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Abstract

Kernel techniques are among the most widely-applied and influential tools in machine
learning with applications at virtually all areas of the field. To combine this expressive
power with computational efficiency numerous randomized schemes have been proposed
in the literature, among which probably random Fourier features (RFF) are the simplest
and most popular. While RFFs were originally designed for the approximation of kernel
values, recently they have been adapted to kernel derivatives, and hence to the solution
of large-scale tasks involving function derivatives. Unfortunately, the understanding of
the RFF scheme for the approximation of higher-order kernel derivatives is quite limited
due to the challenging polynomial growing nature of the underlying function class in the
empirical process. To tackle this difficulty, we establish a finite-sample deviation bound for
a general class of polynomial-growth functions under α-exponential Orlicz condition on the
distribution of the sample. Instantiating this result for RFFs, our finite-sample uniform
guarantee implies a.s. convergence with tight rate for arbitrary kernel with α-exponential
Orlicz spectrum and any order of derivative.

Keywords: random Fourier features, kernel derivative, polynomial-growth functions,
α-exponential Orlicz norm, unbounded empirical processes

1. Introduction

Kernel machines (Taylor and Cristianini, 2004; Steinwart and Christmann, 2008; Paulsen
and Raghupathi, 2016) form one of the most fundamental tools in machine learning and
statistics with a wide range of successful applications. The impressive modelling power and
flexibility of kernel techniques in capturing complex nonlinear relations originates from the
richness of the underlying Hk function class called reproducing kernel Hilbert space (RKHS,
Aronszajn 1950) associated to a k : X× X→ R kernel. Kernels extend the classical notion
of inner product on X = Rd by assuming the existence of a φ : X → H feature map to a
Hilbert space H such that k(x,x′) = 〈φ(x), φ(x′)〉H for all x,x′ ∈ X. This simple equality
(also called the kernel trick) forms the basis of kernel techniques and enables one to compute
inner products implicitly without direct access to the feature of the points.
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In applications one is often given {xn}Nn=1 samples and is facing with an optimization
problem expressed in terms of function values and derivatives1

min
f∈Hk

l

(
{∂pf(xn)}n∈[N ]

p∈Dn
, ‖f‖2Hk

)
, (1)

where [N ] = {1, . . . , N}, Dn ⊂ Nd, N := {0, 1, . . .}, l : R1+
∑
n∈[N ] #Dn → R is a loss

function, #Dn is the cardinality of the set Dn, ∂pf(xn) := ∂p1+...+pdf(xn)

∂
p1
x1
···∂pdxd

and the RKHS

Hk is characterized by f(x) = 〈f, k(·,x)〉Hk (∀x ∈ X, ∀f ∈ Hk) and k(·,x) ∈ Hk (∀x ∈ X).2

The first property of RKHSs is called the reproducing property, the second one describes
basic elements of Hk; combining the two properties makes the canonical feature map and
feature space explicit: k(x,x′) = 〈φ(x), φ(x′)〉Hk where φ(x) = k(·,x) ∈ Hk.

For example by taking the quadratic loss, Tikhonov regularization, only function values
(Dn = {0},∀n ∈ [N ]) and λ > 0, (1) reduces to kernel ridge regression

min
f∈Hk

1

N

∑
n∈[N ]

[f(xn)− yn]2 + λ ‖f‖2Hk .

Alternatively, one can get back Hermite learning with gradient data (Zhou, 2008; Shi et al.,
2010) by additionally including first-order derivatives

min
f∈Hk

1

N

∑
n∈[N ]

(
[f(xn)− yn]2 +

∥∥f ′(xn)− y′n
∥∥2

2

)
+ λ ‖f‖2Hk , λ > 0

where f ′(x) = [∂e1f(x); . . . ; ∂edf(x)] ∈ Rd is the derivative of f , ej ∈ Rd is the jth canonical

basis vector, ‖·‖2 is the Euclidean norm and Dn =
{

0, {ej}dj=1

}
(n ∈ [N ]). Further

examples with function derivatives are semi-supervised learning with gradient information
(Zhou, 2008), nonlinear variable selection (Rosasco et al., 2010, 2013), learning of piecewise-
smooth functions (Lauer et al., 2012), multi-task gradient learning (Ying et al., 2012),
structure optimization in parameter-varying ARX (autoregressive with exogenous input)
processes (Duijkers et al., 2014), or density estimation with infinite-dimensional exponential
families (Sriperumbudur et al., 2017).

An appealing property of RKHSs is that their geometry makes the optimization prob-
lem (1) defined over function spaces computationally tractable. Indeed, assuming that l is
increasing in its last argument, the ∂pf(x) =

〈
f, ∂p,0k(·,x)

〉
Hk

derivative-reproducing prop-

erty of kernels and the representer theorem (Zhou, 2008) guarantee that the solution of (1)
has a finite-dimensional parameterization f(·) =

∑
n∈[N ]

∑
p∈Dn an,p∂

p,0k(·,xn) (an,p ∈ R)
and it is sufficient to solve

min
a
l


 ∑
m∈[N ]

∑
q∈Dm

am,q∂
p,qk(xn,xm)


n∈[N ]
p∈Dn

,
∑

n,m∈[N ]
p∈Dn,q∈Dm

an,pam,q∂
p,qk(xn,xm)

 (2)

1. To have derivatives, in the sequel we assume that X = Rd.
2. We use the k(·,x) shorthand to denote the function y ∈ X 7→ k(y,x) ∈ R while keeping x ∈ X fixed.
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determined by the ∂p,qk(x,y) := ∂
∑d
i=1(pi+qi)k(x,y)

∂
p1
x1
···∂pdxd∂

q1
y1
···∂qdyd

kernel derivatives; a = (an,p)n∈[N ],p∈Dn ∈

R
∑
n∈[N ] #Dn .

Though kernel methods show impressive modelling power at numerous areas, due to
the implicit computation of feature similarities, this flexibility comes with a computational
price. Several techniques have been developed in the literature to mitigate this computa-
tional challenge such as incomplete Cholesky factorization (Bach and Jordan, 2002), sub-
sampling schemes (Williams and Seeger, 2001; Drineas and Mahoney, 2005; Rudi et al.,
2017), sketching (Alaoui and Mahoney, 2015; Yang et al., 2017), random Fourier features
(RFF, Rahimi and Recht 2007, 2008), their quasi-Monte Carlo (Yang et al., 2014), memory-
efficient (Le et al., 2013; Dai et al., 2014; Zhang et al., 2019), orthogonal (Yu et al., 2016)
or structured (Bojarski et al., 2017) variants.

In this paper we study the RFF technique which is probably the conceptually simplest
and most influential approach.3 By the Bochner theorem (Rudin, 1990) a continuous,
bounded, shift-invariant kernel k : Rd ×Rd → R can be written as the Fourier transform of
a (finite) measure Λ, called the spectral measure

k(x,y) =

∫
Rd

cos
(
ω>(x− y)

)
dΛ(ω). (3)

The RFF method uses this representation of k to provide an explicit low-dimensional feature
map approximation for the kernel values and f

k(x,x′) ≈
〈
λ(x), λ(x′)

〉
R2M , f̂w(x) = 〈w, λ(x)〉R2M , (4)

where the integral representation (3) with respect to the measure Λ is replaced by an av-
erage over random points; hence the random Fourier feature naming. As a result, one can
estimate w by leveraging fast linear primal solvers. The idea has been successfully used
in various contexts including differential privacy preserving (Chaudhuri et al., 2011), fast
function-to-function regression (Oliva et al., 2015), learning message operators in expecta-
tion propagation (Jitkrittum et al., 2015), causal discovery (Lopez-Paz et al., 2015; Strobl
et al., 2019), independence testing (Zhang et al., 2017), prediction and filtering in dynam-
ical systems (Downey et al., 2017), bandit optimization (Li et al., 2018), or estimation of
Gaussian mixture models (Keriven et al., 2018).

Similarly to (4), one can consider RFF-based approximation of kernel derivatives when
solving optimization tasks involving function derivatives [see (1) and (2)]. This is the
strategy followed for example by Strathmann et al. (2015) to fit distributions belonging to
the infinite-dimensional exponential family, which boils down to an optimization problem
with third-order kernel derivatives (Sriperumbudur et al., 2017, Theorem 5).

The focus of this work is to study the approximation quality of the RFF-based kernel-
derivative approximation∥∥∥∂̂p,qk − ∂p,qk∥∥∥

S
:= sup

x,y∈S

∣∣∣∂p,qk(x,y)− ∂̂p,qk(x,y)
∣∣∣ ,

3. Rahimi and Recht (2007) won the 10-year test-of-time award at NIPS-2017 as a recognition of the
influence of RFFs.
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where S ⊂ Rd is a compact set. Despite the large number of successful RFF applications,
quite little is understood theoretically on its approximation quality. Below we provide a
brief summary with particular focus on optimal guarantees and results related to kernel
derivatives.

• Kernel values (p = q = 0): The uniform finite-sample bounds (Rahimi and Recht,
2007; Sutherland and Schneider, 2015) have recently been improved (Sriperumbudur and
Szabó, 2015) exponentially in terms of the diameter of the compact set SM (|SM |) arriving

to4
∥∥k − k̂∥∥

SM
= Oa.s.

(√
log |SM |∨

√
logM√

M

)
from

∥∥k − k̂∥∥
SM

= Op
(
|SM |

√
logM√
M

)
, where ∨

denotes the maximum. The result shows that the diameter of the set SM can grow at a
|SM | = eo(M) rate while still getting a consistent estimate; this rate is optimal as shown in
the characteristic function literature (Csörgö and Totik, 1983).

• Kernel ridge regression: RFFs have been settled in kernel ridge regression by Rudi and

Rosasco (2017) via showing that using M = o(N) = O
(√

N logN
)

random Fourier features

is sufficient to get O
(

1/
√
N
)

generalization error. Under additional γ-capacity (γ ∈ [0, 1])

and r-range space conditions (r ≥ 1
2), the same authors showed that even faster, minimax

optimal O
(
N
− 2r

2r+γ

)
rates are achievable with M = o(N) = O

(
N

1+γ(2r−1)
2r+γ logN

)
RFFs.

The result improves the originally proved guarantee (Rahimi and Recht, 2008) holding
under the pessimistic M = O(N) setting. The sufficiency of similar sub-linear number
of RFFs with minimax guarantees was also established in the kernel least squares setting
when applying mini-batched stochastic gradient descent (Carratino et al., 2018). Recently
the analysis of Rudi and Rosasco (2017) has been further sharpened (in terms of the number
of required RFFs, Li et al. 2019) by leveraging the notion of effective degrees of freedom.

• Classification with 0-1 loss: In the classification setting with the 0-1 loss and RKHSs,

Gilbert et al. (2018) proved that M = o(N) = Õ
(
N

2
2+c

)
optimized RFF features—

optimized in the sense of Bach (2017)—are sufficient to achieve a learning rate of Õ
(
N−

c
2+c

)
provided that the spectrum of the integral operator associated to the kernel decay polyno-
mially at the rate of λi = O (i−c) with c > 1.4 The same authors showed that the learning
rate can be improved to Õ

(
N−1

)
with M = Õ

(
lnd(N)

)
RFF-s in case of sub-exponential

spectrum, where d denotes the dimension of the inputs in the classification.

• Kernel PCA: Sriperumbudur and Sterge (2018) have proved that the statistical perfor-
mance of kernel principal component analysis (KPCA) can be matched by M = O(N2/3)
(polynomial decay) or M = O(

√
N) (exponential decay) RFFs, depending on the eigenvalue

decay of the covariance operator associated to the kernel. Ullah et al. (2018) derived a sim-
ilar bound for a streaming KPCA algorithm under exponential spectrum decay condition.

4. The classical O(·) notation up to logarithmic factors is denoted by Õ(·); the extension of O(·) in almost
sure and convergence in probability sense are Op(·) and Oa.s.(·).
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• Kernel derivatives: If the support of the spectral measure associated to k is either
bounded or it satisfies the Bernstein condition∫

Rd

∣∣∣∏d
j=1 ω

pj+qj
j

∣∣∣n
(σp,q)n

dΛ(ω) ≤ n!

2
Kn−2, n = 2, 3, . . . (5)

with some constant K ≥ 1 and σp,q =

√∫
Rd

∣∣∣∏d
j=1 ω

pj+qj
j

∣∣∣2 dΛ(ω), then

∥∥∥∂̂p,qk − ∂p,qk∥∥∥
SM

= Oa.s.

(√
log |SM |∨

√
logM√

M

)
rate is achievable as shown by Sriperumbudur and Szabó (2015) and Szabó and Sripe-
rumbudur (2019), respectively. As a practical example, one can consider for instance the
previously mentioned infinite-dimensional exponential (IE) family fitting problem where the
estimation boils to solving a linear equation system with coefficients made of third-order
kernel derivatives (|p + q| = 3). The IE family is defined by a kernel for which a common
choice is the Gaussian; this implies a Gaussian spectrum Λ. Unfortunately, in this case the
bounded support condition is not met. Similarly, the Bernstein condition (5) only holds for
|p+q| ≤ 2 with the Gaussian kernel, as it can be verified (Szabó and Sriperumbudur, 2019,
Remark ’Higher-order derivatives’ in Section 3) by making use of the analytical expressions
for the absolute moments of the Gaussian spectrum. These limitations (summarized in
Table 1) of the popular random Fourier features technique motivate our work and the study
of widely-applied kernels with unbounded spectral support for the RFF approximation of
high-order kernel derivatives. A consequence of our new estimates in Theorem 1 is that the
a.s. rates previously obtained under stringent conditions (on p,q or Λ) are now available
for any p,q and any spectral measure Λ with α-exponential moments (as defined in (6),
α > 0). Because Bernstein condition implies exponential moments, our result includes the
one given by Szabó and Sriperumbudur (2019).

Particularly, assuming additional smoothness on the bounded shift-invariant kernel, its
derivative satisfies a representation similar to (3):

∂p,qk(x,y) =

∫
Rd

[
d∏
j=1

ω
pj
j (−ωj)qj

]
c(
∑d
i=1 |pi+qi|)

(
ω>(x− y)

)
︸ ︷︷ ︸

=:fx−y(ω)

dΛ(ω),

where cn is the nth derivative of the cos(·) function. The primary difficulty is to handle the
polynomial growing nature of the

F = {ω 7→ fx−y(ω) : x,y ∈ S}

function class which controls the error
∥∥∂̂p,qk−∂p,qk∥∥

S
. We tackle this challenge by impos-

ing the finiteness of the α-exponential Orlicz norm of the spectral measure (Λ) associated
to the kernel, in other words

∃α > 0, c > 0 such that Eω∼Λ

(
ec‖ω‖

α
2

)
< +∞. (6)
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Assumption on the spectral measure Conditions Convergence rate

on p,q for
∥∥∥∂p,qk − ∂̂p,qk∥∥∥

SM

2nd moment exists p = q = 0 Oa.s.
(√

log |SM |∨
√

logM√
M

)
Ref: Sriperumbudur and Szabó (2015, Th. 1)

bounded support any p,q Oa.s.
(√

log |SM |∨
√

logM√
M

)
Ref: Sriperumbudur and Szabó (2015, Th. 4)

Bernstein condition small p,q Oa.s.
(√

log |SM |∨
√

logM√
M

)
Ref: Szabó and Sriperumbudur (2019)

Orlicz condition any p,q Oa.s.
(√

log |SM |∨
√

logM√
M

)
Ref: now

Table 1: Summary of RFF guarantees on kernel values and derivatives. Last line: it includes
any measure Λ with a finite α-exponential moment (for some α, c > 0, Eω∼Λ

(
ec‖ω‖

α
2
)
<

+∞), like the Gaussian, the inverse multiquadratic, or the sech kernel, see Corollary 4. For
further examples see Table 2.

Kernels with α-exponential Orlicz spectrum include the popular Gaussian, the inverse multi-
quadric, or the sech kernel; for further examples see Table 2 and Remark 5(ii). We establish
the consistency and prove finite-sample uniform guarantees of the resulting Orlicz RFF
scheme for the approximation of kernel derivatives at any order, as it is briefly illustrated
in the last line of Table 1.

To allow this level of generality, we prove a new finite-sample deviation bound for the
empirical process related to a general class of functions f with polynomial growth of the
sample Xm. The distribution of the latter is assumed to have finite α-exponential Orlicz
norm and consequently, the random variables f(Xm) belong to a γ-exponential Orlicz space
with index γ smaller than 1. For deriving such deviation bounds, we have been inspired by
the work of Adamczak (2008) which elegantly combines the Klein and Rio (2005) inequality
for truncated variables, the Hoffman-Jorgensen inequality to deal with sum of residual of
truncated variables, and a Talagrand (1989) inequality in γ-exponential Orlicz norms for
sum of centered random variables. However, our work significantly differs from that of
Adamczak (2008). First, our aims are different: Adamczak (2008) focuses on getting large
deviation bounds while we are looking for all-scale deviation bounds, which leads to a
different analysis (in the application of Klein-Rio inequalities for instance). Second, we are
concerned by getting upper bounds with quite explicit control. In particular, this requires
a careful treatment of Orlicz-type estimates since the function Ψγ(x) = ex

γ − 1 defining
the Orlicz space is not convex for γ < 1 (see Figure 1), as opposed to the usual case; see
the results in Section 4. We also derive sharp estimates from the Dudley entropy integral
bound (Theorem 9), which enables us to get a tight dependency w.r.t. the diameter of the
parameter space. Furthermore, we clarify the use of the Talagrand inequality (Theorem 7);
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in Adamczak (2008, Theorem 5) it is seemingly invoked for supremum over functions while
it is related to sum over centered random variables. With this novel finite-sample deviation
bound, the analysis of Orlicz RFFs readily follows, using optimized inequalities.

The paper is structured as follows. Our problem is formulated in Section 2. The main
result on the approximation quality of kernel derivatives with random Fourier features is
presented in Section 3. Properties of the Orlicz norm are summarized in Section 4. Proofs
are provided in Section 5. The appendix contains additional technical details (Section A),
the definition of special functions (Section B) and external statements used in the proofs
(Section C).

2. Problem Formulation

In this section we formally define our problem after introducing a few notations.
Notations: Let the set of natural, real and complex numbers, positive integers, positive

reals, non-negative reals and non-positive integers be denoted by N = {0, 1, . . .}, R, C, Z+ =
{1, 2, . . .}, R+ = (0,∞), R≥0 = [0,∞) and Z≤0 = {0,−1,−2, . . .}, respectively. The positive
value of x ∈ R is denoted by (x)+ = x∨0. The Gamma function is Γ(t) =

∫∞
0 xt−1e−xdx for

t ∈ C\Z≤0. For x ∈ R the secant function is sech(x) = 1
cosh(x) . Let aS+ b = {as+ b : s ∈ S}

where S ⊂ R and a, b ∈ R. For an N ∈ Z+, [N ] = {1, . . . , N}. Let the nth derivative
of the cos(·) function (n ∈ N) be cn = cos(n). For multi-indices p,q ∈ Nd and ω ∈ Rd

let |p| =
∑d

j=1 pj , ω
p =

∏d
j=1 ω

pj
j , ∂pf(x) = ∂|p|f(x)

∂
p1
x1
···∂pdxd

, ∂p,qg(x,y) = ∂|p|+|q|g(x,y)

∂
p1
x1
···∂pdxd∂

q1
y1
···∂qdyd

. The

diameter of a compact set T ⊂ Rd is denoted by |T | = supx,y∈T ‖x− y‖2 <∞. Let S ⊂ Rd
be a Borel set. Let S∆ = S − S = {a− b : a ∈ S, b ∈ S}. The set of Borel probability mea-
sures on S is written as M+

1 (S). Let the Banach space of real-valued, r-power µ-integrable

functions on S (1 ≤ r < ∞) be Lr(S, µ), with ‖f‖Lr(S,µ) =
[∫
S |f(x)|rdµ(x)

] 1
r . We use

the shorthand µf =
∫
S f(x)dµ(x) where µ ∈ M+

1 (S) and f ∈ L1 (S, µ). The product
measure of µ1, . . . , µM ∈ M+

1 (S) is ⊗Mm=1µm; specifically when all the components coin-

cide we use the shorthand µM = ⊗m∈[M ]µ. The empirical measure is PM = 1
M

∑M
m=1 δXm

with δX being the Dirac measure concentrated on X and X1, . . . , XM ∼ ⊗Mm=1µm. Let
(rn)n∈N be a positive sequence. The boundedness of Xn

rn
almost surely is denoted by

Xn = Oa.s.(rn). Let n ∈ R+. We say that an f : Rd → R function is of polynomial

growth of order n (shortly f ∈ FP(n)) if supx∈Rd
|f(x)|

1+‖x‖n2
< ∞; FP = ∪n∈R+FP(n). Let us

assume that Ψ : R≥0 → R≥0 is a continuous, strictly increasing mapping, Ψ(0) = 0 and
limx→∞Ψ(x) = ∞. The set of Rd-valued random variables having finite Ψ-Orlicz norm

is defined as LΨ =
{

X : ‖X‖Ψ := inf
{
c > 0 : EΨ

(
‖X‖2
c

)
≤ 1
}
< +∞

}
. Throughout the

paper we will be particularly interested in (see Figure 1)

Ψα : x ∈ R≥0 7→ ex
α − 1 ∈ R≥0 (α > 0),

in other words in random variables having finite α-exponential Orlicz norm. The fact

X ∈ LΨα is equivalent to the existence of an s > 0 constant such that E
[
es‖X‖

α
2

]
< ∞.

Random variables X ∈ LΨ2 and X ∈ LΨ1 are called sub-Gaussian and sub-exponential,
respectively. For f ∈ FP and random variable X having α-exponential moment (X ∈ LΨα)
Ef(X) <∞. Special functions are defined in Table 4.
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Figure 1: Ψα for different α values.

We proceed by formally defining our task. Let k : Rd × Rd → R be a continuous,
bounded and shift-invariant kernel. Then, by the Bochner theorem (Rudin, 1990) one can
assume w.l.o.g. the existence of a Λ ∈M+

1

(
Rd
)

spectral measure such that

k(x,y) =

∫
Rd

cos
(
ω>(x− y)

)
dΛ(ω)

=

∫
Rd

cos
(
ω>x

)
cos
(
ω>y

)
+ sin

(
ω>x

)
sin
(
ω>y

)
dΛ(ω).

Let p,q ∈ Nd and assume that
∫
Rd |ω

p+q| dΛ(ω) <∞. In this case ∂p,qk(x,y) exists, and
by the dominated convergence theorem one arrives at

∂p,qk(x,y) =

∫
Rd
∂p cos

(
ω>x

)
∂q cos

(
ω>y

)
+ ∂p sin

(
ω>x

)
∂q sin

(
ω>y

)
dΛ(ω).

The integral can be estimated by Monte-Carlo technique replacing Λ with ΛM = 1
M

∑M
m=1 δωm ,

(ωm)m∈[M ]
i.i.d.∼ Λ:

∂̂p,qk(x,y) =
1

M

M∑
m=1

[
∂p cos

(
ω>mx

)
∂q cos

(
ω>my

)
+ ∂p sin

(
ω>mx

)
∂q sin

(
ω>my

)]
= 〈λp(x), λq(y)〉R2M , (7)

where λp(x) = 1√
M

[(
∂p cos

(
ω>mx

))
m∈[M ]

;
(
∂p sin

(
ω>mx

))
m∈[M ]

]
∈ R2M ; this is the RFF

feature approximation λp in (4). For p = q = 0, the construction reduces to the traditional
RFF technique (Rahimi and Recht, 2007).

This form implies that our target quantity can be written as∥∥∥∂̂p,qk − ∂p,qk∥∥∥
S

= sup
z∈S∆

|(ΛM − Λ)(fz)|, fz(ω) = ωp(−ω)qc|p+q|

(
ω>z

)
, (8)

= sup
f∈F
|(ΛM − Λ)(f)|, F = {fz : z ∈ S∆} , (9)

thus the problem boils down to the study of supremum of empirical processes with F ⊂
FP(n) where n = |p + q| + 1. In the next section we detail our main result about the
fluctuation of such processes.

8



Orlicz Random Fourier Features

3. Main Result

In this section we present our main result on the supremum of empirical processes of poly-
nomial growth, and specialize it to the approximation quality of RFFs for kernel derivatives.
The proofs are given in Section 5.

We investigate the concentration of the supf∈F | 1
M

∑M
m=1 f(Xm)| quantity under the

following assumptions:

1. Compact parameterization: F = {ft : t ∈ T} where ft : Rd → R is parameterized
by a compact set T ⊂ Rd′ .

2. Lipschitz condition: There exists n ∈ R+ and function L : Rd → R≥0, L ∈ FP(n) such
that

(a) |ft0(x)| ≤ L(x) for some t0 ∈ T ,

(b) |ft1(x)− ft2(x)| ≤ L(x)ρ (‖t1 − t2‖2) for all x ∈ Rd, t1 ∈ T, t2 ∈ T ,

(c) with ρ : [0, |T |] → R≥0 continuous strictly increasing mapping with ρ(0) = 0 such

that Iρ(|T |) := ρ (|T |)
∫ 1

0

√
log
(

1 + 2|T |
ρ−1(uρ(|T |))

)
du <∞.

3. Independence, finite α-exponential Orlicz norm:
(a) (Xm)m∈[M ] are independent Rd-valued random variables; shortly, (Xm)m∈[M ] ∼
⊗m∈[M ]µm with µm ∈M+

1

(
Rd
)
.

(b) ∃α ∈ R+ such that ‖Xm‖Ψα <∞ for all m ∈ [M ].
4. Centering: E [f(Xm)] = 0 for all f ∈ F and m ∈ [M ].

Under these conditions, our main result is as follows.

Theorem 1 (Concentration of processes with polynomial growth) Assume that F
and (Xm)m∈[M ] satisfy Assumptions 1-4 and γ := α

n ≤ 1. Let log stand for the natural

logarithm, βγ := Γ
(

1 + 1
γ

)−γ
, P := ⊗m∈[M ]µm, and ‖L‖L2(X1:M ) :=

√
1
M

∑
m∈[M ] L

2(Xm).

Let Ψ
(l)
γ be the convexification5 of Ψγ, Aγ :=

(
Ψ

(l)
γ

)−1
(1)

Ψ−1
γ (1)

, Bγ :=
(
Ψ

(l)
γ

)−1
(1), Cγ and CD be

the constants defined in (45) and (46), and Kγ := 2

(
1
γ
−1
)(
Cγ

[
16Bγ +2

(
1
γ
−1
)(

1 +Aγ

)]
+

8Aγ

)
. Then for any ε > 0 satisfying

ε ≥ 6B, B := 2CD
√
d′
E
[
‖L‖L2(X1:M )

]
√
M

Iρ(|T |), (10)

we have

P

sup
t∈T

1

M

∑
m∈[M ]

ft(Xm) ≥ ε

 ≤ 2e
−

 Mε

3Kγ‖maxm∈[M ] supt∈T |ft(Xm)|‖
Ψγ

γ
+ e
− M ε2

72σ2+84c ε , (11)

5. The function Ψγ is not convex for γ < 1. We convexify Ψγ and use the Section 4(v) based integral

control property holding for convex Ψ-s; for details on Ψ
(l)
γ see Section A.1.

9
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where

σ2 := sup
t∈T

1

M

∑
m∈[M ]

E
[
f2
t (Xm)

]
,

c := max
m∈[M ]

sup
t∈T
‖ft(Xm)‖Ψγ

 1

βγ
log

6Γ
(

1 + 1
γ

)
maxm∈[M ] supt∈T ‖ft(Xm)‖Ψγ

γε


1
γ

∨ 8E
[

max
m∈[M ]

sup
t∈T
|ft(Xm)|

]
∈ [0,+∞).

Remark 2
(i) Two-sided bound: For P

(
inft∈T

1
M

∑
m∈[M ] ft(Xm) ≤ −ε

)
the same one-sided devi-

ation bound can be obtained by replacing ft with −ft. As a result one can estimate

P
(

supt∈T

∣∣∣ 1
M

∑
m∈[M ] ft(Xm)

∣∣∣ ≥ ε) by twice the bound above.

(ii) Assumption (3): Assumption (3a) with Assumption (4) is weaker than being i.i.d.:
for example E [ft(Xm)] = 0 holds for Xm = N

(
0, σ2

m

)
and ft(x) = ctx

3, but Xm-s can
differ in their variance.

(iii) Assumption α/n ≤ 1: This condition holds without loss of generality. Indeed, in case
of α/n > 1, one can get a modified (α′, n′) pair satisfying α′/n′ ≤ 1 by either increasing
n to the value n′ = α using that FP(n) ⊂ FP(n′), or by decreasing α to the value α′ = n
using that ‖Xm‖Ψα <∞ implies ‖Xm‖Ψα′ <∞ for any α′ ∈ (0, α).

(iv) Proof-related remarks:
1. Compactness of T : This compactness with the Lipschitz property enables one to

control the covering number of F .
2. Truncated functions: The Lipschitz property of F implies that of the truncated

functions: for ∀x ∈ Rd, s and t ∈ T

|Tcft(x)− Tcfs(x)| ≤ |ft(x)− fs(x)| ≤ L(x)ρ (‖t− s‖2) , (12)

where Tcf(x) := f(x)1|f(x)|≤c + c1f(x)>c − c1f(x)<−c is f soft-thresholded at level c.
3. F ⊂ FP(n): This property is inherited (Section 5.4) from L ∈ FP(n) by the Lipschitz

conditions (2a)-(2b).
4. Finiteness of the terms in Theorem 1:

∥∥maxm∈[M ] supt∈T |ft(Xm)|
∥∥

Ψα
n

and

E
[
maxm∈[M ] supt∈T |ft(Xm)|

]
are finite (see Section 5.4) in Theorem 1 by the Lip-

schitz assumption (2a)-(2b), ‖Xm‖Ψα < ∞ (Assumption (3b)) and L ∈ FP(n) (As-
sumption (2)).

(v) RFF specialization: Assuming that the α-exponential Orlicz condition holds for the
spectral measure Λ associated to k (∃α ∈ R+ such that ‖ω‖Ψα <∞, ω ∼ Λ),6 one can
see (Section 5.1) that RFFs are covered by choosing

d′ = d, ft(x)← fz(ω)− Λfz, t← z, T ← S∆, Xm ← ωm,

6. This requirement implies that
∫
Rd |ωp+q| dΛ(ω) <∞ and thus the existence of ∂p,qk for any p,q ∈ Nd.

10
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ρ(u) = uβ, β =
1

1 + (log|S∆|)+
∈ (0, 1], n← |p + q|+β.

While any value of β ∈ (0, 1] would meet the assumptions, allowing β to depend on
the diameter of S∆ enables us to get optimal convergence rates w.r.t. the diameter (see
Corollary 4).
The terms driving the guarantee for RFF can be bounded (Section 5.6) as follows: there
is a constant CRFF ∈ R+, depending only on Λ, |p + q|, but not on |S∆| and M , such
that

B ≤
CRFF

√
1 + (log|S∆|)+√

M
,

σ2 ≤ CRFF,

max
m∈[M ]

sup
z∈S∆

‖gz(ωm)‖Ψγ ≤ CRFF,∥∥∥∥∥ max
m∈[M ]

sup
z∈S∆

|gz(ωm)|

∥∥∥∥∥
Ψγ

≤ CRFF [log(1 +M)]n/α ,

E

[
max
m∈[M ]

sup
z∈S∆

|gz(ωm)|

]
≤ CRFF [log(1 +M)]n/α .

(13)

Using these bounds, our finite-sample uniform guarantee on Orlicz RFFs is as follows.

Corollary 3 (Orlicz RFFs for kernel derivative approximation) Let k : Rd×Rd →
R be a continuous, bounded, shift-invariant kernel with spectral measure Λ. Suppose that Λ
satisfies the α-exponential Orlicz assumption (∃α ∈ R+ such that ‖ω‖Ψα <∞, ω ∼ Λ) and

let S ⊂ Rd be a compact set. Let β = 1
1+(log|S∆|)+

∈ (0, 1], let p,q ∈ Nd, n := |p+q|+β, and

assume that γ := α
n ≤ 1. Let ∂̂p,qk be the RFF estimate of ∂p,qk using (ωm)m∈[M ]

i.i.d.∼ Λ

samples as given in Eq. (7). Then, there exists a constant C̃ ∈ R+ (depending only on Λ,

|p + q|, but not on S and M) such that for any ε ≥ C̃
√

1+(log|S∆|)+√
M

,

ΛM
(∥∥∥∂̂p,qk − ∂p,qk∥∥∥

S
≥ ε
)
≤ 2e

− (Mε)γ

C̃ log(1+M) + e

− M ε2

C̃

(
1+ε[log(C̃/ε)∨log(1+M)]1/γ

)
. (14)

Corollary 4 (Almost sure convergence for kernel derivative approximation) Let p,q ∈
Nd and k : Rd×Rd → R be a continuous, bounded, shift-invariant kernel with spectral mea-
sure Λ which satisfies the α-exponential Orlicz assumption for some α > 0. Then, for any
sequence of compact sets (SM )∞M=2 such that (log |SM |)+ = o(M), we have

∥∥∥∂̂p,qk − ∂p,qk∥∥∥
SM

= Oa.s.

(√
(log |SM |)+ ∨ logM√

M

)
. (15)

11
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Remark 5
(i) Spectral measure (Λ) examples: Our result assumes the α-exponential Orlicz prop-

erty of the spectral measure Λ associated to k. In Table 2 we provide various examples
for Λ (with the relevant case of unbounded support) satisfying this requirement; their
relation is summarized in Figure 2. While for the RFF approximation it is not neces-
sary, in many of these examples the corresponding kernel value can also be computed,
see Table 3.

(ii) α-exponential Orlicz assumption for tensor product kernels: Using the α-
exponential Orlicz spectral measures of Table 2 on R, one can immediately construct
Orlicz spectral measures on Rd. Indeed, assume that (i) k is a product kernel, i.e.
k(x,y) =

∏
i∈[d] ki(xi, yi), Λ = ⊗i∈[d]Λi, and (ii) Λi, the spectral measure associated

to ki, satisfies the αi-exponential Orlicz assumption (αi ∈ R+). Then ω ∼ Λ is α-
exponential Orlicz with α = mini∈[d] αi; see Section A.2.

(iii) α-exponential Orlicz vs. Bernstein assumption: Our result complements Szabó
and Sriperumbudur (2019)’s work, where the authors showed that for d = 1 and spectral

densities fλ(ω) ∝ e−ω2`
the Bernstein condition (and hence fast rates) holds for |p+q| ≤

2` = α. Indeed, we proved under the more general α-exponential Orlicz assumption the
same a.s. convergence rates for any arbitrary order (see Corollary 4) kernel derivatives.

Spectrum Spectral density: fΛ(ω) Parameters α

Gaussian 1√
2πσ

e−
ω2

2σ2 σ > 0 2

Laplace σ
2 e
−σ|ω| σ > 0 1

generalized Gaussian α
2βΓ( 1

α)
e
− |ω|

β

α

α > 0, β > 0 α

variance Gamma
σ2b|ω|b−

1
2K

b− 1
2

(σ|ω|)
√
πΓ(b)(2σ)b−

1
2

σ > 0, b > 1
2 1

Weibull (S) s
2λ

(
|ω|
λ

)s−1
e
−
(
|ω|
λ

)s
s > 0, λ > 0 s

exponentiated exponential (S) α
2λ

(
1− e−

|ω|
λ

)α−1
e−
|ω|
λ λ > 0, α > 0 1

exponentiated Weibull (S) αs
2λ

(
|ω|
λ

)s−1
[
1− e−

(
|ω|
λ

)s]α−1

× s > 0, λ > 0, α > 0 s

×e−
(
|ω|
λ

)s
Nakagami (S) mm

Γ(m)Ωm |ω|
2m−1e−

mω2

Ω m ≥ 1
2 , Ω > 0 2

chi-squared (S) 1

2
s
2 +1Γ( s2)

|ω|
s
2
−1e−

|ω|
2 s ∈ Z+ 1

Erlang (S) λs|ω|s−1e−λ|ω|

2(s−1)! s ∈ Z+, λ > 0 1

12
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Spectrum Spectral density: fΛ(ω) Parameters α

Gamma (S) 1
2Γ(s)θs |ω|

s−1e−
|ω|
θ s > 0, θ > 0 1

generalized Gamma (S) p/aD

2Γ
(
D
p

) |ω|D−1e
−
(
|ω|
a

)p
a > 0, D > 0, p > 0 p

Rayleigh (S) |ω|
2σ2 e

− ω2

2σ2 σ > 0 2

Maxwell-Boltzmann (S) 1√
2π

ω2e
− ω2

2a2

a3 a > 0 2

chi (S) 1

2
s
2 Γ( s2)

|ω|s−1e−
ω2

2 s > 0 2

exponential-logarithmic (S) − 1
2 log(p)

β(1−p)e−β|ω|
1−(1−p)e−β|ω| p ∈ (0, 1), β > 0 1

Weibull-logarithmic (S) − 1
2 log(p)

αβ(1−p)|ω|α−1e−β|ω|
α

1−(1−p)e−β|ω|α p ∈ (0, 1) , β > 0, α > 0 α

Gamma/Gompertz (S) bseb|ω|βs

2(β−1+eb|ω|)
s+1 b > 0, β > 0, s > 0 bs

hyperbolic secant 1
2sech

(
π
2ω
)

1

logistic e−
ω
s

s
[
1+e−

ω
s

]2 s > 0 1

normal-inverse Gaussian
αδK1(α

√
δ2+ω2)

π
√
δ2+ω2

eδα α > 0, δ ∈ R 1

hyperbolic 1
2δK1(δα)e

−α
√
δ2+ω2

α > 0, δ ∈ R 1

generalized hyperbolic (α/δ)λ√
2πKλ(δγ)

K
λ− 1

2
(α
√
δ2+ω2)(√

δ2+ω2

α

) 1
2−λ

α > 0, λ ∈ R, δ ∈ R 1

Table 2: Kernel spectrum examples in one dimension (d = 1) obeying the α-exponential
Orlicz assumption. ’(S)’ stands for symmetrized. The symmetrization guarantees that the
kernel associated to Λ is real-valued. Last column: Orlicz exponent. For the variance
Gamma distribution the Orlicz exponent follows from the known Ku(z) ∼

√
π/(2z)e−z

asymptotics (Barndorff-Nielsen et al., 2001, page 297) where Ku is the modified Bessel
function of the second kind, as defined in Table 4. Notice that the ’normal-inverse Gaussian
δ=σ2α, α→∞−−−−−−−−−→ Gaussian’ limit (see Figure 2) changed the Orlicz exponent from 1 to 2.

4. Properties of the Orlicz Norm

In this section, for self-containedness we summarize the properties of ‖·‖Ψ which hold inde-
pendently of the convexity/non-convexity of Ψ (unless explicitly required).

Let X,X ′ ∈ Rd be random variables, and assume that Ψ : R≥0 → R≥0 (and similarly Φ
below) is continuous, strictly increasing, Ψ(0) = 0 and limx→∞Ψ(x) =∞.

13
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exponentiated
exponential (S)

Weibull
-logarithmic (S)

Gamma/Gompertz (S)

exponentiated
Weibull (S)

exponential
-logarithmic (S)

chi-squared (S) Erlang (S)

Weibull (S)
generalized
Gamma (S)

Gamma (S) Laplace

Rayleigh (S) chi (S) variance Gamma
generalized
Gaussian

hyperbolic secant Maxwell-Boltzmann (S)
normal-inverse

Gaussian
Gaussian

logistic
generalized
hyperbolic

hyperbolic Nakagami (S)

α = 1
β = 1

s = 1

α=1 s = 1

s = 2
s = 1

p = D p = 1

p = 2, a = 2

s ∈ Z+s ∈ Z+/2

s = 2 (σ = 1)

s = 3 (a = 1)

b = 1
α = 1

α = 2
δ=σ2α,

α→∞

λ = − 1
2

δ = 0

λ = 1

m = 1
2m = s

2

Figure 2: Relation of the spectral density examples of Table 2. ’(S)’ stands for symmetrized.
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Kernel name Kernel value: k(x, y) Spectrum

Gaussian e−
σ2(x−y)2

2 Gaussian

inverse quadric σ2

σ2+(x−y)2 Laplace

–
√
π

Γ(1/α) Ψ1,1

((
1
α ,

2
α

)
;
(

1
2 ; 1
)
, −[β(x−y)]2

4

)
generalized Gaussiana

inverse multiquadric
[

σ2

σ2+(x−y)2

]b
variance Gamma

–
∑

n∈2N
(−1)

n
2 (x−y)nλn

n! Γ
(
1 + n

s

)
Weibull (S)b

– [1−2i(x−y)]−
s
2 +[1+2i(x−y)]−

s
2

2 chi-squared (S)b

–

[
1− i(x−y)

λ

]−s
+
[
1+

i(x−y)
λ

]−s
2 Erlang (S)b

– [1−θi(x−y)]−s+[1+θi(x−y)]−s

2 Gamma (S)b

– 1− σ(x− y)e−
σ2(x−y)2

2
√

π
2 erfi

(
σ(x−y)√

2

)
Rayleigh (S)b

– F1,1

(
s
2 ; 1

2 ; −(x−y)2

2

)
chi (S)b

–
∑

n∈2N
(−1)

n
2 (x−y)nΓ(nα+1)
− log(p)n!β

α
n

Lin
α

+1(1− p) Weibull-logarithmic (S)b,c

– 1
2 [cΛ(x− y) + cΛ(y − x)], with cΛ(t) = Gamma/Gompertz (S)b

= βs sb
sb−ti F2,1

(
s+ 1;− ti

b + s;− ti
b + s+ 1; 1− β

)
sech sech(x− y) hyperbolic secant

– πs(x−y)
sinh(πs(x−y)) logistic

– e
δ
[
α−
√
α2+(x−y)2

]
normal-inverse Gaussian

–
αK1

(
δ
√
α2+(x−y)2

)
√
α2+(x−y)2K1(δα)

hyperbolic

–

[
α√

α2+(x−y)2

]λ
Kλ

(
δ
√
α2+(x−y)2

)
Kλ(δα) generalized hyperbolic

a. The analytical computation of the characteristic function (and hence the kernel value) was carried out
for α > 1 (Pogány and Nadarajah, 2010).

b. In case of symmetrization (S): k(x, y) = 1
2

[cΛ(x− y) + cΛ(y − x)] where cΛ(t) = Eω∼Λ[eitω] is the char-

acteristic function of the spectral measure (on R≥0) before symmetrization; i =
√
−1.

c. The characteristic function was obtained by Ciumara and Preda (2009).

Table 3: Kernel examples for the spectral densities given in Table 2. The special functions
Ψ1,1, erfi, F1,1, Li, F2,1 and Kλ are defined in Table 4.
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(i) Normalization: If X ∈ LΨ then E
[
Ψ
(
‖X‖2
‖X‖Ψ

)]
≤ 1.

(ii) Constant: For a λ ∈ R constant ‖λ‖Ψ= |λ|/Ψ−1(1).
(iii) Monotonicity in Ψ: Ψ ≤ Φ implies ‖X‖Ψ≤ ‖X‖Φ.
(iv) Monotonicity in the argument: If d = 1 and 0 ≤ X ≤ X ′ a.s., then ‖X‖Ψ≤ ‖X ′‖Ψ.
(v) Finite ‖·‖Ψ implies integrability: If Ψ is convex and X ∈ LΨ, then E [‖X‖2] ≤
‖X‖Ψ Ψ−1(1).

(vi) Generalized triangle inequality: Let X,X ′ ∈ LΨα and α ∈ R+. Then X + X ′ ∈ LΨα

and ∥∥X +X ′
∥∥

Ψα
≤ 2( 1

α
−1)

+

(
‖X‖Ψα +

∥∥X ′∥∥
Ψα

)
.

(vii) Deviation inequality from ‖·‖Ψ: If X ∈ LΨ then P (‖X‖2 ≥ c) ≤
2

Ψ(c/‖X‖Ψ)+1 for any
c ≥ 0.

(viii) Maximal inequality for ‖·‖Ψα and α ∈ R+: for any sequence (Xm)Mm=1 of random
variables in LΨα , we have∥∥∥∥ max

m∈[M ]
‖Xm‖2

∥∥∥∥
Ψα

≤ max
m∈[M ]

‖Xm‖Ψα

[
log(1 +M)

log(3/2)

]1/α

.

The proofs of these properties are available in Section A.3.

5. Proofs

After introducing a few additional notations, we provide the proofs of our results and re-
marks presented in Sections 3 and 4. External statements used in the proofs are summarized
in Section C.

Notations: For γ ∈ (0, 1] and x ∈ R≥0, let Iγ(x) =
∫ x

0 e
−tγdt be the incomplete

Gamma function. Let (Z,m) be a semi-metric space and ε ∈ R+. The set S ⊆ Z is
said to be an ε-net of Z if for any z ∈ Z there exists s ∈ S such that m(s, z) ≤ ε.
The ε-covering number of Z is defined as the size of the smallest ε-net, i.e., N(ε,m,Z) =

inf
{
` ≥ 1 : ∃s1, . . . , sl ∈ Z such that Z ⊆ ∪`j=1Bm(sj , ε)

}
, whereBm(s, ε) = {z ∈ Z : m(z, s) ≤

ε} is the closed ball with center s ∈ Z and radius ε.

5.1. Proof of Remark 2(v)

In view of (8)-(9), we need to check Assumptions 1-4 with the parameterized function class

gz(ω) := fz(ω)− Λfz = ωp(−ω)qc|p+q|

(
ω>z

)
− Λfz, (z ∈ S∆).

Thanks to the α-exponential Orlicz condition on Λ and the i.i.d. property of (ωm)m∈[M ] in
(7), Assumption 3 is trivially fulfilled. Assumption 4 holds by the definition of gz(·) and
because the distribution of ωm is Λ. Assumption 1 is satisfied since S∆ is a compact set
of Rd. Therefore, it remains to prove Assumption 2, with the existence of n ∈ R+ and
L ∈ FP(n). First, notice that

|fz(ω)| ≤
∏
i∈[d]

|ωi|pi+qi ≤ ‖ω‖|p+q|
2 . (16)
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• Order: (16) implies that

|gz(ω)| ≤ |fz(ω)|+ Λ|fz| ≤ ‖ω‖|p+q|
2 + Λ

[
‖ · ‖|p+q|

2

]
=: L1(ω). (17)

• Lipschitz condition: Let [z1, z2] = {az1 + (1− a)z2 : a ∈ [0, 1]} denote the segment
connecting z1, z2 ∈ Rd. By using the mean value theorem

|gz1(ω)− gz2(ω)| ≤ max
z∈[z1,z2]

∥∥∥∥∂gz(ω)

∂z

∥∥∥∥
2

‖z1 − z2‖2 , (18)

∂gz(ω)
∂z = ∂fz(ω)

∂z −Λ∂fz(ω)
∂z with ∂fz(ω)

∂z = ωp(−ω)qc|p+q|+1

(
ω>z

)
ω, and by using similar

computations as before, one gets∥∥∥∥∂gz(ω)

∂z

∥∥∥∥
2

≤ ‖ω‖|p+q|+1
2 + Λ

[
‖ · ‖|p+q|+1

2

]
=: L2(ω). (19)

As a result, to fulfill Assumption 2, we can take L(ω) = max(L1(ω), L2(ω)) and ρ(u) = u.
For such L, we have n = |p + q|+ 1.
Refined L and ρ: We now derive refined L and ρ, by interpolating different bounds. From
(17), we can obtain the crude estimate |gz1(ω) − gz2(ω)| ≤ 2L1(ω), which combined with
(18)-(19) gives

|gz1(ω)− gz2(ω)| ≤ (2L1(ω))1−β
[
‖z1 − z2‖2 L2(ω)

]β
(20)

for any β ∈ (0, 1]. Here we have used that if 0 ≤ x ≤ min(x1, x2) then x ≤ x1−β
1 xβ2 . It

follows that one can take

ρ(u) = uβ, n = |p + q|+ β, L(ω) = max
(
L1(ω), (2L1(ω))1−βLβ2 (ω)

)
∈ FP(n). (21)

For β = 1, we retrieve the former choice of L and ρ. Furthermore, we have

Iρ(|T |) =|T |β
∫ 1

0

√
log

(
1 +

2|T |
(u|T |β)1/β

)
du =|T |β

∫ 1

0

√
log

(
1 +

2

u1/β

)
du < +∞. (22)

Notice that the advantage of having the additional degree-of-freedom β is two-fold, and it
is striking when β → 0 (compared to β = 1). Firstly, it gives a smaller n, which has a
(slight) positive impact on the control of statistical fluctuations; secondly, the dependence
of Iρ(|T |) in the diameter |T | is smaller through the growth exponent.
To conclude, we have proved that Orlicz RFFs fulfill the assumptions of Theorem 1. Later
in Section 5.6, we will establish that Iρ(|T |) satisfies a (tight) bound w.r.t.

√
1 + (log|T |)+.

5.2. Proof that Polynomial Growth Preserves the Exponential Orlicz Property

We show that ‖f(X)‖Ψγ < ∞ for ‖X‖Ψα < ∞, f ∈ FP(n), n ∈ R+, γ = α
n . Indeed, by the

definition of f ∈ FP(n), there exists C ∈ R+ such that |f(x)| ≤ C(1 + ‖x‖n2 ) for all x ∈ Rd.
Hence for any γ > 0

|f(x)|γ ≤ Cγ (1 + ‖x‖n2 )γ
(∗)
≤ 2(γ−1)+Cγ (1 + ‖x‖nγ2 ) , (23)
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where in (∗) we used that

(a+ b)γ ≤ 2(γ−1)+ (aγ + bγ) , a, b ≥ 0, γ > 0. (24)

Since X ∈ LΨα there is some s ∈ R+ for which E
[
es‖X‖

α
2

]
< ∞. Combining this

property with (23) and recalling that nγ = α yields

es
′|f(x)|γ ≤ es′2

(γ−1)+Cγ(1+‖x‖α2 ) ⇒ E
[
es
′|f(X)|γ

]
≤ es′2

(γ−1)+CγE
[
es‖X‖

α
2

]
<∞

with s′ = s

2(γ−1)+Cγ
; this shows that f(X) ∈ LΨγ .

5.3. Proof of Theorem 1

By introducing the Rcf(x) := f(x)−Tcf(x) notation of residuals obtained at level c ∈ R+

(the value of c will be specified later), we bound the target quantity by using the sub-
additivity of supremum

sup
t∈T

1

M

∑
m∈[M ]

ft(Xm)︸ ︷︷ ︸
Tcft(Xm)+Rcft(Xm)

= sup
t∈T

1

M

∑
m∈[M ]

(Tcft(Xm)− E [Tcft(Xm)] + E [Tcft(Xm)] +Rcft(Xm))

≤ sup
t∈T

1

M

∑
m∈[M ]

(
Tcft(Xm)− E [Tcft(Xm)]

)
︸ ︷︷ ︸

Z
Tc

+ sup
t∈T

E

 1

M

∑
m∈[M ]

Tcft(Xm)


︸ ︷︷ ︸

ETc

+ sup
t∈T

1

M

∑
m∈[M ]

Rcft(Xm)

︸ ︷︷ ︸
ZRc

.

This means that using c for which ETc ≤ ε
3 ,

P

sup
t∈T

1

M

∑
m∈[M ]

ft(Xm) ≥ ε

 ≤ P
(
ZRc ≥ ε/3

)
+ P

(
Z
Tc ≥ ε/3

)
. (25)

The structure of our proof is as follows.
1. Unbounded part (ZRc): Based on the Talagrand and the Hoffman-Jorgensen inequali-

ties, for large enough c (referred to as cHJ) we will derive an exponential control over
P
(
ZRc ≥ ε/3

)
expressed with

∥∥maxm∈[M ] supt∈T |ft(Xm)|
∥∥

Ψγ
which is finite by Sec-

tion 5.4.
2. Bounded part (Z

Tc
): We handle this term using the Klein-Rio inequality and the Dudley

entropy integral bound. In addition, this part will give rise to the constraint (10) on ε.
3. Truncation (ETc): As E[ft(Xm)] = 0, Tcft ≈ ft and E[Tcft(Xm)] ≈ 0 for large c (called
cmin). The ETc ≤ ε

3 requirement can be controlled via the integral form of the expectation
of non-negative random variables and the incomplete Gamma function.
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The bounding of the ZRc , Z
Tc

and ETc quantities is detailed in the following sections.
Plugging the (26) and (28) results of the computations into (25) gives the final bound (11).
The ε constraint comes from (33), provided that c ≥ cmin ∨ cHJ. The constants cmin and cHJ
are defined in (35) and (38), respectively.

5.3.1. Bounding ZRc

P
(
ZRc ≥ ε/3

)
is bounded as

P
(
ZRc ≥ ε/3

)
≤ P

sup
t∈T

∑
m∈[M ]

|Rcft(Xm)| ≥Mε/3


(a)

≤ P

 ∑
m∈[M ]

sup
t∈T
|Rcft(Xm)| ≥Mε/3

 (b)

≤ 2e
−

 Mε/3

‖∑m∈[M ] supt∈T |Rcft(Xm)|‖
Ψγ

γ

(c)

≤ 2e
−

 Mε

3Kγ‖maxm∈[M ] supt∈T |ft(Xm)|‖
Ψγ

γ
, (26)

where in (a) we used the the sub-additivity of the supremum, in (b) the deviation inequality
Section (4)(vii) was applied, (c) holds by Section 5.5 for c ≥ cHJ (the value of cHJ is defined
in Section 5.5).

5.3.2. Bounding Z
Tc

Below we will invoke the Klein-Rio inequality and control the expectation E
[
Z
Tc
]
.

• Klein-Rio inequality: Let gm,t : x ∈ Rd 7→ Tcft(x) − E [Tcft(Xm)] and let us define
the function classes

TcF [M ] := {gt := (g1,t, . . . , gM,t) : t ∈ T}, TcF := {Tcft : t ∈ T}.

– gm,t ∈ [−2c, 2c] are measurable and bounded functions.
– Centering: by construction E[gm,t(Xm)] = 0 (∀m ∈ [M ]).
– Countability: Since t 7→ ft is continuous, the supt∈T can be restricted to rational

numbers (T ∩Qd), one can take T ← T ∩Qd, and assume that TcF [M ] is countable.
If

E
[
Z
Tc
]
≤ ε/6, (27)

then the Klein-Rio inequality (Theorem 8 where the supt∈T and supf∈TcF [M ] coincide)
implies that

P
(
Z
Tc ≥ ε/3

) (27)

≤ P
(
Z
Tc − E

[
Z
Tc
]
≥ ε/6

)
≤ e
− M (ε/6)2

2(σ̄2+4cE[ZTc ])+6c ε/6

(27)

≤ e
− M (ε/6)2

2σ̄2+14cε/6 = e
− M ε2

72σ̄2+84c ε ≤ e−
M ε2

72σ2+84c ε , (28)
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where the weak variance σ̄2 is defined and bounded by

σ̄2 := sup
t∈T

1

M

∑
m∈[M ]

E
[
(Tcft(Xm)− E [Tcft(Xm)])2

]
≤ sup

t∈T

1

M

∑
m∈[M ]

E
[
(Tcft(Xm))2

]
≤ sup

t∈T

1

M

∑
m∈[M ]

E
[
f2
t (Xm)

]
=: σ2.

• Bounding E
[
Z
Tc
]
: We control E

[
Z
Tc
]

in (27) by the Dudley entropy integral bound.

In this bound the covering number of TcF is estimated by that of the compact set T ⊂ Rd′

with propagation relying on Assumption (2b).
– Dudley entropy integral bound: Slight modification (without absolute value) of

van der Vaart and Wellner (1996, Lemma 2.3.1) gives

E
[
Z
Tc
]
≤ 2E [R(X1:M , TcF)] , (29)

where R(x1:M , TcF) := Eε

[
supt∈T

1
M

∑
m∈[M ] εmTcft(xm)

]
is the Rademacher average

of TcF , X1:M := (Xm)m∈[M ], x1:M := (xm)m∈[M ], ε :=(εm)m∈[M ] contains independent

Rademacher variables (i.e. P (εm = ±1) = 1
2), and ε is independent of X1:M .

Let Zt(x1:M ) := 1
M

∑
m∈[M ] εmTcft(xm), so R(x1:M , TcF) = Eε [supt∈T Zt(x1:M )], and

define the pseudo-metric on T as d(t, s) :=
(

1
M

∑
m∈[M ] [Tcft(xm)− Tcfs(xm)]2

)1/2
.

The {Zt : t ∈ T} process is
∗ separable since it is continuous, and T ⊂ Rd′ is separable,
∗ centered thanks to the Rademacher variables,
∗ sub-Gaussian with respect to M−1/2d: indeed, for any λ ∈ R+ and t, s ∈ T

Eε

[
eλ(Zt−Zs)

]
(a)
=

M∏
m=1

Eεm
[
eεm

λ
M

[Tcft(xm)−Tcfs(xm)]
] (b)

≤
M∏
m=1

e
λ2

2M2 [Tcft(xm)−Tcfs(xm)]2

= e
λ2(M−1/2d(t,s))

2

2 .

In (a) we used the independence of εm-s, (b) follows from Eεm [eaεm ] = cosh(a)
(∗)
≤ e

a2

2

(∀a ∈ R), where (∗) can be obtained from the power series expansion of the cosh(·)
and the exponential function.

Hence Theorem 9 can be applied:

R(x1:M , TcF) ≤ CD
∫ ∞

0

√
log(N(ε,M−1/2d, T ))dε

=
CD√
M

∫ ∞
0

√
log(N(ε, d, T ))dε, (30)

where we used the N(ε,M−1/2d, T ) = N(M1/2ε, d, T ) identity, and applied an ε̃ =
M1/2ε substitution. We note that the above infinite integral can be truncated at
|T |d := supt,s∈T d(t, s), the d-diameter of T , since N(ε, d, T ) = 1 for ε ≥ |T |d.

20



Orlicz Random Fourier Features

– Covering number: By (12) one can relate d(t, s) and ‖t− s‖2 as

d(t, s) ≤

 1

M

∑
m∈[M ]

L2(xm)

1/2

ρ (‖t− s‖2) := ‖L‖L2(x1:M ) ρ (‖t− s‖2) ,

which implies

N(ε, d, T ) ≤ N

(
ρ−1

(
ε

‖L‖L2(x1:M )

)
, ‖·‖2 , T

)
, (31)

|T |d ≤ ‖L‖L2(x1:M ) sup
t,s∈T

ρ (‖t− s‖2) ≤ ‖L‖L2(x1:M ) ρ(|T |). (32)

In the last inequality the increasing property of ρ was exploited. Combining (31)-(32)
with the well-known bound (van de Geer, 2000, Lemma 2.5) on the covering number7

of a compact set T ⊂ Rd′

N
(
ε′, ‖·‖2 , T

)
≤
(

2|T |
ε′

+ 1

)d′
, ∀ε′ > 0,

(30) can be estimated further as

R(x1:M , TcF) ≤ CD
√
d′√

M

∫ ‖L‖L2(X1:M )ρ(|T |)

0

√√√√√√√log

 2|T |

ρ−1

(
ε

‖L‖L2(x1:M )

) + 1

dε

= CD
√
d′
‖L‖L2(x1:M ) ρ (|T |)

√
M

∫ 1

0

√
log

(
1 +

2|T |
ρ−1 (uρ (|T |))

)
du,

where we introduced the new variable u = ε
‖L‖L2(x1:M )ρ(|T |) . Substituting this bound

into (29) we arrive at

E
[
Z
Tc
]
≤ 2CD

√
d′
E
[
‖L‖L2(X1:M )

]
√
M

Iρ(|T |) =: B. (33)

To guarantee E
[
Z
Tc
]
≤ ε/6, we solve B ≤ ε

6 ; this gives the (10) bound on ε.

5.3.3. Bounding ETc

• Bounding ETc by the incomplete Gamma function (Iγ):

E [Tcft(Xm)]
(a)
= −E [Rcft(Xm)]

(b)

≤ E
[
(−ft(Xm)− c)1ft(Xm)≤−c

]
7. In our definition of the covering number, in its bound on compact sets in Rd (van de Geer, 2000, Lemma

2.5) and in the final Dudley entropy bound (Bartlett, 2013, Lecture 11, 14) the elements of the ε-net are
assumed to belong to the set covered.
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(c)
=

∫ ∞
c

P (−ft(Xm) ≥ y) dy. (34)

In (a) we used that Tcft(x) = ft(x)−Rcft(x) and E[ft(Xm)] = 0, (b) follows from

Rcft(x) = [ft(x) + c]1ft(x)≤−c + [ft(x)− c]1ft(x)≥c ≥ [ft(x) + c]1ft(x)≤−c.

(c) holds by using that for a Z ≥ 0 random variable, E[Z] =
∫∞

0 P (Z ≥ z) dz; we choose
Z = max (0,−ft(Xm)− c). Therefore

ETc = sup
t∈T

E

 1

M

∑
m∈[M ]

Tcft(Xm)

 (a)

≤ max
m∈[M ]

sup
t∈T

∫ ∞
c

P (−ft(Xm) ≥ y) dy

(b)

≤ 2 max
m∈[M ]

sup
t∈T

∫ ∞
c

e
−
(

y
‖ft(Xm)‖Ψγ

)γ
dy

(c)
= 2 max

m∈[M ]
sup
t∈T

‖ft(Xm)‖Ψγ

∫ ∞
c

‖ft(Xm)‖Ψγ

e−u
γ
du


(d)
= 2 max

m∈[M ]
sup
t∈T

(
‖ft(Xm)‖Ψγ

[∫ ∞
0

e−u
γ
du−

∫ c
‖ft(Xm)‖Ψγ

0
e−u

γ
du

])
(e)
= 2 max

m∈[M ]
sup
t∈T

(
‖ft(Xm)‖Ψγ

[
Γ

(
1 +

1

γ

)
− Iγ

(
c

‖ft(Xm)‖Ψγ

)])
(f)

≤ 2 max
m∈[M ]

sup
t∈T
‖ft(Xm)‖Ψγ

[
Γ

(
1 +

1

γ

)
− Iγ

(
c

maxm′∈[M ] supt′∈T ‖ft′(Xm′)‖Ψγ

)]
(g)

≤ 2Γ

(
1 +

1

γ

)1−

[
1− e

−βγ
(

c
maxm∈[M ] supt∈T ‖ft(Xm)‖Ψγ

)γ] 1
γ

 max
m∈[M ]

sup
t∈T
‖ft(Xm)‖Ψγ

=: B̃,

where (a) holds by taking maximum over m ∈ [M ] and using (34), (b) follows from the

P (−ft(Xm) ≥ y) ≤ 2e
−
(

y
‖ft(Xm)‖Ψγ

)γ
deviation inequality implied by Section 4(vii). (c)

was obtained from a u = y
‖ft(Xm)‖Ψγ

substitution, in (d) we decomposed the integral to

have the incomplete Gamma function appear. (e) is a consequence of the definition of Iγ
and the limit

Iγ(x) =

∫ x

0
e−t

γ
dt =

1

γ

∫ x
1
γ

0
u

1
γ
−1
e−udu

x→∞−−−→ 1

γ
Γ

(
1

γ

)
= Γ

(
1 +

1

γ

)
,

where we applied an u = tγ substitution and the Γ(z + 1) = zΓ(z) recursion. (f) comes
from the monotonicity of Iγ (Iγ(x) ≤ Iγ(y) if x ≤ y). (g) follows from applying the lower
bound on Iγ from Theorem 10 with x = c

maxm∈[M ] supt∈T ‖ft(Xm)‖Ψγ
.
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• Additional truncation level bound on c: Guaranteeing B̃ ≤ ε
3 (and thus ETc ≤ ε

3) is
equivalent to choosing c large enough such that

1−

[
1− e

−βγ
(

c
maxm∈[M ] supt∈T ‖ft(Xm)‖Ψγ

)γ] 1
γ

≤ ε

6Γ
(

1 + 1
γ

)
maxm∈[M ] supt∈T ‖ft(Xm)‖Ψγ

.

Because γ ≤ 1, the function h : x 7→ 1 − (1 − x)
1
γ is concave on [0, 1], and thus it is

below its tangent line computed at (0, h(0)), i.e. 1− (1− x)
1
γ ≤ 1

γx. Therefore choosing

x = e
−βγ

(
c

maxm∈[M ] supt∈T ‖ft(Xm)‖Ψγ

)γ
it is enough to use c such that

1

γ
e
−βγ

(
c

maxm∈[M ] supt∈T ‖ft(Xm)‖Ψγ

)γ
≤ ε

6Γ
(

1 + 1
γ

)
maxm∈[M ] supt∈T ‖ft(Xm)‖Ψγ

.

Solving this inequality for c means that

c ≥ cmin := max
m∈[M ]

sup
t∈T
‖ft(Xm)‖Ψγ

 1

βγ
log

6Γ
(

1 + 1
γ

)
maxm∈[M ] supt∈T ‖ft(Xm)‖Ψγ

γε


1
γ

.

(35)

5.4. Proof of F ⊂ FP(n), E
[
maxm∈[M ] supt∈T |ft(Xm)|

]
<∞, and∥∥maxm∈[M ] supt∈T |ft(Xm)|

∥∥
Ψα
n

<∞

By Assumption (2a)-(2b), the triangle inequality and the monotonicity of ρ, one gets

|ft(x)| ≤ |ft(x)− ft0(x)|+ |ft0(x)| ≤ L(x) [ρ (‖t− t0‖2) + 1] ≤ L(x)[ρ(|T |) + 1], (36)

for any t ∈ T,x ∈ Rd. The individual statements now can be proved as follows.

• F ⊂ FP(n): By L ∈ FP(n) and (36), ft ∈ FP(n) for all t ∈ T , in other words F ⊂ FP(n).
• Finiteness of

∥∥maxm∈[M ] supt∈T |ft(Xm)|
∥∥

Ψα
n

: Using (36), we get

max
m∈[M ]

sup
t∈T
|ft(Xm)| ≤ [ρ(|T |) + 1]

∑
m∈[M ]

L(Xm). (37)

Thanks to Section 5.2, each L(Xm) belongs to LΨα
n

. Combining this with the generalized

triangular inequality Section 4(vi) gives the claim.
• Finiteness of E

[
maxm∈[M ] supt∈T |ft(Xm)|

]
: Each L(Xm) is integrable (because L has

a polynomial growth and the distribution of Xm satisfies the α-Orlicz exponential as-
sumption). Thus, the statement follows from (37).

5.5. Control if c ≥ cHJ
We show that under the assumptions of Theorem 1 with

c ≥ cHJ := 8E
[

max
m∈[M ]

sup
t∈T
|ft(Xm)|

]
(38)
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one has ∥∥∥∥∥∥
∑
m∈[M ]

sup
t∈T
|Rcft(Xm)|

∥∥∥∥∥∥
Ψγ

≤ Kγ

∥∥∥∥ max
m∈[M ]

sup
t∈T
|ft(Xm)|

∥∥∥∥
Ψγ

. (39)

Notice that cHJ is finite by Section 5.4. We bound the l.h.s. of (39):∥∥∥∥∥∥
∑
m∈[M ]

sup
t∈T
|Rcft(Xm)|

∥∥∥∥∥∥
Ψγ

=

=

∥∥∥∥∥∥
∑
m∈[M ]

(
sup
t∈T
|Rcft(Xm)| − E

[
sup
t∈T
|Rcft(Xm)|

]
+ E

[
sup
t∈T
|Rcft(Xm)|

])∥∥∥∥∥∥
Ψγ

(a)

≤ 2
1
γ
−1


∥∥∥∥∥∥
∑
m∈[M ]

(
sup
t∈T
|Rcft(Xm)| − E

[
sup
t∈T
|Rcft(Xm)|

])∥∥∥∥∥∥
Ψγ

+

+

∥∥∥∥∥∥E
 ∑
m∈[M ]

sup
t∈T
|Rcft(Xm)|

∥∥∥∥∥∥
Ψγ


(b)

≤ 2
1
γ
−1

Cγ
E

∣∣∣∣∣∣
∑
m∈[M ]

(
sup
t∈T
|Rcft(Xm)| − E

[
sup
t∈T
|Rcft(Xm)|

])∣∣∣∣∣∣
+

+

∥∥∥∥ max
m∈[M ]

∣∣∣∣sup
t∈T
|Rcft(Xm)| − E

[
sup
t∈T
|Rcft(Xm)|

]∣∣∣∣∥∥∥∥
Ψγ

)
+

+
1

Ψ−1
γ (1)

E

 ∑
m∈[M ]

sup
t∈T
|Rcft(Xm)|


=: 2

1
γ
−1
[
Cγ(E1 + E2) +

1

Ψ−1
γ (1)

E3

]
. (40)

In (a) we applied the generalized triangle inequality Section 4(vi) and
(

1
γ − 1

)
+

= 1
γ − 1

as γ = α
n ∈ (0, 1]. In (b) the Talagrand inequality (45) was invoked with the Ym :=

supt∈T |Rcft(Xm)| − E [supt∈T |Rcft(Xm)|] centered variables and B := R, followed by

taking the γ-Orlicz norm of the constant λ := E
[∑

m∈[M ] supt∈T |Rcft(Xm)|
]

according to

Section 4(ii).

We continue the derivation with bounding the E1, E2 and E3 terms in (40).

• Bounding E1:

E1 = E

∣∣∣∣∣∣
∑
m∈[M ]

(
sup
t∈T
|Rcft(Xm)| − E

[
sup
t∈T
|Rcft(Xm)|

])∣∣∣∣∣∣

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(a)

≤ 2E

 ∑
m∈[M ]

sup
t∈T
|Rcft(Xm)|

 (b)

≤ 16E
[

max
m∈[M ]

sup
t∈T
|Rcft(Xm)|

]
(c)

≤ 16E
[

max
m∈[M ]

sup
t∈T
|ft(Xm)|

]
(d)

≤ 16

∥∥∥∥ max
m∈[M ]

sup
t∈T
|ft(Xm)|

∥∥∥∥
Ψ

(l)
γ

(
Ψ(l)
γ

)−1
(1)

(e)

≤ 16

∥∥∥∥ max
m∈[M ]

sup
t∈T
|ft(Xm)|

∥∥∥∥
Ψγ

(
Ψ(l)
γ

)−1
(1),

where in (a) we used the triangle inequality, in (b) we applied the Hoffman-Jorgensen
inequality (Theorem 6; t0 = 0, p = 1, B = R, Ym = supt∈T |Rcft(Xm)|) with

P

 ∑
m∈[M ]

sup
t∈T
|Rcft(Xm)| > 0

 (f)
= P

max
j∈[M ]

∑
m∈[j]

sup
t∈T
|Rcft(Xm)| > 0


= P

(
max
m∈[M ]

sup
t∈T
|ft(Xm)| > c

)
(g)

≤ P
(

max
m∈[M ]

sup
t∈T
|ft(Xm)| ≥ cHJ

)
(h)

≤ 1

8
=

1

2× 4p
with p = 1.

In (f) the non-negativity of Ym was exploited; in (g) c ≥ cHJ was used. We applied the
Markov inequality and the definition of cHJ in (h). (c) holds by |Rcft(Xm)| ≤ |ft(Xm)|.
In (d) and (e) we applied Section 4(v) with the convex Ψ

(l)
γ defined in Section A.1 and

the monotonicity property Section 4(iii) with Ψ
(l)
γ ≤ Ψγ , respectively.

• Bounding E2:

E2 =

∥∥∥∥ max
m∈[M ]

∣∣∣∣sup
t∈T
|Rcft(Xm)| − E

[
sup
t∈T
|Rcft(Xm)|

]∣∣∣∣∥∥∥∥
Ψγ

(a)

≤
∥∥∥∥ max
m∈[M ]

(
sup
t∈T
|Rcft(Xm)|+ E

[
sup
t∈T
|Rcft(Xm)|

])∥∥∥∥
Ψγ

(b)

≤
∥∥∥∥ max
m∈[M ]

sup
t∈T
|Rcft(Xm)|+ max

m∈[M ]
E
[
sup
t∈T
|Rcft(Xm)|

]∥∥∥∥
Ψγ

(c)

≤ 2
1
γ
−1

(∥∥∥∥ max
m∈[M ]

sup
t∈T
|Rcft(Xm)|

∥∥∥∥
Ψγ

+

∥∥∥∥ max
m∈[M ]

E
[
sup
t∈T
|Rcft(Xm)|

]∥∥∥∥
Ψγ

)
(d)

≤ 2
1
γ
−1

(∥∥∥∥ max
m∈[M ]

sup
t∈T
|Rcft(Xm)|

∥∥∥∥
Ψγ

+
1

Ψ−1
γ (1)

E
[

max
m∈[M ]

sup
t∈T
|Rcft(Xm)|

])

(e)

≤ 2
1
γ
−1

∥∥∥∥ max
m∈[M ]

sup
t∈T
|ft(Xm)|

∥∥∥∥
Ψγ

+

(
Ψ

(l)
γ

)−1
(1)

Ψ−1
γ (1)

∥∥∥∥ max
m∈[M ]

sup
t∈T
|ft(Xm)|

∥∥∥∥
Ψ

(l)
γ


(f)

≤ 2
1
γ
−1

1 +

(
Ψ

(l)
γ

)−1
(1)

Ψ−1
γ (1)

∥∥∥∥ max
m∈[M ]

sup
t∈T
|ft(Xm)|

∥∥∥∥
Ψγ

.

25



Chamakh, Gobet and Szabó

In (a) we used the triangle inequality with the monotonicity Section 4(iv), (b) holds by the
sub-additivity of the maximum and again the monotonicity Section 4(iv), in (c) we applied

the generalized triangle inequality Section 4(vi) and that
(

1
γ − 1

)
+

= 1
γ − 1 as γ ∈ (0, 1],

(d) holds by Section 4(ii) with the constant λ = E
[
maxm∈[M ] supt∈T |Rcft(Xm)|

]
, (e) is

by the monotonicity Section 4(iv) as |Rcft(Xm)| ≤ |ft(Xm)|, and by Section 4(v), (f)

follows from Ψ
(l)
γ ≤ Ψγ combined with the monotonicity Section 4(iii).

• Bounding E3: By (b)-(e) of the E1 derivation we have that

E3 = E

 ∑
m∈[M ]

sup
t∈T
|Rcft(Xm)|

 ≤ 8

∥∥∥∥ max
m∈[M ]

sup
t∈T
|ft(Xm)|

∥∥∥∥
Ψγ

(
Ψ(l)
γ

)−1
(1).

By adding the obtained E1, E2 and E3 bounds, we get (39) with Kγ defined in Theorem 1.

5.6. Bounding the Driving Terms of Theorem 1 for RFF

We bound the constants of Theorem 1 in the RFF case described in Remark 2(v).

• The term B: It is defined in (10). Recalling the expression (22) for Iρ(|T |) and using
the Cauchy-Schwarz inequality for bounding E

[
‖L‖L2(ω1:M )

]
by
√
Eω∼Λ [L2(ω)] gives

B ≤ 2CD
√
d

√
Eω∼Λ [L2(ω)]√

M
|S∆|β

∫ 1

0

√
log
(
1 + 2u−1/β

)
du.

We now aim at showing a tight bound for |S∆|β
∫ 1

0

√
log
(
1 + 2u−1/β

)
du w.r.t. |S∆| with

an appropriate choice of β = β(|S∆|). Indeed, let β = 1
1+(log|S∆|)+

∈ (0, 1]. We start by
proving the bound

Iβ :=

∫ 1

0

√
log
(
1 + 2u−1/β

)
du ≤ 4√

β
, ∀β ∈ (0, 1]. (41)

By the change of variable t = β log
(

1 + 2u
− 1
β

)
(i.e. u =

(
et/β−1

2

)−β
), we get

Iβ =
2β√
β

∫ ∞
β log(3)

√
t et/β

(et/β − 1)β+1
dt =

2β√
β

∫ ∞
β log(3)

√
t

et(1− e−t/β)β+1
dt.

Using the fact that 1− e−t/β ≥ 2
3 on [β log(3),+∞), we arrive at

Iβ ≤
3β+1

2
√
β

∫ ∞
β log(3)

√
te−tdt

(∗)
≤ 9

2
√
β

Γ

(
3

2

)
≤ 4√

β
,

where the inequality (∗) is obtained by taking β = 1 in 3β+1 and β = 0 in the integral;

hence (41) is proved. Now, using (41) with β = 1
1+(log|S∆|)+

and its |S∆|β = e
log|S∆|

1+(log|S∆|)+

implication, we get

|S∆|β
∫ 1

0

√
log
(
1 + 2u−1/β

)
du ≤ 4e

log|S∆|
1+(log|S∆|)+

√
1 + (log|S∆|)+ ≤ 4e

√
1 + (log|S∆|)+,
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and therefore

B ≤
8eCD

√
d
√
Eω∼Λ [L2(ω)]

√
1 + (log|S∆|)+√

M
.

• The term σ2: It is defined in Theorem 1. Since the variance is bounded by the second
moment, E

[
g2
z(ωm)

]
≤ E

[
f2
z (ωm)

]
. Furthermore, since (ωm)Mm=1 are i.i.d., the previous

expectation can bounded by E
[
‖ω‖2|p+q|

2

]
using (16). As a result, we get

σ2 ≤ Eω∼Λ

[
‖ω‖2|p+q|

2

]
.

• The term maxm∈[M ] supz∈S∆
‖gz(ωm)‖Ψγ with γ = α/n ≤ 1 and n = |p + q| + β: It

appears in the definition of c (in Theorem 1). In view of the bound (17) which is uniform
in z and using property (iv) of Section 4, we get

max
m∈[M ]

sup
z∈S∆

‖gz(ωm)‖Ψγ = max
m∈[M ]

sup
z∈S∆

‖ |gz(ωm)| ‖Ψγ ≤
∥∥∥‖ω‖|p+q|

2 + Λ
[
‖ · ‖|p+q|

2

]∥∥∥
Ψα/n

.

• The term
∥∥maxm∈[M ] supz∈S∆

|gz(ωm)|
∥∥

Ψγ
: It shows up in the exponential bound (11).

We invoke the maximal inequality for the γ-Orlicz norm (item (viii) of Section 4) with
the previous estimate to obtain∥∥∥∥∥ max

m∈[M ]
sup
z∈S∆

|gz(ωm)|

∥∥∥∥∥
Ψγ

≤
[

log(1 +M)

log(3/2)

]n/α ∥∥∥‖ω‖|p+q|
2 + Λ

[
‖ · ‖|p+q|

2

]∥∥∥
Ψα/n

.

• The term E
[
maxm∈[M ] supz∈S∆

|gz(ωm)|
]
: It appears in the definition of c. Using prop-

erties (iii) and (v) of Section 4 and the convexification of Ψγ , we directly get

E

[
max
m∈[M ]

sup
z∈S∆

|gz(ωm)|

]
≤
(

Ψ
(l)
α/n

)−1
(1)

[
log(1 +M)

log(3/2)

]n/α ∥∥∥‖ω‖|p+q|
2 + Λ

[
‖ · ‖|p+q|

2

]∥∥∥
Ψα/n

.

Collecting the different bounds we obtain (13) by setting

CRFF(n) := max

(
8eCD

√
d
√

Eω∼Λ [L2(ω)],Eω∼Λ

[
‖ω‖2|p+q|

2

]
,

1 ∨
((

Ψ
(l)
α/n

)−1
(1) [log(3/2)]−n/α

)∥∥∥‖ω‖|p+q|
2 + Λ

[
‖ · ‖|p+q|

2

]∥∥∥
Ψα/n

)
.

(42)

Long (but standard) computations show that CRFF(n) is uniformly bounded for n ∈ [|p +
q|, |p + q|+ 1], and thus we can set CRFF := supn∈[|p+q|,|p+q|+1]CRFF(n).

5.7. Proofs of Corollary 3 and 4

Corollary 3 with the existence of C̃ ∈ R+ is a direct consequence of Theorem 1 combined
with Remark 2(v), in particular because CRFF does not depend on S∆ and M , and Kγ can
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be bounded uniformly in n ∈ [|p + q|, |p + q|+ 1]. The Talagrand constant Cγ is uniformly
bounded w.r.t. γ provided that γ is bounded away from 0, see the proof of Talagrand (1989,
Theorem 3).

Now let us prove Corollary 4; set εM =

(√
6C̃∨C̃

)√
(1+[log |(SM )∆|]+)∨log(1+M)

√
M

. Observe that

(i) εM satisfies the lower bound requirement on ε in Corollary 3;

(ii) by assumption εM → 0 as M → 0 by using that |S∆| ≤ 2|S|;

(iii) therefore

1 + εM

[
log

(
C̃

εM

)
∨ log(1 +M)

]1/γ

≤ 1 + εM

[log

(
C̃

εM

)]1/γ

+ [log(1 +M)]1/γ


≤ 2 + εM [log(1 +M)]1/γ

for M large enough;

(iv) εM ≥

(√
6C̃∨C̃

)√
log(1+M)

√
M

.

As a consequence of (iii) and (iv), setting δM := 1+(log |(SM )∆|)+

log(1+M) ∨ 1, we get (for M large

enough)

M ε2
M

C̃

(
1 + εM

[
log
(
C̃
εM

)
∨ log(1 +M)

]1/γ
) ≥ 6C̃ log(1 +M)δM

C̃

2 +

(√
6C̃∨C̃

)√
δM [log(1+M)]1/2+1/γ

√
M


= 6 log(1 +M)

δM

2 + zM
√
δM

,

where zM =

(√
6C̃∨C̃

)
[log(1+M)]1/2+1/γ

√
M

M→∞−−−−→ 0. Since the function δ ∈ R+ 7→ δ
2+zM

√
δ

is

increasing and δM ≥ 1, we get (for M large enough)

M ε2
M

C̃

(
1 + εM

[
log
(
C̃
εM

)
∨ log(1 +M)

]1/γ
) ≥ 6 log(1 +M)

1

3
.

On the other hand, using (iv), we easily get (MεM )γ

C̃ log(1+M)
≥

[(√
6C̃∨C̃

)√
log(1+M)

√
M

]γ
C̃ log(1+M)

≥
2 log(1 +M) for M large enough.
To sum up, in view of (14), we have proved (still for large enough M)

ΛM
(∥∥∥∂̂p,qk − ∂p,qk∥∥∥

SM
≥ εM

)
≤ 2

(1 +M)2
+

1

(1 +M)2

28



Orlicz Random Fourier Features

and by the Borell-Cantelli lemma, we conclude to the a.s. convergence (15).
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Appendix A. Additional Proofs

A.1. Ψ
(l)
γ , the Convexification of Ψγ

In the proof of Theorem 1 an integral control with convex Ψ (see Section 4(v)) is benefi-
cial/applied. However, Ψγ is not convex for γ ∈ (0, 1). To handle this issue, we convexify
Ψγ(x) = ex

γ − 1 in case of γ ∈ (0, 1) for ’small’ values of the argument.8

• By computing the derivatives of Ψγ we get that it is convex iff x ≥ xγ :=
(

1−γ
γ

) 1
γ
.

Indeed,

Ψ′γ(x) = γxγ−1ex
γ
,

Ψ′′γ(x) = γex
γ [

(γ − 1)xγ−2 + xγ−1γxγ−1
]
⇒

Ψ′′γ(x) = 0⇔ x = xγ , Ψ′′γ(x) > 0⇔ x > xγ , Ψ′′γ(x) < 0⇔ x < xγ .

• We also have to make sure that Ψ
(l)
γ , constructed as the line connecting (0, 0) with

(x,Ψγ(x)) glued to Ψγ |[x,∞), gives a convex function, for a suitable choice of x. A

geometric argument shows that it is enough to choose x ≥ xγ(> 0) such that

Ψγ(x)

x
≤ Ψ′γ(x) ⇔ ex

γ − 1 ≤ γxγexγ .

Since the r.h.s. is higher order than the l.h.s., the requirement can be satisfied for large
enough x; we can choose

x̃γ := inf
{
x ≥ xγ : ex

γ − 1 ≤ γxγexγ
}
,

and define

Ψ(l)
γ (x) :=

{
Ψγ(x̃γ)
x̃γ

x if x ∈ [0, x̃γ),

Ψγ(x) if x ∈ [x̃γ ,∞).

Notice that by construction Ψ
(l)
γ ≤Ψγ .

8. For γ = 1, Ψ
(l)
γ = Ψγ .
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A.2. Proof of Remark 5(ii)

ωi ∈ LΨαi
means that Eωi∼Λi

[
esi|ωi|

αi
]
<∞ for some si ∈ R+ (∀i ∈ [d]). Let α = mini∈[d] αi

and ‖ω‖α :=
(∑

i∈[d] |ωi|α
) 1
α

. Then ‖ω‖2 ≤
√
d supi∈[d] |ωi| ≤

√
d ‖ω‖α (∀ω ∈ Rd). Notice

that |ωi|α ≤ |ωi|αi if |ωi| ≥ 1 and |ωi|α ≤ 1 otherwise, i.e. we have |ωi|α ≤ |ωi|αi + 1 for any
ωi ∈ R. This means that taking s = mini∈[d] si and s̃ := s

dα/2
> 0 gives

‖ω‖α2 ≤ d
α/2 ‖ω‖αα = dα/2

∑
i∈[d]

|ωi|α ≤ dα/2
∑
i∈[d]

(|ωi|αi + 1),

Eω

[
es̃‖ω‖

α
2

]
≤ Eω

[
es
∑
i∈[d](|ωi|αi+1)

]
(∗)
=
∏
i∈[d]

(
Eωi

[
es|ωi|

αi
]
es
)
≤
∏
i∈[d]

(
Eωi

[
esi|ωi|

αi
]
es
)
<∞,

where we used the independence of ωi-s in (∗). We got that Eω∼Λ

[
es̃‖ω‖

α
2

]
< ∞ which

implies that ω ∈ LΨα .

A.3. Proof of the Properties in Section 4 about the Orlicz Norm

• Properties (i)-(iv): These properties are well-known and directly follow from the defi-
nition of the Orlicz norm.
• Property (v): The case ‖X‖Ψ= 0 gives a trivial inequality and can be discarded. Since

Ψ is bounded from below by an increasing affine function, X ∈ LΨ implies that X is

integrable. Combining (i) with Jensen’s inequality gives Ψ
(
E[‖X‖2]
‖X‖Ψ

)
≤ E

[
Ψ
(
‖X‖2
‖X‖Ψ

)]
≤

1, and the result follows.
• Property (vi): It is well-known that the usual triangle inequality holds for α ≥ 1.

We now focus on the case α ∈ (0, 1]. Set c :=
(
‖X‖αΨα + ‖X ′‖αΨα

)1/α
, p := cα

‖X‖αΨα
and

q := cα

‖X′‖αΨα
, and notice that 1

p + 1
q = 1. Then, combining (24) with γ = α ∈ (0, 1) and

the Hölder inequality with the conjugate exponents (p, q) yields

lim sup
m→+∞

E
[
e

(
m∧‖X+X′‖2

c

)α]
≤ lim sup

m→+∞
E
[
e

(
m∧‖X‖2

c

)α
e

(
m∧‖X′‖2

c

)α]
≤
(

lim sup
m→+∞

E
[
em∧

p‖X‖α2
cα

])1/p(
lim sup
m→+∞

E
[
em∧

q‖X′‖α2
cα

])1/q

item (i)

≤ 21/p21/q = 2.

Therefore, X + X ′ ∈ LΨα and ‖X +X ′‖Ψα ≤ c by the definition of the α-Orlicz norm.

Applying (24) with γ = 1/α we get c ≤ 2( 1
α
−1)

+
(
‖X‖Ψα + ‖X ′‖Ψα

)
and hence the

claimed result is proved.
• Property (vii): This is a direct consequence of the Markov inequality.
• Property (viii): A similar statement was proved by van der Vaart and Wellner (1996,

Lemma 2.2.2), but under the assumption that Ψα is convex (which holds only if α ≥ 1)
and without explicit constant. Our statement is valid for any α > 0 with explicit control.
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– A first inequality: Let α ∈ R+. We claim that for any x0 > 0 and any x, y ≥ 1, we
have

Ψα

(
x

1/α
0 x

)
Ψα

(
x

1/α
0 y

)
≤ Ψα

(
x

1/α
0

)
Ψα

(
x

1/α
0 xy

)
. (43)

Because Ψα(x) = Ψ1(xα) where Ψ1(x) =: Ψ(x) = ex − 1, the inequality for α = 1
clearly implies those for all α > 0. To prove the inequality for α = 1, let x0 and x be
fixed, and set H(y) = Ψ(x0)Ψ(x0xy)−Ψ(x0x) Ψ(x0y). One has

H ′(y) = x0xΨ(x0)ex0xy − x0Ψ(x0x)ex0y

= x2
0xe

x0ex0x

[
Ψ(x0)

x0ex0
ex0x(y−1) − Ψ(x0x)

x0xex0x
ex0(y−1)

]
,

Ψ(x0)

x0ex0
=

1− e−x0

x0
=

∫ 1

0
e−ux0du ≥

∫ 1

0
e−ux0xdu =

Ψ(x0x)

x0xex0x
,

ex0x(y−1) ≥ ex0(y−1),

where we used x0 > 0, x, y ≥ 1 at the two last inequalities. This shows that H ′(y) ≥ 0,
and since H(1) = 0 we have H(y) ≥ 0 for any y ≥ 1. Consequently, (43) is proved.

– Final maximal inequality: We follow the arguments of van der Vaart and Wellner
(1996, Lemma 2.2.2) with slights modifications. The inequality (43) can be rewritten
as

Ψα(x) ≤ Ψα

(
x

1/α
0

)
Ψα

(
xy/x

1/α
0

)
/Ψα(y), ∀x, y ≥ x1/α

0 . (44)

Set c = maxm∈[M ] ‖Xm‖Ψα /x
1/α
0 and let y ≥ x1/α

0 .

∗ If
maxm∈[M ] ‖Xm‖2

cy ≤ x
1/α
0 , then we have the crude bound Ψα

(
maxm∈[M ] ‖Xm‖2

cy

)
≤

Ψα

(
x

1/α
0

)
= Ψ(x0).

∗ If
maxm∈[M ] ‖Xm‖2

cy ≥ x1/α
0 , then (44) yields

Ψα

(
maxm∈[M ] ‖Xm‖2

cy

)
≤ Ψ(x0) Ψα

(
maxm∈[M ] ‖Xm‖2

maxm∈[M ] ‖Xm‖Ψα

)
/Ψα(y)

≤
∑
m∈[M ]

Ψ(x0)Ψα

(
‖Xm‖2/‖Xm‖Ψα

)
/Ψα(y).

Consequently, in both cases we have

Ψα

(
maxm∈[M ] ‖Xm‖2

cy

)
≤ Ψ(x0)

1 +
∑
m∈[M ]

Ψα

(
‖Xm‖2/‖Xm‖Ψα

)
/Ψα(y)

 .
Taking expectation and using Property (i), we arrive at E

[
Ψα

(
maxm∈[M ] ‖Xm‖2

cy

)]
≤

Ψ(x0)
[
1 + M

Ψα(y)

]
. Let us choose x0 such that Ψ(x0) < 1. In this case the choice

y = x
1/α
0 ∨Ψ−1

α

(
M

1/Ψ(x0)−1

)
ensures that the above bound is valid and smaller than 1.
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Consequently, by the definition of α-Orlicz norm, we get
∥∥maxm∈[M ] ‖Xm‖2

∥∥
Ψα
≤ cy.

The choice x0 = log(3/2) satifies the previous requirement: Ψ(x0) = 1
2 < 1. In this

case y = [log(3/2) ∨ log(1 +M)]1/α = [log(1 +M)]1/α since M ≥ 1. We have obtained
the claimed Property (viii).

Appendix B. Special Functions

Name Definition

Modified Bessel function of the first kind Ja(x) =
∑

n∈N
1

n!Γ(n+a+1)

(
x
2

)2n+a

Modified Bessel function of the second kind Ka(x) = π
2
J−a(x)−Ja(x)

sin(aπ)

Fox-Wright generalized hyperbolic function Ψ1,1 ((a,A); (b, B);x) =
∑

n∈N
Γ(a+An)
Γ(b+Bn)

xn

n!

(Imaginary) error function erfi(x) =
∑

n∈N
2√
π

x2n+1

n!(2n+1)

Kummer’s confluent hypergeometric function F1,1(a; b;x) =
∑

n∈N
a(n)

b(n)
xn

n!

Polylogarithm function Lia(x) =
∑

n∈Z+
xn

na

Ordinary hyperbolic function F2,1(a, b; c; z) =
∑

n∈N
a(n)b(n)zn

c(n)n!

Table 4: Definition of special functions. Ja(x),Ka(x): x ∈ R and a is non-integer; when a
is an integer the limit is taken. Ψ1,1 ((a,A); (b, B);x): a ∈ R+, b ∈ R+, x ∈ R, A ∈ R+,

B ∈ R+ and 1+B > A; Ψ1,1 ((a, 1); (b, 1);x) = Γ(a)
Γ(b) F1,1(a; b;x). erfi(x): x ∈ R. F1,1(a; b;x):

a ∈ R+, b ∈ R+, x ∈ R. Lia(x): a ∈ R, x ∈ R, |x| < 1. F2,1(a, b; c; z): a ∈ C, b ∈ C,
c ∈ C\Z≤0, z ∈ C and |z| < 1; for |z| ≥ 1 its analytical continuation is taken. For n ∈ N,

a(n) is the rising factorial of a defined as a(n) = Γ(a+n)
Γ(a) where a ∈ C\Z≤0 and a+n ∈ C\Z≤0.

Appendix C. External Statements

In this subsection we state external statements which were used to derive our results. Be-
low B stands for a separable Banach space, Lp(B) is the space of B-valued p-integrable
functions. The norm ‖·‖Ψα is defined analogously to Rd by changing ‖·‖2 to ‖·‖B.

Theorem 6 (Hoffman-Jorgensen inequality, Ledoux and Talagrand 2013, Propo-
sition 6.8) Let p > 0, M ∈ Z+, (Ym)m∈[M ] be independent random variables in Lp(B),
Sm :=

∑m
j=1 Yj for m ∈ [M ], t0 = inf

{
t > 0 : P (max1≤m≤M ‖Sm‖B > t) ≤ (2× 4p)−1

}
.

Then

E
[

max
m∈[M ]

‖Sm‖pB

]
≤ 2× 4pE

[
max
m∈[M ]

‖Ym‖pB

]
+ 2(4t0)p.

Theorem 7 (Talagrand, 1989, Theorem 3) Let γ ∈ (0, 1]. Then, there is a constant
Cγ such that for all finite sequence (Ym)m∈[M ] of independent, mean zero, integrable random
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variables in LΨγ (B), we have∥∥∥∥∥∥
∑
m∈[M ]

Ym

∥∥∥∥∥∥
Ψγ

≤ Cγ


∥∥∥∥∥∥
∑
m∈[M ]

Ym

∥∥∥∥∥∥
L1(B)

+

∥∥∥∥ max
m∈[M ]

‖Ym‖B
∥∥∥∥

Ψγ

 . (45)

Theorem 8 (Klein-Rio inequality for supremum of empirical process, Klein
and Rio 2005, Theorems 1.1-1.2) Let M ∈ Z+, c ∈ R+, (Xm)m∈[M ] be indepen-
dent B-valued random variables, and F a countable set of f := (f1, . . . , fM ) measur-
able functions from B into [−c, c]M such that E [fm(Xm)] = 0 for all m ∈ [M ]. Define

Z := supf∈F
1
M

∑
m∈[M ] fm(Xm), σ2 := 1

M supf∈F E
[∑

m∈[M ] f
2
m(Xm)

]
. Then, for any

t ≥ 0 the following right and left-hand sided deviation inequalities hold

P (Z − E [Z] ≥ t) ≤ e
− M t2

2(σ2+2c E[Z])+3c t , P (Z − E [Z] ≤ −t) ≤ e
− M t2

2(σ2+2c E[Z])+2c t .

Theorem 9 (Dudley entropy integral bound)9 Let {Zt : t ∈ T} be a zero-mean sep-
arable stochastic process that is sub-Gaussian w.r.t. a pseudo-metric d on the indexing set

T , in other words for every λ ∈ R E
[
eλ(Zt−Zs)

]
≤ e

λ2d(s,t)2

2 (∀s, t ∈ T ). Then there exists a
universal constant CD such that

E
[
sup
t∈T

Zt

]
≤ CD

∫ ∞
0

√
logN(ε, d, T )dε, (46)

where N(ε, d, T ) denotes the covering number.

Theorem 10 (Alzer 1997, Theorem 1)10 Let γ ∈ (0, 1], βγ := Γ
(

1 + 1
γ

)−γ
, x ∈ R≥0,

Iγ(x) :=
∫ x

0 e
−tγdt. Then

(
1− e−βγxγ

) 1
γ ≤ Iγ(x)

Γ(1+1/γ) ≤
(
1− e−xγ

) 1
γ .
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Dino Sejdinovic, and Zoltán Szabó. Kernel-based just-in-time learning for passing expec-
tation propagation messages. In Conference on Uncertainty in Artificial Intelligence
(UAI), pages 405–414, 2015.
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