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Abstract

We introduce GEOMSTATS, an open-source Python package for computations and statistics
on nonlinear manifolds such as hyperbolic spaces, spaces of symmetric positive definite
matrices, Lie groups of transformations, and many more. We provide object-oriented and
extensively unit-tested implementations. Manifolds come equipped with families of Rie-
mannian metrics with associated exponential and logarithmic maps, geodesics, and parallel
transport. Statistics and learning algorithms provide methods for estimation, clustering,
and dimension reduction on manifolds. All associated operations are vectorized for batch
computation and provide support for different execution backends—mnamely NumPy, Py-
Torch, and TensorFlow. This paper presents the package, compares it with related libraries,
and provides relevant code examples. We show that GEOMSTATS provides reliable building
blocks to both foster research in differential geometry and statistics and democratize the
use of Riemannian geometry in machine learning applications. The source code is freely
available under the MIT license at geomstats.ai.
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1. Introduction

Data on manifolds naturally arise in different fields. Hyperspheres model directional data
in molecular and protein biology (Kent and Hamelryck, 2005) and are used through Principal
Nested Spheres to model some aspects of 3D shapes (Jung et al., 2012; Hong et al., 2016).
Computations on hyperbolic spaces arise for impedance density estimation (Huckemann
et al., 2010), geometric network comparison (Asta and Shalizi, 2014), and the analysis of
reflection coefficients extracted from a radar signal (Chevallier et al., 2015). Symmetric
positive definite (SPD) matrices characterize data from diffusion tensor imaging (DTI)
(Pennec et al., 2006; Yuan et al., 2012) and functional magnetic resonance imaging (fMRI)
(Sporns et al., 2005). Covariance matrices, which are also SPD matrices, appear in ap-
plications such as automatic speech recognition (ASR) systems (Shinohara et al., 2010),
image and video descriptors (Harandi et al., 2014), or air traffic complexity representa-
tion (Brigant and Puechmorel, 2019). The Lie groups of transformations SO(3) and
SE(3) appear naturally when dealing with articulated objects like the human spine (Ar-
signy, 2006; Boisvert et al., 2006) or the pose of a camera (Kendall and Cipolla, 2017; Hou
et al., 2018). Stiefel manifolds are used to process video action data or to analyze two
vector-cardiograms (Chakraborty and Vemuri, 2019). Grassmannians appear in computer
vision to perform video-based face recognition and shape recognition (Turaga et al., 2008).
Statistics on landmark spaces are used in anthropology and many applied fields to describe
biological shapes (Richtsmeier et al., 1992). More generally, Kendall shape spaces gave rise
to a very important literature in shape statistics (Dryden and Mardia, 1998). A variety of
applications use tools from infinite-dimensional Riemannian geometry to study the shapes
of discretized curves such as those sampled from closed two or three-dimensional curves
defining the contours of organs in computational anatomy (Younes, 2012). In addition, open
curves that describe the temporal evolution of physical phenomena are embedded in various
manifolds, for example in a Lie group (Celledoni et al., 2015) or in the hyperbolic plane
(Le Brigant, 2017).

Yet, the adoption of methods from differential geometry has been inhibited by the lack of
a reference implementation. Code sequences are often custom-tailored for specific problems
and are not easily reused. Some Python packages do exist, but they often focus on opti-
mization: Pymanopt (Townsend et al., 2016), Geoopt (Bécigneul and Ganea, 2018; Kochurov
et al., 2019), and McTorch (Meghwanshi et al., 2018). Others are dedicated to a single
manifold: PyRiemann on SPD matrices (Barachant, 2015), PyQuaternion on 3D rotations
(Wynn, 2014), and PyGeometry on spheres, toruses, 3D rotations and translations (Censi,
2012). Lastly, others lack unit-tests and continuous integration: TheanoGeometry (Kiih-
nel and Sommer, 2017). There is a need for an open-source implementation of differential
geometry and associated learning algorithms for manifold-valued data.

We present GEOMSTATS, an open-source Python package for computations and statis-
tics on nonlinear manifolds. GEOMSTATS has three main objectives: (i) foster research in
differential geometry and geometric statistics by providing low-level code to gain intuition
or test a theorem and a platform to share algorithms; (ii) democratize the use of geometric
statistics by implementing user-friendly geometric learning algorithms using Scikit-Learn
API; and (iii) provide educational support to learn “hands-on” differential geometry and
geometric statistics, through its examples, notebooks and visualizations.
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2. Implementation Overview

The package geomstats is organized into two main modules: geometry and learning. The
module geometry implements concepts in Riemannian geometry with an object-
oriented approach. Manifolds mentioned in the introduction are available as classes that
inherit from the base class Manifold. The base class RiemannianMetric provides meth-
ods such as the geodesic distance between two points, the exponential and logarithm maps
at a base point, etc. As examples, HyperbolicMetric, StiefelCanonicalMetric, the Lie
groups’ InvariantMetric s, or the curves’ L2Metric and SRVMetric (Srivastava et al., 2011)
inherit from RiemannianMetric. Going beyond Riemannian geometry, the class Connection
implements affine connections. The implementation uses automatic differentiation with au-
tograd to allow computations on manifolds when closed-form formulae do not exist. The
APT of the module geometry uses terms from differential geometry to foster contributions of
researchers from this field. The module learning implements statistics and learning
algorithms for data on manifolds. The code is object-oriented and classes inherit from
Scikit-Learn base classes and mixins: BaseEstimator, ClassifierMixin, RegressorMixin,
etc. This module provides classes such as FrechetMean, KMeans, TangentPCA, for imple-
mentations of Fréchet mean estimators (Fréchet, 1948), K-means, and principal component
analysis (PCA) designed for manifold data. The API of the module learning follows Scikit-
Learn’s API, being therefore user-friendly to machine learning researchers and engineers.

The code follows international standards for readability and ease of collaboration, is
vectorized for batch computations, undergoes unit-testing with continuous integration using
Travis, relies on either Numpy, TensorFlow or PyTorch backends. The package comes with a
visualization module to provide intuition on differential geometry (see Figure 1), and with
a datasets module that provides toy data sets on manifolds. The repositories examples
and notebooks provide convenient starting points to get familiar with geomstats.

The GitHub repository at github.com/geomstats/geomstats offers a convenient way
to ask for help or request features by raising issues. The website geomstats.github.io
provides documentation for users and important guidelines for those wishing to contribute
to the project.

3. Comparison and Interaction with Existing Packages

This section compares the package geomstats with related Python implementations on
differential geometry and learning. Table 1 compares the geometric operations and Table 2
compares the engineering infrastructures.

The library TheanoGeometry (Kiihnel and Sommer, 2017) is the most closely related
to GEOMSTATS and provides nonlinear statistics and stochastic equations on Riemannian
manifolds. The differential geometric tensors are computed with automatic differentiation.
However, this library does not provide statistical learning algorithms and lacks engineering
maintenance. Several other packages focus on optimization on Riemannian manifolds. Py-
manopt (Townsend et al., 2016) computes gradients and Hessian-vector products on Rieman-
nian manifolds with automatic differentiation and provides the following solvers: steepest
descent, conjugate gradient, the Nelder-Mead algorithm, particle swarm optimization, and
the Riemannian trust regions. Geoopt (Kochurov et al., 2019) focuses on stochastic adap-
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Figure 1: Left: Minimization of a scalar field on the sphere S? using Riemannian gradient
descent. Middle: Regular geodesic grid on the hyperbolic space H? in Poincaré
disk representation. Right: Geodesic on the Lie group SE(3) for the canonical
left-invariant metric. These examples and more are available at geomstats.ai.

tive optimization on Riemannian manifolds, for machine learning problems. The library
provides stochastic solvers, stochastic gradient descent and Adam, as well as the following
samplers: Stochastic Gradient Langevin Dynamics, Hamiltonian Monte-Carlo, Stochastic
Gradient Hamiltonian Monte-Carlo. Lastly, McTorch (Meghwanshi et al., 2018) provides
optimization on Riemannian manifold for deep learning by adding a “Manifold” parameter
to PyTorch’s network layers and optimizers. The library provides the following solvers:
stochastic gradient descent, AdaGrad and conjugate gradients. As these libraries focus on
optimization, they substitute potentially computationally expensive operations by practical
proxies, for example, by replacing exponential maps by so-called retractions. However, they
are less modular than GEOMSTATS in terms of the Riemannian geometry. For example, each
manifold comes with a single Riemannian metric, in contrast to GEOMSTATS where fami-
lies of Riemannian metrics are implemented. Furthermore, they do not provide statistical
learning algorithms.

The optimization libraries are complementary to GEOMSTATS and interact easily with it.
GEOMSTATS provides low-level implementations of Riemannian geometry that can be used
to define optimization costs. In turn, an optimization library can provide an efficient solver
to use within the implementation of GEOMSTATS’ learning algorithms. An example of such
interactions, between Pymanopt and GEOMSTATS can be found in GEOMSTATS’ examples
folder.

4. Usage: Examples of Learning on Riemannian manifolds

Three steps are needed to run learning algorithms on manifolds with GEOMSTATS: (i) in-
stantiate the manifold of interest, (ii) instantiate the learning algorithm of interest, and
(iii) run the algorithm. The following code snippet illustrates the use of K-means on the
hypersphere.

sphere = Hypersphere (dim=5)
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Manifolds Geometry
Euclidean manifold, sym@etrlc matri- Exponential and Jogarithmic
ces, sphere, complex circle, SO(n), .
. . . . maps, retraction, vector transport,
Pymanopt Stiefel, Grassmannian, oblique mani- cgradrerad chess2rhess inor
fold, SPD(n), elliptope, fixed-rank PSD 8 grad, ’
. product, distance, norm
matrices
Euclidean manifold, sphere, Stiefel,
Geoopt Poincaré ball Same as Pymanopt
McTorch Stiefel, SPD(n) Same as Pymanopt
Inner product, exponential and log-
. arithmic maps, parallel transport,
TheanoGeometry Sphere, ellipsoid, SPD(n), Landmarks, Christoffel symbols, Riemann, Ricci
GL(n), SO(n), SE(n) . i
and scalar curvature, geodesics, Fréchet
mean
Euchdean., MlnkOWb:kl, hyperbolic Levi-Civita connection, Christoffel
space, Poincaré polydisk, hypersphere, symbols arallel  transport.  exbo
8O(n), SE(n), GL(n), Stiefel, Grass- n}éntial ’andl.j logarithmic II)ma 7s inEer
Geomstats mannian, SPD(n), symmetric matrices, & Ps,

skew-symmetric matrices, discretized
curves on manifolds, landmarks on
manifolds

product, distance, norm, geodesics,
group invariant metrics, Fréchet means
and learning algorithms on manifolds

Table 1: Comparison of libraries in terms of geometric operations

Backends

Continuous integration (CI) and
coverage

Pymanopt Autograd, PyTorch, TensorFlow, Theano | CI, coverage 85%

Geoopt PyTorch 75%

McTorch PyTorch CI, coverage 84%
TheanoGeometry | Theano No CI, no unit tests

Geomstats NumPy, PyTorch, TensorFlow CI, coverage 92% (NumPy), 76%

(TensorFlow), 79% (PyTorch)

Table 2: Comparison of code infrastructure
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data = sphere.random uniform(n samples=10)
clustering = OnlineKMeans(metric=sphere.metric, n_clusters=4)
clustering = clustering. fit (data)

The following code snippet shows the use of tangent PCA on the 3D rotations.

so3 = SpecialOrthogonal (n=3, point type=’vector’)
metric = sod.bi_invariant metric

data = so3.random uniform(n_ samples=10)

tpca = TangentPCA (metric=metric, n_components=2)
tpca = tpca. fit (data)

tangent projected data = tpca.transform (data)

All geometric computations are performed behind the scenes. The user only needs a
high-level understanding of Riemannian geometry. Each algorithm can be used with any of
the manifolds and metric implemented in the package. The folders examples and notebooks
provide many more code snippets that help users get started with GEOMSTATS.

5. Conclusion

We presented the Python Package GEOMSTATS, with the aim to provide the wider Machine
Learning community with off-the-shelf geometric learning algorithms on a wide variety of
manifolds, and flexibility in the choice of metrics, while being faithful to the mathematician’s
formulation of Riemannian geometry. This sometimes comes at cost of efficiency, and future
contributions will be devoted to addressing this caveat.
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