Journal of Machine Learning Research 21 (2020) 1-68 Submitted 12/19; Revised 9/20; Published 10/20

Mining Topological Structure in Graphs
through Forest Representations

Robin Vandaele!? ROBIN.VANDAELEQU GENT.BE
Yvan Saeys? YVAN.SAEYSQIRC.VIB-UGENT.BE
Tijl De Bie! T1L.DEBIEQUGENT.BE

IDLab, Department of Electronics and Information Systems
Ghent University

Technologiepark-Zwijnaarde 19, 9052 Gent, Belgium

2Data mining and Modelling for Biomedicine (DaMBi),

VIB Inflammation Research Center
Technologiepark-Zwijnaarde 927, 9052 Gent, Belgium

Editor: Karsten Borgwardt

Abstract

We consider the problem of inferring simplified topological substructures—which we term
backbones—in metric and non-metric graphs. Intuitively, these are subgraphs with ‘few’
nodes, multifurcations, and cycles, that model the topology of the original graph well. We
present a multistep procedure for inferring these backbones. First, we encode local (geomet-
ric) information of each vertex in the original graph by means of the boundary coefficient
(BC) to identify ‘core’ nodes in the graph. Next, we construct a forest representation
of the graph, termed an f-pine, that connects every node of the graph to a local ‘core’
node. The final backbone is then inferred from the f-pine through CLOF (Constrained
Leaves Optimal subForest), a novel graph optimization problem we introduce in this pa-
per. On a theoretical level, we show that CLOF is NP-hard for general graphs. However,
we prove that CLOF can be efficiently solved for forest graphs, a surprising fact given
that CLOF induces a nontrivial monotone submodular set function maximization problem
on tree graphs. This result is the basis of our method for mining backbones in graphs
through forest representation. We qualitatively and quantitatively confirm the applicabil-
ity, effectiveness, and scalability of our method for discovering backbones in a variety of
graph-structured data, such as social networks, earthquake locations scattered across the
Earth, and high-dimensional cell trajectory data.

Keywords: topological data analysis, graph mining, metric spaces, visualization, topo-
logical skeletonization, cluster coefficient, cell trajectory inference

1. Introduction

Motivation. Many real-world graphs, whether given (social networks, road networks, image
webs, ...) or derived from point cloud data (gene expression data of differentiating cells,
GPS traces, earthquake locations, galaxy coordinates in space, ...), exhibit topologies
of which the underlying structure can be naturally represented using a much ‘simpler’
subgraph, as shown in Figure 1d. I.e., although the topology of the original graph might

(©2020 Robin Vandaele, Yvan Saeys, and Tijl De Bie.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v21/19-1032.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v21/19-1032.html

VANDAELE, SAEYS, AND DE BIE

’ Graph G }::>’ Forest Representation F' of G }::>’ Mine subgraph from F

(a) High level overview of our introduced method for mining substructures in graphs.

(b) The original graph G. (c) A forest representation F (d) A backbone (red) of G
of G. mined through F'.

Proximity graph (Rips, kNN, ...)

{ Metric data D ‘

l} BC/LCC - vertex/edge-valued cost g
Graph G > f-pine j CLOF
Refinements (number of leaves, cycles, ...)
(e) Detailed overview of our method for mining topological subtructures in graph-structured data.
Yellow blocks denote pre- and post-processing steps.

Figure 1: Overview of the method proposed in this paper.

be complex (e.g., in terms of degree sequences, multifurcations, cycles, ...), many vertices
lie often close to some core subgraph, having a much ‘simpler’ topology, from which they
emerge. We call this core topological substructure the backbone of the graph. Figure 1
shows a toy example of such particular type of graph, as well as an overview of the method
we will introduce for inferring these backbones in graphs.

Identifying and visualizing the topological structure of backbones in graphs, and hence,
of the original graphs, is an active topic of research, applicable to many fields of science
(Aanjaneya et al., 2012; Cannoodt et al., 2016; Choi et al., 2010; De Baets et al., 2015;
Nicolau et al., 2011; Rizvi et al., 2017; Vandaele et al., 2019a). E.g., in biology, inferring
backbones in high-dimensional cell trajectory data allows one to model the dynamic changes
immune cells undergo to protect our body against environmental and internal threats (Sae-
lens et al., 2019). In geoinformatics, inferring backbones from GPS coordinates allows one to
obtain up-to-date road maps, which are critical for many applications, such as GPS-based
navigation services and autonomous transportation (He et al., 2018). In social sciences,
backbones allow one to model how different communities are connected, and identify which
figures play a key role in these connections (Bedi and Sharma, 2016). Nevertheless, inferring
such backbones is generally a difficult task, as it involves dealing with issues such as topo-
logical bias, noise, outliers, in addition to computational problems such as intractability.

MINING TOPOLOGICAL STRUCTURE IN GRAPHS THROUGH FOREST REPRESENTATIONS

In this paper, we build upon and extend our earlier work (Vandaele et al., 2019b), where
we introduced the boundary coefficient (Section 2.1) and f-pine (Section 2.2) of a graph. We
will mine backbones in given graphs through forest representations (Figure 1). A simple,
but yet a crucial and powerful intermediate step for many practical purposes, which we
demonstrate throughout this entire paper.

Ezample. Figure 1 illustrates how our method results in the identification and location of
the backbone in a synthetic point cloud data set D. The points in D correspond to the
vertices of the proximity graph G (constructed from D) shown in Figure 1b. The forest
representation F' of G (Figure 1c¢) connects every vertex of G to a local core point. The
problem is now to infer the backbone from F', and CLOF (Constrained Leaves Optimal
subForest, Section 2.3) is the answer we provide to that (Figure 1d).

We emphasize that a straightforward optimization in G for identifying and locating
core topological structures, would introduce many difficulties in terms of accuracy, robust-
ness, and scalability, as we will discuss in Section 1.2. Hence, apart from introducing a
new method that overcomes these issues, a main purpose of our paper is to illustrate the
effectiveness of intermediate forest representations for this task (Sections 1.2, 2.3 & 3).

1.1 Contributions

e We introduce a method for inferring backbones in a wide variety of graphs G (Section
2.4), consisting of two major steps (Figure le).

1. A ‘core’-measure f (Section 2.1) is used to construct an f-pine (Section 2.2),
which gives the representation of the graph as illustrated in Figure lc. More
formally, an f-pine is a forest subgraph connecting nodes to local minima of f
(core nodes) that may be efficiently computed through the minimum spanning
tree (MST) algorithm (Proposition 13). For unweighted graphs, we show the
ordinary local cluster coefficient (LCC) to be sufficient as a core measure (Section
3). For weighted graphs, we use the boundary coefficient (BC) for this purpose
(Section 2.1). This coefficient is accompanied by extensive theoretical analysis,
comparisons, as well as an efficient formula for computation (Theorem 8).

2. Our newly introduced graph-optimization problem in Section 2.3, termed the
‘Constrained Leaves Optimal subForest’-problem (CLOF), is used to effectively
infer backbones through these pines, as illustrated in Figure 1d.

e We prove that CLOF is NP-hard for general graphs (Section 2.3), but induces a
nontrivial monotone submodular set function maximization problem subject to a car-
dinality constraint on tree graphs, for which a greedy approach provides an exact
solution in polynomial time (Section 2.3.1). Furthermore, we show how this allows an
efficient solution in practice for the case of forest graphs as well (Section 2.3.2).

e We qualitatively and quantitatively show that our method leads to effective topological
models, i.e., backbones, in multiple real-world graph-structured data sets, arising from
social networks, geosciences, and biology (Section 3).

e We summarize how our method improves on state-of-the-art approaches (Section 4),
and opens up new possibilities for further improvements on both the theoretical and
experimental level (Section 5).

VANDAELE, SAEYS, AND DE BIE

1.2 Related Work

An earlier version of the current work was presented at a non-archival workshop (Vandaele
et al., 2019b), which introduced the boundary coefficient and f-pine. In this paper, we show
how these concepts lead to a novel backbone inference method in graphs through CLOF.

In the rest of this section, we summarize the, to our knowledge, current methods that
may deal or help with locating and/or visualizing backbones. We start with Facility Lo-
cation in Networks, discussing their issues that lead us to introducing intermediate forest
representations to effectively mine backbones in graphs. Next, as we introduced the bound-
ary coefficient to quantify the ‘coreness’ of nodes for constructing this representation, we
discuss how current existing vertex measures are insufficient for the purpose of backbone
inference. Other methods that identify graph-structured models, but are unable to deal
with graph-structured data as input, will also be discussed shortly. Finally, we discuss
methods from the field of Topological Data Analysis (TDA). This section also includes a
limited background on persistent homology, which we will use to identify cycles missing
from our forest-structured backbone in Section 2.4.3.

1.2.1 FAciLiTY LOCATION IN NETWORKS

The general setting of Facility Location Problems in Networks (Mesa and Boffey, 1996) is:
“given a graph G, a collection F of subgraphs of GG, and a cost function f: F — R
optimize f(F') subject to F' € F.”

Note that the term ‘facility’ in our context refers to ‘backbone’. Both the inference
of f-pines (Section 2.2) and solving CLOF (Section 2.3), will be facility location problems
in networks. A more commonly known example of subgraph inferred through a facility
location problem is the minimum spanning tree (MST). Here, F is the set of spanning trees
of G (forests if G is disconnected), and f maps a tree onto the sum of the weight of its
included edges, which is the cost to be minimized. Steiner trees generalize this concept.
They minimize the same cost function as minimum spanning trees, but are only required
to cover a given set of nodes, called terminals. Finding a minimum spanning tree can be
done in linear time (Chazelle, 2000), whereas finding a Steiner tree is an NP-hard problem
(Garey and Johnson, 1990). In Section 3, we show that neither facility is effective for
inferring backbones that model the underlying topology of a graph well.

Existing facility location problems come with a variety of issues that prevent them to
effectively identify and locate core topological structure in graphs, summarized below.

Computational complexity. Many facility location problems in networks are NP-hard for
general graphs (Mesa and Boffey, 1996). Certain formulations even lead to NP-hard prob-
lems when the original graph is a tree graph (Crainic and Laporte, 1998). In contrast to
this, we present effective and efficient algorithms that provide an exact solution to our in-
troduced facility locations problems, which are identifying an f-pine and solving CLOF in
forest representations (Section 2 and Appendix B).

Sensitive to outliers. Outliers are harmful when either the constraint F (Kim et al., 1989)
or the cost f (Aneja and Nair, 1992) specifies that all nodes in the original graph should
lie close to the facility. Furthermore, facilities may ‘pass through’ outliers to reach one

MINING TOPOLOGICAL STRUCTURE IN GRAPHS THROUGH FOREST REPRESENTATIONS

(a) An approximated Steiner
tree (Sadeghi and Frohlich,
2013) in red, which we con-
structed through three ter-
minal nodes/medoids selected
by a partitioning around
medoids (PAM) algorithm
(orange). The selection of
these medoids is regarded as
a facility location problem in
metric spaces (Mitra et al.,
2019), and is highly biased to-
wards dense regions.

(b) A subgraph (red) ob-
tained by iteratively chosing
farthest points, and connect-
ing them by the shortest path
between them and the current

tree structure. These paths
always take ‘shortcuts’ when
available, shifting them away
from the true core in the pres-
ence of curvature. Further-
more, outliers are especially
harmful when connecting to
farthest points (Section 3).

(¢) The output (red) of our
method presented in Figure
le, where we replaced the BC-
pine as a forest representation
by the ordinary minimum
spanning tree (MST). The se-
lected leaves during CLOF
are shown in orange. Sub-
graphs minimizing the max-
imum edge weight, such as
the MST, are biased towards
including low-weight edges,
leading to ‘wiggled’ results.

Figure 2: Subgraphs mined from an original graph G (black), (¢) with and (a-b) without
intermediate forest representation. Comparing these results with Figure 1d, (a-
b) illustrate the usefulness of an intermediate forest representation for mining
topological substructures in graphs, whereas (c) illustrates the importance of
designing an effective representation for this purpose, both the subject of this
paper. Note that all methods may be regarded as a combination of selecting
important nodes and constructing a subgraph through these. We will discuss
these methods in detail in Section 3.

region from another, shifting the facility from the true backbone of the graph. Our method
overcomes these issues by marking outliers as leaves in our forest representations.

Sensitive to density. 'To overcome the sensitivity to outliers, the constraint or cost may be
postulated in terms of the average/mean distance of the facility to all other nodes (Richey,
1990). However, such approach tends to fail revealing important structure in case of a non-
uniform density across the underlying topology (Figure 2a). In contrast to this, our method
effectively infers backbones that extend across the entire original graph, while remaining
near the core of the graph (Figure 1d).

Not or too topologically constrained. Facility location problems are mainly considered in
topics such as routing, logistics, and dispatching (Hu et al., 2018). In these scenarios, rather
than representing the topological model underlying the graph, the objective of the facility is

VANDAELE, SAEYS, AND DE BIE

to reach all nodes of the original graph as close as possible, while maintaining a low cost of
the facility. These facility location problems are insufficient for inferring topological models
underlying graphs. There may not be any constraints on the topological complexity of the
facility (e.g., in terms of the number of leaves or multifurcations), allowing for an arbitrary
complex backbone that fails to provide insight into the underlying structure. E.g., the only
topological restriction on the facility may simply be that the facility is a tree (Richey, 1990).
In other cases, the facility is topologically too constrained. In particular, facility location
problems may also search for a specific path (Avella et al., 2005), which is not suited to
capture the underlying topology in many practical examples.

Steiner trees allow some control over the topological complexity of the final facility
through the number of terminals that are specified (Akoglu et al., 2013). However, the
presence of outliers or non-uniform density may be harmful when selecting these terminals
in an unsupervised manner (Figure 2a). Furthermore, the topological complexity, such as
the number of leaves, of the resulting (approximated) Steiner tree is often not consistent
with the number of terminals (Figure 2a and Section 3).

In contrast to these methods, our objective is to reveal the underlying topology of a
graph—the cost of which does not matter to us—in a robust and effective way. Hence, we
will be able to provide a method for tuning the topological complexity of our backbone in
a data- and scale-independent way (Section 2.3).

Topological bias. Many facilities may just not be meaningful representations for the un-
derlying topology. E.g., a trivial example is the longest path through a graph (if existing),
which may ‘wiggle’ through the entire graph without reflecting the true underlying topology,
even if this is linear. Furthermore, other facilities may only be meaningful in the absence
of outliers (as also discussed above), in the absence of curvature (Figure 2b), or may be
biased to include mostly low-weight edges due to the minimization of a sum or maximum of
the edge weights of the facility. Extreme examples of this are the MST and its subgraphs,
which ‘wiggle’ through the entire graph (Figure 2c).

The problems listed above are the main reasons why we introduce the forest represen-
tation as an intermediate step for mining topological substructures, as we overcome all of
these by designing such representation of our graph (compare Figures 1 & 2).

1.2.2 EXISTING CORE MEASURES IN GRAPHS

A crucial part of our method will be using a vertex measure to quantify the coreness of
a node v of a graph G = (V, E). Certain vertex measures that might be used to identify
such nodes already exist. A well known example is the local cluster coefficient (Watts and
Strogatz, 1998). For every node v € V' with degree d(v) > 1, it is defined as

1
LOCW) = i = 1) 7&%()1{u,w}€Ea

where N (v) denotes the set of neighbors of v in V, and 1y, yyep = 1 if {u,w} € E and
1y wyee = 0 otherwise. Hence, LCC(v) is the number of closed wedges adjacent to v,
divided by the number of (all) wedges adjacent to v. For nodes v with d(v) = 1, LCC(v) is
either undefined, or (commonly) defined as 0.

MINING TOPOLOGICAL STRUCTURE IN GRAPHS THROUGH FOREST REPRESENTATIONS

(a) Apart from lacking scal-
ability (taking more than 24
minutes to compute on a com-
plete graph on 250 vertices us-
ing the brainwaver library in
R), the local efficiency is not
applicable to fully weighted
networks. By mapping every
node to the same value, it is
unable to detect the true core
nodes of this network.

(b) The presence of only
a small amount of outliers
makes it difficult for Onella’s
generalized local cluster co-
efficient—one of the many
vertex measures generalizing
the local cluster coefficient to
weighted networks—to iden-
tify the core nodes near
the underlying C-structured
topology of this network.

Betw

12000
8000

- gOOO

(¢c) Betweenness centrality,
measuring how many short-
est paths go through a partic-
ular node, does not perform
well when the true underlying
topology is curved. Shortest
paths will always take short-
cuts when available, shift-
ing them from the true core
nodes of our underlying Y-
structured topology.

Figure 3: Various possible existing ‘core’ measures in Rips graphs Rig(D) built from 2D
point cloud data sets D. None of them capture the true core nodes of the graph
well.

We will show that the LCC is particularly useful to our method for investigating topo-
logical structure in a variety of unweighted graphs (Section 3). However, we found its
generalizations to weighted graphs—an extensive summary of these is given by Wang et al.
(2017))—as well as other existing measures trying to quantify the coreness of a node, such
as graph centrality measures (Klein, 2010; Hage and Harary, 1995; Barthélemy, 2004), to
be insufficient for many of our practical examples (Figure 3). These were not designed for
the purpose of identifying or visualizing a global core structure within a wide variety of
graph-structured data sets. As such, they lack important properties of the boundary coef-
ficient, such as scalability, applicability to fully weighted networks (compare Figure 3a to
6a), robustness to outliers (compare Figure 3b to 6b), and the ability to deal with nonlinear
substructures (compare Figure 3c to 6c¢).

Vandaele et al. (2019b) recently demonstrated the superior effectiveness of the boundary
coefficient over existing measures for the purpose of topological data analysis of graphs, on
both a qualitative and quantitative level. This is part of the contribution of this paper. We
provide a formal discussion why the boundary coefficient outperforms these measures for
this purpose in Section 2.1.3 (Remark 5).

1.2.3 TOPOLOGICAL SKELETONIZATION, THINNING, OR FITTING IN STRUCTURED DATA

Various methods have been developed for extracting underlying graph-structured topolo-
gies when the input data satisfies specific structural criteria. These criteria are generally
not satisfied in any given graph. E.g., many topological skeletonization algorithms deal

VANDAELE, SAEYS, AND DE BIE

with thinning structured input data, such as 2D or 3D images, towards a graph-structured
skeleton of the object represented by the image (Wang et al., 2018; Abu-Ain et al., 2013;
Jin et al., 2016). Other methods based on principal graphs (Gorban and Zinovyev, 2010),
or many of the cell trajectory inference methods (Saelens et al., 2019), such as Slingshot
(Street et al., 2018), assume the input data to be a finite representation of the underlying
topology in a vector space, as they rely on local averaging techniques. Since these methods
require the presence of structure that is generally not present in graphs, we do not consider
them to be applicable to our problem. However, in Section 3, we will show that our method
is comparable to Slingshot—the currently top ranked method in terms of accuracy (Saelens
et al., 2019)—for the specific purpose of cell trajectory inference.

1.2.4 METHODS FROM TOPOLOGICAL DATA ANALYSIS (TDA)

The emergent area of Topological Data Analysis (TDA) (Carlsson, 2009), aims to under-
stand the shape of data (Wasserman, 2018). Nevertheless, persistent homology (Ghrist,
2008), the most profoundly used and studied tool within TDA, is unable to be straightfor-
wardly applied to our problem. Note that persistent homology only quantifies topological
information, and does lead to an actual model. Furthermore—based on this topological
information—persistent homology cannot even distinguish between an underlying linear or
bifurcating topology through the customary Vietoris-Rips filtration. However, we will use
this method for identifying cycles missing from our forest-structured backbone (Section
2.4.3). Discussing its foundations, however, would require us to introduce concepts from
algebraic topology (Hatcher, 2002) that are (far) beyond the scope of this paper, and hence,
we will instead provide a visual introduction to persistent homology.

Topological persistence (Ghrist, 2008) tracks the (dis)appearance of distinct shape fea-
tures (more spefically, ‘holes’), across a filtration (Figure 4a), i.e., a sequence of simplicial
complexes (Hatcher, 2002)

g C0o, €... C o, ,

for an index sequence €1, ...,€,. Though manually defined filtrations on a given simplicial
complex (such as a graph) are possible (Rieck and Leitte, 2015), the custom illustrative
case is that we have a point cloud data set D embedded in a metric space (M,d), and
we parameterize the filtration by means of a distance parameter €, corresponding to the
Vietoris-Rips filtration (Figure 4a):

(ce={SC 2P S| <k+2AVz,y €S d(z,y) < €})

e’

where k € N is a parameter constraining the dimension of topological features (holes) we
are in interested in. Any complex in this filtration is called a Vietoris-Rips complex. An
element s of a particular complex is a (|s| — 1)-simplex, where |s| denotes the cardinality of
s. If k =0, we will also simply refer to the complex as the (Vietoris-)Rips graph.

By evaluating how long certain features exist, we are able to deduce topological invari-
ants, i.e., topological features that are preserved under homeomorphism. In this case, we
infer holes in the underlying data structure (Medina and Doerge, 2015). The evolution of
these (dis)appearing features may be visualized by means of persistence barcodes, where the
number of bars occurring at a fixed value of € denotes the k-th Betti number By, express-
ing the number of distinct k-dimensional holes at index € in the filtration (Figure 4b). In

MINING TOPOLOGICAL STRUCTURE IN GRAPHS THROUGH FOREST REPRESENTATIONS

ge=25

e=1.6

(a) Simplicial complexes in the Vietoris-Rips filtration for different distance values e. Nodes
represent 0-simplices, edges represent 1-simplices, and green triangles represent 2-simplices
in a particular complex of the filtration. At e = 0.01, the corresponding complex consists
only of all isolated points. Starting around e = 0.5, two connected components represent
the underlying true components, which have a relatively long persistence, i.e., they persist
for a ‘large’ interval of values e. At e = 0.75, two cycles formed by the boundaries of the
two ‘rings’ are present in the complex. At ¢ = 1 the two components have merged, and
the complex will stay connected for all further distance values e. At e = 1.6, one cycle is
completely ‘filled in’, whereas the other is still present. Finally, the second cycle will be
filled in as well, as seen at € = 2.5. The simplicial complex will continue to grow until each
pair of nodes is connected by an edge.

— Ho
— H1

Death

0.0

T T T T T I [I I I I 1
0.0 0.5 1.0 1.5 20 25 0.0 05 1.0 15 2.0 25

time

(b) Persistence barcodes obtained from ap-
plying persistent homology to D seen as
a finite metric space. Bars for connected
components (HO) are shown in black, and
for cycles (H1) in red. Two bars show
to persist for each of these k-dimensional
holes, £k € {0,1}. Short bars are often
considered to represent ‘topological noise’
(Oudot, 2015). The time denotes the dis-
tance value € at which the topological fea-
tures are present in the filtration. Note
that the y-axis of the persistence barcodes
has no significant meaning in this example.

Birth

(¢) The results of persistent homology may
also be represented by means of persistence
diagrams, where a bar persisting from b to
d is replaced by a point (b,d) above the
diagonal in the first quadrant of the Eu-
clidean plane. The elevation d—b of a point
according to this diagonal now corresponds
to the persistence of the feature it repre-
sents. Higher elevated points correspond
to features with a longer persistence.

Figure 4: Persistent homology of point cloud data D representing two disconnected cycles.

VANDAELE, SAEYS, AND DE BIE

this sense, a O-dimensional hole represents a gap between components, and 5y equals the
number of connected components in our complex. A 1-dimensional hole represents a cycle
(e.g., the hole in a solid ring), a 2-dimensional hole represents a void (e.g., the inside of a
balloon), and higher-dimensional holes represent higher-dimensional analogues. Long bars
resemble topological features that ‘persist’ for many consecutive values €;, €;41,...,¢€;, and
indicate features of the underlying topology of the point cloud data set (Figure 4). Hence,
the naming ‘persistent’ homology. Persistence barcodes may also be represented by means
of persistence diagrams (Figure 4c), which are mathematically more convenient to work
with (Oudot, 2015). In this representation, a bar persisting from b to d is replaced by a
point (b, d) above the diagonal in the first quadrant of the Euclidean plane.

Though persistent homology is an increasingly useful tool to machine learning problems
(Hofer et al., 2017; Rieck et al., 2019; Oudot, 2015; Singh et al., 2014; Moor et al., 2019;
Garside et al., 2019), one remaining disadvantage is its computational cost, which is cubic in
the number of simplices (Otter et al., 2017). Furthermore, when we are interested in cycles,
i.e., 1-dimensional holes, the number of simplices itself is cubic in the number of data
points, as one needs to store up to triangular relations. Existing approximating algorithms
for persistent homology (Silva and Carlsson, 2004; Cavanna et al., 2015) usually construct
the filtration on a farthest point sample—using properties of the entire data set to define the
simplices—and come with theoretical guarantees that the resulting persistence diagrams are
‘close’ to the diagrams of the original metric space (Cavanna et al., 2015). However, these
guarantees are accompanied by outliers being prone to be selected during the sampling, and
topological noise remaining in the resulting barcodes (Section 2.4.3).

As stated above, persistent homology is not straightforwardly applicable to our problem.
A linear and a bifurcating topology would both consist of one connected component and
no higher-dimensional holes. Hence, persistent homology is currently unable to distinguish
between these spaces, and more generally between any tree-shaped (underlying) topologies.
However, some possible refinements of persistent homology, as well as the Mapper algorithm
in TDA, do allow us to investigate graph-structured topologies, as discussed below.

Metric graph reconstruction. Aanjaneya et al. (2012) make use of local detection techniques
based on connected components to classify edges and non-edges in metric graphs constructed
from point cloud data. Vandaele et al. (2019a) extend this by also classifying the type of
non-edge (a leaf, a bifurcation, trifurcation, ...), as well as identifying locations through
which cycles pass. Global reconstruction techniques are used to retrieve the underlying
topology from this information. Unlike persistent homology, they locally infer connected
components in a punctuated neighborhood at a fized scale e. They require one single Rips
graph R, to be (locally) built from the data. Hence, they do not track the the evolution
across various scales. This induces a high parameter sensitivity, and the methods quickly fail
in more complex or noisy examples. For this reason, they are generally not applicable to k-
nearest neighbor (kNN) graphs—which turn out to favorable in many practical cases where
the data is characterized by varying scales or a non-uniform density across its underlying
topology (Von Luxburg and Alamgir, 2013)—or given non-metric graphs.

Local topological persistence. Fasy and Wang (2016) and Wang et al. (2011) provide a
more general tool for investigating local structure in—mot necessarily graph-structured—
data, by refining topological persistence to qualitatively investigate the underlying topology

10

MINING TOPOLOGICAL STRUCTURE IN GRAPHS THROUGH FOREST REPRESENTATIONS

in a (punctuated) local neighborhood of a data point. Unlike the methods for metric graph
reconstruction, they do track the evolution of topological features locally at various scales.
However, the sensitivity to outliers remains, and this approach lacks a method to effectively
use this type of local information for automating the inference or reconstruction of local and
global topologies. Furthermore, computing topological persistence for many data points is
often computational inefficient for dense and large data sets.

Mapper. Nicolau et al. (2011) present the Mapper algorithm, providing a general tool for
visualizing point cloud data. First, the data is mapped to a low-dimensional space, usually
by means of a dimensionality reduction (such as PCA) to R or R?. A grid of overlapping cells
is built in the low-dimensional space, and for each cell, the points mapped to this cell are
clustered in the original space. Overlapping clusters are then connected, leading to a graph
visualization of the underlying topology of the data. Unfortunately, the Mapper algorithm
is quite sensitive to the used parameters, such as the type of filter, the amount of overlap
of cells, and the clustering method in the original space. Furthermore, Vandaele et al.
(2019a) showed that Mapper may fail to retrieve simple underlying (such as Y-structured)
topologies in cell trajectory data sets characterized by noise and non-uniform densities.

2. Methods

A schematic overview of our method for topological data analysis of graph-structured data
is shown in Figure le. The organization of our Methods section is based on this overview,
and is as follows. In Section 2.1, we first discuss the boundary coefficient (BC), a local vertex
measure designed to identify core nodes in weighted graphs, introduced by Vandaele et al.
(2019b). In Section 2.2, we discuss f-pines, also introduced by Vandaele et al. (2019b). We
illustrate how these may be used to obtain a forest representation of a graph. More specif-
ically, Letting f = BC will lead to effective representations for topological data analysis of
graphs. In Section 2.3, we introduce the novel CLOF-problem, as well as an algorithm to
efficiently solve it in tree and forest graphs. Finally, in Section 2.4, we discuss how all of the
above fits together and forms our newly introduced method for topological data analysis of
graph-structured data (Figure le).

2.1 The Boundary Coefficient: a Powerful Core Measure in Graphs

The first step of our method requires us to locate ‘core nodes’ in our graph. Intuitively, these
are the nodes that lie close to the backbone of our graph, i.e., its underlying simplified graph-
structured topology (Figure 1). As we made clear in Section 1.2, many existing measures
that might be used to determine the core nodes of a graph lack important properties required
for identifying such nodes in many practical weighted graphs (see also Figure 3). Hence,
in Section 2.1.2 we present our recently introduced boundary coefficient (BC), defined as
the negative average transmissivity (Section 2.1.1) of a node (Vandaele et al., 2019b). We
discuss important properties of the BC, as well as its relationship to the ordinary LCC
(Section 2.1.3). Finally, we present a way to efficiently compute the BC through (sparse)
matrix multiplication in Section 2.1.4.

11

VANDAELE, SAEYS, AND DE BIE

2.1.1 THE TRANSMISSIVITY OF A NODE

Given two vectors X,y in the Euclidean space R, n € N*, we know that the angle a between
them satisfies
[1[* + [y [I* = [Ix — yI]?
2[|x|[[y

As all of the terms in the fraction are expressed as (Euclidean) distances (between pairs of
the triple of vectors (x,y,0)), we can straightforwardly generalize the concept of angle to
arbitrary metric spaces (M, d). Furthermore, a positively weighted graph G = (V, E) can
be converted to a metric space (V,d), where for u,v € V', d(u,v) denotes the length of the
shortest (weighted) path from u to v in G. This extends the definition of angle in Euclidean
spaces to graphs as well (Vandaele et al., 2019b).

CoOsSx =

Definition 1 Let G = (V, E) be an undirected, positively weighted graph. Suppose that
w,v,w € Viu # v # w, belong to the same connected component of V. We define the
(cosine of the) angle wvw as

_ d 24d 2 _d 2
coniy - (et 0w —dlws)y

2d(u,v)d(v,w)

where d denotes the pairwise shortest distance metric on G. The transmissivity 7T (u, v, w)
of v for w and w is defined as

T (u,v,w) == — cos uwvw .

The transmissivity 7 (u,v,w) of v for uw and w has a meaningful interpretation even
when the graph is not embedded in a Euclidean space. T (u,v,w) will be high if the cost
of going first straight from u to v, and then straight from v to w, does not differ a lot from
the cost of going straight from u to w. Here, by going straight we mean taking the shortest
path, and hence, by the cost the weighted length of this path, i.e., the sum of the weights
of its included edges. Moreover, if going through v is the only possibility to go from u to
w, then T (u,v,w) = 1 (note that the reverse implication does not necessarily hold). Vice
versa, T (u,v,w) will be low if it is much more costly to travel from u to w through v, than
to go straight from u to w, and exactly —1 if u = w.

Furthermore, it is important to note that the graph G = (V, E) must not be metric,
i.e., the weights w do not have to satisfy the triangle inequality in G. This means we may
have w({u,v}) + w({v,w}) < w({u,w}) for {u,v},{v,w},{u,w} € E. The shortest path
metric d will always naturally satisfy the triangle inequality, which is needed to generalize
the Euclidean angle to graphs.

2.1.2 THE BOUNDARY COEFFICIENT AS THE AVERAGE TRANSMISSIVITY

The boundary coefficient (BC) of a node v is defined as its negative transmissivity averaged
over the pairs of neighbors of v (Vandaele et al., 2019b). As illustrated by Fig. 5 and Fig.
6, this is a measure for how close vertices are near the ‘boundary’ of the graph (hence the
name), and by this, whether the nodes are close or far from the graph’s core.

12

MINING TOPOLOGICAL STRUCTURE IN GRAPHS THROUGH FOREST REPRESENTATIONS

Figure 5: Geometric interpretation of the boundary coefficient: a
point v lying further from the boundary has many more
pairs of neighbors defining a large angle, than a point
q lying close to the boundary. The dashed line repre-
sents the shortest path — not necessarily an edge —
between two nodes. The boundary coeflicients are com-
puted using only the drawn connections and their Eu-
clidean lengths.

Definition 2 Let G = (V, E) be an undirected, positively weighted graph, without selfloops.
For every v € V we define N(v) CV to be the set of neighbors of v in G. For everyv € V
with degree 6(v) = |N(v)| > 0, we define its boundary coefficient (BC) as

Z T (u,v,w) .

u,weN (v)

BC(v) = 5:}1)2

2.1.3 PROPERTIES OF THE BOUNDARY COEFFICIENT

As is the case with the ordinary LCC, for a graph G = (V| E), the BC of a vertex v € V is
an averaged value over triples adjacent to v. In the case of the LCC, the assignment to each
triple (u,v,w) is a ‘hard’ 0-1 assignment. In the unweighted case, i.e., where each edge has
weight 1, the assigned value to the triple (u,v,w) in the averaged sum of BC(v) equals

; if{uuw}leFE,
—T (u,v,w) = coswww = § —1 if {u,w} ¢ EAu#w, (1)

1 fu=w.

BC BC
0.6 06
0.4 0.4
02 02

¥ oo 0.0

(a) The boundary coefficients (b) The boundary coefficients (¢) The boundary coefficients
for a graph with an underly- for a graph with an underly- for a graph with an underly-
ing disk-shaped topology. ing C-shaped topology. ing Y-shaped topology.

Figure 6: The boundary coefficients for each one of the graphs in Figure 3. The BC can han-
dle fully weighted networks, curvature, as well and outliers, which are separated
from the major core through boundary nodes.

13

VANDAELE, SAEYS, AND DE BIE

The intuition behind this is as follows. Suppose for {u,v}, {v,w} € E, that (u,v,w) forms
a closed triangle adjacent to v, i.e., {u,w} € E. Since the graph is unweighted, each edge
of this triangle gets assigned the same distance. Hence, the triple (u,v,w) is regarded as
an equilateral triangle, which has all angles equal to 60°. This coincides that with the
fact that 7 (u,v,w) = —% = —cos60°. If {u,w} ¢ E, we regard the triplet (u,v,w) as
a straight line segment, defining a 180° angle in v. Again, this coincides with the fact
T (u,v,w) =1 = —cos 180°. In this case, there may be other shortest paths from u to w in
G, but u — v — w is definitely one of them. If u = w, we regard the triple as two coinciding
line segments defining a 0° angle in v. In this case, we find that 7 (u,v,w) = —1 = — cos 0°.

The explicit relationship between the BC and LCC is as follows (Vandaele et al., 2019b).

Proposition 3 Suppose G = (V, E) is an unweighted graph, i.e., a graph in which every
edge gets a weight equal to 1, without selfloops. Then for every v € V with §(v) > 1

BC(v) = ‘5(3;21;1 (;LCC(v) _ 1) + 6(1”) .

Proof See Appendix D. |

Corollary 4 Suppose G = (V, E) is an unweighted graph without selfloops. Then for every
v €V, lims(y) 00 BO(V) = 3LCC(v) — 1.

Proof This is an immediate consequence of Proposition 3. |

Proposition 3 implies that the BC does not fulfill the general versatility requirement, i.e.,
it does not coincide with the ordinary LCC on unweighted graphs, as other generalizations
of the LCC to weighted graphs do (Wang et al., 2017). However, the BC does appear to
be closely related to the LCC: it is nearly an affine transformation of the LCC (as given in
Corollary 4). In Section 2.2, we show that such transformations result in the same forest
representation through f-pines (Proposition 12).

The fact that the relationship between the BC and the LCC is not an exact affine
transformation, is due to us allowing BC to be well-defined for nodes v with §(v) =1, i.e.,
allowing u = w in the summation over triples (u,v,w) adjacent to v. BC(v) = cos wow = 1
for these nodes, which coincides with our idea of nodes with a high boundary coefficient
lying at the boundary of the graph. Any path that enters a node v with §(v) = 1 from a node
w and wishes to continue, has no choice than to take a 180° turn back to w. Intuitively,
the path has reached a ‘dead end’ in v, and hence, reached the boundary of the graph.
Furthermore, if F' is a spanning forest of G (Definition 9), then a leaf of G, i.e., a node
v € V for which §(v) = 1, will always be a leaf of F' as well. In Section 2.2, we will use the
BC to obtain a particular spanning forest, in which leaves are exactly meant to represent
boundary nodes of G, i.e., for which the coefficient is high. Hence, for our method, it makes
sense that the BC is both well-defined at leaves, and obtains its maximal value there.

As is the case for the ordinary LCC, BC(v) is undefined for nodes v with 6(v) = 0.

14

MINING TOPOLOGICAL STRUCTURE IN GRAPHS THROUGH FOREST REPRESENTATIONS

Remark 5 The crucial differences between the BC, the LCC and many of its generaliza-
tions (Wang et al., 2017), and standard global centrality measures such as eccentricity (Hage
and Harary, 1995) or betweenness (Barthélemy, 2004), as well as the main reasons why the
BC outperforms these measures for a wide variety of applications, are that for a nodev € V:

e The assignment —T (u,v,w) to a triple (u,v,w) in the sum of BC(v) may attain
different values over triples where {u,w} ¢ E (i.e., it is not always 0, such as with

LCC, Onella’s generalized LCC, ...).

e The assignment —T (u,v,w) to a triple (u, v, w) in the sum of BC(v) may be low even
if {u,w} € E and—if weighted—the three corresponding weights are relatively high
(this is not the case with LCC, Onella’s generalized LCC, ...).

o The scope of the BC is local: it does not take into account the shortest paths to all other
nodes (as is often the case with standard centrality measures, such as betweenness).
Hence, the BC allows us to locate boundary nodes even in the presence of complex,
long, or curving underlying topologies, and is less affected by outliers.

Though the BC does not coincide with the ordinary LCC on unweighted graphs, it does
satisfy four other essential properties of generalizations of the LCC to weighted graphs, as
discussed in Wang et al. (2017). One of these, i.e, its applicability to fully weighted networks,
has been illustrated in Figure 6. We consider this property of the boundary coefficient, as
well as its weight-scale invariance, continuity, and robustness to noise (Wang et al., 2017),
far more important for our purpose of identifying core structure in a wide variety of weighted
graphs, than coinciding with the LCC on unweighted graphs. However, they will be less
important for explaining our method, and were (partially) discussed by Vandaele et al.
(2019b). Hence, we state and prove these properties formally in Appendix D.

2.1.4 EXPRESSING THE BOUNDARY COEFFICIENT THROUGH MATRIX OPERATIONS

In this section, we give an important result for computing the BC. First, we introduce some
new definitions.

Definition 6 Let G = (V, E) be an undirected, positively weighted graph, and D the matriz
of pairwise shortest path distances between the nodes of G. Let |E(P)| denote the unweighted
length of a path P. For k € N, we define the hop-k-approximation of D as the matrizc
Hi(D) = (Hi(D)uw)upvev, where

,Hk(D)u v =

)

{Du,v if there exists a path P from u to v with |E(P)| <k,

0 otherwise ,

It is easy to see that increasing k leads to a better approximation of D (hence the name
‘hop-k-approximation’). A formal proof of this is given in Appendix D (Proposition D.11).

For a disconnected graph G, Hy(D) will never be equal to D for any k € N. D, , is
either undefined or defined to be +oo if w and v lie in different connected components of G.
However, Hp (D), is always well-defined, and will be equal to 0 if there is no path between
u and v. This will show to be convenient for computing the BC (Theorem 8).

15

VANDAELE, SAEYS, AND DE BIE

Notation 7 For any z € Z, we define the mapping

Az, if 220V AL, #0,

O R™X™ R™™ A AV, with AT, =
U U v {0 otherwise .

n,meN n,meN

Hence, -©° denotes the pointwise application of the -*-operation on the elements of a given
matriz for which this is well-defined. If A%, would not be well-defined (i.e., if z < 0

uU,v

and A3, = 0), then this entry gets mapped to 0. For G = (V, E) an undirected, positively
weighted graph with pairwise distance matrix D, and k € N, we define ’Hl?z (D) = Hp(D)®".

Theorem 8 (Vandaele et al., 2019b). Let G = (V = {v1,...,v.}, E) be an undirected,
positively weighted graph, without selfloops. Let D denote the matrix of pairwise shortest
path distances between the nodes of G. If 6(v) > 0 for allv € V, then

Bc(vl) 8(v1)?

=l : |o (Z ’Hl(D)u> © (Z H?l(D)u)

BC(UTL) ﬁ ucV ueV (2)

_ %dmg (H?I(D)H§2(D)H?1(D))] ,

where A ® B denotes the pointwise multiplication between matrices A and B of the same
dimensions.

Proof See Appendix D. [|

It follows that the BC may be computed using pairwise Dijkstra’s algorithm with early
termination, and (sparse) matrix multiplications. A computational analysis of the algorithm
that follows from Theorem 8 is provided in Appendix B. Note that both the left hand side
and right hand side in (2) are undefined for nodes v € V with d(v) = 0. We regard such
nodes simultaneously as boundary nodes, as well as core nodes within their own component.

We conclude that the BC is a powerful measure for locating nodes near the backbone
of a graph, while admitting an efficient way for computation. In the next section, we show
how the BC leads to effective forest presentations for topological data analysis of graphs.

2.2 Forest Representations of Graphs through f-Pines

In order to overcome the wide variety of issues accompanied with ordinary facility location
problems in graphs for our purpose of locating simplified topological subtructures (Section
1.2), we propose an intermediate step that represents the given graph G by means of a
spanning forest of G. This step will use our recently introduced concept of the f-pine of a
graph (Vandaele et al., 2019b), which we present in Section 2.2.1. We will discuss a variety
of its properties in Section 2.2.2. Finally, in Section 2.2.3 we illustrate how the boundary
coefficient can be used to find a forest representation, from which we may efficiently mine
simplified topological structures.

16

MINING TOPOLOGICAL STRUCTURE IN GRAPHS THROUGH FOREST REPRESENTATIONS

2.2.1 THE F-PINE OF A GRAPH

Given a graph G = (V, E') and a real-valued function f : V' — R, we want to find a spanning
forest with leaves marking higher values of f (Vandaele et al., 2019b).

Definition 9 Let G = (V, E) be a graph. A spanning forest F' of G is a subgraph of G,
such that each connected component of G is also a connected component of F' in terms of
its contained vertices, and F' contains no cycles.

Definition 10 Let G = (V, E) be a graph, and f : V — R. A spanning forest F' of G is
called an f-pine® in G, if

F € arg min {Z S (v) f(v) : F'is a spanning forest of G} , (3)

veV

where g/ (v) denotes the degree of v in the subgraph F' of G.

The intuition behind the naming is that an f-pine corresponds to trees having many
‘needles’ that ‘stick out and point’ towards (locally) high values of f (Figure lc).

2.2.2 PROPERTIES OF THE f-PINE

Looking at Definition 10, an f-pine of a graph G is a spanning forest of G that prefers
high-degree nodes where f attains a low value. More specifically, an f-pine attaches every
node u to a node v where f reaches a local minimum (Vandaele et al., 2019b).

Proposition 11 Let G = (V, E) be a graph, f : V — R, and F an f-pine in G. For every
u € V with §g(u) > 0, there exists v € argmin{ f(w) : w € Ng(u)} such that {u,v} € E(F).

Proof See Appendix D. |

The intuition behind the proposition above is that the building blocks of an f-pine are
several large star graphs that result from pulling every node towards a node where f attains
a local minimum. Furthermore, Definition 10 implies that the centers of these star graphs
will be connected through nodes where f attains a low value on average as well.

It turns out that an f-pine is invariant to affine transformations of f with a positive
scaling factor. Hence, we may apply such transformation to f—retaining its robustness
properties—without effecting the resulting f-pine. Furthermore, we may also easily compare
f-pines for different functions f (e.g., graph centrality, core, or transitivity measures), even
if the corresponding function values take on a different scale (Vandaele et al., 2019b).

Proposition 12 (Vandaele et al., 2019b). Let G = (V, E) be a graph, f:V — R, and F
an f-pine in G. If g = af + b for some a € RT,b € R, F is also a g-pine in G.

1. The term ‘pine’ may not be ideal if G is disconnected, as there will be multiple ‘pines’. In this case,
the term ‘vine’ may be more appropriate. However, the main emphasize of the term ‘pine’ is on ‘many
leaves’ (needles) and ‘few branches’, and not on the number of components.

17

VANDAELE, SAEYS, AND DE BIE

Proof See Appendix D. |

We can efficiently find an f-pine by finding a minimum spanning tree after reweighing
the edges in G with the summed value f attains at their endpoints (Appendix B).

Proposition 13 (Vandaele et al., 2019b). Let G = (V,E) be a graph, and f : V — R.
Finding an f-pine in G is equivalent to finding a minimum spanning tree for each connected
component in G, where each edge {u,v} is assigned to have weight f(u)+ f(v).

Proof See Appendix D. |

We are now prepared to show how the BC (Section 2.1) and f-pines work together to
provide effective forest representations for topological data analysis of graphs.

2.2.3 THE BC-PINE OF A GRAPH

Proposition 11 states that an f-pine connects nodes to its local minima. Hence, if f is a
‘core’ measure identifying nodes close to the underlying core structure of the graph, then
an f-pine is the result of interconnecting star graphs through the core of the given graph.
This is the exact purpose for which we designed the boundary coefficient, taking on low
values near the core structure of a graph, and high values near the boundary nodes of the
graph. Three example BC-pines are illustrated in Figure 7.

An important property of the BC-pine is displayed on Figure 7b. As the BC is able
to separate outliers from the main core structure through boundary nodes where the BC
attains locally higher values by design, the BC-pine avoids passing through outliers to reach
one (true) core region from another. This would increase the cost of the pine according to
(3), as it would include too many boundary nodes on either side of the outlier node.

(a) The BC-pine for a graph (b) The BC-pine for a graph (¢) The BC-pine for a graph
with an underlying disk- with an underlying C-shaped with an underlying Y-shaped
shaped topology. topology. topology.

Figure 7: The BC-pines (with edges in red) for the three example graphs shown in Figure 6.
Note that by Proposition 11, a BC-pine will result in a star graph that connects
all nodes to a global minimum in a complete graph, such as for the graph on the
left.

18

MINING TOPOLOGICAL STRUCTURE IN GRAPHS THROUGH FOREST REPRESENTATIONS

Vandaele et al. (2019b) showed that by iteratively ‘pruning’ the BC-pine, i.e., discarding
its leaves, we retract our pine towards the topological core underlying the graph. However, if
the original graph has a very complex or even no ground-truth underlying topology, revealing
a low complexity topology by means of this ‘top-down’ method may be difficult, discarding
(too) many nodes. Furthermore, even in graphs with a simple underlying topology, the
presence of outliers may require us to prune many times to remove these connections (Figure
7b), resulting in our backbone retracting from the true underlying leaves as well. Hence,
we are clearly in need of an approach that allows us to identify interesting substructures in
forest graphs, spreading out across the entire graph, while the resulting complexity remains
easy to tune and control. This leads us to the following section, introducing a ‘bottom-up’
method for identifying our backbone.

2.3 Finding Optimal Subforests with a Constrained Number of Leaves

In this section, we will introduce a novel theoretically founded and well-posed problem for
the purpose of locating interesting substructures in forest graphs. We will show that solving
this problem in the BC-pine leads to an effective method for topological inference in graphs.

We will consider two variants of this problem, one where the cost of the structure will
be determined by an edge-valued function, and one where its cost will be determined by a
vertex-valued function.

Definition 14 (CLOF). Let G = (V, E) be a graph, and suppose f is a real-valued func-
tion, associating a positive cost to either each vertex or each edge of G. For a subgraph
H = (V(H),E(H)) of G, we define its cost f(H) == 3 e novmnem) f(@). The
Constrained Leaves Optimal subForest problem (CLOF) is stated as follows.

Given k € N>o, find a subforest F' in G with at most k leaves, mazimizing f(F). (4)
Proposition 15 CLOF is NP-hard.

Proof For an edge-valued cost function and k& = 2 leaves, the stated problem is equivalent
to the NP-hard longest path problem (Uehara and Uno, 2005). |

Though CLOF is NP-hard in general, we are actually not interested in its solution for
arbitrary graphs. As discussed in Section 1.2, such solutions may just not be topological
meaningful. This is one of the main reasons we choose for a forest representation as an
intermediate step. In this way, we can design our forest such that these solutions are
indeed meaningful as well as robust. Furthermore, as we will show in this section, CLOF is
efficiently solvable for forest graphs in practice.

In Section 2.3.1 we will derive an efficient solution to CLOF for tree graphs, which will
lead us to an efficient solution for forest graphs in Section 2.3.2.

2.3.1 SowviNG CLOF IN TREE GRAPHS

We start by showing that for tree graphs, CLOF is equivalent to a monotone submodular
set function maximization problem subject to a cardinality constraint.

19

VANDAELE, SAEYS, AND DE BIE

Theorem 16 Let T = (V,E) be a tree graph and f a real-valued function associating a
positive cost to either each vertex or each edge of T. Then (4) is equivalent to a monotone
submodular set function mazimization problem subject to a cardinality constraint (Krause
and Golovin, 2011).

Proof See Appendix D. |

The general problem of maximizing a monotone submodular function subject to a car-
dinality constraint is NP-hard, but admits a 1 — 1/e approximation algorithm (Krause and
Golovin, 2011). However, the interestingness of Theorem 16 lies in the fact that (4) is
equivalent to a nontrivial monotone submodular set function maximization problem, for
which we are able to actually provide an exact solution in polynomial time.

Theorem 17 (A greedy solution for CLOF). Let T = (V, E) be a tree graph and f a real-
valued function associating a positive cost to either each vertex or each edge of T. Given
k € Nsa, the following algorithm finds a subtree T' in T that mazimizes f(T') over all
subtrees T' in T with at most k leaves.

1. Let T" be the longest path (according to f) between two leaves in T.

2. While T' # T and T' has less than k leaves, add the longest path (according to f)
from the remaining leaves of T to T'.

Proof See Appendix D. |

Remark 18 Due to a greedy algorithm resulting in the optimal subtree according to (4) for
tree graphs, we only need to conduct the algorithm once to get all solutions up to the given
value k € N>o. By storing the included vertices or edges for each iteration, we can quickly
obtain the corresponding subgraph and analyze the results for different number of leaves (see
also Algorithm 3 in Appendiz B for the pseudocode of the corresponding algorithm). Storing
the cost up to a certain number of leaves turns out to be useful in practice as well. It may
serve as a tool for tuning the number of leaves, as we will discuss in Section 2.4.

Remark 19 Theorem 17 implies that a greedy approach leads to the optimal solution in
any tree (including spanning trees). Hence, a heuristic search such as a beam search (Ow
and Morton, 1988) will not be necessary to optimize (4) for topological data analysis of
graphs (Section 2.4).

The following result shows to be very useful for practical applications, as we will discuss
in Section 2.4. First, we need another definition.

Definition 20 Let G = (V, E) be a tree graph, and suppose f is a real-valued function,
associating a cost to either each vertex or each edge of G. We say that f is constant on
leaves of G, if either f is constant on {{u,v} € E : 6(u) =1V d(v) = 1} if f is edge-valued,
or f is constant on {v € V : 6(v) = 1} if f is vertez-valued.

20

MINING TOPOLOGICAL STRUCTURE IN GRAPHS THROUGH FOREST REPRESENTATIONS

Theorem 21 Let T = (V, E) be a tree graph with |E| > 1, and suppose f is a real-valued
function, associating a positive cost to either each vertex or each edge of T'. If f is constant
on leaves of T, then a solution to (4) for the subgraph T' of T that results from discarding
all leaves of T, i.e., by pruning T', can be converted to a solution to (4) for T in linear time.

Proof See Appendix D. |

2.3.2 SoLvING CLOF IN FOREST GRAPHS

The main problem for solving (4) for forest graphs is that the greedy approach described
in Theorem 17, will not work for forest graphs. E.g., consider the union of a linear graph
L and a bifurcating tree T' (Figure 8). Suppose f is an edge-valued cost function such that
f(L) =10, and f(B) = 4 for each of the three branches B connecting the bifurcation point
to a leaf in T'. The longest path (according to f) in the union of these graphs is L. However
the maximal subforest with at most 3 leaves is T, which does not contain L.

Nevertheless, we are able to straightforwardly apply the algorithm solving (4) for tree
graphs, to each separate connected component of the forest. From this, a solution for forest
graphs is easily derived. We discuss this more formally in Appendix B.

We conclude that CLOF is a graph optimization problem of high theoretical interest. It
induces a nontrivial monotone submodular set function maximization problem that can be
efficiently solved for forest graphs. Nevertheless, its practical value remains unclear until
this point. It turns out that CLOF provides an effective way for inferring backbones in
graphs through forest presentations. Hence, in the next section, we finally bring together
the boundary coefficient, f-pines, and CLOF, for topological data analysis of graphs.

2.4 f-Pines for Topological Data Analysis of Graph-Structured Data

We are now fully prepared to present our new method for topological data analysis (TDA)
of graph-structured data, the schematic overview of which is given in Figure le.

1. In case of point cloud data, we need to represent the underlying topology through a
graph. This is usually done by means of a well-known proximity graph, such as the
Rips graph or k-nearest neighbor (kNN) graph.

10 4

Figure 8: A greedy approach will always start from the path L, which cannot be extended
to a forest containing three leaves. However, the optimal subforest with three
leaves is T

21

VANDAELE, SAEYS, AND DE BIE

2. Based on the core measure f, we build an f-pine F' in G (Definition 10) using the
minimum spanning tree algorithm (Proposition 13). For weighted graphs where each
weight represents a notion of distance between vertices, i.e., higher weights denote
more distant nodes, we use the boundary coefficient (BC) as core measure (Definition
2). Its superior effectiveness over existing core measure for locating core structure
near the underlying backbone of a graph, has been discussed in Sections 1.2 & 2.1,
and qualitatively and quantitatively demonstrated by Vandaele et al. (2019b). For
unweighted graphs, we use the ordinary local cluster coefficient (LCC), due to its
close relation to the boundary coefficient (Proposition 3, Corollary 4 & Proposition
12), and the extensive amount of research that has already been performed on both its
theoretical and computational aspects (Watts and Strogatz, 1998; Zhu et al., 2017).

3. We solve CLOF for a well-chosen cost function g on either the vertices or edges in F'
(Section 2.4.1). We solve (4) for either a given number of leaves k € N>9 of interest,
or a (possibly infinite) upper bound on the expected number of leaves.

4. Further analysis may be required to result in the final backbone topology. E.g., in
the case of an unknown number of leaves where an upper bound was provided, visual
inspection or an elbow locating method may be used to infer the number of leaves,
which we discuss in Section 2.4.2 (see also Remark 18). A further step may be required
to identify cycles that are missing a representation in the forest-structured backbone,
which we discuss in Section 2.4.3.

2.4.1 INTRODUCING CoST FuncTIiONS FOR CLOF

To effectively mine topological substructures through CLOF in forest representations, we
need a function g defined on either the vertices or edges of the representations to optimize
in terms of (4). Some interesting choices for the g are discussed in Appendix C, which also
demonstrates the usefulness of Theorem 21 on a practical example. However, we will focus
on vertex betweenness, which equals how many shortest paths go through a particular node.

The intuition for using this measure is as follows. By Proposition 11, many (boundary)
nodes are not located on the backbone, but attached to it by means of a local minimum. To
reach one (boundary) node from another, we must first travel to the backbone, then from one
location on the backbone to another location, and thereafter leave the backbone to connect
to the other node. Hence, nodes on the backbone represent important nodes through which

Figure 9: Optimal subgraph with 3 leaves in a pruned
BC-pine according to the vertex betweenness
(edges in red). Nodes with high betweenness
represent important nodes for accessing many
others, due to the uniqueness of paths between
nodes in a forest.

22

MINING TOPOLOGICAL STRUCTURE IN GRAPHS THROUGH FOREST REPRESENTATIONS

a lot of ‘traffic’ flows in the pine. The only possibility to reach distant locations from each
other is to pass through these, resulting in nodes with a high betweenness.

The effectiveness of using vertex betweenness for TDA of graph-structured topologies
through forest representations and CLOF rests on the following properties.

e Though the betweenness is tedious to compute in large graphs, it becomes a lot easier
in forest graphs. The reason for this is that there is one unique path between each
pair of nodes lying within the same connected component. This also implies that the
forest can be treated as an unweighted graph for computing the vertex betweenness.

e Not only is the vertex betweenness constant on leaves (Definition 20), making it a lot
more efficient to solve CLOF by prepruning the forest representation (Theorems 21
& B.4), it also equals 0 on leaves. This implies that a solution to (4) in the pruned
forest representation equals a solution to (4) in the original representation.

e Contrary to other interesting vertex/edge-valued functions (Appendix C), the vertex
betweenness also accounts for the global topological structure of the forest. Hence,
given an effective forest representation, the relation between the vertex betweenness
and the backbone substructure goes in both directions. This means that nodes with
a high vertex betweenness correspond to nodes inducing the backbone substructure
in the forest representation, and vice versa (Figure 9).

We emphasize that the same measure, in this case the betweenness centrality, might only
be come topologically meaningful for identifying backbone structures in graphs through a
forest representation. This can be seen by comparing Figures 3¢ &. 9 (see also Remark 5).

2.4.2 ESTIMATING THE NUMBER OF LEAVES

Solving CLOF requires one parameter as input, namely the number & of leaves to be included
in the backbone. For the purpose of topological data analysis of graphs, this parameter is
ideally inferred from the data itself. As discussed in Remark 18, the fact that CLOF can
be solved through a greedy algorithm admits a convenient way to perform this estimate.
We will consider the case where our original graph G is connected, i.e., the resulting pine
is a tree graph T'. In case of disconnected graphs, our current approach is to estimate the
number of leaves for each component separately.

As the cost of the subtree increases with each iteration of the algorithm described in
Theorem 17, we can track the increase in cost according to the added number of leaves.
Initially, the increase in cost is high when we add true branches to our current subtree.
When all true branches are added, we start connecting our subtree to surrounding noise or
outliers, and the increase in cost drops. This is illustrated in Figure 10, which also shows
that an ‘elbow’ inference method may be used to tune the number of leaves. This may be
done either visually, or by a using an automated procedure, such as minimizing the second-
order finite differences of the function shown in Figure 10b. Note that we can easily extract
any solution with fewer leaves from the current solution (Remark 18)

23

VANDAELE, SAEYS, AND DE BIE

1.001
1
— |
@ 075 :
Path g :
1 = 0.50
2 © I
3 o |
-4 0.251
|
y L, ! ,
0 5 10 15

number of leaves

(a) Optimal subgraph with 4 leaves in a (b) Tracking the relative cost of the sub-
(pruned) BC-pine using vertex between- tree, i.e., the cost of the subtree divided by
ness. Edges and nodes are colored accord- the cost of the pine, displays an ‘elbow’ at
ing to their closeness to 1 of the 4 branches. k = 4 leaves.

Figure 10: Extracting the optimal result to (4) for a tuned number of leaves k = 4 in a BC-
pine using vertex betweenness as cost. The pine was obtained for a Rips graph
(e = 8) on a 2D point cloud data set with an underlying X-shaped topology.

2.4.3 IDENTIFYING MISSING CYCLES

Though until now we have thoroughly illustrated the advantages of working with interme-
diate forest representations of graphs for mining topological substructures, there is also a
disadvantage of using such representations at first sight. As by Definition 9 a spanning
forest may never include a cycle, we are unable to use any of its subgraphs for representing
the underlying topology of a graph if the true underlying model contains cycles.

However, as we will illustrate in this section, identifying a simplified underlying forest-
structured topology can be highly beneficial for identifying cycles missing in the backbone
representation of the underlying topology. We emphasize that though the approach dis-
cussed in this section is still experimental, it leads to effective results in practice.

Consider the forest-structured backbone B we constructed throughout a point cloud
data set D of 807 observations representing Pikachu in the Euclidean plane, by means of
our method for TDA of graph-structured data sets (Figure 11a). We used a Rips graph G
with € = 3.5 as a graph modeling the underlying topology of Pikachu.

Figure 11b shows four different persistence diagrams resulting from D (Section 1.2).
One for the metric space (D, deyclidean), one for (D, dg) where dg denotes the shortest path
metric on the Rips graph G, one that results from approximating the diagram for (D, dg)
through the method described by Cavanna et al. (2015), and finally one for (V(B), dg).

The diagram for the original point cloud data (Figure 11b, Top Left) displays many
long persisting cycles, as well as some cycles corresponding to topological noise (holes with
a low persistence). The diagram for (D, d¢g) (Figure 11b, Top Right) does not include the
original large cycles with a large birth value anymore. These cycles are never born due
to infinite distances between nodes in different connected components of G. However, the
topological noise with a low birth value remains. A small amount of topological noise also
remains in the approximated diagram for (D, dq) (Figure 11b, Bottom Left). However, the

24

MINING TOPOLOGICAL STRUCTURE IN GRAPHS THROUGH FOREST REPRESENTATIONS

(a) A forest-structured backbone graph B (edges and nodes in red) for a point cloud data

set resembling Pikachu. Persistent homology (Figure 11b) allows one to identify cycles
that should be represented in the backbone B (edges in black).

& .

15

Death
Death
10

Death

Death

0 5 10 15 20 0 5 10 15 20
Birth Birth

(b) Persistence diagrams for various metric spaces. (Top Left) A diagram for
(D, deyclidean)- (Top Right) A diagram for (D,dg). (Bottom Left) An approximated
diagram for (D, d¢) using |V (B)| points. (Bottom Right) A diagram for (V(B),dg).

Figure 11: Compared to the standard approaches to persistent homology, our forest struc-

tured backbone inferred through solving CLOF in the BC-pine allows for a more
effective and efficient approach to identify cycles in Pikachu.

25

VANDAELE, SAEYS, AND DE BIE

diagram for (V(B),d¢g) (Figure 11b, Bottom Right) also disposes of the topological noise,
and what remains is exactly one point (H1) for each one of the eight ‘gaps’ that are still
present in B. One for each of Pikachu’s two cheeks, ears, and eyes, one for its lip, and one
for its tongue. These gaps are characterized by two nodes of B lying close to each other in
the original graph G, i.e., according to dg, but not in B, i.e., according to dp.

Hence, the application of forest-structured backbones to topological data analysis goes in
both directions. On the one hand, the forest-structured backbone B makes the computation
of persistent homology more efficient and reduces topological noise. On the other hand,
persistent homology itself provides a tool for identifying the missing cycles in the backbone.

Furthermore, depending on the used implementation, the computation of persistent
homology also allows one to locate a cycle that represents the hole corresponding to each
one of the points (H1) in the diagram (Fasy et al., 2014). This allows one to locate the
cycles that are missing a representation within the backbone topology. These cycles are
shown in Figure 11a. Note that however, the cycle is computed to be underlying the metric
space (V(B),dg), and might not correspond to an actual subgraph of G.

3. Experiments

In this section, we show how our method is applicable to a wide variety of graphs arising
from different fields of science. For our applications, we will focus on topological data
analysis, visualization, and graph simplifications. Note that graph simplifications recently
showed to increase the performance of existing graph embedding methods (Chen et al.,
2018). Our method will show to be applicable to a wide variety of data sets, from social
networks, to high-dimensional point cloud data.

We will present the ten different data sets on which we will conduct our experiments
in Section 3.1. In Section 3.2, we will discuss the baseline methods we will use to verify
the effectiveness of our newly introduced method on these data sets. In Section 3.3, we
qualitatively discuss our obtained results. Section 3.4 considers the introduction and results
of our quantitative metrics used to measure the performance of our method. We will also
conduct a separate large scale experiment on 333 cell trajectory data sets in Section 3.4.3,
using a domain specific baseline and set of quantitative measures.

3.1 Summary of the used Data Sets
We will consider various types graphs to analyze the performance of our method.

Swiss Roll (SR). The Swiss Roll is a commonly used manifold for analyzing the perfor-
mance of nonlinear dimensionality reductions (Tenenbaum et al., 2000). We generated a
synthetic data set of 1000 points lying on such manifold. A Rips graph with 47013 edges
(e = 0.75) was constructed from this data for analysis through our method.

Karate Network (K). Zachary’s karate club is a well-known social network of a karate club,
studied by Wayne W. Zachary for a period of three years from 1970 to 1972 (Zachary, 1977).
The network consists of 34 members of a karate club. Each one of the 78 edges between
pairs of members denotes an interaction outside the club. During the study a conflict arose
between the—under pseudonyms known—administrator “John A” and instructor “Mr. Hi”,
which led to the split of the club into two. Half of the members formed a new club around

26

MINING TOPOLOGICAL STRUCTURE IN GRAPHS THROUGH FOREST REPRESENTATIONS

Mr. Hi, whereas members from the other part either found a new instructor or gave up
karate. This splits the network into two ground-truth communities. Furthermore, each edge
is weighted with the the number of common activities the club members took part of. We
mapped each edge weight to its inverse, as higher weights corresponded to more distant
nodes when we introduced the BC (Vandaele et al., 2019b).

Harry Potter Network (HP). We consider an unweighted network G displaying 221 rela-
tionships between 63 characters from the Harry Potter novels. The original graph can be
found at github.com/hzjken/character-network, and has edges representing sentiment
relationships between characters. The original edges represented either a hostile or friendly
relationship. However, we only considered edges denoting friendly relationships between
characters, as to detect a natural flow in the network.

Game of Thrones Network (GoT). We consider an unweighted network G defined on 208
characters of the Game of Thrones saga®, obtainable from https://shiring.github.io/
networks/2017/05/15/got_final. Each one of the 326 edges between two nodes denotes
either a (undirected) ‘mother’, ‘father’, or ‘spouse’ relationship. Due to the similarity of its
concept to the previous network, we present its qualitative analysis in Appendix A.

Co-authorship Networks: KDD & NeurIPS. We consider two more challenging non-metric
graphs, displaying co-authorship relations for two different machine learning and data min-
ing conferences: KDD (K nowledge Discovery and Data Mining, 5749 nodes & 19 715 edges),
and NeurIPS (Neural Information Processing Systems, 6525 nodes & 15770 edges). The
data used to construct this graph is publicly available on aminer.org/citation. We only
considered the largest connected components of these graphs for analysis. Each edge is
weighted by the inverse of the number of papers co-authored by the corresponding two
authors. Hence, low weights imply more closely connected authors. Due to their similarity,
the qualitative analysis of the NeurIPS network is presented in Appendix A

Earthquake Locations (EQ). We obtained a data set containing information on 80 549
earthquakes ranging between the years 1950 and 2017. This data is freely accessible from
USGS Earthquake Search. The topology underlying such a data set was already analyzed
by Aanjaneya et al. (2012) and Vandaele et al. (2019a). However, contrary to their followed
procedure, we do not restrict ourselves to a particular small rectangular domain with a
low amount of noise, do not apply any noise filtering in advance, and are able to obtain
a topological simplification through a kNN graph. A random sample of 5000 earthquake
locations was taken, from which we constructed an undirected 10NN graph with 31129
edges using the Great circle (geographic) distances between location coordinates for analysis.
These distances where also used as weights of resulting edges.

Cell Trajectories. We will first demonstrate the effectiveness of our method for cell trajec-
tory inference or visualization by means of a synthetic cell trajectory data set of 556 cells in a
3475-dimensional gene expression space (SC). This data represents a snapshot of these cells

2. Both the HP and GoT network depict relationships among individuals within ‘societies’. These societies
are ‘good’ and ‘bad’ in the HP network, whereas they are the houses in the GoT network. Hence, these
graphs fall under the category of graphs that are studied in social sciences. Although one might argue
whether these graphs can be considered ‘real-world’ graphs, we believe these are examples to which many
readers can relate, as to confirm the effectiveness of our method for these types of graphs.

27

github.com/hzjken/character-network
https://shiring.github.io/networks/2017/05/15/got_final
https://shiring.github.io/networks/2017/05/15/got_final
aminer.org/citation

VANDAELE, SAEYS, AND DE BIE

at a specific point during a cell differentiation process. Different stages in the differentiation
process correspond to differentially expressed genes. Hence, the ground-truth underlying
topology of the point cloud gene expression data set is the (embedding of the) differentiation
network. A kNN graph (k = 10, 4646 edges) will be used to analyze the underlying topology
of this data. We will conduct a similar experiment on a kNN graph (k = 5, 1543 edges)
constructed from a real cell trajectory data of 355 cells embedded into a 3397-dimensional
gene expression space (RC1), as well as on a kNN graph (k = 10, 974 edges) constructed
from a second real cell trajectory data set of 154 cells in a 1770-dimensional gene expression
space (RC2). We will use the latter data set to show how a dimensionality reduction can
significantly improve our obtained results. We will use Euclidean distances to construct
these graphs, and for the corresponding edge weights.

Our observations on these data sets will lead us to a new method for cell trajectory in-
ference (Saelens et al., 2019), discussed in Section 3.4.3. We will evaluate this new method
on a combination of 227 synthetic and 106 real gene expression data sets, all of which
(including those above) may be obtained from https://zenodo.org/record/1443566#
.Xab5deYza02. The number of cells (observations) ranged from 59 to 13281, while the
number of genes (features) ranged from 373 to 23 658. The underlying ground-truth topolo-
gies consisted of a mix of linear structures, bifurcating, tree graphs, forest graphs, as well as
general graphs, i.e., with cycles. We will also evaluate our method for various kNN graphs
k € {5,10,15,20,25} constructed from each of these considered cell trajectory data sets, to
evaluate the sensitivity of our method to the choice of this parameter.

3.2 Summary of the Baseline Methods

We will evaluate the performance of our method by comparing our results to those obtained
through three different baselines, chosen to address the following questions (Figure 2).

1. Why do we need intermediate forest representations?

2. Why are our introduced pines effective forest representations?

Similar to how we can specify the number of leaves to be selected through CLOF,
each of these baseline methods will require a number of ‘important’ points to be selected.
For comparison, we will specify each baseline method to select the same number of nodes
(componentwise) as the number of leaves selected through our own method. The different
baselines we will consider are summarized below.

Facility Location + Steiner Tree (FacilitySteiner). We will use this baseline will to in-
vestigate the applicability of Steiner trees to our problem. First, we use an intermediate
step based on facility location in metric spaces. We start by selecting k medoids through a
partitioning around medoids (PAM) algorithm (Mitra et al., 2019). PAM is a clustering al-
gorithm reminiscent to the ordinary k-means algorithm (Hartigan, 1975), but chooses data
points as centers (medoids) and can be used with arbitrary distances. Once these medoids
have been selected, we pass them to an algorithm for approximating a Steiner tree through
these nodes, as described by Sadeghi and Frohlich (2013). The result of this method is
illustrated in Figure 2a.

Farthest Point Sample (FarthestPoint). Our second baseline method is inspired by the
algorithm for solving CLOF in tree graphs (Theorem 17), which includes a farthest point

28

https://zenodo.org/record/1443566#.Xab5deYza02
https://zenodo.org/record/1443566#.Xab5deYza02

MINING TOPOLOGICAL STRUCTURE IN GRAPHS THROUGH FOREST REPRESENTATIONS

sampling according to a user-defined cost function. Instead, we apply a similar procedure
to the original graph. We start with either the center of the graph (if we only wish to
select one node), or the longest shortest path between two nodes of the graph (measured
according to the original distances). Consecutively, we connect the next farthest point to
the current tree by means of the shortest path between them, until a prespecified number
of points has been selected. The result of this method is illustrated in Figure 2b.

CLOF in the Regular Minimum Spanning Forest (CLOFinMSF). Our third baseline method
is also inspired by our algorithm for solving CLOF in tree graphs. However, this time we

solve CLOF in the regular minimum spanning forest (MSF) constructed from the original

graph. The purpose of this baseline is to illustrate the effectiveness of representing graphs

through BC/LCC-pines for mining topological substructures through CLOF. The result of

this method is illustrated in Figure 2c.

Slingshot. For our large scale cell trajectory inference experiment, we will consider another
baseline method that has been specifically designed for this task. We will compare our new
cell trajectory inference method to Slingshot (Street et al., 2018), which is currently the top
ranked method for cell trajectory inference in terms of accuracy according to Saelens et al.
(2019), who developed a wrapper to provide a common input and output model that allows
one to compare different cell trajectory inference methods. Slingshot requires a clustering
of the cells into groups to start with, builds a minimum spanning tree on these clusters,
and refines the such obtained tree by means of principal curves (Hastie and Stuetzle, 1989).
Note that the clustering method required for being able to compare Slingshot to other cell
trajectory inference methods has been provided by Saelens et al. (2019).

3.3 Qualitative Analysis of the Results

Swiss Roll. Figure 12 shows our considered point cloud data D lying on a ‘Swiss Roll’.
Figures 13a-13d show the Rips graph constructed G from this data, as well as the backbones

Figure 12: 3D point cloud data D lying on a ‘Swiss Roll’. Points are colored according to the
first coordinate of the 2D Isomap embedding of D based on G. The backbone
obtained through our newly introduced method curls all the way around the
‘core’ of the manifold.

29

VANDAELE, SAEYS, AND DE BIE

Isomap2
> o
o

Isomap1 Isomap1

(a) The linear backbone from FacilitySteiner. (b) The linear backbone from FarthestPoint.

o 03 o 03 BC
s s 0s
g 0.0 g 0.0 0.4
203 2.03 0.2
0.0

6 3 0 3 6 6 3 0 3 6
Isomap1 Isomap1
(c) The linear backbone from CLOFinMSF. (d) A linear backbone from the BC-pine.

Figure 13: Various backbones (black) through a ‘Swiss Roll’-shaped point cloud data set.
Only through the BC-pine, we are able to infer a smooth and centered backbone
that extends to the true leaves of the linear-structured model that underlies the
data.

obtained through our various procedures. The 2D embedding of D was obtained through
an Isomap embedding of D based on G (Tenenbaum et al., 2000).

Various observations can be made from Figure 13. First, FacilitySteiner performs well
in terms of centering the backbone and its smoothness (Figure 13a). However, it is unable
to fully extend to the true ‘outside’ of the backbone, as the selection of medoids is not
analogous to the selection of leaves through CLOF. FarthestPoint performs better in terms
of fully extending to the true underlying leaves (Figure 13b). However, the resulting back-
bone crosses the topology diagonally instead of through its center, as it searches for the
mazximal shortest path between two nodes. CLOFinMSF performs well in approximating
a vast majority of the nodes in G, as it ‘wiggles’ through the entire graph. The result of
CLOFinMSF is however far from smooth, and it also does not extend to the true under-
lying leaf on the left (Figure 13c). In contrast, our newly introduced method of mining
the backbone through solving CLOF in a BC-pine performs well in terms of centering the
backbone, while also fully extending it to the true underlying leaves of G (Figure 13d).

Karate Network. Figure 14a shows the original Karate Network, the BC-pine, as well as a
linear backbone mined from this BC-pine. Figure 14b displays the backbone where nodes
are colored according to their ground truth community. Given the ground-truth separation
of two communities, a linear backbone fits our network well. Furthermore, this separation
of the two communities is preserved by our backbone (Figure 14b). We further remark
that both John A (A), as well as Mr. Hi (H), achieve a very low BC (Figure 14a), which
coincides with these nodes being highly transmissive nodes in the ground-truth model.

Harry Potter Network. Figure 16 shows the original Harry Potter Network G, an LCC-pine
in G, a forest-structured backbone B mined from this LCC-pine, and a representative cycle
obtained through persistent homology of (V(B),d¢) (Figure 15). It turns out that only our

30

MINING TOPOLOGICAL STRUCTURE IN GRAPHS THROUGH FOREST REPRESENTATIONS

BC

0.61

0.23

-0.16

-0.54

(a) A linear backbone (red edges) mined from (b) The backbone linearly separates the two
the BC-pine (black edges) constructed from ground-truth communities defined by the
the karate network (grey edges). main characters: John A (A) and Mr. Hi (H).

Figure 14: Our method identifies a linear backbone in the Karate network, consistent with
the ground-truth separation of the network into two different communities.

newly proposed method and FacilitySteiner were able to actually capture Harry Potter—the
main protagonist—within the major component of the forest-structured backbone.

The other smaller components correspond to special cases. We let the backbone com-
ponent of the single isolated edge of “Riddles” simply be itself (note that both vertices
have betweenness 0 in any spanning forest of the graph). The component in the LCC-pine
corresponding to the triangle of “Dursleys”, is pruned to a single node (Theorem 21), which
is chosen as the representation of this component. Note that we also did this to obtain a
representation of Pikachu’s nose in Figure 11a. However, unlike for the component repre-
senting this nose, all nodes in the triangle of “Dursleys” have an LCC of 1. Hence, there is
no meaningful interpretation to the LCC-pine having chosen Vernon Dursley as the inner
node of the corresponding linear component consisting of these three nodes in the pine.

Connoisseurs of the saga may be surprised by Harry Potter and Sirius Black being quite
distant from Albus Dumbledore, according to the linear backbone component representing
the major component of G, first needing to pass through Lord Voldemort. This is because

Figure 15: The persistence diagram of (B, d¢) in the Harry
Potter Network reveals the presence of one cycle
(H1) missing in the forest-structured backbone
representation. Note that the multiplicity of the
top left point (HO) equals three, i.e., the number
of connected components in B according to dg.

Death
00 05 1.0 15 20 25 3.0

00 05 10 15 20 25 3.0
Birth

31

VANDAELE, SAEYS, AND DE BIE

LcC

Ma@dle 1

Tom @Ble Sr. Jam@tter g
g Lilter
e Siriack 0

Koy

Ruhe@a rid /
Olym@axime B atbus I@-ledom 5 A . 0.75
° Ronl t‘;”'é T eory asley Moa)’rtle

. h@ Hermi |ﬁEﬁ r?}&ger o

Igor aroff \
an 7 s
Ced gory

Banemi@uuch Sr.

Luna

" Neville @boﬂo
Tapeona 05

Bartemi@'ouch Jr. 0.25
Vincen{Crabbe ST. Dudl@rsley '

Luci@ alfoy
p Lord mort Vernq@@u rSleyPﬂUﬂ@lTSIE!

Dra@lfoy ° ° i
) 0

Figure 16: A backbone (red edges + red vertex borders) mined from the LCC-pine (blue
edges) constructed from the Harry Potter network (grey edges). Persistent ho-
mology of the metric space induced by the original metric in G on the nodes of
the backbone can be used to find a representative cycle missing in the backbone
(orange edges).

of the lack of ability to include cycles through a (sub)forest representation of our original
graph. However, as can be seen from Figure 16, this linear component (red edges) goes all
the way around through the corresponding component. Its leaves are actually very close to
each other according to dg. As discussed in Section 2.4.3, persistent homology allows us to
discover that a cycle is missing from our backbone representation (Figure 15). Furthermore,
Figure 16 also displays the representative cycle corresponding to the single identified hole
in the underlying topology (orange edges), placing Harry much closer to Dumbledore in the
underlying topology of the graph.

KDD Co-authorship Network. We applied our method to construct a tree-structured back-
bone with 5 leaves. The resulting tree graph is shown in Figure 17.

To verify that the cores of our tree representations, i.e., the BC-pines, indeed correspond
to meaningful core structures in the original graphs, we studied various measures of our
network when moving deeper into the backbone by pruning leaves of the trees, namely:

e the fraction of authors still included in the subtree;

e the average number of citations of the authors still included in the subtree;

32

MINING TOPOLOGICAL STRUCTURE IN GRAPHS THROUGH FOREST REPRESENTATIONS

e the average year of the first publication in the considered conference across al authors
still included in the subtree.

For comparison, we compared this to the same measures for the tree representations cor-
responding to our baselines. This equals the regular MST for CLOFinMSF, which is the
solution to (4) for the maximal possible number of points (leaves) that can be selected
through the algorithm in the MST (Theorem 17). Since FacilitySteiner and FarthestPoint
do not make use of an intermediate forest representation for inferring a backbone, we analo-
gously consider the trees that result from selecting the maximal number of nodes during the
algorithm. For FacilitySteiner, this equals the Steiner tree induced by all nodes, and hence,
also the regular MST. For FarthestPoint, we consider the tree that results from continuing
the sampling until all nodes all included. We will refer to this tree as the FPS tree.

The obtained metrics according to the number of pruning iterations are shown in Figure
18. By iteratively pruning leaves, we note that the BC-pine retracts much faster to a
core structure than the regular MST, discarding the majority of the nodes after the first
iteration, a consequence of Proposition 11. The FPS tree quickly discards of many nodes as

KDD

Bing Liiu Christos Faloutsos Jian Pei
Padhraie Smyth Eric P. Xing Deepak Agarwal
HeikkiMannila Yan Liu Jieping Ye William DuMouchel
Aristides Gionis Claudia Perlich Vipin Kumar Naren Ramiakrishnan Corinna Cortes

Francesco Bonchi Foster'Provost Jaideep Srivastava Mohammed J. Zaki Vladimir Vapnik

HuiWang Geoffrey I. Webb Ron Kohavi Thomas Seidl Bernhard Schélkopf
David A. Bell Zijian Zheng Carla E. Brodley BernhardPfahringer KojiTsuda
Sarabjot Singh Anand Ying Li T. Stough StefandKramer Hisashi'Kashima
Steve Chien Luc De/Raedt Masaru Kitsuregawa

Kiri L. Wagstaff Stefan'Wrobel =~ Masashi Toyoda
Pat Langley Bo Kang Ken-ichi Kawarabayashi
Tijl De Bie Michael E. Houle
Vladimir Estivill-Castro
Figure 17: A tree-structured backbone for the KDD co-authorship network with 5 leaves.

Nodes and edges are colored according to their closeness to one of the 6 resulting
branches.

33

VANDAELE, SAEYS, AND DE BIE

=]
S

10000 2008

7500

5000 /\/

2500

n
(=]
(=]
=

Mean year since active
n
(=]
o
(=]

Fraction of original graph size
&
o
Mean number of citations

o
o
S
o

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
Times pruned Times pruned Times pruned

— regular MST — FPS tree — BC-pine

Figure 18: Various measures after iteratively pruning the regular MST (red), the FPS tree
(green), and the BC-pine (blue). (Left) Fraction of original graph size. (Middle)
Average number of (KDD) citations. (Right) Average year of first published
(KDD) paper.

well. However, the BC-pine retracts towards a core structure marking authors with a high
number of citations, and who have been present very early in the considered conference.
This is exactly what we expect from the core structure of the original graph.

Note that through a previous and similar analysis, we showed the effectiveness of the
BC over the LCC even in non-metric weighted graphs (Vandaele et al., 2019b).

Earthquake Locations. Figure 20 shows the result of constructing a forest-structured back-
bone for our graph representing the earthquake locations through the three baseline meth-
ods, and our newly introduced method. Each method was specified to select 35 nodes.
FacilitySteiner is again unable to extend across the entire underlying topology, leaving
large patches unrepresented. The resulting backbone also only contains 23 leaves. The
backbone resulting from FarthestPoint connects to many outliers, prone to be selected
through this method. Furthermore, the backbone also passes through outliers, as shortest
paths in the original graph will take any ‘shortcut’ available. The backbone also only
contains 26 leaves. This is due to leaves added at one iteration being connected to other
leaves in further iterations. In contrast, both backbones obtained through CLOF exactly
contain 35 leaves as specified. Both extend well across the entire underlying topology, while
avoiding outliers. Note that the regular MST avoids connecting through outliers through

10000

Figure 19: The persistence diagram of (B,dg) reveals the
presence of many small, medium, as well as larger
cycles missing from the forest-structured back-
bone B derived through our newly introduced
method.

Death
6000

0 2000

0 2000 4000 6000 8000 10000
Birth

34

MINING TOPOLOGICAL STRUCTURE IN GRAPHS THROUGH FOREST REPRESENTATIONS

50 50

latitude
latitude

-50 -50

50 50

latitude
latitude

-50 -50

-100 100 200 -100 100 200

0 0
longitude longitude

Figure 20: Backbones (red) derived from earthquakes scattered across the Earth using var-
ious methods. (Bottom Right) A representative cycle for the most persisting
hole in (B, d¢) identified through topological persistence is overlayed in orange.
Only through the BC-pine, we are able to infer a backbone that passes smoothly
through the entire graph, while avoiding outliers. We quantitatively verify this
in Section 3.4

multiple edges as the corresponding weights are usually high, whereas the BC-pine avoids
connecting through these as they are separated from the true core by means of boundary
nodes. The main difference between the backbones obtained through CLOF is their size:
through the BC-pine, we approximate the entire underlying topology of the graph with
less than three times the nodes than through the regular MST (Table 2). This is again a
consequence of CLOFinMSF resulting in a very ‘wiggled’ backbone.

Figure 19 shows the persistence diagram of (V(B), dg)—B being the backbone derived
through our newly introduced method—which indicates that there are many small, medium,
as well as larger cycles missing from the forest-structured backbone. Figure 20 (Bottom
Right) also displays a cycle representing the most persisting hole, spanning the entire Earth.

Cell Trajectories. Figures 21 & Figures 22 visualize our obtained results for the first two
cell trajectory networks discussed in Section 3.1, as well as the known ground-truth under-
lying topologies (Figures 21e & 22b). The point cloud data, as well as the obtained kNN
graphs and the resulting backbones, are visualized on multidimensional scaling plots using
Pearson correlations as distances between cells.

It should be noted that even though the constructed proximity graph may incorrectly
connect different parts of one or multiple branches, our method is well able to both correctly
identify and locate the present linear topology. E.g., Figure 21d shows that even though the

35

VANDAELE, SAEYS, AND DE BIE

kNN graph forms a cyclic structure through the entire data, our method is able to correctly
identify and locate the ground-truth linear underlying topology. In contrast, each one of
our baseline methods incorrectly connects the two underlying leaves (Figures 21a-21c).

Even without CLOF to infer topologies from our pine, Figure 21g & 22d show that
the BC-pine visualizes the ground-truth topologies present in the data well through the
Fruchterman-Reingold layout algorithm (Fruchterman and Reingold, 1991). For compari-
son, we also illustrated the regular minimum spanning tree (MST) of the graphs (Figure 21f
& 22c¢), from which it is a lot more difficult to visually deduce the ground-truth underlying
topologies. Furthermore, it can not be deduced from the visualization in Figure 21f that
two groups of cells are actually connected through the incorrect region (Figure 21c¢).

As our method is specifically developed for topological data analysis of graphs, it is
important that the ground-truth underlying topology of our point cloud data corresponds
to the underlying topology of our graph used to represent this data. This is generally a very
difficult task, especially for high-dimensional data sets that commonly suffer from the curse
of dimensionality. E.g., the Euclidean distance measure and the concept of closest neighbors
become much less meaningful in high-dimensional spaces (Aggarwal et al., 2001). This may
lead to a low quality representation of the data’s underlying topology through a kNN graph.
Though our method was able to infer the topology of the underlying cell trajectory network
in our previous examples, we do note that the stated observation already applies to the
constructed proximity graphs. Their quality for representing the underlying topology is
affected by interconnections between different parts of branches (Figure 21d) or ‘hubs’ that
connect to many other points (Figure 22a). The latter is a typical problem occurring in
kNN graphs constructed from high-dimensional data (Radovanovié¢ et al., 2009).

We continue with our third cell trajectory data set, which is an extreme example of how
the curse of dimensionality may affect our results. Figure 23a visualizes the point cloud
data set D using diffusion map coordinates, as well as the BC-pine of a 10NN graph G
constructed from D using Euclidean distances in the original high-dimensional space. The
inferred backbone B, also shown in Figure 23a, is a single node. This is because a data
point v is the closest neighbor of 147 out of the 153 other data points. In the 10NN graph
constructed from the high-dimensional data, every one of these 153 data points is connected
to v, and the obtained BC-pine is a star graph as in Figure 7a. Making use of Theorem 21,
pruning discards all of these 153 nodes, and what remains is the single node v.

Clearly, Figure 23a shows that the underlying topology of G is not a truthful represen-
tation of the underlying ground-truth topology of D. However, as commonly used in cell
trajectory inference tools (Saelens et al., 2019), a dimensionality reduction may serve as a
first step for reducing the amount of noise and improving the quality of our representation.

Figure 23b visualizes the point cloud data set D using the same (first two) diffusion
map coordinates, but this time the BC-pine of a 10NN graph G constructed from the first
three diffusion coordinates of this embedding. The underlying topology of G is now a
much better reflection of the underlying ground-truth topology of D (Figure 23c), and is
successfully mined through solving CLOF in the BC-pine. Again, comparing Figures 23d
& 23e, we note that the BC-pine serves as a tool for graph visualization as well.

36

MINING TOPOLOGICAL STRUCTURE IN GRAPHS THROUGH FOREST REPRESENTATIONS

group
o 1
o2

group
9| e 1
o2

1 group
) o 1
o 2

group
o 1
o2

(a) A linear backbone
(blue) mined through

(b) A linear backbone
(blue) mined through

(¢) A linear backbone
(blue) mined through

(d) A linear backbone
(blue) mined from the

FacilitySteiner. FarthestPoint. CLOFinMSF. BC-pine.
e O
o Pon o g
% o o P
e - %%Q) o tD W 0@ 090 0
@ ﬁ e El
®_ e oqeb
L
@%
o
e,
@ «8 g aFo

(f) Visualizing the MST of G using the Fruchterman-

(e) The ground-truth un-
Reingold layout algorithm.

derlying topology of D.
One group of cells (1)
evolves to another (2)
through a linear differenti-
ation process.

(g) Visualizing the BC-pine of G using the Fruchterman-Reingold layout algorithm, with
the edges of the found linear backbone in blue.

Figure 21: The BC-pine allows one to both visualize and infer the underlying topology from
a synthetic high-dimensional gene expression data set through a 10NN graph G.

37

VANDAELE, SAEYS, AND DE BIE

group

MEF
d2_intermediate
d2_induced
d5_intermediate
d5_earlyiN
Neuron

Myocyte

o0 o0co0oQoe

(a) A bifurcating backbone (blue) is mined from the (b) The ground-truth underlying
BC-pine (black edges) constructed from a 5NN graph topology of D.
G (grey edges) of real gene expression data D.

(d) Visualizing the BC-pine of G using the Fruchterman-Reingold layout algorithm, with
the edges of the found bifurcating backbone in blue.

Figure 22: The BC-pine allows one to both visualize and infer the underlying topology from
a real high-dimensional gene expression data set through a 5NN graph G.

38

MINING TOPOLOGICAL STRUCTURE IN GRAPHS THROUGH FOREST REPRESENTATIONS

group group

e H1975 e H1975

o H1975,H2228 HCC827 o H1975,H2228 HCC827
o H2228 o H2228

o HCC827 o HCC827

(a) A single node backbone (blue) is mined (b) A bifurcating backbone (blue) is mined

from the BC-pine (red edges) constructed from the BC-pine (red edges) constructed

from a 10NN graph G (grey edges) of real from a 10NN graph G (grey edges) of a 3-

gene expression data D. dimensional embedding of D into diffusion
map coordinates.

:'0'0‘“ - - e
o .Io“n Ir,\)
A e 03,9" 28
0. G o
o0g 9 e e
o]] O- Q. 's)
?D. _Q_O’éfa o }ﬁo
o P %
U-c?-'_'of_o—i___ ° TO———o—— ch,__:'o—,a_,ﬂ}___{b_,oo
0n 000 ° g qu—fg.., /":8- *<po
o ° CE .).’.6:’_0_ o o %o
O— 5 —o o o '-U-""'ﬂ-o
[HCCR2T] 8o
(¢) The ground-truth under- (d) Visualizing the MST of G using the Fruchterman-
lying topology of D. Reingold layout algorithm.

(e) Visualizing the BC-pine of G using the Fruchterman-Reingold layout algorithm, with
the edges of the found bifurcating backbone in blue.

Figure 23: The BC-pine allows one to both visualize and infer the underlying topology from
a real high-dimensional gene expression data set through a 10NN graph G.

39

VANDAELE, SAEYS, AND DE BIE

3.4 Quantitative Analysis of the Results

As to evaluate the performance of our method, ideally one would have access to a ground-
truth underlying graph-structured topology. However, not only is it difficult to assess
whether there exists a homeomorphic mapping from one graph to another (Lapaugh and
Rivest, 1980), more often than not we do not have access to a ground-truth model.
Nevertheless, in Section 3.4.1 we will introduce general metrics allowing us to support
and interpret our obtained results, which we will summarize in Section 3.4.2.
Furthermore, we will conduct a separate large scale cell trajectory inference experiment
in Section 3.4.3. The knowledge of ground-truth topologies as well as the recent development
of quantitative metrics for comparing different cell trajectory inference tools (Saelens et al.,
2019), allows us to objectively measure the performance of our method for this purpose.

3.4.1 INTRODUCING GENERAL QUANTITATIVE METRICS

We will consider a variety of metrics that allow us to meaningfully interpret how well our
inferred forest-structured backbone B models the underlying topology of a graph G. We
distinguish between four different properties we want our backbone to satisfy.

Backbone Size. The relative size of B compared to G should be small for a good simpli-
fication. Hence, we will consider n%, the percentage of nodes from G still included in the
resulting backbone. As there is a direct relation between the original graph, n%, and the
percentage of edges still included in a forest-structured backbone, we will omit the latter.

Goodness of Fit. Though we prefer a simplification that significantly reduces the size of the
original graph GG, we also want our backbone to be a good approximation of GG. Therefore,
we consider the metric

>_vev() da(v, B)

>vev(a) da(v, Ca)’

where dg(v, B) denotes the distance of v to its closest node in B, and dg (v, Cg) denotes
the distance of v to its closest node in the center of GG, defined as the union of nodes that
have minimum eccentricity in their respective connected component of G. Inspired by the
coefficient of determination in linear regression, we consider this metric to be a measure
for how much of the ‘variance’ in our graph G is explained by the model B. However, we
do not consider squared distance as in the usual definition of this coefficient, to lessen the
effect of outliers. As we do not assume G to reside in any vector space, there is no definition
of an ‘average’ node. Hence, our notion of ‘mean’ is fulfilled by the ‘center’ in graphs.

R(B)=1-

Smoothness. We want our backbone B to pass ‘smoothly’ through our graph, instead
of ‘wiggling’ through many nodes (compare to overfitting in linear regression). To this
end, we compute the projection Gp of G on B, by connecting each node of G through

its closest path to B. We then compute the ratio o = ddGG(q(JL’L”v), where u and v are the
B b

most distant nodes in G. Hence, o(B) denotes how well the distance between the two
furthest points in G is preserved through B. Note that trivially o(B) = 1 if B was obtained
through FarthestPoint. Furthermore, o is ‘penalized’, i.e., further from 1, when centering
our backbone and preventing it from passing through outliers. However, this is exactly
what we want.

40

MINING TOPOLOGICAL STRUCTURE IN GRAPHS THROUGH FOREST REPRESENTATIONS

Commute Time Preservation. One of the most difficult qualities of a forest-structured
backbone B to assess, is how well it preserves the metric induced by the original graph
(GG. Missing cycles may result in failing to preserve the original metric, whereas in the
case of curvature and outliers, we actually wish to not preserve the original metric as close
as possible. To this end, we consider the correlation cor,.; between the average commute
times of the original graph G and the projection of G on G (Fouss et al., 2007). These
commute times are based on a Markov-chain model of random walk through the graph,
which have shown to effectively deal with outliers in graphs (Moonesignhe and Tan, 2006).
Note that however, this metric does not account for the fact that we cannot include cycles
in a forest-structured backbone.

3.4.2 QUANTITATIVE SUMMARY OF OUR RESULTS

Table 1 summarizes the settings in terms of leaves we used to obtain the backbones for the
graphs discussed in Section 3.3 through our method. Each of our baselines also requires a
number of nodes to be selected per component, for which we used the kcomp-row of Table 1.

SR |K | HP | GoT | NeurIPS | KDD | EQ | SC | RC1 | RC2
Fmax 10 10 | 50
Kepec 10 5 5 | 35
keomp | 2 | 2 | 220 | 82 5 5 |3 |2 3 | 3

Table 1: Input and output summary to obtain a forest-structured backbone through BCB.
Kmax: upper bound on the total number of leaves for solving CLOF to increase
efficiency (blank if not specified). kgpec: the specified number of leaves to be
selected once the subforest had been fully grown or up until the maximum number
of leaves (blank if estimated through minimizing second-order finite differences).
Keomp: the number of resulting leaves for each connected component (0 meaning
a backbone component consisting of one node).

Table 2 summarizes the network sizes for each graph G (n = |V(G)|, m = |E(G)|),
runtimes, and our quantitative results for the metrics introduced in Section 3.4.1. All these
results were obtained using non-optimized R code on a machine equipped with an Intel®
Core™ i7 processor at 2.6GHz and 8GB of RAM. Note that the specified runtimes in Table
2 for our method are those when given the (possibly infinite) upper bounds kp,ax from Table
1. The runtimes for the baselines are those when specified to exactly select kcomp nodes.
We observe that our method scales well to graphs with thousands of nodes. We will discuss
further directions for scaling our method to higher order graphs in Section 5.

Our method also scales well according to the topological complexity, whether given or
bounded by a number of leaves. In contrast, FacilitySteiner is significantly slower when
selecting more medoids in higher order graphs, taking 8.6min for the earthquakes data.
Since the placement of medoids through FacilitySteiner is density based, it also struggles
to identify important regions that make up the topology, even when specified to select the
correct number of nodes to do so (Figure 2a). Clear examples of this are the bifurcating real
cell trajectory data sets, for which FacilitySteiner infers a linear trajectory. Furthermore,

41

VANDAELE, SAEYS, AND DE BIE

time n% R o COTact | Kcomp

ili i 4 2
Swiss Roll (SR) FacilitySteiner 4.19s 1.0% | 0.69 | 0.997 | 0.48

n = 1000 Farther'stPOint 4.71s 2.1% | 0.88 1 0.49 2
m— 47013 CLOFinMSF 2.66s 28% | 0.93 0.62 0.16 2
CIOFinBC-pine 3.41s 2.3% | 0.89 0.97 0.49 2

Karate (K) FacilitySteiner 0.046s 12% | 0.40 1 0.35 2
" — 34 FarthestPoint 0.005s | 21% | 0.48 1 0.36 2
m— 78 CLOFinMSF 0.31s 26% | 0.54 | 0.90 0.39 2

ClOFinBC-pine | 0.018s 12% | 0.44 | 0.95 0.39 2
FacilitySteiner | 0.029s | 10% | 0.50 1 0.96 | 2-2-0

Harry Potter (HP)

n— 63 FarthestPoint 0.007s 16% | 0.53 1 0.96 | 2-2-0
m — 9291 CLOFinMSF 0.067s 16% | 0.53 1 0.96 | 2-2-0
CIOFinLCC-pine | 0.23s 21% | 0.56 1 0.96 | 2-2-0
GoT FacilitySteiner 0.22s 17% | 0.72 1 0.93 7-2
n — 208 FarthestPoint 0.026s | 29% | 0.76 1 0.90 8-2
CLOFinMSF 0.13s 26% | 0.78 | 0.95 0.90 8-2
m =320 CIOFinLCC-pine | 0.40s | 29% | 0.81 | 1 091 | 82
KDD FacilitySteiner 20s 0.19% | 0.22 0.94 0.13 3
" 5747 Farthe§tPoint 11s 0.77% | 0.21 1 0.14 5
m— 19751 CLOFinMSF 4.5s 3.3% | 0.32 0.55 0.12)
CIOFinBC-pine 32s 0.87% | 0.31 | 0.87 0.16)
NewrIPS FacilitySteiner 20s 0.19% | 0.14 1 0.15 3
" — 6952 FartheétPoint 12s 0.72% | 0.18 1 0.16 5
m — 15770 CLOFinMSF 53 1.9% | 0.23 | 0.95 0.12)
ClOFinBC-pine 30s 0.88% | 0.26 0.84 0.14)

FacilitySteiner | 8.6min | 8.4% | 0.96 | 0.81 0.56 23
FarthestPoint 14s 9.6% | 0.97 1 0.59 26
CLOFinMSF 14s 54% | 0.99 | 0.69 0.28 35

ClOFinBC-pine 24s 16% | 0.99 | 0.79 0.58 35

Earthquakes (EQ)
n = 5000
m = 31146

CIOFinBC-pine 0.15s 5.4% | 0.64 0.78 0.67
FacilitySteiner | 0.048s | 6.5% | 0.60 1 0.67
FarthestPoint 0.017s | 11% | 0.67 1 0.69

CLOFinMSF 0.029s 34% | 0.83 | 0.60 0.46

ClOFinBC-pine 0.38s 11% | 0.73 0.81 0.68

Real cells 2 (RC2)
n =154
m =974

FacilitySteiner | 0.16s | 1.6% | 0.59 | 0.9994 | 0.52 | 2

Synth‘feélgﬁ(sc) FarthestPoint | 0.14s | 2.2% | 059 | 1 | 048 | 2
7: e CLOFinMSF | 0.034s | 7.9% | 0.82 | 056 | 0.50 | 2
CIOFinBC-pine | 0.49s | 52% | 0.81 | 0.53 | 0.65 | 2

FacilitySteiner 0.073s | 2.3% | 0.50 1 0.67 2

Real ;eis 315éRC” FarthestPoint | 0.05s | 4.2% | 0.59 | 1 068 | 3
CLOFinMSF | 0.052s | 9.6% | 0.67 | 052 | 0.64 | 3

m = 1543 5

2

3

3

3

Table 2: Quantitative summary of our experimental results. Our newly introduced method
for mining backbones in graphs through forest representations is marked in blue.

42

MINING TOPOLOGICAL STRUCTURE IN GRAPHS THROUGH FOREST REPRESENTATIONS

unlike FarthestPoint and the backbones constructed through CLOF, there is no straight-
forward way to extract the result for a lower number of selections through the output of
FacilitySteiner. One needs to rerun the entire algorithm for this, making it difficult to tune
the resulting topological complexity through FacilitySteiner.

Overall, not a single metric is able to fully quantify the global performance of each
method on its own. Note that we did not mark ‘winning’ values, as extremes may also
indicate a bad performance (e.g., o is always 1 for FarthestPoint). However, we note that
these metrics strongly support our observations up until now. E.g, CLOFinMSF often
results in the best approximation of the original graph (high R), at the cost of including
many more nodes (high n%), and ‘wiggling’ through all of them (low o). In contrast, our
method provides a backbone that approximates the original graph nearly as well (sometimes
even better), using much fewer nodes in order to do so. This is most notably the case with
the Swiss Roll (n% = 2.3%, R = 0.89 with our method vs. n% = 28%, R = 0.93 with
CLOFinMSF), the KDD network (n% = 0.87%, R = 0.31 vs. n% = 3.3%, R = 0.32),
the NeurIPS network (n% = 0.88%, R = 0.26 vs. n% = 1.9% and R = 0.23), and the
earthquakes (n% = 16%, R = 0.99 vs. n% = 54%, R = 0.99). Our method also results
in a consistent smoothing for the co-authorship graphs, unlike CLOFinMSF (respectively,
o =0.87 (KDD), o = 0.84 (NeurIPS) vs. ¢ = 0.55 (KDD), 0 = 0.95 (NeurIPS)).

FacilitySteiner and FarthestPoint often result in smaller (low n%) and smoother (high
o) backbones, however, at the cost of providing worse approximations (low R) of the original
graphs. This can be either due to failing to span the entire graph (FacilitySteiner), or failing
to center the resulting backbone in the graph (FarthestPoint).

All methods perform similarly well in terms of preserving the average commute times.
The most notable exceptions are where either CLOFinMSF performs worse, such as the
Swiss Roll (corae = 0.49 with our method vs. coraey = 0.16 with CLOFinMSF), the earth-
quakes (corae; = 0.58 vs. coraey = 0.28), and the second real gene expression data set
(coraet = 0.68 vs. coraey = 0.46), or where our method performs better, i.e., for the syn-
thetic cells (coraet = 0.65 vs. a maximum of 0.52 for the other methods).

The main networks contradicting the observations above, are the unweighted networks
(HP & GoT). Here, our method actually results in the best approximation of the original
graph (R equals 0.56 and 0.81, respectively), while remaining a smooth approximation (o
equals 1 twice) that well preserves the average commute times (cor,et equals 0.96 and 0.91,
respectively). Furthermore, our method appears to provide the least smooth approximation
for the synthetic cell trajectory data set at first sight (¢ = 0.53). However, through Figures
21a-21d, we have shown that our method was the only method capable of identifying the true
underlying topology. The longest shortest path in the original graph—used for computing
o—incorrectly connects the two underlying leaves (Figure 21b), which explains this result.

3.4.3 LARGE SCALE CELL TRAJECTORY INFERENCE

The results we obtained through our newly introduced method, in this section abbreviated
to BCB (Boundary Coefficients to Backbone), on the cell trajectory data sets in Section
3.3, lead to a new cell trajectory inference method.

1. start from a (high-dimensional) gene expression data set D;

2. use a dimensionality reduction method to reduce the (high-dimensional) noise in D;

43

VANDAELE, SAEYS, AND DE BIE

3. construct a kNN graph G from the lower dimensional representation of D;

4. construct the BC-pine in G;

5. identify the underlying topology from the pine by means of (4).

Contrary to many of the existing cell trajectory inference tools (Saelens et al., 2019),
we do not require the data to be represented in a vector space, can infer more complex
topologies than linear, bifurcating, or connected ones, and do not preprocess the data
through a clustering method.

Each of our 333 considered data sets described in Section 3.1 was embedded in a 20-
dimensional space using diffusion maps with Pearson correlations and standard settings in
R. Consecutively, we estimated the intrinsic dimension d, 3 < d < 20, of our data using
an inference method based on the eigen-multipliers of the embedding. We implemented
the same inference method as the wrapper for Slingshot developed by Saelens et al. (2019).
The code for this wrapper can be found on https://github.com/dynverse. We evaluated
our method over multiple values k € {5, 10, 15,20, 25} for building kNN graphs from our
diffusion coordinates, using the Euclidean distance between points. The resulting proximity
graph was used to construct a BC-pine, from which we mined the underlying topology using
CLOF. A number of leaves I, 2 < [< 30, was estimated for each connected component in
our BC-pine, by minimizing the second-order finite differences of the function mapping the
number of leaves to the corresponding vertex betweenness cost, as discussed in Section 2.4.2.

We used the four metrics suggested in Saelens et al. (2019) to quantify the quality of our
inferred trajectories, which we summarize below. For full details on the exact computation
of these metrics, we refer to Saelens et al. (2019).

o The correlation between geodesic distances, measuring if the positioning of cells is
similar in the ground-truth and inferred trajectory.

e The Hamming-Ipsen-Mikhailov (HIM) metric, measuring the similarity of the weighted
adjacency matrices of the ground-truth and inferred trajectory.

o The F1 score between branch assignments, measuring the similarity between the as-
signment to branches in the ground-truth and inferred trajectory.

o The correlation between important features, measuring if the same differentially ex-
pressed features are found in both the ground-truth and inferred trajectory.

All these metrics lie within [0,1]. Higher values correspond to better performances. We
also evaluated the computational cost of our approach in terms of runtime (in seconds) and
storage (in GB). Figure 24 visualizes the performance for each considered metric, as well as
for various choices of k(NN graphs), through cumulative distribution plots.

We first note that the overall performance of our cell trajectory inference method is
stable when it comes to the choice of k. In terms of the obtained results, our method turns
out to be comparable to Slingshot. We especially note an increase in performance when
it comes to the correlation between geodesic distances. Furthermore, our method scales at
least as well as Slingshot in terms of runtime, which is mostly affected by the choice of k,
i.e., the density of Ha(D) (Theorem 8). In terms of storage, our method does scale worse.
However, it turns out this is due to computing and storing the entire Pearson correlation
matrix for the embedding. Given the dimensionality reduction, our method scales better in

44

https://github.com/dynverse

MINING TOPOLOGICAL STRUCTURE IN GRAPHS THROUGH FOREST REPRESENTATIONS

terms of memory than Slingshot, through implementing 8 by means of sparse matrices (see
Algorithm 1 in Appendix B), and cleverly making use of Theorem 21.

method id beb-k10-diffusionmap — bcb-k20-diffusionmap — beb-k5-diffusionmap prior — FALSE -~ TRUE
—~ — bcb-k15-diffusionmap — bcb-k25-diffusionmap slingshot

correlation him
1.00

0.75

0.50

metric
(=)
[4)]
o
metric

0.25

0 100 200 300 0 100 200 300

featureimp_wcor F1_branches

metric
o
o
o

0 100 200 300 0 100 200 300

time_method max_mem_gb
5000 |

4000 (10

2 3000

metric

Q
E 2000

1000

0 100 200

Figure 24: Various metrics for evaluating BCB as a cell trajectory inference tool, with and
without the number of leaves as prior, sorted according to performance for each
method. Our method shows to be comparable to the state-of-the-art for cell
trajectory inference for all considered metrics. However, unlike Slingshot, our
method allows us to pass knowledge of the number of leaves to the CLOF-
algorithm, increasing the overall performance.

45

VANDAELE, SAEYS, AND DE BIE

80

Frequency
40

I
7 8 9 10 11 12 13 14 15
e

T
0 1 2 3 4 5 &6
(True) Leaves

Figure 25: Distribution of the number of leaves across our 333 cell trajectory data sets.

Slingshot does seem to perform better when it comes to the HIM-metric. Investigating
this further, the HIM and F1 scores are mostly affected by the prediction of how many leaves
are present in the underlying topology. Figure 25 shows the distribution of the number of
leaves across our 333 cell trajectory data sets described in Section 3.1. Note that a trajectory
with less than two leaves must include a cycle. The distribution of the (true) number of
leaves across our cell trajectory data sets in Figure 25 shows that the cumulative plots in
Figure 24 may be greatly affected by the performance on linear and bifurcating topologies,
making up the majority of the trajectories. Especially on bifurcating topologies, Slingshot
seems to provide a better estimate on the number of leaves (Figure 26).

We also evaluated the performance of our method when we know the true number of
leaves in our network (Figure 24). In case of less than two leaves, e.g., which may be the
case if the ground-truth topology is a cycle, we still estimated the number of leaves as above.
Note that Slingshot does not allow one to input the number of leaves as prior.

We observe that the performance of our method now increases in terms of all three of
the HIM metric, F1 score, and correlation between important features, most significantly
for the latter two. The lack of change in the correlation between geodesic distances may be
explained by this metric not being affected that much by shorter branches. These branches
are often excluded from our original inferred trajectory, as our estimate based on minimizing
second-order-finite differences was generally too low (Figures 25 & 26).

The results summarized in this section show how our newly introduced optimization
problem constraining the number of leaves (4) leads to a highly effective cell trajectory
inference tool. If prior knowledge on the number of leaves in the ground-truth model is
available, BCB outperforms Slingshot—the until now most accurately ranked state-of-the-
art method for cell trajectory inference—in terms of the metrics introduced by Saelens
et al. (2019). Without this prior knowledge, BCB is comparable to Slingshot by using our
currently heuristic (elbow) estimator (Section 2.4.2). Slingshot is however unable to take
the number of leaves as input. Hence, unlike Slingshot, BCB allows one to incorporate
effective and independent machine learning models for estimating the number of leaves.
This may eventually lead to a new best performing cell trajectory inference method, even
when no prior knowledge is available. We will discuss this further in Section 5.

4. Discussion and Conclusion

Investigating and visualizing simplified graph-structured topologies in data is a core problem
in many fields of science. Until now, there was no universal approach applicable to both
general networks, as well as to point cloud data approaching such models. State-of-the-art

46

MINING TOPOLOGICAL STRUCTURE IN GRAPHS THROUGH FOREST REPRESENTATIONS

bcb-k10-diffusionmap bcb-k15-diffusionmap
0 0-
1 1
24 2-
3 3-
4 4-
w 5 o 5
9 ¢ w100 O g s 1.00
> 6 S 6
8 7 075 & 7. 0.75
= 4 050 — g 0.50
g) 025 8 . 0.25
= 0.00 0.00
2345678 9101112131415 2345678 9101112131415
Predicted Leaves Predicted Leaves
bcb-k20-diffusionmap bcb-k25-diffusionmap
8 100 O 1.00
b 075 § 0.75
- 050 — 0.50
) 025 2 0.25
= 000 &= 0.00
2345678 9101112131415 012345678 9101112131415
Predicted Leaves Predicted Leaves
bcb-k5-diffusionmap slingshot
0 0.8
-
2.
3.
4]
3 > 100 O 1.00
> 67 | B 2 = 1.
8 7 075 & 0.75
— g 050 — 0.50
g . 025 % 0.25
= 0.00 0.00

ok WWNN = O

01234567 8 9101112131415 01234567 809101112131415

Predicted Leaves Predicted Leaves

Figure 26: Normalized confusion matrices showing the true vs. the predicted number of
leaves. Note that all methods output a trajectory with at least two leaves. In
the case of 11 gene expression data sets, the number of neighbors k£ = 5 was too
low to represent the connectedness of the true model through a neighborhood
graph, resulting in fragmented backbones with many leaves (ranging from 17 to
104). These predictions were discarded from the corresponding confusion matrix
for visualization purposes.

47

VANDAELE, SAEYS, AND DE BIE

methods that focused on either one of them were computationally inefficient, sensitive to
parameters, noise and outliers, were topologically biased, or did not generalize well. We
solved these issues by introducing a simple but crucial intermediate step that showed to be
highly beneficial throughout this entire paper. That is, designing a forest representation
from which we may efficiently, robustly, and meaningfully mine topological substructures.

We introduced the boundary coefficient (BC), a coefficient that locates core topological
structures well in many complex graphs (Vandaele et al., 2019b). Contrary to existing
vertex measures, this coefficient is specifically designed for this purpose. Hence, the BC
overcomes many difficulties faced with when dealing with this problem, such as applicability
to complete networks, robustness to outliers, and the ability to deal with non-uniform
branch lengths and curvature. Along with this, we provided extensive theoretical results
concerning the computation of the BC, its robustness, as well as its relation to the ordinary
local cluster coefficient. We showed that together, the BC and our introduced concept
of f-pines (Vandaele et al., 2019b), provide effective forest representations in which many
concepts of graph theory, such as longest paths and betweenness centrality, become both
efficiently computable, and topologically meaningful.

Our newly introduced graph-optimization problem under the name of Constrained
Leaves Optimal subForest (CLOF) is already interesting on a purely theoretical level.
CLOF induces a nontrivial monotone submodular set function maximization problem sub-
ject to a cardinality constraint on tree graphs, for which a greedy approach provides an
exact solution in polynomial time. Nevertheless, we also thoroughly illustrated the impor-
tance of this problem, as well as the effectiveness of its solution, for mining substructures
through forest representations. All together, we provided a new method for topological data
analysis of graph-structured data. We qualitatively and quantitatively demonstrated that
our method leads to effective graph-structured models—balancing their size, goodness of
fit, smoothness, and average commute time preservation—in many types of synthetic and
real world data sets. These may be given weighted or unweighted graphs, point cloud data
sets embedded in (non-)Euclidean metric spaces, or high-dimensional data sets.

Naturally, there is no single best method when it comes to extracting the backbone from
a network. There will be cases where our approach will not be the best one as well. Examples
are when the connectedness of our graph does coincide with the connectedness of its model,
or in case of metric data, when the used proximity graph is not a truthful representation
of the underlying model (Figure 23a). Nevertheless, our results convincingly show that we
provided a very promising method across a broad spectrum of realistic applications.

5. Further Work

Scalability. Our method shows to scale well to thousands of nodes. At first sight, this may
not be enough for many practical applications, such as large network embedding (Tang
et al., 2015; Chen et al., 2018). Nevertheless, there are many practical examples, such as
cell trajectory data, where identifying the underlying topology for graphs of this order re-
mains an important problem. Furthermore, our method may scale to larger order graphs
by optimizing or even parallelizing our current implementation to compute boundary co-
efficients, the most expensive part of our method. Algorithms for approximating these

48

MINING TOPOLOGICAL STRUCTURE IN GRAPHS THROUGH FOREST REPRESENTATIONS

coefficients may be investigated on a theoretical, probabilistic, and experimental level as
well.

Generalization. One may increase the local scope of the boundary coefficient. L.e., the BC
currently only averages over pairs of neighbors, but it may as well consider neighbors of
neighbors, and so on. In this way, we may be able to effectively mine topological skeletons
in non graph-structured data with a locally higher intrinsic dimension. An example of this
would be the Swiss Roll from Section 3, where we increase the width of the manifold (along
the z-axis), while also increasing the sparsity of the proximity graph.

We experimentally demonstrated that modeling our topology through a (sub)forest is
not a severe limitation when it comes to cycles. These may be more efficiently discovered
through persistent homology if our backbone provides a significant size reduction, while
remaining spread out across the underlying topology. However, we have yet to provide an
effective method for ‘lifting’ the holes found by means of topological persistence to our forest-
structured backbone, i.e., closing the gaps corresponding to these holes. Persistent homology
has also been connected to minimum spanning trees and their higher-dimensional analogues
of minimum spanning acycles on a theoretical level (Kalignik et al., 2019). Connecting these
results to CLOF may lead to new theoretically well-founded approximation algorithms for
computing persistence (Silva and Carlsson, 2004; Oudot, 2015).

Another interesting direction is to investigate how our method generalizes to directed
graphs. From a topological viewpoint, (anti-)arborescences could be very useful to interpret
as possible backbone structures in directed graphs, as they have a natural and consistent flow
defined on them. However, this may already become too restrictive. Unlike for unweighted
graphs, such backbones may become non-existing if we require that each other node in the
graph can be connected in some way to this backbone, through either a fixed or varying
directionality. Furthermore, the BC may become undefined for nodes in weakly connected
components, that are not strongly connected, and a different core measure may be more
appropriate. This leads to many new theoretical and practical research questions.

Cell Trajectory Inference. In the case of cell trajectory inference, we noted that even the
best performing cell trajectory methods, according to Saelens et al. (2019), often struggle
in correctly identifying the backbone, including its number of leaves (Figures 24 & 26).
Empirical investigation shows that for many data sets, branches are difficult to separate
from each other due to a high amount of noise (even after a dimensionality reduction),
or that branches which are relatively short according to some main trajectory are left
undetected (intuitively, our ‘elbow’ in Figure 10b will occur too soon). However, we showed
how that our method may highly benefit from a more effective leaf inference method for
this purpose, as it can use this knowledge to increase its performance. A possible approach
is to include a topological inference method. Carlsson (2014) presented a method under
the name of functional persistence, that allows one to deduce ‘flare’-like structures. These
may be used to distinguish between a Y-shape and an X-shape (but not between an X-
shape and an H-shape). In this way, we are able to construct topological summaries, i.e.,
persistence diagrams summarizing topological features of data sets, that have recently lead
to effective topological inference and classification tools (Rieck and Leitte, 2017; Hofer et al.,
2017; Rieck et al., 2019), which may aid us in quantifying or learning the number of leaves
independent of our used method.

49

VANDAELE, SAEYS, AND DE BIE

Applications. We only focused on applications within the field of topological data analysis
throughout this paper. Correctly identifying the graph-structured model is the exact pur-
pose of cell trajectory inference methods. For other graphs such as social networks, we also
showed that we can meaningfully identify backbone structures, both on a qualitative and
quantitative level. Our procedure provides a way to visualize or obtain insight into their
underlying structure. Nevertheless, this is often not the end goal for these networks. Hence,
a wide variety of new applications of backbones, such as community detection, subgroup
discovery, and graph embeddings, is yet to be discovered. E.g., Chen et al. (2018) intro-
duced a heuristic algorithm to iteratively simplify a graph, as to increase the performance
of any existing graph embedding method through better initializations. Hence, initializing
the embedding through a well-chosen backbone can lead to a graph embedding method that
respects topological properties of the graph.

Finally, one may investigate how backbone extraction improves existing models for
graph-structured data, and vice versa. E.g., graph convolutional networks (GCNs) have
recently led to many new applications for graphs (Kipf and Welling, 2016a). On the one
hand, prior knowledge of nodes near or on the core structure of the graph may enhance the
ability to learn from graphs through better initializing a GCN. This is similar to the method
described above for improving graph embeddings, which is also one of the many applications
of GCNs. On the other hand, similar to how an initial dimensionality reduction improves
the performance of cell trajectory inference, graph autoencoders (Kipf and Welling, 2016b)
may serve as a tool to find a latent or denoised representation of the graph, prior to the
final backbone extraction.

Acknowledgments

The research leading to these results has received funding from the European Research
Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) /
ERC Grant Agreement no. 615517, from the Flemish Government under the “Onderzoek-
sprogramma Artificiéle Intelligentie (AI) Vlaanderen” programme, from the FWO (project
no. G091017N, GOF9816N, 3G042220), and from the European Union’s Horizon 2020 re-
search and innovation programme and the FWO under the Marie Sklodowska-Curie Grant
Agreement no. 665501.

We furthermore acknowledge Bo Kang and Bastian Rieck for helpful discussions, as
well as Wouter Saelens and Robrecht Cannoodt for helping us setting up our large-scale
cell trajectory inference experiments. Finally, we thank the anomynous reviewers for their
many insightful comments and suggestions that had a noticeable positive impact on both
the content and presentation of our work

Appendix A. Supplementary Experiments

In this section, we provide further analysis of our method, by qualitatively discussing our
obtained backbones for two of the graphs discussed in Section 3.

Game of Thrones Network. Figure A.1 shows the original Game of Thrones Network G, an
LCC-pine in G, a forest-structured backbone B mined from this LCC-pine, and the union

50

MINING TOPOLOGICAL STRUCTURE IN GRAPHS THROUGH FOREST REPRESENTATIONS

of the representative cycles for the two most persistent holes obtained through persistent
homology of (V(B),dg). Nodes are colored according to their ground-truth community,
i.e., the family they belong to.

We obtained a backbone B with 10 leaves using ‘standardized’ vertex betweenness as cost
function. I.e., the betweenness for each node was divided by the total cost of its correspond-
ing connected component. Note that the cost of the smaller component in the backbone
is relatively low according to its sum of (original) betweenness centralities, as it contains
much fewer nodes than the larger component. Using non-standardized betweenness, one
would either need to further increase the number of leaves for the smaller component to be
represented in the backbone, or manually specify the number of leaves for each component.

Our backbone B illustrates well how the ground-truth communities make up the entire
topology of our graph. E.g., there is a branch corresponding to House Tyrell, to House
Greyjoy, to House Martell, to House Targaryen, Not only is the backbone able to
separate the communities well, but it also is able to infer how different communities are
connected. E.g, House Stark, House Lannister, the Boltons and further on House Frey, are
all connected through Sansa Stark. Eddark Stark (often referred to as Ned Stark), connects
Sansa Stark (and through her the Lannisters, Boltons, and House Frey) to a branch of
‘older’ Starks, to House Tully, and to House Targaryen through Jon Snow.

Nevertheless, there are again some obvious ‘gaps’ in our backbone representation B
of G. E.g., Sansa Stark immediately connects to a branch of Lannisters through Tyrion
Lannister, but to reach the other cluster of Lannisters, she must first travel through the
Boltons, and then through House Frey, making it apparent that these groups of Lannisters
form seperated communities. Another obvious gap is present in House Baratheon, as we
first need to travel through House Lannister, House Stark, and House Targaryen before
reconnecting this community. Though some smaller gaps seem to be present as well (and
may also be identified using persistent homology), the ones discussed above correspond to
the two most persistent holes one obtains by computing persistent homology of the metric
space (V(B),dq) (Section 2.4.3). The union of the two corresponding representative cycles
are shown in Figure A.1 as well. Note that these cycles overlap through a path between
Jaime Lannister and Sansa Stark.

NeurIPS Co-authorship Network. We again applied our method to construct a tree-structured
backbone with 5 leaves. The resulting tree graph is shown in Figure A.2.

As we did for the KDD network, we verified that the cores of our tree representations,
i.e., the BC-pines, indeed correspond to meaningful core structures (Figure A.3). We observe
that our method provides consistent results, as again, the BC-pine retract towards a core
structure marking authors with a high number of citations, and who have been present very
early in the considered conference.

Appendix B. Algorithms and Computational Costs

In this section, we analyze the computational cost and provide basic pseudocode for the
algorithms used in our method for topological data analysis of graph-structured data sets.

51

VANDAELE, SAEYS, AND DE BIE

Lanna

Lapnister
DamiZ Jonnel
Lapnister Stark
/“ Crégan Alys
Damon Lannister "Z‘aﬂ(AI"’
son of Jason
BrandonStark ‘,]:r e':
7Cregan I
Ber: Jon
Jaim

Sgark Agryn
Princess of Lannister
Dprn
/ ?ﬁ‘% I _
W m
L
Oberyn egar | Quellon
Arry :
Martell AerysAf Targa f Greyjoy
Tagpgaryen Robb
Edwy]es\lé
Ricl
Shaera Targaryen tark Hoster Balon
La ister %‘ia 1-“-'1~nk lly Greyjoy
Aegon V(Targaryen T
Betha Blackwood Tyri As(l;a .ara)
Jaithe Stark reyjoy
Duntcan (Targatyen Lannister Lannister
Rhaelle Targaryen
\m Tywin Lannister Unknown
Steffon Tommen Baratheon Ramsay " "
Bagatheon Margagty-Tyxell yface Bolfon Luthof igfe nvén\;lmﬂr
:“ | Tvrell 1
Stanhis 'Ifyre]l son of Xﬂryn
Baratheon Thebdore
Roose Tyrell
'I}get?m Bolton
m‘ster
E Lannigter wald: House Baratheon
g La““m" Kggn Fre““ 3 House Frey
° LannRer Y House Greyjoy
F'fy House Lannister
Langel Mertett House Martell
LanniSter_, meger™" T House Stark
Frey House Targaryen
01 2 3 4 5 6 7 House Tully
Birth House Tyrell

Figure A.1: A forest-structured backbone with 10 leaves (red edges) mined from the LCC-
pine constructed from the Game of Thrones network (grey edges). Nodes are
colored according to their ground-truth community, i.e., the House they belong
to. White nodes correspond to members that are unassigned to any house.
Persistent homology of the metric space induced by the original metric in G on
the nodes of the backbone is used to identify cycles missing in the backbone
(orange edges).

52

MINING TOPOLOGICAL STRUCTURE IN GRAPHS THROUGH FOREST REPRESENTATIONS

NeurlPS
Michael L. Jordan
Satinder P. Singh Geoffrey E. Hintunx Xing Andrew Y. Ng
Richard S. Sutton Ruslan Salakhutdinov ~ Alexandér J. Smola Daphne Koller
Csaba Szepesvari Yoshua Bengio Bernhard Schilkopf Gal Chechik
Shie Mannor é unos Jason{Weston Klaus-Robért Miiller Eytan Ruppin
Ron Meir . Moore Mehryar Mohri Jakob Hi Macke David Horn
Tong Zhang Koch Sanjiv. Kumar Maneeshl Sahani Nathan Intrator
Han Liu rona Ananda Théertha Suresh KrishnafV. Shenoy Leon N. Cooper
Pradeep Ravikumar rause Alon Orlitsky Kwabenia'Boahen

InderjitS. Dhillon evher Vwani P. Roychowdhury Andreas G} Andreou

Prateek Jain Lawre Carin Thomas Kailath

Ashish Kapoor Balaji Krishnapuram Babak Hassibi

Eric Horvitz Gle ung David G. Stork

John V. Guttag Jude havlik Alessandro Sperduti

Figure A.2: A tree-structured backbone for the NeurIPS co-authorship network with 5
leaves. Nodes and edges are colored according to their closeness to one of
the 6 branches.

@ 1.00
@ = 0 2005
< 9 =
= b=
© 0.75 8 3
s %= 20000 o
© ° 2
o o £ 2000
'S 0.50 [} @
5 I g
- 5 10000 9
© c c 1995
c 025 p s
2 3 L
&}
e = -
LC 0.00 ‘] I 01 ; ‘ i I 19901 : i ‘
0 10 20 30 0 10 20 30 0 10 20 30
Times pruned Times pruned Times pruned

— regular MST — FPS tree — BC-pine

Figure A.3: Various measures after iteratively pruning the regular MST (red), the FPS tree
(green), and the BC-pine (blue), for the NeurIPS network. (Left) Fraction of
original graph size. (Middle) Average number of (NeurIPS) citations. (Right)
Average year of first published (NeurIPS) paper.

53

VANDAELE, SAEYS, AND DE BIE

Input: weighted graph G

Output: vector of boundary coefficients BC
1 hopl = spam(hop_k_approx(G, k=1)) #compute hop-1-approzimation
2 hop2 = spam(hop_k_approx(G, k=2)) #compute hop-2-approximation
3 BC = (apply.spam(hopl, 1, sum) * apply.spam((1 / hopl), 1, sum)

- diag((1 / hopl) %*% hop2°2 %*% (1 / hopl)) / 2) / (degree(G)"2)
#compute boundary coefficients

4 return(BC)
Algorithm 1: Computing the boundary coefficients through sparse matrices. ‘spam’
converts matrices to sparse matrix format. ‘apply.spam(A, 1, f)’ applies the function
f to each row of the sparse matrix A. The operations ‘*’ and ‘"2’ denote element-
wise multiplication, whereas ‘%*%’ denotes matrix multiplication. ‘1 / A’ returns the
element-wise inverse of a sparse matrix A. ‘diag(A)’ returns the diagonal of matrix A.

Theorem B.1 Let G be an undirected, positively weighted graph, with n nodes and m edges.
The boundary coefficients of all nodes in' V' can be determined in O(n(m+n'3™)) time using
Algorithm 1.

Proof Obtaining the hop-k-approximations can be done O(n(m + nlogn)) time through
Dijkstra’s algorithm. The matrix operations can be done in O(n?37™) time, which is the
computational cost of matrix multiplication (Davie and Stothers, 2013). |

Remark B.2 The computational cost stated in Theorem B.1 is worst-case, since it does
not account for the sparsity of Hi(D), k € {1,2}. In practice, we note that working with
sparse matrices significantly improves the efficiency of computing the boundary coefficients.

Theorem B.3 Let G be a graph with n nodes and m edges, and f : V. — R. Then an
f-pine of G can be determined in O(a(m,n)m) time using Algorithm 2. Here « is the
classical functional inverse of the Ackermann function, which for all practical purposes may
be considered a constant no greater than 4 (Sundblad, 1971).

Proof The stated complexity is that of computing the regular minimum spanning forest
(Chazelle, 2000). Reweighing the edges can be done in O(m) time. [|

Theorem B.4 Let T = (V,E) be a tree graph with n nodes (and n — 1 edges), and f a
real-valued function associating a positive cost to either each vertex or each edge of T'. Then

Input: graph G, vertex-valued cost function f on G

Output: an f-pine of G
1 return(mst(G, weights=f[E(G)[,1]] + f[E(G)[,2]]))
Algorithm 2: Computing the f-pine. ‘mst’ is a function that computes the minimum
spanning of a graph. The used weights follow from the result in Proposition 13.

54

MINING TOPOLOGICAL STRUCTURE IN GRAPHS THROUGH FOREST REPRESENTATIONS

Input: tree T, positive cost function f, upper bound k& > 2 on leaves (standard oo)
Output: A list L such that the subgraph of T" induced by the nodes in L[1:]]
equals the solution to CLOF for j < k.
1 L = list(NULL, longest_path(7', cost=f))
#the solution for k € {0,1} is the empty graph by convention
#the solution for k = 2 is the longest path according to f

2 current_leaves = 2 #number of leaves in the current solution
3 while current_leaves < k & L /=T do
4 v = which.max(distances(T, leaves(T"), L), cost=f)[1]
#determine furthest leaf from current solution according to f
5 current_leaves += 1
6 L[[current_leaves]] = path(from=L, to=v) #update the current solution
7 end
8 return(L)

Algorithm 3: Constrained Leaves Optimal subForest (CLOF) in trees. The function
‘distances(G, U, V')’ returns the distances between the nodes in U and V of a graph G.

for given k € N>a, an exact solution to (4) can be computed in O(nmin(k,l)l) time using
Algorithm 3, where l = |{v € V : §(v) = 1}|, i.e., | denotes the number of leaves in T.

Proof The advantage of working with tree (or forest) graphs, is that the path between a
pair of nodes is always unique. The pairwise distance matrix Dy between all leaves and all
nodes in 7', according to f, can be obtained in O(n-[) time by using a bread-first-search for
every leaf. For each of the no more than min(k,!) iterations of the algorithm described in
Theorem 17, we can add the new path in O(n -) time. This is clear for the first iteration:
search for the maximal entry of D and add the corresponding path to the current (empty)
structure. After the first path has been added, each consecutive leaf to be added can also
be determined in O(n - 1) time, after which the path can be added in O(n) time. [|

Theorem B.5 Let F = (V,E) be a forest graph with n nodes, and suppose f is a real-
valued function, associating a positive cost to either each vertex or each edge of F'. Given

k € N>o, an exact solution to (4) can be computed in O (n + Bo(F)(min(k, lc)lcne + lfO(F))>
time using Algorithm 4, where Bo(F) is the number of connected components in F, and I,

and n¢, respectively, are the maximal number of leaves and nodes included in a connected
component of F'.

Proof The components of F' can be determined in O(n) time. The complexity term
O(Bo(F)min(k,l.)lcn.) comes from applying Algorithm 3 to each connected component
of F'. After this, we can iterate over all possible combinations (k:l, o kg F)) of leaves for
each connected component, to obtain the overall best corresponding sum of total costs, in
O <B0(F)l?O(F)> time. Note that the total cost from 2 up to min(k,l.) for each component

may also be stored during Algorithm 3, and does not need to be recomputed. |

55

VANDAELE, SAEYS, AND DE BIE

Input: forest F', positive cost function f, number of leaves k.
Output: A subgraph of F' corresponding to the solution of CLOF.
1 treeSols = lapply(components(F'), function(T) Algorithm3(T, f, k))
#apply Algorithm 3 to each connected component of F
#return a list of all solutions (note that each solution is a list itself)
2 currentCost = -Inf #cost of the current best solution in F
3 fOI‘OSll, ey lﬁo(F) Skdo
4 if(sum(ly, ..., lgy(r)) > k) continue #skip if total number of leaves is > k
5 thisCost = sum(cost(treeSols[[1]][1:11]), ..., cost(treeSols[[Bo(G)]][1:5,(r)]))
#evaluate the cost of the current potential solution according to f
#the cost of each subtree can be stored during the execution
#of Algorithm 5 for fast evaluation
if thisCost > currentCost then
currentCost = thisCost
bestSol = subgraph(F, c(treeSols[[1]][1:11], ..., treeSols[[Bo(F)]][1:lg,(r)]))
#update the current optimal solution
#the solution is determined as the subgraph in I
#induced by all partial solutions
9 end

10 end
11 return(bestSol)
Algorithm 4: Constrained Leaves Optimal subForest (CLOF) in forests.

The additional exponential complexity term shows to be negligible in practice: often
Bo(F) is 1 or small. Theorem 21 allows us to significantly reduce [. in practice as well.

Appendix C. Other Cost Functions for CLOF

In Section 2.4.1, we demonstrated the usefulness of betweenness centrality as vertex-valued
cost function g used for identifying a subforest by means of (4) for the purpose of topological
data analysis of graph-structured data. Here, we discuss some other interesting choices.

The original edge weights. As our backbone is meant to span the entire underlying topology
of our given graph seen as a (shortest path) metric space, we may consider a longest or
multiple longest paths in our f-pine to make up the backbone. E.g., the longest path shown
in Figure C.4a identifies the correct underlying model, apart from the location of its leaves,
chosen to be the furthest points in the local noise around the true leaves.

In terms of performance, this method is affected by the presence of outliers. E.g., the
linear backbone in the pine shown in Figure C.4a is of similar length as the path in the
pine that takes a turn to pass pass through the centered outlier. Though we got lucky in
this case, we note that such ‘interbranching regions of outliers’ are often present in many
practical examples, such as in cell trajectory data, as discussed by Saelens et al. (2019).

In terms of scalability, note that our f-pine generally has many leaves due to Theorem
11. If we take a look at the case where our original graph is connected, i.e., where the f-pine
F is a tree graph, then this implies that the number of leaves [in F' may be of order n,

56

MINING TOPOLOGICAL STRUCTURE IN GRAPHS THROUGH FOREST REPRESENTATIONS

Weight

\ S 75
s 5.0
L] -
L] e

I 2.5

(a) Optimal subgraph with 2 leaves in a BC-
pine according to the original edge weights
(vertices in red). A single edge weight is
however not representative for whether the
corresponding edge is important for inclusion
in the backbone or not, as it is not based
on the resulting f-pine. Using our current
implementation, the algorithm described in
Theorem B.4 takes 56s to execute for the
resulting BC-pine with 477 nodes, with no
upper bound on k.

(b) Optimal subgraph with 2 leaves in a
pruned BC-pine according to the vertex de-
gree (edges in red). High degree nodes rep-
resent important nodes that should be in-
cluded in the backbone, according to Theo-
rem 21. The algorithm described in Theorem
B.4 now takes 0.1s to execute with no upper
bound on k, a significant improvement com-
pared to using the original edge weights as
cost. This illustrates the power of Theorem
21 when working with pines.

Figure C.4: Examples of solutions to (4) for cost functions other than vertex betweenness.

where n is the number of nodes in F. If one fully grows the pine by through Algorithm 3,
and consequently estimates an appropriate number of leaves k as discussed in Section 2.4.2,
Theorem B.4 implies that this computation may be close to cubic in n. Its memory usage
will be close to squared in n, due to storing the pairwise distance matrix between leaves and
all other nodes. Hence, apart from often not having a meaningful interpretation (Figure
C.4a), allowing the inclusion of any leaf of the pine makes our current implementation for
solving (4) difficult to scale to larger data sets.

The degree of a vertez. By Proposition 11, (locally) high degree nodes represent local
minima of f in an f-pine F. Given f is a core measure where low values indicate core
nodes, these are exactly the nodes where we want our backbone to pass through. Hence, we
may use the vertex-valued degree function g = §p for optimizing (4). The result for g = op
is less affected by outliers due to their low density in the original graph.

This cost function g is constant on leaves by definition. Hence, we may apply Theorem 21
to first prune F', often leading to a significant reduction of the graph size due to Proposition
11. In terms of Theorem B.4, this implies that both terms [and n decrease significantly,
leading to a much better computation time, as well as storage cost (which is O(l - n)).

Figure C.4b shows the resulting solution of (4) in a pruned BC-pine. High degree nodes
correspond to core nodes in the backbone, but not necessarily conversely. Though extending
the two leaves of the linear backbone by connecting each one of them to an arbitrarily chosen
neighboring leaf results in the optimal solution of (4) in the original pine (Theorem 21), we
do not conduct this step as this will again introduce randomness to the choice of leaves.

57

VANDAELE, SAEYS, AND DE BIE

Appendix D. Theorems and Proofs
Proof of Proposition 3 Using the equalities given in (1), we have

%|{u,w€]\/(v):{u,w}GE}|f|{u,w€N(v):{u,w}§ZE/\u7$w}]+5(v)'

BC(v) = 5(0)2

Since

{u,w € N(v) : {u,w} ¢ EAu#w} =6w)? - [{u,w e N): {u,w} € E} - 5(v),
we find
S 1{u,w € N(v) : {u,w} € E}| +26(v) — §(v)?

BC(v) = 502
_3(0) =1 (3 Xuwentw) Huwier L 2-8()
o(v) \2 4()(0(v) - 1) 5(v)
_ 0 =1 B3y o 1) -
= @) <2LCC() 1> + 50)"
Note that for graphs G = (V, E) without loops, {u,v} € E = u # v. [|

Proposition D.6 until Proposition D.9 present the other essential properties of general-
izations of the LCC that the BC satisfies (Wang et al., 2017)—apart from its applicability
to fully weighted networks—as discussed in Section 2.1.3.

Proposition D.6 (Weight-scale invariance, Vandaele et al. (2019b)). Let G = (V,E) be
an undirected graph without selfloops, with weighting function w : E — RT. Let wy :
E — R : {u,v} — Mw({u,v}) for a global scale factor A > 0. Then for every v € V,
BC\(v) = BC(v), where BC\(v) equals the boundary coefficient of v for the new weighting
function wy.

Proof By multiplying each edge weight with a global scale factor A > 0, the shortest path
distance between any two nodes is also scaled by the same factor A. Hence, the stated
equality easily follows from Definitions 1 & 2. |

Lemma D.7 Let G = (V, E) be an undirected graph, with weighting function w : E — R™T.
Suppose that £ denotes an additive noise matriz, which defines a new weighting function
we: E—= R : {u,v} = w({u,v}) + Eyup. Then the following statements are valid:

1. limyg||. -0 [[d — del|oc = 0, where d denote the shortest path metric on V' according to
w, and d. according we, where we follow the convention that d(u,v) — de(u,v) = 0 if
u and v lie in different connected components of G;

2. for any u,v,w € V belonging to the same connected component of G, with u # v # w,
lime_,0 7e(u, v, w) = T (u,v,w), where T (u,v,w) denotes transmissivity of v for u and
w according to w, and Tz(u,v,w) according to we.

58

MINING TOPOLOGICAL STRUCTURE IN GRAPHS THROUGH FOREST REPRESENTATIONS

Proof 1. Suppose u,v € V, and P is a shortest path from u to v according to w with
length d(u,v). Then the length of the same path P according to w, is bounded from above
by d(u,v) + |E(P)|- ||€]lcc < d(u,v)+|E|-||€||oo, where [E(P)| denotes the number of edges
on P. Since the length of the shortest path from w to v according to we is at most the
length of P according to we, it holds that dc(u,v) < d(u,v) + |E|||€|lcc- Analogously, we
have d(u,v) < d(u,v)e + |E| - [|€]|oo, so that limyg) 0 |de(u,v) — d(u,v)| = 0. As u and v
were chosen arbitrarily, the stated theorem holds.

2. This easily follows from Proposition D.7.1. and Definition 1. |

Proposition D.8 (Continuity). Let G = (V, E) be an undirected graph without selfloops,
with weighting function w : E — RT. Suppose we is a new weighting function on E that
differs in exactly one edge e € E by an additive constant € € R, i.e., we(e) = w(e) +e€ € RT,
and we|p\fey = W|p\fey- If BCe denotes the boundary coefficient function according to the
new weighting function w,, then lime_,og BC¢(v) = BC(v) for all v € V with §(v) > 0.

Proof This easily follows from Lemma D.7 and Definition 2. |

The problem in the ordinary formulation of the ‘robustness to noise’ property stated
by Wang et al. (2017), is that the error-value A(€) is not well-defined when a node has a
boundary coefficient of 0. Hence, we consider a slight variant below.

Proposition D.9 (Robustness to noise, Vandaele et al. (2019b)). Let G = (V, E) be an
undirected graph, with weighting function w : E — RT. Suppose that £ denotes an additive
noise matriz, which defines a new weighting function w. : E — RT : {u,v} — w({u,v}) +
Euw- If f : R =R is any continuous function such that f o BC(v) # 0 for any v € V, then

100 | f o BC.(v) — f o BC(v)
AE) =7 Z f o BC(v) €100 —0

where BC.(v) equals the boundary coefficient of v for the new weighting function we.

Proof This follows from Lemma D.7 and f being continuous. |

Remark D.10 The fact that we consider our variant to robustness of noise an equally
important property for our method for topological data analysis of graph-structured data,
is due to Proposition 12 stating that BC-pines are invariant under affine transformations
of the BC with a positive scaling factor. The BC may always be mapped to an interval
excluding 0 using such continuous transformation.

Note that the theoretical rate of convergence of A(E) in Theorem D.9 depends on |E]
(see the proof of Lemma D.7.1.), a consequence of allowing arbitrary long paths (in terms
of number of edges) between the endpoints of a triple adjacent to a node, to compute the
BC.

The following proposition justifies the naming ‘hop-k-approximation’, introduced in Sec-
tion 2.1.4.

59

VANDAELE, SAEYS, AND DE BIE

Proposition D.11 Let G = (V, E) be a connected, undirected, positively weighted graph,
and D the matrixz of pairwise shortest path distances between the nodes of G. Then the
following statements are valid:

1. HO(D) = (O)U,'L)GV 5
2. ,Hdiamrlmw(G) (D) =D;
3. forany k,l e N, k<l = ||D—Hi(D)|loo < |D—Hi(D)|lco ;

where diamyn, (G) denotes the unweighted diameter of G.
Proof 1. If u can be reached from v in 0 steps, then u = v, which implies that D, , = 0.

2. For any nodes u,v € V, v can be reached from u within diamy,y(G) steps.
3. This is clear from the definition of Hy (D). [|

Proof of Theorem 8 For v € V, with §(v) > 0, we have

DY’ + DY — DO,
5 2BC u,v v,W u,w
) -2, Twew=) < 2Dy Doy
u,weN (v) w,weN (v) ’ ’
D”
u ,U u,w
= E + E E —
2Du,va7w

u,wEN(v) v, u,weN (v Du Y wweN(v)
The first two summations are equal by a change of variables. Hence, we find

u’U ‘Dgil)
S(v)’BC(v) =) D - > m.

u,weN (v u,weN (v)

11 1 . 1
= > Duv) D3 > Du,ng’“’m

ueN (v) weN(v) Y u,weN (v)

= S WD) L H (D=5 3 HE (D)5 (DM (D)o

ueV ueV u,weV

= S Hi (D) Yo HE (D) %diag (17 (DM (Dyug ™ (D)

v
ueV ueV

which concludes the proof. |

Proof of Proposition 11 Assume u € V with dg(u) > 0. If {u,v} ¢ E(T) for every

v € argmin{ f(w) : w € Ng(u)}, then choose such v. Let P = (u = zg, x1,...,x; = v) be
the unique path from w to v in T'. Since {u,z1} € E(T), f(x1) > f(v), and we can replace
{u, 21} by {u,v} to obtain a tree attaining a lower cost as expressed by (3). [|

60

MINING TOPOLOGICAL STRUCTURE IN GRAPHS THROUGH FOREST REPRESENTATIONS

Proof of Proposition 12 We have

D dpw)gv) =ad dp)f) +b> drw)=ad drv)f(v)+2b(V] - Bo(G)),

veV veV veV veV

where £y(G) denotes the number of connected components of G. This follows from:

e the sum of degrees over all vertices of a graph is twice its number of edges;

e the number of edges in any forest graph containing n vertices, is n minus its number
of connected components;

e by Definition 9, the number of connected components of a graph equals the number
of connected components of a spanning forest of that graph.

As a > 0 and the second term in the right hand side is independent of F, minimization
of the left hand side over all spanning forests is equivalent to minimizing), .y 6r(v) f(v). B

Proof of Proposition 13 It holds that

dYoor))= Y (flu)+ f(v),

veV {u,v}eE(F)

where E(F) denotes the edges in the subgraph F' of G. [|

Proof of Theorem 16 First observe that for any given set of leaves L = {l1,...,l;} of T
there is a unique subtree 77, of T that contains exactly the same set as leaves. Hence,
if V D L is the set of all leaves of T, we may define f : 26 — Rt : L — f(T1),
where f(T7) is the cost of the subtree 77 as defined in Definition 14. Suppose now
that L C L' C L, and take any [€ L\{L'}. Observe that 77 is a subtree of Ty,
for which the unique path from [to 77, includes the unique path from [to T} . Hence,

f(Lu {1}) - f(L) > f(L'U{1}) = f(L), ie., f is a submodular set function on E Further-
more f is clearly monotone, as L C L' C £ = f(L) < f(L'). Finally, by definition of f,
(4) is equivalent to maximizing f subject to the cardinality constrained given by k. |

Proof of Theorem 17 We will first assume that f is an edge-valued function. The proof
goes by induction on the number of leaves k. The claim is trivially valid for k£ = 2 leaves, or
if k is at least the number of leaves in T'. Suppose now that 2 < k < [{v € V : d7(v) = 1},
and that the greedy algorithm iteratively added the paths Py, ..., P, in this order, resulting
in the subtree T, gk,,. Suppose an optimal subtree T* pt With at most k leaves achieves a cost
strictly higher than the cost of Tgk,,. Note that both Tfpt and T, gr exactly contain k leaves.
By the induction hypothesis, the subtree Tgkr_1 consisting of the paths Pi,..., Py_1, is the
optimal subtree of T with k — 1 leaves. Hence, for every subset of size k — 1 of the k
leaves {l1,...,lx} of Tfpt, the cost of the tree induced by this subset is at most the cost
of Tgkfl. As, by assumption, the cost of T, Opt is strictly higher than the cost of 7, gr, this
implies that for every 1 < ¢ < k, the cost of the path from [; to the tree induced by the
leaves {l1,...,li—1,lit1,...,l} is strictly higher than the cost of Py, which we will denote
by f(Py). We now consider two possible cases.

61

VANDAELE, SAEYS, AND DE BIE

1. There exists a leaf l; of Tfpt, such that the path P that connects l; to the tree induced
by the leaves {l1,...,lLi—1,liy1,...,lx} is edge-disjoint from T;’T_l.

The endpoint of P different from /; is a multifurcation point m of Tfpt. Ifm e V(Téﬁfl),
then since f(P) > f(P), the algorithm would have chosen to add P instead of P} to
obtain T}, a contradiction, so that m ¢ V(T '). Let Q be the unique path from m
to Tgkfl. If P is edge-disjoint from @, then P +) would have been chosen instead
of Py by the greedy algorithm, so that P and @ partially overlap. Now let /; be any
leaf in T, fpt different from /;. The path R from m to [; in T, fpt is now both edge- and
vertex-disjoint from Tgkfl (see Figure D.5a for a sketch of this case). Furthermore
f(R+Q) > f(R) > f(Pg), and the greedy algorithm would have chosen to add the
path R + @ instead of Py, a contradiction.

. For every leaf l; of Tokpt,

{li,.. ., li—1,lix1, ..., I} contains edges from Tgkfl.

the path P that connects l; to the tree induced by the leaves

Consider an arbitrary leaf [; of T, O’“pt, and let v; be the point closest to I; on the first
edge e; on the path from [; to the tree induced by {l1,...,li—1,li+1,...,lx}, that is also
contained in E(T}'). Note that possibly l; = v;. Now let I be any leaf of T,5! that
is reachable from v; after removing e; from in Tgkr_l. If I; # l; are both leaves of Tffpt,
then I} # l;-. To see this, observe that for I; # [;, by definition of v;, we have v; # vj,
and that the path from v; to v; in Tfpt must go through both e; and e;. As this path
is unique in 7', it is also fully contained in Tgkfl. Hence, the path v; — v; — l; is the
unique path from v; to l; in Tgffl, and passes through e;. Hence, l; is not reachable
from v; after removing e; from T;;l. As such, we obtain an injection l; + I} of the
k leaves in Tokpt to the k — 1 leaves in Tgffr_l, a contradiction. Note that this case is
simply not possible, independent of the used cost function. We provided a sketch for
the closest possible case in Figure D.5b.

Since both cases lead to a contradiction, we conclude that Tfpt cannot achieve a cost strictly

higher than T This implies that T} is an exact solution to (4).

(a) Sketch for the first case in the proof of (b) Sketch for the second case in the proof
Theorem 17. The cost of Q + R must be of Theorem 17. There is a systematically
bounded from above by the cost of P due defined injection from the leaves of Tokpt to
to the definition of the greedy algorithm. the leaves of T;“T.

Figure D.5: Sketches for the different cases in the proof of Theorem 17.

62

MINING TOPOLOGICAL STRUCTURE IN GRAPHS THROUGH FOREST REPRESENTATIONS

For f a vertex-valued function, the proof goes analogous to the proof of Theorem 17.
However, the increase in cost of adding a new path P to the current tree is now the sum
of the cost over all vertices in P, minus the cost of the connecting node. The only re-
sulting change we need to apply in the proof of Theorem 17, is that instead of writing
‘f(R+Q) > f(R) > f(P) in the first considered case, we now write ‘f(R+ Q) > f(Py)’,
as f(R) may not be well-defined according to this convention. |

Proof of Theorem 21 Let S’ be a solution to (4) for 7". Note that S’ has at least
two leaves. Extending all leaves of S’ by an arbitrarily chosen neighboring leaf in T', and
consecutively adding leaves until S” has min(k,{v € V : ép(v) = 1}) leaves, results in a
solution to (4) in 7. [|

References

Mridul Aanjaneya, Frederic Chazal, Daniel Chen, Marc GLisse, Leonidas Guibas, and
Dmitriy Morozov. Metric graph reconstruction from noisy data. International Journal
of Computational Geometry and Applications, 22(04):305-325, 2012.

Waleed Abu-Ain, Siti Norul Huda Sheikh Abdullah, Bilal Bataineh, Tarik Abu-Ain, and
Khairuddin Omar. Skeletonization algorithm for binary images. Procedia Technology, 11:
704 — 709, 2013. ISSN 2212-0173. 4th International Conference on Electrical Engineering
and Informatics, ICEEI 2013.

Charu C. Aggarwal, Alexander Hinneburg, and Daniel A. Keim. On the surprising behav-
ior of distance metrics in high dimensional space. In Jan Van den Bussche and Victor
Vianu, editors, Database Theory — ICDT 2001, pages 420-434, Berlin, Heidelberg, 2001.
Springer Berlin Heidelberg. ISBN 978-3-540-44503-6.

Leman Akoglu, Jilles Vreeken, Hanghang Tong, Duen Horng Chau, Nikolaj Tatti, and
Christos Faloutsos. Mining connection pathways for marked nodes in large graphs. In
Proceedings of the 2013 SIAM International Conference on Data Mining, SDM 2013,
pages 37-45. Siam Society, 2013. ISBN 9781611972627.

Y.P. Aneja and K.P.K. Nair. Location of a tree shaped facility in a network. INFOR:
Information Systems and Operational Research, 30(4):319-324, 1992.

Pasquale Avella, Maurizio Boccia, Antonio Sforza, and Igor Vasil’Ev. A branch-and-cut
algorithm for the median-path problem. Computational Optimization and Applications,
32(3):215-230, Dec 2005. ISSN 1573-2894.

M. Barthélemy. Betweenness centrality in large complex networks. The Furopean Physical
Journal B, 38(2):163-168, Mar 2004. ISSN 1434-6036.

Punam Bedi and Chhavi Sharma. Community detection in social networks. WIRFEs Data
Mining and Knowledge Discovery, 6(3):115-135, 2016.

63

VANDAELE, SAEYS, AND DE BIE

Robrecht Cannoodt, Wouter Saelens, and Yvan Saeys. Computational methods for trajec-
tory inference from single-cell transcriptomics. European Journal of Immunology, 46(11):
2496-2506, nov 2016. ISSN 00142980.

Gunnar Carlsson. Topology and data. Bulletin of the American Mathematical Society, 46
(2):255-308, jan 2009. ISSN 0273-0979.

Gunnar Carlsson. Topological pattern recognition for point cloud data. Acta Numerica, 23:
289-368, 2014.

Nicholas J. Cavanna, Mahmoodreza Jahanseir, and Donald R. Sheehy. A geometric perspec-
tive on sparse filtrations. In Proceedings of the Canadian Conference on Computational
Geometry, 2015.

Bernard Chazelle. A minimum spanning tree algorithm with inverse-ackermann type com-

plexity. Journal of the ACM (JACM), 47(6):1028-1047, 2000.

Haochen Chen, Bryan Perozzi, Yifan Hu, and Steven Skiena. Harp: Hierarchical representa-
tion learning for networks. In Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

Ena Choi, Nicholas A. Bond, Michael A. Strauss, Alison L. Coil, Marc Davis, and Christo-
pher N. A. Willmer. Tracing the filamentary structure of the galaxy distribution at
z ~ 0.8. Monthly Notices of the Royal Astronomical Society, 406(1):320-328, jul 2010.
ISSN 00358711.

T.G. Crainic and G. Laporte. Fleet Management and Logistics. Centre for Research on
Transportation. Springer US, 1998. ISBN 9780792381617.

A. Davie and AJ Stothers. Improved bound for complexity of matrix multiplication. Pro-
ceedings of the Royal Society of Edinburgh: Section A Mathematics, 143, 04 2013.

Leen De Baets, Sofie Van Gassen, Tom Dhaene, and Yvan Saeys. Unsupervised trajectory
inference using graph mining. In International Meeting on Computational Intelligence
Methods for Bioinformatics and Biostatistics, pages 84-97. Springer, 2015.

Brittany Terese Fasy and Bei Wang. Exploring persistent local homology in topological data
analysis. 2016 IEEFE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 6430-6434, 2016.

Brittany Terese Fasy, Jisu Kim, Fabrizio Lecci, and Clément Maria. Introduction to the R
package TDA. arXiv preprint arXiv:1411.1830, 2014.

F. Fouss, A. Pirotte, J. Renders, and M. Saerens. Random-walk computation of similari-
ties between nodes of a graph with application to collaborative recommendation. IFEFE
Transactions on Knowledge and Data Engineering, 19(3):355-369, March 2007. ISSN
2326-3865.

Thomas MJ Fruchterman and Edward M Reingold. Graph drawing by force-directed place-
ment. Software: Practice and experience, 21(11):1129-1164, 1991.

64

MINING TOPOLOGICAL STRUCTURE IN GRAPHS THROUGH FOREST REPRESENTATIONS

Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., USA, 1990. ISBN 0716710455.

Kathryn Garside, Robin Henderson, Irina Makarenko, and Cristina Masoller. Topological
data analysis of high resolution diabetic retinopathy images. PloS one, 14(5):e0217413,
2019.

Robert Ghrist. Barcodes: The Persistent Topology of Data. Bulletin (New Series) of the
American Mathematical Society, 45(107):61-75, 2008.

Alexander N Gorban and Andrei Y Zinovyev. Principal graphs and manifolds. In Hand-
book of research on machine learning applications and trends: algorithms, methods, and
techniques, pages 28-59. IGI Global, 2010.

Per Hage and Frank Harary. Eccentricity and centrality in networks. Social Networks, 17
(1):57-63, 1995.

John A Hartigan. Clustering algorithms. John Wiley & Sons, Inc., 1975.

Trevor Hastie and Werner Stuetzle. Principal curves. Journal of the American Statistical
Association, 84(406):502-516, 1989.

Allen Hatcher. Algebraic topology. Cambridge University Press, 2002. ISBN 0521795400.

Songtao He, Favyen Bastani, Sofiane Abbar, Mohammad Alizadeh, Hari Balakrishnan,
Sanjay Chawla, and Sam Madden. Roadrunner: improving the precision of road network
inference from gps trajectories. In Proceedings of the 26th ACM SIGSPATIAL Interna-
tional Conference on Advances in Geographic Information Systems, pages 3—12, 2018.

Christoph Hofer, Roland Kwitt, Marc Niethammer, and Andreas Uhl. Deep learning with
topological signatures. In Proceedings of the 31st International Conference on Neural In-
formation Processing Systems, NIPS’17, pages 1633—-1643, USA, 2017. Curran Associates
Inc. ISBN 978-1-5108-6096-4.

Yingpeng Hu, Kaixi Zhang, Jing Yang, and Yanghui Wu. Application of hierarchical facility
location-routing problem with optimization of an underground logistic system: A case
study in china. Mathematical Problems in Engineering, 2018:1-10, 09 2018.

Dakai Jin, Krishna S. Iyer, Cheng Chen, Eric A. Hoffman, and Punam K. Saha. A robust
and efficient curve skeletonization algorithm for tree-like objects using minimum cost
paths. Pattern Recognition Letters, 76:32 — 40, 2016. ISSN 0167-8655. Special Issue on
Skeletonization and its Application.

Sara Kalisnik, Vitaliy Kurlin, and Davorin Lesnik. A higher-dimensional homologically
persistent skeleton. Advances in Applied Mathematics, 102:113 — 142, 2019. ISSN 0196-
8858.

Tae Kim, Timothy Lowe, James Ward, and Richard Francis. A minimum length covering
subgraph of a network. Annals of Operations Research, 18:245-259, 12 1989.

65

VANDAELE, SAEYS, AND DE BIE

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016a.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016b.

Douglas Klein. Centrality measure in graphs. Journal of Mathematical Chemistry, AT:
1209-1223, 05 2010.

Andreas Krause and Daniel Golovin. Submodular function maximization. Tractability, 3:
71-104, 01 2011.

Andrea S. Lapaugh and Ronald L. Rivest. The subgraph homeomorphism problem. Journal
of Computer and System Sciences, 20(2):133 — 149, 1980. ISSN 0022-0000.

Patrick Medina and R Doerge. Statistical Methods in Topological Data Analysis for Com-
plex, High-Dimensional Data. Annual Conference on Applied Statistics in Agriculture,
2015.

Juan Mesa and T. Brian Boffey. A review of extensive facility location in networks. Furopean
Journal of Operational Research, 95:592—603, 12 1996.

Shubhadip Mitra, Priya Saraf, and Arnab Bhattacharya. Tips: mining top-k locations to
minimize user-inconvenience for trajectory-aware services. IEEE Transactions on Knowl-
edge and Data Engineering, 2019.

HDK Moonesignhe and Pang-Ning Tan. Outlier detection using random walks. In 2006
18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’06),
pages 532-539. IEEE, 2006.

Michael Moor, Max Horn, Bastian Rieck, and Karsten Borgwardt. Topological autoen-
coders. arXiv preprint arXiv:1906.00722, 2019.

Monica Nicolau, Arnold J. Levine, and Gunnar Carlsson. Topology based data analysis
identifies a subgroup of breast cancers with a unique mutational profile and excellent
survival. Proceedings of the National Academy of Sciences, 108(17):7265-7270, apr 2011.
ISSN 0027-8424.

Nina Otter, Mason A. Porter, Ulrike Tillmann, Peter Grindrod, and Heather A. Harrington.
A roadmap for the computation of persistent homology. EP.J Data Science, 6(1):17, Aug
2017. ISSN 2193-1127.

Steve Y Oudot. Persistence theory: from quiver representations to data analysis, volume
209. American Mathematical Society Providence, 2015.

Peng Si Ow and Thomas E. Morton. Filtered beam search in scheduling. International
Journal of Production Research, 26(1):35-62, 1988.

66

MINING TOPOLOGICAL STRUCTURE IN GRAPHS THROUGH FOREST REPRESENTATIONS

Milo§ Radovanovi¢, Alexandros Nanopoulos, and Mirjana Ivanovi¢. Nearest neighbors in
high-dimensional data: The emergence and influence of hubs. In Proceedings of the 26th
Annual International Conference on Machine Learning, ICML ’09, pages 865872, New
York, NY, USA, 2009. ACM. ISBN 978-1-60558-516-1.

Michael B. Richey. Optimal location of a path or tree on a network with cycles. Networks,
20(4):391-407, 1990.

B. Rieck and H. Leitte. Persistent homology for the evaluation of dimensionality reduction
schemes. Computer Graphics Forum, 34(3):431-440, 2015.

Bastian Rieck and Heike Leitte. Agreement analysis of quality measures for dimensionality
reduction. In Hamish Carr, Christoph Garth, and Tino Weinkauf, editors, Topological
Methods in Data Analysis and Visualization IV, pages 103-117, Cham, 2017. Springer
International Publishing. ISBN 978-3-319-44684-4.

Bastian Rieck, Christian Bock, and Karsten Borgwardt. A persistent weisfeiler-lehman
procedure for graph classification. In International Conference on Machine Learning,
pages 5448-5458, 2019.

Abbas Haider Rizvi, Pablo G. Camara, Elena K. Kandror, Tom Roberts, Ira Schieren, Tom
Maniatis, and Rail Rabadan. Single-cell topological rna-seq analysis reveals insights into
cellular differentiation and development. In Nature Biotechnology, 2017.

Afshin Sadeghi and Holger Frohlich. Steiner tree methods for optimal sub-network identi-
fication: An empirical study. BMC' bioinformatics, 14:144, 04 2013.

Wouter Saelens, Robrecht Cannoodt, Helena Todorov, and Yvan Saeys. A comparison of
single-cell trajectory inference methods. Nature Biotechnology, 37:1, 04 2019.

Vin Silva and Gunnar Carlsson. Topological estimation using witness complexes. Proc.
Sympos. Point-Based Graphics, 06 2004.

Nikhil Singh, Heather D. Couture, J. S. Marron, Charles Perou, and Marc Niethammer.
Topological descriptors of histology images. In Guorong Wu, Daoqgiang Zhang, and Lup-
ing Zhou, editors, Machine Learning in Medical Imaging, pages 231-239, Cham, 2014.
Springer International Publishing. ISBN 978-3-319-10581-9.

Kelly Street, Davide Risso, Russell Fletcher, Diya Das, John Ngai, Nir Yosef, Elizabeth
Purdom, and Sandrine Dudoit. Slingshot: Cell lineage and pseudotime inference for
single-cell transcriptomics. BMC Genomics, 19, 12 2018.

Yngve Sundblad. The ackermann function. a theoretical, computational, and formula ma-
nipulative study. BIT Numerical Mathematics, 11(1):107-119, Mar 1971. ISSN 1572-9125.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-
scale information network embedding. In Proceedings of the 24th International Conference
on World Wide Web, WWW 15, pages 1067-1077, Republic and Canton of Geneva,
Switzerland, 2015. International World Wide Web Conferences Steering Committee. ISBN
978-1-4503-3469-3.

67

VANDAELE, SAEYS, AND DE BIE

Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. A global geometric framework
for nonlinear dimensionality reduction. Science, 290(5500):2319-2323, 2000. ISSN 0036-
8075.

Ryuhei Uehara and Yushi Uno. Efficient algorithms for the longest path problem. In Rudolf
Fleischer and Gerhard Trippen, editors, Algorithms and Computation, pages 871-883,
Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. ISBN 978-3-540-30551-4.

Robin Vandaele, Tijl De Bie, and Yvan Saeys. Local topological data analysis to uncover the
global structure of data approaching graph-structured topologies. In Michele Berlingerio,
Francesco Bonchi, Thomas Géartner, Neil Hurley, and Georgiana Ifrim, editors, Machine
Learning and Knowledge Discovery in Databases, pages 19-36, Cham, 2019a. Springer
International Publishing.

Robin Vandaele, Yvan Saeys, and Tijl De Bie. The boundary coefficient: a vertex mea-
sure for visualizing and finding structure in weighted graphs. In Proceedings of the 15th
International Workshop on Mining and Learning with Graphs (MLG), 2019b.

Ulrike Von Luxburg and Morteza Alamgir. Density estimation from unweighted k-nearest
neighbor graphs: a roadmap. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 26,
pages 225-233. Curran Associates, Inc., 2013.

Bei Wang, Brian Summa, Valerio Pascucci, and Mikael Vejdemo-Johansson. Branching
and circular features in high dimensional data. IEFEE Transactions on Visualization and
Computer Graphics, 17:1902-1911, 2011.

Suyi Wang, Xu Li, Partha Mitra, and Yusu Wang. Topological skeletonization and tree-
summarization of neurons using discrete morse theory. arXiv preprint arXiv:1805.04997,
2018.

Yu Wang, Eshwar Ghumare, Rik Vandenberghe, and Patrick Dupont. Comparison of dif-
ferent generalizations of clustering coefficient and local efficiency for weighted undirected
graphs. Neural Computation, 29(2):313-331, 2017.

Larry Wasserman. Topological Data Analysis. Annual Review of Statistics and Its Appli-
cation, 5(1), 2018.

Duncan J. Watts and Steven H. Strogatz. Collective dynamics of 'small-world’” networks.
Nature, 393(6684):440-442, June 1998. ISSN 0028-0836.

W.W. Zachary. An information flow model for conflict and fission in small groups. Journal
of Anthropological Research, 33:452—-473, 1977.

Yuanyuan Zhu, Hao Zhang, Lu Qin, and Hong Cheng. Efficient mapreduce algorithms for
triangle listing in billion-scale graphs. Distributed and Parallel Databases, 35(2):149-176,
Jun 2017. ISSN 1573-7578.

68

	Introduction
	Contributions
	Related Work
	Facility Location in Networks
	Existing Core Measures in Graphs
	Topological skeletonization, thinning, or fitting in structured data
	Methods from Topological Data Analysis (TDA)

	Methods
	The Boundary Coefficient: a Powerful Core Measure in Graphs
	The Transmissivity of a Node
	The Boundary Coefficient as the Average Transmissivity
	Properties of the Boundary Coefficient
	Expressing the Boundary Coefficient through Matrix Operations

	Forest Representations of Graphs through f-Pines
	The f-Pine of a Graph
	Properties of the f-Pine
	The BC-pine of a Graph

	Finding Optimal Subforests with a Constrained Number of Leaves
	Solving CLOF in Tree Graphs
	Solving CLOF in Forest Graphs

	f-Pines for Topological Data Analysis of Graph-Structured Data
	Introducing Cost Functions for CLOF
	Estimating the Number of Leaves
	Identifying Missing Cycles

	Experiments
	Summary of the used Data Sets
	Summary of the Baseline Methods
	Qualitative Analysis of the Results
	Quantitative Analysis of the Results
	Introducing General Quantitative Metrics
	Quantitative Summary of our Results
	Large Scale Cell Trajectory Inference

	Discussion and Conclusion
	Further Work
	Supplementary Experiments
	Algorithms and Computational Costs
	Other Cost Functions for CLOF
	Theorems and Proofs

