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Abstract

It is commonplace to encounter heterogeneous or nonstationary data, of which the underlying
generating process changes across domains or over time. Such a distribution shift feature
presents both challenges and opportunities for causal discovery. In this paper, we develop a
framework for causal discovery from such data, called Constraint-based causal Discovery
from heterogeneous/NOnstationary Data (CD-NOD), to find causal skeleton and directions
and estimate the properties of mechanism changes. First, we propose an enhanced constraint-
based procedure to detect variables whose local mechanisms change and recover the skeleton
of the causal structure over observed variables. Second, we present a method to determine
causal orientations by making use of independent changes in the data distribution implied by
the underlying causal model, benefiting from information carried by changing distributions.
After learning the causal structure, next, we investigate how to efficiently estimate the
“driving force” of the nonstationarity of a causal mechanism. That is, we aim to extract from
data a low-dimensional representation of changes. The proposed methods are nonparametric,
with no hard restrictions on data distributions and causal mechanisms, and do not rely
on window segmentation. Furthermore, we find that data heterogeneity benefits causal
structure identification even with particular types of confounders. Finally, we show the
connection between heterogeneity/nonstationarity and soft intervention in causal discovery.
Experimental results on various synthetic and real-world data sets (task-fMRI and stock
market data) are presented to demonstrate the efficacy of the proposed methods.
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1. Introduction

Many tasks across several disciplines of empirical sciences and engineering rely on the under-
lying causal information. As it is often difficult, if not impossible, to carry out randomized
experiments, inferring causal relations from purely observational data, known as the task
of causal discovery, has drawn much attention in machine learning, philosophy, statistics,
and computer science. Traditionally, for causal discovery from observational data, under
appropriate assumptions, so-called constraint-based approaches recover some information of
the underlying causal structure based on conditional independence relationships of the vari-
ables (Spirtes et al., 1993). Alternatively, approaches based on functional causal models infer
the causal structure by exploiting the fact that under certain conditions, the independence
between the noise and the hypothetical cause only holds for the correct causal direction but
not for the wrong direction (Shimizu et al., 2006; Hoyer et al., 2009; Zhang and Hyvärinen,
2009a,b).

Over the last few years, with the rapid accumulation of huge volumes of data of various
types, causal discovery is facing exciting opportunities but also great challenges. One
feature such data often exhibit is distribution shift. Distribution shift may occur across data
sets, which may be obtained under different interventions or with different data collection
conditions, or over time, as featured by nonstationary data. For an example of the former
kind, consider remote sensing imagery data. The data collected in different areas and at
different times usually have different distributions due to varying physical factors related to
ground, vegetation, illumination conditions, etc. As an example of the latter kind, fMRI
recordings are usually nonstationary: information flows in the brain may change with stimuli,
tasks, attention of the subject, etc. More specifically, it is believed that one of the basic
properties of neural connections is their time-dependence (Havlicek et al., 2011). In these
situations many existing approaches to causal discovery may fail, as they assume a fixed
causal model and hence a fixed joint distribution underlying the observed data. For example,
if changes in local mechanisms of some variables are related, one can model the situation
as if there exists some unobserved quantity which influences all those variables and, as a
consequence, the conditional independence relationships in the distribution-shifted data will
be different from those implied by the true causal structure.

In this paper, we assume that mechanisms or parameters, associated with the causal
model, may change across data sets or over time (we allow mechanisms to change in such
a way that some causal links in the structure may vanish or appear in some domains
or over some time periods). We aim to develop a principled framework to model such
situations as well as practical methods, called Constraint-based causal Discovery from
heterogeneous/NOnstationary Data (CD-NOD), to address the following questions:

1. How can we efficiently identify variables with changing local mechanisms and reliably
recover the skeleton of the causal structure over observed variables?

2. How can we take advantage of the information carried by distribution shifts for the
purpose of identifying causal directions?

After identifying the causal structure, it is then appealing to ask how causal mechanisms
change across domains or over time, which raises the question:

3. How can we extract from data a low-dimensional and potentially interpretable repre-
sentation of changes, the so-called “driving force” of changing causal mechanisms?
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Furthermore, we extend our approach to deal with more general scenarios, e.g., dynamic
systems which involve both time-varying instantaneous and lagged causal relations and the
case of stationary confounders.

In answering these questions, we make use of the following properties of causal systems.
(i) Causal models and distribution shifts are heavily coupled: causal models provide a
compact description of how data-generating processes, as well as data distributions, change,
and distribution shifts exhibit such changes. (ii) From a causal perspective, the distribution
shift in heterogeneous/nonstationary data is usually constrained—it may be due to the
changes in the data-generating processes (i.e., the local causal mechanisms) of a small number
of variables. (iii) From a latent variable modeling perspective, heterogeneous/nonstationary
data are generated by some quantities that change across domains or over time, which gives
hints as to how to understand distribution shift and estimate its underlying driving forces.
(iv) Suppose that there are no confounders for cause and effect. Then P (cause) and
P (effect | cause) are either fixed or change independently, also known as the modularity
property of causal systems (Pearl, 2000). Such an independence helps identify causal
directions in the presence of distribution shifts.

To reliably estimate the skeleton of the causal structure and detect changing causal
mechanisms from heterogeneous/nonstationary data (Problem 1), we make use of property
(i), (ii), and (iii) listed above. Specifically, we introduce a surrogate variable C into the
causal system to characterize hidden quantities that lead to the changes across domains
or over time. The variable C can be a domain or time index. Including C in the causal
system provides a convenient way to unpack distribution shifts to causal representations.
We show that given C, (conditional) independence relationships between observed variables
are the same as those implied by the true causal structure. We, additionally, show that
variables that are adjacent to the surrogate variable C have changing causal mechanisms.
We make the assumption of faithfulness on the graph involving C, and it is known that
faithfulness implies a minimality condition on the edges (Zhang and Spirtes, 2016); as
a consequence, the graphical representation produced by our procedure naturally enjoys
a “minimal change” principle—the representation explains the conditional independence
relations and changeability of the distribution with a minimal number of changing conditional
distributions.

Regarding Problem 2, as a sub-problem of causal discovery, we show that distribution
shift provides additional information for causal direction identification. it is known that
with functional causal model-based approaches, there are cases where causal directions are
not identifiable, e.g., the linear-Gaussian case and the case with a general functional class
(Hyvärinen and Pajunen, 1999; Zhang et al., 2015b). This restricts the causal direction
identification to certain functional classes, e.g., additive (Shimizu et al., 2006; Hoyer et al.,
2009; Zhang and Hyvärinen, 2009a) or post-nonlinear models (Zhang and Chan, 2006; Zhang
and Hyvärinen, 2009b). We show that using information carried by distribution shifts does
not suffer from these restrictions—the method applies to general causal mechanisms.

Specifically, we take advantage of property (iv) for causal direction determination: if
there is no confounder for Vi and Vj , then the causal mechanisms, represented by the
conditional distributions P (Vi |PAi) and P (Vj |PAj), change independently across data sets
or over time. However, independence typically no longer holds for wrong directions. This
gives rise to causal asymmetry. To exploit this asymmetry, we develop a kernel embedding
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of nonstationary conditional distributions to represent changing causal mechanisms and
accordingly propose a dependence measure to determine causal directions. Furthermore, it
is worth noting that although our method can been seen as an extension of constraint-based
methods such as PC (Spirtes et al., 2001), unlike the original ones, it can find the causal
direction between even two variables, thanks to the surrogate variable C in the system or
more generally, the independent change property implied by a causal system.

Regarding Problem 3, traditionally, one may use Bayesian change point detection to
detect change points of observed time series (Adams and MacKay, 2007) or use sliding
windows and then estimate the causal model within each segment separately. However,
Bayesian change point detection can only be applied to detect changes in marginal or
joint distributions, whereas causal mechanisms are represented by conditional distributions.
Moreover, neither of them is appropriate when causal mechanisms change continuously over
time. More recently, a window-free method has been proposed, by extending Gaussian
process regression (Huang et al., 2015). However, it requires the assumption of linearity, and
it fails to handle the case when nonstationarity results from the change of noise distributions.
In this paper, by leveraging property (iii), we propose a nonparametric method to recover a
low-dimensional and interpretable representation of mechanism changes, which does not rely
on window segmentation.

This paper is organized as follows.1 In Section 2 we define and motivate the problem
in more detail and review related work. Section 3 proposes an enhanced constraint-based
method to recover the causal skeleton over observed variables and identify variables with
changing causal mechanisms. Section 4 develops a method for determining causal directions
by exploiting distribution shifts. It makes use of the property that in a causal system, causal
modules change independently if there are no confounders. Section 5 proposes a method,
termed Kernel Nonstationary Visualization (KNV), to visualize a low-dimensional and
interpretable representation of changing mechanisms, the so-called “driving force”. In Section
6, we extend CD-NOD to the case that allows both time-varying lagged and instantaneous
causal relationships, and we discuss whether distribution shifts also help for causal discovery
when there exist stationary confounders. In addition, we give a procedure to leverage both
CD-NOD and approaches based on constrained functional causal models. In Section 7, we
show the connection between heterogeneity/nonstationarity and soft intervention in causal

1. This paper is built on the arXiv paper by Zhang et al. (2015a) and the conference papers by Zhang et al.
(2017) and Huang et al. (2017) but is significantly extended in several aspects. We reformulate assumptions
in Section 3.1. We extend Section 3.2 to show how we detect pseudo confounders for nonadjacent variables.
In Section 4.1, we add Algorithm 2 which uses generalization of invariance to identify causal directions.
In Section 4.2, we propose a new approach to efficiently identify causal directions using independent
changes between causal mechanisms and detect pseudo confounders behind adjacent variables (Algorithm
3). In Section 4.3, we give identifiability conditions of CD-NOD and define the equivalence class that
CD-NOD can achieve if those conditions do not hold. Furthermore, we extend CD-NOD to the case when
there exist both time-varying instantaneous and lagged causal relationships (Section 6.1). Accordingly,
we propose Algorithm 5 to efficiently recover both instantaneous and time-lagged causal relationships.
In Section 6.2, we further discuss whether distribution shifts also help for causal discovery when there
exist stationary confounders. With CD-NOD, some causal directions may not be identifiable, if the
identifiability conditions are not satisfied (Theorem 2). To make the method more applicable, we combine
our framework with approaches based on constrained functional causal models (Section 6.3). In Section
7, we show that heterogeneity/nonstationarity and soft intervention are related in causal discovery, and
we find that our proposed method is even more effective.
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discovery. Section 8 reports experimental results tested on both synthetic and real-world
data sets, including task-fMRI data, Hong Kong stock data, and US stock data.

2. Problem Definition and Related Work

In this section, we first review causal discovery approaches with fixed causal models. Then
we give examples to show that if the underlying causal model changes, directly applying
approaches with fixed causal models may result in spurious edges or wrong causal directions,
which motivates our work in causal discovery with changing causal models.

2.1. Causal Discovery of Fixed Causal Models

Most causal discovery methods assume that there is a fixed causal model underlying
the observed data and aim to estimate it from the data. Classic approaches to causal
discovery divide roughly into two types. In the late 1980’s and early 1990’s, it was noted
that under appropriate assumptions, one could recover a Markov equivalence class of the
underlying causal structure based on conditional independence relationships among the
variables (Spirtes et al., 1993). This gave rise to the constraint-based approach to causal
discovery, and the resulting equivalence class may contain multiple DAGs (or other graphical
objects to represent causal structures), which entail the same conditional independence
relationships. The required assumptions include the causal Markov condition and the
faithfulness assumption, which entail a correspondence between d-separation properties in
the underlying causal structure and statistical independence properties in the data. The
so-called score-based approach (see, e.g., Chickering, 2003; Heckerman et al., 1995) searches
for the equivalence class which gives the highest score under some scoring criteria, such
as the Bayesian Information Criterion (BIC), the posterior of the graph given the data
(Heckerman et al., 2006), and the generalized score functions (Huang et al., 2018).

Another set of approaches is based on constrained functional causal models, which
represent the effect as a function of the direct causes together with an independent noise
term. The causal direction implied by the constrained functional causal model is generically
identifiable, in that the model assumptions, such as the independence between the noise
and cause, hold only for the true causal direction and are violated for the wrong direction.
Examples of such constrained functional causal models include the linear non-Gaussian
acyclic model (LiNGAM, Shimizu et al., 2006), the additive noise model (Hoyer et al., 2009;
Zhang and Hyvärinen, 2009a), and the post-nonlinear causal model (Zhang and Chan, 2006;
Zhang and Hyvärinen, 2009b).

2.2. With Changing Causal Models

Suppose that we are given a set of observed variables V = {Vi}mi=1 whose causal structure is
represented by a DAG G. For each Vi, let PAi denote the set of parents of Vi in G. Suppose
that at each time point or in each domain, the joint probability distribution of V factorizes
according to G:

P (V) =

m∏
i=1

P (Vi |PAi). (1)
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g(C)

V1 V2 V3 V4

(a) (b)

Figure 1: An illustration on how ignoring changes in the causal model may lead to spurious
edges by constraint-based methods. (a) The true causal graph (including con-
founder g(C), which is hidden). (b) The estimated causal skeleton on the observed
data in the asymptotic case given by constraint-based methods, e.g., PC or FCI.

We call each P (Vi |PAi) a causal module (the same meaning with “causal mechanism” in
previous sections). If there are distribution shifts (i.e., P (V) changes across domains or over
time), at least some causal modules P (Vk |PAk), k ∈ N must change. We call those causal
modules changing causal modules. Their changes may be due to changes of the involved
functional models, causal strengths, noise levels, etc. We assume that those quantities that
change across domains or over time can be written as functions of a domain or time index,
and denote by C such an index.

If the changes in some modules are related, one can treat the situation as if there
exists some unobserved quantity (confounder) which influences those modules and, as a
consequence, the conditional independence relationships in the distribution-shifted data will
be different from those implied by the true causal structure. Therefore, standard constraint-
based algorithms such as PC or FCI (Spirtes et al., 1993) may not be able to reveal the true
causal structure. As an illustration, suppose that the observed data were generated according
to Fig. 1(a), where g(C), a function of C, is involved in the generating processes for both
V2 and V4; the causal skeleton over the observed data then contains spurious edges V1 − V4
and V2 − V4, as shown in Fig. 1(b), because there is only one conditional independence
relationship, V3 ⊥⊥ V1 |V2.
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Figure 2: An illustration of a failure of using the approach based on functional causal models
for causal direction determination when the causal model changes. (a) Scatter
plot of V1 and V2 on data set 1. (b) Scatter plot of V1 and V2 on data set 2. (c)
Scatter plot of V1 and V2 on merged data (both data sets). (d) Scatter plot of V1
and the estimated regression residual Ê on merged data by regressing V2 on V1.
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Moreover, when one fits a fixed functional causal model (e.g., a linear, non-Gaussian
model, Shimizu et al., 2006) to distribution-shifted data, the estimated noise may not be
independent of the cause. Consequently, the approach based on constrained functional
causal models, in general, cannot infer the correct causal structure either. Figure 2 gives
an illustration of this point. Suppose that we have two data sets for variables V1 and V2:
V2 is generated from V1 according to V2 = 0.3V1 + E in the first data set and according to
V2 = 0.7V1 +E in the second one, and in both data sets V1 and E are mutually independent
and follow a uniform distribution. Figure 2(a-c) show the scatter plots of V1 and V2 on data
set 1, on data set 2, and on merged data, respectively. Figure 2(d) shows the scatter plot of
V1, the cause, and the estimated regression residual on the merged data set by regressing V2
on V1; they are not independent anymore, although on either data set the regression residual
is independent of V1. Thus, we cannot correctly determine the causal direction.

To tackle the issue of changing causal models, one may try to find causal models in
each domain, for data from multiple domains, or in each sliding window, for nonstationary
data, separately, and then compare and merge them. For instance, regarding the former
type of data from multiple domains, in particular, multiple data sets obtained by external
interventions where it is unknown what variables are manipulated, He and Geng (2016)
considered two settings, depending on the sample size of each data set–in the setting with a
large sample size for each data set, they proposed a graph-merging method after learning
a causal network in each domain separately; in the setting with a relative small sample
size, they proposed to pool together the data to learn a network structure and then use a
re-sampling approach to evaluate the edges of the learned network. Regarding nonstationary
data, improved versions include the online change point detection method (Adams and
MacKay, 2007), the online undirected graph learning (Talih and Hengartner, 2005), and
the locally stationary structure tracker algorithm (Kummerfeld and Danks, 2013). Such
methods may suffer from high estimation variance due to sample scarcity, large type II
errors, or multiple testing problems from a large number of statistical tests. Some methods
aim to estimate the time-varying causal model by making use of certain types of smoothness
of the change (Huang et al., 2015), but they do not explicitly locate the nonstationary causal
modules. Several methods aim to model time-varying time-delayed causal relations (Xing
et al., 2010; Song et al., 2009), which can be reduced to online parameter learning because
the direction of causal relations is given (i.e., the past influences the future). Compared
to them, learning changing instantaneous causal relations, with which we are concerned in
this paper, is generally more difficult. Recently, several methods have been proposed to
tackle time-varying or domain-varying instantaneous causal relations (Ghassami et al., 2018;
Huang et al., 2019a,b, 2020). However, they assume linear causal models, limiting their
applicability to complex problems with nonlinear causal relations.

In contrast, we develop a nonparametric and computationally efficient method that can
identify changing causal modules and reliably recover the causal structure. We show that
distribution shifts actually contain useful information for the purpose of determining causal
directions and develop practical algorithms accordingly. After identifying the causal structure,
we propose a method to estimate a low-dimensional and interpretable representation of
changes.
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3. CD-NOD Phase I: Changing Causal Module Detection and Causal
Skeleton Estimation

In this section, we first formalize the assumptions that will be used in CD-NOD. Specifically,
we allow a particular type of confounders—pseudo confounders, and we do not put hard
restrictions on functional forms of causal mechanisms and data distributions. Accordingly,
we propose an approach to efficiently detect changing causal modules and identify the
causal skeleton; we call this step CD-NOD phase I. We show that the proposed approach is
guaranteed to asymptotically recover the true graph as if unobserved changing factors were
known.

3.1. Assumptions

In this paper, we allow changes in causal modules and some of the changes to be related;
the related changes can be explained by positing particular types of confounders. Intuitively,
such confounders may refer to some high-level background variables. For instance, for fMRI
data, they may be the subject’s attention or some unmeasured background stimuli; for the
stock market, they may be related to economic policies. Thus, we do not assume causal
sufficiency for the set of observed variables. Instead, we assume pseudo causal sufficiency as
stated below.

Assumption 1 (Pseudo Causal Sufficiency) We assume that the confounders, if any,
can be written as functions of the domain index or smooth functions of time 2. It follows
that in each domain or at each time instance, the values of these confounders are fixed.

To clearly express our basic idea in the presence of distribution shift, we focus on DAGs
and assume pseudo causal sufficiency. Note that our approach is flexible enough to be
extended to cover other types of graphs, e.g., graphs with confounders and graphs with cycles.
Later in Section 6.2, we will discuss how nonstationarity helps when there exist stationary
confounders. In table 1, we summarize descriptions of different types of confounders (latent
common causes) that will be used in this paper, including pseudo confounders, stationary
confounders, and nonstationary confounders.

We start with contemporaneous causal relations; the mechanisms and parameters asso-
ciated with the causal model are allowed to change across data sets or over time, or even
vanish or appear in some domains or over some time periods. However, it is natural to
generalize our framework to incorporate time-delayed causal relations (Section 6.1).

Denote by {gl(C)}Ll=1 the set of pseudo confounders (which may be empty). We further
assume that for each Vi, its local causal process can be represented by the following structural
equation model (SEM):

Vi = fi
(
PAi,gi(C), θi(C), εi

)
, (2)

2. More specifically, for data with multiple domains, we require that the confounders can be written as a
function of the domain index (i.e., it does not change within a domain); for nonstationary time series, we
require that the confounder is a smooth function of the time index. Roughly speaking, the smoothness
constraint requires the gradient of the function to not change rapidly. In practice, one may specify the
level of smoothness in advance (say, by assuming the function follows a Gaussian process prior and
properly setting the kernel width to some range) or learn it from data by maximizing marginal likelihood
or cross validation.
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Confounder type Description

Pseudo confounder
It can be represented as functions of domain index or
smooth functions of time index.

Stationary confounder
Its distribution is fixed and it cannot be represented as
functions of domain index or smooth functions of time.

Nonstationary confounder
Its distribution changes across domains or over time and
it cannot be represented as functions of domain index or
smooth functions of time index, respectively.

Table 1: Descriptions of different types of confounders (latent common causes).

where gi(C) ⊆ {gl(C)}Ll=1 denotes the set of confounders that influence Vi (it is an empty
set if there is no confounder behind Vi and any other variable), θi(C) denotes the effective
parameters in the model that are also assumed to be functions of C, and εi is a disturbance
term that is independent of C and PAi and has a non-zero variance (i.e., the model is not
deterministic). We also assume that the εi’s are mutually independent. Note that θi(C)
is specific to Vi and is independent of θj(C) for i 6= j. The variable C can be the domain
or time index. In special cases, e.g., the case with multiple domains and all of which have
nonstationarity, C has two dimensions: one is the domain index and the other is the time
index. The SEM given in Eq. 2 does not have any restrictions on data distributions or
functional classes.

In this paper we treat C as a random variable, and so there is a joint distribution over
V∪ {gl(C)}Ll=1 ∪ {θi(C)}mi=1. We assume that this distribution is Markov and faithful to the
graph resulting from the following additions to G (which, recall, is the causal structure over
V): add {gl(C)}Ll=1 ∪ {θi(C)}mi=1 to G, and for each i, add an arrow from each variable in
gi(C) to Vi and add an arrow from θi(C) to Vi. We refer to this augmented graph as Gaug.
Obviously, G is simply the induced subgraph of Gaug over V. Specifically, the assumption is
summarized below.

Assumption 2 The joint distribution over V ∪ {gl(C)}Ll=1 ∪ {θi(C)}mi=1 is Markov and
faithful to the augmented graph Gaug. In addition, there is no selection bias; i.e., the
observed data are perfect random samples from the populations implied by the causal model.

The distribution change across domains or over time can be considered in the following
way. In the case when C is the domain index, C follows a uniform distribution over all
possible values, and we have a particular way to generate its value: all possible values are
generated once, resulting in domain indices. In the case when C is the time index, we
take time to be a special random variable which follows a uniform distribution over the
considered time period, with the corresponding data points evenly sampled at a certain
sampling frequency. Correspondingly, the generating process of nonstationary data can
be considered as follows: we generate random values from C, and then we generate data
points over V according to the SEM in (2). The generated data points are then sorted in
ascending order according to the values of C. In other words, we observe the distribution
P (V|C), where P (V|C) may change across different values of C, resulting in non-identical
distributions of data.
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3.2. Detection of Changing Modules and Recovery of Causal Skeleton

In this section, we propose a method to detect variables whose causal modules change and
infer the skeleton of G. The basic idea is simple: we use the (observed) variable C as
a surrogate for the unobserved {gl(C)}Ll=1 ∪ {θi(C)}mi=1, or in other words, we take C to
capture C-specific information. We now show that given the assumptions in Section 3.1,
we can apply conditional independence tests to V ∪ C to detect variables with changing
modules and recover the skeleton of G. We consider C as a surrogate variable (it itself is
not a causal variable, it is always available, and confounders and changing parameters are
its functions): by adding only C to the variable set V, the skeleton of G and the changing
causal modules can be estimated as if {gl(C)}Ll=1 ∪ {θi(C)}mi=1 were known. This is achieved
by Algorithm 1 and supported by Theorem 1.

Algorithm 1 Detection of Changing Modules and Recovery of Causal Skeleton

1. Build a complete undirected graph UG on the variable set V ∪ C.

2. (Detection of changing modules) For each i, test for the marginal and conditional
independence between Vi and C. If they are independent given a subset of {Vk | k 6= i},
remove the edge between Vi and C in UG .

3. (Recovery of causal skeleton) For every i 6= j, test for the marginal and conditional
independence between Vi and Vj . If they are independent given a subset of {Vk | k 6=
i, k 6= j} ∪ {C}, remove the edge between Vi and Vj in UG .

The procedure given in Algorithm 1 outputs an undirected graph UG that contains C as
well as V. In Step 2, whether a variable Vi has a changing module is decided by whether Vi
and C are independent conditional on some subset of other variables. The justification for
one side of this decision is trivial. If Vi’s module does not change, that means P (Vi |PAi)
remains the same for every value of C, and so Vi ⊥⊥ C |PAi. Thus, if Vi and C are not
independent conditional on any subset of other variables, Vi’s module changes with C, which
is represented by an edge between Vi and C. Conversely, we assume that if Vi’s module
changes, which entails that Vi and C are not independent given PAi, then Vi and C are not
independent given any other subset of V\{Vi}. If this assumption does not hold, then we
only claim to detect some (but not necessarily all) variables with changing modules.

Step 3 aims to discover the skeleton of the causal structure over V. It leverages the
results from Step 2: if neither Vi nor Vj is adjacent to C, then C does not need to be involved
in the conditioning set. In practice, one may apply any constraint-based search procedures
on V ∪ C, e.g., SGS and PC (Spirtes et al., 1993). Its (asymptotic) correctness is justified
by the following theorem:

Theorem 1 Given Assumptions 1 and 2, for every Vi, Vj ∈ V, Vi and Vj are not adjacent in
G if and only if they are independent conditional on some subset of {Vk | k 6= i, k 6= j}∪ {C}.

Basic idea of the proof. For a complete proof see Appendix A. The “only if” direction is
proved by making use of the weak union property of conditional independence repeatedly,
the fact that all gl(C) and θi(C) are deterministic functions of C, some implications of the
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SEMs Eq. 2, the assumptions in Section 3.1, and the properties of mutual information given
in Madiman (2008). The “if” direction is shown based on the faithfulness assumption on
Gaug and the fact that {gl(C)}Ll=1 ∪ {θi(C)}mi=1 is a deterministic function of C. �

Furthermore, for any pair of nonadjacent variables Vi and Vj with Vi − C and Vj − C,
we can easily detect whether there are pseudo confounders behind Vi and Vj from the
independence test results derived from Algorithm 1:

1. If ∀Vk ⊆ V\{Vi, Vj}, Vi 6⊥⊥ Vj |Vk, and ∃Vk′ ⊆ V\{Vi, Vj}, so that Vi ⊥⊥ Vj |{Vk′ , C},
then there exist pseudo confounders behind Vi and Vj .

2. If ∃Vk ⊆ V\{Vi, Vj}, so that Vi ⊥⊥ Vj |Vk, then there is no pseudo confounder behind
Vi and Vj .

Note that in Algorithm 1, it is crucial to use a general, nonparametric conditional
independence test, for how variables depending on C is unknown and usually very nonlinear.
In this work, we use the kernel-based conditional independence test (KCI-test, Zhang et al.,
2011) to capture the dependence on C in a nonparametric way. By contrast, if we use,
for example, tests of vanishing partial correlations, as is widely used in the neuroscience
community, the proposed method may not work well.

Moreover, it is worth noting that the estimated graphical representation by Algorithm
1 naturally follows the principle of minimal changes, which was explicitly formulated by
Ghassami et al. (2018). This is because faithfulness on the augmented graph implies the
edge minimality condition in the graphical representation. Any variable adjacent to C in
the augmented graph has a changing mechanism, and the estimated graph by Algorithm
1 has as few edges involving C as possible; hence it has the smallest number of changing
causal mechanisms (or conditional distributions).

4. CD-NOD Phase II: Distribution Shifts Benefit Causal Direction
Determination

We now show that introducing the additional variable C as a surrogate not only allows us to
infer the skeleton of the causal structure but also facilitates the determination of some causal
directions. Let us call those variables that are adjacent to C in the output of Algorithm 1
“C-specific variables”, which are actually the effects of changing causal modules. For each
C-specific variable Vk, it is possible to determine the direction of every edge which has an
endpoint on Vk. Let Vl be any variable adjacent to Vk in the output of Algorithm 1. Then
there are two possible scenarios to consider:

S1. Vl is not adjacent to C. Then C − Vk − Vl forms an unshielded triple. For practical
purposes, we take the direction between C and Vk as C → Vk (though we do not claim
C to be a cause in any substantial sense). Then we can use standard orientation rules
for unshielded triples to orient the edge between Vk and Vl (Spirtes et al., 1993; Pearl,
2000). There are two possible situations:
1.a If Vl and C are independent given a set of variables excluding Vk, then the triple
is a V-structure, and we have Vk ← Vl.
1.b Otherwise, if Vl and C are independent given a set of variables including Vk, then
the triple is not a V-structure, and we have Vk → Vl.

11
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S2. Vl is also adjacent to C. This case is more complex than S1, but it is still possible to
identify the causal direction between Vk and Vl, based on the principle that P (cause)
and P (effect | cause) change independently; a heuristic method is given in Section 4.2.

The procedure in S1, which will be further discussed in Section 4.1, contains the methods
proposed in Hoover (1990); Tian and Pearl (2001); Peters et al. (2016) for causal discovery
from changes as special cases. It may also be interpreted as special cases of the principle
underlying the method for S2: if one of P (cause) and P (effect | cause) changes while the
other remains invariant, they are clearly independent.

4.1. Causal Direction Identification by Generalization of Invariance

There exist methods for causal discovery from differences among multiple data sets (Hoover,
1990; Tian and Pearl, 2001; Peters et al., 2016) that explore invariance of causal mechanisms.
They used linear models to represent causal mechanisms and, as a consequence, the invariance
of causal mechanisms can be assessed by checking whether the involved parameters change
across data sets or not. Actually, S1.b above provides a nonparametric way to achieve this
in light of nonparametric conditional independence tests. For any variable Vi and a set of
variables S, the conditional distribution P (Vi |S) is invariant across different values of C if
and only if

P (Vi |S, C = c1) = P (Vi |S, C = c2), ∀ c1 and c2.

This is exactly the condition under which Vi ⊥⊥ C |S. In other words, testing for invariance
(or homogeneity) of the conditional distribution is naturally achieved by performing a
conditional independence test on Vi and C given the set of variables S, for which there exist
off-the-shelf algorithms and implementations. When S is the empty set, this reduces to a
test of marginal independence between Vi and C, or a test of homogeneity of P (Vi).

In S1.a, we have the invariance of P (Vl) (i.e., P (cause)) when the causal mechanism,
represented by P (Vk|Vl) (i.e., P (effect | cause)), changes, which is complementary to the
invariance of causal mechanisms in S1.b. The (conditional) independence test results between
Vi and C are readily available from Algorithm 1 and can be applied to determine causal
directions between variables which satisfy S1. The procedure is summarized in Algorithm 2.

Algorithm 2 Causal Direction Identification by Generalization of Invariance

1. Input: causal skeleton UG from Algorithm 1.

2. Orient C → Vk, for any variable which is adjacent to C.

3. For any unshielded triple with C → Vk − Vl, where Vl is not adjacent to C,

a. if Vl ⊥⊥ C|S, with S ⊆ V and S ∧ Vk = ∅, orient Vk ← Vl;

b. if Vl ⊥⊥ C|S, with S ⊆ V and Vk ∈ S, orient Vk → Vl.

4. Output: partially oriented graph UG using the property of generalization of invariance.
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V1 V2

θ1(C) θ2(C)

Figure 3: An illustration of a two-variable case: V1 → V2 with corresponding parameters
θ1(C) and θ2(C) changing independently.

Naturally, both invariance properties above are particular cases of the principle of
independent changes of causal modules underlying the method for S2: if one of P (cause) and
P (effect | cause) changes while the other remains invariant, they are clearly independent.
Usually, there is no reason why only one of them could change, so the above invariance
properties are rather restrictive. The property of independent changes holds in rather generic
situations, e.g., when there is no confounder behind cause and effect. Below we will
propose an algorithm for causal direction determination based on independent changes of
causal modules.

4.2. Causal Direction Identification by Independently Changing Modules

We now develop a method to handle S2 above. To clearly express the idea, let us start with
a two-variable case: suppose V1 and V2 are adjacent and are both adjacent to C. We aim to
identify the causal direction between them, which, without loss of generality, we assume to
be V1 → V2.

Figure 3 shows the case where the involved changing parameters, θ1(C) and θ2(C),
are independent, i.e., P (V1; θ1) and P (V2 |V1; θ2) change independently (we dropped the
argument C in θ1 and θ2 to simplify notation).

For the reverse direction, one can decompose the joint distribution of (V1, V2) according
to

P (V1, V2; θ
′
1, θ
′
2) = P (V2; θ

′
2)P (V1 |V2; θ′1), (3)

where θ′1 and θ′2 are assumed to be sufficient for the corresponding distribution modules
P (V2) and P (V1|V2). Generally speaking, θ′1 and θ′2 are not independent, because they are
determined jointly by θ1 and θ2.

Now we face the problem of how to compare the dependence between θ1 and θ2 with that
between θ′1 and θ′2. Since θ is assumed to be sufficient for the corresponding distribution
module, it is equivalent to compare the dependence between P (V1) and P (V2|V1) with that
between P (V2) and P (V1|V2).

The idea that causal modules are independent is not new (Pearl, 2000), but note that in
a stationary situation where each module is fixed, such independence is very difficult, if not
impossible, to test. By contrast, in the situation we are considering presently, both P (V1)
and P (V2|V1) are changing, and we can try to measure the extent to which variation in
P (V1) and variation in P (V2) are dependent (and similarly for P (V2) and P (V1|V2)). This is
the sense in which distribution change actually helps in the identification of causal directions,
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and as far as we know, this is the first time that such an advantage is exploited in the case
where both P (cause) and P (effect | cause) change.

We extend the Hilbert Schmidt Independence Criterion (HSIC, Gretton et al., 2008) to
measure the dependence between causal modules. To do so, we first develop a novel kernel
embedding of nonstationary conditional distributions which does not rely on sliding windows
and estimate their corresponding Gram matrices in Section 4.2.1, which will be used in the
extended HSIC and the causal direction determination rule in Section 4.2.2. In Section 4.2.3,
we propose an algorithm for causal direction determination in multi-variable cases by taking
advantage of independent changes.

4.2.1. Kernel Embedding of Constructed Joint Distributions

Notation Throughout this section, we use the following notation. Let X be a random
variable on domain X , and (H, k) be a Reproducing Kernel Hilbert Space (RKHS) with a
measurable kernel on X . Let φ(x) ∈ H represent the feature map for each x ∈ X , with φ :
X → H. We assume integrability: EX [k(X,X)] ≤ ∞. Similar notations are for variables Y
and C. The cross-covariance operator CY X : H → G is defined as CY X := EY X [φ(X)⊗ψ(Y )],
where G is the RKHS associated with Y .

We represent causal modules P (Vi|PAi, C) by kernel embedding. Intuitively, to represent
the kernel embedding of changing causal modules, we need to consider P (Vi|PAi, C) for
each value of C separately. If C is a domain index, for each value of C we have a dataset of
(Vi,PAi). If C is a time index, one may use a sliding window to use the data of (Vi,PAi) in
the window of length L centered at C = c. However, in some cases, it might be hard to find
an appropriate window length L, especially when the causal module changes fast. In the
following, we propose a way to estimate the kernel embedding of changing causal modules
on the whole dataset, avoiding window segmentation. For the sake of conciseness, below we
use Y and X to denote Vi and PAi, respectively.

Suppose that there are N samples for each variable. Instead of working with P (Y |X,C =
cn) (n = 1, · · · , N) directly, we “virtually” construct a particular distribution P̃ (Y ,X |C =
cn) as follows:3

P̃ (Y ,X|C = cn) = P (Y |X,C = cn)P (X). (4)

The embedding of this “joint distribution” of X and Y is simpler than that of the conditional
of Y given X. Since P (X) does not depend on C and its support is rich enough to contain
that of P (X|C = cn), one can see that whenever there are changes in P (Y |X,C = cn) across
different values of cn, there must be changes in P̃ (Y ,X|C = cn), and vice versa. In other
words, the constructed distribution P̃ (Y ,X|C = cn) captures changes in P (Y |X,C = cn)
across different cn. We let P̃ (Y ,X,C = cn) = P (Y |X,C = cn)P (X)P (C = cn).

Proposition 1 shows that the kernel embedding of the distribution P̃ (Y ,X|C = cn) can
be estimated on the whole data set, without window segmentation.

Proposition 1 Let X represent the direct causes of Y , and suppose that they have N
observations. The kernel embedding of distribution P̃ (Y ,X|C = cn) can be represented as

ˆ̃µY ,X|C=cn =
1

n
Φy(Kx �Kc + λI)−1diag(kc,cn)KxΦᵀx,

3. Here we use Y instead of Y to emphasize that in this constructed distribution Y and X are not symmetric.
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where Φy := [φ(y1), ..., φ(yN )], Φx := [φ(x1), ..., φ(xN )], kc,cn := [k(c1, cn), ..., k(cN , cn)]ᵀ,
Kx(xt, xt′) = 〈φ(xt), φ(xt′)〉, Kc(ct, ct′) = 〈φ(ct), φ(ct′)〉, and � represents point-wise prod-
uct.

The detailed proof of proposition 1 is given in Appendix B. Next we estimate the N ×N
Gram matrix of ˆ̃µY ,X|C=c. We consider different kernels for the estimation of Gram matrix.

Let M l
Y X represent the Gram matrix of ˆ̃µY ,X|C=c with a linear kernel, and MGY X the Gram

matrix of ˆ̃µY ,X|C=c with a Gaussian kernel.

If we use a linear kernel, the (c, c′)th entry of the Gram matrix M l
Y X is the inner product

between ˆ̃µY ,X|C=c and ˆ̃µY ,X|C=c′ :

M l
Y X(c, c′) ,tr(ˆ̃µᵀY ,X|C=c

ˆ̃µY ,X|C=c′)

=
1

N2
kᵀc,c

[
K3

x �
(
(Kx �Kc + λI)−1Ky(Kx �Kc + λI)−1

)]
kc,c′ , (5)

which is the (c, c′)th entry of the matrix

Ml
Y X =

1

N2
Kc

[
K3

x �
(
(Kx �Kc + λI)−1Ky(Kx �Kc + λI)−1

)]
Kc. (6)

If we use a Gaussian kernel with kernel width σ2, the Gram matrix is given by

MGY X(c, c′) =exp
(
−
||µ̃Y ,X|C=c − µ̃Y ,X|C=c′ ||2F

2σ22

)
=exp

(
−
M l
Y X(c, c) +M l

Y X(c′, c′)− 2M l
Y X(c′, c)

2σ22

)
, (7)

where || · ||F denotes the Frobenius norm. This can be represented in matrix notation as

MG
Y X = exp

(
−
diag(Ml

Y X) · 1N + 1N · diag(Ml
Y X)− 2Ml

Y X

2σ22

)
, (8)

where diag(·) sets all off-diagonal entries zero, and 1N is an N ×N matrix with all entries
being 1.

Excitingly, we can see that with our methods, we do not need to explicitly learn the
high-dimensional kernel embedding µ̃Y ,X|C=c for each c. With the kernel trick, the final
Gram matrix can be represented by N ×N kernel matrices directly.

There are several hyperparameters to set. The hyperparameters associated with Kx, Kc,
and the regularization parameter λ in equation (6) are learned through a Gaussian process
regression framework: they are learned by maximizing the marginal likelihood of Y . For the
hyperparameters associated with Ky and the kernel with σ2 in equation (7), we set them
with empirical values; please refer to Zhang et al. (2011) for details.

Change in marginal distributions. As a special case, when we are concerned with how
the marginal distribution of Y changes with C, i.e., when X = ∅, we directly make use of

µY |C=cn = CY CC−1CCφ(cn). (9)
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This can also be obtained by constraining X in µ̃Y ,X|C=cn to take a fixed value. Its empirical
estimate is

µ̂Y |C=cn =
1

N
ΦyΦᵀc(

1

n
ΦcΦ

ᵀ
c + λI)−1φcn

= Φy(Kc + λI)−1kc,cn . (10)

Then (c, c′) entry of the Gram matrix with a linear kernel is:

M l
Y (c, c′) , µ̂ᵀY |C=cµ̂Y |C=c′

= kᵀc,c(Kc + λI)−1ΦᵀyΦy(Kc + λI)−1kc,c′

= kᵀc,c(Kc + λI)−1Ky(Kc + λI)−1kc,c′ , (11)

which is the (c, c′)th entry of

Ml
Y = Kc(Kc + λI)−1Ky(Kc + λI)−1Kc. (12)

For a Gaussian kernel with kernel with σ2, the Gram matrix is

MG
Y = exp

(
−
diag(Ml

Y X) · 1N + 1N · diag(Ml
Y X)− 2Ml

Y X

2σ22

)
. (13)

4.2.2. Two-Variable Case

In this section, we extend HSIC to measure the dependence between causal modules, based
on which we determine causal directions.

For simplicity, let us start with the two-variable case: suppose that X and Y are adjacent
and both are adjacent to C. We aim to identify the causal direction between them, which,
without loss of generality, we assume to be X → Y . The guiding idea is that distribution
shift may carry information that confirms the independence of causal modules, which, in the
simple case we are considering, is the independence between P (X) and P (Y |X). If P (X)
and P (Y |X) are independent but P (Y ) and P (X|Y ) are not, then the causal direction is
inferred to be from X to Y .

The dependence between P (X) and P (Y |X) can be measured by extending the HSIC
(Gretton et al., 2008).

HSIC Given a set of observations {(u1, v1), (u2, v2), ..., (uN , vN )} for variables U and
V , HSIC provides a measure of dependence and a statistic for testing their statistical
independence. Roughly speaking, it measures the squared covariances between feature maps
of U and feature maps of V . Let MU and MV be the Gram matrices for U and V calculated
on the sample, respectively. An estimator of HSIC is given by Gretton et al. (2008):

HSICUV =
1

(N − 1)2
tr(MUHMVH), (14)

where H is used to center the features, with entries Hij := δij −N−1.
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In what follows, we will use a normalized version of the estimated HSIC, which is invariant
to the scale in MU and MV :

HSICNUV =
HSICUV

1
N−1tr(MUH) · 1

N−1tr(MVH)

=
tr(MUHMVH)

tr(MUH)tr(MVH)
. (15)

Dependence between Changing Modules In our case, we aim to check whether
P (Y |X) and P (X) change independently along with C. We work with the estimate of their

embeddings. Then we can think of
{(
µ̂X|C=cn ,

ˆ̃µY ,X|C=cn

)}N
n=1

as the observed data pairs
and measure their dependence from the data pairs.

This can be done by applying (the normalized version of) the estimate of HSIC given
in Eq. 15 to the above data pairs. The expression then involves MX , the Gram matrix of
µ̂X|C at C = c1, c2, ..., cN , and MY X , the Gram matrix of ˆ̃µY X|C at C = c1, c2, ..., cN . In
particular, the dependence between P (Y |X) and P (X) on the given data can be estimated
by

∆̂X→Y =
tr(MXHMY XH)

tr(MXH)tr(MY XH)
. (16)

Similarly, for the hypothetical direction Y → X the dependence between P (X|Y ) and P (Y )
on the data is estimated by

∆̂Y→X =
tr(MYHMXYH)

tr(MYH)tr(MXYH)
. (17)

We then have the following rule to determine the causal direction between X and Y .

Causal Direction Determination Rule Suppose that X and Y are two random vari-
ables with N observations. We assume that X and Y are adjacent and both are adjacent to
C and assume no pseudo confounders behind them. The causal direction between X and Y
is then determined according to the following rule:

• if ∆̂X→Y < ∆̂Y→X , output X → Y ;

• if ∆̂X→Y > ∆̂Y→X , output X ← Y .

In practice, there may exist pseudo confounders. In such a case, we set a threshold α on
∆̂. If ∆̂X→Y > α and ∆̂Y→X > α, we conclude that there are pseudo confounders which
influence both X and Y and leave the direction undetermined.

4.2.3. With More Than Two Variables

The causal direction determination rule in the two-variable case can be extended to learn
causal directions in multi-variable cases. Suppose that we have m observed random variables
{Vi}mi=1 and a partially oriented graph UG derived from Algorithms 1 and 2. Let VS be the
subset of {Vi}mi=1, such that Vi ∈ VS if and only if Vi’s causal module changes.

Note that generally speaking, different from the unconfounded two-variable case, when
identifying the causal direction between an unoriented pair of adjacent variables, we need to
remove the effect from their common causes. Thus, before moving forward, we first define
deconfounding set and potential deconfounding set of a pair of adjacent variables in UG .
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V1 V2

V3 V4

V5

Figure 4: An illustration of the definitions of minimal deconfounding set and minimal
potential deconfounding set on a partially oriented graph.

Definition 1 (Deconfounding Set) A set of variables Z ⊆ V\{Vl, Vk} is the deconfound-
ing set of a pair of adjacent variables (Vl, Vk), if

(i) no node in Z is a descendant of Vl or Vk,

(ii) and Z blocks every path between Vl and Vk that contains arrows into Vl and Vk.

Furthermore, a set of variables Z is the minimal deconfounding set of a pair of adjacent
variables (Vl, Vk), if any Zs ⊂ Z is not a deconfounding set.

Definition 2 (Potential Deconfounding Set) A set of variables Z ⊆ V\{Vl, Vk} is the
potential deconfounding set of a pair of adjacent variables (Vl, Vk), if

(i) no node in Z is a descendant of Vl or Vk,

(ii) Z blocks every path between Vl and Vk that does not contain an arrow out of Vl or Vk,

(iii) and any Z ∈ Z is not in the deconfounding set.

Similarly, a set of variables Z is the minimal potential deconfounding set of a pair of adjacent
variables (Vl, Vk), if any subset Zs ⊂ Z is not a potential deconfounding set.

In Figure 4, for example, the set Z = {V3} is a minimal deconfounding set of (V1, V2),
and the set Z = {V5} is a minimal potential deconfounding set of (V1, V2).

We take advantage of the independence between causal modules to identify directions.
To efficiently identify causal directions using independent changes when there are mul-
tiple variables, we propose Algorithm 3, with the main procedure as follows. For each

undirected pair Vl, Vk ∈ VS , we denote their minimal deconfounding set by Z
(1)
lk and their

minimal potential deconfounding set by Z
(2)
lk . Note that there may be multiple minimal

deconfounding sets and multiple minimal potential deconfounding sets; to search for such
sets more efficiently, in our implementation, we only consider those ones with every vari-

able in Z
(1)
lk and Z

(2)
lk being adjacent to Vl. Let Z

(2,n)
lk be a subset of Z

(2)
lk , where n is the

total cardinality of Z
(1)
lk and Z

(2,n)
lk ; i.e., |Z(1)

lk |+ |Z
(2,n)
lk | = n. We evaluate the dependence

between P (Vk,Z
(1)
lk ,Z

(2,n)
lk ) and P (Vl|Vk,Z

(1)
lk ,Z

(2,n)
lk ), and that between P (Vl,Z

(1)
lk ,Z

(2,n)
lk )

and P (Vk|Vl,Z
(1)
lk ,Z

(2,n)
lk ). If we find that P (Vl,Z

(1)
lk ,Z

(2,n)
lk ) ⊥⊥ P (Vk|Vl,Z

(1)
lk ,Z

(2,n)
lk ) and

that P (Vk,Z
(1)
lk ,Z

(2,n)
lk ) 6⊥⊥ P (Vl|Vk,Z

(1)
lk ,Z

(2,n)
lk ), we output Vl → Vk, and if there are un-

oriented edges from variables in Z
(2,n)
lk to Vk or Vl, then we consider those variables as

18



Causal Discovery from Heterogeneous/Nonstationary Data

parents. Similarly, if we find that P (Vk,Z
(1)
lk ,Z

(2,n)
lk ) ⊥⊥ P (Vl|Vk,Z

(1)
lk ,Z

(2,n)
lk ) and that

P (Vl,Z
(1)
lk ,Z

(2,n)
lk ) 6⊥⊥ P (Vk|Vl,Z

(1)
lk ,Z

(2,n)
lk ), we output Vk → Vl, instead. Similar to the

search procedure of PC, we start from n = 0, evaluate the dependence between correspond-
ing modules for each undirected pair, and then let n = n+ 1 and repeat the procedure until
no unoriented pairs have the total cardinality of minimal deconfounding set and minimal
potential deconfounding set greater than or equal to n.

Note that in Algorithm 3, we use dependence measures in (16) and (17) to determine the
independence between causal modules. Particularly, we set a threshold α. If the dependence
measure ∆̂ ≤ α, then the corresponding modules are independent; otherwise, they are
dependent. For a pair of adjacent variables Vk, Vl ∈ VS , if their direction is undetermined
by Algorithm 3 and all their measured modules are dependent, then there exist pseudo
confounders behind Vk and Vl.

Furthermore, for variables whose causal modules are stationary and which are adjacent
only to variables with stationary modules, the causal directions between them cannot be
determined by Algorithm 2 or 3. In such a case, one may further infer some causal directions
by making use of Meek’s orientation rules (Meek, 1995) used in PC.

To better illustrate the algorithm, we go through a simple example, for which the true
graph and brief orientation procedures are given in Figure 5. Below is the precise orientation
procedure.

1. In step 1, we have observed variables {Vi}4i=1, with Vi ∈ VS for any i, and an unoriented
graph UG over {Vi}4i=1 after Algorithms 1 and 2. Since all causal modules are changing,
there is no invariance property that can be used for orientation determination in
Algorithm 2.

2. In step 2, we start from n = 0. For example, for the unoriented pair of adjacent

variables (V1, V2), Z
(1)
12 = {∅} and Z

(2,n)
12 = {∅}. In this case, we have P (V1) 6⊥⊥ P (V2|V1)

and P (V2) 6⊥⊥ P (V1|V2), and thus we cannot determine the direction between V1 and V2.
Similarly, we cannot determine the direction between V2 and V4. For the unoriented
pair (V1, V3), we have that P (V3) ⊥⊥ P (V1|V3) and that P (V1) 6⊥⊥ P (V3|V1), and thus
we output V3 → V1. Similarly, we can determine the direction between V3 and V4 and
output V3 → V4.

Then let n = 1. For the unoriented pair (V1, V2), Z
(1)
12 = {∅} and Z

(2,n)
12 = {V3}. We

then have that P (V1, V3) ⊥⊥ P (V2|V1, V3) and that P (V2, V3) 6⊥⊥ P (V1|V2, V3), and thus

we output V1 → V2. For the unoriented pair (V2, V4), Z
(1)
24 = {V3} and Z

(2,n)
24 = {∅}.

We then have that P (V4, V3) ⊥⊥ P (V2|V4, V3) and that P (V2, V3) 6⊥⊥ P (V4|V2, V3), and
thus output V4 → V2.

3. We output the fully identified causal graph.

4.3. Identifiability Conditions of CD-NOD

In this section, we first give identifiability conditions of CD-NOD, and then we define the
equivalence class that CD-NOD can identify if corresponding conditions do not hold.

We make use of independent changes and orientation rules, including discovering V-
structures and using orientation propagation, to determine causal directions. To fully identify
the DAG, we ought to make some assumption on the change property of the distribution in
wrong directions. In particular, we have the following assumption.
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Algorithm 3 Causal Direction Identification by Independent Changes of Causal Modules

1. Input: observations of {Vi}mi=1, a subset VS ⊆ V (∀V ∈ VS , V has a changing causal
module), a partially oriented causal graph UG from Algorithms 1 and 2.

2. n = 0
Repeat

Repeat

i. Select an unoriented pair of adjacent variables (Vl, Vk), with Vl, Vk ∈ VS .

A. Let Z
(1)
lk be the set of minimal deconfounding set of Vk and Vl; any

Z ∈ Z
(1)
lk is adjacent to Vl.

B. Let Z
(2)
lk be the set of minimal potential deconfounding set; any Z ∈ Z

(2)
lk

is adjacent to Vl.

ii. If |Z(1)
lk |+ |Z

(2)
lk | ≥ n, repeat

A. Take Z
(2,n)
lk ⊆ Z

(2)
lk , with |Z(2,n)

lk | = n− |Z(1)
lk |.

B. If P (Vk,Z
(1)
lk ,Z

(2,n)
lk ) ⊥⊥ P (Vl|Vk,Z

(1)
lk ,Z

(2,n)
lk ) and P (Vl,Z

(1)
lk ,Z

(2,n)
lk ) 6⊥⊥

P (Vk|Vl,Z
(1)
lk ,Z

(2,n)
lk ), output Vk → Vl;

for Z ∈ Z
(2,n)
lk with Z − Vl, output Z → Vl;

for Z ∈ Z
(2,n)
lk with Z − Vk, output Z → Vk.

C. If P (Vk,Z
(1)
lk ,Z

(2,n)
lk ) 6⊥⊥ P (Vl|Vk,Z

(1)
lk ,Z

(2,n)
lk ) and P (Vl,Z

(1)
lk ,Z

(2,n)
lk ) ⊥⊥

P (Vk|Vl,Z
(1)
lk ,Z

(2,n)
lk ), output Vl → Vk;

for Z ∈ Z
(2,n)
lk with Z − Vl, output Z → Vl;

for Z ∈ Z
(2,n)
lk with Z − Vk, output Z → Vk.

D. If one of the conditions in (B) and (C) holds, return to step (i);

Until every unoriented pair of adjacent variables (Vl, Vk), with Vl, Vk ∈ VS , has
been selected.

n = n+ 1.

3. Output: graph UG , with edges between variables in VS oriented.
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V1 V2

V3 V4

V1 V2

V3 V4

True graph Graph after Algorithms 1 and 2

Independencies & Dependencies Resulting graphs

V1 V2

V3 V4

n = 0: P (V3) ⊥⊥ P (V1|V3) & P (V1) 6⊥⊥ P (V3|V1).

So output V3 → V1.

V1 V2

V3 V4

P (V3) ⊥⊥ P (V4|V3) & P (V4) 6⊥⊥ P (V3|V1).

So output V3 → V4.

V1 V2

V3 V4

n = 1: P (V1, V3) ⊥⊥ P (V2|V1, V3) & P (V2, V3) 6⊥⊥ P (V1|V2, V3).

So output V1 → V2.

V1 V2

V3 V4

P (V4, V3) ⊥⊥ P (V2|V4, V3) & P (V2, V3) 6⊥⊥ P (V4|V2, V3).

So output V4 → V2.

Figure 5: An example to illustrate causal direction identification with Algorithm 3.
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Assumption 3 If Vi → Vj, with Vi, Vj ∈ V, and at least one of them has a changing
mechanism, then P (Vi|Vj ,Z) and P (Vj ,Z) are dependent, where Z ⊆ V\{Vl, Vk} is a
minimal deconfounding set of (Vi, Vj).

This assumption can be viewed as faithfulness on another level. Specifically, if Vi → Vj ,
P (Vi|Vj ,Z) and P (Vj ,Z) involve the changing parameters both in Vi and Vj , so they are
expected to be dependent. Now we are ready to give identifiability conditions of causal
directions, which are stated in Theorem 2.

Theorem 2 Under Assumptions 1, 2, and 3, the causal direction between adjacent variables
Vi, Vj ∈ V is identifiable with CD-NOD, if at least one of the following three conditions is
satisfied:

(1) the edge between Vi and Vj is involved in a V-structure;

(2) at least one of V ′i s causal module and V ′j s causal module changes, and if both, the
causal modules of Vi and Vj are independent;

(3) there exists an edge incident to one and only one of the variables in {Vi, Vj}.

Please refer to Appendix C for detailed proofs. Note that CD-NOD does not require hard
restrictions on the functional class of causal mechanisms and data distributions. Combined
with Theorem 1, we know that for any pair of adjacent variables in graph G, if at least one
of the three conditions in Theorem 2 holds, then the whole causal structure is identifiable.
It is given in the following corollary.

Corollary 1 Under Assumptions 1, 2, and 3, the whole causal graph is identifiable, if any
pair of adjacent variables Vi and Vj in graph G satisfies at least one of the following three
conditions:

(1) the edge between Vi and Vj is involved in a V-structure;

(2) at least one of V ′i s causal module and V ′j s causal module changes, and if both, the
causal modules of Vi and Vj are independent;

(3) there exists an edge incident to one and only one of the variables in {Vi, Vj}.

Proof From Theorem 1, we know that the causal skeleton is identifiable. In addition,
from Theorem 2, we know that for any pair of adjacent variables, if at least one of the
three conditions is satisfied, then the direction is identifiable. Therefore, the whole causal
structure is identifiable.

For a pair of adjacent variables Vi and Vj , if none of the conditions in Theorem 2 holds, we
may not be able to determine the causal direction between them. Thus, in this case, we
cannot derive a fully identified causal graph but an equivalence class. Note that the causal
skeleton is identifiable, as shown by Theorem 1, regardless of these conditions. Below we
give a formal definition of equivalence class with CD-NOD.
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Definition 3 (CD-NOD Equivalence Class) Let G = (V,E) and G′ = (V,E′) be two DAGs
over the same set of variables V. G and G′ are called CD-NOD equivalent, if and only if
they satisfy the following properties.

(1) G and G′ have the same causal skeleton.

(2) For any pair of adjacent variables Vi, Vj ∈ V, if it satisfies at least one of the conditions
given in Theorem 2, then the causal direction between Vi and Vj is the same in G and
G′.

Remark: Another important factor that needs to be considered in practical problems
is computational complexity. In CD-NOD phase I, the computational complexity of each
kernel-based (conditional) independence test is O(N3), where N is the number of samples of
each variable. The computational complexity of the search procedure with PC is bounded

by (m+1)2mk−1

(k−1)! , where m is the number of observed variables, and k is the maximal degree of
variables in V ∪C. In CD-NOD phase II, the computational complexity of each dependence
measure, with normalized HSIC, is O(N3).

5. CD-NOD Phase III: Nonstationary Driving Force Estimation

In this section, we focus on the visualization of how causal module P (Vi |PAi, C) changes,
i.e., where the changes occur, how fast it changes, and how to visualize the changes. We
assume that we already know the causal structure and know which causal modules are
changing (see Algorithms 1, 2, and 3).

In the parametric case, if we know which parameters of the causal model PAi → Vi are
changing, e.g., the mean of a direct cause, the coefficients in a linear SEM, then we can
estimate such parameters for different values of C and see how they change. However, such
knowledge is usually not available, and for the sake of flexibility, it is generally better to
model causal processes nonparametrically. Therefore, it is desirable to develop a general
nonparametric procedure to capture the change of causal modules.

We aim to find a low-dimensional and interpretable mapping of P (Vi |PAi, C) which
captures its nonstationarity in a nonparametric way:

λi(C) = hi(P (Vi |PAi, C)), (18)

where hi is a nonlinear function, mapping the conditioning distribution P (Vi |PAi, C)
to a low dimensional representation λi(C). We call λi(C) the nonstationary driving
force of P (Vi |PAi, C). This formulation is rather general: any identifiable parameters
in P (Vi |PAi, C) can be expressed this way, and in the nonparametric case, λi(C) can be
seen as a statistic to summarize changes in P (Vi |PAi, C) along with different values of C. If
P (Vi |PAi, C) does not change along with C, then λi(C) remains constant; otherwise, λi(C)
is intended to capture the variability of P (Vi |PAi, C) across different values of C.

Now there are two problems to solve. One is that given only observed data, how we
represent the conditional distributions conveniently. The other is what method to use to
enable λi(C) to capture the variability in the conditional distribution along with C.

For the former problem, we represent changing conditional distributions by kernel
embedding as that given in Proposition 1, which is readily achievable. For the latter one,
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we use kernel principle component analysis (KPCA) to capture its variability along with
C and accordingly propose a method called Kernel Nonstationary Visualization (KNV) of
causal modules. In the following, for conciseness, we will use X and Y to denote Vi and
PAi, respectively.

Nonstationary Driving Force Estimation as Eigenvalue Decomposition Problems
We use the estimated kernel embedding of distributions, ˆ̃µY ,X|C=cn (n = 1, · · · , N), derived

from Proposition 1 as the input, and aim to find λ̂(C) as a (linear or nonlinear) transformation
of µ̃Y ,X|C=cn , to capture its variability across different values of C. This can be achieved by
exploiting KPCA techniques (Schölkopf et al., 1998), which computes principal components
in kernel spaces of the input.

To perform KPCA, we need to know the Gram matrix of ˆ̃µY ,X|C=cn , which has already

been estimated in Section 4.2.1. We use M l
Y X to represent the Gram matrix of ˆ̃µY ,X|C with

a linear kernel, and MGY X the Gram matrix of ˆ̃µY ,X|C with a Gaussian kernel. Then λ̂(C)

can be found by performing eigenvalue decomposition on the above Gram matrix, M l
Y X or

Mg
Y X ; for details please see Schölkopf et al. (1998). In practice, one may take the first few

eigenvectors which capture most of the variance.

We can see that with our methods, we do not need to explicitly learn the high-dimensional
kernel embedding µ̃Y ,X|C=c for each c. With the kernel trick, the final Gram matrix can be

represented by N ×N kernel matrices directly. Then the nonstationary driving force λ̂(C)
can be estimated by performing eigenvalue decomposition on the Gram matrix. Algorithm 4
summarizes the proposed KNV method.

Algorithm 4 KNV of Causal Modules P (Y |X,C)

1. Input: N observations of X and Y .

2. Calculate Gram matrix MY X (see Eq. 6 for linear kernels and Eq. 8 for Gaussian
kernels).

3. Find λ̂(C) by directly feeding Gram matrix MY X to KPCA. That is, perform eigenvalue

decomposition on MY X to find the nonlinear principal components λ̂(C), as in Section
4.1 of Schölkopf et al. (1998). In practice, we may take the first few eigenvectors which
capture most of the variance.

4. Output: the estimation of nonstationary driving force λ̂(C) of P (Y |X,C).

6. Extensions of CD-NOD

In this section, we show how to extend CD-NOD to deal with more general scenarios. For
example, we extend CD-NOD to allow both time-varying instantaneous and lagged causal
relationships. We additionally discuss whether and how distribution shifts help for causal
discovery in the presence of stationary confounders. We then give a procedure, which
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leverages both CD-NOD and approaches based on constrained functional causal models, to
extend the generality of the proposed method.

6.1. With Time-Varying Instantaneous and Lagged Causal Relationships

In many scenarios, e.g., dynamic systems with insufficient time resolution, there may exist
both instantaneous and time-lagged causal relationships over the measured data (Hyvärinen
et al., 2010; Gong* et al., 2015). In this section, we extend CD-NOD proposed in Section
3 to recover both time-varying instantaneous and lagged causal relationships and identify
changing causal modules.

Suppose that there are m observed processes V(t) = (V1(t), · · · , Vm(t))T with t =
1, · · · , T , where there exist both time-varying instantaneous and lagged causal relations over
these m processes. Further denote the largest time lag by P . To efficiently recover both
instantaneous and time-lagged causal relations, we reorganize the set of variables V into
Ṽ = Ṽ(1) ∪ · · · ∪ Ṽ(P+1), with

Ṽ(1) =
{
V

(1)
1 , V

(1)
2 , · · · , V

(1)
m

}
,

Ṽ(2) =
{
V

(2)
1 , V

(2)
2 , · · · , V

(2)
m

}
,

· · · · · ·
Ṽ(P+1) =

{
V

(P+1)
1 , V

(P+1)
2 , · · · , V

(P+1)
m

}
,

where V
(k)
i =

(
Vi(k), Vi(k + 1), · · · , Vi(T − P + k − 1)

)
, indicating the ith process from the

kth time point to the (T − P + k − 1)th time point, for i = 1, · · · ,m and k = 1, · · · , P + 1.
After reorganization, in total there are m ∗ (P + 1) variables. We constrain that the future
cannot cause the past; i.e., variables in Ṽ(i) cannot cause variables in Ṽ(j) when i > j.

Figure 6 gives an illustration of a two-variable case with time lag P = 1. Figure 6(a)
gives the repetitive causal graph over two processes V(t) = (V1(t), V2(t))T with t = 1, · · · , T .
Figure 6(b) gives the unit causal graph over the reorganized set of variables Ṽ = Ṽ(1) ∪ Ṽ(2).
In this case, we aim to recover the (time-varying) instantaneous causal relations between

V
(2)
1 and V

(2)
2 , and the (time-varying) lagged causal relations from V

(1)
1 to V

(2)
2 , V

(1)
1 to V

(2)
1 ,

and V
(1)
2 to V

(2)
2 . Note that in this example, when inferring the instantaneous causal relation

between V
(2)
1 and V

(2)
2 , we should consider the influence of the lagged common cause V

(1)
1 .

We also add the surrogate variable C into the causal system to characterize distribution
shifts. Algorithm 5 extends Algorithm 1 to recover both instantaneous and lagged causal
skeletons and detect changing causal modules. The main procedure is as follows. We first
construct a complete undirected graph over the reconstructed variable set Ṽ and C. Then
in step 2, we detect changing modules for variables in Ṽ(P+1) by testing the independence

between V
(P+1)
i and C given a subset of Ṽ(P+1)\V (P+1)

i , for i = 1, · · · ,m. If they are

independent, we remove the edge between V
(k)
i and C, for k = 1, · · · , P + 1. In step 3,

we recover lagged causal relations between variables in Ṽ(P+1) and those in Ṽ(P−p+1),

for p = 1, · · · , P . For example, if V
(P+1)
i and V

(P−p+1)
j are independent given a subset

of Ṽ\{V (P+1)
i , V

(P−p+1)
j } ∪ C, then remove the edge between V

(P+1−k)
i and V

(P−p+1−k)
j

for k = 0, · · · , P − p. In step 4, we estimate the instantaneous causal skeleton between

V
(P+1)
i and V

(P+1)
j (i 6= j). If V

(P+1)
i and V

(P+1)
j are independent given a subset of
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V1(1) V1(2) · · · V1(T − 1) V1(T )

V2(1) V2(2) · · · V2(T − 1) V2(T )

V
(1)
1 V

(2)
1

V
(1)
2 V

(2)
2

(a) Repetitive causal graph. (b) Unit causal graph.

Figure 6: A two-variable case with both instantaneous and one-lagged (P = 1) causal
relationships. (a) Repetitive causal graph. (b) Unit causal graph.

Ṽ\{V (P+1)
i , V

(P+1)
j } ∪ C ∪ Zij , where Zij ⊆ {Ṽ(k)}Pk=1 are the lagged common causes of

V
(P+1)
i and V

(P+1)
j , then we remove the edge between V

(k)
i and V

(k)
j for k = 1, · · · , P + 1.

Note that it is important to consider lagged common causes Zij in this step, e.g., V
(1)
1 is the

lagged common cause of V
(2)
1 and V

(2)
2 in Figure 6 (b).

For the recovery of causal directions, lagged causal relations obey the rule that past
causes future, which is obvious, while instantaneous causal directions can be inferred in the
same way as that described in Algorithm 2 and 3.

6.2. With Stationary Confounders

In this section, we discuss the case when there exist stationary confounders; that is, the
distribution of the confounder is fixed. We find that distribution shifts over observed variables
may still help estimate causal directions in such a case.

To show how distribution shifts help, we analyze two-variable cases in Figure 7, where
V1 and V2 are observed variables, and Z is a hidden variable which influences both V1 and
V2. In Figure 7(a) & (b), the causal module of V1 changes, with changing parameter θ1(C),
while causal modules of V2 and Z are fixed. In such a case, we have V1 6⊥⊥ V2 and V1 6⊥⊥ V2|C
in both graphs. Furthermore, in (a) we have C 6⊥⊥ V2 and C 6⊥⊥ V2|V1, while in (b) we have
C ⊥⊥ V2 and C 6⊥⊥ V2|V1. We can see that distribution shift helps to distinguish between the
two graphs when only one causal module changes.

In Figure 7(c) & (d), both the causal modules of V1 and V2 change, and they change
independently, while the distribution of Z is fixed. In these two graphs, we have V1 6⊥⊥ V2
and V1 6⊥⊥ V2|C, and we have P (V1) 6⊥⊥ P (V2|V1) and P (V2) 6⊥⊥ P (V1|V2), for the reason given
below. Hence, graphs in (c) and (d) have the same independence over V ∪ C and between
distribution modules, and thus we cannot distinguish between (c) and (d) without further
information.

The reason that P (V1) 6⊥⊥ P (V2|V1) in (c) is as follows. In (c), P (V2|V1) can be represented
as: P (V2|V1) =

∫
P (V2|V1, Z)P (Z|V1) dZ, where P (V2|V1, Z) contains the information of

θ2(C), and P (Z|V1) contains the information of θ1(C), so P (V2|V1) also contains the infor-
mation of θ1(C). Since both P (V2|V1) and P (V1) contain the information of θ1(C), generally
speaking, P (V2|V1) and P (V1) are not independent. Therefore, although, according to the
causal module independence, P (V1|Z) ⊥⊥ P (V2|V1, Z), P (V1) and P (V2|V1) are dependent.
Similarly, we can derive that P (V2) 6⊥⊥ P (V1|V2) in (d).
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Algorithm 5 Detection of Changing Modules and Recovery of Causal Skeleton with both
(Time-Varying) Instantaneous and Lagged Causal Relationships

1. Build a complete undirected graph UG over the variable set Ṽ ∪ C.

2. (Detection of changing modules) For each i (i = 1, · · · ,m), test for the marginal and

conditional independence between V
(P+1)
i and C. If they are independent given a

subset of Ṽ(P+1)\V (P+1)
i , remove the edge between V

(P+1)
i and C in UG ; at the same

time, remove the edge between V
(k)
i (k = 1, · · · , P ) and C.

3. (Recovery of lagged causal skeleton) For the pth (p = 1, · · · , P ) lagged causal rela-
tionships, test for the marginal and conditional independence between the variables

in Ṽ(P+1) and those in Ṽ(P−p+1). Particularly, for V
(P+1)
i and V

(P−p+1)
j , if they are

independent given a subset of Ṽ\{V (P+1)
i , V

(P−p+1)
j } ∪ C, remove the edge between

V
(P+1)
i and V

(P−p+1)
j ; at the same time, remove the edge between V

(P−k+1)
i and

V
(P−p+1−k)
j , for k = 0, · · · , P − p.

4. (Recovery of instantaneous causal skeleton) For every i 6= j, test for the marginal

and conditional independence between V
(P+1)
i and V

(P+1)
j . Let Zij ⊆ {Ṽ(k)}Pk=1 be

the lagged common causes of V
(P+1)
i and V

(P+1)
j , which can be derived from the

output of Step 3 above. If V
(P+1)
i and V

(P+1)
j are independent given a subset of

Ṽ(P+1)\{V (P+1)
i , V

(P+1)
j } ∪ C ∪ Zij , remove the edge between V

(P+1)
i and V

(P+1)
j in

UG ; at the same time, remove the edge between V
(k)
i and V

(k)
j , for k = 1, · · · , P .

V1 V2

θ1(C) Z

V1 V2

θ1(C) Z

(a) (b)

V1 V2

θ1(C) θ2(C)Z

V1 V2

θ1(C) θ2(C)Z

(c) (d)

Figure 7: Two-variable cases with stationary confounders. (a) V1 → V2 with the changing
causal module of V1. (b) V1 ← V2 with the changing causal module of V1. (c)
V1 → V2 with the changing causal modules of both V1 and V2. (d) V1 ← V2 with
the changing causal modules of both V1 and V2.
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6.3. Combination with Approaches Based on Constrained Functional Causal
Models

For a pair of adjacent variables Vi and Vj , if none of the identifiability conditions given
in Theorem 2 are satisfied, the causal direction between Vi and Vj is undetermined with
CD-NOD. In such a case, to infer the causal direction between Vi and Vj , one possible way
is to further leverage the approaches based on constrained functional causal models, e.g., the
linear non-Gaussian model (Shimizu et al., 2006), the nonlinear additive noise model (Hoyer
et al., 2009; Zhang and Hyvärinen, 2009a), or the post-nonlinear model (Zhang and Chan,
2006; Zhang and Hyvärinen, 2009b). To determine the causal direction with functional
causal model-based approaches, we have two scenarios to consider, depending on whether
P (Vi, Vj) changes or not.

1. The joint distribution P (Vi, Vj) is fixed. In this scenario, we can fit a constrained
functional causal model, e.g., the nonlinear additive noise model, as usual. Let
Z ⊆ V\{Vi, Vj} be a minimal deconfounding set of Vi and Vj . We

– first assume Vi → Vj and fit an additive noise model

Vj = fj(Vi,Z) + Ej ,

and test the independence between estimated residual Êj and hypothetical causes
(Vi,Z),

– and then assume Vj → Vi and fit an additive noise model in this direction

Vi = fi(Vj ,Z) + Ei,

and test the independence between estimated residual Êi and hypothetical causes
(Vj ,Z).

We choose the direction in which the independence between estimated residual and
hypothetical causes holds.

2. The joint distribution P (Vi, Vj) changes. The fact that for Vi and Vj , none of the
conditions in Theorem 2 is satisfied implies that neither Vi nor Vj is adjacent to C.
It further infers that there are some variables in V with changing distributions and
influencing Vi or Vj . Let Zi ⊆ V\{Vi, Vj} represent a set of variables which directly
influence Vi, and satisfies that ∀Zi ∈ Zi, its distribution P (Zi) changes. Similarly,
we denote Zj as parents of Vj that have changing distributions. Let Z ⊆ V\{Vi, Vj}
be a minimal deconfounding set of Vi and Vj , and let Z̃ ⊆ Z, with P (Z̃) fixed and
∀Z ∈ Z\Z̃, P (Z) changes. Note that it is easy to infer that Zi ⊆ Z and Zj ⊆ Z. We

– first fit an additive noise model by assuming Vi → Vj

Vj = fj(Vi, Z̃,Zj) + Ej ,

and test the independence between estimated residual Êj and hypothetical causes
(Vi,Zj , Z̃),
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– and then assume Vj → Vi and fit an additive noise model accordingly

Vi = fi(Vj , Z̃,Zi) + Ei,

and test the independence between estimated residual Êi and hypothetical causes
(Vj ,Zi, Z̃).

We choose the direction in which the independence between estimated residual and
hypothetical causes holds. Note that in case 2, we cannot ignore the changing factors
Zi and Zj in their corresponding functional causal models, because functional causal
model-based approaches assume a fixed causal model. If we do not consider Zi or Zj ,
then the corresponding functions fi and fj , respectively, may change across data sets
or over time.

If there are unoriented edges to Vi or Vj , the potential minimal deconfounding set Z̃, and
potential changing influences Zi and Zj are chosen in a heuristic way, similar to that in
Algorithm 3.

7. Relations between Heterogeneity/Nonstationarity and Soft
Intervention in Causal Discovery

In this section, we show that heterogeneity/nonstationarity and soft intervention are tightly
related in causal discovery, and the former may be more effective for causal discovery than
the latter. The definition of soft intervention is as follows.

Definition 4 (Soft Intervention (Eberhardt and Scheines, 2007)) Given a set of mea-
sured variables V, a soft intervention Ip on a variable S ∈ V is an intervention on S that
satisfies the following constraints: when Ip = 1, Ip does not make S independent of their
causes in V; i.e., it does not break any edges that are incident to S. The causal module
P (S|PAS) is replaced by P ∗(S|PAS , Ip = 1), where

P ∗(S|PAS , Ip = 1) 6= P (S|PAS , Ip = 0). (19)

Otherwise, all terms remain unchanged.

Additionally, Ip satisfies the following properties:

• Ip is a variable with two states, Ip = 1 or Ip = 0, whose state is known.

• When Ip = 0, the passive observational distribution over S obtains.

• Ip is a direct cause of S and only S.

• Ip is exogenous, that is, uncaused.

Note that the soft intervention does not imply any structural changes over the variables in
V; instead, it influences the manipulated probability distribution.

Heterogeneity/nonstationarity can be seen as a consequence of soft interventions done
by nature. Recall that the heterogeneous/nonstationary causal modules are defined as

Vi = fi
(
PAi,gi(C), θi(C), εi

)
,

29



Huang, Zhang, Zhang, Ramsey, Sanchez-Romero, Glymour, and Schölkopf

where gi(C) ⊆ {gl(C)}Ll=1 denotes the set of confounders that influence Vi (it is an empty
set if there is no confounder behind Vi and any other variable), θi(C) denotes the effective
parameters in the model that are also assumed to be functions of C, and εi is a disturbance
term that is independent of C. The distribution of P (Vi|PAi, C) changes when C takes
different values, i.e.,

P (Vi|PAi, C = c) 6= P (Vi|PAi, C = c′). (20)

This means that across the values of C, c and c′, there exists a soft intervention on Vi.
Our developed framework in causal discovery from heterogeneous/nonstationary data is

more applicable than that from Eberhardt and Scheines (2007) in the following aspects:

1. In Eberhardt and Scheines (2007), Ip is known and only contains two states, while in
our case we can detect where it happens in an automated way, and the changes can be
discrete (across domains) or continuous (over time).

2. In Eberhardt and Scheines (2007), Ip is assumed to be a direct cause to a single
variable, while in our case there is no such a restriction. For example, we allow pseudo
confounders gl(C) which affects several variables.

3. Our framework also allows edges to vanish or appear in some domains or over some
time periods; that is, the structure over V may change, for which hard intervention is
a special case, while in Eberhardt and Scheines (2007), the causal structure does not
change.

8. Experimental Results

We applied the proposed CD-NOD (both phase I and phase II) to both synthetic and
real-world data sets to learn causal graphs and identify changing causal modules, and then
we learned a low-dimensional representation of changing causal modules (phase III).

8.1. Synthetic Data

8.1.1. Setting 1

To show the generality of the proposed methods in causal discovery when data distributions
change, we considered two types of data: multi-domain heterogeneous data and nonstationary
time series. Moreover, we considered changes in both causal strength and noise variances.

For variable Vi whose causal module changes, the tth data point was generated according
to the following functional causal model:

Vi,t =
∑

Vj∈PAi

bij,tfi(Vj,t) + σi,tεi,t,

where PAi denotes the set of Vi’s direct causes, Vj ∈ PAi is the jth direct cause of Vi, bij,t
is the varying causal strength from variable Vj to Vi, and σi,t is the changing parameter
applied to the noise term εi,t. The function fi was randomly chosen from linear, cubic, tanh,
sinc functions, or random mixtures of those functions. The noise term εi,t was randomly
chosen from a uniform distribution U(−0.5, 0.5) or a standard normal distribution N (0, 1).

The varying causal strength bij,t and varying noise’s parameter σi,t were generated in
different ways for heterogeneous and nonstationary data.
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• For heterogeneous data whose data distributions change across domains, in each
domain, bij,t and σ2i,t were randomly generated from uniform distributions U(0.5, 2.5)

and U(1, 3), respectively. Note that in the same domain both bij,t and σ2i,t remain the
same.

• For nonstationary data whose data distributions smoothly change over time, we
generated bij,t and σi,t by sampling from a Gaussian process (GP) prior bij(t) ∼
GP(~0,K(t, t)) and σi(t) ∼ GP(~0,K(t, t)), respectively. We used squared exponential

kernel k(t, t′) = exp(−1
2
|t−t′|
λ2

), where λ is the kernel width.

For variable Vi whose causal module is fixed, it was generated according to a fixed
functional causal model:

Vi,t =
∑

Vj∈PAi

bijfi(Vj,t) + εi,t,

where both the causal strength bij and variance of the noise term εi are fixed over time.

We randomly generated acyclic causal structures according to the Erdos-Renyi model
(Erdős and Rényi, 1959) with the probability of each edge 0.3. Each generated graph has 6
variables. In each graph, we randomly picked variables with changing causal modules, and
the number was randomly chosen from {4, 5, 6}. We also considered different sample sizes.
Particularly, for heterogeneous data, the sample size of each domain was chosen between 50
and 100, and the total sample size was N =600, 900, 1200, and 1500. For nonstationary
data, we fixed the kernel with of the Gaussian prior and generated the data with sample
size N = 600, 900, 1200, and 1500. In each scenario (each data type and each sample size),
we generated 100 random realizations.

We applied the proposed CD-NOD to identify the underlying causal structure, both
causal skeleton (phase I) and causal directions (phase II), and detect changing causal modules
(phase I).

Phase I: causal skeleton identification and changing causal module detection.
We applied CD-NOD phase I (Algorithm 1) to identify the causal skeleton and detect
changing causal modules. Specifically, for heterogeneous data, we used the domain index
as the surrogate variable C to capture the distribution change, while for nonstationary
data, we used the time index. We used PC (Spirtes et al., 1993) as the search procedure
and the kernel-based conditional independence (KCI) test to test conditional independence
relationships.

We compared our approach with the original constraint-based method, which does not
take into account distribution changes. For the original constraint-based method, we applied
the PC search over the observed variables, combined with the KCI test. We also compared
with approaches based on the minimal change principle, the identical boundaries (IB) method
and the minimal changes (MC) method (Ghassami et al., 2018). Both IB and MC methods
are designed for multi-domain causal discovery in linear systems.

For the KCI test, the significance level was 0.05. We used Gaussian kernels, and the
hyperparameters, e.g. the kernel width, were set with empirical values; please refer to
Zhang et al. (2011) for details. Since both IB and MC methods need data from multiple
domains, for heterogeneous data, we segmented the data according to the domain index
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Figure 8: Accuracy of the recovered causal skeleton from heterogeneous (upper row) and
nonstationary (lower row) data. We compared three accuracy measures: F1

score (left column), precision (middle column), and recall (right column). We
compared our proposed CD-NOD (phase I) with original constraint-based method,
IB method, and MC method.

before applying IB and MC methods, and for nonstationary data, we segmented the data
into non-overlapping domains, with sample size 100 in each domain.

Figure 8 gives the accuracy of the recovered causal skeleton from both heterogeneous
(upper row) and nonstationary (lower row) data. The x-axis indicates the sample size, and
the y-axis shows the accuracy of the recovered causal skeleton. We considered three accuracy
measures: F1 score, precision, and recall, where precision indicates the rate of spurious
edges, recall the rate of missing edges, and F1 = 2 · precision·recall

precision+recall . We can see that the
proposed CD-NOD (phase I) gives the best F1 score and precision on both heterogeneous
and nonstationary data for all sample sizes, and it gives similar recall with others. Moreover,
there is a slight increase in F1 score and recall along with the sample size. The original
constraint-based method gives a much lower precision, and hence a lower F1 score as well,
which means that there are many spurious edges. The reason is that it does not consider
distribution shifts, as we illustrated in Figure 1. Both IB and MC methods give a much
lower precision, probably because they are designed for linear systems, and thus the indirect
nonlinear influences cannot be totally captured by variables along the pathway with linear
functions.

Table 2 shows the accuracy of the detected changing causal modules, measured by F1

score, precision, and recall. We can see that the proposed CD-NOD performs well, and that
the F1 score tends to increase along with sample size in both scenarios.
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N F1 Precision Recall

600 0.93 0.98 0.89

900 0.95 0.99 0.93

1200 0.96 1.00 0.93

1500 0.96 0.99 0.93

(a) Heterogeneous data

N F1 Precision Recall

600 0.94 0.99 0.90

900 0.96 0.99 0.94

1200 0.97 0.99 0.96

1500 0.96 0.97 0.95

(b) Nonstationary data

Table 2: Accuracy of the identified changing causal modules from (a) heterogeneous data
and (b) nonstationary data.

Phase II: causal direction identification. We then applied three rules to identify
causal directions, based on the skeleton learned in phase I. The three rules are

(1) generalization of invariance (Algorithm 2),

(2) independent changes between causal modules (Algorithm 3),

(3) and Meek’s orientation rule (Meek, 1995).

The three rules are applied in the above sequence to identify causal directions.

We compared with the window-based method (Zhang et al., 2017), the IB method, and
the MC method for direction determination. The window-based method identifies the causal
direction by measuring the dependence between hypothetical causal modules; however, the
kernel density estimation of modules were performed in each sliding window or in each
domain, separately. For the window-based method, we used the causal skeleton derived from
CD-NOD phase I. For heterogeneous data, the window size was the same as the sample size
in each domain; for nonstationary data, the size of each sliding window was 100. For the IB
and MC method, the skeleton and orientations were derived simultaneously.

Figure 9 shows the F1 score of the recovered whole causal graph (both skeletons and
directions) from heterogeneous and nonstationary data. We can see that the proposed
CD-NOD gives the best F1 score in all scenarios. The window-based method has second-best
performance, and it performs slightly better on heterogeneous data than on nonstationary
data. The reason may be that on nonstationary data, the sliding window-based method may
lead to large estimation errors, especially when the causal influence varies quickly over time.
The performance of IB and MC methods is worse; it is not surprising since the generated
data are not linear.
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Figure 9: Accuracy of the recovered whole causal graph (both skeletons and directions)
from both heterogeneous and nonstationary data. We compared our proposed
CD-NOD with window-based method, IB method, and MC method.

8.1.2. Setting 2

To clearly show the efficacy of Algorithm 3 in causal direction identification (without being
affected by the accuracy from causal skeleton identification and the other two orientation
rules), we generated another synthetic data set. Particularly, we generated fully connected
acyclic graphs. For each variable Vi, all its causal strength bij and noise’s parameter σi change,
either across domains or over time. We considered different graph sizes m = 2, 4, and 6 and
different sample sizes N = 600, 900, 1200, and 1500.

To assess the performance of causal direction identification, we assumed that the causal
skeleton is given (fully connected), and we inferred causal directions with Algorithm 3,
which exploits the independence between causal modules. We compared CD-NOD with the
window-based method, the IB method, and the MC method. The setting of hyperparameters
and window size was the same as that in Setting 1.

Figure 10 gives the accuracy (F1 score) of the inferred causal directions from heterogeneous
and nonstationary data. We can see that CD-NOD (Algorithm 3) gives the best F1

score, and its accuracy slightly increase with sample size. The accuracy of window-based
method is comparably lower than CD-NOD (Algorithm 3), and its performance is better
on heterogeneous data than that on nonstationary data. The accuracy of the IB and MC
method is much lower, since they are only for linear systems.

8.1.3. Setting 3

We further investigated the effect of sample size per domain in heterogeneous data of
the final performance. We varied the number of samples N0 in each domain, with N0 =
10, 20, 40, 60, 80, and 100, and there were in total 10 domains. Other settings of the data
generating process are the same as that in Setting 1.

Figure 11(left) gives the F1 score of the recovered causal skeleton, along with the number
of samples per domain. We compared CD-NOD with original constraint-based methods
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Figure 10: Accuracy of inferred causal directions from heterogeneous (upper row) and
nonstationary (lower row) data. We tested the accuracy on 2-variable (left
column), 4-variable (middle column), 6-variable (right column) fully connected
graphs. We compared our proposed CD-NOD with the window-based method,
the IB method, and the MC method.
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Figure 11: Accuracy of the estimated causal skeleton (left) and the whole causal graph (right)
from heterogeneous data, along with the number of samples in each domain.

(without taking into account the distribution shift), the IB method, and the MC method.
Figure 11(right) shows the F1 score of the recovered whole causal graph, including both the
skeleton and directions, produced by CD-NOD, the window-based method, the IB method,
and the MC method, respectively. We can see that CD-NOD achieves the best accuracy in
all cases, regarding both the estimated skeleton and the whole causal graph. Moreover, we
found that not surprisingly, its performance improves with the number of samples in each
domain, with a relatively large improvement (around 5%) from N0 = 40 to N0 = 60.

8.1.4. Setting 4

After identifying the causal structure, we then estimated the nonstationary driving force
of changing causal modules by the procedure KNV given in Algorithm 4. For illustration
purposes, we used a single driving force for each module, which changes both causal strength
b and noise parameter σ.

Phase III: nonstationary driving force estimation We used Gaussian kernels both
in kernel embedding of constructed joint distributions and kernel PCA. We compared our
approach with the linear time-dependent functional causal model (Huang et al., 2015), which
puts a GP prior on time-varying coefficients and uses the mean of the posterior to represent
the nonstationary driving force. In addition, we compared our methods with Bayesian
change point detection (Adams and MacKay, 2007), 4 which is widely used in nonstationary
data to detect change points.

Figure 12(a) and 12(b) show the estimated low-dimensional driving force of changing
causal modules for smooth changes (nonstationary data) and sudden changes (heterogeneous
data), respectively, when N = 600. In left panels, blue lines show the estimated driving force
by KNV, and red lines show ground truth. Vertical black dashed lines indicate detected
change points by Bayesian change point detection. Middle panels show the largest ten

4. We used the implemented Matlab code from http://hips.seas.harvard.edu/content/bayesian-online-
changepoint-detection.
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eigenvalues of Gram matrix Mg. In right panels, blue lines are the recovered changing
components by the linear time-dependent GP, and red lines are ground truth. The scale of
the y-axis has been adapted for clarity. We only showed the first principal component in
the left panel, since the first eigenvector captures most of the variance, as shown in middle
panels. We can see that KNV gives the best recovery of the changing components in all cases.
Bayesian change point detection, which aims to estimate change points in the marginal or
joint distributions (instead of causal mechanisms), fails to handle the case of smooth changes.
The linear time-dependent GP does not work well, and one reason is that it cannot account
for influences from changing noise parameters, in cases of both smooth and sudden change.

8.2. Real-World Data Sets

We then applied the proposed CD-NOD to three real-world data sets. We performed the same
three procedures as before: recover causal structure over variables, identify changing causal
modules, and estimate low-dimensional driving forces of changing causal modules. Specifically,
for causal skeleton determination and changing module detection, we applied Algorithm
1. For causal direction determination, we applied three orientation rules: Algorithm 2,
Algorithm 3, and Meek’s orientation rule, in sequence. For driving force estimation, we
applied KNV (Algorithm 4). Since our proposed methods outperform all the alternatives on
synthetic data, we only applied our proposed methods to real-world data sets.

8.2.1. Task fMRI

We applied our methods to task fMRI data, which were recorded under a star/plus experiment
(Wang et al., 2004). There are three states in the experiment. (1) The subject rested or
gazed at a fixation point on the screen (State 1). (2) The subject was shown a picture and a
sentence that was not negated, and was instructed to press a button to indicate whether the
sentence matched the picture (State 2). (3) The subject was shown a picture and a negated
sentence, and was instructed to press a button indicating whether the sentence matched the
picture (State 3). The time resolution of the recording is 500 ms. The fMRI voxel data are
organized into regions of interests (ROIs), resulting in 25 ROIs.

Figure 13 shows the recovered causal structure over the 25 ROIs, where red circles mean
that corresponding brain areas have changing causal mechanisms. We can see that the
causal edges from the ROIs in the right hemisphere to the corresponding left ones are robust,
e.g., RIPL → LIPL, RIT → LIT. ROIs CALC, LSGA, LIPL, and LIT have large indegree
centrality, where CALC and LIT are responsible for visual input processing, and LSGA
and LIPL are for language processing. The causal modules of CALC, RIPL, LIPL, RSGA,
LSGA, RDLPFC, LDLPFC, RTRIA, LSP, and RIT are time-varying, which are marked with
red circles. The identified changing causal modules correspond to key areas for visual and
language perception. By considering nonstationarity, 16 connections that were produced by
the original PC algorithm are removed, e.g., LIPL - RSGA, LSPL - RDLPFC, and RDLPFC
- RTRIA, indicating possible pseudo confounders behind those pairs of ROIs.

Figure 14 visualizes the estimated nonstationary driving force by KNV. The top figure
shows the state of input stimuli: State = 1 (State 1) means that the subject was in resting
state; State = 2 (State 2) means that the subject was shown a picture and a non-negated
sentence, and State = 3 (State 3) means that the shown sentence was negated. The lower
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(b) Sudden changes

Figure 12: Visualization of estimated driving forces of changing causal modules for (a)
smooth changes and (b) sudden changes. Left panel: blue lines show the recovered
nonstationary components by KNV. Red lines are ground truth. Vertical black
dashed lines indicate detected change points by Bayesian change point detection.
Middle Panel: the largest ten eigenvalues of Gram matrix Mg. Right Panel: blue
lines are recovered nonstationary components by linear time-dependent GP. Red
lines are ground truth.
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Figure 13: Recovered causal graph over 25 ROIs. The red circles denote that causal modules
of corresponding brain areas changing over states.
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Figure 14: Visualization of estimated nonstationary driving force from task fMRI data. The
top figure shows the state of input stimuli: State = 1 means that the subject
was in resting state; State = 2 means that the subject was shown a picture and a
sentence, in which the sentence was not negated, while in State = 3 the sentence
was negated. The other four figures show the estimated nonstationary driving
forces of LDLPFC, LIPL, LSGA, and RIPL, respectively. The shaded areas are
intervals which have obvious changes; they match the resting states (State = 1)
with no input stimuli. For LDLPFC, the second shaded interval is delayed. There
are changes between State 2 and State 3 but are less obvious, comparatively.

four figures show the estimated nonstationary driving forces of the causal modules of several
key ROIs: LDLPFC, LIPL, LSGA, and RIPL, respectively. The shaded areas are intervals
which have obvious changes; they match the resting state (State 1) with no input stimuli.
Quantitatively, the correlations between states and the recovered driving forces of LDLPFC,
LIPL, LSGA, and RIPL are 0.22, 0.49, 0.41, 0.47, respectively. For LDLPFC, the second
shaded interval is delayed, which may be due to the fact that LDLPFC is involved in
cognitive processes, e.g., working memory, so that it may remain activated for some time
when the input stimulus has been removed. There are changes between State 2 and State 3,
but they are less obvious. In short, the recovered nonstationary driving forces show that
there are obvious changes between the resting state and the task states, while the changes
between two task states are relatively less obvious.

40



Causal Discovery from Heterogeneous/Nonstationary Data

8.2.2. Stock Returns

We applied our methods to daily returns of stocks from Hong Kong (HK) and the United
States (US), downloaded from Yahoo Finance.

HK Stock Market The HK stock dataset contains 10 major stocks, which are daily
dividend adjusted closing prices from 10/09/2006 to 08/09/2010. For the few days when
the stock price is not available, a simple linear interpolation is used to estimate the price.
Denoting the closing price of the ith stock on day t by Pi,t, the corresponding return

is calculated by Vi,t =
Pi,t−Pi,t−1

Pi,t−1
. The 10 stocks are Cheung Kong Holdings (1), Wharf

(Holdings) Limited (2), HSBC Holdings plc (3), Hong Kong Electric Holdings Limited (4),
Hang Seng Bank Ltd (5), Henderson Land Development Co. Limited (6), Sun Hung Kai
Properties Limited (7), Swire Group (8), Cathay Pacific Airways Ltd (9), and Bank of China
Hong Kong (Holdings) Ltd (10). Among these stocks, 3, 5, and 10 belong to Hang Seng
Finance Sub-index (HSF), 1, 8, and 9 belong to Hang Seng Commerce & Industry Sub-index
(HSC), 2, 6, and 7 belong to Hang Seng Properties Sub-index (HSP), and 4 belongs to Hang
Seng Utilities Sub-index (HSU).

Figure 15 shows the estimated causal structure, where the causal modules of 2, 3, 4, 5 and
7 are found to be time-dependent, indicated by red circles. In contrast, the PC algorithm
with the KCI test (without taking into account the nonstationarity) gives five more edges,
which are 2 − 3, 2 − 5, 3 − 6, 5 − 7, and 4 − 5; most of these spurious edges (the former
four) are in the finance sub-index and the properties sub-index, indicating the existence of
pseudo confounders behind these sub-indices. We found that all stock returns that have
changing causal mechanisms are in HSF, HSP, and HSU; they might be affected by some
unconsidered changing factors, e.g., the change of economic policies. Furthermore, we
estimated causal directions by the procedure given in Algorithm 2 and 3, and the inferred
directions are consistent with some background knowledge of the market. For instance, the
within sub-index causal directions tend to follow the owner-member relationship. Examples
include 5→ 3 (note that 3 partially owns 5), 9→ 8, and 4→ 1. Those stocks in HSF are
major causes for those in HSC and HSP, and the stocks in HSP and HSU impact those in
HSC. These results indicate that overseas markets (e.g., the US market) may influence the
local market via large banks, and that prices of stocks in commerce and industry are usually
affected by certain companies in finance, properties, and utilities sectors.

Figure 16 (bottom panels) visualizes the estimated driving forces of stocks 2, 3, 4, 5, and 7
(the scale of y-axis has been adjusted). We can see that the nonstationary components of root
causes, 4 and 5, share a similar variability; the change points are around 01/22/2007 (T1),
07/16/2007 (T2), 06/30/2008 (T3), and 02/11/2009 (T4). The nonstationary components
of the causal modules of 2, 3, and 7 have change points around T2, T3, and T4. Stock 5
has additional change points at T1 (01/22/2007), which is perhaps due to the fact that
Hang Seng Bank established its wholly owned subsidiary Hang Seng Bank (China) Limited
in 2007. The change points around T2, T3, and T4 match with the critical time points of
financial crisis around the year of 2008. The active phase of the crisis, which manifested
as a liquidity crisis, could be dated from August, 2007,5 around T2. The estimated driving

5. See more information at https://en.m.wikipedia.org/wiki/Financial_crisis_of_2007-08.
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Figure 15: Recovered causal graph over the 10 main HK stocks. Red circles indicate that
causal modules of corresponding stocks change over time.

forces are consistent with the change of the TED spread,6 which is an indicator of perceived
credit risk in the general economy and is shown in Figure 16 (top panel) for comparison.

US Stock Market We then applied our methods to daily returns of a number of stocks
from New York Stock Exchange, downloaded from Yahoo Finance. We considered 80 major
stocks and used their daily dividend adjusted closing prices from 07/05/2006 to 12/16/2009.
They are clustered into 10 sectors: energy, public utilities, capital goods, health care,
consumer service, finance, transportation, consumer nondurable goods, basic industry, and
technology.

Figure 17 shows the estimated causal graph over stock returns, each color representing
one sector. The size of each node reflects its degree of connections (sum of indegree and
outdegree), and larger node indicates a higher degree. We found that intra-sector connections
are more dense than inter-sector connections. The stocks in energy, finance, public utilities,
and basic industries are more likely to be causes of stocks in other sectors; among these four
sectors, stocks in energy and finance usually causally influence stocks in utilities and basic
industries.

More specifically, GE, a stock in energy, does not have causal edges within the sector;
instead, it is adjacent to stocks in other sectors, which may be due to the reason that GE
is a conglomerate and has various segments, including healthcare, power, transportation,
oil and gas, etc. In regard to causal interactions within energy, CHK and KEG are root
causes, which may be because KEG is an oilfield services company, and CHK is a holding
company for a variety of energy enterprises; NBR and HAL are also more likely to cause
others, and PBR, WMB, TLM, and NE are more likely to be influenced by other stocks.

6. See https://en.m.wikipedia.org/wiki/TED_spread.

42

https://en.m.wikipedia.org/wiki/TED_spread


Causal Discovery from Heterogeneous/Nonstationary Data

10/09/06 08/09/10

2

-10

0

10

3

-10

0

10

T1 T2 T3 T4

7

-10

0

10

4
-10

0

10

20

T1 T2 T3 T4

5

-10
0

10
20

Figure 16: The estimated nonstationary driving forces of time-dependent stock returns,
as well as the curve of the TED spread, over the period from 10/09/2006 to
08/09/2010. Top: Curve of the TED spread shown for comparison. Bottom:
Estimated nonstationary driving force of stocks 2, 3, 4, 5, and 7, where T1, T2,
T3, and T4 stand for 01/22/2007, 07/16/2007, 05/03/2008, and 11/02/2009,
respectively. We can see that the nonstationary components of root causes, 4
and 5, share the similar variability with change points around T1, T2, T3, and T4.
The nonstationary components of 2, 3, and 7 have change points only around T2,
T3, and T4.
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Figure 17: Recovered causal graph over 80 NYSE stocks. Each color of nodes represents
one sector.

Among the stocks in finance, MS, SAN, and JPM have a large number of edges with stocks
from other sectors. Within finance, USB and KEY usually cause others, and WFC is the
sink node. Among the stocks in basic industry, FCX is largely affected by stocks from energy,
and it causes other stocks in basic industry, probably because it also belongs to petroleum
industry; GLW and DOW have a large number of edges with stocks in consumer service and
technology, which may be related to their products in glass & ceramic materials, and they
are not adjacent to other stocks in basic industry. Within basic industry, IAG is the root
cause, and KGC is always influenced by others. Regarding the stocks from the remaining
sectors, DIS, HST, and HD from consumer service, ORCL from technology, and CSX from
transportation have large centrality.

By considering nonstationarity, 63 edges that were produced by the original PC algorithm
were removed; 19 of them are within sectors, and 44 are between sectors. The causal modules
of 37 out of 80 stocks change over time; most of them are from energy (10 out of 28), finance
(7 out of 9), basic industry (6 out of 14), and consumer service (5 out of 7). It is reasonable
that stocks, that are close to the root node, are more likely to be influenced by some external
factors, such as changing economic environments and policies. These findings, such as stocks
from finance are more likely to be causes of stocks in other sectors, are consistent with what
we discovered from HK stock market reported above.
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Figure 18: The estimated nonstationary driving force of six stock returns from 07/05/2006
∼ 12/16/2009. The stocks SAN, MS, and DOW have obvious change points at
07/16/2007 (T1) and 05/05/2008 (T2) . The stocks GE, CHK, and BAC have
change points only at 05/05/2008 (T2). The change points match the critical
time of financial crisis.

Figure 18 visualizes the estimated nonstationary driving forces of stocks SAN, MS,
DOW, GE, CHK, and BAC. We can see that among these six stocks, SAN, MS, and DOW
have obvious change points around 07/16/2007 (T1) and 05/05/2008 (T2), while the stocks
GE, CHK, and BAC only have changes points around 05/05/2008 (T2). We found that
stocks, which have change points around both time points, usually have large centrality and
influence a large number of other stocks. The change points match the critical time of the
2008 financial crisis - those in the TED spread and parts of the change points (T2 and T3)
in HK stock data.

9. Discussion and Conclusions

This paper is concerned with causal discovery from heterogeneous/nonstationary data and
visualization of changing causal modules. We assume a pseudo causal sufficiency condition,
which states that all confounders can be represented by functions of domain or smooth
functions of time index. We proposed (1) an enhanced constraint-based method for locating
variables whose causal modules change and estimating the skeleton of the causal structure
over observed variables, (2) a method for causal direction determination that takes advantage
of the information carried by distribution shifts, and (3) a procedure for estimating a low-
dimensional representation of changing causal modules. We then showed that distribution
shifts also help for causal discovery when there are stationary confounders. In summary, to
identify the causal structure, we take advantage of two types of independence constraints:
(a) conditional independence (with constraint-based approach) and (b) independent changes
of changing causal modules.
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The performance evaluated on synthetic data sets showed largely improved F1 score
and precision with our proposed CD-NOD, compared to other methods for causal discovery.
The results over task-fMRI data well revealed information flows between brain regions and
how causal influences change across resting state and task states. The causal relationships
learned from stock data (both HK and US) are consistent with background knowledge, e.g.,
stocks in finance and energy are causes to others, and the estimated nonstationary driving
forces match the critical time of financial crisis around the year of 2008.

We showed that distribution shift contains useful information for causal discovery, since
causal model provides a compact description of how the joint distribution changes. Moreover,
it has been recently noticed that this view help understand and solve some machine learning
problems, e.g., domain adaptation and prediction in nonstationary environments. Since
distribution shifts in heterogeneous/nonstationary data are usually constrained - it might be
due to the changes in the data-generating processes of only a few variables, and thus it is
only necessary to adapt a small proportion of the joint distribution in domain adaptation
problems (Zhang et al., 2013; Schölkopf et al., 2012).

There are several open questions that we aim to answer in future work. First, in the
paper we assumed that causal directions do not flip despite distribution shifts. What if
some causal directions also change across domains or over time? It is important to develop
a general approach to detect such direction flips and do causal discovery, because of the
ubiquity of feedback loops. Second, the issue of distribution shift may decrease the power of
statistical (conditional) independence tests. It is essential to develop a reliable statistical test
to mitigate this problem. Third, in practice, there may also exist other types of confounders,
e.g., nonstationary confounders. We will extend our methods to cover general types of
confounders.
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Appendix A. Proof of Theorem 1

Proof Before getting to the main argument, let us establish some implications of the
SEMs in Eq. 2 and the assumptions in Section 3.1. Since the structure is assumed to be
acyclic or recursive, according to Eq. 2, all variables Vi can be written as a function of
{gl(C)}Ll=1 ∪ {θm(C)}nm=1 and {εm}nm=1. As a consequence, the probability distribution
of V at each value of C is determined by the distribution of ε1, ..., εn, and the values
of {gl(C)}Ll=1 ∪ {θm(C)}nm=1. In other words, P (V|C) is determined by

∏n
i=1 P (εi) (for
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ε1, ..., εn are mutually independent), and {gl(C)}Ll=1 ∪ {θm(C)}nm=1, where P (·) denotes
the probability density or mass function. For any Vi, Vj , and Vij ⊆ {Vk | k 6= i, k 6= j},
because P (Vi, Vj |Vij , C) is determined by P (V|C), it is also determined by

∏n
i=1 P (εi) and

{gl(C)}Ll=1 ∪ {θm(C)}nm=1. Since
∏n
i=1 P (εi) does not change with C, we have

P (Vi, Vj |Vij ∪ {gl(C)}Ll=1 ∪ {θm(C)}nm=1 ∪ {C})
=P (Vi, Vj |Vij ∪ {gl(C)}Ll=1 ∪ {θm(C)}nm=1). (21)

That is,
C ⊥⊥ (Vi, Vj) |Vij ∪ {gl(C)}Ll=1 ∪ {θm(C)}nm=1. (22)

By the weak union property of conditional independence, it follows that

C ⊥⊥ Vj | {Vi} ∪Vij ∪ {gl(C)}Ll=1 ∪ {θm(C)}nm=1. (23)

We are now ready to prove the theorem. Let Vi, Vj be any two variables in V. First,
suppose that Vi and Vj are not adjacent in G. Then they are not adjacent in Gaug, which
recall is the graph that incorporates {gl(C)}Ll=1 ∪ {θm(C)}nm=1. It follows that there is a set
Vij ⊆ {Vk | k 6= i, k 6= j} such that Vij ∪ {gl(C)}Ll=1 ∪ {θm(C)}nm=1 d-separates Vi from Vj .
Since the joint distribution over V ∪ {gl(C)}Ll=1 ∪ {θm(C)}nm=1 is assumed to be Markov to
Gaug, we have

Vi ⊥⊥ Vj |Vij ∪ {gl(C)}Ll=1 ∪ {θm(C)}nm=1. (24)

Because all gl(c) and θm(C) are deterministic functions of C, we have P (Vi, Vj |Vij ∪{C}) =
P (Vi, Vj |Vij ∪ {gl(C)}Ll=1 ∪ {θm(C)}nm=1 ∪ {C}).

According to the properties of mutual information given in Madiman (2008) , Eqs. 24
and 22 imply Vi ⊥⊥ (C, Vj) |Vij ∪ {gl(C)}Ll=1 ∪ {θm(C)}nm=1. By the weak union property
of conditional independence, it follows that Vi ⊥⊥ Vj |Vij ∪ {gl(C)}Ll=1 ∪ {θm(C)}nm=1 ∪ {C}.
As all gl(C) and θm(C) are deterministic functions of C, it follows that Vi ⊥⊥ Vj |Vij ∪ {C}.
In other words, Vi and Vj are conditionally independent given a subset of {Vk | k 6= i, k 6=
j} ∪ {C}.

Conversely, suppose Vi and Vj are conditionally independent given a subset S of {Vk | k 6=
i, k 6= j} ∪ {C}. We show that Vi and Vj are not adjacent in G, or equivalently, that they
are not adjacent in Gaug. There are two possible cases to consider:

• Suppose S does not contain C. Then since the joint distribution over V∪{gl(C)}Ll=1 ∪
{θm(C)}nm=1 is assumed to be faithful to Gaug, Vi and Vj are not adjacent in Gaug,
and hence not adjacent in G.

• Otherwise, S = Vij ∪ {C} for some Vij ⊆ {Vk | k 6= i, k 6= j}. That is,

Vi ⊥⊥ Vj |Vij ∪ {C}, or (25)

P (Vi, Vj |Vij ∪ {C}) = P (Vi |Vij ∪ {C})P (Vj |Vij ∪ {C}).

According to Eq. 21, and also noting that {gl(C)}Ll=1 ∪ {θm(C)}nm=1 is a deterministic
function of C, we have

P (Vi, Vj |Vij ∪ {C}) = P (Vi, Vj |Vij ∪ {gl(C)}Ll=1 ∪ {θm(C)}nm=1), (26)
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which also implies

P (Vi |Vij ∪ {C}) = P (Vi |Vij ∪ {gl(C)}Ll=1 ∪ {θm(C)}nm=1), (27)

P (Vj |Vij ∪ {C}) = P (Vj |Vij ∪ {gl(C)}Ll=1 ∪ {θm(C)}nm=1). (28)

Substituting Eqs. 26 - 28 into Eq. 25 gives

P (Vi, Vj |Vij ∪ {gl(C)}Ll=1 ∪ {θm(C)}nm=1) (29)

=P (Vi |Vij ∪ {gl(C)}Ll=1 ∪ {θm(C)}nm=1)P (Vj |Vij ∪ {gl(C)}Ll=1 ∪ {θm(C)}nm=1).

That is,
Vi ⊥⊥ Vj |Vij ∪ {gl(C)}Ll=1 ∪ {θm(C)}nm=1.

Again, by the Faithfulness assumption on Gaug, this implies that Vi and Vj are not
adjacent in Gaug and hence are not adjacent in G.

Therefore, Vi are Vj are not adjacent in G if and only if they are conditionally independent
given some subset of {Vk | k 6= i, k 6= j} ∪ {C}.

Appendix B. Proof of Proposition 1

Proof

µ̃Y ,X|C=cn , E(Y,X)∼P̃ (Y ,X |C=cn)
[φ(Y )⊗ φ(X)]

=C̃(Y,X),CC−1C,Cφ(cn)

=E(Y,X,C)∼P̃ (Y ,X,C)[φ(Y )⊗ φ(X)⊗ φ(C)]C−1C,Cφ(cn)

=E(X,C)∼P̃ (X,C){EY∼P (Y |X,C)[φ(Y )]⊗ φ(X)⊗ φ(C)}C−1C,Cφ(cn)

=CY,(X,C)C−1(X,C),(X,C)·

EX∼P (X)EC∼P (C){[φ(X)⊗ φ(C)]⊗ φ(X)⊗ φ(C)}C−1C,Cφ(cn) (30)

Furthermore,

EX∼P (X)EC∼P (C){[φ(X)⊗ φ(C)]⊗ φ(X)⊗ φ(C)}C−1C,Cφ(cn)

=EX∼P (X)EC∼P (C){[φ(X)⊗ φ(C)]⊗ [φ(X) · φᵀ(C)C−1C,Cφ(cn)]}

=EX∼P (X)EC∼P (C){φ(X)⊗ [φ(C) · (φ(X)φᵀ(C)C−1C,Cφ(cn))ᵀ]} (31)

=EX∼P (X)EC∼P (C){φ(X)⊗ [φ(C) · φᵀ(cn)C−1C,Cφ(C)φᵀ(X)]}

=EX∼P (X)EC∼P (C){φ(X)⊗ [CC,CC−1C,Cφ(cn)φᵀ(X)]} (32)

=EX∼P (X){φ(X)⊗ φ(cn)⊗ φ(X)}

where (31) holds because tensor product is associative, and (32) holds because φᵀ(cn)C−1C,Cφ(C)

is a scaler, implying φᵀ(cn)C−1C,Cφ(C) = [φᵀ(cn)C−1C,Cφ(C)]ᵀ = φᵀ(C)C−1C,Cφ(cn).
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Therefore, equation (30) becomes

µ̃Y ,X|C=cn = CY,(X,C)C−1(X,C),(X,C)EX∼P (X){φ(X)⊗ φ(cn)⊗ φ(X)}.

Let φ⊗(X,C) := φ(X) ⊗ φ(C), Φy := [φ(y1), ..., φ(yN )], Φx := [φ(x1), ..., φ(xN )], Φx,c :=
[φ⊗(x1, c1), ..., φ⊗(xN , cn)], Φx,cn := [φ⊗(x1, cn), ..., φ⊗(xN , cn)]. µ̃Y ,X|C=cn can be estimated
as

ˆ̃µY ,X|C=cn =
1

N
ΦyΦᵀx,c(

1

N
Φx,cΦ

ᵀ
x,c + λI)−1(

1

n
Φx,cnΦᵀx)

=
1

N
Φy(Kx �Kc + λI)−1diag(kc,cn)KxΦᵀx.

Appendix C. Proof of Theorem 2

Proof Let Vi and Vj be an unoriented pair of adjacent variables.
If condition (1) is satisfied, then there are two possibilities:

• Vj is the collider, and there exists another variable Vk which influences Vj and does
not have an edge with Vi, so that Vi → Vj ← Vk. In such a case, Vi ⊥⊥ Vk|S, with
S ⊆ V and S ∧ Vj = ∅.
• Vi is the collider, and there exists another variable Vk which influences Vi and does not

have an edge with Vj , so that Vj → Vi ← Vk. In such a case, Vj ⊥⊥ Vk|S, with S ⊆ V
and S ∧ Vi = ∅.

Thus, we can identify the direction between Vi and Vj depending on whether Vi ⊥⊥ Vk|S or
Vj ⊥⊥ Vk′ |S′.

If condition (2) is satisfied, and there is only one change influences Vi or Vj . Then we
have the following two cases:

• The change influences Vj , i.e., Vi − Vj ← C:

– if Vi ⊥⊥ C|S, with S ⊆ V and S ∧ Vj = ∅, orient Vi → Vj ;

– if Vi ⊥⊥ C|S, with S ⊆ V and Vj ⊆ S, orient Vi ← Vj .

• The change influences Vi, i.e., Vj − Vi ← C:

– if Vj ⊥⊥ C|S, with S ⊆ V and S ∧ Vi = ∅, orient Vj → Vi;

– if Vj ⊥⊥ C|S, with S ⊆ V and Vi ⊆ S, orient Vj ← Vi.

If condition (2) is satisfied, and there are independent changes to both Vi and Vj . Then
we have the following two cases:

• if P (Vi) ⊥⊥ P (Vj |Vi,Z) and P (Vj) 6⊥⊥ P (Vi|Vj ,Z), where Z is the deconfounding set of
(Vi, Vj), then orient Vi → Vj ;

• if P (Vj) ⊥⊥ P (Vi|Vj ,Z) and P (Vi) 6⊥⊥ P (Vj |Vi,Z), where Z is the deconfounding set of
(Vi, Vj), then orient Vj → Vi.

If condition (3) is satisfied, then we have the following two cases:

• There is an edge incident to Vj but not to Vi, i.e., Vi − Vj ← Vl:

49



Huang, Zhang, Zhang, Ramsey, Sanchez-Romero, Glymour, and Schölkopf

– if Vi ⊥⊥ Vl|S, with S ⊆ V and S ∧ Vj = ∅, orient Vi → Vj ;

– if Vi ⊥⊥ Vl|S, with S ⊆ V and Vj ⊆ S, orient Vi ← Vj .

• There is an edge incident to Vi but not to Vj , i.e., Vj − Vi ← Vl:

– if Vj ⊥⊥ Vl|S, with S ⊆ V and S ∧ Vi = ∅, orient Vj → Vi;

– if Vj ⊥⊥ Vl|S, with S ⊆ V and Vi ⊆ S, orient Vj ← Vi.

Therefore, it is easy to see that the direction between Vi and Vj is identifiable, if at least
one of the conditions is satisfied.
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