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Abstract

We consider a flexible semiparametric single-index quantile regression model where the
number of covariates may be ultra-high dimensional, and the number of the relevant co-
variates is potentially diverging. The approach is particularly appealing to uncover the
complex heterogeneity in high-dimensional data, incorporate nonlinearity and potential in-
teraction, avoid the curse of dimensionality, and allow different variables to be included
at different quantile levels. We estimate the unknown function via polynomial splines
nonparametrically and adopt a nonconvex penalty function to identify the sparse variable
set. We further extend it to partially linear single-index quantile model where both the
single-index components in the nonparametric term and the partially linear components
can be in ultra-high dimension. However, a number of major challenges arise in devel-
oping both theory and computation: (a) The model is highly nonlinear in single-index
coefficients because the high-dimensional single-index covariates are embedded inside the
unknown flexible function. (b) The data are ultra-high dimensional where the dimension
of the single-index covariates (pn) is diverging or even in the exponential order of sample
size n. (c) The objective function is non-smooth for quantile regression. (d) Nonconvex
variable selection such as SCAD is adopted for regularization. (e) The extended partially
linear single-index quantile models may include both ultra-high dimensional (pn) single-
index covariates and ultra-high dimensional (qn) partially linear covariates. We develop a
novel approach using empirical process techniques in establishing the theoretical properties
of the nonconvex penalized estimators for partially linear single-index quantile models and
show those estimators indeed possess the oracle property in ultra-high dimensional setting.
We propose an efficient algorithm to circumvent the computational challenges. The results
of Monte Carlo simulations and an application to gene expression data demonstrate the
effectiveness of the proposed models and estimation method.
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1. Introduction

With the rapid development of computing technologies, high-dimensional complex data
have often emerged in many fields from social sciences to various scientific research areas
(see a discussion in Fan et al. (2009) and Fan et al. (2011b) among others). For example,
the microarray gene data used in our empirical example measure more than 22,000 gene
expression levels on 60 laboratory mice with obesity or diabetes.

Quantile regression models have shown great promise since the seminal work by Koenker
and Bassett Jr (1978), especially for such high-dimensional complex data. In practice, high-
dimensional data often exhibit heterogeneity, which may be scientifically important but tend
to be ignored by popular mean regression. By investigating conditional quantiles at various
quantile levels, we can display a better picture about the heterogeneity in the conditional
distribution of the response variable. Also, it is more reasonable to assume the so-called
quantile-adaptive sparsity (Sherwood and Wang (2016)) for high-dimensional data to allow
different relevant variables for different quantiles. Quantile models have also demonstrated
to be more resistant to outliers and heavy tailed errors.

We propose flexible regularized single-index quantile regression models for high-dimensional
data. For the observed data {yi, zi1, . . . , zipn}, i = 1, . . . , n, zi = (zi1, . . . , zipn) is a pn-
dimensional predictor vector. A single-index model for the τ -th conditional quantile of yi
given the covariates zi can be formulated as

Qτ (yi|zi) = η(z1β1 + z2β2 + . . .+ zpnβpn) = η(zTi β0), (1)

that is, P{yi ≤ η(zTi β0)|zi} = τ . Here 0 < τ < 1, the term zTi β0 is called the single index
and η(·) is an unknown univariate function, modeled by B-splines nonparametrically in this
paper.

We further extend (1) to partially linear single-index quantile regression when xi =
(xi1, . . . , xiqn), a qn-dimensional predictor vector may enter the model through a partially
linear term

Qτ (yi|zi,xi) = η(zTi β0) + xT
i α0. (2)

Identifiability of the model above has been established previously. In particular, as a special
case of Theorem 2 of Lin and Kulasekera (2007), we have that under the assumptions: (i)
the support of (x, z) is a bounded convex set with at least one interior point; (ii) ‖β0‖ = 1
with first nonzero element positive; (iii) η is continuous and non-constant, then η,β0,α0

can be identified.
We allow both partially linear covariates and single-index covariates within the non-

parametric function diverging and even in ultra-high dimension, that is, both pn � n and
qn � n and even at the order of exp(n1/2). To achieve the sparsity of the underlying model
structure, where we assume only a small but potentially diverging number of important
covariates will affect the response variable, we take the popular regularization approach
with a non-convex penalty such as SCAD (Fan and Li (2001)) and MCP (Zhang (2010)).

To the best of our knowledge, this paper appears to be the first to tackle the chal-
lenging ultra-high dimensional semiparametric quantile regression where both single-index
covariates in the nonparametric part and partially linear terms are potentially ultra-high
dimensional. The past literature on single-index models mostly focused on mean regres-
sions in the fixed low-to-moderate dimensional settings, see, for instance, Carroll et al.
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(1997), Yu and Ruppert (2002), Xia et al. (2002), Liang et al. (2010), Cui et al. (2011),
among others. Fixed-dimensional single-index quantile models have been considered in Wu
et al. (2010), Wu and Yu (2014), Ma and He (2016), and Zhang et al. (2017). The stud-
ies of high-dimensional mean regression for single-index models include Radchenko (2015),
Wang and Wang (2015), and Zhang et al. (2012). In addition, Alquier and Biau (2013)
explored a PAC-Bayesian approach to select important variables in a sparse single-index
model. Neykov et al. (2016) proposed a covariance screening procedure with LASSO pe-
nalization for Gaussian designs to uncover the sparsity pattern. A few papers study the
high-dimensional linear quantile models; for example, Belloni and Chernozhukov (2011)
considered L1-penalized linear quantile regression for the high-dimensional model. Recently
Wang et al. (2012) made an important theoretical advancement by imposing substantially
weaker assumptions for ultra-high-dimensional linear quantile regression. Sherwood and
Wang (2016) worked on a nice partially linear additive quantile model in which only the
number of partially linear components is allowed to increase with the sample size while
holding the fixed-dimensional additive component a priori.

Adopting single-index models (e.g. Ichimura (1993), Powell et al. (1989), Härdle and
Stoker (1989)) for high-dimensional quantile regression is particularly appealing for its flex-
ibility and interpretability. Single-index models generalize linear models by replacing the
linear component zTi β0 with a nonparametric component η(zTi β0). It is flexible to accom-
modate possible nonlinearity while circumventing the so-called “curse of dimensionality.”
Unlike additive models, single-index models can also naturally incorporate some interac-
tions among covariates. This feature becomes highly attractive in the high-dimensional
setting because a high volume of covariates collected are more likely to exhibit some in-
teraction effects. In fact, single-index models form the basis of more complicated models
such as projection pursuit regression and deep neural networks (see Yang et al. (2017)). In
addition, single-index coefficients retain easy interpretability. If η is monotonic, then the
single-index coefficient β0 can have similar interpretation as in linear models. Often times,
the index itself may be of particular interest (Ma et al. (2017); Guo et al. (2017)). Finally,
partially linear single-index models introduce additional flexibility while maintaining the
easy interpretability.

While the proposed ultra-high dimensional partially linear single-index quantile mod-
els enjoy many appealing features for complex heterogeneous data, there are a number of
major challenges in developing both theory and computation. (i) Model (1) is highly non-
linear in single-index coefficients β because the high-dimensional single-index covariates z
are embedded inside the unknown flexible function η(·) through a linear projection, more
specifically, via η(z1β1+z2β2+ . . .+zpnβpn). (ii) The data are ultra-high dimensional where
the dimension of single-index covariates pn are diverging or even in the exponential order of
n. The dimension of important variables are also potentially diverging. (iii) The objective
function is non-smooth for quantile regression. (iv) Nonconvex variable selection such as
SCAD is adopted for regularization. (v) The extended partially linear single-index quantile
models (2) include both ultra-high dimensional (pn) single-index covariates z and ultra-high
dimensional (qn) partially linear covariates x.

Overall, in combination of (i) through (v), we have to deal with not only the the non-
convex and non-smooth objective function associated with quantile regression in (ultra-
)high dimension, but also the highly nonlinear structure in the single-index coefficients.
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Note that this work is very different from Sherwood and Wang (2016) which is essentially
a high-dimensional linear quantile regression problem as Wang et al. (2012), because only
the partially linear covariates are potentially in high dimension while the number of non-
parametric additive terms holds fixed. In our paper, both the single-index covariates in the
nonparametric part and partially linear covariates are allowed to be high-dimensional. Fur-
thermore, because the single-index covariates are embedded inside the unknown function
as stated in (i), it yields much greater challenges than those in the current literature.

We develop efficient algorithms and establish desirable theoretical properties for the
proposed partially linear single-index models for quantile regression in ultra-high dimension.
Computationally, to tackle the ultra-high dimensional single-index parameters inside an
unknown function and the nonconvex non-smooth objective function, we develop an efficient
estimation method. In particular, we make linear approximations to the nonparametric
function and the nonconvex penalty function, which turn the nonconvex optimization into
a convex optimization problem. For the ultra-high dimensional modeling, a pre-screening
process such as Fan and Lv (2008) or the penalized linear quantile regression estimates
with the screened variables via distance correlation in Zhong et al. (2016) can be used to
help reduce dimensionality and produce initial values for the iterative estimation algorithm.
Moreover, we adopt a technique that could create more augmented data and make use of
the weighted quantile regression so that we are able to handle the ultra-high dimensional
model fitting in quantile regression directly and obtain the penalized estimates with large
pn.

In theory, we establish the theoretical properties of the penalized estimators of high-
dimensional partially linear single-index models for quantile regression. The high dimen-
sionality combined with non-smooth loss function makes establishing the theoretical results
challenging. With high dimensional parameters, we need to control the size of various
quantities in terms of pn and qn explicitly. Furthermore, the high dimensionality of the
single-index covariates in the nonparametric part gives rise to an extra challenge, that is,
the spline basis functions are now defined on an interval potentially with diverging sup-
port whose properties are different from the standard case with fixed support. Finally,
for the penalized estimator, existing theoretical investigations of linear and semiparametric
quantile models with a nonconvex penalty, such as Wang et al. (2012) and Sherwood and
Wang (2016), used the results in Tao and An (1997) which require writing the objective
function as a difference of convex functions. This theoretical tool is nevertheless not ap-
plicable for single-index models due to the existence of the link function that makes the
model highly nonlinear in single-index coefficients. Thus, we develop a novel approach in
establishing the theoretical results, which directly compares the objective function values
in a sufficiently small neighborhood of the oracle estimator, and bounds the differences in
objective function values using empirical process techniques. We hope our new approach
to prove the theoretical properties for high-dimensional nonparametric models could invite
more work in investigating models with ultra-high dimensional covariates within possible
complex nonparametric components.

The rest of this article is organized as follows. In Section 2, we present the method-
ology and establish the theoretical properties for the oracle estimators. In Section 3, we
show the estimation algorithm and theoretical properties of the penalized estimators with
a nonconvex penalty and establish their oracle property. In Section 4, we conduct Monte
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Carlo simulations to evaluate the performance of the proposed method and apply the semi-
parametric model and the penalized estimation to a gene expression data set. We conclude
and discuss future research opportunities in Section 5. We relegate all lemmas and proofs
to the supplementary material.

2. Single-Index Quantile Regression with Diverging Number of Relevant
Covariates

2.1 The Methodology

Let us first consider the single-index quantile regression models (1). We allow the number
of variables pn inside the unknown function η(·) to be potentially ultra-high dimensional.
It is commonly assumed that the model is sparse in the sense that among all parameters
β0j , j = 1, . . . , pn, many of them are zero. Let B1 = {1 ≤ j ≤ pn : β0j 6= 0} be the index
set of nonzero coefficients and p1n = |B1| be the cardinality of B1. We need to estimate the
set B1. Without loss of generality, we assume the first p1n components of β0 are nonzero,
denoted by β10 = (β01, . . . , β0p1n)T, and the rest pn− p1n elements of β0 zeros. Specifically,
β0 = (βT

10,0
T
pn−p1n)T.

Throughout the paper, we assume that β0 belongs to the parameter space {β : ‖β‖ = 1
and the first component positive} for identifiability purposes; see more detailed discussion
in Yu and Ruppert (2002), ? and Zhang et al. (2017) among others.

We adopt polynomial splines to estimate the unknown function η(·) nonparametrically.
Assume the support of zTβ0 is [a, b]. Given the focus of the high-dimensional setting in the
current study, the size of the support, b−a, can be potentially diverging with n. In practice,
the minimal and maximal values of zTi β with a given β serve as a and b, respectively, when
B-spline basis functions are constructed. Let a = ν0 < ν1 < . . . < νN ′ < νN ′+1 = b be
a partition of [a, b] into N ′ subintervals Ik′ = [νk′ , νk′+1), k

′ = 0, . . . , N ′, where N ′ ≡ N ′n
increases with sample size n in the order O(nh) such that max0≤k′≤N ′ ‖νk′+1−νk′‖ = O(n−h)
with h ∈ (0, 0.5).

Any function f(·) from the space of polynomial splines of order d ≥ 2 satisfies: (i)
on each Ik′ , 1 ≤ k′ ≤ N ′, f(·) is a polynomial of degree d − 1; (ii) f(·) is globally d − 2
times continuously differentiable on [0, 1]. See the definition in Schumaker (1981) or Stone
(1985). The collection of splines on [0, 1] with a fixed sequence of knots has a B-spline basis
Π̃(s) := {Π̃1(s), . . . , Π̃N (s)} with N ≡ Nn = N ′n + d. We assume the basis is scaled to
have

∑N
k=1 Π̃k(s) =

√
N . Such normalization is not essential, but adopted to simplify some

expressions in theoretical deductions later1. To define the basis on [a, b], we let Π(s) :=
(Π1(s), . . . ,ΠN (s))T = (l−1/2Π̃1(l

−1(s − a)), . . . , l−1/2Π̃N (l−1(s − a)))T, where l = b − a,
which makes sure that the eigenvalues of EΠ(zTβ0)Π(zTβ0)

T are bounded away from
zero and infinity under mild assumptions (e.g. Eqn. (S.2) in Lemma 3 of Wang et al.
(2011)). Given the single index si = zTi β, the unknown function η(si) can be estimated

1. In addition, we will have the eigenvalues of
∫ 1

0
Π̃(s)Π̃T(s)ds bounded away from zero and infinity, while

if using the basis with
∑N

k=1 Π̃k(s) = 1 we would have the eigenvalues being of order O(N−1).
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nonparametrically by a linear combination of B-spline bases, i.e.,

η(si) ≈
N∑
k=1

Πk(si)
Tθk,

where each Πk is defined on [a, b].
An extension to the high-dimensional single-index models is to incorporate partially

linear components into quantile regression. We are interested in the high-dimensional par-
tially linear single-index models (2) (PLSIMs) in which the number of covariates in both
single-index part pn and partially linear part qn may be ultra-high dimensional. In the same
spirit, the model is considered sparse. Let A1 = {1 ≤ j ≤ qn : α0j 6= 0} be the index set of
nonzero coefficients and q1n = |A1| be the cardinality of A1. Without loss of generality, we
assume the first q1n components of α0 are nonzero denoted by α10 = (α01, . . . , α0q1n)T.

For notational convenience, we suppress from now on the subscript n in pn, qn, p1n, q1n,
and Nn, which are allowed to diverge as the sample size n grows.

2.2 Oracle Estimator and Asymptotic Properties

We start with the oracle estimator when the relevant variables of dimensions p1 in the
nonparametric component and q1 in the partially linear component are known in advance.
In the asymptotic properties we establish below, we allow both p1 and q1 to diverge with
the sample size to accommodate more complex data in high dimensions. With the spline
smoothing and η(·) being approximated by Π(·)Tθ, we minimize

n∑
i=1

ρτ (yi −Π(zT1iβ1)
Tθ − xT

1iα1), (3)

with the constraint ‖β1‖ = 1 and the first element positive for the identifiability purposes.
Here ρτ (v) = τv − vI (v < 0) is the check loss function for quantile regression. z1i and
x1i denote the i-th row vector of the corresponding important covariates in the nonpara-
metric and parametric components respectively. The oracle estimators for β0 and α0 are

(β̂
T

1 ,0
T
pn−p1n)T and (α̂T

1 ,0
T
qn−q1n)T respectively.

We adopt the “delete-one-component” method (Yu and Ruppert (2002); Cui et al.
(2011)) to satisfy the identifiability constraint on nonzero single-index parameters β1. De-

note β1 = ((1 − ‖β(−1)
1 ‖2)1/2, β2, . . . , βp1)T where β

(−1)
1 = (β2, . . . , βp1)T is a sub-vector of

β1 without the first component. Thus β1 is a function of β
(−1)
1 . The p1× (p1− 1) Jacobian

matrix is

J̃ =
∂β1

∂β
(−1)
1

=

 − β(−1)

1

(1−‖β(−1)

1 ‖2)1/2

I(p1−1)×(p1−1)

 ,

where I(p1−1)×(p1−1) is the (p1 − 1) × (p1 − 1) identity matrix. Let J = diag{J̃, Iq1×q1}.
Equivalently, we regard β1 as a function of β

(−1)
1 and optimize (3) over (β

(−1)
1 ,α1,θ).

For the proofs of convergence rate and asymptotic normality, we need to orthogonalize
the parametric part with respect to the nonparametric part using the following projection.
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Let M = {m : m(z) = f(zTβ), Em2(z) < ∞} be the space of single-index functions. In
this paper, the projection of any random variable Ψ ontoM, denoted by EM[W ], is defined
as m(z), with m being the minimizer of

E[f(0|z,x)(Ψ−m(z))2], (4)

with the constraint m ∈ M. This definition can be extended trivially to the case where
Ψ = (Ψ1, . . . ,Ψp)

T is a random vector by EM(Ψ) = (EM(Ψ1), . . . , EM(Ψp))
T.

We impose the following conditions.

(C1) The components of x, z are bounded random variables. The support of zTβ0 is [a, b]
with length l := b − a satisfying c1 ≤ l ≤ c2p1

1/2, and the density of zTβ0, say h,
satisfies c3 < lh(t) < c4, for some positive constants c1, . . . , c4.

(C2) Let f(.|z,x) be the conditional density of ε. We assume f(.|z,x) is bounded and
bounded away from zero in a neighborhood of zero, uniformly over the support of
z,x. The derivative of f(.|z,x) is uniformly bounded in a neighborhood of zero over
the support of z,x.

(C3) The function η is in the Hölder space of order r ≥ 2. That is |η(u)(x) − η(u)(y)| ≤
C|x− y|v for r = u+ v and u is the largest integer strictly smaller than r, where η(u)

is the u-th derivative of η. ‖η‖∞+ ‖η(1)‖∞+ ‖η(2)‖∞ ≤ c5 for some positive constant
c5, where ‖ · ‖∞ is the supremum norm for a bounded function.

(C4) Suppose EM[zjη
′(zTβ0)] = fj(z

Tβ0), 1 ≤ j ≤ p1, where η′ is the first derivative of
η(·) for the notational simplicity. The functions fj are bounded and in the Hölder
space of order r′ ≥ 1. The order of the B-spline used satisfies d ≥ max{r, r′}+ 1. The
same smoothness condition is satisfied by the component functions of EM[x].

(C5) E[z1z
T
1 ], E[x1x

T
1 ] and E

[
f(0|z1,x1)

(
J̃Tz1η

′(zT1 β10)− EM[J̃Tz1η
′(zT1 β10)]

x1 − EM[x1]

)⊗2]
are

positive definite matrices with eigenvalues bounded away from zero and infinity, where
for any matrix A, A⊗2 = AAT.

Boundedness of x is assumed mainly for convenience of proof, which can possibly be
replaced by moment conditions with lengthier arguments. Boundedness of z is tied to our
estimation approach, which is typically assumed when using regression splines, since the
basis functions are defined on a compact interval. Given that components of z are bounded
and β0 has unit norm, it automatically follows that l = O(p1

1/2). Since l = b−a is diverging,
the usual condition that h(t) is bounded away from zero and infinity is herein replaced
by that lh(t) is bounded away from zero and infinity. Assumption (C2) on conditional
density is commonly used in quantile regression (He and Shi (1994); Wang et al. (2009a)).
Smoothness of η is required for the proof of convergence rate. Although it is not usually
explicitly stated that η, η′ and η′′ are bounded functions when the dimension of β is fixed,
here we add this assumption in the context of high dimensional models, since the function
η is not considered fixed in the high-dimensional setting (the support of η is diverging).
For (C4), we note that smoothness of functions in the representation of EM[Xjη

′(zTβ0)] is
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usually used in semiparametric models to show the asymptotic normality of the parametric
part. Finally (C5) can be regarded as an identifiability assumption for semiparametric
models, also see Carroll et al. (1997); Li (2000); Wei and He (2006); Wang et al. (2011).

Theorem 1 Under conditions (C1)-(C5) and that N → ∞, N3p1/n → 0, (N + p1 +
q1)

2log2(n)/n → 0, (N + p1 + q1)
3/2N rlog(n)/n → 0, (p1 + q1)/N

r′ → 0, there is a local
minimizer of (3) with

‖β̂1 − β10‖+ ‖α̂1 −α10‖+ ‖θ̂ − θ0‖ = Op(
√

(N + p1 + q1)/n+N−r).

In particular, ‖θ̂−θ0‖ = Op(
√

(N + p1 + q1)/n+N−r) implies that ‖η̂−η‖ = Op(
√

(N + p1 + q1)/n+

N−r), with η̂(·) = Π(·)Tθ̂.

The convergence rate above takes a familiar form as in nonparametric regression with
the two terms corresponding to bias and variance respectively. When p1, q1 are fixed (or
p1, q1 = O(n1/(2r+1))), the optimal choice of N is obviously N ∼ n1/(2r+1). Under stronger
assumptions on the choice of N and smoothness of nonparametric functions, we have the
asymptotic normality of the parameters β10 and α10. Note that when r′ is large enough
(for example r′ = r), N ∼ n1/(2r+1) is still contained in the permissible range.

Theorem 2 Under conditions for Theorem 1 and in addition that (N4+p61+q61)log(n2)/n→
0, (p51 + q51)log(n2)/N2r−2 → 0,

√
n(p1 + q1)/N

2r−1 → 0,
√
n(p1 + q1)/N

r+r′ → 0, for any
unit vector a, we have

√
naTW−1/2(JTJ)−1JT

((
β̂1

α̂1

)
−
(
β10

α10

))
d→ N(0, 1),

where

W = (JTΩJ)−1JT∆J(JTΩJ)−1),

Ω = E

[
f(0|z1,x1)

(
η′(zT1 β10)z1 − EM[η′(zT1 β10)z1]

x1 − EM[x1]

)⊗2]
,

∆ = τ(1− τ)E

[(
η′(zT1 β10)z1 − EM[η′(zT1 β10)z1]

x1 − EM[x1]

)⊗2]
,

and the Jacobian matrix J is evaluated at the true β10.

Remark 1 In the statement of the above theorems, there are many constraints on N, p1, q1.
Assuming the functions are sufficiently smooth (r = r′ being sufficiently large) and N ∼
n1/(2r+1) such that N2r−2, N r+r′ are close to n, we see that these conditions roughly con-
strain p1, q1 to be of order n1/6.
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3. Penalized Estimation for Single-index Quantile Models with
Ultra-High Dimensional Covariates

3.1 Asymptotic Properties in Ultra-High Dimension

In reality, we do not have all the relevant covariates known a priori. In order to identify
the important covariates both in the nonparametric part and the parametric part in an
ultra-high dimensional setting, we propose to estimate parameters (β,α,θ) by minimizing
the penalized loss function via a non-convex penalty:

Q(β,α,θ) =

n∑
i=1

ρτ (yi −Π(zTi β)Tθ − xT
i α) + n

pn∑
j=1

pλ1(|βj |) + n

qn∑
j=1

pλ2(|αj |). (5)

Here pλ(·) is a penalty function and λ1 and λ2 are the associated tuning parameters that
control the amount of shrinkage in parameters for the nonparametric and partially linear
components respectively. Many penalty functions are available in the literature including
the adaptive Lasso (Zou, 2006), SCAD penalty (Fan and Li, 2001), and minimax concave
penalty (MCP) (Zhang, 2010). In this paper, we consider the commonly used penalty
function in high-dimensional models, the SCAD function, which is defined as

pλ(|u|) = λ|u|I(0 ≤ |u| < λ)+
aλ|u| − (|u|2 + λ2)/2

a− 1
I(λ ≤ |u| ≤ aλ)+

(a+ 1)λ2

2
I(|u| > aλ),

for some a > 2.
Now we consider penalized estimators in which p and q can be ultra-high dimensional

while the dimension of important covariates p1 and q1 are diverging. Recall that the nonzero
components of single-index parameters β and linear parameters α are represented by β1 =
(β1, . . . , βp1)T and α1 = (α1, . . . , αq1)T, respectively. The following theorem presents the
oracle property (Fan and Li, 2001) of the penalized estimator of (5). That is, the asymptotic
normality property is the same as when the nonzero components in β and α are known in
advance.

Theorem 3 Under the same conditions assumed for Theorem 2, and that log(p) + log(q) =
o(nc) for some c ∈ (0, 1/2),

√
N + p1 + q1·ξn << λ1 << minj≤p1 |β0j |,

√
N + p1 + q1·ξn <<

λ2 << minj≤q1 |α0j |, where ξn =
√

(N + p1 + q1)/n + N−r, there is a ξn-consistent local

minimizer of (5), say (β̃, α̃, θ̃), such that for any unit vector a,

(i)
√
naTW−1/2(JTJ)−1JT

((
β̃1

α̃1

)
−
(
β10

α10

))
d→ N(0, 1),

where W and J are defined as in Theorem 2.

(ii) β̃p1+1 = · · · = β̃p = α̃q1+1 = · · · = α̃q = 0 with probability approaching one.

3.2 An Efficient Algorithm

The estimator of parameters (β,α,θ) is defined to be the minimizer of the objective func-
tion (5). In computation, we face a number of challenges such as the non-smooth and

9
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nonconvex optimization problem in addition to the high-dimensional model setting. More
importantly, one main challenge for single-index modeling is the high nonlinearity due to
the fact that the high-dimensional parameters are embedded inside the unknown function
η(·) estimated nonparametrically. Hence, the straightforward “one-step” estimation by min-
imizing Q(β,α,θ) over all parameters may not work, especially for the high-dimensional
problem.

We propose an efficient algorithm with an iterative approach. The key idea is to utilize a
linear approximation of η(·) to turn the problem into essentially a penalized linear quantile
problem so that the algorithms for linear quantiles in the literature can be readily adopted.
To be more specific, we adopt the linear approximation of η(·) in estimating the single-index
parameters β, that is, expanding η(zTi β) to its first order around the value zTi β0:

η(zTi β) ∼= η(zTi β0) + η′(zTi β0)z
T
i (β − β0).

We then employ polynomial splines with B-spline basis to estimate the terms associated
with the link function η. Specifically given β, η(·) and η′(·) will be estimated respectively
by Π(zTi β0)

Tθ and Π′(zTi β0)
Tθ, in which Π′ is the first derivative of B-spline basis func-

tions. With the proposed linear approximation to the unknown function η(·), we obtain an
appealing explicit form where the single-index parameters β shows up in the second term.
This will essentially benefit computing the penalized estimation from the objective function
(5). In particular, computationally the linear approximation effectively turns the highly
nonlinear semiparametric quantile problem into equivalently a linear quantile problem.

Then for given the parameters (β,α), the estimates of spline coefficients θ can be
obtained by minimizing

∑n
i=1 ρτ

(
yi −Π(zTi β)Tθ − xT

i α
)
, where B-spline basis Π(zTi β) is

analogous to the design matrix that can be essentially viewed as a linear quantile regression
to obtain spline coefficients θ.

Lastly, we need to deal with the nonconvex SCAD penalty. Although the nonconvex type
of penalty functions, such as SCAD penalty, makes the shrinkage more effective compared
with the direct L1 penalty, the nonconvexity causes extra computational burden in the
high-dimensional optimization problem. To tackle this challenge, we adopt a local linear
approximation algorithm (LLA) (Zou and Li, 2008) for the penalty terms pλ1(|βj |), 1 ≤ j ≤
pn and pλ2(|αj |), 1 ≤ j ≤ qn :

pλ1(|βj |) ≈ pλ1(|β̂(0)j |) + p′λ1(|β̂(0)j |)(|βj | − |β̂
(0)
j |), for βj ≈ β̂

(0)
j ,

pλ2(|αj |) ≈ pλ2(|α̂(0)
j |) + p′λ2(|α̂(0)

j |)(|αj | − |α̂
(0)
j |), for αj ≈ α̂

(0)
j ,

where β̂
(0)
j and α̂

(0)
j are given initial values. Under the linear approximation to η(·), the

modified penalized objective function Q̃(β,α) regarding β and α with the estimated spline
coefficients θ̂ and some initial values (β̂, α̂) can be formulated as

∑
i

ρτ (yi−Π(zTi β̂)Tθ̂−Π′(zTi β̂)Tθ̂zTi (β−β̂)−xT
i α)+n

pn∑
j=1

p′λ1(|β̂j |)|βj |+n
qn∑
j=1

p′λ2(|α̂j |)|αj |.

(6)

10
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Define ỹi = yi −Π(zTi β̂)Tθ̂ + Π′(zTi β̂)Tθ̂zTi β̂ and z̃i = Π′(zTi β̂)Tθ̂zi, then we can rewrite
(6) as

Q̃(β,α) =

n∑
i=1

ρτ (ỹi − z̃Ti β − xT
i α) + n

pn∑
j=1

p′λ1(|β̂j |)|βj |+ n

qn∑
j=1

p′λ2(|α̂j |)|αj |.

We note that (6) is a convex problem, in fact, it is essentially a penalized linear quantile
regression.

In summary, the iterative algorithm we propose to use can be carried out as follows:

Step 0. Initialize (β̂
(0)
, α̂(0)).

Step 1. Given β̂
(k−1)

, construct B-spline basis functions Π(zTβ̂
(k−1)

), then the spline coeffi-

cient estimates are obtained from θ̂
(k)

= arg min
∑n

i=1 ρτ
(
yi−Π(zTi β̂

(k−1)
)Tθ−xT

i α̂
(k−1)).

Step 2. Given the estimated spline coefficients θ̂
(k)

, the kth-step penalized estimator of the

single-index parameters β̂
(k)

and partially linear parameters α̂(k) will be achieved by the
minimization of

Q̃(β,α) =
n∑
i=1

ρτ (ỹi − z̃Ti β − xT
i α) + n

pn∑
j=1

p′λ1(|β̂(k−1)j |)|βj |+ n

qn∑
j=1

p′λ2(|α̂(k−1)
j |)|αj |, (7)

where ỹi = yi −Π(zTi β̂
(k−1)

)Tθ̂(k) + Π′(zTi β̂
(k−1)

)Tθ̂(k)zTi β̂
(k−1)

and

z̃i = Π′(zTi β̂
(k−1)

)Tθ̂(k)zi.
Repeat Steps 1 and 2 until convergence.

To initialize the iterative algorithm, one may use estimates from penalized linear regres-
sion or the linear quantile model, such as Qτ (yi) = zTi β+ xT

i α. In this article, we adopted
the estimator from single-index mean regression with candidates selected by iterative sure
independence screening (Fan and Lv, 2008). We normalize β such that ‖β‖ = 1, and its first
nonzero element is positive for identifiability. These types of initial values work reasonably
well both in the simulation studies and in the real-data application to the gene expression
data. Again, trying different starting values is necessary in any optimization problem in
general.

Finally, we adopt a data augmentation technique by introducing pseudo-observations
for Step 2. This is based on two facts that cρτ (v) = ρτ (cv), for c > 0 and |βj | can
be written as ρτ (βj) + ρτ (−βj) (Wu and Liu, 2009; Wang et al., 2012; Sherwood and

Wang, 2016). Let n · p′λ1(|β̂(k−1)j |) = cj . Then we can rearrange the first penalty part
in (7) as

∑pn
j=1 (ρτ (−cjβj) + ρτ (cjβj)). Furthermore, an “unpenalized” linear quantile re-

gression can be implemented by using the extra pseudo-observations. Denote by ỹ+i the
new response ỹ+i = ỹi, i = 1, . . . , n; ỹ+i = 0, i = n + 1, . . . , n + 2pn and by z̃+i ∈ Rpn

the new response z̃+i = z̃i, i = 1, . . . , n; z̃+i = (0, . . . , 0, ci, 0, . . . , 0), i = n + 1, . . . , n +
pn; z̃+i = (0, . . . , 0,−ci, 0, . . . , 0), i = n + pn + 1, . . . , n + 2pn. Similarly, the extra 2qn
pseudo-observations will be created in the same fashion for the associated penalty terms

np′λ2(|α̂(k−1)
j |)|αj | in Step 2. Note ỹ+i = 0 and z̃+i = (0, . . . , 0), i = n+2pn+1, . . . , n+2pn+

2qn, while the augmented data for linear covariates are denoted by x̃+. With all the above,

equation (7) reduces to a familiar form as
∑n+2pn+2qn

i=1 ρτ (ỹ+i − z̃+
T

i β − x̃+T

i α), which is

11
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indeed a linear quantile regression and can be solved by many existing statistical software
packages, for instance, the R quantreg package by Roger Koenker et. al.

3.3 Local convergence of the computable estimator in moderately-high
dimension

The obvious theoretical gap in the previous subsection is that we only established asymptotic
property of a certain local estimator and there is no guarantee that we can obtain such a local
estimator. In general, for nonconvex optimization functions there may be many stationary
points or local minimizers and one does not expect all local minimizers will have desirable
asymptotic properties. The statistics, optimization and machine learning literature contains
some success stories for some specific nonconvex optimization problems combined with
specific algorithms, for example alternating minimization or projected/proximal gradient
methods (Jain et al., 2014; Bhatia et al., 2015; Gu et al., 2016; Chen et al., 2019). Many
such results are aimed at showing the convergence of iterative methods to the stationary
point, local minimizer, or some cases even global minimizer of the optimization problem. It
often requires some special structure of the problem such as restricted isometry property or
incoherence property. Focusing on the statistical properties, Fan et al. (2014a) showed that
for the high-dimensional parametric regression (both strongly smooth and strongly convex
conditions are satisfied for the loss), linearization for the SCAD penalty or MCP leads to
consistent and efficient estimator in only two iterations. A good initial estimator is very easy
to obtain in their setting even in ultra-high dimensions (using LASSO, for example). Our
approach here is similar to this work. Agarwal et al. (2012) considered proximal gradient
method which relaxed strongly convex and strongly smooth condition of the loss function
in high dimensions (but when reduced to low dimensions, it still requires strong convexity
and strong smoothness). Our case is more complicated due to the nonconvex single-index
term even if we restrict to the fixed-dimensional case and thus a lot of such techniques in
the literature do not easily apply here. Xu and Yin (2017) has an interesting convergence
result for very general convex loss function, but their Kurdyka-Lojasiewicz condition is hard
to verify for specific problems, and furthermore such convergence results do not provide
statistical properties of the estimators.

Partially motivated by Fan et al. (2014a), here we show that when the dimension (p, q)
is diverging although not larger than n, and an initial estimator is available that is in a
O(1/

√
N(p+ q)) neighborhood of (β0,α0), then the iterative algorithm we use will produce

estimators that are guaranteed to have the same statistical properties as stated previously,
and the number of iterations required is of order O(logn). We note that when p > n, there
are several screening methods that can be used to reduce the dimension to p < n with
some theoretical guarantees (Fan and Lv, 2008; Fan et al., 2011a). This requires further
assumptions of course.

As mentioned above, to establish our result, an initial estimator with convergence rate

Op(1/
√
N(p+ q)) is necessary. In general, a good initial estimator (β̂

(0)
, α̂(0)) is hard to

obtain for single-index models. Fortunately, in some situations, a lot of existing proposed
methods in sufficient dimension reduction (SDR) can be utilized (Li, 1991; Li and Nacht-
sheim, 2006). Technically, this often requires ellipticity condition on the distribution of
the covariates (which guarantees the so-called linearity condition in the SDR literature),

12
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but is empirically observed to work even when this is violated. In particular, both mean
regression and quantile regression (Duan and Li, 1991; Lian et al., 2019) can extract the
directions when the model has the form y = f(zTβ,xTα, ε) with ε representing the noise
and f is a general nonparametric function. When the dimension is diverging, it is a stan-
dard result that linear regression or quantile linear regression produces an initial estimator

with ‖β̂
(0)
−β0‖+ ‖α̂(0)−α0‖ = Op(

√
(p+ q)/n) (Portnoy, 1985; Fan et al., 2014b) which

is indeed Op(1/
√
N(p+ q)) under our assumptions. In practice we find that such simple

parametric regression works well without the complication of using other more complicated
SDR approaches.

From these discussions, the following high-level assumptions regarding the initial esti-
mators are used.

(B1) ‖β̂
(0)
− β0‖+ ‖α̂(0) −α0‖ = Op(

1√
N(p+q)

), N2(p+q)2

n → 0, and p+q
N2(r−1) → 0.

Note that as in Theorem 2 we still require p1 + q1 is smaller than n1/6, but p and q can be
close to n1/2 if r is large enough.

Theorem 4 Suppose we use the iterative algorithm as explained in Section 3.2. Under the

conditions of Theorem 3 as well as (B1), if
√
N + p1 + q1 · (‖β̂

(0)
− β0‖ + ‖α̂(0) − α0‖ +

N−r) << λ1 << minj≤p1 |β0j |,
√
N + p1 + q1 · (‖β̂

(0)
− β0‖ + ‖α̂(0) − α0‖ + N−r) <<

λ2 << minj≤q1 |α0j |, then we have with probability approaching one β̂
(t)
j = 0 for j > p1 and

α̂
(t)
j = 0 for j > q1 for all t ≥ 1 (here t indicates the iteration number). Furthermore, for

all t ≥ Clogn with some constant C > 0, β̂
(t)
, α̂(t) has the same asymptotic distribution as

β̃, α̃ in Theorem 3.

3.4 Tuning Parameter Selection

The tuning parameter λ is important in practice. BIC is a common effective criterion to
select λ in the fixed or low-to-moderate dimensional models. We adopt high dimensional
BIC when pn and qn are potentially ultra-high dimensional (Wang et al., 2009b; Lee et al.,
2014). We select λ that will minimize the following high-dimensional BIC criterion:

HBIC(λ1, λ2) = log

(
n∑
i=1

ρτ (yi −Π(zTi β̂λ1)Tθ̂λ1 − xT
i α̂λ2)

)
+ dλ

log(n)

2n
Cn, (8)

where dλ is the total number of non-zero parameters in both single-index part and partially
linear terms. As suggested in the literature, Cn is taken to be log(log(pn + qn)) in empirical
studies, where pn is the number of candidate single-index covariates and qn is the number
of candidate partially linear covariates. One nice feature is that we can allow different
levels of penalization through different λ1 and λ2 for the single-index parameters and linear
parameters respectively. In practice, a grid of λ values will be used and for each given set
of (λ1, λ2) the resulting penalized parameter estimates are associated with these λ values.
Then the according HBIC criterion can be calculated, and we will choose the pair of λ
values that can minimize the HBIC as in (8). Alternatively, a two-step grid searching
algorithm can be used (Ruppert and Carroll, 2000). First, HBIC can be minimized with
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a common tuning parameter λ. Then λ1 can be selected with λ2 fixed and vice versa.
This can save the computational cost by reducing the two-dimensional grid searching to a
one-dimensional case.

4. Numerical Studies

We investigate the performance of the proposed single-index quantile models in high dimen-
sion. We focus on the non-convex SCAD penalty for selecting important variables. We have
also implemented another popular nonconvex penalty, the MCP penalty ((Zhang, 2010)),
and find that the simulation results for MCP are similar to SCAD results. For the penalty
function part, we select the tuning parameters λ by minimizing the high-dimensional BIC
defined in (8). In addition, tuning parameter a in SCAD penalty is set to be 3.7 as sug-
gested by Fan and Li (2001). To estimate the unknown function nonparametrically, cubic
B-spline bases with equally-spaced knots are adopted throughout the empirical studies, and
the number of interior knots is taken to be two, since we found this works well in our ex-
amples. Other data-driven type of knots, for instance, placing knots at sample quantiles of
the single-index values, may also be suitable. Other ways to choose an optimal number of
knots could be using cross validation or BIC type of criterion, such as in He et al. (2002),
Wang et al. (2009a) or Zhang et al. (2017).

We assess the performance of the proposed ultra-high dimensional models through the
following criteria:
1. True Negative(TN): the average number of zero covariates that are exactly set to zero.
2. False Negative(FN): the average number of non-zero covariates that are incorrectly set
to zero.
3. Correct(%) or C(%): the percentage of times that the true model with exact non-zero
covariates is correctly identified.
4. MSE: the average of the mean squared error for estimators of α0 or β0, i.e., the average of
||β̂−β0||2 for index parameters or the average of ||α̂−α0||2 for partially linear parameters
over a number of replications.

4.1 Example 1.

(Sine-bump Models.) We generate 100 random samples from the following sine-bump model:

yi = sin

{
(zTi β − a)π

b− a

}
+ 0.1εi, i = 1, . . . , n,

where a and b are two constants taking
√

3/2− 1.645/
√

12 and
√

3/2 + 1.645/
√

12 respec-
tively. The true parameter vector is β0 = (1, 3, 1.5, 0.5, 0, . . . , 0)Tp /

√
12.5. This model is

widely used in the semiparametric modeling literature, for instance, Carroll et al. (1997)
and Liang et al. (2010). z = (z1, z2, . . . , zp) are independent and uniformly distributed from
U(0, 1), and the error term ε is generated from N(0, 1). We take the sample size n = 200
while the number of covariates p = pn varies from 50 to 100 to 1000. Estimation and vari-
able selection results are also shown at different quantile levels, such as median (τ = 0.5),
the first quartile (τ = 0.25) and the third quartile (τ = 0.75).

The detailed estimation results for each of the non-zero parameters are shown in Table
1. The sample mean (“mean”), bias (“bias”) and standard error (“se”) of the parameter
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Table 1: Summary of Parameter Estimates for High-dimensional SIMs in Example 1. The
true non-zero value of β0 is (0.2828, 0.8485, 0.4243, 0.1414)T. The sample mean
(“mean”), bias (“bias”) and standard error (“se”) of the parameter estimates are
calculated over 100 simulations when sample size n = 200. The numbers of input
variables are increasing from 50 to 100 to 1000.

p = 50 p = 100 p = 1000
τ par. mean bias se mean bias se mean bias se

0.25 β1 0.2842 0.0014 0.0121 0.2873 0.0044 0.0149 0.2865 0.0037 0.0123
β2 0.8497 0.0012 0.0067 0.8470 -0.0016 0.0082 0.8471 -0.0014 0.0070
β3 0.4206 -0.0037 0.0136 0.4234 -0.0008 0.0145 0.4250 0.0007 0.0116
β4 0.1403 -0.0011 0.0163 0.1418 0.0004 0.0160 0.1385 -0.0029 0.0146

0.5 β1 0.2822 -0.0007 0.0122 0.2844 0.0016 0.0128 0.2839 0.0010 0.0122
β2 0.8488 0.0003 0.0075 0.8487 0.0002 0.0076 0.8483 -0.0002 0.0067
β3 0.4239 -0.0004 0.0131 0.4216 -0.0026 0.0129 0.4237 -0.0005 0.0110
β4 0.1400 -0.0014 0.0141 0.1427 0.0012 0.0134 0.1402 -0.0012 0.0130

0.75 β1 0.2818 -0.0010 0.0139 0.2831 0.0002 0.0130 0.2853 0.0025 0.0135
β2 0.8486 0.0001 0.0076 0.8490 0.0005 0.0078 0.8476 -0.0009 0.0071
β3 0.4244 0.0001 0.0140 0.4215 -0.0028 0.0131 0.4244 0.0002 0.0120
β4 0.1406 -0.0009 0.0145 0.1440 0.0026 0.0151 0.1392 -0.0022 0.0151

estimates are calculated over 100 simulations for each quantile level and different numbers
of input variables p. We find the estimation for non-zero index parameters is reliable when
p increases or becomes larger than sample size n, considering the average of parameter
estimates are close to the true values and standard errors are relatively small. To evaluate
how the penalized method works for the high dimensional case, we report the summary of
variable selection results in Table 2. TN by definition is p − 4 for each setting. Table 2
shows that our model captures most of zero covariates as indicated by Correct(%) reaching
100% in most cases. On the other hand, our high-dimensional single-index quantile model
successfully retains all relevant covariates since there is no relevant covariates being set to
zero, i.e. FN is 0 for all runs. Overall, MSEs are very small because zero covariates are
identified in most of the runs, and estimates for non-zero parameters are quite accurate as
shown in Table 1.

Furthermore, we plot the fitted curves for function η(·) in single-index median regression
in Figure 1. On the left panel, we randomly select a simulated sample and plot the single fit
as the dot-dash line. On the right panel, we plot the average fitted curve and corresponding
95% pointwise confidence bands over the 100 simulations. From both the single fit and
the average fit, the fitted curves virtually overlay with the true sine function curve, which
indicates that our nonparametric spline approximation to the unknown function works well.
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Table 2: Summary of Variable Selection Results for High-dimensional SIMs in Example 1.
“hdsim” represents the variable selection performance using the proposed penal-
ized estimation for high-dimensional single-index models, while “oracle” indicates
the fitted models only use the 4 relevant variables.

n = 200 quantile Model TN FN Correct(%) MSE(10−4)

0.25 hdsim 46 0 100 6.53
p = 50 oracle 46 0 100 6.67

0.5 hdsim 46 0 100 5.72
oracle 46 0 100 5.51

0.75 hdsim 46 0 100 6.50
oracle 46 0 100 6.58

0.25 hdsim 96 0 100 7.70
p = 100 oracle 96 0 100 7.03

0.5 hdsim 95.8 0 85 6.71
oracle 96 0 100 5.56

0.75 hdsim 96 0 100 6.39
oracle 96 0 100 5.83

0.25 hdsim 996 0 100 5.66
p = 1000 oracle 996 0 100 5.03

0.5 hdsim 995.89 0 90 5.26
oracle 996 0 100 5.64

0.75 hdsim 996 0 100 6.11
oracle 996 0 100 5.51
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Figure 1: Fitted Curves for η(·) in Example 1 for HDSIM Median Regression when pn =
1000. The orange solid lines in both plots are the curve of the true sine function.
The dot-dash line on the left panel is the fitted curve from one simulated sam-
ple. On the right panel the dotted lines are the average fitted curves while the
dashed curves are the corresponding 2.5% and 97.5% confidence bands over 100
simulations.
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4.2 Example 2.

(Heteroscedastic Models) In this example, we consider the following heteroscedastic regres-
sion model ((Wang and Wang, 2015)). 100 simulations are generated from:

yi = sin(
π

4
zTi β) + σ

5− exp(||z||/
√
d)

5 + exp(||z||/
√
d)

εi, i = 1, . . . , n,

where σ = 0.2, d = 5 for 5 non-zero single-index parameters and the true parameter is
β = (1, 1, 1, 1, 1, 0, . . . , 0)T/

√
5. z1, . . . , zpn , ε are independently and identically distributed

as N(0, 1). We consider scenarios with various p and sample size n.
The simulation results at three quantile levels, that is, 0.25, 0.5, and 0.75 are presented

in Table 3 for different n and p. We compare the variable selection and estimation results
of the high dimensional single-index model as “hdsim” with those of the “oracle” model in
which the exact important covariates are used to fit the single-index quantile model. For
all sizes of the heteroscedastic models, there are no significant covariates being excluded
by the SCAD penalty since the number of false negative(FN) are all zero. Occasionally, an
extra one or two irrelevant covariates are kept in the model when the true negative(TN)
is calculated. Overall, the MSEs of “hdsim” are very close to the MSEs of oracle mod-
els, which further indicates that our proposed penalized estimators for high-dimensional
heteroscedastic models are consistent with oracle estimators.

4.3 Example 3.

(PLSIM Models.) We generate 100 random samples from the following partially linear
single-index model:

yi = sin
{

(zTi β)π
}

+ xT
i α+ 0.1εi, i = 1, . . . , n.

The true value for the single-index parameter vector is β0 = (1, 1, 1, 1, 1, 0, . . . , 0)T/
√

5 and
the true linear parameter vector is α0 = (3, 2, 0, 1, 0, 0, 0,−1, 0, . . . , 0). Here the number of
important covariates p1 = 5 and q1 = 4 respectively. All covariates including z and x are
independent and uniformly distributed from U(0, 1), and the error terms ε are generated
from N(0, 1) . We again consider different numbers of parameters pn when the sample size
n = 200. Estimation and variable selection results are also shown at different quantile levels,
namely, median (τ = 0.5), the first quartile (τ = 0.25) and the third quartile (τ = 0.75).

Table 4 displays the variable selection results for high dimensional partially linear single-
index models. Note that ideally TN is pn − 5 for single-index components and qn − 4 for
partially linear components. Most of the zero covariates in both parts are found, except
that in some simulation replicates, one or two zeroes in single-index part or linear part is
occasionally not excluded. All relevant covariates in both parts are correctly identified as
indicated by FN being 0 for all settings. The MSEs are also very small for all parameter
estimates. To save space, we relegate the parameter estimation results to the supplementary
material. We note that not only the magnitudes of parameter estimates are close to the
true values, but also the sign of the negative parameter embedded in the partially linear
part is correctly identified.
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Table 3: Summary of Variable Selection Results for the High-dimensional Heteroscedastic
Models in Example 2. “hdsim” represents the variables selection performance using
the proposed penalized estimation, while “oracle” indicates only true variables are
used in model fitting.

quantile Model TN FN Correct(%) MSE(10−4)

n = 100
0.25 hdsim 44.97 0 97 7.46

p = 50 oracle 45 0 100 6.78
0.5 hdsim 44.85 0 88 6.18

oracle 45 0 100 4.88
0.75 hdsim 45 0 100 5.62

oracle 45 0 100 5.26
0.25 hdsim 94.97 0 98 5.95

p = 100 oracle 95 0 100 5.48
0.5 hdsim 94.86 0 89 4.89

oracle 95 0 100 4.45
0.75 hdsim 94.95 0 95 6.52

oracle 95 0 100 5.29

n = 200
0.25 hdsim 44.95 0 95 3.02

p = 50 oracle 45 0 100 2.72
0.5 hdsim 44.9 0 91 3.21

oracle 45 0 100 2.36
0.75 hdsim 45 0 100 3.21

oracle 45 0 100 3.20
0.25 hdsim 95 0 100 3.23

p = 100 oracle 95 0 100 3.30
0.5 hdsim 94.92 0 95 2.95

oracle 95 0 100 2.89
0.75 hdsim 95 0 100 3.75

oracle 95 0 100 3.51
0.25 hdsim 994.97 0 92 2.91

p = 1000 oracle 995 0 100 2.81
0.5 hdsim 994.86 0 92 3.33

oracle 995 0 100 2.76
0.75 hdsim 994.95 0 92 3.42

oracle 995 0 100 3.29
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Table 4: Summary of Variable Selection Results for Partially Linear Single-index Models
in Example 3. pn + qn is the total number of parameters in the partially linear
single-index models when sample size n = 200.

single-index components linear components

τ pn + qn C(%) pn TN FN MSE(10−3) qn TN FN MSE(10−3)

0.25 300 91 100 94.91 0 0.68 200 196 0 3.28
0.5 300 94 100 94.94 0 0.62 200 196 0 3.26
0.75 300 93 100 94.92 0 0.67 200 196 0 3.66

0.25 500 92 200 194.92 0 0.92 300 296 0 4.25
0.5 500 88 200 194.86 0 0.75 300 296 0 4.12
0.75 500 91 200 194.89 0 0.96 300 296 0 4.56

0.25 1000 93 500 495 0 0.61 500 495.93 0 4.72
0.5 1000 90 500 494.88 0 0.58 500 496 0 3.46
0.75 1000 94 500 494.93 0 0.62 500 496 0 4.13

4.4 Gene expression data.

In this section, we apply the proposed penalized single-index quantile regression to a real
polymerase chain reaction high-dimensional dataset, which is from the experiment con-
ducted by Lan et al. (2006). They examined the genetics of two inbred mouse populations
segregating for obesity and diabetes. The sample that was used to monitor the expres-
sion level of a total of 22,575 genes consists of a total of 60 subjects with approximately
half male mice and half female mice. The gene expression data and phenotype data can
be found at GEO (http://www.nci.nih.gov/geo; accession number GSE3330). Some phys-
iological phenotypes are also measured in the real-time polymerase chain reaction data,
including the numbers of Phosphoenolpyruvate carboxykinase (PEPCK). We are interested
in the level of PEPCK for it is evidenced by laboratory mice that the overexpression of
PEPCK-C in mouse’s liver results in their contracting diabetes mellitus type 2 according
to existing PEPCK researches. Song and Liang (2015) studied this data on the linear rela-
tionship between PEPCK and gene expression levels by the reciprocal L1-regularized mean
regression.

To have a broader view of the relationship between PEPCK and the gene expression
levels in the sample of size n = 60, we study the conditional quantiles of PEPCK. We
start with p = 1000 genes as covariates that have the highest marginal correlation with
PEPCK by the single-index models. The single-index models allow nonlinear relationship
between the response PEPCK and all covariates, and the relevant genes will be selected with
penalization at the same time. All 1000 covariates are standardized to have mean 0 and
variance 1. We consider four types of models with different penalties, namely, the penalized
single-index models with SCAD penalty (sim-scad), single-index model with MCP (sim-
mcp), linear quantile model with Lasso penalty (linear-lasso) and linear quantile regression
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Table 5: Variable Selection and Prediction Comparison on Gene data. “Model Type” shows
4 different combinations of the modeling and variable selection techniques for 3
quantile levels. The prediction errors (“PE”) based on the check loss function are
computed for the 5 testing data sets for each model with only the selected genes
and the mean prediction errors (“Mean PE”) are also calculated for each model
type. The number of the selected genes for each model is also displayed in “Model
Size”.

quantile Model Predicted Error (PE) Mean Model
τ Type test1 test2 test3 test4 test5 PE Size

0.25 linear lasso 0.177 0.160 0.198 0.208 0.391 0.227 60
linear scad 0.076 0.228 0.129 0.142 0.214 0.158 20
sim scad 0.059 0.124 0.061 0.072 0.089 0.081 7
sim mcp 0.073 0.138 0.049 0.087 0.084 0.086 7

0.50 linear lasso 0.173 0.244 0.204 0.152 0.200 0.195 60
linear scad 0.265 0.273 0.301 0.254 0.292 0.277 18
sim scad 0.087 0.081 0.092 0.106 0.206 0.114 11
sim mcp 0.093 0.168 0.092 0.152 0.199 0.141 11

0.75 linear lasso 0.166 0.230 0.248 0.117 0.153 0.183 60
linear scad 0.126 0.170 0.217 0.190 0.224 0.186 20
sim scad 0.077 0.090 0.034 0.077 0.142 0.084 9
sim mcp 0.078 0.090 0.044 0.086 0.069 0.073 9

with SCAD penalty (linear-scad). We fit each type of model on the gene expression data
at three quantile levels, i.e. τ = 0.25, τ = 0.5, τ = 0.75, respectively. To compare the
performance of different methods, we randomly split the original dataset into 5 testing data
sets without replacement. Each testing data set contains 12 observations. The prediction
errors (PE) based on the check loss function are computed for the 5 testing data sets for
each model. Table 5 reports the prediction errors from different models for all testing
data sets across various quantile levels. From Table 5, prediction errors from single-index
quantile models are smaller than those of linear quantile models while the single-index
quantile regression with either the SCAD penalty or MCP penalty produces very similar
results as expected. The model size in Table 5 shows the number of selected genes by each
model using the full data set. Overall, the penalized single-index quantile regression tends
to produce sparser models than the penalized linear quantile models on this gene data set.

5. Conclusion

We investigate semiparametric partially linear single-index quantile regression models with
ultra-high dimensional covariates both in the single-index part and partially linear part.
Single-index models possess appealing flexibility and interpretability and can be viewed as

21



Zhang, Lian, and Yu

a close relative to deep neural networks. We tackle the challenges of high dimensionality
of the single-index covariates in the nonparametric part combined with the non-smooth
loss function and nonconvex penalty. We develop a novel proof using empirical process
techniques when approaches in the existing literature are not applicable and establish the
oracle theory. We propose an efficient yet very simple iterative algorithm, and show the
success through numerical studies and an application to a gene expression data set.

We originally focus this work on ultra-high-dimensional single-index quantile regression
and then find further success by extending to partially linear single-index quantile regression.
Hence, we include both models in this paper. Naturally one may question in practice
which variables should be included in the single-index terms and which variables should
enter partially linearly. There are some recent developments in the literature such as Lian
et al. (2015). However, it is still a very challenging question in the literature especially
for conditional quantiles in the high-dimensional setting (see a discussion in Sherwood and
Wang (2016)). We hope to address this question in future research.

Supplementary Materials The online supplementary materials contain the proofs of all
lemmas and theorems and display the estimation results for Example 3.
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