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Abstract

Sum-of-norms clustering is a method for assigning n points in Rd to K clusters, 1 ≤ K ≤
n, using convex optimization. Recently, Panahi et al. (2017) proved that sum-of-norms
clustering is guaranteed to recover a mixture of Gaussians under the restriction that the
number of samples is not too large. The purpose of this note is to lift this restriction,
that is, show that sum-of-norms clustering can recover a mixture of Gaussians even as the
number of samples tends to infinity. Our proof relies on an interesting characterization
of clusters computed by sum-of-norms clustering that was developed inside a proof of the
agglomeration conjecture by Chiquet et al. (2017). Because we believe this theorem has
independent interest, we restate and reprove the Chiquet et al. (2017) result herein.

Keywords: Sum-of-norms Clustering, Mixture of Gaussians, Recovery Guarantees, Un-
supervised Learning

1. Introduction

Clustering is perhaps the most central problem in unsupervised machine learning and has
been studied for over 60 years (Shalev-Shwartz and Ben-David, 2014). The problem may
be stated informally as follows. One is given n points, a1, . . . ,an lying in Rd. One seeks to
partition {1, . . . , n} into K sets C1, . . . , CK such that the ai’s for i ∈ Cm are closer to each
other than to the ai’s for i ∈ Cm′ , m

′ 6= m.
Clustering is usually posed as a nonconvex optimization problem, and therefore prone

to nonoptimal local minimizers, but Pelckmans et al. (2005), Hocking et al. (2011), and
Lindsten et al. (2011) proposed the following convex formulation for the clustering problem:
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min
x1,...,xn∈Rd

1

2

n∑
i=1

‖xi − ai‖2 + λ
∑

1≤i<j≤n
‖xi − xj‖ . (1)

This formulation is known in the literature as sum-of-norms clustering, convex clustering,
or clusterpath clustering. Let x∗1, . . . ,x

∗
n be the optimizer. (Note: (1) is strongly convex,

hence the optimizer exists and is unique.) The assignment to clusters is given by the x∗i ’s:
for i, i′, if x∗i = x∗i′ then i, i′ are assigned to the same cluster, else they are assigned to
different clusters. It is apparent that for λ = 0, each ai is assigned to a different cluster
(unless ai = ai′ exactly), whereas for λ sufficiently large, the second summation drives all
the xi’s to be equal (and hence there is one big cluster). Thus, the parameter λ controls
the number of clusters produced by the formulation.

Throughout this paper, we assume that all norms are Euclidean, although (1) has also
been considered for other norms. In addition, some authors insert nonnegative weights
in front of the terms in the above summations. Most of our results, however, require all
weights identically 1, but we revisit the question of general weights in Sections 5 and 6.

Recently, there have been various attempts to provide recovery guarantees for sum-of-
norms clustering with uniform weights (1). Zhu et al. (2014) showed that if a data set
is generated by two well-separated cubes, then sum-of-norms clustering recovers the two
clusters perfectly. The separation condition is rather strict: the distance between two cubes
must be larger than a threshold dependent on the number of data points and the sizes of two
cubes. Tan and Witten (2015) studied the statistical properties of sum-of-norms clustering.
Panahi et al. (2017) developed several recovery theorems as well as a first-order optimization
method for solving (1). Other authors, for example, Sun et al. (2018) have since extended
these results. One of Panahi et al.’s results pertains to a mixture of spherical Gaussians,
which is the following generative model for producing the data a1, . . . ,an. The parameters
of the model are K means µ1, . . . ,µK ∈ Rd, K variances σ21, . . . , σ

2
K , and K probabilities

w1, . . . , wK , all positive and summing to 1. One draws n i.i.d. samples as follows. First, an
index m ∈ {1, . . . ,K} is selected at random according to probabilities w1, . . . , wK . Next, a
point a is chosen according to the spherical Gaussian distribution N(µm, σ

2
mI).

Panahi et al. proved that for the appropriate choice of λ, sum-of-norms clustering for-
mulation (1) will exactly recover a mixture of Gaussians (that is, each point will be labeled
with m if it was selected from N(µm, σ

2
mI)) provided that for all m,m′, 1 ≤ m < m′ ≤ K,

‖µm − µm′‖ ≥
CKσmax

wmin
polylog(n). (2)

One issue with this bound is that as the number of samples n tends to infinity, the bound
seems to indicate that distinguishing the clusters becomes increasingly difficult (that is, the
µm’s have to be more distantly separated as n→∞).

The reason for this aspect of their bound is that their proof technique requires a gap of
positive width (that is, a region of Rd containing no sample points) between {ai : i ∈ Cm}
and {ai : i ∈ Cm′} whenever m 6= m′. Clearly, such a gap cannot exist in the mixture-of-
Gaussians distribution as the number of samples tends to infinity.

The purpose of this note is to prove that (1) can recover a mixture of Gaussians even
as n → ∞. This is the content of Theorem 3 in Section 4 below. Naturally, under this
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hypothesis we cannot hope to correctly label all samples since, as n→∞, some of the sam-
ples associated with one mean will be placed arbitrarily close to another mean. Therefore,
we are content in showing that (1) can correctly cluster the points lying within some fixed
number of standard-deviations for each mean.

A related result by Radchenko and Mukherjee (2017) analyzed the special case of a
mixture of Gaussians with K = 2, d = 1 under slightly different hypotheses. Also, Mixon
et al. (2017) showed that semidefinite relaxation of clustering Peng and Wei (2007) can
recover a mixture of Gaussians as n→∞, but this result requires nontrivial postprocessing
of the semidefinite solution to recover the clusters.

Our proof technique requires a cluster characterization theorem for sum-of-norms clus-
tering derived by Chiquet et al. (2017). This theorem is not stated by these authors as
a theorem, but instead appears as a sequence of steps inside a larger proof in a “supple-
mentary material” appendix to their paper. Because we believe that this theorem is of
independent interest, we restate it below and for the sake of completeness provide the proof
(which is the same as the proof appearing in Chiquet et al.’s supplementary material). This
material appears in Section 2. We conclude with some experimental results in Section 6.

2. Cluster Characterization Theorem

The following theorem is due to Chiquet et al. (2017) appearing as a sequence of steps in
a proof of the agglomeration conjecture. Refer to the next section for a discussion of the
agglomeration conjecture. We restate the theorem here because it is needed for our analysis
and because we believe it is of independent interest.

Theorem 1 Let x∗1, . . . ,x
∗
n denote the optimizer of (1). For notational ease, let x∗ denote

the concatenation of these vectors into a single vector in Rnd. Suppose that C is a nonempty
subset of {1, . . . , n}.

(a) Necessary condition: If for some x̂ ∈ Rd, x∗i = x̂ for i ∈ C and x∗i 6= x̂ for i /∈ C
(that is, C is exactly one cluster determined by (1)), then there exist z∗ij for i, j ∈ C, i 6= j,
which solve

ai −
1

|C|
∑
l∈C

al = λ
∑

j∈C−{i}

z∗ij ∀i ∈ C,∥∥z∗ij∥∥ ≤ 1 ∀i, j ∈ C, i 6= j,

z∗ij = −z∗ji ∀i, j ∈ C, i 6= j.

(3)

(b) Sufficient condition: Suppose there exists a solution z∗ij for j ∈ C − {i}, i ∈ C to

the conditions (3). Then there exists an x̂ ∈ Rd such that the minimizer x∗ of (1) satisfies
x∗i = x̂ for i ∈ C.

Note: This theorem is an almost exact characterization of clusters that are determined
by formulation (1). The only gap between the necessary and sufficient conditions is that
the necessary condition requires that C be exactly all the points in a cluster, whereas the
sufficient condition is sufficient for C to be a subset of the points in a cluster. The sufficient
condition is notable because it does not require any hypothesis about the other n − |C|
points occurring in the input.
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Proof (Chiquet et al.) Proof for Necessity (a)
As x∗ is the minimizer of the problem (1), and this objective function, call it f(x), is
convex, it follows that 0 ∈ ∂f(x∗), where ∂f(x∗) denotes the subdifferential, that is, the
set of subgradients of f at x∗. (See, for example, Hiriart-Urruty and Lemaréchal, 2012,
for background on convex analysis). Written explicitly in terms of the derivative of the
squared-norm and subdifferential of the norm, this means that x∗ satisfies the following
condition:

x∗i − ai + λ
∑
j 6=i

w∗ij = 0 ∀i = 1, . . . , n, (4)

where w∗ij , i = 1, . . . , n, j = 1, . . . , n, i 6= j, are subgradients of the Euclidean norm function
satisfying

w∗ij =

{ x∗i−x∗j
‖x∗i−x∗j‖

, for x∗i 6= x∗j ,

arbitrary point in B(0, 1), for x∗i = x∗j ,

with the requirement that w∗ij = −w∗ji in the second case. Here, B(c, r) is notation for the
closed Euclidean ball centered at c of radius r. Since x∗i = x̂ for i ∈ C, x∗i 6= x̂ for i /∈ C,
the KKT condition for i ∈ C is rewritten as

x̂− ai + λ
∑
j /∈C

x̂− x∗j∥∥∥x̂− x∗j∥∥∥ + λ
∑

j∈C−{i}

w∗ij = 0, (5)

Define z∗ij = w∗ij for i, j ∈ C, i 6= j. Then∥∥z∗ij∥∥ ≤ 1, z∗ij = −z∗ji,∀i, j ∈ C, i 6= j.

Substitute w∗ij = z∗ij into the equation (5) to obtain

x̂− ai + λ
∑
j /∈C

x̂− x∗j∥∥∥x̂− x∗j∥∥∥ + λ
∑

j∈C−{i}

z∗ij = 0, (6)

Sum the preceding equation over i ∈ C, noticing that the last term cancels out, leaving

|C|x̂−
∑
i∈C

ai + λ|C|
∑
j /∈C

x̂− x∗j∥∥∥x̂− x∗j∥∥∥ = 0,

which is rearranged to (renaming i to l):

λ
∑
j /∈C

x̂− x∗j∥∥∥x̂− x∗j∥∥∥ = −x̂+
1

|C|
∑
l∈C

al. (7)

Subtract (7) from (6), simplify and rearrange to obtain

ai −
1

|C|
∑
l∈C

al = λ
∑

j∈C−{i}

z∗ij ∀i ∈ C, (8)

as desired.
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Proof for Sufficiency (b)
We will show that at the solution of (1), all the x∗i ’s for i ∈ C have a common value under
the hypothesis that z∗ij is a solution to the equation (3) for i, j ∈ C, i 6= j.

First, define the following intermediate problem. Let ã denote the centroid of ai for
i ∈ C:

ã =
1

|C|
∑
l∈C

al.

Consider the weighted problem sum-of-norms clustering problem with unknowns as follows:
one unknown x ∈ Rd is associated with C, and one unknown xj is associated with each
j /∈ C (for a total of n− |C|+ 1 unknown vectors):

min
x;xj

|C|
2
· ‖x− ã‖2 +

1

2

∑
j /∈C

‖xj − aj‖2 + λ|C|
∑
j /∈C

‖x− xj‖+ λ
∑
i,j /∈C
i<j

‖xi − xj‖ . (9)

This problem, being strongly convex, has a unique optimizer; denote the optimizing vectors
x̃ and x̃j for j /∈ C.

The optimality conditions for (9) are:

|C|(x̃− ã) + λ|C|
∑
j /∈C

gj = 0, (10)

x̃i − ai − λ|C|gi + λ
∑

j /∈C∪{i}

yij = 0 ∀i /∈ C, (11)

with subgradients defined as follows:

gj =

{
x̃−x̃j

‖x̃−x̃j‖ , for x̃j 6= x̃,

arbitrary in B(0, 1), for x̃j = x̃,
∀j /∈ C,

and

yij =

{
x̃i−x̃j

‖x̃i−x̃j‖ , for x̃i 6= x̃j ,

arbitrary in B(0, 1), for x̃i = x̃j ,
∀i, j /∈ C, i 6= j,

with the proviso that in the second case, yij = −yji.
We claim that the solution for (1) given by defining x∗i = x̃ for i ∈ C while keeping the

x∗j = x̃j for j /∈ C, where x̃ and x̃j are the optimizers for (9) as in the last few paragraphs,
is optimal for (1), which proves the main result. To show that this solution is optimal for
(1), we need to provide subgradients to establish the necessary condition. Define wij to be

the subgradients of xi 7→
∥∥∥xi − x̃∗j

∥∥∥ evaluated at x̃∗i as follows:

wij = gj for i ∈ C, j /∈ C,
wij = yij for i, j /∈ C, i 6= j,

wij = z∗ij for i, j ∈ C, i 6= j,

Before confirming that the necessary condition is satisfied, we first need to confirm that
these are all valid subgradients. In the case that i ∈ C, j /∈ C, we have constructed gj to be
a valid subgradient of x 7→ ‖x− x̃j‖ evaluated at x̃, and we have taken x∗i = x̃, x∗j = x̃j .
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In the case that i, j /∈ C, we have construct yij to be a valid subgradient of x 7→ ‖x− x̃j‖
evaluated at x̃i, and we have taken x∗i = x̃i, x

∗
j = x̃j .

In the case that i, j ∈ C, by construction x∗i = x∗j = x̃, so any vector in B(0, 1) is a
valid subgradient of x 7→ ‖x− x̃j‖ evaluated x̃i. Note that since z∗ij ∈ B(0, 1), then wij

defined above also lies in B(0, 1).
Now we check the necessary conditions for optimality in (1). First, consider an i ∈ C:

x̃∗i − ai + λ
∑
j 6=i

wij = x̃− ai + λ
∑

j∈C−{i}

wij + λ
∑
j /∈C

wij

= x̃− ai + λ
∑

j∈C−{i}

z∗ij + λ
∑
j /∈C

gj

= x̃− ai + ai −
1

|C|
∑
l∈C

al + λ
∑
j /∈C

gj (by (3))

= x̃− ã+ λ
∑
j /∈C

gj

= 0 (by (10)).

Then we check for i /∈ C:

x̃∗i − ai + λ
∑
j 6=i

wij = x̃i − ai + λ
∑
j∈C

wij + λ
∑

j /∈C∪{i}

wij

= x̃i − ai + λ
∑
j∈C

(−gi) + λ
∑

j /∈C∪{i}

yij

= x̃i − ai − λ|C|gi + λ
∑

j /∈C∪{i}

yij

= 0 (by (11)).

3. Agglomeration Conjecture

Recall that when λ = 0, each ai is in its own cluster in the solution to (1) (provided the
ai’s are distinct), whereas for sufficiently large λ, all the points are in one cluster. Hocking
et al. (2011) conjectured that sum-of-norms clustering with equal weights has the following
agglomeration property: as λ increases, clusters merge with each other but never break up.
This means that the solutions to (1) as λ ranges over [0,∞) induce a tree of hierarchical
clusters on the data.

This conjecture was proved by Chiquet et al. (2017) using Theorem 1. Consider a λ̄ ≥ λ
and its corresponding sum-of-norms cluster model:

min
x1,...,xn

1

2

n∑
i=1

‖xi − ai‖2 + λ̄
∑

1≤i<j≤n
‖xi − xj‖ . (12)
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Corollary 2 (Chiquet et al.) If there is a C such that minimizer x∗ of (1) satisfies x∗i = x̂
for i ∈ C, x∗i 6= x̂ for i /∈ C for some x̂ ∈ Rd, then there exists an x̂′ ∈ Rd such that the
minimizer of (12), x̄∗, satisfies x̄∗i = x̂′ for i ∈ C.

The corollary follows from Theorem 1. If C is a cluster in the solution of (1), then by
the necessary condition, there exist multipliers z∗ij satisfying (3) for λ. If we scale each of

these multipliers by λ/λ̄, we now obtain a solution to (3) with λ replaced by λ̄, and the
theorem states that this is sufficient for the points in C to be in the same cluster in the
solution to (12).

It should be noted that Hocking et al. (2011) construct an example of unequally-weighted
sum-of-norms clustering in which the agglomeration property fails. It is still mostly an
open question to characterize for which norms and for which families of unequal weights
the agglomeration property holds. Refer to Chi and Steinerberger (2018) for some recent
progress.

4. Mixture of Gaussians

In this section, we present our main result about recovery of a mixture of Gaussians. As
noted in the introduction, a theorem stating that every point is labeled correctly is not
possible in the setting of n → ∞, so we settle for a theorem stating that points within a
constant number of standard deviations from the means are correctly labeled.

Theorem 3 Let the vertices a1, . . . ,an ∈ Rd be generated from a mixture of K Gaussian
distributions with parameters µ1, . . . ,µK , σ21, . . . , σ

2
K , and w1, . . . , wK . Let θ > 0 be given,

and let
Vm = {i : ‖ai − µm‖ ≤ θσm}, m = 1, . . . ,K.

Let ε > 0 be arbitrary. Then for any m = 1, . . . ,K, with probability exponentially close to
1 (and depending on ε; see (15)) as n → ∞, for the solution x∗ to (1), the points indexed
by Vm are in the same cluster provided

λ ≥ 2θσm
(F (θ, d)wm − ε)n

. (13)

Here, F (θ, d) denotes the cumulative density function of the chi distribution with d degrees
of freedom (which tends to 1 rapidly as θ increases). Furthermore, the cluster associated
with Vm is distinct from the cluster associated with Vm′, 1 ≤ m < m′ ≤ K with probability
exponentially close to 1 as n→∞ (see (16)), provided that

λ <
‖µm − µm′‖

2(n− 1)
. (14)

Proof Let ε > 0 be fixed. Fix an m ∈ {1, . . . ,K}. First, we show that all the points
indexed by Vm are in the same cluster. The usual technique for proving a recovery result
is to find subgradients to satisfy the sufficient condition, which in this case is Theorem 1
taking C in the theorem to be Vm. Observe that conditions (3) involve equalities and norm
inequalities. A standard technique in the literature (see, for example, Candès and Recht,
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2009) is to find the least-squares solution to the equalities and then prove that it satisfies
the inequalities. This is the technique we adopt herein. The conditions (3) are in sufficiently
simple form that we can write down the least-squares solution in closed form; it turns out
to be:

z∗ij =
1

λ|Vm|
(ai − aj) ∀i, j ∈ Vm, i 6= j.

It follows by construction (and is easy to check) that this formula satisfies the equali-

ties in (3), so the remaining task is to show that the norm bound
∥∥∥z∗ij∥∥∥ ≤ 1 is satis-

fied. By definition of Vm, ‖ai − aj‖ ≤ 2θσm. The probability that an arbitrary sam-
ple ai is associated with mean µm is wm. Furthermore, with probability F (θ, d), this
sample satisfies ‖ai − µm‖ ≤ θσm, that is, i ∈ Vm. Since the second choice in the mix-
ture of Gaussians is conditionally independent from the first, the overall probability that
i ∈ Vm is F (θ, d)wm. Therefore, E[|Vm|] = F (θ, d)wmn. It follows that the probability that
|Vm| ≥ (F (θ, d)wm− ε)n is exponentially close to 1 as n→∞ for a fixed ε > 0. Specifically,

Prob [|Vm| ≥ (F (θ, d)wm − ε)n] ≥ 1− exp(−2ε2n), (15)

by Hoeffding’s inequality (1963) for the binomial distribution. Thus, provided

λ ≥ 2θσm/((F (θ, d)wm − ε)n),

we have constructed a solution to (3) with probability exponentially close to 1 as n→∞.
For the second part of the theorem, suppose 1 ≤ m < m′ ≤ K. For each sample ai

associated with µm satisfying ‖ai − µm‖ ≤ θσm (that is, lying in Vm), the probability is
1/2 that

(ai − µm)T (µm′ − µm) ≤ 0,

by the fact that the spherical Gaussian distribution has mirror-image symmetry about
any hyperplane through its mean. Therefore, with probability exponentially close to 1 as
n→∞, we can assume that at least one i ∈ Vm satisfies the above inequality. In particular,

Prob
[
∃i ∈ Vm s.t. (ai − µm)T (µm′ − µm) ≤ 0

]
≥ 1− 2−|Vm|, (16)

(Note that, as noted above, |Vm| grows linearly with n with probability exponentially close
to 1 as n → ∞.) Similarly, with probability exponentially close to 1, at least one sample
i′ ∈ Vm′ satisfies

(ai′ − µm′)
T (µm − µm′) ≤ 0.

Then

‖ai − ai′‖2 = ‖ai − µm − ai′ + µm′ + µm − µm′‖2

= ‖ai − µm − ai + µm′‖2 + 2(ai − µm)T (µm − µm′)

− 2(ai′ − µm′)
T (µm − µm′) + ‖µm − µm′‖2

≥ ‖µm − µm′‖2 , (17)

where, in the final line, we used the two inequalities derived earlier in this paragraph.
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Consider the first-order optimality conditions for equation (1), which are given by (4).
Apply the triangle inequality to the summation in (4) to obtain,

‖x∗i − ai‖ ≤ λ(n− 1), and (18)

‖x∗i′ − ai′‖ ≤ λ(n− 1). (19)

Therefore,

‖x∗i − x∗i′‖ = ‖ai − ai′ + x∗i − ai − x∗i′ + ai′‖
≥ ‖ai − ai′‖ − ‖x∗i − ai‖ − ‖x∗i′ − ai′‖ (by the triangle inequality)

≥ ‖µm′ − µm‖ − 2λ(n− 1) (by (17), (18), and (19)).

Therefore, we conclude that x∗i 6= x∗i′ , ., that Vm and Vm′ are not in the same cluster,
provided that the right-hand side of the preceding inequality is positive, that is,

λ <
‖µm − µm′‖

2(n− 1)
.

This concludes the proof of the second statement.

In order to state a simpler bound, we can fix some values. For example, let us take
θ = 2d1/2 and let cd = F (2d1/2, d). The Chernoff bound implies that cd → 1 exponentially
fast in d. Let wmin = minm=1,...,K wm and σmax = maxm=1,...,K σm. Finally, let us take
ε = cdwmin/2. Then the above theorem states there is a λ such that with probability
tending to 1 exponentially fast in n, the points in Vm, for any m = 1, . . . ,K are each in the
same cluster, and these clusters are distinct, provided that

min
1≤m<m′≤K

‖µm − µm′‖ >
16
√
dσmax

cdwmin
. (20)

Compared to the Panahi et al. (2017) bound (2), we have removed the dependence of the
right-hand side on n as well as the factor of K. (The dependence of the Panahi et al. bound
on d is not made explicit so we cannot compare the two bounds’ dependence on d. Note
that there is still an implicit dependence on K in (20) since necessarily wmin ≤ 1/K.)

5. Extension to Other Weights

Several authors, for example, Sun et al. (2018) have introduced weights into either the first
or second or both summations in (1). One purpose for introducing weights is to be able
to eliminate many of the terms in the second summation (that is, use a weight of 0 on
those terms) in order to reduce the number of terms in the objective function to o(n2) for
the purpose of efficient computation. For example, Sun et al. use exponentially decaying
weights as in (24) below that are zeroed out for ai’s sufficiently far apart. The Chiquet
et al. characterization theorem, however, does not extend to fully general weights. (The
obstacle is that the left-hand side of (7) does not cancel out the third term on the left-hand
side of (6) for general weights.) The most general class of weights for which the theorem
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applies is multiplicative weights, which are as follows. Each data point ai for i = 1, . . . , n is
associated with a positive weight ri. Then both terms in (1) are weighted as follows:

min
x1,...,xn∈Rd

1

2

n∑
i=1

ri‖xi − ai‖2 + λ
∑

1≤i<j≤n
rirj‖xi − xj‖. (21)

Therefore, our recovery theorem also extends to multiplicative weights, which is the subject
of the rest of this section. A small computational experiment reported in Section 6 suggests
recovery of a mixture of Gaussians may also be possible with exponentially decaying weights.

We can draw the same conclusions as Theorem 1 when (3) in the necessary and sufficient
conditions is replaced by the following system of equations and inequalities:

ai −
∑
l∈C

rl∑
l′∈C rl′

al = λ
∑

j∈C−{i}

rjz
∗
ij ∀i ∈ C,∥∥z∗ij∥∥ ≤ 1 ∀i, j ∈ C, i 6= j,

z∗ij = −z∗ji ∀i, j ∈ C, i 6= j.

(22)

The proof of this generalization is analogous to the proof of Theorem 1, which we omit.
An analogous agglomeration conjecture for this setting was shown by Chiquet et al., that

is, the path of solutions to (21) as λ ranges over [0,∞) contains no splits for multiplicative
weights.

With the new theorem of cluster characterization, we can derive the conditions about
recovery of a mixture of Gaussians in the case of multiplicative weights, as an extension to
Theorem 3. This requires a further modeling assumption on the distribution of the weights.
As before, assume each data item ai, i = 1, . . . , n is chosen from a mixture of K Gaussians.
Assume that the weight ri associated with data item ai is chosen independently at random
according to ri ∼ Ωm. Here, m ∈ {1, . . . ,K} denotes the specific Gaussian associated with
ai. The distributions Ω1, . . . ,ΩK are all assumed to be supported in a single bounded
interval [0, R]. Denote the mean of Ωm as r̄m, m = 1, . . . ,K. Assume these means are all
positive: 0 < r̄m ≤ R.

The main result is that for any m = 1, . . . ,K, with probability exponentially close to 1
(and depending on ε) as n → ∞, for the solution x∗ computed by (21), the points in Vm
are in the same cluster provided that

λ ≥ 2θσm
(F (θ, d)wm − ε)nr̄m

,

and the cluster associated with Vm is distinct from the cluster associated with Vm′ , 1 ≤
m < m′ ≤ K, provided that

λ <
‖µm − µm′‖

2(n− 1)(r̄ − ε)
,

where r̄ is the overall mean of the ri’s, that is, r̄ = w1r̄1 + · · ·+ wK r̄K .
Similar techniques from the proof of Theorem 3 are used to prove the recovery of the

multiplicative-weight problem. First, we can construct a solution to (22) as follows

z∗ij =
1

λr′m
(ai − aj) ∀i, j ∈ Vm, i 6= j,

10
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where r′m =
∑

l∈Vm
rl. Our task is to prove that the norm bound

∥∥∥z∗ij∥∥∥ ≤ 1 holds. By

definition of Vm, ‖ai−aj‖ ≤ 2θσm. As before, the probability that |Vm| ≥ (F (θ, d)wm−ε1)n
is exponentially close to 1 as n → ∞ for a fixed ε1 > 0. Furthermore, the probability that
r′m ≥ (r̄m − ε2)|Vm| is exponentially close to 1 by Hoeffding’s inequality (1963) as n → ∞
for fixed ε2. Thus, provided

λ ≥ 2θσm
(F (θ, d)wmr̄m − ε)n

,

we have constructed a solution to (22) with probability exponentially close to 1, which
implies that all points in Vm are in the same cluster.

Turn now to the analysis of the upper bound on λ. The first-order optimality conditions
of (21) imply the following inequalities by applying the triangle inequality to the summation
of subgradients

‖x∗i − ai‖ ≤ λ
∑
j 6=i

rj ∀i. (23)

By the same argument in the proof of Theorem 3, there exist at least one i ∈ Vm, i′ ∈ Vm′
satisfying the following inequality with probability exponentially close to 1

‖x∗i − x∗i′‖ ≥ ‖µm′ − µm‖ − λ
∑
j 6=i

rj − λ
∑
j 6=i′

rj (by (17), (23)).

Therefore, we conclude that x∗i 6= x∗i′ , that is, that Vm and Vm′ are not in the same cluster,
provided that for all i ∈ Vm, i′ ∈ Vm′

λ <
‖µm − µm′‖∑
j 6=i rj +

∑
j 6=i′ rj

.

Applying Hoeffding’s bound again, we can claim that for any ε > 0, with probability tending
to 1 exponentially fast with n, this inequality will hold provided that

λ <
‖µm − µm′‖

2(n− 1)(r̄ − ε)
.

6. Computational Experiments

In this section, we perform experiments in which a solver for sum-of-norms clustering is ap-
plied to a set of points drawn from a mixture of Gaussians. Four experiments are performed
to address four questions: (1) How flexibly can λ be chosen? (2) How does the recovery
depend on d, the space dimension? (3) How does the recovery degrade as σ (the standard
deviation of the Gaussians) increases? and (4) Does the result hold for general weights?

Note that there is no attempt in this section to test sum-of-norms clustering on more
general data sets nor to compare it to other clustering algorithms since those topics are
outside the scope of this work. For performance of sum-of-norms clustering on more general
data sets, we refer the reader to Chi and Lange (2015); Hocking et al. (2011).

In all cases, the code used is our own Julia (Bezanson et al., 2017) implementation
of the ADMM solver by Chi and Lange (2015). Each iteration of this solver requires
O(n2d) operations since the objective function contains O(n2) terms, each involving vectors

11
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of length d. We observed that the number of iterations to reach a fixed tolerance scales
linearly with n. This means that the overall running time scales cubically with n. Our
convergence tolerance εtol was taken to be 10−6 in all cases. This tolerance corresponds to
the quantities εpri and εrel in the supplemental material of Chi and Lange (2015). These
parameters correspond to the absolute and relative precisions, which control the primal
and dual precisions. The algorithm terminates when the primal and dual residuals are
bounded by the precisions respectively. With this tolerance, the runs described below took
approximately 27 hours total on an Intel Xeon processor single-threaded.

After termination, clusters were recovered from the approximately converged solution
x̃1, . . . , x̃n as follows. An i is selected arbitrarily from {1, . . . , n}. Then all vectors j such
that ‖x̃i − x̃j‖ ≤

√
εtol are assigned to a cluster. These j’s (including i itself) are then

deleted from the list of nodes, and the process is repeated until all nodes are used up. Call
these recovered clusters R1, . . . , RK′ . The question of how to best retrieve clusters from
an approximate solution of (1) is nontrivial, and the first and second authors studied the
problem extensively in Jiang and Vavasis (2020).

Then Vm, m = 1, . . . ,K, are mapped to one of these recovered clusters, that is, a
mapping ` : {1, . . . ,K} → {1, . . . ,K ′} is computed such that R`(m) contains the most
number of elements of Vm. In other words,

`(m) := argmax
m′=1,...,K′

#(Vm ∩Rm′),

for each m = 1, . . . ,K, with ties broken arbitrarily. Here, #(·) denotes set-cardinality. This
mapping `(·) is not necessarily injective.

Then three scores are computed:

s1 =
1

#(V1 ∪ · · · ∪ Vm)

K∑
m=1

#(Vm ∩R`(m)),

which is the fraction of entries in V1 ∪ · · · ∪ Vm correctly clustered,

s2 =
1

n

K∑
m=1

#{i ∈ {1, . . . , n} : ai ∼ N (µm, σ
2
mI) and i ∈ R`(m)},

the fraction of entries of all n data points correctly clustered, and

s3 =
#`({1, . . . ,K})

K
,

the number of distinct recovered clusters divided by the true number. Note that as λ
increases, one would expect s1 and s2 to increase while s3 decreases, since clusters expand
as λ increases.

The first experiment is meant to determine whether choices λ outside the range specified
by Theorem 3 can still recover clusters. For this experiment we chose n = 1000, d = K = 6,
wi = 1/6 and µi = ei (ith column of the identity matrix) for i = 1, . . . , 6, σ = 0.0094, and
θ = 2.0. This choice of σ is made so that the upper and lower bounds on λ in Theorem 3
are nearly equal to a single value λ∗ = 7.0 · 10−4. Then we tested recovery for λ = κλ∗ with
κ = 1/4, 1/2, 1, 2, 4, as shown in Table 6.

12



Recovery of a Mixture of Gaussians by Sum-of-norms Clustering

λ s1 (% of Vm recovered) s2 (total % recovered) s3 (% distinct clusters)

λ∗/4 38/304 39/1000 6/6
λ∗/2 304/304 1000/1000 6/6
λ∗ 304/304 1000/1000 6/6
2λ∗ 304/304 1000/1000 6/6
4λ∗ 304/304 1000/1000 1/6

Table 1: Recovery for varying λ. Value λ∗ is the essentially unique value satisfying the two
inequalities of Theorem 3.

The data in Table 6 indicates that the recovery is perfect between λ∗/2 and 2λ∗. As
the theorem predicts, as λ increases, a greater number of Vm’s is recovered, but a smaller
number of Vm’s are distinct. This table suggests that a strengthening may exist of our main
theorem in which both inequalities are less restrictive, but not by orders of magnitude.

In the second experiment, we varied d and K. Note that as d and K get larger for fixed
n, we move away from the asymptotic range in which Theorem 3 applies since the size of
each cluster shrinks. On the other hand, as n is fixed while d and k get larger, we are closer
to the range of parameters for which the Panahi et al. result applies. For these tests, we
fixed n = 1000, looped over d = K = 4, 16, 64 and θ =

√
d (so that θ = 2, 4, 8). Note

that this variation of θ with respect to d is chosen so that F (θ, d) is about the same value
(between .5 and .6) for all three trials. As in the previous experiment, we chose wi = 1/K
and µi = ei (ith column of the identity matrix) for i = 1, . . . ,K. Finally, we chose σ so
that the upper and lower bounds in Theorem 3 were equal, and we chose λ to be this unique
value of λ. (Note that σ shrinks like d3/2 for this variation of parameters.)

We found that in all three cases, all 1000 points were clustered correctly into K distinct
clusters (so no table is presented). This robust behavior is not predicted by our theorem,
since the arguments in the theorem are weak if n/K is small. See further comments on this
matter in Section 7.

The next experiment considers the effect of increasing σ. For this experiment we fixed
d = 1, K = 2, n = 1000, µ1 = 0, µ2 = 1, w1 = w2 = 1/2, θ = 1. Let λmax be the value
appearing on the right-hand side of (14). In all trials, we fixed λ = λmax, which does not
depend on σ. We chose σ∗ to be the value of σ that makes the right-hand sides of (13)
and (14) equal. Then we increased σ by factors of

√
2 to observe the effect on recovery.

The results appear in Table 2. Note that the method continues to be robust for values of σ
modestly outside the range that we have established, but then the behavior quickly decays.
It is likely that we could have gotten better performance by carefully tuning λ. The last
experiment is a study of exponentially decaying weights, which is a case in which our theory
does not apply. Similar to Yuan et al. (2018), we used the following weighting:

min
1

2

n∑
i=1

‖xi − ai‖2 + λ
∑

1≤i<j≤n
exp(−φ ‖ai − aj‖2) ‖xi − xj‖ , (24)

where φ > 0 is a tuning parameter. Note that for φ close to 0, this formulation recovers
equal weights, whereas as φ → ∞, the weights in the second term tend to 0 and hence
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σ s1 (% of Vm recovered) s2 (total % recovered) s3 (% distinct clusters)

σ∗ 700/700 996/1000 2/2

21/2σ∗ 700/700 950/1000 2/2
2σ∗ 700/700 742/1000 2/2

23/2σ∗ 108/700 108/1000 2/2
4σ∗ 46/700 46/1000 2/2

Table 2: Recovery for varying σ. Here, σ∗ is the unique value that makes the right-hand
sides of (13) and (14) equal.

φ s1 (% of Vm recovered) s2 (total % recovered) s3 (% distinct clusters)

500 304/304 999/1000 6/6
1000 304/304 901/1000 6/6
1500 92/304 144/1000 6/6
2000 14/304 14/1000 6/6

Table 3: Recovery for varying φ.

each ai will end up in its own cluster. In the case of Yuan et al. (2018), the exponentially
decaying weights are truncated to 0 for points sufficiently far apart in order to improve
computational efficiency (by removing most of the terms from the second summation of
(1)). However, since our study here does not concern efficiency, we did not truncate any
terms. We chose n = 1000, d = K = 6, σ = .0094, λ as the unique value that satisfies
(13) and (14) if φ were zero (equal weights), θ = 2, The results in Table 3 show that for
exponentially decaying weights, the correct clusters are recovered provided that φ is not too
large, that is, the weights do not fall to 0 too quickly.

7. Discussion

The analysis of the mixture of Gaussians in Section 4 used only standard bounds and
simple properties of the normal distribution, so it should be apparent to the reader that
many extensions of this result (for example, Gaussians with a more general covariance
matrix, uniform distributions, many kinds of deterministic distributions) are possible. The
key technique is Theorem 1, which essentially decouples the clusters from each other so that
each can be analyzed in isolation. Such a theorem does not apply to most other clustering
algorithms, or even to sum-of-norm clustering in the case of non-multiplicative weights, so
obtaining similar results for other algorithms remains a challenge.

An interesting question concerns the ranges of parameters for which the Panahi et al.
result (which requires an upper bound on n), or its extension due to Sun et al. applies versus
our bound (which assumes n → ∞). Our result, stated loosely, is that the probability of
correct labeling of points a fixed number of standard deviations from the means goes to 1
exponentially fast in n, whereas the other result states that all points are correctly labeled
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with probability that goes to 1 exponentially fast in the ratio

min1≤m<m′≤K ‖µm − µm′‖
max1≤m≤K σm

.

Is it possible to stitch the two results together into a theorem that encompasses all values
of n? One of our computational experiments suggests that this may be possible.
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