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Abstract

Standard approaches for Bayesian inference focus solely on approximating the posterior distribu-
tion. Typically, this approximation is, in turn, used to calculate expectations for one or more target
functions—a computational pipeline that is inefficient when the target function(s) are known up-
front. We address this inefficiency by introducing a framework for target-aware Bayesian inference
(TABI) that estimates these expectations directly. While conventional Monte Carlo estimators
have a fundamental limit on the error they can achieve for a given sample size, our TABI frame-
work is able to breach this limit; it can theoretically produce arbitrarily accurate estimators using
only three samples, while we show empirically that it can also breach this limit in practice. We
utilize our TABI framework by combining it with adaptive importance sampling approaches and
show both theoretically and empirically that the resulting estimators are capable of converging
faster than the standard O(1/N) Monte Carlo rate, potentially producing rates as fast as O(1/N?).
We further combine our TABI framework with amortized inference methods, to produce a method
for amortizing the cost of calculating expectations. Finally, we show how TABI can be used to
convert any marginal likelihood estimator into a target aware inference scheme and demonstrate
the substantial benefits this can yield.

Keywords: Bayesian inference, Monte Carlo methods, importance sampling, adaptive sampling,
amortized inference

1. Introduction

At its core, Bayesian modeling is rooted in the calculation of expectations: the eventual aim of
modeling is typically to make a decision or to construct predictions for unseen data, both of which
take the form of an expectation under the posterior (Robert, 2007). This aim can thus be sum-
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marized in the form of one or more expectations Ey(,y) [ f(2)], where f(z) is a target function and
p(zxly) is the posterior distribution on x for some data y, which we typically only know up to a
normalizing constant p(y). More generally, expectations with respect to distributions with unknown
normalization constants are ubiquitous throughout the sciences (Robert and Casella, 2013).

Sometimes f(z) is not known up front. Here it is typically convenient to first approximate
p(zly), e.g. in the form of Monte Carlo (MC) samples, and then later use this approximation to
calculate estimates, rather than addressing the final expectation directly. However, it is often the
case in practice that a particular target function, or class of target functions, is known a priori.
For example, in decision-based settings f(x) takes the form of a loss function, while calculating any
(parametric) posterior predictive density involves taking the expectation over the parameters of a
known predictive distribution.

Though often overlooked, in such target-aware settings the aforementioned pipeline of first ap-
proximating p(z|y) and then using this as a basis for calculating E ) [f(x)] is suboptimal as it
ignores relevant information in f(z) (Torrie and Valleau, 1977a; Hesterberg, 1988; Wolpert, 1991;
Oh and Berger, 1992; Evans and Swartz, 1995; Meng and Wong, 1996; Chen and Shao, 1997; Gelman
and Meng, 1998; Lacoste-Julien et al., 2011; Owen, 2013; Rainforth et al., 2018b). In this paper, we
look to address this inefficiency.

To do this, the key question we must answer is: how can we effectively incorporate information
about f(x) into our inference process? This transpires to be a somewhat more challenging problem
than it might at first seem. For example, if we try to incorporate this information by running a
Markov chain MC (MCMC) sampler that targets some distribution ¢(z) encapsulating both p(z|y)
and f(z) (e.g. Torrie and Valleau, 1977a), we find that we cannot use the resulting samples to
construct a single direct MC estimate for K|, [ f (x)] , due to the presence of other unknown terms
(such as the evidence p(y)).

One approach that can be used is importance sampling (Hesterberg, 1988; Gelman and Meng,
1998; Owen, 2013). Specifically, we can set up a proposal g(x) that incorporates information about
f(z) and then use this to produce a set of weighted samples whose locations are influenced by
both p(z]y) and f(x). By self-normalizing these weights, we can then construct a self-normalized
importance sampling (SNIS) estimate for E ) [f(;r)] that exploits information from f(x).

However, this approach has a fundamental limitation: there is a theoretical lower bound on the
error SNIS estimators can achieve for a given problem and sample size (see Eq 4). Though this bound
is significantly better than what can be achieved by any single MCMC sampler or any approach that
does not use information from f(z), it can still represent a prohibitively large error if our sample
budget is restricted. Moreover, it is typically insurmountably difficult to construct an estimator that
achieves performance anywhere near to this bound, particularly if p(x|y) and p(z|y)f(z) are badly
mismatched.

In this work, we show that this limitation can be overcome by avoiding self-normalization and in-
stead deconstructing the target expectation into three separate parts, setting up separate estimators
for each, and then recombining them to form an estimate for the overall problem. We refer to this
framework as TABI, which stands for target-aware Bayesian inference. Critically, the breakdown
TABI applies leads to component expectations which can each be individually estimated arbitrarily
well using a tailored importance sampling estimator, even if this estimator is constructed with only a
single sample. This, in turn, means that TABI estimators are theoretically capable of estimating any
expectation arbitrarily accurately using only three samples. In other words, while using the optimal
proposal for SNIS and MCMC schemes leads to estimators with finite errors for a given sample
size, TABI estimators constructed with optimal proposals produce exact estimators regardless of
the number of samples used.

To utilize our TABI framework, we show that it can be combined with adaptive importance
sampling (AIS) methods (Oh and Berger, 1992; Cappé et al., 2004; Cornuet et al., 2012; Martino
et al., 2017; Bugallo et al., 2017) to produce effective target-aware adaptive inference algorithms.
Specifically, given an existing AIS approach, we show how to make it target-aware by applying it
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to three different sampling problems, each related to a corresponding component expectation in the
TABI framework. We refer to the resulting family of approaches as target-aware adaptive importance
sampling (TAAIS) methods. We demonstrate theoretically that, given sufficiently expressive propos-
als families, TAAIS methods are capable of achieving faster mean squared error (MSE) convergence
rates than the O(1/N) rate of conventional SNIS and MCMC methods (where N corresponds to the
number of samples). We further confirm this empirically, achieving an MSE rate of O(log(N)/N?)
when using a moment-matching-based TAAIS method on a problem where the proposal families
include the target distributions. These gains stem from the fact that TAAIS is able to exploit
the favorable convergence properties of AIS methods in settings where self-normalization is not
required (Portier and Delyon, 2018).

We further extend our TABI framework to amortized inference settings (Stuhlmiiller et al., 2013;
Gershman and Goodman, 2014; Kingma and Welling, 2014; Ritchie et al., 2016; Paige and Wood,
2016; Le et al., 2017, 2018; Webb et al., 2018), wherein one looks to amortize the cost of inference
across different possible data sets by first learning an artifact that assists with the inference process at
runtime for a given data set. Existing inference amortization approaches do not operate in a target-
aware fashion, such that even if the inference network learns proposals that perfectly match the true
posterior for every possible data set, the resulting estimator is often still far from optimal. To address
this, we introduce AMCI, a framework for performing Amortized Monte Carlo Integration.® Though
still based on learning amortized proposals distributions, AMCI varies from standard approaches by
learning three distinct amortized proposals, each targeting one of the component expectations in the
TABI framework. Again, this breakdown allows for arbitrary performance improvements compared
to conventional methods. To account for cases in which multiple possible target functions may be
of interest, we show how AMCI can also be used to amortize over function parameters, rather than
just over data sets. We further show that AMCI is able to empirically produce test-time errors
lower than those of the respective theoretically optimal SNIS estimator and thus, by proxy, the best
possible conventional amortized inference scheme.

We finish by exploring how our TABI framework might be exploited in settings where the base
estimators are not constructed using conventional importance samplers. Namely, we show how TABI
can be used with any method for approximating the marginal likelihood of a given unnormalized
target density. We then exploit this to show how nested sampling (Skilling, 2004) and annealed
importance sampling (Neal, 2001) can be converted into target-aware inference methods, confirming
empirically the potential advantages this can bring.

To summarize, the rest of the paper is organized as follows. In Section 2, we formalize our
problem setting and provide key background on importance sampling and self-normalization. In
Section 3, we introduce our core TABI framework in an importance sampling context, highlight its
key theoretical properties, and confirm that these are realizable in practice. We further provide
insights for when the TABI framework will be relatively more and less useful, and discuss related
work. In Section 4, we build on the TABI framework by combining it with adaptive sampling
schemes to produce our TAAIS approach, providing both theoretical and empirical evidence of its
utility. In Section 5, we consider the amortized inference setting, introducing our AMCI approach
and empirically confirming the benefits it can yield. Finally, in Section 6, we show how the TABI
framework can be applied to any marginal likelihood estimator to produce a target—aware inference
scheme, demonstrating the advantages of doing this through the specific examples of nested sampling
and annealed importance sampling.

1. Note that this paper extends the earlier conference publication

Adam Goliriski, Frank Wood, and Tom Rainforth. Amortized Monte Carlo Integration. In Proceedings of the
36th International Conference on Machine Learning, volume 97, pages 2309-2318, 2019.

in which we focused on using the TABI framework in the amortized inference setting. Here we extend this to
consider the TABI framework more generally, introduce the TAAIS framework given in Section 4.3, and use the
TABI framework with estimators not based on direct importance sampling as per Section 6.
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2. Background

Through most of this paper, we will consider using our TABI framework in an importance sampling
context, before returning to this assumption in Section 6 to show how it can be applied more
generally. As such, after introducing our problem setting, we now cover the essential basics of
importance sampling, along with the concept of self-normalization and its limitations.

2.1. Problem Setting

In this paper, we are concerned with estimating one or more expectations of the form p := E () [f ()],
where 7(z) is a reference distribution and f(x) is target function that we can evaluate pointwise. The
reference distribution is assumed to be known up to a normalization constant, i.e. w(z) = v(x)/Z,
where (z) can be evaluated pointwise, but Z is unknown. Some aspects of the paper will still be
relevant in situations where Z is known, but here one should directly use its known value, rather
than estimating it.

A particularly common class of problems in our problem setting originate from Bayesian model-
ing. Here one specifies a prior p(z) over latent variables  along with a likelihood model p(y|z) for
data y, and then looks to make use of the posterior

plylz)p(z)
p(y)

where p(y) = Ep g [p(y|z)] is an unknown normalizing constant typically called the marginal likeli-
hood or model evidence. In particular, one often wishes to calculate expectations with respect to
this posterior, By, [f ()], for which we thus have 7(z) = p(z|y), 7(x) = p(x,y), and Z = p(y) in
our more general notation.

Due to its decision theoretic origins (Robert, 2007), Bayesian modeling is intricately tied to
the calculation of such expectations. This is perhaps most easily seen by considering two of the
most prevalent uses of Bayesian modeling: making decisions and predictions. In a Bayesian decision
theory setting, then, for loss function L(-, ), the optimal decision rule d*(y) is the one that minimizes
the posterior expected loss E, |y [L(d(y), z)]. Posterior predictive distributions, on the other hand,
take the form p(y'|y) = Epy) [y |7, y)] for some p(y'|z,y). We thus see that both cases require
the calculation of an expectation with respect to posterior. More generally, calculating expectations
with respect to the posterior is one of the most fundamental uses of posteriors, such that calculating
such expectations is an important and wide-reaching problem.

p(zly) =

2.2. Importance Sampling

Importance Sampling (IS), in its most basic form, is a method for approximating an expectation
Er(a) [ I (m)] when it is either not possible to sample from 7(x) directly, or when the simple MC
estimate, inc = % ZnN:1 f(zy) where x,, ~ m(x), has problematically high variance (Kahn and
Marshall, 1953; Hesterberg, 1988; Wolpert, 1991). Given a proposal g(x)—that we can sample from,
evaluate the density of, and which has heavier tails than 7(x) (see, e.g., Owen, 2013)—it forms the
following estimate (assuming for now that we can evaluate the density 7(z) directly)
o B () o1 N
M '_Eﬂ(z) [f(l')] - Eq(r) [q(m) f(ﬁ):| ~ IS = N Zn:l f(‘rn)wnv (1)
where z,, ~ ¢(z) and w,, := 7(z,)/q(z,) is known as the importance weight of sample x,,. These
importance weights act like correction factors to account for the fact that we sampled from ¢(z)
rather than our target. We note the important feature that this importance sampling estimate is
unbiased.
For a general unknown target, the optimal proposal, i.e. the proposal which results in the
estimator having the lowest possible variance, is generally taken to be the target distribution
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qis(z) = m(x) (see, e.g., Rainforth, 2017, Section 5.3.2.2). However, this no longer holds if we
have some information about f(x). Here the optimal proposal can be shown to be (Owen, 2013)

qis (@) oc w(@) | f ()]

Interestingly, in the case where f(z) > 0Vz (or f(z) < 0 Vx), this leads to an exact estimator,
i.e. flig = p, for any number of samples N, even N = 1. To see this, notice that the normalizing
constant for ¢j5(z) is [ 7(x)f(x)dz = p and hence ¢jg(z) = 7(z) f(z)/p. Therefore, we have

regardless of the values of N and z1,...,zxN.
Another point of note is that importance sampling also allows one to convert any integration
problem into that of calculating an expectation. Namely,

ook =20 [ 5]

for any g(x) where ¢(z) # 0V{z € X|f(x) # 0}. As such, all the techniques introduced in the
paper can also be straightforwardly applied to the estimation of integrals (by taking m(x) = 1V{x €
X|f(x) # 0} and ignoring the fact that this is not a proper distribution), noting though that there
is no need to separately estimate a normalization constant in such cases.

2.3. Self-Normalized Importance Sampling

In practice, we typically do not have access to the normalized form of 7(x) as explained earlier, such
that we cannot directly evaluate the importance weights in (1). For example, in Bayesian settings
we can only evaluate these weights up to our unknown marginal likelihood p(y). To aid with clarity,
we will now assume this Bayesian setting for most of the rest of the paper, but emphasize that the
approaches we introduce apply more generally to expectations taken with respect to distributions
whose normalization constants are unknown.

To get around this unknown normalization constant problem, we can self-normalize our weights
as follows

N N
7 Wn,
EP(ﬂﬁly) [f(x)] A [ISNIS ‘= Z 710 Z -
n=1 =1 Ym 1
where 2, ~ q(x), wn = p(zn,y)/q(zs), and @, = wy,/ S o _; wn. This approach is known as

self-normalized importance sampling (SNIS).
Conveniently, we can also construct the SNIS estimate lazily (i.e. storing weighted samples) by
calculating the empirical measure

N
plaly) =~ Z

and then using this to construct the estimate in (2) when f(z) becomes available. As such, we can
also think of SNIS as a method for Bayesian inference as, informally speaking, the empirical measure
produced can be thought of as an approximation of the posterior.

It is important to note that, unlike the standard importance sampling estimate in (1), the SNIS
estimate is biased for finite sample sizes (see, e.g., Rainforth, 2017, Section 5.3.2.1). Both are
consistent as N — oo, provided that ¢(z) has heavier tails than p(z|y) to ensure finite variance.
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For SNIS, the optimal proposal transpires to be different to that for standard importance sam-
pling. Specifically, we have (Hesterberg, 1988)

gsnis(#) o< p(a, y)|f (@) = p- (3)

Unlike in the standard importance sampling case, here one can no longer achieve a zero variance
estimator for finite N and nonconstant f(z), even when using this optimal proposal. Instead, the
achievable mean squared error (MSE) can be approximately lower bounded as follows.
First, we note that the MSE is always larger than or equal to the variance
. . N 2
E[(fisnis — p)°] = Var[isnis] + (Elfisnis] — 1)
> Var[fisnis]-

Next, we apply the delta method to this as per (Owen, 2013, Eq. 9.8) to yield

1 plaly) Y
”NEW”Kqu>““” “D]'

Finally, we apply Jensen’s inequality to get the final form of the bound

| plely) :
N(@@{q@)uw>/ﬂ>

- % (Ep(wly)ﬂf(x) - “|])2'

Here the first inequality and the approximation from using the delta method both become exact in
the limit of large N, while the bound from using Jensen’s inequality becomes exact if and only if
q(x) < p(x,y)|f(z) — u| (presuming a non-constant function), such that this derivation also serves
to demonstrate (3). We thus see that this creates a fundamental limit on the performance of SNIS,
even when information about f(x) is incorporated.

This bound is problem—dependent: the larger the expected distance of f(z) from its mean, the
larger the bound; the bound collapses in the case of a constant function. It is interesting to note
though, that in the case f(z) > 0Vx (or f(z) < 0Vz), this bound is itself upper bounded by (see
Appendix A.1 for a derivation)

Y

(4)

2 2
+ (B llf@ —ul)) < 2 (5)

where the bound is tight when f(x) is a Dirac delta function. As such, though there is a limit on
how well any SNIS sampler can do, there is also a limit to how poor the optimal SNIS sampler will
be if the function is non-negative (or non-positive).

However, this point is generally redundant in practice: given that ¢{g(x) and gdyg(«) make use of
the true expectation u, we will clearly not have access to them for real problems and cannot usually
achieve performance that is anywhere near to the theoretical bounds they produce. Nonetheless,
they provide a guide for the desirable properties of a proposal and can, at least in principle, be used
as the basis for constructing adaptive or amortized IS methods, as we discuss later.

3. Target—Aware Bayesian Inference

The SNIS estimator we introduced in the last section has two key shortfalls:
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1. It has a fundamental limit on the level of accuracy it can achieve for a given problem and
sample size as per (4);

2. The optimal proposal ¢§ys(z) cannot be evaluated, even in an unnormalized form, due to the
p term. This means it is difficult to construct or learn proposals that are close to it.

In this section, we will give insights into why these problems occur and introduce our target-aware
Bayesian inference (TABI) framework to address them.

3.1. The Problem with Self-Normalization

The key insight into the limitation of SNIS is that it implicitly uses the same proposal to estimate
two expectations, and this proposal, in general, cannot be simultaneously tailored to both. To see
this, it is useful to note that the SNIS estimator can be derived as follows

@[P(ylfﬂ)f(w)}
(@) [P(y]2)]

_E >[”(”” PI@] 33w
B Eq(a) [ el )} - %25:1 Wn

p= By [f ()] =

(6)

= [ISNIS (7)

q(z)

where z,, ~ ¢(z) and w,, := p(xn,y)/q(x,) as before. SNIS is thus using the same proposal (and set
of samples) to estimate both I, [p(y|z)f(z)] and Ep ) [p(y|x)]. If p(z,y) and p(z,y)|f(z)| are not
well-matched (i.e. they do not result in similar distributions when normalized), then it is difficult to
choose a ¢g(z) that is simultaneously effective for estimating both these expectations, while no such
proposal can ever be perfect for both unless f(z) is constant.

We can also view this argument from the point of view of the variances of the numerator and
denominator components of the estimator. A pictorial demonstration of this is shown in Figure 1.
Here we see that if we construct a proposal tailored to match the posterior [middle plot], this
produces low variance weights and thus an accurate estimate for E,,[p(y|r)]. However, in doing
so we may induce high variances on our w, f(xy) terms, such that E,[p(y|z)f(z)] is estimated
poorly. If we instead choose a g(x) that is a good approximation to p(x,y)|f(z)| [right plot], this
produces low variance wy, f(z,) terms and thus a good estimate for E, ) [p(y|z)f(x)], but now the
variance of the weights themselves explodes, yielding poor estimates for E, (2 [p(y|z)]. Thus in both
cases we end up with an overall poor estimate.

Though these might at first seem like pathologically poor choices for our proposal, they actually
represent the main two approaches used in practice, particularly when using methods for constructing
proposals automatically such as the adaptive and amortized approaches we will consider in later
sections. In particular, it is common to only attempt to match the posterior when choosing a
proposal, even when f(x) is known.

In practice, we could, of course, do better by constructing a proposal that puts mass in both
regions of high posterior density and also regions where p(x,y)|f(z)| is large. However, actually
constructing such a proposal is generally difficult and usually simply avoided altogether. The reason
for this is rooted in the dependency of the form of ¢y ;q(z) on the true value of y, as per the second
shortfall above. More generally, p typically heavily influences the relative scaling of p(z,y) and
p(z,y)|f(x)|, such that constructing a single proposal that combines the needs of both generally
requires some implicit knowledge of p. That is not to say constructing or learning such a proposal
is impossible, indeed there are various heuristics one can envisage, but as we now show, the problem
can actually be circumvented entirely by avoiding self-normalization altogether.
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—p(z,y) q(=)
—p(z,)f(2) f e —w(z) = 52y
—f(x)/10° A —w(z)f ()
(a) Joint and target function (b) q(z) targeting p(z,y) (c) q(z) targeting p(z,y)|f(x)|

Figure 1: Demonstration of the difficulty of choosing an effective proposal for SNIS. Note that while
terms have, in general, been scaled for visualization purposes, the scalings of w(z) and
w(z) f(x) are matched within the same plot. [Left] A simple example model p(z,y) (blue
line), function f(x) (black line), and the resulting p(z,y)f(z) (red line, all three are also
shown as dashed lines on the other plots for reference). [Middle] Using a proposal (yellow
line) that targets the posterior leads to stable weights w(z) (purple line, plotted as a
function of sampled value) but unstable function-scaled weights w(x)f(x) (green line,
note this extends far beyond the y-axis limit of the plot). [Right] Choosing a proposal to
instead target the function-scaled posterior stabilizes the function-scaled weights, but also
leads to the weights themselves becoming unstable.

3.2. The TABI Framework

The high-level idea behind our TABI framework is to use separate estimators for the numerator
and denominator in (6). Doing this allows us to construct separate proposals that are tailored to
each expectation, rather than relying on a single proposal to estimate both, as is implicitly the case
for SNIS. Namely, if we define Ey = E,,)[p(y|z)f(x)] and Ey = E,)[p(y|z)], we can separately
estimate each as follows

p(z,y) (‘T'n,’ ) -
LB Babloin)@)] B [SEI@)] 3T S B
E2 ]Ep(w) [p(y|:17)] E(D(x) |: ple ,y)] M Zm 1 11217;7;?)) E2

(8)

q2(z)

where 2/, ~ ¢1(2) and z,, ~ g2(x), and ¢1(x) and g(z) are separate proposals tailored to respectively
approximate p(x,y)|f(x)| (e.g. Figure 1c) and p(z,y) (e.g. Figure 1b). By contrast, we can think of
SNIS as choosing ¢ (z) and g2 (z) to be the same distribution (along with fixing M = N and sharing
samples between the two estimators).

Breaking this restriction will allow the aforementioned theoretical limitations of SNIS to be
overcome. Consider, for example, the case where f(z) > 0Vz. If ¢1(z) x p(z,y) f(z) and g2(x) x
p(x,y) then both F; and E, will form exact estimators (as per Section 2.2), even if N = M = 1.
Consequently, we achieve an exact estimator for p, allowing for arbitrarily large improvements over
any SNIS estimator. Moreover, this approach will also make it far easier to construct effective
mechanisms for learning good proposals in practice. Namely, even though the theoretically optimal
proposals will not typically be achievable, we will still often be able to construct a highly effectively
pair of proposals by using these optimal proposals as objectives, for example using the adaptive
TAAIS scheme introduced in Section 4.3. Critical to achieving this is the fact that these optimal
proposals can be evaluated up to a normalizing constant without knowing p, unlike ¢§yg(2).
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We can actually refine this idea of using separate estimators to still produce an exact overall
estimator in the case where f(z)>0Vz does not hold. Specifically, if we let?

f*(x) = max(f(x),0) (9a)
[~ (x) = —min(f(z),0) (9b)
denote truncations of the target function into its positive and negative components, as per the

concept of positivisation (Owen and Zhou 2000, Owen 2013, Section 9.13), then we can break down
the overall expectation as

W= 7E;r — 5 where (10a)
Ef = Epplyle) f*(2)], (10b)
By =By p(yle) f~ (@), (10c)
By = Ey)[p(ylz)]- (10d)

Analogously to (8), we can introduce a separate proposal for each of these component expecta-
tions and use this to construct a separate standard (i.e. not self-normalized) importance sampling
estimator for each, before recombining these to form an estimate of the overall expectation

Ef — By
fi ;= —+——1 where (11a)
Es
' N n=1 qi‘_(x:’l_) ’ " ! ’
1~ f~(m)plag )
Ef == BRI ay ~ g (), (11c)
! K ; a (i) g '
1 <= p(&m,y)
s L mY) (), 11d
2 M ;T(M) CI2( ) ( )

which forms our (importance-sampling-based) TABI estimator.

Because each component estimator (i.e. Ef , Ef , and Eg) is a standard importance sampling
estimator whose target function is strictly non-negative, each can be arbitrarily accurate for a
finite sample budget (as per Section 2.2), even when M = N = K = 1. This means that for any
expectation, the TABI estimator using the corresponding set of optimal proposals will produce
exact estimates with only three samples! This critical feature of the estimator is formalized in the
following theoretical result.

Theorem 1 If Ei",El_,Eg < 0o and we use the corresponding set of optimal proposals qf'(:z:) o
It (@)p(z,y), ¢ (x) < f~(2)p(z,y), and q2(x) < p(x,y), then the importance sampling TABI esti-
mator defined in (11) satisfies

E[i] = p, Var[i] =0

forany N > 1, K > 1, and M > 1, such that it forms an exact estimator.

2. Practically, it may sometimes be beneficial to truncate the proposal about another point, ¢, by instead using
fT(z) = max(f(z) — ¢,0) and f~(x) = — min(f(z) — ¢, 0), then adding c onto our final estimate. One can even
use a c¢(z) that varies with x provided that Ep(,,)[c(z)] is known, as per (Owen and Zhou, 2000, Section 7.1).
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Proof The result follows straightforwardly from considering each estimator in isolation and noting
that the normalization constants for our chosen qf‘,ql_ , Q2 are Ef‘ , BT, B, respectively. Therefore,
starting with E5, we have

p Tm, Y -rma o
2 MZ Q2 xm, MZ :cm,y /E2 E2

for all possible values of x1,...,xzys. Similarly, for E?_

N
ET-_ Zp n7y er )_l p(xf“y)f+(£li$) :Ei‘r
N N o= plai,y) f(@d) /BT

for all possible values of :ci", . ,x}. Analogously, we have El_ = E; for all possible values of
27 ,...,Tg. The result now follows from the fact that each sub-estimator is exact. |

The significance of this result is that there is no limitation on how efficient TABI estimators can
be: the better we make the proposal, the lower the error, with perfect proposals giving zero error
regardless of the number of samples used. By contrast, the error for SNIS will saturate: there is a
lower bound that we can never breach, no matter how good our proposal is.

Moreover, the achievable performances of other conventional estimation approaches are generally
also limited by the SNIS bound. As such, these powerful theoretical properties of TABI are highly
unusual; we are not aware of any previous general-purpose estimation strategy in the literature that
shares them.3

For example, one might consider instead trying to use samples from an MCMC chain. However,
by noting that MCMC is simply a mechanism for drawing samples from a target distribution, rather
than direct estimator for an expectation, we see that the optimal MCMC sampler coincides with
the optimal importance sampler for the same target: both produce equally weighted i.i.d. samples
according to this target. Consequently, MCMC does not, in general, provide a mechanism for
breaching the SNIS performance limit. In fact, what is achievable using MCMC will generally be
much worse than SNIS: because MCMC samplers do not provide natural normalization constant
estimates, we do not have the same flexibility to incorporate the target function information by
aiming to produce samples from a different distribution than the posterior.

In summary, despite its simplicity, the TABI framework allows us to overcome a relatively funda-
mental theoretical bound in the achievable performance of conventional MC estimators in Bayesian
inference settings. The key to achieving this is in breaking down the target expectation into three
sub-expectations that can each be estimated arbitrarily well by existing methods. Even when we
are unable to construct sufficiently good proposals to produce a TABI estimator that outperforms
the theoretically optimal SNIS estimator, this breakdown will still often prove extremely useful in
practice. Namely, the ability to tailor each proposal to their respective expectation will typically
lead to a TABI estimator that is much more effective than the equivalent practically achievable SNIS
estimator.

3.3. An Empirical Demonstration

As we will show in later sections, the demonstrated theoretical properties of the TABI estimator
will be particularly beneficial in situations where the proposals are automatically learned as we are
then often able to achieve highly effective proposals that successfully utilize the benefits of the TABI
estimator. These settings will thus be the focus of our empirical evaluations. Nonetheless, there will
still be many scenarios where the TABI framework is useful with manually constructed proposals.

3. Note, however, that other estimators with this property are possible, such as the one we introduce in Appendix C.
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Figure 2: Convergence of simple example shown in Figure 1 using SNIS with the proposal targeting
p(z,y) from Figure 1b (red), SNIS with the proposal targeting p(z, y)| f(z)| from Figure 1lc
(green), the TABI estimator that uses these proposals for Ey and E; respectively with
M = N (blue, note E; = 0 and so does not need estimating), and the theoretically optimal
SNIS sampler (dotted black), i.e. the bound in (4). Solid lines represent the median
across 100 runs, shading the 25% and 75% quantiles. Note that the x—axis corresponds
to M + N = 2M for TABI and M for SNIS, such that the cost of generating the latter is
strictly larger for a given x—axis value (see Section 3.4).

As a simple demonstration of this, we consider comparing TABI with SNIS for the example
introduced in Figure 1. For reproducibility, the precise definition of this model is given by

p(x) = GAMMA(x ; shape = 5, scale = 4),
plylz) = Ny; ,1),
£(z) = min (15000, max (0, 50 (z — 8)5)),

where we take y = 5. The two proposals used for Figure 1b and Figure 1c are respectively given by
a Gaussian with mean 5.4 and standard deviation 0.98, and a student-t distribution with 10 degrees
of freedom centered at 9.3 and scaled by a factor of 0.5. The results of using TABI and different
SNIS estimators are shown in Figure 2, where our metric of performance is the relative squared error

(12)

We see that not only does TABI substantially outperform both of these SNIS estimators, it pro-
duces errors around two orders of magnitude less than the optimal SNIS sampler, highlighting the
significant gains achievable from using the TABI framework.

3.4. Computational Cost

Constructing the TABI estimator requires N + K evaluations of f(x), M + N + K evaluations of the
joint density p(x,y), M + N + K proposal draws, and M + N + K evaluations of a proposal density.
By comparison, an N-sample SNIS estimator must make N evaluations of each. In the absence of
additional information, a natural budget allocation for TABI is to use the same number of samples
for each component estimator (i.e. M = N = K). This thus leads to an estimator whose cost is
between double (when the cost of evaluating f(z) is dominant) and triple (when either sampling or
evaluation of the densities is the dominant cost) that of the equivalent N-sample SNIS estimator.
However, there are scenarios where using different sample sizes will be beneficial and allow us to

11
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reduce the relative cost of TABI. Namely, if one of the estimators is more accurate than the others,
we can reduce the relative number of samples it uses; we typically want the effective sample size of
each estimator to be roughly the same (see Section 3.6). In particular, if f(x)>0Vz or f(z) <0V,
we can set K = 0 and N = 0 respectively, such that here the cost of the TABI estimator now varies
between being of comparable cost to, and double the cost of, the respective SNIS estimator.

In practice, these comparisons can be potentially misleading: the TABI approach will rarely be
computationally wasteful relative to SNIS. The is because the samples generated by TABI are more
tailored to the particular term they are estimating, such that their expected effective sample sizes
for a given budget will typically be larger. As shown in Appendix B, it is actually possible to recycle
all of the generated samples in TABI such that each sub—estimator uses all M + N + K samples,
producing an overall estimator that is similar to a (M + N + K)-sample SNIS estimator and with
effectively equivalent cost. It is thus perhaps more appropriate to compare TABI to this estimator,
relative to which the TABI estimator is never slower and provides the potential for speed—ups (of up
to a factor of two depending on context) by omitting to recycle wasteful (or potentially even harmful)
samples. Indeed, all empirical comparisons in the paper will benchmark against this SNIS estimator,
such that they represent a conservative comparison for TABI in terms of real-time performance.

3.5. Discussions and Theoretical Insights

We now consider the question of when we expect TABI to work particularly well compared to SNIS,
and the scenarios where it may be less beneficial, or potentially even harmful. Specifically, we gain
insights into the relative performance of the two approaches in different settings using an asymptotic
analysis in the limit of a large number of samples. We will assume f(z) > 0Vz for simplicity,* such
that E; = 0 and does not need estimating, f*(z) = f(z), and E{” = E;; we thus drop the +
notation. As previously noted, we can think of SNIS as a special case of the TABI estimator where
we set q1(z)=qa2(z), N=M, and share samples between the estimators.®
We start by defining the random variables
£ im E, *El, £ e Ey — E
g1 g9

which can be used to characterize the errors of the estimators, where

]W} , 02:=Var {EQ} = %Varqz(m) [pq(:(;;y))]

are the variances of F, and E, respectively. Now by noting that

Ey 4+ 016
Ey + 028’

and that the central limit theorem shows us that in limits N — co and M — oo we respectively get
& ~N(0,1) and & ~ N(0,1), we can derive the following result for the mean squared error (MSE).

oF = Var ] = %Varm(m) [

fi= (13)

Theorem 2 The asymptotic MSE of the TABI estimator [i is given by

B[(i— )] - “E” ((r — Corrféy. &])? + 1 Corrfér. &%) + 00 (14)

where k 1= 01/(102) is a measure of the relative accuracy of the two estimators and O(e) represents
asymptotically dominated terms that disappear in the limit M, N — co.

4. The results trivially generalize to general f(z) with suitable adjustment of the definition of 0.

5. Though we omit it from our considerations here, there are some interesting edge cases where fignrs can converge
even when the individual estimates £ and E5 do not. Most notably, this can occur if ¢(z) = 0 in a finite-measure
region where f(z) = p, which results in the asymptotic biases from the two estimators canceling.

12
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Proof See Appendix A.2 |

Remark 3 In the standard TABI case—uwhere El and Eg are independent estimators such that
Corr[€y,&2] = 0—this result straightforwardly simplifies to

2,2
o2k

E {(,1 - uﬂ = (52 + 1) +O(e). (15)

We can now examine the relative performance of TABI and SNIS in different settings by consider-
ing the effect of o5 and x on the MSE in (14). While o9 is obviously an indicator for how effective an
estimator E, is for Fs (with smaller values indicating the estimator is more effective), we can think
of k as representing the relative effectiveness of the two estimators (with smaller values indicating
that E; is the relatively more effective estimator). We see from (14) that smaller values of oy are
always preferable, while the optimal value of k for a given o9 varies between 0 and 1 depending on
Corr[&1, &2).

For SNIS, it is very difficult to independently control oo and x for a given problem: because
Ey and Fy share the same proposal, we typically cannot force o2 to be small without causing
k (= o1/(no2)) to explode; if we drive oo — 0, this results in K — oo. Moreover, the larger the
mismatch between p(z,y) and p(z,y) f(x), the harder it is to manage this trade-off effectively because
the more difficult it becomes to have a proposal that keeps both o1 and oo small. This yields the
expected result that the errors for SNIS typically become large when the mismatch is large. For
TABI, we can control x for a given o5 through separately ensuring a good proposal for both Ey and
Es, and, if desired, by adjusting M and N (relative to a fixed budget M + N). Consequently, we
can achieve better errors than SNIS through this extra control.

On the other hand, as p(z,y) and p(z,y)f(z) become increasingly well-matched, then x — 1
and we find that TABI has less to gain over SNIS. In fact, we see that TABI (with non—optimal
proposals) can potentially be worse than SNIS in this setting because here SNIS typically produces
Corr[¢1,£)? ~ 1 as using the same set of samples when f(z) is near constant means £, and Ey will
become almost direct scalings of each other, thereby typically leading to their errors becoming highly
correlated. This then causes a canceling effect, potentially leading to very low errors. By contrast
the standard TABI approach has Corr[€;, ] = 0 because it uses independent estimators. We note
though that, in some scenarios, it may be possible to mitigate this by correlating the estimates, e.g.
through using common random numbers.

Thus, in summary, we see that the gains from using TABI will typically be largest when there
is a significant mismatch between p(x,y) and p(z,y)f(x), whereas when these are well-matched it
may be less helpful and, in extreme cases, potentially even harmful. We emphasize though that the
optimal TABI estimator is always better than the optimal SNIS estimator as per Theorem 1; these
results are more an insight into typical behavior when optimal proposals cannot be achieved.

3.6. Optimal Sample Allocation

An interesting corollary from Theorem 2 is that we can use it to derive the asymptotically optimal
allocation of samples for TABI given a budget T' = N + M. Starting with (15), we can find the
optimal N simply by setting the derivative for the MSE with respect to IV to zero which yields

N* — S1 _ <1/E1
1+ ps2 G1/E1 +6/Ey

where ¢ = \/Varql(x) [f(@)p(z,y)/q:(2)] and ¢ = \/Varqz(x) [p(z,y)/g2(z)] are the standard devi-

ations of the one sample estimators for F; and Es respectively. We thus see that it is optimal to use
a number of samples proportional to the relative standard deviation of the one—sample estimator
(i.e. its standard deviation divided by its true value). This is intuitively what one would expect, as
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it corresponds to estimating each term to the same relative degree of accuracy. Note, that the result
can also straightforwardly be extended to the general TABI setting where f(z) is not bounded, for
which we get (defining §1+ and ¢; in an analogous manner)

s /B . s /E;

ST/EY + o JEr + /By /B 46 /By + /B2

*

3.7. Related Work

We believe that the complete form of the TABI estimator in (11) has not previously been suggested in
the literature (other than in the earlier version of this work, Goliriski et al. 2019), nor the applications
and extensions presented later in the paper considered. However, individual elements of the estimator
have previously been noted.

Firstly, the general idea of using multiple proposals is well established through the concept
of multiple importance sampling (MIS) (Veach and Guibas, 1995; Owen and Zhou, 2000; Cornuet
et al., 2012; Elvira et al., 2019). The high—level idea of MIS is to draw samples from a set of different
proposals before properly weighting them according to the target distribution. There transpires to
be a number of different valid approaches to both the sampling and the weighting (see, e.g., Elvira
et al. 2019 and the references therein), with many based around implied proposal distributions and
Rao-Blackwellized estimators.

MIS is closely related to the idea of positivisation that we used in breaking the numerator of the
target expectation, Ey, into Ey" and E; in (10). Indeed, in Appendix C we show how one can use
ideas from MIS to formulate a distinct approach for estimating F; that shares TABI’s compelling
theoretical properties. Critically though, existing MIS approaches still rely on self-normalization
and so are still subject to the previously demonstrated bounds for the performance of SNIS. They
also do not naturally allow for the applications and extensions of TABI we cover in subsequent
sections, such as target—aware adaptive sampling, target—aware amortized inference, and using base
estimators other than importance sampling.

The use of two separate proposals for F; and Fy (i.e. Eq 8), on the other hand, was recently
independently suggested by Lamberti et al. (2018) in work published concurrently to an early version
of our own.® Though they do not consider adaptive or amortized sampling as we will later, Lamberti
et al. (2018) do instead consider an interesting alternative static estimation approach. Namely,
they first draw a single set of samples from a fixed proposal, as per SNIS, but then apply an
optimization procedure to learn two linear mappings for these samples, thereby implicitly defining
two new proposals. This produces an estimator similar to (8) where N = M and .5 is a linear
mapping of z1.p;. They show that this offers small improvements compared to the optimal SNIS
sampler (reducing the error by around a factor of 1.5 to 2) for some simple one-dimensional problems.

However, it remains to be seen whether this can still be beneficial in more complex or mul-
tidimensional settings, while the approach has some significant drawbacks compared to TABI. For
example, it cannot match TABI estimator’s theoretical capabilities or small sample size performance
because it relies on samples from the proposal to learn the linear mappings themselves, such that
these maps will be inaccurate for small sample sizes. Their approach also has some potential issues
with cost, as the optimization procedure applied is liable to be substantially more costly than the
original sampling procedure itself.

3.7.1. ALTERNATIVE APPROACHES

We have discussed at length how target information can be incorporated into inference when using
importance sampling techniques. We now take a short interlude to discuss alternatives approaches.

6. A preliminary version of our TABI framework was first presented in a short-form paper at the Workshop on
Uncertainty in Deep Learning as part of the 2018 Conference on Uncertainty in Artificial Intelligence.
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We highlight that none of the discussed approaches have the theoretical advantages of TABI, while
none have been used in the amortized inference context we discuss in Section 5.

Bridge sampling (Meng and Wong, 1996; Gelman and Meng, 1998; Meng and Schilling, 2002;
Wang and Meng, 2016; Gronau et al., 2017) is an approach for estimating the ratio of the normalizing
constants for two unnormalized densities given a set of samples from each, typically generated using
MCMC methods. It relies on exploiting the overlapping region of the two densities. In the case
where f(x) > 0Vz, it can be used to incorporate target information into the inference process by
taking these unnormalized densities to be p(z,y)f(x) and p(z,y) respectively. It also shares a,
predominantly superficial, similarity to our TABI framework, in that it uses two independent sub-
estimators as a mechanism to estimate the target ratio. However, these estimators target different
expectations than those in our framework and are based on leveraging the overlap between the two
distributions, rather than separately estimating the two terms. Moreover, its underlying motivation
and characteristics are highly distinct from our own. For example, its efficiency is heavily limited
by the level of overlap between the distributions (Meng and Wong, 1996; Meng and Schilling, 2002;
Frithwirth-Schnatter, 2004). This, along with the restriction that f(z) must be strictly positive,
means it is typically poorly suited to our setting.

Umbrella sampling (Torrie and Valleau, 1977a; Mezei, 1987; Késtner, 2011; Thiede et al., 2016;
Matthews et al., 2018) is an MCMC approach, most commonly used for free—energy estimation, that
allows one to force additional sampling in regions of interest using biasing functions, also known as
window functions or umbrellas, before applying corrective factors to remove the resulting biases.
It is often used either to make it easier to sample from a multi-modal distribution, or to force
additional sampling in the tails of the distribution. In principle, it can also be used to construct
posterior estimates whose accuracy is focused on regions of interest, such as where |f(z)] is large.
Though a potentially useful mechanism for incorporating target information, umbrella sampling
requires the additional complex estimation of normalizing constants for each of the constructed
biased distributions (see, e.g., Matthews et al. 2018, Section 2.1). Carrying this out reliably can be
very difficult, particularly when there is significant discrepancy between the umbrella distributions,
something which is typically difficult to avoid. Even if this can be overcome, the theoretically
achievable performance of umbrella sampling is still limited, unlike TABI estimators.

Another issue with umbrella sampling is that the umbrellas used must be manually chosen by the
user in a manner that balances both the need for overlap between umbrellas and successful targeting
of important regions of the space. This is further compounded by the fact that increasing the number
of umbrellas naturally leads to the cost of the algorithm increasing. Perhaps because of these issues,
umbrella sampling has seen little use as a general-purpose sampling strategy, despite its successful
application to a wide variety of specific sampling problems in physics and chemistry (Torrie and
Valleau, 1977b; Virnau and Miiller, 2004).

Lacoste-Julien et al. (2011) and Cobb et al. (2018) consider a problem setting that is related to
our own: calibrating the output of a Bayesian inference to some loss function defined with respect
to a decision task. Their focus is on constructing variational posterior approximations that lead to
decisions with low posterior risk. They highlight that different metrics for the quality of the posterior
approximation can lead to vastly different levels of calibration between the asserted approximation
error and the error in the final decision. To account for this, they introduce a loss—calibrated
expectation maximization approach that uses information from the loss function to construct well—-
calibrated variational approximations to the posterior, such that if a good approximation is achieved
in their framework, this implies the decision taken will have low posterior risk.

4. Target—Aware Adaptive Importance Sampling

In the previous section, we showed how our TABI framework can be used to produce highly efficient
estimators for expectations, given access to effective proposals. However, we did not consider how
such effective proposals might be achieved other than to note their optimal forms. We now show

15



RAINFORTH, GOLINSKI, WOOD, AND ZAIDI

how adaptive importance sampling (AIS) methods can be used to learn such proposals in an online
manner and how by combining them with our TABI framework we can produce effective adaptive
methods for performing target—aware inference. Notably, we will find that, in some settings, these
methods are able to both theoretically and empirically achieve convergence rates superior to standard
Monte Carlo estimators such as SNIS.

4.1. Adaptive Importance Sampling (AIS)

The performance of importance sampling approaches, and indeed almost all MC methods, is critically
dependent on the proposal used. However, hand-crafting proposals is typically extremely difficult;
knowing a good proposal is tantamount to already having a good approximation of the target
distribution. To address this issue, AIS methods exploit information gathered from previously
drawn samples to adaptively update the proposal and try to improve it for future iterations (Oh and
Berger, 1992; Gelman and Meng, 1998; Cappé et al., 2004; Cornebise et al., 2008; Cornuet et al.,
2012; Martino et al., 2017; Bugallo et al., 2017; Rainforth et al., 2018b; Lu et al., 2018; Portier and
Delyon, 2018).

In general, AIS methods try to adapt the proposal distribution ¢(z) to match some target dis-
tribution 7(z). As before, m(x) can typically only be evaluated up to a normalizing constant,
ie. m(x) = v(x)/Z where v(z) can be evaluated pointwise and Z is unknown, such that AIS meth-
ods generally rely on self-normalization when evaluating expectations. Though a wide range of
approaches have been suggested for adapting g(x) (see, e.g., Bugallo et al. 2017 for a recent review),
these generally share a common framework wherein they alternate between constructing a batch of
weighted samples using the current proposal ¢:(x) and updating the proposal ¢:(z) — 41 () using
these samples.

For the first step, the only complication is in choosing how to set the weights. The simplest
common approach is to just weight according to the proposal the sample was drawn from, such that

iid. (@)
xr,t qt($)7 wr,t - Qt(l'r,t)

, Vte{l,...,T}, re{l,...,R} (16)

where we have N = RT total samples. However, there are a number of schemes that try and improve
on this using ideas from MIS, specifically by using alternative weights based on the implied mixture
proposal of different ¢, see e.g. Tables 3 and 4 in Bugallo et al. (2017). One common thing between
the simple weighting scheme given in (16) and these more advanced approaches is that they produce
consistent and unbiased estimates of the marginal likelihood (presuming the proposal adaptation is
set up to ensure the proposals used always remain valid):

T
5 1 . . o
: ﬁ;;wm7 E[Z)=2, lm Z=2 lim Z=7Z (17)
Here the unbiasedness can be shown straightforwardly by noting that E[Z] := e Zt 1 Z E[w, ]

and each E[w, ;] = Z. The convergences in the limit of either large T or large R can be bhOWH by a
combination of a) the above unbiasedness result; b) noting that, even though the z,; are correlated
across t due to the adaptation, E[(w,; — Z)(wy v — Z)] = 0 unless r = 7’ and ¢ = t/; and ¢) applying
the weak law of large numbers.

For the proposal update step, there is a multitude of different approaches that can be taken. For
example, one common approach is to update the proposal by minimizing the Kullback-Leibler (KL)
divergence from the current target distribution estimate,

t R
_ _ Wi
= Z Z W0z, (), where w,; = —; = , (18)
i=1r=1 Zj:l 2 one1 Win
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to ¢i+1(x) (Douc et al., 2007; Cappé et al., 2008; Chatterjee et al., 2018; Lu et al., 2018):

esr = argin [ (o) log (2 (x>>dx—argmm—zzwmlog (). (19)

qeQ Q(x) qeQ i—1 r—1

Here Q represents the set of valid proposals, usually corresponding to a parameterized proposal
definition where the optimization is carried out over these parameters. Actually evaluating (19)
(or more typically it gradients) is generally difficult; naively trying to solve it from scratch at each
iteration would lead to a O(N?) cost. To avoid this, methods typically either a) chose proposal
families where the optimization can be done analytically (or at least simply), such as exponential
family proposals where ¢; 1 can be found by simply keeping online estimates of sufficient statistics
and then moment matching (Cornuet et al., 2012); or b) take a stochastic gradient approach, where
q¢+1 is found by applying a gradient update to the parameters of ¢; using only the new samples (Elvira
et al., 2015; Miiller et al., 2019).

Other common approaches for adapting the proposal include using systems of interacting parti-
cles to produce implicit nonparametric proposals (Cappé et al., 2004); constructing MCMC chains
targeting m(z) and then using proposals centered around these chains (Martino et al., 2017); and
recursively partitioning the sample space to construct tree-based proposals (Rainforth et al., 2018b;
Lu et al., 2018).

4.2. AIS with a Known Target Function

As explained in the previous section, AIS methods take as input some unnormalized target density
~(x) and return a self-normalized set of weighted samples approximating the normalized target ()
as per (18), along with an estimate Z for the normalizing constant as per (17). Critically, unlike
for MCMC methods, when using AIS to estimate an expectation, 7(x) does not need to correspond
to the distribution that expectation is taken with respect to. Specifically, if we wish to estimate
p = Ey)[f(x)] for some arbitrary distribution o(x) using AIS targeting the unnormalized target
density v(x), we simply need to factor our weights in the final IS estimator as follows

q(x) q(z) y(x

where n = (t — 1)R + r is a flattening of sample indices, w, = 7(2n)/q¢(n)(7n) are the weights
produced by the AIS method, and v,, = o(x,)/v(x,) are corrective weights to account for the fact
we targeted ~y(x) rather than o(x).

Analogously, if the normalized density of the reference distribution is unknown, e.g. o(z) = p(zl|y),
we can use AIS to instead construct an SNIS estimate as follows

N
= B 0] = gy | X0 ) [ ML 0| s = - 3 0, 0)

p(z,y) f(x) (= p(w,y)
g B Eq(m) [ a(z) } B Eq(o:) [q(x) ) f(z )} . B ijzl W f () 90
=By [f(2)] = - ] g @) (o) A [ISNIS = ZN v (20)
q(z) [ q(z) ] q(z) [q(z) ~(x) } n=1"nwn

where we now have v, = p(xn,y)/v(xn)-

The ability of AIS methods to target a different distribution to that which the expectation is
taken with respect to means that they can, at least in principle, incorporate information about
f(z) by choosing an appropriate y(z) that captures this information. In the case where the ref-
erence distribution is normalized, this is indeed straightforward: from Section 2.2 we know that
qis(z) o o(z)|f(z)| and so we simply take y(x) = o(x)|f(x)|, such that our adaptation tries to take
q(z) towards ¢jg(x). In the setting where f(xz) > 0Vz and the family of g(x) contains the true
optimal proposal ¢jg, some methods based around this approach have been shown to achieve faster
convergence rates than those of standard MC methods (Zhang, 1996; Portier and Delyon, 2018).
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However, in the SNIS case, incorporating information about f(x) transpires to be far more
difficult. We know from Section 2.3 that the optimal target would be (z) = p(x,y)|f(x) — p| as
this will try to produce the optimal proposal ¢§yg(z) o p(z, y)|f(z) — p|. Unfortunately, this is not
generally a viable choice because p is, by construction, unknown. One method that is sometimes
used as a substitute is to take v(z) = p(z,y)|f(z)|, i.e. treating the problem as if we were not
performing self-normalization. However, as we showed in Figure 1, this can lead to very poor
estimates for p(y), i.e. the denominator in (20), and thus in turn p. One could instead try to use
v(x) = p(x,y)|f(z) — | for some constant ¢, but again this is far from satisfactory due to the fact
that choosing an appropriate value of ¢ is equivalent to already having information about p, while
choosing an inappropriate ¢ can lead to learning a highly inappropriate proposal.

A perhaps more principled, but rarely taken, approach would be to use yi11(z) = p(z, )| f(x)— ]|
where fi; represents the running estimate of p, such that v(x) itself also adapts as the algorithm is
run. This, however, has its own shortfalls. Firstly, if the initial proposal is poor, we can get a chicken
and egg situation where we need a good estimate of u to form a good target for our proposal, but
without a good target for our proposal we will struggle to achieve a good estimate for u. Further,
such an approach is susceptible to computational issues such that it may be difficult to avoid a
O(N?) cost: many of the adaptation approaches discussed in the last section rely on online updates,
but if y(x) is itself changing, it may be necessary to re-evaluate previously sampled points. Even
if this can be avoided, the fact that v(x) is not static can still be a serious complication factor for
implementation; some methods may not even be able to cope with this at all.

Due to this multitude of issues, it is often common practice when using AIS methods for SNIS
estimators to simply ignore information about f(x) and instead target the posterior, that is take
v(x) = p(z,y). However, this is clearly far from a satisfactory solution and will perform poorly
whenever p(z,y) and p(z,y)|f(x)| are not well-matched.

4.3. TAAIS

In the last section, we explained how incorporating information about f(x) is straightforward for
AIS methods when performing standard importance sampling, but can be extremely challenging
when relying on self-normalization. We now show how our TABI framework provides a mechanism
to get around this problem, while also opening the door to achieving better estimates, and even in
some cases better convergence rates, compared with the optimal SNIS sampler.

We refer to our approach as TAAIS, which stands for target-aware adaptive importance sampling.
In short, TAAIS splits up our target expectation into u = (E{” — E])/Es as per the general TABI
framework, and then runs AIS separately for each, using a tailored () in each case. Because each
of these component expectations do not require self-normalization, they fit neatly into the category
of problems where AIS can straightforwardly incorporate information about f(z). Specifically, we
can use the targets

" (2) = pla,y) fF(2) (21a)
Y (2) =plz,y)f~ (z) (21b)
Y2(x) = p(z,y). (21c)

Therefore, not only does TAAIS maintain the benefits over SNIS of the general TABI framework
discussed in Section 3.2, it also solves the difficulties AIS has in choosing an appropriate target
distribution for the adaptation. The choice of the targets in (21) also offers a further convenience:
the component expectation estimates are given simply by the marginal likelihood estimates produced
by the AIS algorithm (as the expected weight is the normalizing constant of the target and these
normalizing constants are Efr , By, and F, respectively), such that
N
ATAATS = M (22)
Z
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We can thus summarize the TAAIS approach as the following simple algorithm:
1. Run AIS separately for each of v; (x), 7; (), and y2(z) defined as per (21);

2. Combined the returned marginal likelihood estimates as per (22) to estimate u.

4.4. Theoretical Advantages

We now demonstrate a theoretical result that shows TAAIS is capable of achieving substantially
improved convergence rates over the standard approach of using AIS methods with the SNIS esti-
mator (which we will refer to as SNIS-AIS) when the distribution family for our proposal contains
the target distribution and our proposal adaptation scheme asymptotically converges to the optimal
proposal. At a high-level, this result stems from the fact that when self-normalization is not re-
quired, AIS methods are able to produce faster convergence rates than static MC estimators under
certain conditions (Portier and Delyon, 2018). As TAAIS is comprised of three independent such
estimators, it is able to retain this property. More precisely we have the following result.

Theorem 4 Let the three AIS marginal likelihood estimators used by TAAIS be given by

1 & 1 & 1 <
Zf‘ = i Zwin, Z] = e Zwik, Zo 1= i Z W, m,
n=1 k=1

m=1

where wfn, wy ., and wa , are all valid importance sampling weights for v (), 71 (), and 2 (z)
respectively as defined in (21). Assume that each of these estimators is generated independently
of each other. If the proposal adaption for each AILS estimator converges such that there are some
constants s, s7, s2,a,b,¢ > 0 for which the following bounds hold for all n,k,m > 0

+ ST - 51
Var[wlyn] < —a Var[wl,k] < =

oo var[wzm] < 2

_mc7

then the MSFE of firaars := (Zfr — Z{)/Zg converges in expectation as follows

E [(frans — )] < 2 M)+ S, ) + 20 0 ) + 0(0) (23)
HUTAAIS 12 >~ E22 N2 ) K2 ) M2 )
where O(e) represents asymptotically dominated terms, and
L if 0<a<l1
h(c, L) = < log(L) +n, if a=1
(), if a>1

where n ~ 0.577 is the Euler-Mascheroni constant and ( is the Riemann-zeta function.
Proof See Appendix A.3. |
Remark 5 Presuming that we set M « K o« N and that each of the proposals converges at the

same rate such that the variance on their n' weight is O(1/n®) for some a, then this result implies
three different convergence rates depending on the value of a:

O (=) » if 0<a<1
E [(ﬂTAAIS - M)Q} =10 (b%év)> ; if a=1
O(#), if a>1
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This result shows that TAAIS is able to improve on the standard Monte Carlo convergence rate
of O(1/N) if our proposal family contains the target distribution and our adaptation scheme is
sufficiently powerful to ensure the proposal converges to the optimal proposal. When this is the
case, we expect that a = 1 will often be typical, leading to a convergence rate of O(log(N)/N?), a
substantial improvement on SNIS. The rationale for this is that a = 1 corresponds to the variance of
the weights themselves converging to zero at the Monte Carlo error rate, as might be expected when
using, for example, a moment-matching AIS method (for which our parameters are themselves taken
from a Monte Carlo estimate). This assertion is also consistent with our empirical observations in
the next section, along with the theoretical results of Zhang (1996); Lu et al. (2018).

4.5. Experiments

Having confirmed the theoretical capabilities of TAAIS in the last section, we now show that it is
also able to provide substantial empirical benefits over SNIS-AIS methods in practice. Code for
these experiments and others is available at https://github.com/twgr/tabi.

4.5.1. GAUSSIAN EXAMPLE

We first show that the theoretical O(log(N)/N?) convergence rate can be achieved in practice when
the proposal families contain their respective target distributions. For this, we use a simple Gaussian
model defined as

Y y o1
pe) = N0, plole) =N (~Loviar) f@) =& (s d15r) e
where D is the dimensionality, I is the identity matrix, 1 is a vector of ones with length D, and y
represents the radial distance of the observation from the origin, such that it dictates the level of
separation between the distributions. Note that we are implicitly parameterizing the function by ¥,
where this is a fixed variable for any given experiment. This problem effectively equates to that of
calculating the posterior predictive density of a point at (y/ VD)1 under a Gaussian unknown mean
model with prior centered at the origin and an observation at (—y/v/D)1 .

Though simple, this problem has a number of useful characteristics that motivate its use as a
testbed. Firstly, we can easily calculate ground truth values for p and the SNIS bound given in (4).
Secondly, we can arbitrarily vary the difficulty of the problem through changes to y and D: the
larger the value of y the larger the discrepancy between p(z,y) and p(z,y)f(z), while increasing
the dimensionality inevitably makes the problem harder. Thirdly, because both the posterior and
function-scaled posterior are Gaussian, we can easily construct a proposal family that satisfies the
assumptions of Theorem 4. Namely, we use a moment matching approach where the proposal is a
Gaussian whose mean and diagonal covariance are based on the samples taken thus far. Using the
superscript d to denote different dimensions, each proposal thus takes the form

qi(x) = N(x;mye, X¢)  where

t—1 R t—1 R

2 2
d — d d,d — d d
my = g E Wy iy gy 2 = Max | Lmin, g g Wy ; (l‘ni) - (mt> ,

i=1r=1 i=1r=1

the off-diagonal terms in X; are all zero, and X, is a fixed minimum variance to ensure proposals
are guaranteed to remain valid for the distribution we are targeting. We note that as f(x) > 0Vz, we
need not calculate E; for this problem. We take ¥,,i, = 0.4% when targeting vo(z) and X, = 0.22
when targeting ~v1(x). We draw R = 200 samples from each ¢;(x) between each proposal update,
with the proposal updates themselves performed by making an online update to running estimates of
the moments to avoid unnecessary recalculations and ensure the cost of the proposal update remains
constant as the number of iterations increases. We further take N = M for TAAIS.
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Figure 3: Convergence plots of relative squared error (as per Eq 12) for TAAIS and SNIS-AIS on the
Gaussian model defined in (24) for different dimensionalities and separations y. The solid
line represents the median across 100 runs, shading the 25% and 75% quantiles. The AIS
method used is the moment matching approach described in Section 4.5. Note here that
TAAIS is actually slighter quicker than SNIS-AIS for the same number of total samples
drawn because it only has to evaluate f(z) for half of these samples. As such, the relative
real-time performance of TAAIS is actually slightly better than these comparisons. We
note the overhead cost of the adaptation is the same for all methods and is lower than the
combined cost of sampling and evaluating the weights.

We now consider the different values of D € {10, 25,50} and y € {2,3.5,5}, giving nine variations
of the problem of varying difficulty. We compare TAAIS to two SNIS-AIS variants, one using the
target y(z) = v1(z) = p(z,y) f(z) and one using y(z) = v2(x) = p(z,y), with that the latter of these
corresponding to a standard inference approach that does not use information about the target. We
also compare to the theoretically optimal SNIS sampler, i.e. the bound given in (4). The results are
given in Figure 3 and Table 1.

We see that TAAIS comfortably beats the SNIS-AIS samplers targeting v; and 5 in all cases
except D = 50 and y = 2, for which the final errors are comparable for TAAIS and SNIS-AIS using
2. In all cases, TAAIS can be seen to give an empirical convergence rate that fits perfectly with the
O(log(N)/N?) rate predicted by Theorem 4; indeed the nature of this convergence is remarkably
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y Dimension SNIS-AIS 7, SNIS-AIS 1, TAAIS
10 —12.85+0.26 —5.58 £ 0.21 —22.25+0.20
2 25 —10.96 £0.22 —-3.74+0.19 —-17.14+£0.21
50 —-7.37+£0.22 —2.00£0.19 —6.91+0.39
10 —7.01+0.22 —0.21+£0.14 —22.19 £0.27
35 25 —5.234+0.25 0.36 +0.21 —17.16 + 0.29
50 —-3.124+0.19 2.324+0.25 —7.88+0.46
10 —1.58 £0.18 5.31 £0.16 —21.21 £0.22
5 25 —-0.95+0.14 5.83 £0.25 —16.96 +0.30
50 —0.66 +0.15 8.124+0.30 —7.18+0.39

Table 1: Comparison of final results for Gaussian example when allowing a budget of 107 total
samples (such that N = M = 5 x 10° for TAAIS and N = 107 for SNIS-AIS). Unlike
Figure 3, the values shown here are the mean and standard error of the log relative squared
error across 100 runs. Results shown in bold represent either the best achieved error for
that problem or a result where we cannot reject the hypothesis that this result has the
same mean as the best result at the 5% significance level of a t-test.

stable and consistent with the theory across the different runs. In all the 10 and 25 dimensional
cases, TAAIS further outperformed the optimal SNIS sampler within the allocated budget.

The behavior of TAAIS in 50 dimensions was particularly interesting: a large number of samples
were required before the AIS methods were able to start effectively adapting, but once this occurred,
the TAAIS sampler starts converging very quickly, despite the fact that this represents an unusually
high dimensionality for AIS methods. Though the performance of the SNIS-AIS baselines quickly
diminishes with increasing y (representing increasing mismatch between p(z,y) and p(z,y) f(z)), the
performance of TAAIS was almost completely unaffected. Another result of note was the particularly
poor behavior of SNIS-AIS targeting 71 (z). This is most likely due to the fact that ¢(z) o< v1(x)
would actually represent an invalid proposal for an estimator for Zs and so this choice of adaptation
scheme potentially leads to a non-convergent overall SNIS estimator.

4.5.2. BANANA EXAMPLE

In the previous sections, we showed that TAAIS is able to achieve improved convergence rates
compared with the optimal SNIS sampler when the proposal family contains the target distributions.
We now investigate whether it still offers practical benefits in a problem setup where this does not
hold. For this, we consider the classic two-dimensional banana problem where”

1 2
p(e,y) < exp | =3 (0.03x% + (”T; +0.03 (x% - 100)) ) , (25)

7. Though there is actually no observed data y here, we maintain p(z,y) as a notation for an unnormalized density
to avoid confusion with the AIS targets.
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Figure 4: Visualizations of banana distribution and its product with the functions f,(x) and f(z).

along with two different target functions

fa(x) := (2 + 10) - exp <—£ll (x1+ 22 + 25)2) (26a)
fo(x) i= (1 — 2)% - I(xy < —10). (26b)

Visualizations of p(z,y), p(z,y)fo(x), and p(x,y)fs(x) are shown in Figure 4. We note that both
fao(x) and fy(x) have regions where they return negative values, such that the full TAAIS estimator
is required in both cases.

Because of the more complex target densities for this problem, we employ a more advanced AIS
method, namely the parallel interacting Markov adaptive importance sampling (PI-MAIS) approach
of Martino et al. (2017). PI-MAIS is a state-of-the-art AIS approach that, given a target distribution
~(x), runs S independent MCMC samplers each targeting v(z). It then uses the locations of these
chains to, at each iteration, construct a mixture of Gaussians proposal distribution, with each
component centered on the location of one of the chains such that the proposal at iteration ¢ is

1

S
g(x) = 5 Y N(w; %, %)
s=1

2]

where Z;, is the location of the st MCMC chain at the ' iteration and ¥ is a fixed covariance
matrix. We use S = 40 such chains and draw R = 200 samples from each ¢;(x).® We use a random
walk Gaussian proposal for the MCMC samplers with covariance Yncmc, and choose the following
covariance setups for the different problem configurations: [f,,72] ¥ = 361 and Yyomc = 2.251;
[fary) and 77] £ = 2.251 and Syome = 2.2570; [fo,1] ¥ = 91 and Syomc = 2-2515; [fy, all +]
> =161 and EMCMC =1.

We compare TAAIS to the same baselines as our Gaussian example (taking 71 (z) = p(x, y)|f(x)]
for the corresponding SNIS-AIS estimator), the results of which are given in Figure 5. We further
include a comparison to conventional MCMC sampling by using the &, ; samples generated by the
PI-MAIS sampler targeting v2(z) x p(z]y). We see that MCMC sampling of posterior and both
SNIS-AIS methods were relatively ineffective for both target functions compared with TAAIS. In
particular, SNIS-AIS targeting 7, () was poor throughout, while all methods other than TAAIS
and the optimal SNIS sampler struggled for fi(z). Perhaps unsurprisingly, given that we are using
a relatively simple proposal class that is not able to completely encapsulate its targets, TAAIS

8. In practice, we Rao-Blackwellize the selection of the mixture component by drawing 5 samples from each of the
40 component Gaussians.
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Figure 5: Convergence plots of TAAIS and SNIS-AIS on banana example with two different target
functions. Conventions as per Figure 3. Here inference is run using PI-MAIS as explained
in the text. As in Figure 3, this is a slightly conservative evaluation of the performance
of TAAIS due to not taking into account its slightly reduced cost for a given number
of density evaluations. Note that the MCMC results stop short of the others as these
are generated as a byproduct of the PI-MAIS sampler targeting v2(x) and only represent
1/6% of the budget spent by this.

was not able to outperform the optimal SNIS sampler and produced convergence rates in line with
standard MC, rather than the faster rates observed earlier. Nonetheless, it was still able to produce
estimates with errors that were very close to the optimal SNIS sampler, which represents highly
effective performance given the non-standard form of the target distribution. In particular, TAAIS
still produced estimators with many orders of magnitude lower error than all the baseline approaches.

5. Amortized Monte Carlo Integration

So far we have focused on solving individual inference problems where both the data and target
function are presumed to be known and fixed. We now consider an amortized inference setting,
wherein we wish to learn a predictive model, known as an amortization artifact, that can help run
inference across a range of different problems (Stuhlmiiller et al., 2013; Gershman and Goodman,
2014; Kingma and Welling, 2014; Ritchie et al., 2016; Paige and Wood, 2016; Le et al., 2017, 2018;
Webb et al., 2018). Typically, the amortization artifact acts as a regressor from data sets to proposal
parameters expected to be effective for the resulting inference problem. As we will later show, our
TABI framework can be particularly useful in this setting, due to the ability of inference amortization
methods to learn effective proposals.

More specifically, we will introduce Amortized Monte Carlo integration (AMCI, Golinski et al.
2019), a framework for amortizing the cost of calculating a family of expectations u(y,6) =
Er(z:y)[f(7;0)]. Here y represents changeable aspects of the reference distribution 7(z;y) (e.g.,
the data set y for the joint density p(z,y) in the Bayesian setting) and 6 represents changeable
parameters of the target function f(z;6). As before, the reference distribution is typically known
only up to a normalization constant, i.e. 7(z;y) = y(x;y)/Z(y) where y(x;y) can be evaluated
pointwise, but Z(y) is unknown.

Amortization can be performed over y and/or §. When amortizing over y, the function does not
need to be explicitly parameterized by 6; we just need to be able to evaluate it pointwise. Similarly,
when amortizing over 6, the reference distribution can be fixed.
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For comnsistency of notation with the rest of the paper, we will presume a Bayesian inference
setting in the rest of this section, i.e. w(xz;y)=p(z|y), v(z;y)=p(z,y), and Z(y) = p(y).

5.1. Inference Amortization

Inference amortization involves learning an amortization artifact that takes a data set as input and
produces a proposal tailored to the corresponding inference problem. This amortization artifact
typically takes the form of a parametrized proposal, q(z; ¢(y; 7)), that takes in data y and produces
proposal parameters using an inference network ¢(y;n), which itself has parameters ) and typically
corresponds to a neural network. When clear from the context, we will use the shorthand ¢(z;y,n)
for this proposal.

Though the exact process varies with context, the inference network is usually trained either
by drawing latent-data sample pairs from the joint p(z,y) (Paige and Wood, 2016; Le et al., 2017,
2019), or by drawing mini-batches from a large data set using stochastic variational inference ap-
proaches (Hoffman et al., 2013; Kingma and Welling, 2014; Rezende et al., 2014; Ritchie et al.,
2016). Once trained, it provides an efficient means of approximately sampling from the posterior of
a particular data set, typically using SNIS.

Out of several variants, we focus on the method introduced by Paige and Wood (2016), as this
is the one AMCI will build upon. In their approach, 7 is trained to minimize the expectation of
Dy, [p(:z:|y) || q(z; v, 77)] across possible data sets y, giving the objective

T) = Eyiyy [P [p(ely) | al )]
=Epzy) [— log q(x;y,n)} + const wrt 7 (27)

We note that the distribution p(y) over which we are taking the expectation is actually chosen
somewhat arbitrarily: it simply dictates how much the network prioritizes a good amortization for
one data set over another, different choices are equally valid and imply different loss functions.

This objective requires us to be able to sample from the joint distribution p(z,y) and it can
be optimized using stochastic gradient methods, since the gradient can easily unbiasedly estimated
using

B
1
VT (1) = Ep(ay) [~Viylogq(z;y,n)] ~ ~5 >V, log gl yi,m), (28)

i=1

where (z;,y;) ~ p(x,y) and B is the batch size.

5.2. AMCI

Existing amortized inference methods implicitly evaluate expectations using SNIS (or some other
form of a self-normalized estimator (Paige and Wood, 2016; Le et al., 2018)), targeting the posterior
as the optimal proposal. Not only is this proposal suboptimal in its failure to use information about
the target function when this is available, but it also suffers from the various issues with SNIS
samplers that have been outlined throughout the paper.

To overcome this, AMCI instead applies inference amortization in the TABI framework by
learning an amortized proposal for each of Ef, E;, and Ey, and then using the TABI estimator
per (11). We refer to these three amortized proposals respectively as q¢; (z; v, 0, 1), g7 (x;, 0,17 ),
and go(x;y,1n2), with their optimal forms as per Theorem 1, such that the unnormalized target
densities for our training will respectively be p(z,y)f*(x;0), p(x,y)f~ (x;0), and p(z,y).

Learning ¢s(x; y,n2) is equivalent to the standard inference amortization problem and so we will
just use the objective given by (27). The approaches for learning ¢; (z;y,0,n;) and ¢, (z;y,0,77)
are equivalent, other than the function that is used in the estimators. Therefore, for simplicity, we
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introduce our amortization procedure in the case where f(x;0) > 0 Vz,0, such that we can need
only learn a single proposal, ¢1(z;y,6,71), for the numerator as per (8). This trivially extends
to the full TABI setup by separately repeating the same training procedure for ¢} (z;y,6,7") and
q; (z;y,0,n7 ). To avoid clutter, we will further drop the subscript on 7;.

5.2.1. F1IXED FUNCTION f(z)

We first consider the scenario where f(x) is fixed (i.e. we are not amortizing over function parameters
) and hence temporarily drop the dependence of ¢; on 6.

To learn the parameters n for the first amortized proposal ¢1(z;y,n), we need to adjust the
target in (27) to incorporate the effect of the target function. Let Fy(y) = K, [f(2)p(y|z)] b
the numerator expectation with data set y and g(z|y) = f(z)p(z,y)/E1(y) be the corresponding
normalized optimal proposal for ¢;. Naively adjusting (27) leads to a doubly intractable objective:

Ji(n) =Epg)[Dxr(g (wly)llql(w'ym))]

=Ep,q) [ /f 10g q1(z;y,m)x| + const wrt 7, (29)

where the double intractability comes from the fact that we do not know Fj(y) and, at least at the
beginning of the training process, we cannot estimate it efficiently either.

To address this, we use our previous observation that the expectation over p(y) in the above
objective is chosen somewhat arbitrarily. Namely, it dictates how much relative weighting the
objective assigns to different possible data sets during training and not the optimal proposal for
each individual data set; disregarding the finite capacity of the network, the global optimum is still
always q1(z;y,n) = g(z|y) Vo, y. We thus maintain a well-defined objective if we choose a different
reference distribution over data sets.

In particular, if we take the expectation with respect to h(y) xp(y)u(y) = E1(y), we get

J1(n) = Epy) [DKL (9([y) || g1 (23 y, 77))}
=c "By [—f(2)logqi(z;y,m)] + const wrt n (30)

where ¢ = E,,) [(y)] > 0 is a positive constant that does not affect the optimization—it is the
normalization constant for the distribution h(y)—and can thus be ignored. Each term in this
expectation can now be evaluated directly, meaning we can again run stochastic gradient descent
algorithms to optimize it. Note that this does not require evaluation of the density p(z,y), only the
ability to draw samples.

This choice of h(y) can be interpreted as giving larger importance to the values of y which
yield larger p(y)u(y) (i.e. E1(y)), rather than just larger p(y). This behavior may often actually
be beneficial. For example, it is often reasonable to assume that the expected magnitude of our
the error in estimating pu(y) roughly scales as its true value, such that E [|i(y) — ﬂ(y)Hy] x u(y)
approximately holds. This then implies that h(y) o« p(y)u(y) is likely to be an effective proposal for

estimating the L risk [, []E Uﬂ(y) — p(y)| ’y”, or at least more effective than sampling directly

from p(y). As such, h(y) should, in turn, be an appropriate distribution for generating our training
data if we want to learn schemes that perform well under this metric (noting that we are not targeting
it directly). More generally, this choice of h(y) will typically be preferable to using h(y) = p(y) (in
the hypothetical scenario where the latter is viable) whenever we care about an expected absolute
loss at test time, while the latter will typically be preferable when we care about an expected relative
loss, e.g. By [|2(y) — p(y)|/n(y)]-

To allow for greater flexibility between these different settings and arbitrary prioritizing of differ-
ent y, we further note that we can, in general, choose h(y)xp(y)u(y)w(y) for any positive evaluable
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function w : Y — RT to yield a tractable objective of the form
Ji(;w) = e(w) ™ Epgay) [~ f(2)w(y) log g1 (x;y,m)] + const wrt n, (31)

where c(w) = E, ) [1(y)w(y)] > 0is again a positive constant which does not affect the optimization.

5.2.2. PARAMETERIZED FUNCTION f(z;6)

As previously mentioned, AMCI also allows for amortization over parametrized functions, to account
for cases in which multiple possible target functions may be of interest. We can incorporate this by
using a pseudo prior p(f) to generate example parameters during training.

Analogously to h(y), the choice of p(f) determines how much importance we assign to different
possible functions that we would like to amortize over. Since, in practice, perfect performance is
unattainable over the entire space of 8, the choice of p(6) is important and it will have an important
effect on the performance of the system.

Incorporating p(6) is straightforward: we take the expectation of the fixed target function training
objective over . In this setting, our inference network ¢ needs to take € as input when determin-
ing the parameters of ¢; and hence we let qq(z;y,0,n) := q1(z;©(y,0;n)). Defining g(z|y;0) :=

f(@;0) p(a,y) /Epy [f(2;0)p(yl2)], and taking h(y,0) < p(y)p(0)u(y, ), we get an objective which
is analogous to (30):

Fi(1) = Engyo) | Dice (9(aly; 0) || s (3, 0,m) |
:C_l : Ep(z,y)p(O) [—f(l'; 9) 1Og q1 (l‘; Y, 0; 77)] + const wrt 7, (32)

where c=E,,yp(0) [,u(y, 9)} >0 is again a positive constant that does not affect the optimization.

5.2.3. EFFICIENT TRAINING

The most straightforward way to train the inference network is to form Monte Carlo estimators for
the gradients of the loss functions (30) and (32) that directly sample from p(8)p(x)p(y|z), namely

B
1
VoJi(n) = By yypeo) [—f(2:0)Vylog qi(a;y,60,n)] ~ 5 E J(2i;0:)Vy log g1 (w45 i, 05, 1),
b=1

where (z;,y;,0;) ~ p(0)p(x)p(y|x). However, if f(x;60) and p(8)p(x) are poorly matched, i.e. f(x;0)
is relatively large in regions where the density p(f)p(x) is small, this approach can be inefficient.
Instead, it will generally be preferable to reformulate the estimator so that samples are generated
from g(0, z)p(y|x) where g(0,x) o< p(0)p(x) f(x;0). For example, defining d = Ep,gyp(2)[f(;0)] as
another constant that does not effect the optimization, we have

B
1 .
(c/d)VT1(0) = Eg0.2)p(s12) [—Valogai(z;y,0,n)] = 5 >V log a1 (@i 9i, 0:,m), (33)
b=1

where (£, §;,0;) ~ g(0, z)p(y|x).

Though ¢(0, z) is itself an intractable distribution, drawing samples from it represents a standard,
rather than an amortized, inference problem and so it is much more manageable than the overall
training. Namely, as the samples do not depend on the proposal we are learning or the data sets,
we can carry out this inference process as a pre-training step that is substantially less costly than
the problem of training the inference network itself.

For example, one simple approach is to construct an MCMC sampler targeting g(0, z) to generate
the required samples for (33), noting that this can be done upfront before training.® Another is to

9. Also note here that it will generally be beneficial to randomly permute the order of these samples to reduce
autocorrelation effects.
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use an importance sampler as follows

p(@)p(z) f(z;0
Cvnjl (77) = Eq’(e,z)p(mz) |:_ ( ) ,((9) l'() ) vn log q1 (LC, Y, 07 77) (34)
1 p I (&4 0; i)
N-p E 9“%) V., log g1 (Z; s, 0i,m) (35)

where (Z;, i, 0;) ~ ¢'(0,2)p(y|lx) and ¢ (0, ) is a proposal as close to g(0, ) as possible. Again
these samples can be generated upfront before training, potentially using an AIS method instead of
simple importance sampling (noting no self-normalization is required).

Both these techniques also apply equally well in the case where we do not look to amortize over
function parameters. In this case, there is no need to take an expectation over p(6) and so we instead
look to draw MCMC samples from, or construct an importance sampler for, g(z) x p(z)f(z).

5.3. Experiments

AMCI is theoretically able to achieve exact estimators with a finite number of samples as per our
general TABI estimator results. In particular, if our amortized proposal families are sufficiently
expressive, and our training schemes sufficiently powerful, that we managed to learn artifacts which
achieve J;(n) = J; (ny) = J2(n2) = 0, then our corresponding final TABI estimators will be
exact regardless of the number of samples used.

However, this will rarely be realizable for practical problems, for which learning perfect proposals
is not typically realistic, particularly in amortized contexts (Cremer et al., 2018). It is, therefore,
necessary to test its empirical performance to assert that gains are possible with imperfect proposals.
To this end, we investigate AMCI’s performance on two illustrative examples.

Our primary baseline is the SNIS approach implicitly used by most existing inference amortization
methods, namely the SNIS estimator with proposal ¢a(z;y). Though this effectively represents
the previous state—of-the—art in amortized expectation calculation, it turns out to be a very weak
baseline. We, therefore, introduce another simple approach one could hypothetically consider using;:
training separate proposals as per AMCI, but then using this to form a mixture distribution proposal
for an SNIS estimator. Namely, we consider using

1
=q2(x;y), or

1
m ;79:7 ;,0
G (239,0) = Sai(w39,0) + 5

1 1
-0 (739,0) + - aq2(z;9),

1
'm\T; 79 =—qf ; 79
m(z3y,0) = 307" (239,0) + 5 3

3
depending on whether f(x) can be bounded or not (i.e. whether one of E}" or E; is zero). This is an
SNIS proposal that takes into account the needs of both Fy and E5. We refer to this method as the
amortized mixture SNIS estimator and emphasize that it represents a novel amortization approach
in its own right. We also note that there is not a simple analogous version of this mixture SNIS for
the adaptive importance sampling scenario we previously considered, because our ability to adapt
the separate proposals for TAAIS relied on the use of separate estimators.

We also compare AMCI to the theoretically optimal SNIS estimator, i.e. the error bound given
by (4). As we will show, AMCI is often able to empirically outperform this bound, thereby giving
better performance than any approach based on SNIS, whether that approach is amortized or not.

Both our experiments correspond to a setting where f(z) > 0Vz, such that we can omit the
calculation of E] and learn a single amortized proposal ¢ (x;y,0) for Fy. We further considered
using SNIS with this proposal, which is perhaps the most natural naive way to adjust an amortized
inference approach to use information about f(z). However, this transpired to perform extremely
poorly throughout (far worse than g2(x;y)) and so we omit its results from the main paper, giving
them in Appendix E. In all experiments, we use the same number of sample from each proposal to
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form the estimate (i.e. N = M = K). An implementation for AMCI and our associated experiments
is available at http://github.com/talesa/amci.

5.3.1. TAIL INTEGRAL CALCULATION

We start with the conceptually simple problem of calculating tail integrals for Gaussian distributions,
namely

D
f(x;0) = H¢:1 150, p(0) = UNIFORM(0; [0, up]?), (36b)

where D is the dimensionality, we set Yo = I, and X is a fixed covariance matrix. This problem was
chosen because it permits easy calculation of the ground truth expectations by exploiting analytic
simplifications, while remaining numerically challenging for values of 6 far away from the mean when
we do not use these simplifications.

We performed one and five-dimensional variants of the experiment. For the one-dimensional case
we used u; = 5 and ¥; = Y9 = 1, while for the five-dimensional case we used us = 3, ¥ = I and
the randomly generated matrix

1.2449 0.2068 0.1635 0.1148 0.0604
0.2068 1.2087 0.1650 0.1158 0.0609
¥ =10.1635 0.1650 1.1665 0.1169 0.0615
0.1148 0.1158 0.1169 1.1179 0.0620
0.0604 0.0609 0.0615 0.0620 1.0625

We used normalizing flows (Rezende and Mohamed, 2015) to construct our proposals, providing
a flexible and powerful means of representing the target distributions. Different flow architectures
were used for the two variants, with both taking an isotropic Gaussian base distribution. For the
one—dimensional case, our flow comprised of 10 radial flow layers (Rezende and Mohamed, 2015).
Amortization was provided by using a neural network taking in the values of y and # as input, and
returning the parameters defining the flow transformations. This network was comprised of 3 fully
connected layers with 1000 hidden units in each layer and relu activation functions.

For the more challenging five-dimensional case, we instead used conditional masked autore-
gressive flows (CMAF) (Papamakarios et al., 2017) with 4 flow layers of 1024 hidden units each.
We adapted the implementation from http://github. com/ikostrikov/pytorch-flows but we did
not find batch normalization helpful and therefore omitted it. Note that CMAF naturally allows for
amortization by conditioning on y and 6, such that we did not need an explicit inference network to
learn the proposal’s parameters in this case.

In both cases, training was done by using importance sampling to generate the values of § and
x as per (34), with

q'(0,z) = p(f) - HALFNORMAL(x; 6, diag(X2)).

The Adam optimizer (Kingma and Ba, 2015) was adopted for both, with learning rates of 1072
and 10~* respectively. We used a data set generation and mini-batching procedure for learning the
inference network introduced by Paige and Wood (2016), these are discussed in Appendix D.

For the one—dimensional variant, the ground truth values of u(y, ) were determined analyt-
ically using pu(y,0) = Epy) [f(2:60)] = 1 — ®(#), where ®(-) is the standard normal cumu-
lative distribution function. For the five-dimensional variant, they were numerically estimated
to a very high degree of accuracy using an SNIS estimator with 10'° samples and the proposal
q(z;0) = HALFNORMAL(z; 0, diag(2s)).
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Figure 6: Relative mean squared errors (as per Eq 37) for [left] the one-dimensional and [right]

the five-dimensional tail integral example. The solid lines for each estimator indicate the
median of 0(y,0) across y and 6, estimated using a common set of 100 samples from
y,0 ~ p(y)p(0), with each corresponding d(y, §) separately estimated by taking the mean
of 100 samples of the respective ) (y,0). The shading instead shows the estimates from
replacing this estimate for §(y,0) with the 25% and 75% quantiles of these samples of
(y,0) for a given y and 6. Note that solid line (the median of the mean estimates) is
at times outside of this shaded region (the median of the quantile estimates) because the
former is often dominated by a few large outliers, i.e. the distribution of 4(y, 8)|y, 6 tends to
have a large positive skew. The dashed line shows the median over y and 6 of the ReMSE

of the optimal SNIS estimator, namely MEDIAN,,(,),(6) [(Epmy)ﬁf(x; 0) — u(y,0))])?/N|.

We note that the error for SNIS with g, proposal is to a large extent flat because there is
typically not a single sample in the estimator for which f(x;6) > 0, such that they return
fi(y,0) = 0 and hence give 6(y,0) = 1. The true ¢ error here is probably actually much
larger, i.e. MEDIAN,(,y,(0)(0(y,0)) > 1, but is difficult to estimate accurately due to the
large skew of the estimator 6(y, #). In Figure (b) the SNIS ¢y, line reaches a ReMSE value
of 10'® at N = 2; the y-axis limits have been adjusted to allow clear comparison at higher
N. This effect is caused by the bias of SNIS: these extremely high errors for SNIS ¢, arise
when all N samples happen to be drawn from distribution ¢;, for further explanation and
the full picture see Figure 14 in Appendix E.

As in previous sections, we use the relative mean squared error (ReMSE) as our main basis for
comparing performance. However, here the impact of the varying y and § mean more care is required
in detailing how this estimated. Firstly, we formally define the ReMSE as

6(y,0) = E [3(4.0)[6,] (37)

where §(y, ) is as per (12). We then consider summary statistics across different {y, 8}, such as its
median when y, 0 ~ p(y)p(0).!° In calculating this, 6(y, ) was separately estimated for each value
of y and 0 using 100 samples of §(y,0) (i.e. 100 realizations of the estimator).

As shown in Figure 6, AMCI outperformed SNIS in both the one- and five-dimensional cases.
For the one-dimensional example, AMCI significantly outperformed all of SNIS ¢o, SNIS ¢,,, and the
theoretically optimal SNIS estimator. SNIS g¢o, the approach implicitly taken by existing inference
amortization methods, typically failed to place even a single sample in the tail of the distribution,

10. Variability in §(y, ) between different instances of {y, 6} is considered in Figures 15 and 17 in Appendix E.
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even for large V. Interestingly, SNIS g, closely matched the theoretical SNIS bound, suggesting that
this amortized proposal is very close to the theoretically optimal one. However, this still constituted
significantly worse performance than AMCI—taking about 10% more samples to achieve the same
relative error—demonstrating the ability of AMCI to outperform the best possible SNIS estimator.

For the five-dimensional example, AMCI again significantly outperformed our main baseline SNIS
g2- Though it still also outperformed SNIS g,,, its advantage was less than in the one-dimensional
case, and it did not outperform the SNIS theoretical bound. SNIS g, itself did not match the bound
as closely as in the one-dimensional example either, suggesting that the proposals learned were worse
than in the one-dimensional case.

Further comparisons based on using the mean squared error (instead of ReMSE) are given in
Appendix E and show qualitatively similar behavior.

5.3.2. PLANNING CANCER TREATMENT

To demonstrate how AMCI might be used in a more real-world scenario, we now consider an il-
lustrative example relating to cancer diagnostic decisions. Imagine that an oncologist is trying to
decide whether to administer a treatment to a cancer patient. Because the treatment is highly
invasive, they only want to administer it if there is a realistic chance of it being successful, i.e. that
the tumor shrinks sufficiently to allow a future operation to be carried out. However, they are only
able to make noisy observations about the current size of the tumor, and there are various unknown
parameters pertaining to its growth, such as the patient’s predisposition to the treatment. To aid
in the oncologist’s decision, the clinic provides a simulator of tumor evolution, a model of the latent
factors required for this simulator, and a loss function for administering the treatment given the
final tumor size. We wish to construct an amortization of this simulator so that we can quickly
and directly predict the expected loss function for administering the treatment from a pair of noisy
observations of the tumor size taken at separate points in time. We note that this is a problem for
which the target function f(x) does not have any changeable parameters (i.e. § = ().

To introduce this problem more precisely, we presume that the size of the tumor is measured
at the time of admission ¢t = 0 and five days later (¢t = 5), yielding observations ¢{ and c. These
are noisy measurements of the true sizes ¢p and ¢5. The loss function £(cig0) is based only on the
size of the tumor after ¢t = 100 days of treatment. The simulator for the development of the tumor
takes the form of an ordinary differential equation (ODE) and is based on Hahnfeldt et al. (1999)
and Enderling and Chaplain (2014), while the specific experimental setup itself is adapted from an
experiment in Rainforth et al. (2018a).

This ODE is defined on two variables, the size of the tumor at time ¢, ¢;, and the corresponding
carrying capacity, K;, where we take Ky = 700. In addition to the initial tumor size c¢g, the key
parameter of the ODE, and the only one we model as varying across patients, is € € [0, 1], a coefficient
determining the patient’s response to the anti-tumor treatment. The ODE now takes the form

¢ c K _ _ 2/3
. Aclog (K) ec , = ¢c—YKc (38)

where the values of the parameters—taken as ¢ = 5.85, ¢ = 0.00873, and A = 0.1923—are based on
those recommended in Hahnfeldt et al. (1999). We further assume the statistical model

co ~ GAMMA (shape = 25, scale = 20) (39a)
e ~ BETA(5.0,10.0) (39b)
2
/ Ct Ct
¢; ~ GAMMA (10000, 10000) : (39¢c)

To relate the model to our general notation, we have: x = {cp, e}, y = {cf, c5}.
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Figure 7: Relative mean squared errors for the cancer example. Conventions as per Figure 6.

Our target function is the loss function for administering the treatment given the final tumor
size provided to us by the clinic, which is defined as

1-2x10"8 —
f(Co,G) = K(Cloo(Can)) = %O (tanh (—W) + 1) +107%. (40)

where ¢100(co, €) denotes the outcome of the deterministic process of running an ODE solver on (38)
up to time ¢t with a given € and initializations ¢y and Ky = 700.

For this problem, our amortized proposals are based on using parametric distributions: a Gamma
distribution for ¢y and a Beta distribution for e. We then train a single-layer perceptron with 500
hidden units to predict the parameters of these distributions as a function of (¢, cf). Since we
do not face an overwhelming mismatch between the target function and the prior, unlike in the
tail integral example, the training was done by generating the values of ¢y and e from the priors
given in (39) as per (32). Training was performed using the Adam optimizer with a learning rate of
10~%, see Appendix D for details on the mini-batching procedure. Ground truth values yu(y) were
estimated numerically to a high degree of accuracy using an SNIS estimator with 10'° samples and
the proposal set to the prior.

To evaluate the learned proposals we followed the same procedure as for the tail integral example.
The results are presented in Figure 7. AMCI again significantly outperformed the literature baseline
of SNIS ¢5—it took about N = 10* samples for SNIS ¢» to achieve the level of relative error of AMCI
for N = 2. AMCI further maintained an advantage over SNIS ¢,,, which itself again closely matched
the optimal SNIS estimator. Further comparisons are given in Appendix E and show qualitatively
similar behavior.

5.4. Discussion

In all experiments, AMCI performed better than SNIS with either ¢» or g, for its proposal. Moreover,
we found that AMCI was able to break the theoretical bound on the achievable performance of any
SNIS estimator in practice. Interestingly, the mixture SNIS estimator we also introduced proved
to be a strong baseline as it closely matched the theoretically optimal SNIS estimator in both
experiments. However, such an effective mixture proposal is only possible thanks to learning the
multiple inference artifacts we suggest as part of the AMCI framework, while its performance was
still generally inferior to AMCI itself.

To assess if the theory discussed in Section 3.5 manifests in practice for AMCI, we revisit our tail
integral example, comparing large and small mismatch scenarios. The results, shown in Figure 8,
strongly agree with these theoretical findings. Namely, we see that the gains provided by AMCI are
much larger in the case where there is large mismatch between p(x,y) and p(z,y) f(z;0).
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Figure 8: Results for the one-dimensional tail integral model in a setting with large mismatch [top]
and low mismatch [bottom]|, with (y,6) respectively equal to (1,3) and (3,0.1). The
left column illustrates the shape of the proposal ¢; and the achievable quality of fit to
f(z;0)p(x|y), we see that AMCI is able to learn very accurate proposals in both cases.
The right column compares the performance of the AMCI and the SNIS estimators where
we see that the gain for AMCI is much larger when the mismatch is large. Uncertainty

bands in column two are estimated over a 1000 runs.

More generally, as Theorem 1 tells us that the AMCI estimator can achieve an arbitrarily low
error for any given target function, while SNIS cannot, we know that its potential gains are larger
the more accurate we are able to make our proposals. As such, as advances elsewhere in the field
allow us to produce increasingly effective amortized proposals, e.g. through advanced normalizing
flow approaches (Durkan et al., 2019; Papamakarios et al., 2019), the larger the potential gains are

from using AMCI.

6. A Generalized Form of the TABI Framework

Thus far, we have focused on using our TABI framework alongside some sort of importance sam-
pling approach. This was based largely on the impressive theoretical properties we demonstrated
this produces. However, the general concept of breaking up the target expectation and separately
estimating each component is far more general than this.

One simple such approach, which can be highly effective in low dimensions, is to use a classical
quadrature method to approximate each of the component expectations. Indeed doing this is the
natural way to calculate ground truth estimates in low-dimensions and was, for example, the ap-
proach we used to generate the ground truth in the banana example in Section 4.5. More generally,
we can use the TABI framework with any approach for estimating expectations, thereby opening
up a wide array of interesting possible extensions.

One particularly interesting class of approaches we can use with the TABI framework are meth-
ods that produce marginal likelihood estimates when given an unnormalized target density. This
includes conventional importance sampling approaches as already discussed, but also methods such
as sequential Monte Carlo (Doucet et al., 2001), nested sampling (Skilling, 2004), and annealed

importance sampling (Neal, 2001).
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Combining these with the TABI framework is straightforward and follows the approach used by
TAALIS in Section 4.3. Namely, we just need to carry out the following simple algorithm:

1. Call amarginal likelihood estimator separately for v; (z) = p(z,y) (), vy (z) = p(x, y) f~(z),
and v2(z) = p(z,y) (as per Eq 21), returning Z;", Z;, and Z, respectively;

2. Combine the returned marginal likelihood estimates to estimate p as follows

n _
= 721 - Z . (41)
Zy
Presuming the individual marginal likelihood estimators are consistent, the consistency of (41)
follows straightforwardly from Slutsky’s Theorem (Slutsky, 1925). Note that there is no need for
the marginal likelihood estimators to be called with the same settings and budget, or even for them
to correspond to the same type of marginal likelihood estimator at all. We also do not require that
these estimators are unbiased, only that they are consistent.
In the rest of this section, we show how this generalized TABI framework can be exploited
using two marginal likelihood estimation approaches: nested sampling (Skilling, 2004), and annealed
importance sampling (Neal, 2001).

6.1. Target—Aware Nested Sampling (TANS)

Nested sampling (NS) is an algorithm for estimating the marginal likelihood Z = p(y) of a Bayesian

model (Skilling, 2004; Evans, 2007; Skilling, 2009; Chopin and Robert, 2010; Feroz et al., 2019). It

requires the ability to sample from the prior distribution p(z) and evaluate the likelihood L(z) =

p(y|z) for any given 2. Alongside returning a consistent (but biased) estimate ZofZ , it also returns

approximate samples from the posterior p(z|y), which can, in turn, be used to estimate expectations.
The idea behind NS is to approximate the one-dimensional integral

7= /0 w(t) dt (42)

where the function ¢ is defined via its inverse ! : t — Py (L(z) > t) and Py (L(z) > t)
is the probability that a sample from the prior will have a likelihood value greater than ¢. This
identity holds because: a) if F(t) is the cumulative distribution function (cdf) of a random variable
X, then F~1(U) has the same distribution as X when U ~ U[0,1]; and b) if G(t) = 1 — F(t) is the
complementary cdf, then G71(1 — t) = F~1(¢).

Algorithmically, NS approximates the integral (42) using a Riemann sum as follows:

1. Initialize a set of particles X := {x(l), . 795(”)} by independently sampling each from the

1.1

prior, i.e. () ... 2™ Lt p(x), along with the marginal likelihood estimate Z 0.

2. Fort=1,...,T:
(a) Find L; = mingey L(z) and set ; = 2™ where m is the corresponding index of the
minimum such that L(z;) = L;.
(b) Set w; = exp(—(i — 1)/n) — exp(—i/n), and increment Z « Z + w;L;.
(c) Sample a new point &’ ~ p(x) conditional on L(z’) > L; using an MCMC sampler, and

replace (™) by 2/ in X.

The resulting quantity Zis a biased, but consistent, estimate of Z (Evans, 2007; Skilling, 2009;
Chopin and Robert, 2010). Here the bias is due to approximation errors involved in using a Riemann
sum approximation and Step 2(b) in the algorithm above; the reader is referred to Skilling (2004)
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Figure 9: Convergence plots of TANS and NS on the Gaussian model defined in (24) for different
dimensionalities and separations y. Solid lines represent the median across 100 runs,
shading the 25% and 75% quantiles. The x-axis shows the computational budget in terms
of the number of likelihood evaluations. Unlike in Figure 3, different x-axis values on this
plot constitute independent evaluations: NS is not an online estimator and must be rerun
when the budget is increased. Note that the apparently strong relative performance of
NS for small sample sizes in higher dimensions and separations is because its estimator
is heavily skewed and we are looking at its quantiles: here it typically just returns a
trivial estimate of effectively zero (giving a relative squared error of 1), while very rarely
it will produce a very large estimate with a huge error. As such, its displayed performance
somewhat flatters to deceive. TANS on the other hand is over— and under—estimating
with relatively similar frequency, such that its results are generally representative.

for a discussion on this. A weighted sample approximation of the posterior follows as a byproduct
of the algorithm, allowing us to construct the following estimate

L 23;1 wiALif(xi).

Ep(aly) [f (2)] = fins = 5 (43)

As per the general case described earlier, to combine NS with our TABI framework we simply
use it to produce marginal likelihood estimates for each of v (), 77 (x), and v2(z), then combine
the resulting estimates as per (41). This effectively equates to calling NS three times with the
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same prior p(z), but respective likelihoods of L} (z) := p(y|z)f*(x), Ly (z) := p(y|z)f~(z), and
Lo(x) := p(y|z). We refer to the resulting approach as target-aware nested sampling (TANS).

To investigate the empirical performance of TANS, we revisit the simple Gaussian model setup
of Section 4.5.1, comparing to the standard NS approach that does not use information about f(z).
In our implementation, Step 2(c) above is conducted by running 20 steps of a Metropolis-Hastings
chain initialized at a randomly chosen point in X \ {x;} and targeting the unnormalized density
p(z)I(L(x) > L;). The proposal for this sampler is based on an isotropic Gaussian with fixed
variance.'’ We vary the number of particles, n, depending on the allowed computational budget,
instead keeping T'/n fixed to 250.

As before, we run NS and TANS for D € {10,25,50} and y € {2,3.5,5}. The variance of the
proposal was set to I, 0.091, and 0.011 for D = 10, 25, and 50 respectively (where I is the iden-
tity matrix). The results are shown in Figure 9 and Table 2. We see that TANS outperforms NS
throughout, with the advantage of TANS becoming larger both as the separation between the pos-
terior distribution and target function is increased, and when the dimensionality increases. Namely,
while the performance of TANS was remarkably robust to increasing the separation or dimensional-
ity, these both caused the performance of NS to deteriorate.

6.2. Target—Aware Annealed Importance Sampling (TA AnlIS)

Annealed importance sampling (AnlS) (Neal, 2001) is an inference algorithm based on sampling
from a series of annealing distributions that act as stepping stones from a known initial distribution
mo(x) that we can sample from, to a target distribution m,(z) = 7(z) that, as usual, is only known
up to a normalizing constant, i.e. w,(z) = y(x)/Z where v(z) is known but Z is not. AnlS returns a
weighted sample approximation of 7, () along with an unbiased estimate of its normalizing constant
Z, both of which are consistent in the limit of independently running the algorithm a large number
of times and averaging the outputs. Though, strictly speaking, AnlS is an importance sampler on an
extended space, its formulation, algorithmic procedure, and typical behavior are very different from
conventional importance sampling. In particular, it leverages MCMC samples and often remains
effective for high dimensional problems. It is often especially effective at estimating the normalization
constant and has seen substantial use for this purpose in high-dimensional models (Wallach et al.,
2009; Salakhutdinov and Larochelle, 2010; Wu et al., 2017).

To introduce AnlS more formally, let the series of intermediate distributions be denoted as
mQ, M1, ..., Tp. Though in theory these intermediate distributions can take any form, the over-
whelmingly most common choice is

7T1($) X /\1($) = ﬂo(x)lfﬁi,}/(x)ﬁi

where 0 = 5y < 1 < -+ < B, = 1. The AnlS algorithm further requires the definition of a series of
Markov chain transition kernels 71 (x, '), 7o (z,2’), ..., Tn—1(x, 2’) where 7;(x, 2’) leaves m; invariant.
To generate one sample z from 7, (z) with a corresponding weight w, AnlS proceeds as follows:

1. Sample () ~ 7o (-);
2. For i =1:n—1, sample z(t1) ~ Ti(x(i), s
3. Return the sample = = (™) with corresponding weight

A @D (@) -+ A (2)
v Wo(lx(l))Al ?ﬁ@)) A )\nfl(x(n)) ' (44)

11. We note that using adaptive proposals for the MCMC steps here can induce asymptotic biases in TANS because,
even if it produces samples being generated from the target distribution, this adaptation can induce an asymptotic
bias in the marginal likelihood estimate.
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Figure 10: Convergence plots of TAAnIS and AnIS on the Gaussian model defined in (24) for differ-
ent dimensionalities and separations y. Solid lines represent the median across 100 runs,
shading the 25% and 75% quantiles. Conventions as per Figure 9.

By repeating this procedure N times, one obtains N independent samples x1,...,zx with corre-
sponding weights w1, ..., wy, from which the following estimates can be formed:
XN
YA ZAnIS = N lez (45)
1=

Zi]\; wif(xi)
Ef\il Wi

The consistency of these estimators, and unbiasedness of Z, can be shown by demonstrating that
AnlS implicitly corresponds to a properly—weighted importance sampling procedure on an extended
space with marginal distribution m,(z) (Neal, 2001).

In the context of Bayesian inference, mg(x) is typically taken as the prior p(x) and v(z) as the
joint p(z,y) (such that m,(x) = p(x|y)). As with NS, combining AnIS with our TABI framework
is straightforward: we simply call it three times with mo(z) = p(z) in each instance and ~(x)
respectively set to v; (), 77 (z), and y2(x). The resulting marginal likelihood estimators can then
be combined in the standard TABI way, namely (41). We refer to the resulting approach as target-
aware annealed importance sampling (TAAnIS).

Er, (o) [f(2)] = fianis == : (46)
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y Dimension NS TANS AnIS TA AnIS
10 —5.36+£024 —-576+0.23 —-5904+0.21 —-10.03+0.20
2 25 —4.20£0.22 —6.50£0.25 —3.59+0.22 —8.07+0.24
50 —2.65+£020 —4.74+0.22 —-1.234+0.18 —-3.26 £0.17
10 —4.694+026 —5.68+0.23 —-157+0.16 —10.20+0.26
3.5 25 —1.85+020 —-6.42+0.23 —-1.08+0.18 —-7.28+0.24
50 —-0.754+0.17 —-3.944+0.19 -0.62+0.14 —3.43+£0.23
10 —4.11+0.24 —-5.82+0.24 —-0.174+0.07 —9.69 + 0.22
5 25 —0.85+£0.18 —5.88+£0.25 —0.01=+0.09 —-7.21+0.21
50 —0.19£0.14 —-3.98+0.20 —-0.03+0.04 —3.29+£0.23

Table 2: Comparison of final results for Gaussian example when allowing a budget of 107 total
number of likelihood evaluations as per Figure 9 and Figure 10. Values shown are the
mean and standard error of the log relative squared error across 100 runs. As per Table 1,
the best result(s) on each problem are shown in bold.

As before, our experimental set-up to test TAAnIS follows the Gaussian example described in
Section 4.5.1, again taking D € {10,25,50} and y € {2,3.5,5}. We use n = 200 intermediate
distributions and each 7; is a 5-step Metropolis-Hastings chain targeting the unnormalized density
Ai, the proposal for which is an isotropic Gaussian centered on the current point with covariances
of 0.12251, 0.04 I, and 0.01 I for D = 10, 25, and 50 respectively.'?

The results are shown in Figure 10 and Table 2. We see that TAAnIS consistently outperforms
AnlIS across all values of D and y. Indeed, even for a small separation y = 2, TAAnIS converges faster
with better final estimates for the allowed full budget of 107 likelihood evaluations. The advantage
of TAAnIS is further apparent as the separation y increases. As shown in Table 2, TAAnIS was also
substantially more effective than TANS in lower dimensions, but interestingly slightly less effective
for D = 50. It should be noted, however, that some of these differences between TAAnIS and
TANS may be down to changes in the MCMC proposals used, as these were not carefully optimized.
Though neither TAAnIS nor TANS performed as well as our TAAIS approach in Section 4.5.1 (noting
that the total budget allowed for each was the same), this is perhaps not surprising given that the
proposal family for TAAIS was carefully setup to match the target (namely both were Gaussians
with diagonal covariance structures). By contrast, TAAnIS and TANS were used as more generic
estimation approaches and were still able to provide highly effective performance.

Given that AnlS is known to often still be effective in high dimensions, we further investigated
whether TAAnIS also retains this property. Namely, we tested the performance of AnIS and TAAnIS
in a high-dimensional variant (D = 500) of the Gaussian example with large separation (y = 5).
Now allowing a budget of 10° likelihood evaluations, we ran AnIS and TAAnIS with n = 10*
intermediate distributions and with each 7; given by a 100-step Metropolis-Hastings chain, again
with an isotropic Gaussian proposal, this time with covariance 0.0016 I. The results are shown in
Figure 11. Remarkably, TAAnIS still accurately estimated the expectation. It is interesting to note
that, while the expectation being estimated in this case is approximately 3.4 x 1073, the best final
estimate returned by AnIS across the 10 runs was approximately 107197, representing an estimate
that was still over 15 orders of magnitude away from the truth.

12. As with NS, care should be taken here to not use an adaptive MCMC proposal as this asymptotically biases the
marginal likelihood estimator even if the samples produced are still consistent.
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Figure 11: Convergence of AnlS and TAAnIS on the Gaussian model defined in (24) with dimension
D = 500 and separation y = 5. Solid lines represents the median across 10 runs, shading
the 25% and 75% quantiles (note this is imperceptibly small for AnlIS).

7. Conclusions

We have presented TABI, a framework for performing target—aware Bayesian inference. TABI
directly targets posterior expectations by breaking them up into three component expectations,
separately estimating each using a tailored estimator, and then recombining them to estimate the
original expectation. This can offer substantial benefits over conventional estimation approaches
because each component expectation can be estimated more accurately when considered in isolation.
Notably, it is capable of producing finite sample estimators with arbitrarily low error, thereby
providing a mechanism to outperform the theoretically optimal conventional Monte Carlo estimator.

We have demonstrated that the TABI framework can be particularly effective when combined
with adaptive or amortized inference procedures, leading to estimators which can not only theo-
retically, but also practically, outperform the theoretically optimal estimators of conventional ap-
proaches, even when those approaches are not themselves in practice capable of achieving perfor-
mance anywhere near their theoretical optimum. In some cases, we were even able to empirically
demonstrate faster-than—Monte—Carlo convergence rates for adaptive TABI estimators.

Another substantial advantage of our TABI framework is that it makes it far simpler to construct
inference algorithms in a manner that makes them target—aware. For example, whereas construct-
ing adaptive SNIS schemes that incorporate information about the target function is extremely
challenging due to the double intractability of the corresponding optimal proposal, the unnormal-
ized densities of the optimal proposals in the TABI framework can be directly evaluated and thus
straightforwardly setup as the objectives for adaptive or amortized samplers. As such, TABI is often
able to conduct effective target—aware inference in scenarios where conventional approaches might
struggle to exploit target information at all. In particular, we have shown how TABI is able to
convert any marginal likelihood estimator into a target-aware inference algorithm.
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Appendix A. Proofs
A.1. Derivation of Equation 5

Under the assumption that f(z) > 0Vz, we can derive (5) as follows

Epely[lf(2) — |] (i) [(f(2) = WI(f(x) > p) — (f(2) — wI(f(z) < p)]
w [(f(2) — ) (1—11( (z) < p) = (f(x) = wI(f(x) < p)
Ep(aly) [f () = 1] =2Ep ) [(f (2) — p)I(f(z) < )]
——_— ————

=0
= 20 Epapy [1(f () < )] = 2Ep(apy) [f (@)1(f (2) < p)]-

Now given that f(x) > 0Vz, this second term is non-negative so we have
< 20 Bp(apy (10 (2) < p)]
<2u

because the expectation must be between 0 and 1. Substituting the above into the left hand side
of (5) subsequently gives the desired result, remembering that Ep,)[|f(2) — p|] must itself be
positive. Note that in the case where f(x) is a Dirac delta function, both of these inequalities
become tight, such that the result becomes an equality.

In the case, f(z) < 0Vz, we can straightforwardly show the equivalent bound

Epaly [l f(z) — pl] < =24,

which again leads to (5) by simple substitution.

A.2. Proof of Theorem 2
Proof Starting with (13) and using Taylor’s Theorem on 1/ (F3 + 02&3) about 1/E5 gives

[ = FEi+ 0151
Ey + 098

= (E1 4+ 01&) <E12 - 0222 + O(€)>

0161 Fi1028s 0102618
- - - 1%
[ B, E% E% + (6)
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where O(e) represents asymptotically dominated terms. We can further drop the o102£1£2/F3 term
as this will be of order O(1/v/MN) and will thus be asymptotically dominated, giving

011 Eio2&

5 T o). (47)

fo=p+

To calculate the MSE of [i, we start with the standard bias—variance decomposition
. . . 2
E [(u - u)ﬂ = Var ] + (E[@ — u])”.
For the variance, we use the relationship Var[X —Y]=Var[X]+ Var[Y]—2 Cov[X, Y], yielding

01&1 Ei1026
B, B2

Eq026
E3

o161

7, —2Cov

+O(e). (48)

Varji] = Var [ } + Var

Now noting from the central limit theorem Var[¢;] — 1, Var[éz] — 1, and (using Slutsky’s theorem)
Cov[¢y, &) — Corr [£1, 5], we have

o?  Eio? Eio109

= Eig E% -2 Eg Corr[gla 62] =+ O(E)
= Elg (Jf + O'S[LQ — 2uoq02Corr [, 52]) +O(e)
2 2
=20 ((n ~ Corrléa, &))* + 1~ Conrléa, &) + O(e) (49)
2

where we have used k = o01/(po2). The bias squared term, on the other hand, is asymptotically
dominated as taking the expectation of (47) yields E [ — pu] = O(e) because E[¢] = E[&] = 0.7
We thus have E[(i — u)z] — Var[fi], such that (49) gives us the desired asymptotic result. [ |

A.3. Proof of Theorem 4

Proof Let 0 := Z;f — Ef, 67 := Z;7 — Ey, and 8, = Z — E. Applying Taylor’s Theorem on
[raAls in a manner analogous to in the proof of Theorem 2 yields

7 (BB or—or) (L2 %) o
MTAAIS—( T — By +07 — 1) E_@+F§ + O(e).

As in the previous proof, we next use the standard bias—variance decomposition of the MSE:
2
E [(ﬂTAAIS - Mﬂ = Var [firaas] + (E [(Araals — u)])

Starting with the bias component and noting that each of 4,7, d; , and d, are independent and have
an expectation of zero, we get

N _ o3 ) _ 1 5 6
Effrans — 1) = (B — By ) (E| | ~B | g5 | | +E[0F — 67| B | &~ 55 + 2| +00)
E2 E2 , E2 E2 E2
=0 =0
Ef — Bf
2
= %V&I‘[éz] + O(e). (50)
E2

13. This is demonstrated more formally in the proof of Theorem 4.
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For the variance, by noting that any terms containing products of ds will by dominated and again
exploiting independences, we instead have

0 — oy

10
&, —|—Var[ z ]

2

Var [fiTaars] = Var

_ly [5+]+iv [5*}#‘—2\/ [62] + O(e) (51)
—E%ar1 E22ar1 E%arg €).

Each of these terms has an equivalent form, so taking the first by way of example we have

R 1 X 1 X N
Var [5?‘} = Var [Zﬂ =2 ZVar [wfn} + Nz Z Z E {(wfn — Ef') (wi”n, — Ef)}
n=1

n=1n'=1,n'#n

=0

where the second term being zero comes from the fact that, even when we are doing adaptive
+

sampling, win and wfn, are independent for n # n’. Now by invoking our bound on Var [wlyn

from the theorem statement, we get

+ v + s1 1 57
Var |6 | = =5 D" Var [uf, ]| < 35 3T = = L HN]
n=1 n=1

where H,[N] is the N*!' generalized harmonic number of order a. For a = 1, H;[N] — log(N) +
where 1 & 0.577 is the Euler-Mascheroni constant (Choi and Srivastava, 2011). For a > 1, H,[N] —
C(a) where ( is the Riemann-zeta function (where, for a > 1, 1 < ((a) < co and ((a) monotonically
decreases with a). For a < 1, we can apply the Euler-Maclaurin formula to give

n=N —
“+1
H,[N] = /_1 n~ % n + NT—'_ + O(e)

Nt 1 N4

1—a + 5 + O(e)
_>N1_“—1+1
1—a 2

for large N. Given that we are further multiplying this term by 1/N?2, we can further ignore all
terms that do not increase with N to give H,[N]/N? — ﬁ% We thus see that h represents the
required asymptotic expressions for H,[N].

Now invoking analogous arguments for §; and d, and substituting these bounds into (50) and (51)
respectively yields

2
~ 2 S
(]E [NTAAIS - H]) ( J\/.l;?;y)
2

1 st Sy 2s
= <N12h(a, N) + 255h(b, K) + P22 he, M)) +Oe).

IN

IN

Var [fiTaars] I e

To complete the proof we now simply observe that the bias squared component of the MSE is dom-

inated, such that it can be absorbed into O(e), while the variance bound above is equivalent to the
MSE bound quoted in the theorem. |
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Appendix B. Reusing Samples

The TABI estimator in (11) requires taking 7' = N 4+ K + M samples, but only N, K, or M are used
to evaluate each of the individual estimators. Given that, in practice, we do not have access to the
perfectly optimal proposals, it can sometimes be more efficient to reuse samples in the calculation
of multiple components of the expectation, particularly if the target function is cheap to evaluate
relative to the proposal. Care is required though to ensure that this is only done when a proposal
remains valid (i.e. has finite variance) for the different expectations.

We will focus on the case where f(z) > 0 Va such that we can use a single proposal for the
numerator (i.e. K = 0, Ef = Ej, etc, giving a final estimator of the form in Eq 8). Under this
assumption, we can use the following estimator

[~ ,aRS o Oz-?l((h) + (1 — a)‘?l(qz)
BEs(q1) + (1 — B)Ea2(qo)

(52)

where Ei(qj) indicates the estimate for E; using the samples from g;. The level of interpolation is
set by parameters «, 8 which can vary between 0 and 1.

For cases where f(x) can instead be both positive and negative, and we also want to recycle
samples from ¢ for By and/or q; for E;", we should do this using the approach introduced in
Appendix C as this is more efficient than a naive recycling. If desired, this can then also straightfor-
wardly be combined with the estimator above to recycle samples between E; and E5 by replacing
E1(q1) with EMS and constructing Es(g1) in an analogous manner to EMS taking f(z) = 1Vz.

If we had direct access to the optimal proposals, it would naturally be preferable to set =1 and
B8=0 in (52), leading to a zero-variance estimator. However, for imperfect proposals, the optimal
values vary slightly from this as we now show. Note that while it is possible to set § > 0 for negligible
extra computational cost as Eg(ql) depends only on weights needed for calculating F; (q1), setting
a < 1 requires additional evaluations of the target function and so will likely only be beneficial when
this is cheap relative to sampling from or evaluating the proposal.

We first consider the empirical effect of reusing samples. For this, we extend the Gaussian tail
integral AMCI experiment from Figure 8 which considers a case where p(z|y) and p(z|y) f(x;0) are
closely matched and case where they are not. Here ¢; is not a valid proposal for F5 so we set 5 = 0,
but g5 is a valid for E; so we consider varying «, the results for which are given in Figure 12. We see
that in the well-matched case, the optimum « is less than 1 and provides some, relatively modest,
gains.

To delve deeper into this, we now derive the optimal values of o and 8 in terms of minimizing
the mean squared error (MSE) of the estimator in (52). Analogously to in Theorem 2, we introduce
error terms

&ij = 7((1;)“ ,  where afj =
ij

Var[Ei(q;)],

such that

. Eq + ao11611 + (1 — a)o12612

HRS = FEs + Boaiéar + (1 - 5)022522’ (53)

and &;; are again asymptotically distributed according to a standard normal (assuming the o;; are
finite). Note that &;; and &, are independent if and only if j # m. Applying Taylor’s Theorem in
an analogous manner to the proof of Theorem 2 now gives

Ars = p+ Ei (ao11&11 + (1 — a)o12é12) — Eﬂ (Boai&ar + (1 — B)o2éan) + Ofe)
2 2
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Figure 12: Extension of Figure 8 showing the effects of reusing samples by varying the parameter
a in (52) (8 = 0, number of samples is fixed to N = M = 64), where we see that this
sample re-usage (i.e. choosing an o < 1) provides small gains for the low mismatch case
[bottom], but no gains for the considered values of « in the high mismatch case [top].

where, as usual, O(¢) represents asymptotically dominated terms. As before, the MSE will straight-

forwardly be asymptotically dominated by the variance. Further exploiting the aforementioned
independences between certain &;; yields

E [(ﬂRS - M)Z] = % (Var [ao11&11 — Buoaiéar] + Var [(1 — a)oia€in — (1 — 5)#022522])
2

and making use of the relationships Var[X — Y| = Var[X| + Var[Y]| — 2Cov[X, Y], Var[¢;;] — 1, and
Cov[&ij, E&em] — Corr[ij, Eem| as before, we get

=72 (a oty + B2 p’o3 + (1 —a)’ofy + (1 — B)*p’od,
3
— 2afuor1021Corr[€r1, &o1] — 2(1 — ) (1 — B)po12022Corr[€12, 522})-

The optimal values of o and  can now be found by solving the set of linear simultaneous equations
that result from setting the derivatives of this with respect to both a and g to zero. Doing this with a

symbolic solver leads to the following expressions where we adopt the shorthands C; = Corr[i1, £21]
and Cy = Corr[£12, £20]

. 0% (03 + 035) + C11u01102105, — Coi01202203, — C307503, — C1C2011012091092

- ! ’
(011 + J12) (021 + 022) — (Cro11021 + Ca012022)

B = 035 (071 + 015) + (C1/pw)o110210%, — (Co/p)o1209207, — C307505, —

(0, +01) (0% + 0%,) — (Cro11021 + C012092)°

C1C2011012021022

In principle, each of these terms can be estimated from existing samples, thereby providing a mech-
anism for automatically setting o and [, potentially even in an adaptive manner.
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If we assume that Corr[{11,£21] = Corr[€12, £22] = 0 then these optimal forms simplify to

2 2

* 012 * 022

o =3 T o2 == T+ o2
011 T 012 021 T 022

This is now a somewhat intuitive result as it corresponds to the o and 8 which optimize the esti-
mation of F; and Fy when considered in isolation. Note that in the case where we have the optimal
TABI proposals, then El(ql) = E’g(qg) = 0 such that we find a* = 1 and 5* = 0. At the other
extreme, if our proposals are identical, as per the SNIS setting, then we get o* = * = 0.5.

Appendix C. An Alternative Variant of the TABI Estimator

In the importance sampling TABI estimator presented in Section 3.2, we broke down the numerator
as By = Ef — E;, and then introduced separate estimators for each of these. Here we present an
interesting alternative to estimating £ based on a Rao-Blackwellized multiple importance sampling
(MIS) estimator (Veach and Guibas, 1995; Owen and Zhou, 2000) that, when combined with a
separate estimator for Fo in the same manner as TABI, produces an alternative overall estimator
for which Theorem 1 also holds. We note that this approach is identical to TABI except in the
breakdown of estimation of Eq, such that it is redundant in cases where f(z) > 0Vz (or f(z) < 0Vz).
In fact, the estimator will actually use exactly the same set of samples as TABI, but will effectively
weight them in a different way. We also note that the overall alternative estimator does not fit into
the conventional MIS framework due to the separate estimation of Ey. However, it does highlight
some interesting links between TABI and MIS, while also providing the potential for some modest
performance improvements in some scenarios.

As with TABI, the key to estimating F; for this approach is to use to proposals ¢; (z) and q; ()
whose optimal densities are proportional to p(z,y)f(z) and p(x,y)f~(z) respectively. However,
rather than using them to construct separate estimators, we instead consider a MIS estimator that
uses the mixture proposal

ai(z) = vq (@) + (1 - v)qy () (54)

for some 0 < v < 1, and then Rao-Blackwellizes the choice of the mixture component. Specifically,
we derive our alternative estimator as

p(z,y)f(x)}
q1()
p(z,y)f(x) _E - p(z,y)f(x)
=k @i (@) [ CI1( ) } +( )qu (@) { q1 () }
mm 1— v <~ f(ap)p(ag ,y)
" ; ql(xk:)

El == ]qu(z) |:

+ 0 gt

where x ~ ¢ (), x; ~q; (z), (55)

Q1 xn

= EivHS.

In line with MIS, the natural choice of v is v = N/(N + K) (though others are possible), which
leads to

N K

AMIS f@h)p(zt,y) [z )p(xy,y)
B =) Nreh) + Ka @) T 2= Nar o)+ K D) (56)

n=1

which is the form we will assume from here on. This can be combined with a separate estimator Fy
for F5 in the same manner as TABI (where F is also itself constructed in the same manner), giving
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the overall estimator

EA%\/HS
B
Looking closely, we see that this estimator uses the same set of samples as TABI, but it combines

them in a different way. The link is perhaps best seen by thinking of Efr — E‘f in the TABI estimator
as a single estimator of N + K samples where each sample is weighted according to

I(f(z) 2 Op(z,y) =~ Lf(z) < O)p(z,y)
Ngif (z) Kg (z)

Ep(aly) [f(2)] & M = (57)

depending on whether the sample came from ¢; () or ¢7 (z). By comparison, EMS applies a weight

p(z,y)
Nqi (z) + Kqy (2)

regardless of which proposal the sample originated from.
It is now easy to see that if

q () =0Vz: f(x) <0 and ¢ () =0Vx: f(z) >0 (58)

then these two weighting schemes will be identical, such that E‘i\“s = Ef‘ — Ef . As this is satisfied
when using the optimal proposals for TABI, we see that 4™ retains the key theoretical property
of TABI that its error is not lower bounded even for finite sample sizes, i.e. Theorem 1 also holds
for g™, However, if (58) does not hold, then the two estimators will behave slightly differently.
Moreover, EMIS will generally be the lower variance of the two (noting that both are unbiased).
This is firstly because it removes the need to set the weights to zero if they fall outside the targeted
region, thereby ensuring information from these samples is preserved and increasing the expected
effective sample size. Secondly, weighting samples according to the implied mixture distribution is
a well-established as a mechanism for reducing variance in the MIS literature (Elvira et al., 2019).

Typically though, the gains from this approach will be modest. Ignoring the pathological scenar-
ios where ¢; (%) is a better proposal than ¢; () for E] or q; () is a better proposal than ¢; (z) for
Ef, then the gains will be larger the more overlap there is between ¢; () and ¢, (x). We have al-
ready seen that for the extreme where there is no overlap then the two estimators coincide and there
are no gains. The other extreme occurs when qf(x) = ¢; (z)Vz and here if we take N = K then
we find EA'%/HS will be twice as efficient as EAf — El_ because (in expectation) half the samples of the
latter will be wasted (i.e. half will have a weight of zero). As, by construction, we generally expect
the overlap between ¢ (z) and g; () to be relatively small, the earlier scenario is anticipated to be
much more typical, while even for the latter the gains are relatively modest. Empirically we found
this to hold as well: conducting some simple tests of setup similar to that of Section 3.3 but where
f(x) is no longer non-negative, we found no distinguishable difference in the empirical performance
of the two estimators, even when the proposals are not carefully constructed. Nonetheless, using
M5 as an alternative to TABI might provide useful gains in some scenarios where constructing
good proposals for both ¢; () and ¢; (z) is challenging.

Unfortunately, these gains come at some potentially significant costs. Firstly, the cost of the
estimator is slightly higher as the density of all samples must now be evaluated under both ¢;" (x) and
q; (z) instead of just the one used to produce them. Unless the cost of evaluating f(z) dominates,
this extra cost is likely to be significant. Secondly, and perhaps more importantly, it does not
naturally permit some of the demonstrated extensions of TABI such as TAAIS, the training phase of
AMCI, or the generalized TABI form given in Section 6. Namely, these all relied on the separation of
estimators for their success, e.g. using f¥(x)p(z,y) as a target for learning ¢ () when using TAAIS,
such that the entanglement of the two proposals for Ei\“s causes complications. Consequently, the
main immediate use cases we see for this alternative approach are static expectation settings and
test—time construction of the estimator in AMCI.
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Appendix D. Data Generation and Mini—-Batching Procedure

AMCI operates in a slightly unusual setting for neural network training because instead of having a
fixed data set, we are instead training on samples from our model p(z, y). The typical way to perform
batch stochastic gradient optimization involves many epochs over the training data set, stopping
once the error increases on the validation set which is a symptom of overfitting. Each epoch is itself
broken down into multiple iterations, wherein one takes a random mini-batch (subsample) from the
data set (without replacement) and updates the parameters based on a stochastic gradient step
using these samples, with the epoch finishing once the full data set has been used.

However, there are different ways the training can proceed when we have the ability to generate
an infinite amount of data from our model p(z, y) and we (at least in theory) no longer face the risk
of overfitting. There are two extremes approaches one could take. The first one would be sampling
two large but fixed-size data sets (training and validation) before the time of training and then
following the standard training procedure for the finite data sets outlined above. The other extreme
would be to completely surrender the idea of a data set or epoch, and sample each batch of data
presented to the optimizer directly from p(z,y). In this case, we would not need a validation data
set as we would never be at risk of overfitting—we would finish the training once we are satisfied
with the convergence of the loss value.

Paige and Wood (2016) found that the method which empirically performed best in a similar
amortized inference setting was one in the middle between the two extremes outlined above. They
suggest a method which decides when to sample new synthetic (training and validation) data sets,
based on performance on the previous validation data set. They draw fixed-sized training and
validation data sets and optimize the model using the standard finite data procedure on the training
data set until the validation error increases. When that happens they sample new training and
validation data sets and repeat the procedure. This continues until empirical convergence of the
loss value. In practice, they allow a few missteps (steps of increasing value) for the validation loss
before they sample new synthetic data sets, and limit the maximum number of optimization epochs
performed on a single data set.

We use the above method throughout all of our experiments. We allowed a maximum of 2
missteps with respect to the validation data set and a maximum of 30 epochs on a single data set
before sampling new data sets. We note that while training was robust to the number of missteps
allowed, adopting the general scheme of Paige and Wood (2016) was very important in achieving
effective training: we initially tried generating every batch directly from the model p(x,y) and we
found that the proposals often converged to the local minimum of just sampling from the prior.

The way training and validation data sets are generated is modified slightly when using the
importance sampling approach for generating = and 6 detailed in Section 5.2.3. Whenever we use
the objective in (34), instead of sampling the training and validation data sets from the prior p(z,y)
we will sample them from the distribution ¢'(6, ) - p(y|z) where ¢’ is a proposal chosen to be as
close to p(x)p(0)f (x; ) as possible.

For each of the experiments, we trained for 1000 generated data sets, the size of the training
data set was 10 times the batch size, the size of the validation data set was equal to the batch size,
and the batch sizes were 15000, 6000, and 2500 for the one— and five-dimensional tail integral, and
cancer examples, respectively.
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Appendix E. Additional Experimental Results for AMCI
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Additional results for one-dimensional tail integral example as per Figure 6a. [left] Rel-
ative mean squared errors (as per Eq 12) with ¢; now added to the plot and the axes
rescaled. [right] MSE where we replace 6(y,0) with u(y,0) — fi(y,#) and otherwise pro-
ceed as before. Conventions as per Figure 6. The results for SNIS ¢; indicate that it
often severely underestimates Fy leading to very large errors. We also see that looking
at the MSE and the relative MSE produce very similar qualitative comparisons.
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Figure 14: Additional results for five-dimensional tail integral from Figure 6b as per Figure 13.

Conventions as per Figure 6b. Note the y-axis limits for the MSE have been readjusted
to allow clear comparison at higher N. SNIS g,, yields an MSE of 107! at N =2, while
the SNIS ¢; MSE is far away from the range of the plot for all NV, giving an MSE of 10799
at N=2 and 10712 at N =10%, with a shape very similar to the ReMSE for SNIS ¢; as
per the left plot. The extremely high errors for SNIS ¢, at low values of N arise in the
situation when all N samples drawn happen to come from distribution ¢;. We believe
that the results presented for ¢, underestimate the value of 4(y, 8) between around N = 6
and N = 100, due to the fact that the estimation process for d(y, #), though unbiased, can
have a very large skew. Namely, for N < 6 there is a good chance of at least one of the
100 trials having all N samples originating from distribution g1, such that we generate
reasonable estimates for the very high errors this can induce. For N > 100 the chances
of this event occurring drop to below 10739, such that it does not substantially influence
the true error. For 6 < N < 100, the chance the event will occur in our 100 trials is
small, but the influence it has on the overall error is still significant, meaning it is likely
we will underestimate the error. This effect could be alleviated by Rao-Blackwellizing
the choice of the mixture component in a manner akin to that discussed in Appendix C,
but the resulting estimator would no longer be an SNIS estimator.
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Figure 15: Investigation of the variability of the results across datapoints y, 6 for [left] the one-
dimensional and [right] the five-dimensional tail integral example. Unlike previous figures,
the shading shows the estimates of the 25% and 75% quantiles of d(y, #) estimated using
a common set of 100 samples from y,0 ~ p(y)p(6), with each corresponding 4(y,6)
separately estimated using 100 samples of the respective h) (y,0). In other words, while
the shading in previous plots has represented variability in our estimation of §(y,0),
we are now representing the variability in §(y, ) itself over different (y,6). The solid
and dashed lines remain the same as in previous figures—they indicate the median of
0(y, 0)—but the dashed line now also has a shaded area associated with it reflecting the
variability in the SNIS bound across datapoints. Qualitatively, we see similar behavior
as before.
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Figure 16: Additional results for cancer example from Figure 7 as per Figure 13. Conventions as per
Figure 6. Here, SNIS ¢; performs much better than in the tail integral example because
of smaller mismatch between p(z|y) and f(z;6), meaning the estimates for Fy are more
reasonable. Nonetheless, it still performs worse that even SNIS ¢5. Qualitatively similar
behavior is seen for the MSE as the ReMSE.
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Figure 17: Investigation of the variability of the results across datapoints y, 8 for the cancer example.
Conventions as per Figure 15. The fact that the upper quantile of the AMCI error is
larger than the upper quantile of the SNIS g¢,, error suggests that there are datapoints
for which AMCI yields higher MSE than SNIS ¢,,. However, AMCI is still always better
than our main baseline SNIS ¢5.
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