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Abstract

As artificial intelligence algorithms make further inroads in high-stakes societal applications, there
are increasing calls from multiple stakeholders for these algorithms to explain their outputs. To
make matters more challenging, different personas of consumers of explanations have different re-
quirements for explanations. Toward addressing these needs, we introduce AI Explainability 360,
an open-source Python toolkit featuring ten diverse and state-of-the-art explainability methods
and two evaluation metrics (http://aix360.mybluemix.net). Equally important, we provide
a taxonomy to help entities requiring explanations to navigate the space of interpretation and
explanation methods, not only those in the toolkit but also in the broader literature on explain-
ability. For data scientists and other users of the toolkit, we have implemented an extensible
software architecture that organizes methods according to their place in the AI modeling pipeline.
The toolkit is not only the software, but also guidance material, tutorials, and an interactive web
demo to introduce Al explainability to different audiences. Together, our toolkit and taxonomy
can help identify gaps where more explainability methods are needed and provide a platform to
incorporate them as they are developed.
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1. Introduction

The increasing deployment of artificial intelligence (AI) systems in high stakes domains has been
coupled with an increase in societal demands for these systems to provide explanations for their
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Toolkit Data Directly Local Global Self Metrics
Explanations | Interpretable | Post-Hoc | Post-Hoc | Explaining
ATX360 v v v v v v
Alibi v
Skater v v v
H20 v v v
InterpretML v v v
EthicalML-XAI v
DALEX v v
tf-explain v v
iNNvestigate v
modelStudio v v v v
ELI5 v v v
Iml v v v
Captum v
WIT v v v

Table 1: Comparison of AI explainability toolkits: Alibi (Klaise et al., 2020), Skater (ska), H20 (h20),
InterpretML (Nori et al., 2019), EthicalML-XAI(eth), DALEX (Biecek, 2018), tf-explain (tfe), iNNvestigate
(Alber et al., 2018), modelStudio (Baniecki and Biecek, 2019), ELI5 (eli), Iml (Molnar et al., 2018), Captum
(Kokhliyan et al., 2019) and WIT (Wexler et al., 2020). By Self-explaining, we refer to methods which may
not be directly interpretable at a global level, but can provide local explanations. By Metrics, we mean
methods to quantitatively evaluate explanations.

predictions. However, despite the growing volume of publications, there remains a gap between
what society needs and what the research community is producing. One reason for this gap is a lack
of a precise definition of an explanation as different people in different settings may require different
kinds of explanations. For example, a doctor trying to understand an Al diagnosis of a patient may
benefit from seeing known similar cases with the same diagnosis; a denied loan applicant will want
to understand the main reasons for their rejection and what can be done to reverse the decision;
a regulator, on the other hand, will want to understand the behavior of the system as a whole to
ensure that it complies with the law; and a developer may want to understand where the model is
more or less confident as a means of improving its performance.

Since there is no single approach to explainable Al that always works best, we require organizing
principles for the space of possibilities and tools that bridge the gap from research to practice. In this
paper, we provide a taxonomy and describe an open-source toolkit to address the overarching need,
taking into account the points of view of many possible consumers of explanations. Our contributions
are as follows: 1) Tazonomy Conception: We propose a simple yet comprehensive taxonomy of Al
explainability that considers varied perspectives. This taxonomy is actionable in that it aids users
in choosing an approach for a given application and may also reveal gaps in available explainability
techniques. 2) Tazonomy Implementation: We architect an application programming interface and
extensible toolkit that realizes the taxonomy in software. This effort is non-trivial given the diversity
of methods (see Table 1). We have released the toolkit into the open source community under the
name Al Explainability 360 (AIX360). 3) Algorithmic Enhancements: We take several state-of-the-
art interpretability methods from the literature and further develop them algorithmically to make
them more appropriate and consumable in practical data science applications (for more details see
Arya et al. (2019)). 4) Educational Material: We develop demonstrations, tutorials, and other
educational material to make the concepts of interpretability and explainability accessible to non-
technical stakeholders. The web demo is based on the FICO Explainable Machine Learning Challenge
dataset (FICO, 2018) that illustrates the usage of different explainability methods corresponding to
the needs of three different stakeholders (data scientist, loan officer and customer). The tutorials
cover several problem domains, including lending, health care, and human capital management, and
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provide insights into their respective datasets and prediction tasks in addition to their more general
educational value.

The current version of the toolkit contains ten explainability algorithms: 1) Locally Interpretable
Model-agnostic Ezxplanations (LIME) (Ribeiro et al., 2016): Learns local explanations by fitting a
local sparse linear model. 2) Shapley Values (SHAP) (Lundberg and Lee, 2017): Identifies feature
importances based on Shapley value estimation. 3) Disentangled Inferred Prior Variational Au-
toencoder (DIP-VAE) (Kumar et al., 2018): Learns high-level independent features from images
that may have semantic interpretation. 4) Boolean Decision Rules via Column Generation (BRCG)
(Dash et al., 2018): Learns a small, interpretable Boolean rule in disjunctive normal form for binary
classification. 5) Contrastive Explanations Method (CEM) (Dhurandhar et al., 2018a): Generates
a local explanation in terms of what is minimally sufficient to maintain the original classification,
and also what should be necessarily absent. 6) ProfWeight (Dhurandhar et al., 2018b): Learns a
reweighting of the training set based on a given interpretable model and a high-performing complex
neural network. Retraining of the interpretable model on this reweighted training set is likely to
improve the performance of the interpretable model. 7) Teaching Exzplanations for Decisions (TED)
(Hind et al., 2019): Learns a predictive model based not only on input-output labels but also on
user-provided explanations. For an unseen test instance both a label and explanation are returned.
8) Generalized Linear Rule Models (GLRM) (Wei et al., 2019): Learns a linear combination of con-
junctions for real-valued regression through a generalized linear model link function (e.g., identity,
logit). 9) ProtoDash (Gurumoorthy et al., 2019): Selects diverse and representative samples that
summarize a dataset or explain a test instance. Non-negative importance weights are also learned
for each of the selected samples. 10) CEM with Monotonic Attribute Functions (CEM-MAF) (Luss
et al., 2019): For complex images, creates contrastive explanations like CEM, but based on high-level
semantically meaningful attributes. The toolkit also includes two metrics: Faithfulness (Alvarez-
Melis and Jaakkola, 2018) and Monotonicity (Luss et al., 2019), which measure the accuracy and
consistency of local feature based explanations.
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Figure 1: The proposed taxonomy based on questions about what is explained (e.g., data or model), how
it is explained (e.g., direct/post-hoc, static/interactive) and at what level (i.e. local/global). The decision
tree leaves indicate the methods currently available through the toolkit along with the modalities they can
work with. ‘?” indicates absence of one in the particular category.
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Figure 2: AIX360 class structure organized according to use in the AI pipeline.
2. Taxonomy for AI Explainability and its Implementation

It is important to understand the diverse forms of explanations that are available and the questions
that each can address. A proper structuring of the explanation space can have large bearing not just
on researchers who design and build new algorithms, but perhaps more importantly on practitioners
who want to understand which algorithms might be most suitable for their application. In Figure 1,
we provide one such structuring of the explainability space. The structure is in the form of a small
decision tree (which is itself considered to be interpretable (Freitas, 2014)). Each node in the tree
poses a question to the consumer about the type of explanation required. For users who are not
experts in explainable AI, the AIX360 website provides a glossary of terms used in the taxonomy and
a guidance document for further context. Qur intention is to propose a simple yet comprehensive
taxzonomy useful for different types of users at the risk of it being incomplete.

The AIX360 toolkit aims to provide a unified, flexible, and easy to use programming interface
and an associated software architecture to accommodate the diversity of explainability techniques
required by various stakeholders. The goal is to be amenable both to data scientists, who may
not be experts in explainability, as well as algorithm developers. Toward this end, we make use
of a intuitive programming interface that is similar to popular Python model development tools
(e.g., scikit-learn) and construct a hierarchy of Python classes corresponding to explainers for data,
models, and predictions which expose common methods to users. Algorithm developers can inherit
from a family of base classes to integrate new explainability algorithms. We have organized the
classes based on their use in different stages of the Al pipeline shown in Figure 2. For instance, the
CEMExplainer inherits from the base class LocalWBExplainer (i.e. local post-hoc white-box
explainer), whereas BRCGExplainer inherits from DISExplainer (directly interpretable super-
vised explainer). In fact, in the 2"¢ release of our toolkit LIME and multiple variants of SHAP
were seamlessly integrated leveraging our class hierarchy. AIX360 also includes dataset classes to
facilitate loading and processing of commonly used datasets so that users can easily experiment with
the implemented algorithms.
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