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Abstract

High dimensional data often contain multiple facets, and several clustering patterns can
co-exist under different variable subspaces, also known as the views. While multi-view
clustering algorithms were proposed, the uncertainty quantification remains difficult — a
particular challenge is in the high complexity of estimating the cluster assignment proba-
bility under each view, and sharing information among views. In this article, we propose an
approximate Bayes approach — treating the similarity matrices generated over the views
as rough first-stage estimates for the co-assignment probabilities; in its Kullback-Leibler
neighborhood, we obtain a refined low-rank matrix, formed by the pairwise product of
simplex coordinates. Interestingly, each simplex coordinate directly encodes the cluster
assignment uncertainty. For multi-view clustering, we let each view draw a parameteriza-
tion from a few candidates, leading to dimension reduction. With high model flexibility,
the estimation can be efficiently carried out as a continuous optimization problem, hence
enjoys gradient-based computation. The theory establishes the connection of this model to
a random partition distribution under multiple views. Compared to single-view clustering
approaches, substantially more interpretable results are obtained when clustering brains
from a human traumatic brain injury study, using high-dimensional gene expression data.

Keywords: Co-regularized Clustering, Consensus, PAC-Bayes, Random Cluster Graph,
Variable Selection

1. Introduction

High dimensional data are becoming increasingly common in areas such as genomics, com-
puter vision, neuroscience, etc. They are characterized by the ambient dimension substan-
tially larger than the sample size n. When clustering such data, canonical solutions tend to
focus on finding one particular clustering pattern. For example, one idea is to use variable
selection method to identify a small subset of variables with large discriminability, then
using them as input for clustering algorithms (Law et al., 2003; Tadesse et al., 2005; Hoff,
2006; Witten and Tibshirani, 2010); another idea is to reduce the dimension onto latent
linear subspaces, often via a Gaussian mixture model with low-rank covariance structure
(Ghahramani and Hinton, 1996); recent work extends this to the variational autoencoder for
nonlinear dimension reduction (Dilokthanakul et al., 2016). These methods have been suc-
cessful when there is only one clear clustering result in the data. However, as high dimension
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data often contain multiple facets of the observations, it is more natural to consider more
than one clustering patterns — that is, different subspaces of variables can correspond to
distinct clustering results. As a result, focusing on one clustering pattern — or, ‘single-view’
is often inadequate.

There has been active literature motivated for ‘multi-view clustering’. Since there are
two distinct definitions of this concept, to be clear, we will focus on the one finding multiple
clustering patterns, as opposed to the other aiming for one consensus based on multiple
data sources. Within our scope, early work includes combining random projection and
spectral clustering to obtain clusters on a randomly projected space, repeating this several
times to produce multiple clustering patterns (Fern and Brodley, 2003); using regularization
framework by running clustering algorithm in each view, while minimizing the cross-view
divergence (Kumar et al., 2011; Joshi et al., 2016).

As clusters tend to overlap, there is often substantial uncertainty in clustering. A major
interest is on the randomness of cluster assignment, characterized by a categorical distribu-
tion. In the canonical single-view setting, one typically relies on the Bayesian framework
by assigning a model-based likelihood (Fraley and Raftery, 2002). This requires putting a
parametric assumption on each within-cluster distribution, then estimating the posterior
of cluster assignment via the Markov-chain Monte Carlo (MCMC) algorithm. Among the
Bayesian multi-view clustering literature (Niu et al., 2010; Li and Shafto, 2011; Kirk et al.,
2012; Lock and Dunson, 2013; Niu et al., 2013; Mo et al., 2017), Guan et al. (2010) and
Niu et al. (2012) use the Indian Buffet Process to combine relevant variables into several
groups, and in each group, they use a Gaussian mixture model to carry out clustering. These
Bayesian models give a generative perspective for the multi-view data; however, there are
two major challenges in practice: 1) assigning a within-cluster distribution is prone to mis-
specifying the model, which leads to breakdown of the parameter estimation (Hennig et al.,
2004) and uncontrolled growth in the number of clusters (Miller and Dunson, 2018); 2)
the MCMC computation suffers from a critically slow convergence/mixing as the dimension
grows, limiting its high dimension application. For the former, it was recently shown that
modeling the pairwise divergence has much better robustness compared to the original data
(Duan and Dunson, 2018); for the latter, in general, it has become increasingly popular to
replace sampling with an optimization-based approximation for the posterior distribution
(El Moselhy and Marzouk, 2012).

In this article, we are motivated for an approximate Bayes approach that allows for a di-
rect estimation of the cluster assignment and co-assignment probabilities, within the scope
of having several distinct clustering patterns. This is inspired by the resemblance between
a similarity matrix and a cluster graph, hence the former can be considered as a noisy
version of the latter. In the community detection literature, one often learns a low-rank
representation for each data point as the latent position in Euclidean/Stiefel space (Hoff
et al., 2002), then cluster the coordinates into communities (Handcock et al., 2007). Instead
of going through two modeling stages, we put the latent coordinates directly on the prob-
ability simplex, describing the probabilities for cluster assignment and allowing gradient-
descent optimization; in the meantime, each co-assignment matrix is a random draw out
of only a few candidate parameterizations, leading to dimension reduction and informa-
tion sharing among views. The software is provided on https://github.com/leoduan/

LatentSimplexPosition.
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Latent Simplex Position Model

2. Method

Let yi ∈ Y be the data over i = 1, . . . , n. Each yi is a multi-dimensional vector, and we can

separate its elements into groups of sub-vectors (y
(1)
i , y

(2)
i , . . . , y

(V )
i ). We will now call the

subspace Y(v) for y
(v)
i as a ‘view’ of the data. To help explain the idea, we use a running

example of simulated data over 3 views (each in R2). Figure 1 shows the scatter plots.

(a) y(1) (b) y(2) (c) y(3)

Figure 1: Simulated data under three views (each view is R2). The colors represent the
true cluster assignments in each view.

Assuming the views are given, our goal is to obtain clustering for each view, in particular,

a discrete label c
(v)
i ∈ {1, . . . , g} corresponding to the cluster assignment for each y

(v)
i .

Equivalently, we can focus on the co-assignment for each pair of data

z
(v)
i,j = 1(c

(v)
i = c

(v)
j ),

where 1(E) is the indicator function taking 1 if E is true, otherwise taking 0.

2.1. Latent Simplex Position Model

Treating Z(v) = {z(v)
i,j }i,j as an adjacency matrix, we can form a cluster graph: G(v) =

(N , E(v)), with N = {1, . . . , n} and E(v) = {e(v)
i,j : z

(v)
i,j = 1}. In this graph, each cluster

forms a complete sub-graph (all pairs of nodes within are connected), and the sub-graphs
are disconnected. Figure 2 plots the cluster graph for each view.
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(a) G(1) (b) G(2) (c) G(3)

Figure 2: The oracle cluster graphs of the simulated data under three views: each of G(1)

and G(2) has three disconnected sub-graphs; G(3) has only two sub-graphs.

In order to handle a large number of views, we consider the following generative process:
assuming there are d ways to parameterize the distribution for Z(v), in each view, we draw
one of d candidate parameterizations; then we proceed to draw the cluster assignments and
form a cluster graph.

x(v) iid∼ Categorical(λ1, . . . , λd),

c
(v)
i | x

(v) = l
indep∼ Categorical(w

(l)
i,1, . . . , w

(l)
i,g),

z
(v)
i,j = 1(c

(v)
i = c

(v)
j ),

where (λ1, . . . , λd) ∈ ∆d−1 and (w
(l)
i,1, . . . , w

(l)
i,g) ∈ ∆g−1; ∆g−1 = {(ν1, . . . , νg) : νk ≥

0,
∑g

k=1 νk = 1} is the probability simplex. Equivalently, for j < i,

z
(v)
i,j | p

(v)
i,j , x

(v) ∼ Bernoulli(p
(v)
i,j ),

p
(v)
i,j =

d∑
l=1

1(x(v) = l)

g∑
k=1

w
(l)
i,kw

(l)
j,k.

(1)

In addition, we could further consider the data as generated from y
(v)
i | c(v)

i = k ∼
Fv,k, with Fv,k a certain distribution. However, Fv,k is often unknown and challenging to

estimate. Instead, we will focus on a pairwise transform as a surrogate for y
(v)
i ’s.

Intuitively, if y
(v)
i and y

(v)
j are close to each other, it is more likely that they are from the

same Fv,k. In machine learning, we have the similarity score to quantify such a proximity:

s
(v)
i,j = K(y

(v)
i , y

(v)
j ), (2)

where K is a positive semi-definite kernel that maps to (0, 1). This can be taken as an
approximate

s
(v)
i,j ≈ Pr(z

(v)
i,j = 1). (3)
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(a) S(1) (b) S(2) (c) S(3)

Figure 3: Similarity as an approximation for Pr
(
z

(v)
i,j = 1 | y(v)

i , y
(v)
j

)
under three views.

We will also use matrix notations S(v) = {s(v)
i,j }i,j an n×n matrix, P (v) = {p(v)

i,j }i,j an n×n
matrix, and W (l) = {w(l)

i,k}i,k an n × g matrix. In this article, we use a popular similarity

s
(v)
i,j = exp(−‖y(v)

i − y
(v)
j ‖/b

(v)
i,j ) with b

(v)
i,j > 0 the local bandwidth parameter formed by the

row quantiles in S(v), according to Zelnik-Manor and Perona (2005). Figure 3 plots the
similarity matrices computed from the simulated data.

In order to connect (3) with (1), we propose a generative model for S(v)

s
(v)
i,j | p

(v)
i,j ∼ H(p

(v)
i,j ), (4)

where H is a distribution such that s
(v)
i,j is a noisy version of p

(v)
i,j . To choose its density h,

because both s
(v)
i,j and p

(v)
i,j are Bernoulli probabilities, we use a pseudo-likelihood based on

the Kullback-Leibler divergence (we will justify this choice in the theory section)

h(s
(v)
i,j ; p

(v)
i,j ) ∝ exp

[
−KL

(
p

(v)
i,j ‖s

(v)
i,j

)]
,

KL
(
p

(v)
i,j ‖s

(v)
i,j

)
= p

(v)
i,j log

p
(v)
i,j

s
(v)
i,j

+ (1− p(v)
i,j ) log

1− p(v)
i,j

1− s(v)
i,j

.
(5)

Using (4), we can obtain the posterior distribution Π(P (v) | S(v)), as a surrogate for

Π(P (v) | y(v)
1 , . . . , y

(v)
n ). Although it is an approximation, a key benefit is that the posterior

mode of (P (v) | S(v)) directly estimates the clustering uncertainty Pr(c
(v)
i = c

(v)
j ); and the

mode of (W (x(v)) | S(v)) estimates Pr(c
(v)
i = k). And note that

S(v) ≈W (x(v))W (x(v))T = P (v),

where the right hand side has the rank less or equal to (g−1), providing a low-rank smooth-
ing. Therefore, the optimization for the mode is close to a simple matrix factorization, hence
it is computationally more efficient, compared to the costly MCMC algorithm.
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(a) P (1) (b) P (2) (c) P (3)

Figure 4: The matrix P (v) provides a low-rank smoothing for S(v): each pixel of the heatmap

represents the marginal probability Pr(z
(v)
i,j = 1). The first two matrices have the same

parameterization due to the same x(1) = x(2).

Lastly, if we consider a ‘similarity graph’ with S(v) as its adjacency matrix, then the ith
row of W (x(v))

(w
(x(v))
i,1 , . . . , w

(x(v))
i,g ) ∈ ∆g−1

is a latent position for the node i. Therefore, our model is a special case of the latent
position model (Hoff et al., 2002); and we name it as the latent simplex position (LSP)
model.

2.2. Regularization in Overfitted Model

Often we do not know the minimally needed number of clusters g0 (or the ‘truth’), instead,
we assign an overfitted model with an over-specified g � g0. It is useful to consider
regularization: suppose that the cluster k is redundant, we can use some regularization

term to force the kth column in W (l) to be close to zero, w
(l)
i,k = Pr(c

(l)
i = k) ≈ 0 for

i = 1, . . . , n. Similarly, we want to over-specify d and use regularization to force some
redundant λl ≈ 0.

We use a regularized loss function

RegLoss =KL(P‖S) + n

d∑
l=1

R
(
W (l)

)
+

d∑
l=1

T (λl), (6)

with KL(P‖S) =
∑V

v=1

∑
j<iKL

(
p

(v)
i,j ‖s

(v)
i,j

)
and two regularization terms R

(
W (l)

)
and

T (λl).

Inspired by the group lasso variable selection in regression (Yuan and Lin, 2006; Meier
et al., 2008), we use a group regularization to induce column sparsity in each W (l).

R
(
W (l)

)
=

g∑
k=1

√√√√ n∑
i=1

(
log

w
(l)
i,k

ε

)2
+
.
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Since each w
(l)
i,k ≤ 1 and is already on a small scale, we first divide it by a close-to-zero

and positive ε, and take a logarithmic transform; those w
(l)
i,k above and away from ε ≈ 0

are penalized using (x)+ = max(x, 0); those below ε are not penalized because they are
negligibly small (in this article we use ε = 10−3 as the threshold). To achieve a group
regularization, a 2-norm is used on each column; and R

(
W (l)

)
is multiplied with n so that

it grows in the same order as KL(P‖S) (which contains O(n2) terms). This regularization
shows good empirical performance, as it recovers the true number of clusters in all of our
simulation studies. Figure 5(a) shows the estimated W (l) in the previous simulation.

(a) Estimated W (l) matrix using group regular-
ization.

(b) Estimated W (l) matrix using Dirichlet prior
Dir(0.1, . . . , 0.1) on each row.

Figure 5: Group regularization on W (l) in an overfitted clustering model with g = 10.

We also consider some classical shrinkage prior on the simplex, such as the Dirichlet
prior with the concentration parameter smaller than 1. However, a drawback is that the
shrinkage is applied independently on multiple simplex vectors, and there is no control on
the joint distribution of all rows of W (l). As a result, many spurious small clusters appear
even though each row is sparse [Figure 5(b)]. We expect more advanced models such as
hierarchical Dirichlet mixture (Teh et al., 2005; Zhou, 2014; Ohama et al., 2017) might solve
this problem as well; we use the group regularization for computational convenience.

On the second regularization T (λl), since there is only one simplex vector (λ1, . . . , λd), it
is easier to handle compared to W (l). We apply Dirichlet prior Dir(αλ, . . . , αλ), equivalently,

T (λl) = (1− αλ) log(λl),

and we use αλ = 1/d as a common choice for approximating the infinite mixture (Rasmussen,
2000).

With those two regularizations, we can choose d and g as large as possible (if the ground
truth of the cluster number is not known). For example, we can choose the maximal d and
g according to the computing budget, such as the memory limit.

7



Duan

2.3. Producing Consensus via Combining Views

In our model, the views with different x(v)’s have distinct clustering patterns; on the other
hand, sometimes there is still an interest to combine the information from those views
together to form a ‘consensus’.

(a) The first two views (each view is in R),
each corresponds to different clustering struc-
ture.

(b) Two noisy views, neither contains any
clustering structure.

(c) Estimated P (1) based on the
first view.

(d) Estimated P (2) based on the
second view.

(e) Consensus formed by com-
bining the first two views, while
ignoring the other ones.

Figure 6: Illustration on how to combine different views to form a consensus (each view in
R: the estimated P (v)’s from the first two views (two marginal histograms of panel a) are
taken, while the ones with no clustering structures (panel b) are excluded, producing an
average as the consensus co-assignment probability matrix (panel e).

Since a convex combination of P (v)’s is still positive semi-definite, we consider the
weighted average as the ‘consensus’ co-assignment probability

P̄ =

V∑
v=1

u(v)P (v)∑V
v=1 u

(v)
. (7)

with the weight u(v) ≥ 0, and
∑V

v=1 u
(v) > 0. In this article, we take a simple strategy for

choosing u(v): for a view, if its most probable x̂(v) (which can be computed from (10) in
Section 3) is equal to l and W (l) is a matrix with one column filled by 1’s and others by 0’s,
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Latent Simplex Position Model

then there is no clustering pattern in this view; hence, we set its u(v) to zero. For the other
views, we set equal weights u(v) = 1.

This consensus is closely related to the variable-selection based clustering (Witten and
Tibshirani, 2010). Indeed, the latter is equivalent to directly using d = 2 latent parameter-
izations (one of them having no clustering).

To illustrate the consensus, we generate data with 10 views, each in R: each of the first
two views contains more than one clusters [Figure 6(a), generated from N(0, 1), N(2, 1) and
N(0, 1), N(1, 1), N(2, 1)], respectively; while the views 3 − 10 have no clustering structure
[Figure 6(b), all generated from N(0, 1)]. In the estimation of the LSP model, P (3), . . . , P (10)

are linked to an W (l) without clustering structure. Using (7), the consensus combines P (1)

and P (2) and shows that there are three clusters.

3. Computation

As x(v) is a latent variable, we use the Expectation-Maximization (EM) algorithm. Letting

η
(v)
l = E1(x(v) = l), in the E step, we update

η
(v)
l =

λl exp
[
−
∑

j<iKL
(
p
∗(l)
i,j ‖s

(v)
i,j

)]∑d
l′=1 λl′ exp

[
−
∑

j<iKL
(
p
∗(l′)
i,j ‖s

(v)
i,j

)] , (8)

where p
∗(l)
i,j = (W (l)W (l)T)i,j .

In the M step, we minimize the expected loss function over the parameter W (l), using
the ADAM gradient descent algorithm (Kingma and Ba, 2014):

Ex(1),...,x(V )RegLoss =

V∑
v=1

d∑
l=1

η
(v)
l

∑
j<i

[
p
∗(l)
i,j log

p
∗(l)
i,j

s
(v)
i,j

+ (1− p∗(l)i,j ) log
1− p∗(l)i,j

1− s(v)
i,j

]

+ n

d∑
l=1

R
(
W (l)

)
+

d∑
l=1

T (λl),

(9)

and set λl to its mode

λ̂l ∝ max(0, αλ − 1 +
V∑
v=1

η
(v)
l ) for l = 1, . . . , d such that

d∑
l=1

λ̂l = 1.

The vector (η
(v)
1 , . . . , η

(v)
d ) gives the scores on how likely the vth view is generated from

each parameterization. As a point estimate for x(v), the most probable one is

x̂(v) = arg max
l∈{1,...,d}

η
(v)
l . (10)

Similarly, we have the point-wise optimal c̃
(v)
i = arg maxk w

(x̂(v))
i,k . We can use those two

quantities to determine the effective numbers of parameterizations and clusters: d̂ as the

number of unique x̂(v)’s for v = 1, . . . , V , and ĝ(v) as the number of unique c̃
(v)
i ’s for

i = 1, . . . , n.
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On the other hand, as shown by Wade and Ghahramani (2018), the point-wise clustering

estimate c̃
(v)
i is not necessarily optimal for the overall clustering. Instead, we use the

estimated P (x̂(v)) and ĝ(v) as the input matrix and cluster number in the spectral clustering,

to produce a joint point estimate (ĉ
(v)
1 , . . . , ĉ

(v)
n ). As shown in the data experiments, this

results in much more accurate clustering than using S(v) directly in the spectral clustering.

3.1. Scalability and Initialization

In our optimization algorithm, the M step is the most computationally intensive one, since
we need several gradient descents in each EM iteration. Fortunately, we can substantially
reduce its computing complexity and make it scalable to a very large V .

Before using gradient descent, we first compute two matrices, with their (i, j)th elements

κi,j = −
V∑
v=1

η
(v)
l log

s
(v)
i,j

1− s(v)
i,j

, γi,j =

V∑
v=1

η
(v)
l .

By changing the order of summation, the expected loss in (9) becomes

d∑
l=1

∑
j<i

{
κi,jp

∗(l)
i,j + γi,j

[
p
∗(l)
i,j log

p
∗(l)
i,j

1− p∗(l)i,j

+ log(1− p∗(l)i,j )

]}

+ n
d∑
l=1

R
(
W (l)

)
+

d∑
l=1

T (λl) + C,

where C = −
∑V

v=1

∑d
l=1 η

(v)
l

∑
j<i log(1 − s(v)

i,j ) is a constant free from W (l); hence it can
be ignored during the M step. Notice that this alternative form reduces the computational
complexity from O(V n2d) to O(n2d) for each gradient descent.

Similar to the conventional mixture models, when starting the EM algorithm, it is crucial
to have good initial values for the parameters. Therefore, we now develop an initialization

strategy. Note that if ignoring the low-rank constraint in p
∗(l)
i,j ’s, the loss for those x(v) = l,∑

v:x(v)=lKL
(
p
∗(l)
i,j ‖s

(v)
i,j

)
is minimized at

log
p̂
∗(l)
i,j

1− p̂∗(l)i,j

=
[∑
v

1(x(v) = l)
]−1

∑
v:x(v)=l

log
s

(v)
i,j

1− s(v)
i,j

,

which is the group mean of the log odds. Therefore, we first use a simple K-means (with

K set to d) on V matrices {log[s
(v)
i,j /(1− s(v))]}i,j , putting them into d groups and treating

the K-means labels as the initial estimates for x̂(v)’s. Then setting η
(v)
l = 1(x̂(v) = l) and

λl = 1/d, we run the M step to obtain the initial values for W (l)’s.
We track the expected loss E{x(v)}RegLoss for convergence, and consider the algorithm

as converged if the decrease in the expected loss is less than one percent over 100 iterations.
Since the loss function is non-convex, we run the algorithm multiple times under random
initializations with K-means++(Arthur and Vassilvitskii, 2007). We choose the ones with
the lowest loss as the final estimates.
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4. Theory

In this section, we provide a theoretical justification for the LSP model, by establishing
a link to the random partition distribution using pairwise information/distances (Blei and
Frazier, 2011; Dahl et al., 2017).

We first briefly review the idea of random partition distribution. Given a matrix of
co-assignment probabilities P = {pi,j}i,j , with pi,j ∈ (0, 1), we can sample a cluster graph.
Starting with an initial set containing one index N0 = {i} (with i randomly chosen), each
time, we draw another j randomly from N \N0 and assign

ẑ
(v)
i,j = 1, if ∀ẑ(v)

i,i′ = 1, ẑ
(v)
j,i′ = 1,

ẑ
(v)
i,j = 0, if ∀ẑ(v)

i,i′ = 0, ẑ
(v)
j,i′ = 1,

ẑ
(v)
i,j = 0, if ∀ẑ(v)

i,i′ = 1, ẑ
(v)
j,i′ = 0,

ẑ
(v)
i,j ∼ Bernoulli(pi,j), otherwise,

(11)

for i, i′ ∈ N0 and i 6= i′. That is, sampling new Bernoulli if it is not determined by the

pairwise constraints of a cluster graph. After updating ẑ
(v)
i,j , we add j into N0 and go to

the next loop. Eventually, this forms an n × n binary matrix Ẑ(v). These procedures are
associated with a random partition distribution, that we denote by Ẑ(v) ∼ φ.

Now under the multi-view setting, let us focus on the sub-group of views with the same
parameterization (that is, having equal x(v)’s). Without loss of generality, we assume they
have indices v = 1, . . . ,M .

For each graph, we assume that there is a ground truth cluster graph Z
(v)
0 . If it is

known, we can compare it with the sampled Ẑ(v) and compute a loss function in [0, 1] (such
as the 1-minus normalized mutual information)

loss
(
Z

(v)
0 , Ẑ(v)

)
.

To assess the quality of φ in recovering the ground truth, theoretically, we would hope to
take average over infinite samples of Ẑ(v) ∼ φ, and then take average over M views,

R(ΠM , φ) =
1

M

M∑
v=1

EẐ(v)∼φloss
(
Z

(v)
0 , Ẑ(v)

)
,

where ΠM denotes the empirical distribution for M views. Taking one step further, suppose

Z
(v)
0

iid∼ Π0, we can define the generalization risk

R(Π0, φ) = E
Z

(v)
0 ∼Π0

EẐ(v)∼φloss
(
Z

(v)
0 , Ẑ(v)

)
.

Since Π0 is not fully known, we cannot directly minimize R(Π0, φ); however, we can
use some assumptions on Π0 (such as having at most g clusters) and use R(ΠM , φ) as
an approximate. Therefore, it is imperative to optimize approximation. We have the
following bound based on the Probably Approximately Correct (PAC)-Bayes theory (Seldin
and Tishby, 2010; Guedj, 2019).
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Theorem 1 For M ∈ [2,∞), if (1/M)
∑M

v=1 loss
(
Z

(v)
0 , Ẑ(v)

)
∈ (0, 1), with probability

greater than 1− δ based on Π0 (the true distribution for Z
(v)
0 ),

KL
[
R(Π0, φ) || R(ΠM , φ)

]
≤ (1/M)

{ M∑
v=1

∑
j<i

KL(pi,j ||s(v)
i,j )/M + log

[
exp(

1

12M
)

√
πM

2
+ 2

]
− log δ

}
,

where pi,j is absolutely continuous with respect to s
(v)
i,j .

Combining the KL terms on the right hand side over the different parameterizations, we
obtain the KL(P‖S) function in our LSP model.

Therefore, estimating the LSP model can be considered as a procedure to optimize the
multi-view random partition distribution φ, in terms of improving the finite-view perfor-
mance. Specifically, minimizing the difference between R(Π0, φ) and R(ΠM , φ) reduces the
chance of overfitting, and is known as ‘reducing generalization error’ in the PAC-Bayes liter-
ature (Seldin and Tishby, 2010). Compared to the canonical random partition distribution,
we also gain in the computation since we do not have to sample Ẑ(v).

5. Data Experiments

5.1. Single View Simulations

Since most clustering approaches are based on a single view, we first compare our model
with them using simulations. For a clear visualization, we generate data from the two-
component mixture distribution in a single view yi ∈ R2, with n = 400. Figure 7(a-f) plots
the generated data under 6 different settings.
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(a) Gaussian:
N [(0, 0)′, I]
and N [(10, 10)′, I].

(b) Gaussian:
N [(0, 0)′, I]
and N [(3, 3)′, I].

(c) Gaussian:
N [(0, 0)′, I]
and N [(2, 2)′, I].

(d) Shifted exponential:
[Exp(1)− 4,Exp(1)− 4]
and [−Exp(1),−Exp(1)]

(e) Shifted exponential:
[Exp(1),Exp(10)]
and [Exp(1)+2,Exp(10)+15]

(f) Shifted Cauchy:
[t1, t1]
and [t1 + 3, t1 + 3]

Figure 7: Generated data in the single view clustering experiments (the view is in R2). In
each setting, two clusters are simulated, with the color representing the ground truth labels.

For comparison, we test 9 other clustering algorithms, provided by the Scikit-Learn Clus-
ter package. We use the Normalized Mutual Information (NMI) as a benchmark score: for
two discrete vectors of the same length n, NMI(x, y) = 2{H(x)+H(y)−H[(x, y)]}/[H(x)+
H(y)], with H(w) = −

∑
k p̂k log p̂k, p̂k =

∑
i 1(wi = w∗k)/n and w∗k the kth unique value

among (w1, . . . , wn). NMI measures the accuracy of the estimated cluster labels with re-
spect to the ground truth labels and is invariant to label-switching. The result is listed in
Table 1. In the Gaussian cases (a-c), the Gaussian mixture as the true model has the best
performance. When the symmetric and Gaussian-tail assumptions are violated (d-f), more
recent methods such as spectral clustering start to show their advantage. The performance
of the LSP model (with g = 2 and d = 1) is very close to the spectral clustering; while in
(f) with the heavy-tailed distribution creating many ‘outliers’, the spectral clustering fails
completely due to the large noise in the raw similarity matrix, and LSP does not have this
issue thanks to the low-rank smoothing.
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(a) (b) (c) (d) (e) (f)

K-means 1 0.89 0.68 0.56 0.25 0
Affinity propagation 0.57 0.37 0.30 0.31 0.30 0.23
Mean-shift 1 0.89 0.70 0.56 0.40 0.05
Agglomerative clustering 1 0.77 0.62 0.54 0.17 0
DBSCAN 0.92 0 0.01 0 0.43 0
OPTICS 0.23 0.20 0.17 0.21 0.19 0.17
Gaussian mixture 1 0.91 0.70 0.58 0.37 0
Birch 0.99 0.70 0.49 0.41 0.27 0.01
Spectral clustering 1 0.89 0.70 0.59 0.55 0.0
LSP 1 0.89 0.70 0.59 0.58 0.42

Table 1: Normalized mutual information showing the accuracy of single view clustering,
using the data simulated in Figure 7.

For uncertainty quantification, we compute the co-assignment probability using the
ground truth distribution and compare it with the estimated P from the LSP model. The
raw S and estimated P are provided in the appendix. The median absolute deviations
(MAD) between P and the oracle are 0.03, 0.07, 0.08, 0.04, 0.05 and 0.06. In addition,
to assess the limitation of the LSP model (and similarity-based algorithms in general),
we modify (c) and make the two clusters closer. When two clusters are generated from
N [(0, 0)′, I] and N [(1, 1)′, I], the LSP model could only discover one large cluster. This is
not surprising since heavily overlapped clusters can be alternatively taken as one cluster; in
such cases, mixture models with stronger assumptions would work better, such as the ones
with a parametric density for each cluster.

5.2. Multi View Experiments

5.2.1. Scaling to a large number of views

We first use a simulation to assess the multi-view clustering performance, under a large
V � n. We use V = 50, 000 views, where each view has n = 150. To produce distinct
clustering patterns, we simulate 5 different W (l)’s, with each row generated from a Dirichlet
distribution in a 3-element simplex; for a better visualization, the rows are re-ordered and

grouped by the index argk maxw
(l)
i,k (the most probable cluster). Then in each view, we

randomly choose one of the five matrices (denoting the choice by x
(v)
0 ∈ {1, . . . , 5}) as the

parameterization, and sample the cluster labels c
(v)
i | x(v) = l ∼ Categorical(w

(l)
i,1, w

(l)
i,2, w

(l)
i,3).

Lastly, we generate each data point y
(v)
i | c

(v)
i = k ∼ N(µk, I2), with µ1 = (0, 0)′, µ2 = (2, 2)′

and µ3 = (−2,−2)′, so that there is moderate overlap between clusters. Figure 8(a) plots
five similarity matrices representative for those distinct patterns.
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(a) Five similarity matrices corresponding to different clustering patterns.

(b) Estimated parameterization W (l)W (l)T.

(c) Estimated λl for the 10 latent parameterizations.

Figure 8: Simulation shows the LSP model recovers the latent parameterizations in multi-
view clustering.

When fitting the LSP model, we use d = g = 10. To examine the quality of initialization,

we compare the initialized x̂(v) and the oracle x
(v)
0 : they show a high NMI at 0.83, indicating

that that the K-means on the log-odds of S(v)’s gives a very good initialization. After
running the EM algorithm, we do see 5 of the 10 estimated λl’s are shrunk to near zero
[Figure 8(c)], and the estimated W (l)W (l)T’s with non-trivial λl’s indeed recover the five
patterns [Figure 8(b)]. For these high dimensional data, the algorithm takes about 10
minutes to finish on a CUDA GPU with 11Gb of memory.

5.2.2. Clustering UCI Hand Written Digits

Since the software is not readily available for most of the existing multi-view clustering
methods, we use a dataset that was previously used for benchmark and reported by Ku-
mar et al. (2011). The dataset is the UCI Dutch utility maps handwritten digits data
(https://archive.ics.uci.edu/ml/datasets/Multiple+Features), and does not require specific
data processing; hence it can provide a fair comparison. The data have six views: (1) 76
Fourier coefficients of the character shapes, (2) 216 profile correlations, (3) 64 Karhunen-
Love coefficients, (4) 240-pixel averages in 2× 3 windows, (5) Zernike moments and (6) 6
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morphological features. For each digit, there are 200 samples; the NMI is calculated as an
evaluating criterion.

We compare our model with two other methods: using single-view spectral clustering
independently in each view (SV-SC), and co-regularized spectral clustering (C-SC) (Kumar
et al., 2011). When fitting the LSP model,we use d = V as its possible max value, and
g = 10 as the known ground truth. The model converges to 2 effective parameterizations:
x̂(v) = 1 for v = 1, . . . , 5 and x̂(6) = 2.

Single View 1 2 3 4 5 6

SV-SC 0.571 0.618 0.646 0.635 0.523 0.474
LSP 0.697 0.706 0.697 0.705 0.705 0.474

Combining Multiple Views

SV-SC (feature concat) 0.619
C-SC 0.768
LSP consensus 0.742

Table 2: Normalized mutual information for clustering UCI hand-written digits. Single
view spectral clustering (SV-SC) and co-regularized spectral clustering (C-SC) are included
for comparison. The NMIs for C-SC are obtained from Kumar et al. (2011).

(a) P (v) for the 1st to the 5th views. (b) P (v) for the 6th view.

Figure 9: Uncertainty for clustering hand written digit data, shown in the two estimated
co-assignment probability matrices. The rows and columns are ordered according to the
true labels of the digits.

We first compute the point estimates ĉ
(v)
i under each view. Table 2 shows that, compared

to SV-SC, our model produces higher NMI in almost every view (except for the 6th view).
This is likely due to the sharing of information among the first few views in the LSP model.
Then we combine views to produce a consensus. LSP has a better performance than using
SV-SC on the concatenated features from all views, while it is slightly worse compared to
C-SC. On the other hand, LSP has a unique advantage in the uncertainty quantification
for each view. As shown in Figure 9, in the first parameterization, the main source of

16



Latent Simplex Position Model

uncertainty is due to the overlap between the 1st and the 9th clusters; whereas the second
parameterization has larger overlap among clusters 1, 2, 7, 9 and 10.

5.2.3. Clustering Brains via RNA-Sequencing Data

We now consider a scientific application with the RNA Sequencing data originated from
the human aging, dementia, and traumatic brain injury (TBI) study. The data are ob-
tained from the Allen Institute for Brain Science (Miller et al., 2017) (https://aging.brain-
map.org/download/index), and the hippocampus region is chosen for its important role in
aging-related disease. Among the 107 brains, there are n = 94 containing gene expression
data in the hippocampus. The age of the subjects at death has an average of 90 and a
standard deviation of 6. There are 50, 281 genes, each with normalized gene-level FPKM
values. Since most of the genes contain very little discriminability, a screening step is first
carried out: the genes are ranked by their standard deviation divided by the median, with
the top V = 1, 000 chosen for the downstream modeling.

This experiment treats each gene as a view, and clusters the 94 brains using the gene
expression. The LSP model was initialized at d = 30 and g = 30. It converges to 10 effective
latent parameterizations and at most 4 non-trivial clusters.

For validation, the multi-view results are compared against 11 observed clinical covari-
ates — such as sex, whether had TBI before, dementia evaluation scores, etc. For each

clinical covariate, the NMIs are computed by comparing it against the estimated ĉ
(v)
i for

v = 1, . . . , 1000. To see if there is a possible link between the gene(s) and clinical covari-
ates, for each covariate, we take the maximum of 1000 NMIs (MaxNMI) and plot it in
Figure 10(a). As this involves multiple comparisons, to show the findings are unlikely to be
false positives, we consider two additional baseline MaxNMIs: 1) we randomly draw 1000
Bernoulli random vectors, each of length n = 94, and compute the MaxNMI to each covari-
ate. We repeat the simulation with different Bernoulli probabilities (ranging from 0.1 to
0.9), the largest MaxNMI is 0.15; 2) it was previously reported in a meta-analysis study (Tan
et al., 2016), that the difference in the covariate sex has no clear effect on the hippocampus
area, in our experiment, it has MaxNMI 0.13. Therefore, we choose MaxNMI≥ 0.2 as a
cut-off. For clarification, these results are mainly exploratory due to the small n; more data
are needed before making any statistical claims.

Among all the covariates, the CERAD score (measuring the progression of Alzheimer’s
disease), the Braak stage (measuring the progression of Parkinson’s disease and Alzheimer’s
disease) and the confirmed diagnose of Alzheimer’s disease appear linked to a subset of
gene expression. For the covariates seemingly less relevant to gene expression, the length
of education also shows large MaxNMI, whereas the experience of traumatic brain injury
(TBI), aging and dementia-related score show surprisingly low NMIs. Besides the MaxNMI,
Figure 10(b) plots the NMIs of the top 100 genes associated with the selected four covariates.
Clearly, each covariate seems more correlated with a distinct set of views/genes.
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(a) Maximum NMI over 1, 000 genes, compar-
ing the clustering labels estimated from the LSP
model and each clinical covariate.

(b) The NMIs of the 100 selected genes associated
with the four covariates.

Figure 10: Clustering aging brains using gene expression. The results are compared with
11 clinical covariates using NMIs.

6. Discussion

In this article, we propose a method to directly estimate the cluster assignment probabilities
for each data under multiple views. There are several interesting extensions that could be
pursued. 1) The similarity matrix can be computationally prohibitive to handle when n
is large; therefore, a random feature map (Rahimi and Recht, 2008) can be considered. A
similar solution has recently been proposed for spectral clustering using random binning
features (Wu et al., 2018). 2) We have assumed the views are given; in practice, if they are
not known, we could use some domain-specific knowledge to estimate views. For example,
in image processing, we could use edge detection and convolution of pixels to form each
view. It is useful to study how they would impact the clustering results. 3) It is interesting
to combine the LSP model with another loss function such as the one from a regression
task, as an extension to our PAC-Bayes theory result. This could create generalized Bayes
models and form new insights about the semi-supervised learning.

Appendix A. Proof of the main theorem

Proof Let KL(P ||S) be the Kullbeck-Leibler divergence between two generating distribu-
tions for a cluster graph using P or S as the co-assignment probability matrix. The sample
space of the distribution is a sub-space Z ⊂ {0, 1}n(n−1)/2 subject to constraints described
in (11). We assume that S is given.
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Step 1. Change of measure:

Mkl

[
1

M

M∑
v=1

EẐ(v)∼P loss
(
Z

(v)
0 , Ẑ(v)

)
,E

Z
(v)
0 ∼Π0

EẐ(v)∼P loss
(
Z

(v)
0 , Ẑ(v)

)]

= Mkl

[
1

M

M∑
v=1

EẐ∼P loss
(
Z

(v)
0 , Ẑ

)
,E

Z
(v)
0 ∼Π0

EẐ∼P loss
(
Z

(v)
0 , Ẑ

)]

≤ EẐ∼PMkl

[
1

M

M∑
v=1

loss
(
Z

(v)
0 , Ẑ

)
,E

Z
(v)
0 ∼Π0

loss
(
Z

(v)
0 , Ẑ

)]

≤ KL(P ||S) + logEẐ∼S exp

{
Mkl

[
1

M

M∑
v=1

loss
(
Z

(v)
0 , Ẑ

)
,E

Z
(v)
0 ∼Π0

loss
(
Z

(v)
0 , Ẑ

)]}
,

where the first equality is because Ẑ(v)’s are iid, the first inequality uses the convexity of
the kl function; the second inequality uses the change of measure inequality [Lemma 4 in
(Seldin and Tishby, 2010)].

Due to the Markov’s inequality, with probability greater than 1− δ,

EẐ∼S exp

{
Mkl

[
1

M

M∑
v=1

loss
(
Z

(v)
0 , Ẑ

)
,E

Z
(v)
0 ∼Π0

loss
(
Z

(v)
0 , Ẑ

)]}

≤ 1

δ
E
Z

(v)
0

iid∼Π0
EẐ∼S exp

{
Mkl

[
1

M

M∑
v=1

loss
(
Z

(v)
0 , Ẑ

)
, loss

(
Z

(v)
0 , Ẑ

)]}

=
1

δ
EẐ∼SEZ(v)

0
iid∼Π0

exp

{
Mkl

[
1

M

M∑
v=1

loss
(
Z

(v)
0 , Ẑ

)
, loss

(
Z

(v)
0 , Ẑ

)]}
,

and the last equality is due to kl(.) is upper bounded, hence we can use Fubini’s theorem.

Step 2. Bounding the exponential kl function by a constant:

Using Theorem 1 of (Maurer, 2004),

E
Z

(v)
0

iid∼Π0
exp

{
Mkl

[
1

M

M∑
v=1

loss
(
Z

(v)
0 , Ẑ

)
, loss

(
Z

(v)
0 , Ẑ

)]}

≤ exp(
1

12M
)

√
πM

2
+ 2.

Step 3. Relaxing the KL-divergences between two cluster graph distributions to total
element-wise kl divergences:
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KL(P ||S) =
∑
Z∈Z
{1(zi,j = 1)pi,j log

pi,j
si,j

+ 1(zi,j = 0)(1− pi,j) log
1− pi,j
1− si,j

}

≤
∑

Z∈{0,1}n(n−1)/2

{1(zi,j = 1)pi,j log
pi,j
si,j

+ 1(zi,j = 0)(1− pi,j) log
1− pi,j
1− si,j

}

=
∑
j<i

kl(pi,j ||si,j),

where the inequality is due to the non-negativity of each kl function and Z ⊆ {0, 1}n(n−1)/2.
Combining the results,

KL
[
R(Π0, φ) || R(ΠM , φ)

]
≤

∑
j<iKL(pi,j ||si,j) + log{exp( 1

12M )
√

πM
2 + 2} − log δ

M
.

Taking S = S(v), summing both sides over v = 1, . . . ,M and dividing by M yields the
result.
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Appendix B. Single View Simulation

(a) S for (a). (b) S for (b). (c) S for (c).

(d) Estimated P for (a). (e) Estimated P for (b). (f) Estimated P for (c).

(g) S for (d). (h) S for (e). (i) S for (f).

(j) Estimated P for (d). (k) Estimated P for (e). (l) Estimated P for (f).

Figure 11: Computed similarity matrices and estimated co-assignment probability matrices
in the single view clustering experiments (Section 5.1).
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