition 4 Let CEN with linear explanations have the expected predictive accuracy

EX,θ∼P(X,θ)

[
P
(
Ŷ = Y | X,θ

)]
≥ 1− ε, (15)
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where ε ∈ (0, 1) is small. Let also the conditional entropy be H(Y | θ) ≥ δ for some δ ≥ 0.
Then, the expected contribution of the explanations to the predictive performance of CEN is
given by the following lower bound:

EX,θ∼P(X,θ)

[
P
(
Ŷ = Y | X,θ

)
− P

(
Ŷ = Y | θ

)]
≥ δ − 1

log |Y| − ε, (16)

where |Y| denotes the cardinality of the target space.

Proof The statement follows from Fano’s inequality. For details, see Appendix A.2.

Remark 5 The proposition states that explanations are meaningful (as contextual models)
only when CEN is accurate ( i.e., the expected predictive error is less than ε) and the conditional
entropy H(Y | θ) is high. High accuracy and low entropy imply spurious explanations. Low
accuracy and high entropy imply that x features are not predictive of y within the class of
explanations, suggesting to reconsider our modeling assumptions.

5.4 CEN-generated vs. Post-hoc Explanations

In this section, we analyze the relationship between CEN-generated and LIME-generated
post-hoc explanations. Given a trained CEN, we can use LIME to approximate its decision
boundary and compare the explanations produced by both methods. The question we ask:

How does the local approximation, θ̂, relate to the actual explanation, θ?, generated
and used by CEN to make a prediction in the first place?

For the case of binary4 classification, it turns out that when the context encoder is determin-
istic and the space of explanations is linear, local approximations, θ̂, obtained by solving (1)
recover the original CEN-generated explanations, θ?. Formally, our result is stated in the
following theorem.

Theorem 6 Let the explanations and the local approximations be in the class of linear models,
P (Y = 1 | x,θ) ∝ exp

{
x>θ

}
. Further, let the encoder be L-Lipschitz and pick a sampling

distribution, πx,c, that concentrates around the point (x, c), such that Pπx,c (‖z′ − z‖ > t) <
ε(t), where z := (x, c) and ε(t)→ 0 as t→∞. Then, if the loss function is defined as

L =
1

K

K∑
k=1

(logit {P (Y = 1 | xk, ck)} − logit {P (Y = 1 | xk,θ)})2 , (xk, ck) ∼ πx,c, (17)

the solution of (1) concentrates around θ? as Pπx,c
(
‖θ̂ − θ?‖ > t

)
≤ δK,L(t), δK,L −→

t→∞
0.

Intuitively, by sampling from a distribution sharply concentrated around (x, c), we ensure
that θ̂ will recover θ? with high probability. A detailed proof is given in Appendix A.3.

This result establishes an equivalence between the explanations generated by CEN and
those produced by LIME post-hoc when approximating CEN. Note that when LIME is
applied to a model other than CEN, equivalence between explanations is not guaranteed.
Moreover, as we further show experimentally, certain conditions such as incomplete or noisy
interpretable features may lead to LIME producing inconsistent and erroneous explanations.

4. Analysis of the multi-class case can be reduced to the binary in the one-vs-all fashion.
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6. Case Studies

In this section, we move to a number of case studies where we empirically analyze properties
of the proposed CEN framework on classification and survival analysis tasks. In particular,
we evaluate CEN with linear explanations on a few classification tasks that involve different
data modalities of the context (e.g., images or text). For survival prediction, we design CEN
architectures with structured explanations, derive learning and inference algorithms, and
showcase our models on problems from the healthcare domain.

6.1 Solving Classification using CEN with Linear Explanations

We start by examining the properties of CEN with linear explanations (Table 1) on a few
classification tasks. Our experiments are designed to answer the following questions:

(i) When explanation is a part of the learning and prediction process, how does that affect
performance of the final predictive model quantitatively?

(ii) Qualitatively, what kind of insight can we gain by inspecting explanations?
(iii) Finally, we analyze consistency of linear explanations generated by CEN versus those

generated using LIME (Ribeiro et al., 2016), a popular post-hoc method.

Details on our experimental setup, all hyperparameters, and training procedures are given in
the tables in Appendix B.3.

6.1.1 Poverty Prediction

We consider the problem of poverty prediction for household clusters in Uganda from satellite
imagery and survey data. Each household cluster is represented by a collection of 400× 400
satellite images (used as the context) and 65 categorical variables from living standards
measurement survey (used as the interpretable attributes). The task is binary classification
of the households into being either below or above the poverty line.

We follow the original study of Jean et al. (2016) and use a VGG-F network (pre-trained
on nightlight intensity prediction) to compute 4096-dimensional embeddings of the satellite
images on top of which we build contextual models. Note that this datasets is fairly small
(500 training and 142 test points), and so we keep the VGG-F part frozen to avoid overfitting.

Table 2: Performance of the mod-
els on the poverty prediction task.

Acc ↑ AUC ↑
LRemb 62.5% 68.1%

LRatt 75.7% 82.2%

MLP 77.4% 78.7%

MoEatt 77.9% 85.4%

CENatt 81.5% 84.2%

Models. For baselines, we use logistic regression (LR)
and multi-layer perceptrons (MLP) with 1 hidden layer.
The LR uses either VGG-F embeddings (LRemb) or the
categorical attributes (LRatt) as inputs. The input of the
MLP is concatenated VGG-F embeddings and categorical
attributes. Context encoder of the CEN model uses VGG-F
to process images, followed by an attention layer over a
dictionary of 16 trainable linear explanations defined over
the categorical features (Figure 3). Finally, we evaluate a
mixture-of-experts (MoE) model of the same architecture
as CEN, since it is a special case (see Section 5.1). Both
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Figure 5: Qualitative results for the Satellite dataset: (a) Weights given to a subset of features by
the two models (M1 and M2) discovered by CEN. (b) How frequently M1 and M2 are selected for
areas marked rural or urban (top) and the average proportion of Tenement-type households in an
urban/rural area for which M1 or M2 was selected. (c) M1 and M2 models selected for different
areas on the Uganda map. M1 tends to be selected for more urbanized areas while M2 is selected for
the rest. (d) Nightlight intensity of different areas.

CEN and MoE are trained with the dictionary constraint
and L1 regularization over the dictionary elements to encourage sparse explanations.

Performance. The results are presented in Table 2. Both in terms of accuracy and AUC,
CEN models outperform both simple logistic regression and vanilla MLP. Even though
the results suggest that categorical features are better predictors of poverty than VGG-F
embeddings of images, note that using embeddings to contextualize linear models reduces
the error. This indicates that different linear models are optimal in different contexts.

Qualitative analysis. We have discovered that, on this task, CEN encoder tends to
sharply select one of the two explanations from the dictionary (denoted M1 and M2) for
different household clusters in Uganda (Figure 5a). In the survey data, each household cluster
is marked as either urban or rural. Conditional on a satellite image, CEN tends to pick M1
more often for urban areas and M2 for rural (Figure 5b). Notice that different explanations
weigh categorical features, such as reliability of the water source or the proportion of houses
with walls made of unburnt brick, quite differently. When visualized on the map, we see
that CEN selects M1 more frequently around the major city areas (Figures 5c), which also
correlates with high nightlight intensity in those areas (Figures 5d).

The estimated approximate conditional entropy of the binary targets (poor vs. not poor)
given the selected model: H(Y | θ = M1) ≈ 77% and H(Y | θ = M2) ≈ 72%. The high
performance of CEN along with high conditional entropy makes us confident in the produced
explanations (Section 5.3) and allows us to draw conclusions about what causes the model
to classify certain households in different neighborhoods as poor in terms of interpretable
categorical variables.

6.1.2 Sentiment Analysis

The next problem we consider is sentiment prediction of IMDB reviews (Maas et al., 2011b).
The reviews are given in the form of English text (sequences of words) and the sentiment
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labels are binary (good/bad movie). This dataset has 25k labelled reviews used for training
and validation, 25k labelled reviews that are held out for test, and 50k unlabelled reviews.

Models. Following Johnson and Zhang (2016), we use a bi-directional LSTM with max-
pooling as our baseline that predicts sentiment directly from text sequences. The same
architecture is used as the context encoder in CEN that produces parameters for linear
explanations. The explanations are applied to either (a) a bag-of-words (BoW) features
(with a vocabulary limited to 2,000 most frequent words excluding English stop-words) or (b)
a 200-dimensional topic representation produced by a separately trained off-the-shelf topic
model (Blei et al., 2003).

Performance. Table 3 compares CEN with other models from the literature. Not only
CEN achieves the state-of-the-art accuracy on this dataset in the supervised setting, it also
outperforms or comes close to many of the semi-supervised methods. This indicates that the
inductive biases provided by the CEN architecture lead to a more significant performance
improvement than most of the semi-supervised training methods on this dataset. We also
remark that classifiers derived from large-scale language models pretrained on massive
unsupervised corpora (e.g., Gray et al., 2017; Howard and Ruder, 2018; Xie et al., 2019)
have become popular and now dominate the leaderboard for this task.

Qualitative analysis. After training CEN-tpc with linear explanations in terms of topics
on the IMDB dataset, we generate explanations for each test example and visualize histograms
of the weights assigned by the explanations to the 6 selected topics in Figure 6. The 3 topics
in the top row are acting- and plot-related (and intuitively have positive, negative, or neutral
connotation), while the 3 topics in the bottom are related to particular genre of the movies.
Note that acting-related topics turn out to be bimodal, i.e., contributing either positively,
negatively, or neutrally to the sentiment prediction in different contexts. CEN assigns a
high negative weight to the topic related to “bad acting/plot” and a high positive weight to
“great story/performance” in most of the contexts (and treats those neutrally conditional
on some of the reviews). Interestingly, genre-related topics almost always have a negligible
contribution to the sentiment which indicates that the learned model does not have any
particular bias towards or against a given genre.

6.1.3 Image Classification

For the purpose of completeness, we also provide results on two classical image datasets:
MNIST and CIFAR-10. For CEN, full images are used as the context; to imitate high-level
features, we use (a) the original images cubically downscaled to 20× 20 pixels, gray-scaled
and normalized, and (b) HOG descriptors computed using 3× 3 blocks (Dalal and Triggs,
2005). For each task, we use linear regression and vanilla convolutional networks as baselines
(a small convnet for MNIST and VGG-16 for CIFAR-10). The results are reported in Table 4.
CENs are competitive with the baselines and do not exhibit deterioration in performance.
Visualization and analysis of the learned explanations is given in Appendix B.2 and the
details on the architectures, hyperparameters, and training are given in Appendix B.3
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Table 3: Sentiment classification error rate on IMDB dataset. The standard error (±) is based on 5
different runs. It is interesting to note that CENs establishes a new state of the art performance on the
supervised prediction task while also outperforming or coming close to many of the semi-supervised
methods that used additional 50k unlabeled reviews for pretraining. All current state of the art
methods leverage large-scale pretraining (the bottom section of the table); these results are not
directly comparable with methods trained on IMDB data only and included for completeness.

Reference Method Error ↓ (%)

Supervised (trained on 25K labeled reviews only)

Maas et al. (2011a) Full + BoW (bnc) 11.67
Dahl et al. (2012) WRRBM + BoW (bnc) 10.77
Wang and Manning (2012) NBSVM-bi 8.78
Johnson and Zhang (2015a) seq2-bown-CNN 7.67
Johnson and Zhang (2015b) oh-CNN (best) 8.39
Johnson and Zhang (2016) oh-2LSTMp (best) 7.33

Ours CEN-bow 6.52± 0.15

CEN-tpc 6.24± 0.12

Semi-supervised (trained on 25K labeled + 50K unlabeled only)

Maas et al. (2011a) Full + Unlabeled + BoW 11.11
Le and Mikolov (2014) Paragraph vectors 7.42
Dai and Le (2015) wv-LSTM 7.24
Johnson and Zhang (2015b) oh-CNN 6.51
Johnson and Zhang (2016) oh-2LSTMp 5.94
Dieng et al. (2017) TopicRNN 6.28
Miyato et al. (2016) Virtual adversarial 5.94

Ours CEN-bow —
CEN-tpc 5.48± 0.09

Semi-supervised via large-scale pre-training (massive external data)

Gray et al. (2017) block-sparse LSTM 5.01
Howard and Ruder (2018) ULMFiT 4.60
Sachan et al. (2019) Mixed-objective LSTM 4.32
Xie et al. (2019) BERT-large 4.20
Haonan et al. (2019) Graph Star 4.00

Table 4: Prediction error of the models on image classification tasks (averaged over 5 runs; the std.
are on the order of the least significant digit). The subscripts denote the features on which the linear
models are built: pixels (pxl), HOG (hog).

MNIST (Error ↓, %) CIFAR10 (Error ↓, %)

LRpxl LRhog CNN MoEpxl MoEhog CENpxl CENhog LRpxl LRhog VGG MoEpxl MoEhog CENpxl CENhog

8.00 2.98 0.75 1.23 1.10 0.76 0.73 60.1 48.6 9.4 13.0 11.7 9.6 9.2
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Figure 6: Histograms of test weights assigned by CEN to 6 topics: acting- and plot-related topics
(upper charts), genre topics (bottom charts).
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Figure 7: Analysis of the behavior of different CEN models with different dictionary sizes (varied
between 1 and 512), feature types, trained on full or on a subset of the data. Shaded regions
denote 95% CI based on 5 runs with different random seeds. (a) CEN is sensitive to the size of the
dictionary—there is a critical size such that models with explanation dictionaries smaller than that
tend to significantly underperform. (b) Sample complexity of CENs. Models are trained with early
stopping based on validation performance.

6.2 Properties of Explanations

In this section, we look at the explanations from the regularization and consistency point of
view. As we show next, prediction via explanation not only has a strong regularization effect,
but also always produces consistent locally linear models. Additionally, we analyze the effect
of entropy regularization, quantify how much CEN’s performance relies on explanations, and
discuss computational considerations and tradeoffs for CEN and LIME.
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Figure 8: The effects of entropy regularization on (a) the predictive performance of a CEN model
and (b) the lower bound on the contribution of the explanations to the relative predictive error
reduction. Shaded regions are 95% CI based on 5 runs with different random seeds.

6.2.1 Explanations as a Regularizer

By controlling the dictionary size, we can control the expressivity of the model class specified
by CEN. For example, when the dictionary size is 1, CEN becomes equivalent to a linear
model.5 For larger dictionaries, CEN becomes as flexible as a deep network (Figure 7a).
Adding a small sparsity penalty to each element of the dictionary (between 10−6 and 10−3,
see Appendix B.3) helps to avoid overfitting for very large dictionary sizes, so that the model
learns to use only a few dictionary atoms for prediction while shrinking the rest to zero.
Generally, dictionary size is a hyperparameter which optimal value depends on the data and
the type of the interpretable features (cf., CEN-bow and CEN-tpc on Figure 7a).

If explanations can act as a proper regularizer, we must observe improved sample efficiency
of the model. To verify this, we trained CEN models on subsets of the data (size varied
between 1% and 30% for MNIST and 2% and 50% for IMDB) with early stopping based
on the validation performance. The test error on MNIST and IMDB for different training
set sizes is presented on Figure 7b. On the IMBD dataset, CEN-tpc required an order of
magnitude fewer samples to match the baseline’s performance, indicating efficient use of
explanations for prediction. Note that such drastic sample efficiency gains were observed
on IMDB only for CEN-tpc (i.e., when using topics as interpretable features); gains for
CEN-bow were noticeable but moderate; no sample efficiency gains were observed on MNIST
for any of our CEN models.

6.2.2 Quantifying Contribution of the Explanations

Even though improved sample efficiency and regularizing effects of explanations indicate
their non-trivial contribution indirectly, we wish to further quantify such contribution of
explanations to the predictive performance of CEN. To do so, we run a set of experiments
where we vary conditional entropy regularization coefficient and measure (a) performance of
CEN on the validation set and (b) expected lower bound on the relative reduction of predictive
error due to explanations, defined as

[
P
(
Ŷ 6= Y | c

)
− P

(
Ŷ 6= Y | x, c

)]/
P
(
Ŷ 6= Y | c

)
.

5. Note that CENs with the dictionary size of 1 is still trained using stochastic optimization method as a
neural network, which tends to yield a somewhat worse performance than the vanilla logistic regression.
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Figure 9: The effect of feature quality on explanations. (a) Explanation test error vs. the level of
the noise added to the interpretable features. (b) Explanation test error vs. the total number of
interpretable features. Error bars indicate 95% CI.

As we have shown in Section 5.3, conditional entropy regularization encourages CEN
models to learn context representations that are minimally correlated with the targets,
and hence makes the model rely on the explanations rather than contextual information
only. Figure 8a shows that entropy regularization generally does not affect predictive
performance of a CEN model, unless the regularization coefficient becomes too large (e.g.,
an order of magnitude larger than the predictive cross-entropy loss). Increasing conditional
entropy regularization leads to CEN models whose performance relies more on explanations
(Figure 8b). However, note that even without entropy regularization, explanations have a
significant relative contribution to the reduction of the predictive error of CEN, ranging
between 10-20% on MNIST and 40-60% on IMDB. This indicates that, while conditional
entropy regularization is beneficial, even without it CEN still learns to generate meaningful,
non-spurious explanations.

6.2.3 Consistency of Explanations

While regularization is a useful aspect, the main use case for explanations is model diagnostics.
Linear explanations assign weights to the interpretable features, X, and thus the quality of
explanations depends on the quality of the selected features. In this section, we evaluate
explanations generated by CEN and LIME (a post-hoc method). In particular, we consider
two cases: (a) the features are corrupted with additive noise, and (b) the selected features
are incomplete. For analysis, we use MNIST and IMDB datasets. Our key question is:

Can we trust the explanations built on noisy or incomplete features?

The effect of noisy features. In this experiment, we inject noise6 into the features X
and ask LIME and CEN to fit explanations to the corrupted features. Note that after
injecting noise, each data point has a noiseless representation C and a noisy X. LIME
constructs explanations by approximating the decision boundary of the baseline model trained
to predict Y from C features only. CEN is trained to construct explanations given C and
then make predictions by applying explanations to X. The predictive performance of the
produced explanations on noisy features is given on Figure 9a. Since baselines take only C

6. We use Gaussian noise with zero mean and select variance for each signal-to-noise ratio level appropriately.
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as inputs, their performance stays the same (dashed line) Regardless of the noise level, LIME
“successfully” overfits explanations—it is able to almost perfectly approximate the decision
boundary of the baselines essentially using pure noise. On the other hand, performance of
CEN degenerates with the increasing noise level indicating that the model fails to learn when
the selected interpretable representation is of very low quality.

The effect of feature selection. Using the same setup, instead of injecting noise into X,
we construct X by randomly subsampling a set of dimensions.7 Figure 9b demonstrates that
while performance of CENs degrades proportionally to the size of X (i.e., less informative
features imply worse performance for CEN), we see that, again, LIME is again able to
perfectly fit explanations to the decision boundary of the original models, despite the loss of
information in the interpretable features X.

These two experiments indicate a major drawback of explaining predictions post-hoc:
when constructed on poor, noisy, or incomplete features, such explanations can overfit an
arbitrary decision boundary of a predictor and are likely to be meaningless or misleading.
For example, predictions of a perfectly valid model might end up getting absurd explanations
which is unacceptable from the decision support point of view.8 On the other hand, if we
use CEN to generate explanations, high predictive performance would indicate presence of a
meaningful signal in the selected interpretable features and explanations.

6.2.4 Computational Overhead and Considerations

Table 5: Compute time overhead.

Dataset CEN LIME

Training time overhead

MNIST 18.6± 1.7% —
IMDB 1.8± 0.5% —
Satellite 0.4± 0.1% —

Explanation time per instance

MNIST 0.05± 0.03 ms 77± 9 ms
IMDB 0.07± 0.03 ms 38± 5 ms
Satellite 0.01± 0.01 ms 22± 6 ms

Given all the advantages of CEN, such as often improved
performance and consistency of linear explanations, what
is the added computational overhead? It turns out that
CEN compares quite favorably against the typical bundle
solution: a vanilla deep network plus a post-hoc explanation
system ( e.g., LIME). The CEN architecture essentially adds
a single bi-linear layer to the top of a network, resulting in
a mild overhead of O(D× |X |) multiplication and addition
operations during the forward pass through the model.
The training time overhead in aggregate does not exceed
20% when compared to a vanilla deep network of the same
architecture (Table 5). Note that the models we used in
our experiments are tiny by the modern standards, and
we expect CEN’s relative compute overhead to be even smaller for modern large-scale
architectures. Also note that CENs generate explanations more than three orders of magnitude
faster than LIME, manly because the latter has to solve an optimization problem for each
instance of interest to obtain an explanation.

7. Subsampling dimensions from X is done to resemble human subjectivity in selecting semantically
meaningful features for model interpretation.

8. Similar behavior has been observed in recent work that studied post-hoc explanation systems in adversarial
settings (Dombrowski et al., 2019; Lakkaraju and Bastani, 2019).
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6.3 Solving Survival Analysis using CEN with Structured Explanations

In this final case study, we design CENs with structured explanations for survival prediction.
We provide some general background on survival analysis and the structured prediction
approach proposed by Yu et al. (2011), then introduce CENs with linear CRF-based expla-
nations for survival analysis, and conclude with experimental results on two public datasets
from the healthcare domain.

6.3.1 Background on Survival Analysis via Structured Prediction

In survival time prediction, our goal is to estimate the risk and occurrence time of an
undesirable event in the future (e.g., death of a patient, earthquake, hard drive failure,
customer turnover, etc.). A common approach is to model the survival time, T , either for a
population (i.e., average survival time) or for each instance. Classical approaches, such as
Aalen additive hazard (Aalen, 1989) and Cox proportional hazard (Cox, 1972) models, view
survival analysis as continuous time prediction and hence a regression problem.

Alternatively, the time can be discretized into intervals (e.g., days, weeks, etc.), and the
survival time prediction can be converted into a multi-task classification problem (Efron,
1988). Taking this approach one step further, Yu et al. (2011) noticed that the output space
of such a multitask classifier is structured in a particular way, and proposed a model called
sequence of dependent regressors. The model is essentially a CRF with a particular structure
of the pairwise potentials between the labels. We introduce the setup in our notation below.

Let the data instances be represented by tuples (c,x,y), where targets are now sequences
of m binary variables, y := (y1, . . . , ym), that indicate occurrence of an event at the
corresponding time intervals.9 If the event occurred at time t ∈ [ti, ti+1), then yj = 0, ∀j ≤ i
and yk = 1, ∀k > i. If the event was censored (i.e., we lack information for times after t), we
represent targets (yi+1, . . . , ym) with latent variables. Importantly, only m+ 1 sequences are
valid under these conditions, i.e., assigned non-zero probability by the model. This suggests
a linear CRF model defined as follows:

P
(
Y = (y1, y2, . . . , ym) | x,θ1:m

)
∝ exp

{
m∑
t=1

yi(x>θt) + ω(yt, yt+1)

}
(18)

The potentials between x and y1:m are linear functions parameterized by θ1:m. The pairwise
potentials between targets, ω(yi, yi+1), ensure that non-permissible configurations where
(yi = 1, yi+1 = 0) for some i ∈ {0, . . . ,m − 1} are improbable (i.e., ω(1, 0) = −∞ and
ω(0, 0) = ω00, ω(0, 1) = ω01, ω(1, 1) = ω10 are learnable parameters).

To train the model, Yu et al. (2011) optimize the following objective:

min
Θ

C1

m∑
t=1

‖θt‖2 + C2

m−1∑
t=1

‖θt+1 − θt‖2 − logL(Y,X;θ1:m) (19)

where the first two terms are regularization and the last term is the log of the likelihood:

L(Y,X; Θ) =
∑
i∈NC

P (T = ti | xi,Θ) +
∑
j∈C

P (T > tj | xj ,Θ) (20)

9. We assume that the occurrence time is lower bounded by t0 = 0, upper bounded by some tm = T , and
discretized into intervals [ti, ti+1), where i ∈ {0, . . . ,m− 1}.
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(a) Architecture used for SUPPORT2.
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(b) Architecture used for PhysioNet.

Figure 10: CEN architectures used in our survival analysis experiments. Context encoders were
(a) single hidden layer MLP and (b) LSTM. Encoders produced inputs for another LSTM over the
output time intervals (denoted with h1, h2, h3 hidden states respectively).

where NC denotes the set of non-censored instances (for which we know the outcome times,
ti) and C is the set of censored inputs (for which we only know the censorship times, tj).
The likelihood of an uncensored and a censored event at time t ∈ [tj , tj+1) are as follows:

P
(
T = t | x,θ1:m

)
= exp


m∑
i=j

x>θi


/

m∑
k=0

exp

{
m∑

i=k+1

x>θi

}

P
(
T ≥ t | x,θ1:m

)
=

m∑
k=j+1

exp

{
m∑

i=k+1

x>θi

}/
m∑
k=0

exp

{
m∑

i=k+1

x>θi

} (21)

6.3.2 CEN with Structured Explanations for Survival Analysis

To construct CEN for survival analysis, we follow the structured survival prediction setup
described in the previous section. We define CEN with linear CRF explanations as follows:

θt ∼ Pw

(
θt | c

)
, y ∼ P

(
Y | x,θ1:m

)
,

P
(
Y = (y1, y2, . . . , ym) | x,θ1:m

)
∝ exp

{
m∑
t=1

yi(x>θt) + ω(yt, yt+1)

}
,

Pw

(
θt | c

)
:= δ(θt, φtw,D(c)), φtw,D(c) := α(ht)>D, ht := RNN(ht−1, c)

(22)

Note that an RNN-based context encoder generates different explanations for each time
point, θt (Figure 10). All θt are generated using context- and time-specific attention α(ht)
over the dictionary D. We adopt the training objective from (19) with the same likelihood
(20). The model is a special case of CENs with structured explanations (Section 3.2.2).

6.3.3 Survival Analysis of Patients in Intense Care Units

We evaluate the proposed model against baselines on two survival prediction tasks.
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Table 6: Performance of the baselines and CENs with structured explanations. The numbers are
averages from 5-fold cross-validation; the std. are on the order of the least significant digit. “Acc@K”
denotes accuracy at the K-th temporal quantile (see main text for explanation).

SUPPORT2 PhysioNet Challenge 2012

Model Acc@25 Acc@50 Acc@75 RAE Model Acc@25 Acc@50 Acc@75 RAE

Cox 84.1 73.7 47.6 0.90 Cox 93.0 69.6 49.1 0.24

Aalen 87.1 66.2 45.8 0.98 Aalen 93.3 78.7 57.1 0.31
CRF 84.4 89.3 79.2 0.59 CRF 93.2 85.1 65.6 0.14

MLP-CRF 87.7 89.6 80.1 0.62 LSTM-CRF 93.9 86.3 68.1 0.11

MLP-CEN 84.4 96.2 83.3 0.52 LSTM-CEN 94.8 87.5 70.1 0.09

Datasets. We use two publicly available datasets for survival analysis of of the intense care
unit (ICU) patients: (a) SUPPORT2,10 and (b) data from the PhysioNet 2012 challenge.11

The data was preprocessed and used as follows.
SUPPORT2: The data had 9105 patient records (7105 training, 1000 validation, 1000 test)

and 73 variables. We selected 50 variables for both C and X features (i.e., the context and
the variables of interest were identical). Categorical features (such as race or sex) were
one-hot encoded. The values of all features were non-negative, and we filled the missing
values with -1 to preserve the information about missingness. For CRF-based predictors, we
capped the survival timeline at 3 years and converted it into 156 discrete 7-day intervals.

PhysioNet: The data had 4000 patient records, each represented by a 48-hour irregularly
sampled 37-dimensional time-series of different measurements taken during the patient’s
stay at the ICU. We resampled and mean-aggregated the time-series at 30 min frequency.
This resulted in a large number of missing values that we filled with 0. The resampled
time-series were used as the context, C. For the attributes, X, we took the values of the last
available measurement for each variable in the series. For CRF-based predictors, we capped
the survival timeline at 60 days and converted into 60 discrete intervals.

Models. For baselines, we use the classical Aalen and Cox models12 and the CRF from
(Yu et al., 2011). All the baselines used X as their inputs. Next, we combine CRFs with
neural encoders in two ways:
(i) We apply CRFs to the outputs from the neural encoders (the models denoted MLP-CRF

and LSTM-CRF).13 Note that parameters of such CRF layer assign weights to the latent
features and are not interpretable in terms of the attributes of interest.

(ii) We use CENs with CRF-based explanations, that process the context variables, C, using
the same neural networks as in (i) and output the sequence of parameters θ1:m for CRFs,
while the latter act on the attributes, X, to make structured predictions.

More details on the architectures and training are given in Appendix B.3.

Metrics. Following Yu et al. (2011), we use two metrics specific to survival analysis:
(a) Accuracy of correctly predicting survival of a patient at times that correspond to 25%,

50%, and 75% population-level temporal quantiles (i.e., the time points such that the

10. http://biostat.mc.vanderbilt.edu/wiki/Main/DataSets.
11. https://physionet.org/challenge/2012/.
12. Implementation based on https://github.com/CamDavidsonPilon/lifelines.
13. Similar models have been very successful in the natural language applications (Collobert et al., 2011).
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Figure 11: Weights of the CEN-generated CRF explanations for two patients from SUPPORT2
dataset for a set of the most influential features: dementia (comorbidity), avtisst (avg. TISS, days
3-25), slos (days from study entry to discharge), hday (day in hospital at study admit), ca_yes (the
patient had cancer), sfdm2_Coma or Intub (intubated or in coma at month 2), sfdm2_SIP (sickness
impact profile score at month 2). Higher weight values correspond to higher contributions to the risk
of death after a given time.

corresponding % of the population in the data were discharged from the study due to
censorship or death).

(b) The relative absolute error (RAE) between the predicted and actual time of death for
non-censored patients.
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Figure 12: CEN-predicted survival
curves for 100 random test patients
from SUPPORT2. Color indicates
death within 1 year after leaving the
hospital. Shaded regions are 99% CI.

Performance. The results for all models are given in
Table 6. Our implementation of the CRF baseline slightly
improves upon the performance reported by Yu et al.
(2011). MLP-CRF and LSTM-CRF improve upon plain
CRFs but, as we noted, can no longer be interpreted
in terms of the original variables. CENs outperform or
closely match neural CRF models on all metrics while
providing interpretable explanations for the predicted
risk for each patient at each point in time.

Qualitative analysis. To inspect predictions of CENs
qualitatively, for any given patient, we can visualize the
weights assigned by the corresponding explanation to
the respective attributes. Figure 11 shows weights of the
explanations for a subset of the most influential features

for two patients from SUPPORT2 dataset who were predicted as survivor/non-survivor.
These temporal charts help us (a) to better understand which features the model selects
as the most influential at each point in time, and (b) to identify potential inconsistencies
in the model or the data—for example, using a chart as in Figure 11 we identified and
excluded a feature (hospdead) from SUPPORT2 data, which initially was included but
leaked information about the outcome as it directly indicated in-hospital death. Finally,
explanations also allow us to better understand patient-specific temporal dynamics of the
contributing factors to the survival rates predicted by the model (Figure 12).
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7. Conclusion

In this paper, we have introduced contextual explanation networks (CENs)—a class of models
that learn to predict by generating and leveraging intermediate context-specific explanations.
We have formally defined CENs as a class of probabilistic models, considered a number
of special cases (e.g., the mixture-of-experts model), and derived learning and inference
algorithms within the encoder-decoder framework for simple and sequentially-structured
outputs. We have shown that there are certain conditions when post-hoc explanations are
erroneous and misleading. Such cases are hard to detect unless explanation is a part of the
prediction process itself, as in CEN. Finally, learning to predict and to explain jointly turned
out to have a number of benefits, including strong regularization, consistency, and ability to
generate explanations with no computational overhead, as shown in our case studies.

We would like to point out a few limitations of our approach and potential ways of
addressing those in the future work. Firstly, while each prediction made by CEN comes
with an explanation, the process of conditioning on the context is still uninterpretable.
Ideas similar to context selection (Liu et al., 2017) or rationale generation (Lei et al., 2016)
may help improve interpretability of the conditioning. Secondly, the space of explanations
considered in this work assumes the same graphical structure and parameterization for all
explanations and uses a simple sparse dictionary constraint. This might be limiting, and one
could imagine using a more hierarchically structured space of explanations instead, bringing
to bear amortized inference techniques (Rudolph et al., 2017). Nonetheless, we believe that
the proposed class of models is useful not only for improving prediction capabilities, but also
for model diagnostics, pattern discovery, and general data analysis, especially when machine
learning is used for decision support in high-stakes applications.
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Appendix A. Proofs

A.1 Proof of Proposition 1

Assume that P (Y | X,θ) factorizes as
∏

a∈VY P
(
Ya | YMB(a),X,θa

)
, where a denotes sub-

sets of the Y variables and MB(a) stands for the corresponding Markov blankets. Using the
definition of CEN given in (3), we have:

P (Y | X,C) =

∫
P (Y | X,θ)P (θ | C) dθ

=

∫ ∏
a∈VY

P
(
Ya | YMB(a),X,θa

)∏
j

P (θj | C) dθ

=
∏

a∈VY

∫ P
(
Ya | YMB(a),X,θa

)∏
j∈a

P (θj | C) dθa


=
∏

a∈VY

P
(
Ya | YMB(a),X,C

)
(A.1)

A.2 Proof of Proposition 4

To derive the lower bound on the contribution of explanations in terms of expected accuracy,
we first need to bound the probability of the error when only θ are used for prediction:

Pe := P
(
Ŷ(θ) 6= Y

)
= Eθ∼P(θ)

[
P
(
Ŷ 6= Y | θ

)]
,

which we bound using the Fano’s inequality (Ch. 2.11, Cover and Thomas, 2012):

H (Pe) + Pe log (|Y| − 1) ≥ H (Y | θ) (A.2)

Since the error (Ŷ(θ) 6= Y) is a binary random variable, then H (Pe) ≤ 1. After weakening
the inequality and using H (Y | θ) ≥ δ from the proposition statement, we get:

Eθ∼P(θ)

[
P
(
Ŷ 6= Y | θ

)]
≥ H (Y | θ)− 1

log |Y| ≥ δ − 1

log |Y| (A.3)

The claimed lower bound (16) follows after we combine (A.3) and the assumed bound on the
accuracy of the model in terms of ε given in (15).

A.3 Proof of Theorem 6

To prove the theorem, consider the case when f is defined by a CEN, instead of x we have
(c,x), and the class of approximations, G, coincides with the class of explanations, and hence
can be represented by θ. In this setting, we can pose the same problem as:

θ̂ = arg min
θ

L(f,θ, πc,x) + Ω(θ) (A.4)

Suppose that CEN produces θ? explanation for the context c using a deterministic encoder,
φ. The question is whether and under which conditions θ̂ can recover θ?. Theorem 6 answers
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the question in affirmative and provides a concentration result for the case when hypotheses
are linear. Here, we prove Theorem 6 for a little more general class of log-linear explanations:
logit {P (Y = 1 | x, θ)} = a(x)>θ, where a is a C-Lipschitz vector-valued function whose
values have a zero-mean distribution when (x, c) are sampled from πx,c

14. For simplicity of
the analysis, we consider binary classification and omit the regularization term, Ω(g). We
define the loss function, L(f,θ, πx,c), as:

L =
1

K

K∑
k=1

(logit {P (Y = 1 | xk − x, ck)} − logit {P (Y = 1 | xk − x,θ)})2 (A.5)

where (xk, ck) ∼ πx,c and πx,c := πxπc is a distribution concentrated around (x, c). Without
loss of generality, we also drop the bias terms in the linear models and assume that a(xk −x)
are centered.

Proof The optimization problem (A.4) reduces to the least squares linear regression:

θ̂ = arg min
θ

1

K

K∑
k=1

(
logit {P (Y = 1 | xk − x, ck)} − a(xk − x)>θ

)2
(A.6)

We consider deterministic encoding, P (θ | c) := δ(θ,φ(c)), and hence we have:

logit {P (Y = 1 | xk − x, ck)} = logit {P (Y = 1 | xk − x,θ = φ(ck))}
= a(xk − x)>φ(ck)

(A.7)

To simplify the notation, we denote ak := a(xk − x), φk := φ(ck), and φ := φ(c). The
solution of (A.6) now can be written in a closed form:

θ̂ =

[
1

K

K∑
k=1

aka
>
k

]+ [
1

K

K∑
k=1

aka
>
k φk

]
(A.8)

Note that θ̂ is a random variable since (xk, ck) are randomly generated from πx,c. To further
simplify the notation, denoteM := 1

K

∑K
k=1 aka

>
k . To get a concentration bound on ‖θ̂−θ?‖,

we will use the continuity of φ(·) and a(·), concentration properties of πx,c around (x, c), and
some elementary results from random matrix theory. To be more concrete, since we assumed
that πx,c factorizes, we further let πx and πc concentrate such that Pπx (‖x′ − x‖ > t) < εx(t)
and Pπc (‖c′ − c‖ > t) < εc(t), respectively, where εx(t) and εc(t) both go to 0 as t → ∞,
potentially at different rates.

First, we have the following bound from the convexity of the norm:

P
(
‖θ̂ − θ?‖ > t

)
= P

(∥∥∥∥∥ 1

K

K∑
k=1

[
M+aka

>
k (φk − φ)

]∥∥∥∥∥ > t

)
(A.9)

≤ P

(
1

K

K∑
k=1

∥∥∥M+aka
>
k (φk − φ)

∥∥∥ > t

)
(A.10)

14. In case of logistic regression, a(x) = [1, x1, . . . , xd]
>.
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By making use of the inequality ‖Ax‖ ≤ ‖A‖‖x‖, where ‖A‖ denotes the spectral norm of
the matrix A, the L-Lipschitz property of φ(c), the C-Lipschitz property of a(x), and the
concentration of xk around x, we have

P
(
‖θ̂ − θ?‖ > t

)
≤ P

(
L

1

K

K∑
k=1

∥∥∥M+aka
>
k

∥∥∥ ‖ck − c‖ > t

)
(A.11)

≤ P

(
CL

∥∥M+
∥∥ 1

K

K∑
k=1

∥∥∥aka>k ∥∥∥ ‖ck − c‖ > t

)
(A.12)

≤ P

(
CL

λmin(M)

1

K

K∑
k=1

‖xk − x‖‖ck − c‖ > t

)
(A.13)

≤ P
(

CLτ2

λmin(M)
> t

)
+ P

(
‖xk − x‖‖ck − c‖ > τ2

)
(A.14)

≤ P
(
λmin

(
M/(Cτ)2

)
<

L

C2t

)
+ εx(τ) + εc(τ) (A.15)

Note that we used the fact that the spectral norm of a rank-1 matrix, a(xk)a(xk)>, is simply
the norm of a(xk), and the spectral norm of the pseudo-inverse of a matrix is equal to the
inverse of the least non-zero singular value of the original matrix: ‖M+‖ ≤ λmax(M+) =
λ−1min(M).

Finally, we need a concentration bound on λmin

(
M/(Cτ)2

)
to complete the proof.

Note that M
C2τ2

= 1
K

∑K
k=1

(
ak
Cτ

) (
ak
Cτ

)>, where the norm of
(

ak
Cτ

)
is bounded by 1. If we

denote µmin(Cτ) the minimal eigenvalue of Cov
[

ak
Cτ

]
, we can write the matrix Chernoff

inequality (Tropp, 2012) as follows:

P
(
λmin

(
M/(Cτ)2

)
< α

)
≤ d exp {−KD(α‖µmin(Cτ))} , α ∈ [0, µmin(Cτ)]

where d is the dimension of ak, α := L
C2t

, and D(a‖b) denotes the binary information
divergence:

D(a‖b) = a log
(a
b

)
+ (1− a) log

(
1− a
1− b

)
.

The final concentration bound has the following form:

P
(
‖θ̂ − θ?‖ > t

)
≤ d exp

{
−KD

(
L

C2t
‖µmin(Cτ)

)}
+ εx(τ) + εc(τ) (A.16)

We see that as τ → ∞ and t → ∞ all terms on the right hand side vanish, and hence θ̂
concentrates around θ?. Note that as long as µmin(Cτ) is far from 0, the first term can be
made negligibly small by sampling more points around (x, c). Finally, we set τ ≡ t and
denote the right hand side by δK,L,C(t) that goes to 0 as t→∞ to recover the statement of
the original theorem.

Remark 7 We have shown that θ̂ concentrates around θ? under mild conditions. With more
assumptions on the sampling distribution, πx,c, (e.g., sub-gaussian) one could derive precise
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convergence rates. Note that we are in total control of any assumptions we put on πx,c since
precisely that distribution is used for sampling. This is a major difference between the local
approximation setup here and the setup of linear regression with random design; in the latter
case, we have no control over the distribution of the design matrix, and any assumptions we
make could potentially be unrealistic.

Remark 8 Note that concentration analysis of a more general case when the loss L is a
general convex function and Ω(g) is a decomposable regularizer could be done by using results
from the M-estimation theory (Negahban et al., 2009), but would be much more involved and
unnecessary for our purposes.

Appendix B. Experimental Details

This section provides details on the experimental setups including architectures, training
procedures, etc. Additionally, we provide and discuss qualitative results for CENs on the
MNIST and IMDB datasets.

B.1 Additional Details on the Datasets and Experiment Setups

MNIST. We used the classical split of the dataset into 50k training, 10k validation, and 10k
testing points. All models were trained for 100 epochs using the AMSGrad optimizer (Reddi
et al., 2019) with the learning rate of 10−3. No data augmentation was used in any of our
experiments. HOG representations were computed using 3× 3 blocks.

CIFAR10. For this set of experiments, we followed the setup given by Zagoruyko (2015),
reimplemented in Keras (Chollet et al., 2015) with TensorFlow (Abadi et al., 2016) backend.
The input images were global contrast normalized (a.k.a. GCN whitened) while the rescaled
image representations were simply standardized. Again, HOG representations were computed
using 3× 3 blocks. No data augmentation was used in our experiments.

IMDB. We considered the labeled part of the data only (50,000 reviews total). The data
were split into 20,000 train, 5,000 validation, and 25,000 test points. The vocabulary was
limited to 20,000 most frequent words (and 5,000 most frequent words when constructing
BoW representations). All models were trained with the AMSGrad optimizer () with
10−2 learning rate. The models were initialized randomly; no pre-training or any other
unsupervised/semi-supervised technique was used.

Satellite. As described in the main text, we used a pre-trained VGG-16 network15 to extract
features from the satellite imagery. Further, we added one fully connected layer network with
128 hidden units used as the context encoder. For the VCEN model, we used dictionary-based
encoding with Dirichlet prior and logistic normal distribution as the output of the inference
network. For the decoder, we used an MLP of the same architecture as the encoder network.
All models were trained with Adam optimizer with 0.05 learning rate. The results were
obtained by 5-fold cross-validation.

15. The model was taken form https://github.com/nealjean/predicting-poverty.
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Medical data. We have used minimal pre-processing of both SUPPORT2 and PhysioNet
datasets limited to standardization and missing-value filling. We found that denoting missing
values with negative entries (−1) often led a slightly improved performance compared to
any other NA-filling techniques. PhysioNet time series data was irregularly sampled across
the time, so we had to resample temporal sequences at regular intervals of 30 minutes
(consequently, this has created quite a few missing values for some of the measurements). All
models were trained using Adam optimizer with 10−2 learning rate.
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Figure 13: Explanations generated by CEN for the 3 top classes and the corresponding attention
vectors for (a) correctly classified, (b) misclassified, and (c) adversarially constructed images. Adver-
sarial examples were generated using the fast gradient sign method (FGSM) (Papernot et al., 2016).
(d) Elements from the learned 32-element dictionary that correspond to different writing styles of 0
digits. (e) Histogram of the attention entropy for correctly and incorrectly classified test instances
for CEN-pxl on MNIST and CEN-tpc on IMDB.

B.2 More on Qualitative Analysis

B.2.1 MNIST

Figures 13a, 13b, and 13c visualize explanations for predictions made by CEN-pxl on MNIST.
The figures correspond to 3 cases where CEN (a) made a correct prediction, (b) made a
mistake, and (c) was applied to an adversarial example (and made a mistake). Each chart
consists of the following columns: true labels, input images, explanations for the top 3 classes
(as given by the activation of the final softmax layer), and attention vectors used to select
explanations from the global dictionary. A small subset of explanations from the dictionary
is visualized in Figure 13d (the full dictionary is given in Figure 14), where each image is a
weight vector used to construct the pre-activation for a particular class. Note that different
elements of the dictionary capture different patterns in the data (in Figure 13d, different
styles of writing the 0 digit) which CEN actually uses for prediction.
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Also note that confident correct predictions (Figures 13a) are made by selecting a
single explanation from the dictionary using a sharp attention vector. However, when the
model makes a mistake, its attention is often dispersed (Figures 13b and 13c), i.e., there is
uncertainty in which pattern it tries to use for prediction. Figure 13e further quantifies this
phenomenon by plotting histogram of the attention entropy for all test examples which were
correctly and incorrectly classified. While CENs are certainly not adversarial-proof, high
entropy of the attention vectors is indicative of ambiguous or out-of-distribution examples
which is helpful for model diagnostics.

B.2.2 IMDB

Similar to MNIST, we train CEN-tpc with linear explanations in terms of topics on the IMDB
dataset. Then, we generate explanations for each test example and visualize histograms of
the weights assigned by the explanations to 6 selected topics in Figure 6. The 3 topics in
the top row are acting- and plot-related (and intuitively have positive, negative, or neutral
connotation), while the 3 topics in the bottom are related to particular genre of the movies.

Note that acting-related topics turn out to be bi-modal, i.e., contributing either positively,
negatively, or neutrally to the sentiment prediction in different contexts. As expected
intuitively, CEN assigns highly negative weight to the topic related to “bad acting/plot”
and highly positive weight to “great story/performance” in most of the contexts (and treats
those neutrally conditional on some of the reviews). Interestingly, genre-related topics
almost always have a negligible contribution to the sentiment (i.e., get almost 0 weights
assigned by explanations) which indicates that the learned model does not have any particular
bias towards or against a given genre. Importantly, inspecting summary statistics of the
explanations generated by CEN allows us to explore the biases that the model picks up from
the data and actively uses for prediction16.

Figure 15 visualizes the full dictionary of size 16 learned by CEN-tpc. Each column
corresponds to a dictionary atom that represents a typical explanation pattern that CEN
attends to before making a prediction. By inspecting the dictionary, we can find interesting
patterns. For instance, atoms 5 and 11 assign inverse weights to topics [kid, child,
disney, family] and [sexual, violence, nudity, sex]. Depending on the context of
the review, CEN may use one of these patterns to predict the sentiment. Note that these two
topics are negatively correlated across all dictionary elements, which again is quite intuitive.

B.2.3 Satellite

We visualize the two explanations, M1 and M2, learned by CEN-att on the Satellite dataset
in full in Figures 16a and provide additional correlation plots between the selected explanation
and values of each survey variable in Figure 16b.

B.3 Model Architectures

Architectures of the model used in our experiments are summarized in Tables 7, 8, 9.

16. If we wish to enforce or eliminate certain patterns from explanations (e.g., to ensure fairness), we may
impose additional constraints on the dictionary. However, this is beyond the scope of this work.
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0 1 2 3 4 5 6 7 8 9

Figure 14: Visualization of the model dictionary learned by CEN on MNIST. Each row corresponds
to a dictionary element, and each column corresponds to the weights of the model voting for each
class of digits. Images visualize the weights of the models. Red corresponds to high positive values,
dark gray to high negative values, and white to values that are close to 0.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

[japanese, military, soldiers, history, world, american, war]   50
[director, page, shot, new, festival, documentary, film]   49

[action, really, story, like, character, good, movie]   48
[van, nancy, check, julia, drew, vampires, vampire]   47

[elvira, money, j, cast, danny, alex, tony]   46
[flynn, detective, jim, murder, anne, marie, powell]   45

[school, girl, teenage, family, dad, house, girls]   44
[best, great, role, hollywood, arthur, kelly, musical]   43

[laughs, hilarious, laugh, jokes, humor, funny, comedy]   42
[time, shows, season, episodes, tv, episode, series]   41
[won, award, actor, role, oscar, performance, best]   40

[school, religious, jesus, movie, church, christian, god]   39
[man, young, woman, father, family, life, love]   38

[question, think, don't, does, know, did, ?]   37
[wife, gets, murder, horror, man, house, killer]   36

[beautiful, earth, time, film, art, french, tarzan]   35
[watch, movies, really, good, like, just, movie]   34

[football, city, segment, world, paris, men, women]   33
[baseball, team, williams, santa, ben, match, christmas]   32

[charlie, batman, animated, cartoon, original, animation, like]   31
[scene, women, sexual, scenes, violence, nudity, sex]   30

[man, released, video, release, version, film, dvd]   29
[mr, hudson, emma, italian, soap, russian, opera]   28

[human, like, world, way, film, life, people]   27
[seagal, steven, bollywood, jeff, sandler, adam, indian]   26

[think, just, really, good, like, films, film]   25
[music, astaire, rogers, ted, fred, dancing, dance]   24

[maria, new, london, mr, young, movie, ford]   23
[sky, ship, trek, richard, captain, star, scott]   22
[john, tv, sam, candy, murphy, eddie, night]   21

[clark, street, africa, nightmare, south, freddy, superman]   20
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Figure 15: The full dictionary learned by CEN-tpc model: rows correspond to topics and columns
correspond to dictionary atoms. Very small values were thresholded for visualization clarity. Different
atoms capture different prediction patterns; for example, atom 5 assigns a highly positive weight to
the [kid, child, disney, family] topic and down-weighs [sexual, violence, nudity, sex],
while atom 11 acts in an opposite manner. Given the context of the review, CEN combines just a
few atoms to make a prediction.
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(a) Full visualization of models M1 and M2 learned by CEN on Satellite data.
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(b) Correlation between the selected explanation and the value of a particular survey variable.

Figure 16: Additional visualizations for CENs trained on the Satellite data.

42



Contextual Explanation Networks

Table 7: Top-performing architectures used in our experiments on MNIST and IMDB datasets.

(a) MNIST

Convolutional Encoder

C
on

vo
lu
ti
on

al
B
lo
ck

layer Conv2D
# filters 32
kernel size 3× 3

strides 1× 1

padding valid
activation ReLU

layer Conv2D
# filters 32
kernel size 3× 3

strides 1× 1

padding valid
activation ReLU

layer MaxPoo2D
pooling size 2× 2

dropout 0.25

layer Dense
units 128
dropout 0.50

# blocks 1
# params 1.2M

Contextual Explanations

model Logistic regr.
features HOG (3, 3)
# features 729
standardized Yes
dictionary 256
l1 penalty 5 · 10−5

l2 penalty 1 · 10−6

model Logistic reg.
features Pixels (20, 20)
# features 400
standardized Yes
dictionary 64
l1 penalty 5 · 10−5

l2 penalty 1 · 10−6

Contextual VAE

prior Dir(0.2)

sampler LogisticNormal

(b) IMDB

Squential Encoder

layer Embedding
vocabulary 20k
dimension 1024

layer LSTM
bidirectional Yes
units 256
max length 200
dropout 0.25
rec. dropout 0.25

layer MaxPool1D

# params 23.1M

Contextual Explanations

model Logistic reg.
features BoW
# features 20k
Dictionary 32
l1 penalty 5 · 10−5

l2 penalty 1 · 10−6

model Logistic reg.
features Topics
# features 50
Dictionary 16
l1 penalty 1 · 10−6

l2 penalty 1 · 10−8

Contextual VAE

Prior Dir(0.1)

Sampler LogisticNormal

Table 8: Top-performing architectures used in our experiments on CIFAR10 and Satellite datasets.
VGG-16 architecture for CIFAR10 was taken from https://github.com/szagoruyko/cifar.torch
but implemented in Keras with TensorFlow backend. Weights of the pre-trained VGG-F model for the
Satellite experiments were taken from https://github.com/nealjean/predicting-poverty.

(a) CIFAR10

Convolutional Encoder

V
G
G
-1
6 model VGG-16

pretrained No
fixed weights No

M
L
P

layer Dense
pretrained No
fixed weights No
units 16
dropout 0.25
activation ReLU

# params 20.0M

Contextual Explanations

model Logistic reg.
features HOG (3, 3)
# features 1024
dictionary 16
l1 penalty 1 · 10−5

l2 penalty 1 · 10−6

Contextual VAE

prior Dir(0.2)

sampler LogisticNormal

(b) Satellite

Convolutional Encoder

V
G
G
-F model VGG-F

pretrained Yes
fixed weights Yes

M
L
P

layer Dense
pretrained No
fixed weights No
units 128
dropout 0.25
activation ReLU

# trainable params 0.5M

Contextual Explanations

model Logistic reg.
features Survey
# features 64
dictionary 16
l1 penalty 1 · 10−3

l2 penalty 1 · 10−4

# params

Contextual VAE

prior Dir(0.2)

sampler LogisticNormal
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Table 9: Top-performing architectures used in our experiments on SUPPORT2 and PhysioNet.

(a) SUPPORT2

MLP Encoder

M
L
P

layer Dense
pretrained No
fixed weights No
units 64
dropout 0.50
activation ReLU

Contextual Explanations

model Linear CRF
features Measurements
# features 50
dictionary 16
l1 penalty 1 · 10−3

l2 penalty 1 · 10−4

(b) PhysioNet Challenge 2012

Sequential Encoder

L
ST

M

layer LSTM
bidirectional No
units 32
max length 150
dropout 0.25
rec. dropout 0.25

Contextual Explanations

model Linear CRF
features Statistics
# features 111
dictionary 16
l1 penalty 1 · 10−3

l2 penalty 1 · 10−4
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