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Abstract

A new strategy for probabilistic graphical modeling is developed that draws parallels to
community detection analysis. The method jointly estimates an undirected graph and
homogenous communities of nodes. The structure of the communities is taken into account
when estimating the graph and at the same time, the structure of the graph is accounted for
when estimating communities of nodes. The procedure uses a joint group graphical lasso
approach with community detection-based grouping, such that some groups of edges co-
occur in the estimated graph. The grouping structure is unknown and is estimated based on
community detection algorithms. Theoretical derivations regarding graph convergence and
sparsistency, as well as accuracy of community recovery are included, while the method’s
empirical performance is illustrated in an fMRI context, as well as with simulated examples.
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1. Introduction

Probabilistic graphical modeling (PGM) summarizes the information coming from multi-
variate data in a graphical format where nodes, corresponding to features, are linked by
edges that indicate dependence relations between the nodes. The objective in PGM is to
estimate the structure of the graph (which nodes connect to which other nodes) when data
at the nodes are available. The problem can be characterized as a combinatorial problem
where the researcher chooses one graph out of many possible graphs as the best performing
one.

A graph is estimated based on the multivariate data available at the nodes. The edges
between the nodes are estimated using a group penalty, where the grouping is defined based
on estimated communities of similar nodes. More concretely, we use a penalized procedure
where a group penalty is added to a Gaussian negative log-likelihood and where the group
structure (which nodes are similar to each other) is informed by community detection algo-
rithms. We denote throughout the manuscript our procedure as ‘ComGGL’ which stands
for ‘community-based group graphical lasso’. The proposed method is illustrated with a
resting state (that is, subjects were not performing any tasks) functional magnetic reso-
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nance imaging (rsfMRI) example. We analyze here the data for one subject, for which the
brain activity for p = 114 regions of interest (ROIs) has been measured n = 240 times. The
data correspond to a subset of the original data analyzed in Schmittmann et al. (2015) and
have been kindly provided to us by one of the authors.

In network analysis, the network (graph) is always given or known at the beginning of
the modeling process, while in the Gaussian PGM approach one constructs a graph based
on an estimated inverse covariance matrix. The graph is thus unknown at the beginning
of the modeling process, making the two approaches fundamentally different in spirit. An
important part of the literature on networks deals with the estimation of hidden communities
of nodes, by which it is meant that certain nodes are linked more often to other nodes which
are similar, rather than to dissimilar nodes. This way the nodes form groups or communities
of nodes that are more homogenous within the community than between communities where
there is a larger degree of heterogeneity. For community detection on networks see Holland
et al. (1983), Airoldi et al. (2008, 2013), Rohe et al. (2011), Chen et al. (2012), Amini et al.
(2013), Qin and Rohe (2013), Arias-Castro and Verzelen (2014), Cai and Li (2015), Le and
Levina (2015), Lei and Rinaldo (2015) and Amini and Levina (2018) among many others.
For the estimation of penalized sparse undirected graphs we refer to Friedman et al. (2008),
Ravikumar et al. (2008), Bickel and Levina (2008a,b), Boyd et al. (2011), Guo et al. (2011),
Witten et al. (2011), Mazumder and Hastie (2012), Danaher et al. (2014) and Pircalabelu
et al. (2016) among others.

In the last decade scientists in the field of neuroimaging have been actively investigating
data-driven ‘brain parcelations’ by which it is meant that based on fMRI signals in the
brain, one deploys a clustering procedure with the purpose of identifying groups of regions
in the brain that act together and are similar enough to form a homogenous block. We
refer to Arslan et al. (2018) for a recent systematic and through review on clustering meth-
ods applied to fMRI data. To give an example, Yeo et al. (2011) obtained a data-driven
parcelation of the brain that contained just seven groups of homogeneous regions which
span the entire brain. The rough equivalent of clustering, when one deals with networks
is community detection, and so identifying groups of similar nodes in the graph is from an
fMRI perspective appealing as it translates into coarse data-driven parcelations of the brain.
Moreover, since probabilistic graphs are in spirit different from networks, one cannot simply
use the estimated graph as an observed network, as this is not supported by a theoretical
argument. To tackle this shortcoming, the main novel contribution of the procedure we
develop here is to provide a valid framework that allows the joint estimation of the graph
and latent communities of nodes. The new method is theoretically justified and its practical
use is showcased via simulations and an fMRI data example.

The structure of the manuscript is as follows. In Section 2 we introduce the proposed
model, Section 3 points to similarities and differences between our model and other existing
models and in Section 4 we discuss the computational aspects of obtaining joint estimators
for the graph and the community structure. In Section 5 we comment on the shortcomings of
two-step approaches that first estimate the graph and then consider the estimated graph as
an observed network. In Section 6 we investigate graph convergence and graph sparsistency
properties. In Section 7 we complement the theoretical analysis by investigating community
labeling consistency. In Section 8 we compare the ComGGL method with state-of-the-art
two-step approaches in a simulation study, while in Section 9 we illustrate the ComGGL
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method on the rsfMRI dataset introduced in Section 1. We finish in Section 10 with a
discussion of the method and extensions.

2. Proposed Model and Estimation Method

Let Y = (Y1, . . . , Yp)
> ∼ N(0,Σ) be a random vector having a Gaussian distribution.

We associate to each component in Y a node in an undirected graph G(E, V ), where
V = {1, . . . , p} represents the set of nodes and E is the set of undirected edges of the form
a− b between a pair of nodes (a, b). Denote by Θa,b the entry on row a and column b from
the matrix Θ = Σ−1, where a 6= b. Under the Gaussian assumption, Lauritzen (1996, see
Proposition 5.2 and Section 5.2) has shown that if Θa,b 6= 0 then this corresponds to an edge
linking nodes a and b in the graph G(E, V ). There is a clear link between the concentration
matrix Θ andG(E, V ) since the edge set is defined as E = {(a, b) ∈ V×V |a 6= b& Θa,b 6= 0}.
Note that self-loops a− a are not allowed.

Assume further the existence of a sample of n iid vectors, Y 1, . . . ,Y n. Under the stated
assumptions, the log-likelihood of the data is proportional to

L(Θ) = log det Θ− tr(SΘ) (1)

where S = (1/n)
∑n

i=1 Y iY
>
i is the empirical covariance matrix. Throughout the manuscript

we allow p to depend on n and denote this by pn.

In the classical setting when pn < n, maximizing (1) with respect to Θ yields S−1 as
the maximum likelihood estimator. However, if pn is close to n or pn > n, the maximum
likelihood estimator might be unsatisfactory or ill-defined. For such cases, a new estimator
for Θ is obtained by maximizing a penalized log-likelihood function of the form

L(Θ) = log det Θ− tr(SΘ)− Pλ(Θ)

under the constraint that Θ � 0 (positive definite) and where Pλ(Θ) is a suitable penalty
function applied to the entries of Θ, which depends on a regularization parameter λ.

In this manuscript we assume further the existence of Kn communities of nodes and
denote by Ck the subset of nodes from G(E, V ) that belong to the kth community. By #Ck
we denote the cardinality of the set Ck. For each component Yj of Y , with j = 1, . . . , pn there
exists a labeling vector Zj = (Zj,1, . . . , Zj,Kn)> with components either 0 or 1. The role of
the vector Zj is to assign a community (or a label) to each node in the graph. We assume

that a node can belong to only one single community. For example, if Z1 = (0, 0, 0, 1)>

this implies that the first node in the graph G(E, V ) belongs to the fourth community
out of a total of four communities of nodes. Hence the vector Zj contains only a single 1
and all other components are 0. We concatenate all vectors Zj into a membership matrix
Z = [Z1, . . . ,Zpn ]> of dimension pn × Kn. For simplicity, we work most often with the
matrix ZZ> which has the advantage of having the same dimension as Θ and S.

Since we allow for settings where pn > n and where sparse graphs (that is, many
entries Θa,b = 0) are desired, we consider the penalized negative log-likelihood and seek Θ̂
minimizing `(Θ) where

`(Θ) = tr(SΘ)− log det Θ + Pλn1,λn2,λn3(Θ), (2)
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Pλn1,λn2,λn3(Θ) = λn1
∑
a6=b
|Θa,b|︸ ︷︷ ︸

P1

+λn2

Kn∑
k=1

(
∑

a6=b∈Ck

(Θk
a,b)

2)1/2︸ ︷︷ ︸
P2

+λn3tr(ZZ>Θ)

︸ ︷︷ ︸
P3

,

such that Θ � 0. The regularization parameters λn1, λn2 and λn3 are assumed to be known.
By Θk

a,b we denote the entry on line a and column b from the matrix Θ, where a 6= b ∈ Ck.
We detail the purpose of each component of the penalty Pλn1,λn2,λn3(Θ).

P1 is a classical `1-penalty that controls the sparsity level of Θ. It shrinks small
entries of Θ to 0, thus enforcing sparsity in Θ and consequently in G(E, V ). The
term is controlling the presence of edges between any two nodes irrespective of the
community they belong to, with higher values for λn1 forcing sparser estimators.

P2 is a ‘grouping’ term as in the spirit of Yuan and Lin (2006) and Danaher et al.
(2014) that shrinks together the entries corresponding to a community. It quantifies
the effect of the grouping of the nodes on the estimation of the graph as it encourages
the entries of the Θ matrix that correspond to a community to share similarity in
terms of magnitude. If the regularization level λn2 becomes large, then the penalty
will tend to increase the shrinkage applied to the graph by introducing extra sparsity
at the community level.

P3 links the graph information encoded by the concentration matrix Θ with the clus-
tering matrix ZZ> through a ‘trace’ operator. The choice for this lies in the fact that
the ‘trace’ part of the objective function can be written as tr(S̃Θ) where S̃ = S+ZZ>

which implies that the proposed procedure optimizes a pseudo log-likelihood where
the total observed sample information consists of a linear combination between the
empirical covariance matrix and the community membership matrix. Since ZZ> con-
tains the value 1 for within-community edges only and 0 everywhere else, in S̃ only
the entries corresponding to within-community edges are perturbed, while all other
entries are identical to those in the empirical covariance S. In order to balance the
contributions from S and ZZ> an extra parameter λn3 is introduced. Its role is to
act as a ‘weight’ that balances the two trace quantities as the empirical covariance
S might dominate the matrix ZZ> which can happen when the entries in the two
matrices are not of the same order of magnitude.

In practice, the labeling matrix Z is most often unknown and thus needs to be estimated,
which renders the minimization of (2) not directly applicable. Since exact recovery of the
membership matrix Z is known to be an NP-hard problem (see Leskovec et al., 2010, and
references therein) and since ZZ> might not be full rank, most often researchers perform
a relaxation for computational reasons. For relaxation on community detection problems,
see Cai and Li (2015) and Amini and Levina (2018). As a relaxation we replace ZZ> by
X. The new objective function that we create using X reflects that (i) the estimation of
hidden communities is of interest and (ii) the structure of the graph G(E, V ) depends on
the homogeneity and structure of the subgraphs formed by the latent communities. In order
to accomplish this we require that (i) the diagonal elements Xa,a = 1, corresponding to
knowing that a node necessarily belongs to one community, as there are no nodes without
a community label, (ii) the off-diagonal elements Xa,b ∈ [0, 1], corresponding to relaxing

4



ComGGL: Community-based group graphical lasso

a hard 0/1 decision in favor of a ‘majority vote’ decision and (iii) X should be positive
semi-definite.

Following the relaxation approach, we minimize `(Θ,X) over Θ and X, where

`(Θ,X) = tr(SΘ)− log det Θ + λn1
∑
a6=b
|Θa,b|+ λn2

Kn∑
k=1

(
∑

a6=b∈Ck

(Θk
a,b)

2)1/2 + λn3tr(XΘ)

(3)

such that Θ � 0, X � 0 (positive semi-definite), 0 ≤ Xa,b ≤ 1 and Xa,a = 1, and the
membership of nodes to the kth community depends on the matrix X.

Equation (3) reflects that we are interested in jointly estimating the concentration matrix
Θ and the relaxed, unknown, labeling matrix X. The number of communities Kn can be
assumed known or can be estimated using an external procedure, as we do not consider it to
be part of the optimization problem. The algorithm we propose to estimate both the graph
and the communities uses the procedure of Le and Levina (2015) to estimate Kn at each
iteration, but any other method for determining the number of communities can be used. A
similar term to tr(XΘ) from (3) is used as an objective function in Cai and Li (2015) and
Amini and Levina (2018) when estimating communities for networks. They directly use an
adjacency matrix (or a function of it) of observed connections between the nodes, whereas
our approach uses the unobserved concentration matrix to perform community detection of
nodes on the undirected graphical model.

Alternatively, one can minimize the objective function over Θ and X:

`(Θ,X)− log detX (4)

such that Θ � 0, X � 0 and 0 ≤ Xa,b ≤ 1, Xa,a = 1, and the membership of nodes to
the kth community depends on the matrix X. The term − log detX is introduced here for
computational simplicity to ensure that X remains positive definite at each iteration of the
optimization routine. Details are offered in Section 4.1.

When using (3) we abbreviate the method by ComGGL1 and when using (4) by ComGGL2.
To summarize, the objective is to estimate a graph where the grouping structure of

the nodes is informed by the underlying communities of similar nodes. There is knowledge
that an underlying community structure exists, but this structure is unknown and thus
we estimate it. We optimize everything jointly and equations (3) and (4) can be seen as
pseudo-loglikelihood functions which bring together the likelihood contribution of the data
when estimating a Gaussian graphical model when the grouping structure is unknown and
a convex relaxation that allows for community detection using the concentration matrix.

3. A Note on Similarities and Differences to Existing Literature

Tan et al. (2015) have proposed a two-step approach to detect homogeneous communities
of nodes in graphical models. They first estimate disjoint clusters of nodes based on a
clustering scheme on the empirical covariance matrix and then estimate a probabilistic
subgraph using the nodes in each community. The final estimated graph is the union of
all such subgraphs and thus there are no edges linking different communities to each other.
This is a greedy strategy that divides a large graph estimation problem into many smaller
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sized problems and as such gains in time complexity. Moreover, the communities of nodes
are treated as a ‘nuisance’ parameter useful only to determine on which nodes one should
estimate a subgraph, rather than as an integral part of the data generating process.

In contrast to Tan et al. (2015), we start from multivariate data observed at the level
of the nodes and both the graph and the communities of nodes together with the labeling
(which node belongs to which community) need to be estimated. Sometimes one may
have expert information regarding the number of communities, or the labels of nodes, but
generally it is much harder to have solid information on the topology of the graph, especially
if the number of nodes is large. We propose here to jointly estimate the undirected Gaussian
graph and to identify the latent communities of nodes, where the structure of the community
has a direct effect on the topology of the estimated graph.

Recently in a time series context, Brownlees et al. (2018) proposed a generalized stochas-
tic block model where the concentration matrix Θ is a function of the Laplacian of a latent
graph. Their approach focuses on obtaining an estimator for Σ and uses the empirical
covariance matrix to find the communities, whereas our approach uses the unknown con-
centration matrix. This approach, like ours, uses a spectral decomposition. However, if
pn � n then S is not positive definite and if Kn is large, it might create a problem in ac-
curate recovery, especially so since Theorem 2 in their paper uses the sample concentration
matrix. Another decisive point of departure is the fact that their approach estimates com-
munities, without estimating the latent graph, while ComGGL estimates both quantities of
interest.

There is a connection between our approach and the stochastic block model in the
work of Lei and Rinaldo (2015) which recovers hidden communities from random adjacency
matrices. We recover communities using information from an inverse covariance matrix
estimated from random data at the node level. The fundamental difference between our
approach and SBMs, lies in the fact that in order to estimate communities of similar nodes
we use estimated probabilistic Gaussian graphs rather than observed networks.

Arroyo Relión et al. (2019) proposed a method based on a group penalty for classification
purposes, but the differences with ComGGL are quite substantial. Firstly, those authors
assume the graph as given, whereas ComGGL starts from data at the nodes and then esti-
mates the graph. Secondly, the grouping structure used in their approach treats all edges
connected to a node as forming a group (so in this sense it is fixed and known), whereas
ComGGL estimates at each step an underlying unknown grouping structure. Lastly, the
objective of Arroyo Relión et al. (2019) is to classify new subjects into a category using net-
work information, whereas our objective is to classify nodes of the graph into a community
of similar nodes.

Another connection is with the ‘variable clustering’ approach of Bunea et al. (2016) of
which the G-models are most interesting as they obtain minimax optimal rates of exact
partition recovery. The major difference between ComGGL and G-models is the fact that
our approach uses the estimator of the true inverse covariance structure Θ to classify nodes
to communities whereas G-models use the empirical correlation matrix (which can perform
unsatisfactorily when pn � n) to cluster variables similar to the approach of Tan et al.
(2015). Moreover, within a block the covariances are assumed equal. This assumption,
despite its strictness, has the advantage that the CORD distance, introduced by Bunea
et al. (2016), between two variables from the same cluster is always zero. Another difference
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is the fact that our approach is a one-step only procedure where we simultaneously estimate
the underlying graph as well as the labeling of the nodes.

4. Computational Aspects

Boyd et al. (2011) estimate undirected Gaussian graphical models using a computationally
simple algorithm called ‘alternating direction method of multipliers’ (ADMM), while Cai
and Li (2015) and Amini and Levina (2018) use the ADMM algorithm for community de-
tection problems on networks. Here we present an ADMM algorithm that, when converged,
outputs Θ̂, an estimated number of communities (unless it is prespecified by the user), as
well as the labeling of the nodes.

4.1. Algorithm Implementation

Figure 1 presents a schematic version of the steps in the proposed ADMM algorithm. Start-
ing from data at the node level, the algorithm estimates at each iteration a concentration
matrix Θ which is used to construct an estimated undirected Gaussian graphical model.
The estimated Θ matrix is then used to estimate X and also to determine the number of
hidden communities (if it is not fixed upfront by the researcher) on a function of the adja-
cency matrix (denoted by A) as in Le and Levina (2015). Once the number of communities
has been detected or specified, spectral clustering techniques are used to determine the
community membership and to label the nodes pertaining to the communities. Based on
the community membership, the grouping penalty is updated and as a final step we update
the concentration matrix Θ. Note that the argument is circular: to estimate the community
structure one needs Θ, but in order to estimate Θ one needs the grouping structure. This
shows how Θ and the community structure depend on one another and are not separated
as the structure of the communities is informative for the estimation of Θ.

Data Θ̂

Â K̂n

X̂

Community labels Grouping penalty

1

Figure 1: ComGGL procedure flow chart.

For the ADMM algorithm, optimizing (3) is equivalent to minimize over Θ,X, Θ̃ and X̃

¯̀(Θ,X, Θ̃, X̃) ≡ tr(SΘ)− log det Θ + λn1
∑
a6=b
|Θ̃ab|+ λn2

Kn∑
k=1

{
∑

a6=b∈Ck

(Θ̃
k

ab)
2}1/2
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+λn3tr(XΘ) + Ĩ(0 ≤ X̃a,b ≤ 1) (5)

such that Θ � 0, X � 0 plus the additional constraints that Θ = Θ̃ and X = X̃. The
function Ĩ(a ∈ B) is the indicator function defined to take the value 0 if a ∈ B and ∞,

otherwise. The diagonal elements of X̃ are by default set to 1.

Similarly, if X � 0 is required, one can use

min
Θ,X,Θ̃,X̃

{¯̀(Θ,X, Θ̃, X̃)− log detX} (6)

under the remaining constraints of (5).

Based on (5) and (6) we create the augmented Lagrangian functions as

LComGGL1(Θ, Θ̃, Ũ1,X, X̃, Ũ2) = tr(SΘ)− log det Θ + λn1
∑
a6=b
|Θ̃a,b|

+ λn2

Kn∑
k=1

(
∑

a6=b∈Ck

(Θ̃
k

a,b)
2)1/2 + λn3tr(XΘ) + Ĩ(0 ≤ X̃ ≤ 1)

+
ρ

2
‖Θ− Θ̃ + Ũ1‖2F +

ρ

2
‖X − X̃ + Ũ2‖2F

and LComGGL2(Θ, Θ̃, Ũ1,X, X̃, Ũ2) = LComGGL1 − log detX, where ρ > 0 is a known
constant, 0 is a matrix of dimension pn × pn with all elements equal to 0, 1 is a matrix of
dimension pn × pn with all elements equal to 1, Ũ1 and Ũ2 are called ‘dual’ variables and
‖ · ‖2F is the squared Frobenius norm.

We now present a step-by-step description of the algorithm.

Step 1: Initialize Θ = Θ̃ = X̃ = Ũ1 = Ũ2 = A = I each having the dimension of S
and where I is the identity matrix.

Step 2: At iteration (m + 1), specify the number of hidden communities Kn(m+1). Al-
ternatively if Kn is not specified one can use the adjacency matrix A(m) (see Step 9
for its definition) to estimate the number of hidden communities Kn(m+1) as in Le
and Levina (2015) or by other techniques.

Step 3: Update X(m+1). If LComGGL1 is used, the solution is obtained by

X(m+1) = arg min
X
{λn3tr(XΘ(m)) +

ρ

2
‖X − X̃(m) + Ũ2(m)‖2F }.

Setting the gradient with respect to X to 0 yields

λn3Θ(m) + ρ(X − X̃(m) + Ũ2(m)) = 0⇔ ρX = QΛQ>,

where QΛQ> is the eigen-decomposition of ρ(X̃(m) − Ũ2(m)) − λn3Θ(m) with Λ =

diag(Λ1, . . . ,Λpn) and QQ> = Q>Q = I.

To ensure that X � 0, we create a diagonal matrix Λ̄ where Λ̄a,a = Λa if Λa > 0 and
0 otherwise. The update is obtained as X(m+1) = (1/ρ)QΛ̄Q>.
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If LComGGL2 is used, setting the gradient to 0 yields

Θ(m) −X−1 + ρ(X − X̃(m) + Ũ2(m)) = 0⇔ ρX̄ − X̄
−1

= Λ,

where X̄ = Q>XQ. Since Λ is diagonal, we have that ρX̄a,a + 1/X̄a,a = Λa from
which we derive that a solution is X̄a,a = (Λa +

√
Λ2
a + 4ρ)/(2ρ) which is always

positive since ρ > 0. The update is obtained as X(m+1) = QX̄Q> which is always
positive definite.

Step 4: Perform approximate spectral K-means clustering to label which nodes belong
to each of the Kn communities. The procedure goes as follows: retain first the leading
Kn(m+1) eigenvectors of X(m+1) and stack them together into an n×Kn(m+1) matrix,
apply then to the resulting matrix the K-means procedure to recover a labeling of the
nodes.

Step 5: Update X̃(m+1) as

X̃(m+1) = arg min
X̃
{Ĩ(0 ≤ X̃ ≤ 1) +

ρ

2
‖X(m+1) − X̃ + Ũ2(m)‖2F }.

It has been shown in Cai and Li (2015) that

X̃(m+1) = min{max(X(m+1) + Ũ2(m),0),1}.

Step 6: Conditional on X(m+1), update Θ(m+1) as:

Θ(m+1) = arg min
Θ
{tr(SΘ) +λn3tr(X(m+1)Θ)− log det Θ +

ρ

2
‖Θ− Θ̃(m) + Ũ1(m)‖2F }.

The update is obtained in closed form following the same steps as for X(m+1). Setting
the gradient with respect to Θ to 0 yields:

S + λn3X(m+1) −Θ−1 + ρ(Θ− Θ̃(m) + Ũ1(m)) = 0,

ρΘ−Θ−1 ≈ ρ(Θ̃(m) − Ũ1(m))− S,

ρΘ−Θ−1 = QΛQ>,

where here QΛQ> denotes the eigen-decomposition of ρ(Θ̃(m)−Ũ1(m))−S. Using the

same reasoning as in Step 3, we have that ρΘ̄a,a + 1/Θ̄a,a = Λa (where Θ̄ = Q>ΘQ)
from which we derive that a solution is Θ̄a,a = (Λa +

√
Λ2
a + 4ρ)/(2ρ) and the update

takes the form Θ(m+1) = QΘ̄Q>.

The approximation used when setting the gradient to 0, is used here for numerical
stability reasons since the update X(m+1) from Step 3 already uses the term Θ(m).

Since the algorithm has as constraint that Θ = Θ̃ (that is, at each iteration the
entries in the two matrices are made more similar to each other), for later iterations
the ‘information’ contained in Θ̃(m) will be used twice when updating Θ(m+1): once

directly through Θ̃(m) and once indirectly through X(m+1).
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Step 7: Using the number of communities Kn(m+1) and the labeling obtained using

X(m+1) in Step 4, update Θ̃(m+1) as:

Θ̃(m+1) = arg min
Θ̃
{λn1

∑
a6=b
|Θ̃a,b|+λn2

Kn(m+1)∑
k=1

{
∑

a6=b∈Ck

(Θ̃
k

a,b)
2}1/2+ρ

2
‖Θ(m+1)−Θ̃+Ũ1(m)‖2F }.

Danaher et al. (2014) showed that the solution to the group graphical lasso opti-
mization problem takes the form of an elementwise soft thresholding operation which
applied to our problem becomes

Θ̃a,b,(m+1) = Softλn1/ρ(Θa,b,(m+1) + Ũ1,a,b,(m))

×
(

1− λn2

ρ
∑Kn(m+1)

k=1

√∑
a6=b∈Ck{Softλn1/ρ(Θ

k
a,b,(m+1) + Ũ

k

1,a,b,(m))}2

)
+

where Softλn1/ρ(x) = sgn(x) max{(|x| − λn1/ρ), 0} and x+ = max(x, 0).

Step 8: Update Ũ1(m+1) and Ũ2(m+1) as

Ũ1(m+1) = Ũ1(m) + Θ(m+1) − Θ̃(m+1),

Ũ2(m+1) = Ũ2(m) + X(m+1) − X̃(m+1).

Step 9: Conditional on Θ̃(m+1), update A(m+1) where Aab,(m+1) =

{
1, if Θ̃a,b,(m+1) 6= 0

0, otherwise.

Step 10: Iterate Steps 2 to 9 until convergence.

The algorithm stops when the difference between the values of the objective function
at two consecutive iterations is smaller than a fixed tolerance threshold, which was set
throughout all numerical experiments to the value 10−4.

4.2. Algorithm Convergence

The algorithm provided in Section 4.1 relies on profiling both Θ and X at Steps 3 and 6.
After conditioning, the functions are convex in their arguments and due to this biconvexity
of the objective function, we can use an ADMM strategy at each of the two steps in the
algorithm to obtain a minimizer. The convergence of the algorithm follows from Deng and
Yin (2016) which, using a generalized version of the ADMM algorithm, propose optimizing
a general constrained convex optimization problem of the form f(x, y) = g(x) +h(y) where
g and h are convex functions and where x and y satisfy constraints of the form Ax+By = b
for known A, B, and b. See Theorem 2.3 in their paper of which the algorithm in Section
4.1 can be seen as a special case where their matrices P and Q are set to 0 similar to their
example in Section 5.2.

The heaviest computational cost is given by the eigen-decompositions needed to ensure
the estimators are positive definite which makes the complexity of the algorithm to be of the
order O(p3n). This is in line with other `1 based procedures such as those of Friedman et al.

10



ComGGL: Community-based group graphical lasso

(2008), Rothman et al. (2008), Lam and Fan (2009), Danaher et al. (2014), Pircalabelu
et al. (2016), Saegusa and Shojaie (2016) and Molstad and Rothman (2018) among others.

In Figure 6 in Appendix B we show the convergence of the ComGGL algorithms in
practice using the rsfMRI example introduced in Section 1.

5. On the Separability Between the Concentration Matrix and the
Community Labeling

As we have argued in Section 4.1, there is a feedback loop between Θ and the grouping
structure. The main justification for this is that it is important to know the communities of
similar nodes and this information should be taken into account in a direct way when esti-
mating the graph, because in an fMRI context the connectivity pattern of the regions within
the community is sometimes different than the connectivity pattern between communities.

Data Θ̂ Â

K̂n

X̂

Community labels

Step 1: Graph estimation Step 2: Community detection

1

Figure 2: Two-step procedure flow chart.

On the other hand, one might envision a simpler two-step, sequential strategy where
the communities are not taken into account when estimating the graph. That is, in the
first step estimate Θ (or A) and in the second step estimate the community structure
based on Θ̂ (or Â). In the literature, the closest application to ours is that of Pavlović
(2015) which based on fMRI data, in a classical low dimensional setting where n > pn, uses
the empirical correlation matrix for the ROIs and thresholds it using an arbitrary cut-off,
to obtain a network where a 0 thresholded value denotes a non-existing edge between two
nodes. On the resulting network, they use SBM algorithms to estimate hidden communities.
This approach has several limitations: (i) it uses directly the empirical covariance which
when n < pn is not consistent, (ii) the underlying generative process is insensitive to the
community structure, in the sense that whether nodes a and b belong to the same cluster or
not, makes no difference for Θ and (iii) the fact that Â is estimated rather than observed
is not taken into account, which makes the SBM assumptions that edges occur based on a
Bernoulli model invalid. In this sense, the communities as well as the labeling of nodes are
not part of the model and the estimation of A is not accounted for.

Figure 2 presents the flow chart for the two-step, sequential estimation. The major
difference with the ComGGL procedure presented in Figure 1 is the fact that the matrix
Θ is not sensitive to the communities. The updating of the concentration matrix based on
the communities does not take place and as such the two estimation problems (estimating
the graph and estimating the hidden communities) are completely separated of one another
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and can be done independently of one another. The optimization problem can now be set
as follows, where Step 2 depends on the results obtained in Step 1,

Step 1: Iterate to obtain

min
Θ
{tr(SΘ)− log det Θ + λn1

∑
a6=b
|Θa,b|} such that Θ � 0. (7)

Step 2: Iterate to obtain

max
X
{tr(ÂX)} such that X � 0, 0 ≤Xa,b, Xa,a = 1, X1 = (pn/Kn)1, (8)

where Âa,b = 1 if Θ̂a,b 6= 0 and 0, otherwise; or iterate to obtain

min
X
{tr(ÊX)} such that X � 0, 0 ≤Xa,b, (9)

where Ê = −(I −D)1/2Â(I −D)1/2 + D1/2(1 − I − Â)D1/2 and D is a diagonal
matrix containing at its diagonal the degrees of the nodes in Â.

In comparison with the optimization problem proposed in Section 2, we observe that

(i) the estimation in a two-step approach can be done in cascade with regular algorithms:
Graphical Lasso (Friedman et al., 2008) for optimizing (7) in Step 1 and the sbmSDP
procedure proposed in Amini and Levina (2018) for optimizing (8) and the GSBM
procedure proposed in Cai and Li (2015) for optimizing (9) in Step 2,

(ii) there is no feedback from the communities to how the graph is estimated and

(iii) Â is used as an observed adjacency matrix, so no variability in estimating Â is taken
into account.

The novelty of our approach comes from incorporating how the underlying community
structure is influencing the estimation of the inverse covariance matrix. If one has knowledge
that there are communities of nodes that group together due to functional resemblance and
thus tend to be more homogenous and ‘communicate’ more intensely to the members of the
group, the proposed method incorporates this into the modeling step and this is reflected
in the estimation of Θ. In the two-step approach this information is ignored.

6. Theoretical Properties

We first introduce notation and discuss the needed technical conditions used throughout.

Denote by

• Σ0 = (Σ0,a,b): the true covariance matrix;

• Θ0 = (Θ0,a,b): the true inverse-covariance matrix;

• eigmin(·) and eigmax(·): the smallest and largest eigenvalues of a matrix;
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• S = {(a, b)| Θ0,a,b 6= 0}: the set of pairs of nodes (a, b) for which the true values in the
inverse-covariance matrix are non-zero (these correspond to true edges in the graph);

• Sc = {(a, b)| Θ0,a,b = 0}: the set of pairs of nodes (a, b) for which the true values in
the inverse-covariance matrix are zero (these correspond to no edges in the graph);

• sn = #S − pn: the number of off-diagonal non-zero elements in the set S (the num-
ber of edges in the true underlying graph also referred to as the ‘sparsity’ of the graph);

• Kn: the number of hidden communities in the graph;

• ‖ · ‖: the spectral norm of a matrix;

• Ck = {a| a ∈ V & a belongs to the kth community}: the set of nodes in the graph
that belong to the kth community;

• ZCk∗: the submatrix of the community membership matrix Z consisting of the rows
indexed by the set Ck.

Let pn, Kn, sn, λn1 and λn2 be sequences that depend on the sample size n as follows:
as n → ∞ then pn → ∞, sn → ∞, Kn → ∞, λn1 → 0 and λn2 → 0. For simplicity we
assume λn3 = 1. In words, this implies that as we get more and more cases, the number
of nodes in the graph, the number of hidden communities (which depends on pn) and the
number of edges in the graph can grow (but slowly, see condition D), whereas the penalty
sequences become less and less important, thus decay towards 0.

General regularity conditions:

(A) There exist constants τ1, τ2, and τ3 such that:

0 < τ1 < eigmin(Σ0) < eigmax(Σ0) < τ2 <∞;

0 ≤ eigmin(ZZ>) < eigmax(ZZ>) < τ3 <∞;

(B) max(a,b)∈S(P ′1(Θ0,a,b) + P ′2(Θ0,a,b)) = O
((pn

sn
+ 1
)
( log pnn )1/2

)
;

(C) Kn = O(pn);

(D) ( p2n
nKn
− pn

n )→ 0, or equivalently, pn
n ( pnKn

− 1)→ 0;

(E) There exists a constant τ4 > 0 such that mink=1,...,Knmin(a,b)∈S |Θk
0,a,b| ≥ τ4.

Assumption (A) guarantees that the eigenvalues of the true covariance matrix Σ0 and
those of the true clustering matrix ZZ> are well-behaving. Assumption (B) is a technical
condition to get the desired rates. Assumption (C) specifies that the number of hidden
communities can be at most of order pn, we cannot have more communities than nodes; the
most extreme case is the one where each node belongs to one community. Assumption (D)
links how pn and Kn can grow with n and it assumes that all communities have roughly
the same size. Since each node can belong to only one community, one can permute the
rows such that the clustering matrix ZZ> can be partitioned as a block diagonal matrix
with Kn blocks, where all (pn/Kn)2 entries in the block are equal to 1 and all other entries
are set to 0. By convention in each block the elements on the diagonal (a total of pn/Kn

elements) are also fixed to 1. The most extreme cases when (D) is attained is when either
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(i) pn/n → 0 or (ii) pn/Kn → 1. Note that (i) is stricter than the usual log(pn)/n used
with `1 penalties, implying that ComGGL needs generally a much larger sample than the
simpler graphical lasso procedure and (ii) specifies that each node tends to belong to its
own community (there is no grouping effect).

Proposition 1 specifies the order of the maximal estimation error of Θ and X expressed
as the Frobenius norm of the difference between the estimators and the true parameters, for
a given number of communities Kn, which can grow with the sample size n, and a labeling
of nodes. The first term is linked to the estimation of Θ, whereas the second one is coming
from the estimation of X.

Proposition 1 Under regularity conditions (A) to (E), for a known sequence Kn, if (i)
log(pn)/n = O(λ2n1), (ii) (pn + sn)(log pn)ζ/n = O(1) for some ζ > 1 and (iii) λn2 =
O(
√

log(pn)/n) then there exist estimators (Θ̂, X̂) based on the objective function `(Θ,X)
such that

max(‖Θ̂−Θ0‖F , ‖X̂ −ZZ>‖F ) = Op

(
max

{√
(pn + sn)

log pn
n

,

√
p2n
nKn

− pn
n

})
. (10)

Proposition 2 specifies under what conditions the elements that are 0 in the true matrix
Θ0 are with high probability correctly estimated as 0 by the estimator Θ̂. We stress here
that sparsistency properties for the ComGGL procedure concern only Θ̂ as due to the
imposed relaxations for X in the objective functions (3) and (4), we are not guaranteed
that the estimated X̂ is also sparse.

Proposition 2 Under conditions of Proposition 1 for estimators (Θ̂, X̂) based on the ob-
jective function `(Θ,X) that satisfy (i) equation (10), (ii) ‖Θ̂−Θ0‖ = Op(

√
ηn1) and (iii)

‖X̂ −ZZ>‖ = Op(
√
ηn2) for sequences ηn1, ηn2 → 0 if√

log pn
n

+
√
ηn1 +

√
ηn2 + λn2Θ

k
a,b

/√ ∑
a6=b∈Ck

(Θk
a,b)

2 = O(λn1), (11)

we have that with probability tending to 1, Θ̂a,b = 0 for all (a, b) ∈ Sc from the k-th
community.

7. On the Estimation and Consistency of the Community Labeling

Proposition 3 Let Z be the community membership matrix and let QΛQ> be the eigen-
decomposition of ZZ>. There exists a matrix WKn×Kn with real elements such that Q =
ZW and where the Euclidean distance between vectors W l and Wm (which represent the
l-th and m-th row of the matrix W ) is ‖W l −Wm‖ = {(#Cl)−1 + (#Cm)−1}1/2 for all
1 ≤ l < m ≤ Kn.

The proof of Proposition 3 follows from Lemma 2.1 of Lei and Rinaldo (2015) where
their connectivity matrix B is replaced by the identity matrix. The proposition establishes
that (i) the eigenvectors Q contain information about the community membership matrix
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Z and (ii) that one can recover the community structure since two nodes belong to the
same community if the rows of the matrix of eigenvectors Q are also the same.

Using Proposition 3 we use spectral clustering with the approximate k-means procedure
as in Lei and Rinaldo (2015) and Amini and Levina (2018) to get

(Ẑ, Ŵ ) = arg min
Z∈Mpn×Kn ,W∈RKn×Kn

‖ZW − Q̂‖2F , (12)

where Q̂Λ̂Q̂
>

is the Kn-dimensional eigen-decomposition of the matrix X corresponding to
the Kn largest absolute eigenvalues andMpn×Kn is the set of matrices of dimension pn×Kn

that have on each row only one value of 1, indicating the community to which the node
belongs to, and all other values on the row set at 0, since a node belongs to only one
community.

Proposition 3 offers information that using a k-means procedure is an appropriate strat-
egy to identify the hidden communities. It does not however, provide bounds on the relative
error for community reconstruction using the k-means procedure.

Proposition 4 similar to Theorem 3.1 of Lei and Rinaldo (2015), quantifies the er-
rors when performing ‘(1 + ξ) k-means’ clustering on the rows of Q̂ to estimate the com-
munity membership. The term ‘(1 + ξ)’ refers to the fact that there exists a polyno-
mial time algorithm that obtains estimators (Ẑ, Ŵ ) such that ‖ẐŴ − Q̂‖2F ≤ (1 +

ξ) minZ∈Mpn×Kn ,W∈RKn×Kn
‖ZW − Q̂‖2F .

Let Sk denote the sets of misclassified nodes from the kth community. By C =
⋃Kn
k=1(Ck\

Sk) we denote the set of all nodes correctly classified across all communities and by ZC∗
we denote the submatrix of Z formed by retaining only the rows indexed by the set C of
correctly classified nodes and all columns. The errors in Proposition 4 relate to the sizes
of the sets of misclassified nodes for each community, #Sk, and specify conditions on the
interplay between n, pn and Kn.

Proposition 4 Let Z be the community membership matrix and Ẑ be the result of the
spectral clustering in (12). There exists a constant c > 0 such that if (2 + ξ)n−1/2(p2n −
Knpn)1/2 < c then with probability tending to 1 there exist subsets Sk ⊂ Ck for k = 1, . . . ,Kn

and a Kn × Kn permutation matrix J such that ẐC∗J = ZC∗ where
∑Kn

k=1 #Sk/#Ck ≤
c−1(2 + ξ)n−1/2(p2n −Knpn)1/2.

8. Simulations

We generated data Y i ∼ N(0,Σ) where Θ = Σ−1 is graph structured and where the
sample sizes were n = 100 and 1000. More precisely, the graph underlying Θ contained
Kn = 1, 3 and 10 communities. The communities contained 20, 50 and 200 nodes with
probability πw = .5 of nodes being connected to other nodes within the community. The
probabilities πb = .1 and .2 of nodes being connected to nodes from other communities
(edges between communities) have been used. To evaluate the robustness of the method
to model misspecification, we have also generated data from a heavy-tailed multivariate t
distribution with 2 degrees of freedom. A number of 48 different simulation settings were
created and 100 repetitions per setting were generated.
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πb = .1 πb = .2

Figure 3: Visual representation of a random Θ matrix used in the data generating process.
The colored dots indicate non-zero elements, while the white dots indicate ele-
ments set at 0. On the main diagonal three communities of nodes are illustrated.
The left panel shows the representation when πb = .1 and the right panel, the
representation when πb = .2.

Figure 3 graphically illustrates the structure of Θ. The elements of Σ have been gener-
ated as follows. First, we created a matrix Σ̃ where the value .3 is placed for off-diagonal
elements for which the corresponding value in the randomly generated adjacency matrix
was 1. Let φ be the absolute value of the smallest eigenvalue of Σ̃. We then replaced all
diagonal elements of Σ̃ by φ+.2 to ensure positive definiteness, and finally converted Σ̃ to
a correlation matrix which was further used as Σ to generate data. This resulted in values
Σa6=b in the range −.4 to .4.

The tested competitors were: ComGGL1, ComGGL2, the sequential estimation using
graphical lasso and the sbmSDP, GSBM and CORD and the cluster graphical lasso pro-
cedure with single, average and complete linkages. For CORD the estimated covariance

matrix Σ̂ = Θ̂
−1

has been converted to a correlation matrix, which was then used as input
for the procedure. ComGGL1 enforces positive semi-definiteness of X, while ComGGL2 en-
forces X to be positive definite. For the ComGGL and the sequential sbmSDP and GSBM
we use the approach proposed in Le and Levina (2015) for determining an optimal value
for Kn; while for cluster graphical lasso and CORD we use the approaches suggested by the
corresponding authors. Regularization parameters λn1 and λn2 have been selected using
3-fold cross-validation on a grid of 10 × 10 values, while to give equal importance to the
contribution of S and X in the objective function, we have set λn3 = 1.

We evaluate all procedures with respect to: (i) the Frobenius norm of the difference
between the true Θ0 and Θ̂ (lower is better), (ii) the F1 score measuring the accuracy of
recovering the edges of the graph (larger is better) and (iii) the Rand index measuring the
accuracy of recovering the labelings of the nodes (higher is better). Tables 1–3 present a
summary of the obtained results and for all methods and settings averages over 100 simu-
lation runs are presented. More simulation output can be found in the Online Appendix 1.
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K #Ck n ComGGL2 ComGGL1 sbmSDP GSBM clustGL:Sin Avg Com CORD
1 20 100 5.41 (0.73) 5.41 (0.73) 5.51 (0.74) 5.51 (0.74) 5.91 (0.79) 6.15 (0.85) 6.32 (0.82) 5.51 (0.74)
1 20 500 4.74 (0.77) 4.74 (0.77) 4.66 (0.77) 4.66 (0.77) 5.42 (0.92) 6.06 (0.88) 6.21 (0.87) 4.66 (0.77)
1 20 1000 4.69 (0.77) 4.69 (0.76) 4.65 (0.77) 4.65 (0.77) 5.45 (0.91) 6.05 (0.88) 6.25 (0.85) 4.65 (0.77)
1 200 100 23.33 (1.45) 23.33 (1.45) 23.34 (1.47) 23.34 (1.47) 23.34 (1.48) 23.59 (1.51) 23.64 (1.51) 23.34 (1.47)
1 200 500 22.37 (1.02) 22.37 (1.02) 22.44 (1.15) 22.44 (1.15) 22.42 (1.11) 22.97 (1.26) 23.18 (1.34) 22.44 (1.15)
1 200 1000 21.73 (1.14) 21.73 (1.14) 21.70 (1.13) 21.70 (1.13) 21.74 (1.13) 22.88 (1.23) 23.17 (1.27) 21.70 (1.13)
3 20 100 8.28 (0.71) 8.28 (0.71) 8.38 (0.75) 8.38 (0.75) 8.44 (0.76) 8.93 (0.85) 9.09 (0.85) 8.38 (0.75)
3 20 500 6.09 (0.60) 6.09 (0.60) 6.00 (0.60) 6.00 (0.60) 6.40 (0.65) 8.19 (0.93) 8.71 (0.83) 6.00 (0.60)
3 20 1000 5.90 (0.61) 5.91 (0.61) 5.84 (0.60) 5.84 (0.60) 6.28 (0.63) 8.08 (0.99) 8.69 (0.84) 5.84 (0.60)
10 20 100 15.11 (0.89) 15.11 (0.89) 15.19 (0.96) 15.19 (0.96) 15.18 (0.96) 15.56 (1.03) 15.70 (1.04) 15.19 (0.96)
10 20 500 12.60 (0.75) 12.59 (0.75) 12.57 (0.76) 12.57 (0.76) 12.58 (0.77) 14.05 (1.09) 14.79 (0.92) 12.57 (0.76)
10 20 1000 10.24 (0.65) 10.24 (0.65) 10.17 (0.65) 10.17 (0.65) 10.34 (0.66) 13.75 (1.24) 14.32 (1.17) 10.17 (0.65)
10 50 100 76.48 (0.63) 76.48 (0.63) 76.51 (0.63) 76.51 (0.63) / / / 76.51 (0.63)
10 50 500 22.79 (1.03) 22.79 (1.03) 22.92 (0.95) 22.92 (0.95) / / / 22.92 (0.95)
10 50 1000 19.99 (0.85) 19.98 (0.85) 19.93 (0.85) 19.93 (0.85) / / / 19.93 (0.85)

1 20 100 8.13 (0.80) 8.13 (0.80) 8.08 (0.81) 8.08 (0.81) 8.26 (0.83) 8.47 (0.90) 8.57 (0.86) 8.08 (0.81)
1 20 500 8.73 (0.78) 8.73 (0.78) 8.70 (0.78) 8.70 (0.78) 8.85 (0.81) 9.02 (0.85) 9.12 (0.85) 8.70 (0.78)
1 20 1000 8.77 (0.77) 8.77 (0.78) 8.73 (0.77) 8.73 (0.77) 8.87 (0.79) 9.01 (0.82) 9.11 (0.81) 8.73 (0.77)
1 200 100 26.30 (1.55) 26.30 (1.55) 26.26 (1.54) 26.26 (1.54) 26.29 (1.54) 26.68 (1.55) 27.05 (1.63) 26.26 (1.54)
1 200 500 28.63 (1.57) 28.63 (1.57) 28.60 (1.57) 28.60 (1.57) 28.62 (1.57) 28.93 (1.59) 29.17 (1.61) 28.60 (1.57)
1 200 1000 29.09 (1.63) 29.10 (1.63) 29.06 (1.62) 29.06 (1.62) 29.08 (1.62) 29.42 (1.61) 29.66 (1.69) 29.06 (1.62)
3 20 100 11.72 (0.83) 11.73 (0.83) 11.67 (0.82) 11.67 (0.82) 11.75 (0.84) 12.37 (0.95) 12.64 (0.96) 11.67 (0.82)
3 20 500 13.02 (0.83) 13.02 (0.83) 12.97 (0.83) 12.97 (0.83) 13.03 (0.84) 13.37 (0.90) 13.57 (0.90) 12.97 (0.83)
3 20 1000 13.26 (0.81) 13.26 (0.81) 13.22 (0.82) 13.22 (0.82) 13.27 (0.82) 13.62 (0.87) 13.74 (0.86) 13.22 (0.82)
10 20 100 19.38 (1.21) 19.38 (1.21) 19.35 (1.21) 19.35 (1.21) 19.39 (1.22) 20.03 (1.43) 20.52 (1.61) 19.35 (1.21)
10 20 500 22.41 (1.17) 22.41 (1.17) 22.38 (1.17) 22.38 (1.17) 22.40 (1.17) 22.86 (1.28) 23.16 (1.24) 22.38 (1.17)
10 20 1000 23.18 (1.11) 23.18 (1.11) 23.13 (1.12) 23.13 (1.12) 23.15 (1.12) 23.62 (1.22) 23.87 (1.23) 23.13 (1.12)
10 50 100 31.95 (6.67) 31.95 (6.67) 31.48 (4.92) 31.48 (4.92) / / / 31.48 (4.92)
10 50 500 36.40 (1.36) 36.41 (1.36) 36.37 (1.35) 36.37 (1.35) / / / 36.37 (1.35)
10 50 1000 37.68 (1.44) 37.68 (1.44) 37.66 (1.44) 37.66 (1.44) / / / 37.66 (1.44)

Table 1: Simulated data. Average and standard deviation of the Frobenius norm (smaller is better), when all competitors use an
estimated Kn value and 3-fold CV is used to select the optimal tuning parameters, and πb = .1. The symbol ‘/’ denotes
that the method has been omitted from the calculation due to computational complexity. Top part: Gaussian data;
lower part: Student t2.
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K #Ck n ComGGL2 ComGGL1 sbmSDP GSBM clustGLSin clustGLAvg clustGLCom CORD

1 20 100 0.68 (0.07) 0.68 (0.07) 0.65 (0.08) 0.65 (0.08) 0.50 (0.09) 0.39 (0.11) 0.31 (0.08) 0.65 (0.08)
1 20 500 0.82 (0.02) 0.82 (0.02) 0.83 (0.02) 0.83 (0.02) 0.64 (0.08) 0.43 (0.11) 0.37 (0.11) 0.83 (0.02)
1 20 1000 0.84 (0.02) 0.84 (0.02) 0.84 (0.02) 0.84 (0.02) 0.65 (0.07) 0.45 (0.10) 0.36 (0.08) 0.84 (0.02)
1 200 100 0.13 (0.03) 0.13 (0.03) 0.13 (0.03) 0.13 (0.03) 0.13 (0.03) 0.07 (0.02) 0.06 (0.02) 0.13 (0.03)
1 200 500 0.37 (0.06) 0.37 (0.06) 0.36 (0.04) 0.36 (0.04) 0.36 (0.05) 0.25 (0.08) 0.21 (0.04) 0.36 (0.04)
1 200 1000 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.49 (0.01) 0.29 (0.06) 0.23 (0.04) 0.50 (0.00)
3 20 100 0.45 (0.03) 0.45 (0.03) 0.43 (0.04) 0.43 (0.04) 0.41 (0.05) 0.27 (0.06) 0.21 (0.06) 0.43 (0.04)
3 20 500 0.66 (0.01) 0.66 (0.01) 0.66 (0.01) 0.66 (0.01) 0.63 (0.02) 0.41 (0.08) 0.30 (0.04) 0.66 (0.01)
3 20 1000 0.71 (0.01) 0.71 (0.01) 0.71 (0.01) 0.71 (0.01) 0.67 (0.02) 0.44 (0.09) 0.31 (0.03) 0.71 (0.01)
10 20 100 0.22 (0.04) 0.22 (0.04) 0.21 (0.04) 0.21 (0.04) 0.21 (0.04) 0.12 (0.03) 0.09 (0.03) 0.21 (0.04)
10 20 500 0.55 (0.01) 0.55 (0.01) 0.55 (0.01) 0.55 (0.01) 0.54 (0.01) 0.34 (0.06) 0.25 (0.02) 0.55 (0.01)
10 20 1000 0.62 (0.01) 0.62 (0.01) 0.62 (0.01) 0.62 (0.01) 0.61 (0.01) 0.38 (0.07) 0.28 (0.05) 0.62 (0.01)
10 50 100 0.32 (0.00) 0.32 (0.00) 0.32 (0.00) 0.32 (0.00) / / / 0.32 (0.00)
10 50 500 0.41 (0.01) 0.41 (0.01) 0.40 (0.03) 0.40 (0.03) / / / 0.40 (0.03)
10 50 1000 0.52 (0.00) 0.52 (0.00) 0.52 (0.00) 0.52 (0.00) / / / 0.52 (0.00)

1 20 100 0.67 (0.05) 0.66 (0.05) 0.68 (0.05) 0.68 (0.05) 0.58 (0.09) 0.44 (0.15) 0.37 (0.13) 0.68 (0.05)
1 20 500 0.74 (0.04) 0.71 (0.05) 0.74 (0.04) 0.74 (0.04) 0.63 (0.07) 0.45 (0.14) 0.35 (0.12) 0.74 (0.04)
1 20 1000 0.75 (0.04) 0.72 (0.05) 0.76 (0.04) 0.76 (0.04) 0.63 (0.08) 0.47 (0.15) 0.35 (0.11) 0.76 (0.04)
1 200 100 0.35 (0.03) 0.35 (0.03) 0.35 (0.03) 0.35 (0.03) 0.35 (0.03) 0.31 (0.06) 0.27 (0.08) 0.35 (0.03)
1 200 500 0.42 (0.03) 0.41 (0.03) 0.42 (0.03) 0.42 (0.03) 0.42 (0.03) 0.35 (0.07) 0.30 (0.09) 0.42 (0.03)
1 200 1000 0.44 (0.03) 0.43 (0.03) 0.45 (0.03) 0.45 (0.03) 0.44 (0.03) 0.35 (0.08) 0.29 (0.09) 0.45 (0.03)
3 20 100 0.45 (0.02) 0.45 (0.02) 0.46 (0.02) 0.46 (0.02) 0.44 (0.02) 0.33 (0.07) 0.27 (0.08) 0.46(0.02)
3 20 500 0.52 (0.02) 0.52 (0.02) 0.52 (0.02) 0.52 (0.02) 0.51 (0.02) 0.39 (0.08) 0.31 (0.09) 0.52(0.02)
3 20 1000 0.54 (0.02) 0.54 (0.02) 0.55 (0.02) 0.55 (0.02) 0.53 (0.02) 0.38 (0.08) 0.31 (0.08) 0.55(0.02)
10 20 100 0.31 (0.01) 0.31 (0.01) 0.31 (0.01) 0.31 (0.01) 0.31 (0.01) 0.27 (0.04) 0.24 (0.05) 0.31 (0.01)
10 20 500 0.40 (0.01) 0.40 (0.01) 0.40 (0.01) 0.40 (0.01) 0.39 (0.01) 0.32 (0.06) 0.28 (0.08) 0.40 (0.01)
10 20 1000 0.43 (0.01) 0.43 (0.01) 0.43 (0.01) 0.43 (0.01) 0.43 (0.01) 0.34 (0.07) 0.29 (0.08) 0.43 (0.01)
10 50 100 0.22 (0.02) 0.22 (0.02) 0.22 (0.02) 0.22 (0.02) / / / 0.22 (0.02)
10 50 500 0.31 (0.01) 0.31 (0.01) 0.31 (0.01) 0.31 (0.01) / / / 0.31 (0.01)
10 50 1000 0.34 (0.01) 0.34 (0.01) 0.34 (0.01) 0.34 (0.01) / / / 0.34 (0.01)

Table 2: Simulated data. Average and standard deviation of the F1 score (larger is better), when all competitors use an estimated
Kn value and 3-fold CV is used to select the optimal tuning parameters, and πb = .1. The symbol ‘/’ denotes that the
method has been omitted from the calculation due to computational complexity. Top part: Gaussian data; lower part:
Student t2.

18



C
o
m
G
G
L
:
C
o
m
m
u
n
it
y
-b
a
se

d
g
r
o
u
p
g
r
a
p
h
ic
a
l
l
a
sso

K #Ck n ComGGL2 ComGGL1 sbmSDP GSBM clustGLSin clustGLAvg clustGLCom CORD

1 20 100 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.64 (0.14) 0.37 (0.18) 0.26 (0.11) 0.94 (0.12)
1 20 500 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.66 (0.13) 0.35 (0.16) 0.28 (0.18) 0.96 (0.10)
1 20 1000 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.64 (0.12) 0.35 (0.13) 0.25 (0.11) 0.97 (0.09)
1 200 100 0.51 (0.13) 0.28 (0.07) 0.27 (0.06) 0.29 (0.07) 0.97 (0.02) 0.35 (0.12) 0.23 (0.04) 0.99 (0.02)
1 200 500 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.97 (0.01) 0.38 (0.12) 0.25 (0.09) 0.78 (0.18)
1 200 1000 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.97 (0.02) 0.37 (0.10) 0.25 (0.09) 0.65 (0.17)
3 20 100 0.32 (0.00) 0.32 (0.00) 0.34 (0.06) 0.34 (0.06) 0.37 (0.02) 0.54 (0.05) 0.59 (0.05) 0.33 (0.02)
3 20 500 0.32 (0.00) 0.32 (0.00) 0.32 (0.00) 0.32 (0.00) 0.37 (0.01) 0.54 (0.05) 0.59 (0.02) 0.38 (0.05)
3 20 1000 0.33 (0.04) 0.33 (0.04) 0.36 (0.11) 0.36 (0.12) 0.37 (0.01) 0.54 (0.05) 0.59 (0.02) 0.37 (0.05)
10 20 100 0.43 (0.10) 0.68 (0.05) 0.69 (0.06) 0.67 (0.08) 0.12 (0.01) 0.61 (0.08) 0.72 (0.02) 0.10 (0.01)
10 20 500 0.10 (0.00) 0.10 (0.00) 0.10 (0.00) 0.10 (0.00) 0.12 (0.01) 0.59 (0.11) 0.72 (0.02) 0.22 (0.11)
10 20 1000 0.10 (0.00) 0.10 (0.00) 0.10 (0.00) 0.10 (0.00) 0.12 (0.01) 0.59 (0.10) 0.70 (0.07) 0.33 (0.14)
10 50 100 0.10 (0.00) 0.10 (0.00) 0.10 (0.00) 0.10 (0.00) / / / 0.90 (0.00)
10 50 500 0.10 (0.00) 0.10 (0.00) 0.17 (0.19) 0.16 (0.19) / / / 0.34 (0.14)
10 50 1000 0.10 (0.00) 0.10 (0.00) 0.10 (0.00) 0.10 (0.00) / / / 0.49 (0.12)

1 20 100 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.71 (0.17) 0.45 (0.27) 0.31 (0.19) 0.53 (0.20)
1 20 500 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.70 (0.15) 0.41 (0.21) 0.27 (0.16) 0.59 (0.22)
1 20 1000 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.68 (0.16) 0.44 (0.27) 0.26 (0.18) 0.62 (0.22)
1 200 100 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.98 (0.02) 0.76 (0.26) 0.56 (0.31) 0.05 (0.05)
1 200 500 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.98 (0.02) 0.69 (0.25) 0.50 (0.30) 0.06 (0.05)
1 200 1000 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.98 (0.02) 0.60 (0.26) 0.41 (0.26) 0.08 (0.06)
3 20 100 0.32 (0.00) 0.32 (0.00) 0.32 (0.00) 0.32 (0.00) 0.35 (0.02) 0.50 (0.08) 0.56 (0.09) 0.59 (0.05)
3 20 500 0.32 (0.00) 0.32 (0.00) 0.32 (0.00) 0.32 (0.00) 0.35 (0.02) 0.49 (0.09) 0.56 (0.09) 0.56 (0.06)
3 20 1000 0.32 (0.00) 0.32 (0.00) 0.32 (0.00) 0.32 (0.00) 0.35 (0.02) 0.52 (0.08) 0.56 (0.07) 0.54 (0.07)
10 20 100 0.10 (0.00) 0.10 (0.00) 0.10 (0.00) 0.10 (0.00) 0.11 (0.01) 0.33 (0.21) 0.47 (0.23) 0.87 (0.03)
10 20 500 0.10 (0.00) 0.10 (0.00) 0.10 (0.00) 0.10 (0.00) 0.11 (0.01) 0.38 (0.21) 0.50 (0.24) 0.85 (0.05)
10 20 1000 0.10 (0.00) 0.10 (0.00) 0.10 (0.00) 0.10 (0.00) 0.11 (0.01) 0.41 (0.20) 0.53 (0.23) 0.84 (0.05)
10 50 100 0.33 (0.25) 0.33 (0.25) 0.32 (0.26) 0.32 (0.25) / / / 0.89 (0.03)
10 50 500 0.10 (0.00) 0.10 (0.00) 0.10 (0.00) 0.10 (0.00) / / / 0.89 (0.08)
10 50 1000 0.10 (0.00) 0.10 (0.00) 0.10 (0.00) 0.10 (0.00) / / / 0.89 (0.02)

Table 3: Simulated data. Average and standard deviation of the Rand index (larger is better), when all competitors use an
estimated Kn value and 3-fold CV is used to select the optimal tuning parameters, and πb = .1. The symbol ‘/’ denotes
that the method has been omitted from the calculation due to computational complexity. Top part: Gaussian data;
lower part: Student t2.
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Upon inspection, the tables reveal that:

(i) increasing the sample size from 100 to 500 and 1000 is beneficial in reducing the Frobenius

norm of the difference between the true Θ0 and Θ̂ and the F1 score measuring the accuracy
of graph recovery for all methods;

(ii) quite consistenly across all tested scenarios the clusterGL with the average or complete linkage
performed unsatisfactory with respect to the Frobenius norm and F1 score; moreover due to the
computational complexity of selecting the number of components, for larger graphs estimation
was prohibitive;

(iii) across all tested scenarios if the data generating process is misspecified (that is, using a Student
t distribution with 2 degrees of freedom) it leads to a similar deterioration of performance for
all methods;

(iv) not knowing the true value of Kn has a larger impact on the accuracy of correctly assigning the
nodes to their respective communities for ComGGL, sbmSDP and GSBM (which all use the
same procedure for determining Kn) than for clusterGL (which especially with the average or
complete linkage performed very well with respect to the criterion). This points to the crucial
need of having a precise idea about the number of communities, or alternatively an accurate
estimate for it;

(v) allowing all nodes to belong to one single community of nodes does not incur any sensible
performance loss compared to the competitors;

When comparing the techniques among themselves, the ComGGL procedures, CORD and the
two-step sbmSDP and GSBM procedures are the best performing competitors with respect to the
proposed performance measures. The clusterGL procedure presents an interesting phenomenon
where using the single linkage provided satisfactory Frobenius norm and F1 performance, but un-
satisfactory labeling recovery, whereas using the complete linkage provided good labeling recovery
but unsatisfactory Frobenius norm and F1 performance, regardless of Kn being known or not.

It is worth mentioning that none of the competitors is everywhere the best performing one,
however the proposed ComGGL procedures seem to consistently be close to the best performing
techniques. This is especially so with respect to graph recovery, pointing to the fact that taking into
account the existence of communities of nodes when estimating the graph is a valid strategy that
can improve the accuracy of estimating the graph and the concentration matrix. Moreover, under
both a positive definiteness constraint and positive semi-definiteness constraint on X, ComGGL
provided similar performance.

From our experiments, we have observed that the method is relatively robust to the value of
λn3 even when Θ dominates ZZ> (by which we mean that the largest eigenvalues of the two
matrices are on different scales), although a more precise tuning of this parameter can sometimes
result in moderate improvements in performance. If the procedure is given knowledge about an
optimal number of communities (see Online Appendix 2), it also performs accurate labeling, in line
with other competitors. This points to the fact that estimating communities using concentration
matrix information rather than binary adjacency matrices is also a competitive strategy. The added
advantage of ComGGL is that it performs a one-step estimation of all quantities, whereas the
two-step adjacency-based approaches cannot theoretically justify the extra Bernoulli assumption on
the edges of the estimated graph which is used as input for community detection, although in the
simulated experiment it seemed to work.

Figure 4 shows the average running time of each competitor for different sizes of the graphs.
It suggests that (i) for fixed values of the tunning parameters, the proposed method is more time
consuming than the two-step approaches, but comparable or slightly faster that the cluster graphical
lasso (the search for an optimal Kn is the bottleneck of this competitor) and (ii) the computational
efficiency suggested by (4) translates into faster runtimes for ComGGL2 compared to ComGGL1.
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Figure 4: Simulated data. Average runtime in seconds (smaller is better) when the data are
generated from the Gaussian model. For all settings we fix πb = .1 and λn3 = 1.
The symbols represent averages over all different runs for different configuration
of Kn and #Ck. The points are connected to facilitate comparison.

9. Application to rsfMRI Data

We retake the rsfMRI example introduced in Section 1. The dataset contains 114 ROIs (columns)
and 240 BOLD measurements (rows). Each ROI is associated with a node in the graph and the
purpose is to jointly estimate (i) the brain pathways (which ROIs connect with other ROIs) as well
as (ii) the hidden community structure of the nodes (which nodes are similar enough to each other
to form a homogenous cluster of brain ROIs).

We evaluate several procedures with respect to the accuracy of recovering the six lobes that span
the entire brain, namely Frontal, Parietal, Temporal, Occipital, Insula and Cingulate. The ROIs
are positioned in only one of the lobes. An overlap between the estimated community membership
and the known lobe membership reveals how well the lobe structure of the brain is captured by the
community structure. The procedures we evaluate are ComGGL1, ComGGL2, two-step sequential
estimation using simple graphical lasso (no grouping) and the sbmSDP procedure of Amini and
Levina (2018), the GSBM procedure of Cai and Li (2015) and the CORD procedure of Bunea et al.
(2016). We add to the list also the cluster graphical lasso procedure of Tan et al. (2015) with single,
average and complete linkages. The two-step procedures use first the graphical lasso algorithm (which
is indifferent to the grouping structure of the nodes) to estimate the graph and in the second step,
use community detection procedures on the estimated graph to detect clusters of similar nodes. The
regularization levels were (λn1, λn2, λn3) = (.4, .2, 1) for ComGGL1 and ComGGL2, λn1 = 0.395
for the two-step procedures that use the output of the graphical lasso. For these regularization
parameters, all estimated graphs had a sparsity coefficient of roughly 92%.

Table 4 presents the performance of the methods with respect to the accuracy of recovering the
six lobes. We measure accuracy of lobe recovery using the (adjusted) Rand index and the F1 index
defined as

Rand =
yy + nn

NT
,

F1 =
2PR

P +R
where P = yy/(yy + ny);R = yy/(yy + yn),
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GL clusterGL
Kn ComGGL1 ComGGL2 sbmSDP GSBM CORD Single Average Complete

4 .40 .41 .41 .39 / .37 .32 .25
5 .42 .37 .44 .40 / .37 .26 .23
6 .39 .38 .37 .37 / .36 .25 .20
7 .50 .38 .38 .37 / .36 .22 .20

F
1

8 .47 .34 .36 .39 / .35 .19 .18
9 .42 .30 .35 .37 .38 .36 .18 .17

10 .35 .32 .32 .36 / .35 .17 .16
11 .40 .32 .29 .36 / .35 .17 .14
12 .37 .25 .27 .37 / .35 .17 .13
4 .57 .42 .57 .52 / .50 .40 .25
5 .37 .31 .35 .33 / .25 .14 .12
6 .19 .23 .21 .21 / .00 .01 .01
7 .36 .24 .25 .23 / .00 .01 .02
8 .30 .19 .24 .27 / .01 .02 .02
9 .25 .16 .24 .25 .17 .00 .01 .02

R
an

d
In

d
ex

10 .16 .16 .22 .24 / .01 .01 .02
11 .27 .15 .19 .25 / .01 .01 .01
12 .20 .08 .17 .27 / .01 .01 .01

Table 4: rsfMRI data. F1 label accuracy index (larger is better; top panel) and Rand Index
(larger is better; bottom panel) for various values of Kn ranging from 4 to 12.
Largest values per Kn are presented in bold.

and where

• yy represents the number of pairs of regions that are assigned to the same community and at
the same time belong to the same lobe;

• yn represents the number of pairs of regions that are assigned to the same community, but in
reality belong to different lobes;

• ny represents the number of pairs of regions that are assigned to two different communities,
but in reality belong to the same lobe;

• nn represents the number of pairs of regions that are assigned to two different communities
and at the same time belong to different lobes;

• NT represents the total number of pairs of regions.

For all tested competitors but CORD, one can fix the number of desired communities and the purpose
of the analysis in Table 4 is to perform a sensitivity analysis when the number of communities is varied
between 4 and 12. The main conclusion is that ComGGL1 offers best performance in recovering
the lobe partition of the brain among all competitors, followed closely by the two-step procedures
and ComGGL2. The performance of clusterGL seems to deteriorate severely when Kn > 4, so we
dropped it in the sequential analysis.

Next, we evaluate the procedures with respect to the homogeneity of the six lobes, where the
homogeneity score (higher is better) of a lobe is defined as:

Homogeneity(Lobej) =
#ROIs ∈ Lobej

#communities estimated for all ROIs ∈ Lobej
.
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GL
Lobe ROIs ComGGL1 ComGGL2 sbmSDP GSBM CORD
Cingulate 8 2.00 2.00 2.67 2.67 2.67
Frontal 39 9.75 9.75 7.80 7.80 9.75
Insula 4 4.00 4.00 4.00 4.00 4.00
Occipital 13 13.0 13.0 6.50 6.50 4.33
Parietal 24 6.00 6.00 4.80 4.00 4.80
Temporal 26 8.67 5.20 5.20 6.50 13.0
Average over lobes / 7.24 6.66 5.16 5.24 6.42
Average within LH over lobes 4.56 3.27 3.32 3.16 3.31
Average within RH over lobes 3.79 3.54 2.80 2.85 3.30

Table 5: rsfMRI data. Homogeneity index (larger is better) for the six brain lobes. Largest
values per lobe are presented in bold. The number of ROIs per lobe is also pre-
sented.

To give a concrete example, we know that the Occipital lobe contains 13 ROIs out of the 114
ROIs under study. If all the nodes are estimated as being part of a single community, then
Homogeneity(Occipital)=13. If some of the 13 nodes are estimated to be in one community and the
rest into another community then Homogeneity(Occipital)=6.5, since two communities are estimated
for these nodes.

Table 5 presents the obtained results when all methods are allowed to estimate Kn. All pro-
cedures identify correctly the insula lobe into one single community, but the ComGGL procedures
also correctly identify the occipital lobe. The CORD method did not satisfactorily identify the
occipital lobe as one single community, but identified the temporal lobe well. The sbmSDP and
GSBM, compared to the other procedures, are only marginally better in reconstructing the cin-
gulate lobe. Inspecting the right and left hemisphere separately, we can conclude that on both
hemispheres ComGGL1 provided communities that are closer to the lobe membership. In the left
hemisphere all the other techniques provided similar homogeneity scores, but for the regions on the
right hemisphere ComGGL1, the sbmSDP and GSBM procedures estimated that the nodes are less
homogeneous. ComGGL2 estimates the right hemisphere as being slightly more homogenous than
the left one, whereas the CORD procedure estimates both hemispheres as having roughly the same
homogeneity score. Overall, the ComGGLs estimated communities that come closer to the lobe
repartition, followed by the CORD procedure.

Figure 5 shows the estimated graphs when applying ComGGL1 (panel a), ComGGL2 (panel
b), the two-step sequential estimation using simple graphical lasso and sbmSDP (panel c), GSBM
(panel d) and the CORD procedure (panel e). The bottom panels display the estimated community
labels for each of the competitors.

The procedures estimate between seven and nine communities of nodes and output similar
graph and community configurations, however certain differences can be illustrated, especially with
respect to the number of ROIs included in each community, as well as to the structure of the
communities in terms of included regions. All estimated configurations agree on the identification
of the community, labeled ‘2’, that groups ROIs across the hemispheres, while most procedures
agree on the identification of two communities, labeled ‘1’ and ‘5’ in the frontal part of the brain
and two communities, ‘6’ and ‘7’ that span the posterior part. However similar the community
structure across the solutions might be, differences can also be observed, most predominantly for
ComGGL2 that estimates the 5th and 7th communities consisting of single ROIs and CORD that
prefers more fragmented communities with a few number of large components accompanied by a

23



Pircalabelu and Claeskens

F1 Rand Index
ComGGL2 sbmSDP GSBM CORD ComGGL2 sbmSDP GSBM CORD

ComGGL1 .81 .86 .86 .71 .74 .79 .80 .62
ComGGL2 .84 .83 .69 .77 .77 .61
sbmSDP .94 .71 .91 .62
GSBM .71 .61

Table 6: rsfMRI data. Community structure agreement measured by the F1 score (left
panel) and Rand index (right panel). Larger values denote larger agreement be-
tween methods.

larger number of small communities. Table 6 quantifies using the F1 and Rand index to what extend
the five solutions agree on the latent community structure and it supports that visual inspection
that ComGGL1, sbmSDP and GSBM provide quite similar communities in terms of identified ROIs
that form a community, number and size of the communities.

10. Discussion

We have introduced a new method that estimates an undirected graphical model and at the same
time performs community detection of similar nodes. Our procedure takes the estimated commu-
nities into account when estimating the underlying concentration matrix. The application of the
method to fMRI data shows a good performance and reveals (i) a clear functional separation between
the communities of brain regions as well as (ii) homogenous communities. On simulated data the
ComGGL procedure provided similar results to state-of-the-art two-step procedures. For future de-
velopments, one might offer the method more freedom in labeling the nodes by allowing certain hub
nodes to belong to multiple clusters as in the overlapping clusters framework of Bing et al. (2020).
Another possible extension is towards conditional graphical models as in Yin and Li (2011) where
one estimates a graph conditional on external information at the level of the nodes. An interesting
idea would be to quantify to what extent both the graph and the communities depend on external
information at the node level.
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ComGGL1 (a) ComGGL2 (b) GL & sbmSDP (c) GL & GSBM (d) GL & CORD (e)
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Figure 5: rsfMRI data. Top panels: estimated graphs using ComGGL1 (panel a), ComGGL2 (panel b), graphical lasso with the
sbmSDP procedure (panel c), with GSBM (panel d) and with CORD (panel e). Bottom panels: estimated community
membership for each node in the graph. The size of the labels is proportional to the degree of the node. The values
under each figure represent the number of ROIs within each estimated community.
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11. Appendix A

Proof [Proof of Proposition 1] The proof follows the idea of Theorem 1 of Lam and Fan (2009)
which in turn follows the lines of Rothman et al. (2008) and Bickel and Levina (2008a), adapted to
our objective function.
For any symmetric matrix U of dimension pn×pn with finite entries, let DU be its diagonal matrix (a
matrix of which the diagonal is equal to that of U and all other elements are 0) and RU = U −DU

its off-diagonal matrix (this implies that U = DU + RU ) and let ∆U = αnRU + βnDU where
αn = (sn log(pn)/n)1/2 → 0 and βn = (pn log(pn)/n)1/2 → 0. See page 4271 of Lam and Fan (2009).
Let V be an arbitrary symmetric matrix of dimension pn × pn with finite entries and ∆V = γnV
where γn = n−1/2(p2n/Kn − pn)1/2, which using assumptions (C) and (D) tends to 0.

The matrix ZZ> is block structured with Kn blocks on the diagonal, each of dimension pn/Kn×
pn/Kn. The diagonals are by convention set to 1, thus pn elements need not be estimated. The
matrices ∆U and ∆V will be used as ‘perturbation matrices’ around the true Θ0 and ZZ>, that
will become smaller with increasing sample size and will determine the rate of convergence of the
estimators. We make a distinction between the diagonal (that is, inverse variance entries) and
off-diagonal entries (inverse covariance entries) for Θ.

Define A as a set of matrices

A =
{

(U ,V ) : ‖∆U‖2F = C2
1α

2
n + C2

2β
2
n and ‖∆V ‖2F = C2

3γ
2
n

}
,

where ‖∆U‖2F and ‖∆V ‖2F are the squared Frobenius norms of the perturbation matrices, that
is, ‖∆U‖2F = tr(∆T

U∆U ) =
∑

a

∑
b ∆2

U,a,b. This implies that ‖αnRU + βnDU‖2F = (C2
1sn +

C2
2pn) log(pn)/n.

Let Θ = Θ0 + ∆U , X = ZZ> + ∆V and `(Θ,X) be the objective function used in (2). It is
sufficient to show that for sufficiently large constants C1, C2 and C3 the probability

P
(

inf
(U ,V )∈A

`(Θ0 + ∆U ,ZZ> + ∆V ) > `(Θ0,ZZ>)
)
→ 1.

This implies that there exist minimizers Θ̂, X̂ in the set{
(Θ0 + ∆U ,ZZ> + ∆V ) : ‖∆U‖2F ≤ C2

1α
2
n + C2

2β
2
n and ‖∆V ‖2F = C2

3γ
2
n

}
such that max(‖Θ̂−Θ0‖F , ‖X̂−ZZ>‖F ) = Op

(
max(

√
(pn + sn)log(pn)/n,

√
p2n/(nKn)− pn/n)

)
.

Consider now the difference `(Θ,X)− `(Θ0,ZZ>) = I1 + I2 + I3 + I4 + I5 where

I1 = tr(SΘ)− log det Θ− {tr(SΘ0)− log det Θ0}

I2 = λn1
∑

a,b∈Sc

(|∆U,a,b|)

I3 = λn1
∑
a,b∈S

(|Θa,b| − |Θ0,a,b|)

I4 = tr(ΘX)− tr(Θ0ZZ>)

I5 = λn2

Kn∑
k=1

(√ ∑
a6=b∈Ck

(Θk
a,b)

2 −
√ ∑

a 6=b∈Ck

(Θk
0,a,b)

2

)
.

Using assumptions (A) and (B) Lam and Fan (2009) showed that for constants C1 and C2 (i) the
sum I1 + I2 + I3 > 0 and (ii) the leading term in the sum is of order Op(C2

1α
2
n + C2

2β
2
n). It suffices

to show that also I4 ≥ 0 and that it dominates the remaining term I5.
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We have that

I4 = tr(ΘX)− tr(Θ0ZZ>) = tr((Θ0 + ∆U )X −Θ0ZZ>)

= tr(Θ0(X −ZZ>) + ∆UX) = tr(Θ0∆V ) + tr(∆UZZ>) + tr(∆U∆V ).

As in their value K4, Supplement p.19, of Yin and Li, 2011,

tr(Θ0∆V ) ≤ eigmax(Θ0)‖vec(∆V )‖ = eigmax(Θ0)
√

vec(∆V )>vec(∆V )

≤ (1/τ1)‖∆V ‖F = (1/τ1)C3γn

tr(∆UZZ>) = tr(ZZ>∆U )

≤ τ3‖∆U‖F = τ3

√
C2

1α
2
n + C2

2β
2
n = τ3Op(C1αn + C2βn)

tr(∆U∆V ) ≤ eigmax(∆U )‖∆V ‖F = op(C3γn)

which implies that I4 = Op(αn + βn + γn).
We focus now on I5.

|I5| =
∣∣∣λn2 Kn∑

k=1

(√ ∑
a 6=b∈Ck

(Θk
a,b)

2 −
√ ∑

a6=b∈Ck

(Θk
0,a,b)

2

)∣∣∣
≤ λn2

Kn∑
k=1

∣∣∑
a6=b∈Ck(Θk

a,b)
2 −

∑
a6=b∈Ck(Θk

0,a,b)
2
∣∣√∑

a6=b∈Ck(Θk
a,b)

2 +
√∑

a 6=b∈Ck(Θk
0,a,b)

2

= λn2

Kn∑
k=1

∑
a6=b∈Ck |(Θ

k
0,a,b + ∆k

Ua,b
)2 − (Θk

0,a,b)
2|√∑

a6=b∈Ck(Θk
a,b)

2 +
√∑

a 6=b∈Ck(Θk
0,a,b)

2

≤ λn2√
τ4

Kn∑
k=1

∑
a 6=b∈Ck

|(∆k
Ua,b

)2 + 2Θk
0,a,b∆

k
Ua,b
| (using assumption E)

≤ λn2√
τ4

(‖∆U‖2F +

Kn∑
k=1

∑
a 6=b∈Ck

|2Θk
0,a,b||∆

k
Ua,b
|)

≤ λn2√
τ4

(‖∆U‖2F +

Kn∑
k=1

∑
a 6=b∈Ck

|2Θk
0,a,b|
√
sn + pn‖∆U‖F )

=
λn2√
τ4

(‖∆U‖2F +M
√
sn + pn‖∆U‖F ),

for a general large constant M (that sums the off-diagonal elements of the true concentration matrix).
If λn2 = O(

√
log(pn)/n) then

|I5| ≤ Op

(√ log pn
n

(α2
n + β2

n) +

√
log pn
n

√
sn + pn

√
(sn + pn) log pn

n

)
= Op

(
(

√
log pn
n

+ 1)(α2
n + β2

n)
)
.

For sufficiently large constants, I4 ≥ 0 dominates the term I5 since the sequences involved in I4
are tending towards 0 much slower than the sequences involved in I5 and thus I4 will dominate I5.
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Proof [Proof of Proposition 2]
Arguing as in Guo et al. (2011) and Lam and Fan (2009) it suffices to show that for all indices

(a, b) ∈ Sc, the derivative
(
∂/∂Θk

a,b

)
`(Θ,X) evaluated at the sample realization of the estimators

Θ̂
k

a,b and X̂
k

a,b has with high probability, the same sign as the estimated value Θ̂
k

a,b.

The partial derivative of `(Θ,X) wrt Θk
a,b is given as

∂`(Θ,X)

∂Θk
a,b

= 2

(
Sk

a,b −Σk
a,b + λn1sgn(Θk

a,b)−Xk
a,b +

λn2Θ
k
a,b√∑

a 6=b∈Ck(Θk
a,b)

2

)

= 2

(
I1 + I2 + I3 +

λn2Θ
k
a,b√∑

a 6=b∈Ck(Θk
a,b)

2

)
,

where I1 = Sk
a,b −Σk

0,a,b, I2 = Σk
0,a,b −Σk

a,b − (ZZ>)ka,b and I3 = (ZZ>)ka,b −Xk
a,b.

Using the estimators (Θ̂, X̂) satisfying the necessary conditions stipulated in Propositions 1 and
2 follows, from Lam and Fan (2009) that maxa,b |I1| = Op(

√
log(pn)/n).

We now consider I2 and I3. From Lemma 1, Lam and Fan, 2009,

|I2| = |Σ̂
k

a,b −Σk
0,a,b + (ZZ>)ka,b| ≤ ‖Σ̂−Σ0 + ZZ>‖

≤ ‖Σ̂−Σ0‖+ ‖ZZ>‖ = Op(
√
ηn1) +O(1),

|I3| = |(ZZ>)ka,b − X̂
k

a,b| = |X̂
k

a,b − (ZZ>)ka,b| ≤ ‖X̂ −ZZ>‖ = Op(
√
ηn2).

This implies that for sufficiently large constants maxa,b |I1+I2+I3| = Op(
√

log(pn)/n+
√
ηn1+

√
ηn2).

It can easily be seen that as long as (11) holds, the sign of the derivative evaluated at the estimated

values Θ̂
k

a,b and X̂
k

a,b will depend on the sign of Θ̂
k

a,b only.

Proof [Proof of Proposition 4] Following the version of ‘Davis Kahan sin θ’ theorem presented in
Theorem 2 of Yu et al. (2015) we have that there exists an orthogonal matrix O such that

1√
2Kn

‖Û −UO‖F ≤
23/2 min(

√
(s− r + 1)‖X̂ −ZZ>‖, ‖X̂ −ZZ>‖F )

min(eigr−1 − eigr, eigs − eigs+1)
,

where s and r denote the positions of the ordered (from large to small) eigenvalues of the matrix

ZZ>. Using Proposition 1 we have that ‖X̂ −ZZ>‖ ≤ ‖X̂ −ZZ>‖F = Op(n−1/2
√
p2n/Kn − pn).

This implies that

‖Û −UO‖F ≤ κ
√
p2n
n
− Knpn

n
,

where κ is an unknown positive constant.
The rest of the proof follows as in the proof of Theorem 1 of Lei and Rinaldo (2015) since their

Lemma 5.3 covers the k-means problem posed in (12) and since their Lemma 2.1 is replaced by our
Proposition 3 for this specific context. As such, following the same reasoning yields for the ComGGL
procedure that

Kn∑
k=1

#Sk

#Ck
≤ 4(4 + 2ξ)‖X̂ −ZZ>‖2F ≤ 4(4 + 2ξ)κ

√
p2n
n
− Knpn

n
= c−1(2 + ξ)

√
p2n
n
− Knpn

n
,

where c is an unknown positive constant.
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12. Appendix B
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Figure 6: rsfMRI data, see Section 9. Assessing convergence of the ADMM algorithm for
ComGGL1 (top row) and ComGGL2 (bottom row). The panels show at each
iteration (a) the value of the objective function (should stabilize), (b) the Frobe-

nius norm of Θ̂ − Θ̃ (should approach 0), (c) the Frobenius norm of X̂ − X̃
(should approach 0) and (d) the estimated number of communities Kn (should
stabilize). The number on top of each graph gives the value at the last iteration
of the algorithm.

It took ComGGL1 for the rsfMRI example, on a standard laptop, 5.5 seconds (283 iterations)
to converge when the tolerance threshold was 10−4, 9.5 seconds (466 iterations) when the toler-
ance threshold was 10−5 and 25.8 seconds (1282 iterations) when the tolerance threshold was 10−6.
The computational advantage provided by (4) resulted in lower computational complexity and con-
vergence was attained for ComGGL2 much faster: 3.5 seconds (172 iterations), 4.8 seconds (226
iterations) and 5.8 seconds (282 iterations) for the same thresholds. The two-step GL & GSBM
procedure needed 5.9 seconds (447 iterations), 6.7 seconds (464 iterations) and 14.1 seconds (897
iterations) to estimate both the graph and the communities, while GL & sbmSDP needed 4.8 seconds
(855 iterations), 12.5 (2298 iterations) and 38.7 seconds (7122 iterations). This exercise illustrates
that with respect to the competitor procedures, ComGGL can be more time consuming to reach the
same accuracy level.
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