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Abstract

In this paper, we study the Empirical Risk Minimization (ERM) problem in the non-
interactive Local Differential Privacy (LDP) model. Previous research on this problem
(Smith et al., 2017) indicates that the sample complexity, to achieve error α, needs to
be exponentially depending on the dimensionality p for general loss functions. In this
paper, we make two attempts to resolve this issue by investigating conditions on the loss
functions that allow us to remove such a limit. In our first attempt, we show that if the loss
function is (∞, T )-smooth, by using the Bernstein polynomial approximation we can avoid
the exponential dependency in the term of α. We then propose player-efficient algorithms
with 1-bit communication complexity and O(1) computation cost for each player. The
error bound of these algorithms is asymptotically the same as the original one. With some
additional assumptions, we also give an algorithm which is more efficient for the server. In
our second attempt, we show that for any 1-Lipschitz generalized linear convex loss function,
there is an (ε, δ)-LDP algorithm whose sample complexity for achieving error α is only linear
in the dimensionality p. Our results use a polynomial of inner product approximation
technique. Finally, motivated by the idea of using polynomial approximation and based on
different types of polynomial approximations, we propose (efficient) non-interactive locally
differentially private algorithms for learning the set of k-way marginal queries and the set
of smooth queries.
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1. Introduction

A tremendous amount of individuals’ data is accumulated and shared every day. This
data has the potential to bring improvements in scientific and medical research and to
help improve several aspects of daily lives. However, due to the sensitive nature of such
data, some care needs to be taken while analyzing them. Private data analysis seeks to
combine the benefits of learning from data with the guarantee of privacy-preservation.
Differential privacy (Dwork et al., 2006) has emerged as a rigorous notion for privacy-
preserving accurate data analysis with a guaranteed bound on the increase in harm for each
individual to contribute his/her data. Methods to guarantee differential privacy have been
widely studied, and recently adopted in industry (Near, 2018; Erlingsson et al., 2014).

Two main user models have emerged for differential privacy: the central model and the
local one. In the central model, data are managed by a trusted centralized entity which is
responsible for collecting them and for deciding which differentially private data analysis to
perform and to release. A classical use case for this model is the one of census data (Haney
et al., 2017). In the local model instead, each individual manages his/her proper data
and discloses them to a server through some differentially private mechanisms. The server
collects the (now private) data of each individual and combines them into a resulting data
analysis. A classical use case for this model is the one aiming at collecting statistics from
user devices like in the case of Google’s Chrome browser (Erlingsson et al., 2014), and
Apple’s iOS-10 (Near, 2018; Tang et al., 2017).

In the local model, there are two basic kinds of protocols: interactive and non-interactive.
Bassily and Smith (2015) have recently investigated the power of non-interactive differen-
tially private protocols. Because of its simplicity and its efficiency in term of network
latency, this type of protocols seems to be more appealing for real world applications. Both
Google and Apple use the non-interactive model in their projects (Near, 2018; Erlingsson
et al., 2014).

Despite being used in industry, the local model has been much less studied than the
central one. Part of the reason for this is that there are intrinsic limitations in what one
can do in the local model. As a consequence, many basic questions, that are well studied
in the central model, have not been completely understood in the local model, yet.

In this paper, we study differentially private Empirical Risk Minimization in the non-
interactive local model. Before presenting our contributions and showing comparisons with
previous works, we first introduce the problem and discuss our motivations.

Problem setting (Smith et al., 2017; Kasiviswanathan et al., 2011) Given a
convex, closed and bounded constraint set C ⊆ Rp, a data universe D, and a loss func-
tion ` : C × D 7→ R, a dataset D = {(x1, y1), (x2, y2), · · · , (xn, yn)} ∈ Dn with data
records {xi}ni=1 ⊂ Rp and labels (responses) {yi}ni=1 ⊂ R defines an empirical risk func-
tion: L(w;D) = 1

n

∑n
i=1 `(w;xi, yi) (note that in some settings, such as mean estima-

tion, there may not be separate labels). When the inputs are drawn i.i.d from an un-
known underlying distribution P on D, we can also define the population risk function:
LP(w) = ED∼Pn [`(w;D)].
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Thus, we have the following two types of excess risk measured at a particular output
wpriv: The empirical risk,

ErrD(wpriv) = L(wpriv;D)−min
w∈C

L(w;D) ,

and the population risk,

ErrP(wpriv) = LP(wpriv)−min
w∈C

LP(w).

The problem considered in this paper is to design non-interactive LDP protocols that
find a private estimator wpriv to minimize the empirical and/or population excess risks.
Alternatively, we can express our goal on this problem in terms of sample complexity : find
the smallest n for which we can design protocols that achieve error at most α (in the worst
case over data sets, or over generating distributions, depending on how we measure risk).

Duchi, Jordan, and Wainwright (2013) first considered the worst-case error bounds
for LDP convex optimization. For 1-Lipchitz convex loss functions over a bounded con-
straint set, they gave a highly interactive SGD-based protocol with sample complexity
n = O(p/ε2α2); moreover, they showed that no LDP protocol which interacts with each
player only once can achieve asymptotically better sample complexity, even for linear losses.

Smith, Thakurta, and Upadhyay (2017) considered the round complexity of LDP pro-
tocols for convex optimization. They observed that known methods perform poorly when
constrained to be run non-interactively. They gave new protocols that improved on the
state-of-the-art but nevertheless required sample complexity exponential in p. Specifically,
they showed:

Theorem 1 ((Smith et al., 2017)) Under some assumptions on the loss functions, there
is a non-interactive ε-LDP algorithm such that for all distribution P on D, with probability
1− β, its population risk is upper bounded by

ErrP(wpriv) ≤ Õ
(
(

√
p log2(1/β)

ε2n
)

1
p+1
)
. (1)

A similar result holds for empirical risk ErrD(wpriv). Equivalently, to ensure an error no
more than α, the sample complexity needs to be n = Õ(

√
pcpε−2α−(p+1)), where c is some

constant (approximately 2).

Furthermore, lower bounds on the parallel query complexity of stochastic optimization
(e.g., Nemirovski (1994); Woodworth et al. (2018)) mean that, for natural classes of LDP
optimization protocols (based on the measure of noisy gradients), the exponential depen-
dence of the sample size on the dimensionality p (in the terms of α−(p+1) and cp) is, in
general, unavoidable (Smith et al., 2017).

This situation is somehow undesirable: when the dimensionality p is high and the target
error is low, the dependency on α−(p+1) could make the sample size quite large. However,
several results have already shown that for some specific loss functions, the exponential de-
pendency on the dimensionality can be avoided. For example, Smith et al. (2017) show that,
in the case of linear regression, there is a non-interactive (ε, δ)-LDP algorithm whose sample
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complexity for achieving error at most α in the empirical risk is n = O(p log(1/δ)ε−2α−2).1

This indicates that there is a gap between the general case and some specific loss functions.
This motivates us to consider the following basic question:

Are there natural conditions on the loss function which allow for non-interactive
ε-LDP algorithms with sample complexity sub-exponentially (ideally, it should be
polynomially or even linearly) depending on the dimensionality p in the terms
of α or c?

To answer this question, we make two attempts to approach the problem from different
perspectives. In the first attempt, we show that the exponential dependency on p in the
term of α−(p+1) can be avoided if the loss function is sufficiently smooth. In the second
attempt, we show that there exists a family of loss functions whose sample complexities is
depending on p. Below is a summary of our main contributions.

Our Contributions:

1. In our first attempt, we investigate the conditions on the loss function guaranteeing
a sample complexity which depends polynomially on p in the term of α. We first
show that by using Bernstein polynomial approximation, it is possible to achieve a
non-interactive ε-LDP algorithm in constant or low dimensions with the following
properties. If the loss function is (8, T )-smooth (see Definition 7), then with a sample

complexity of n = Õ
(
(c0p

1
4 )pα−(2+ p

2
)ε−2

)
, the excess empirical risk is ensured to be

ErrD ≤ α. If the loss function is (∞, T )-smooth, the sample complexity can be further
improved to n = Õ(4p(p+1)D2

ppε
−2α−4), where Dp depends only on p. Note that in the

first case, the sample complexity is lower than the one in (Smith et al., 2017) when
α ≤ O(1

p), and in the second case, the sample complexity depends only polynomially

on α−1, instead of the exponential dependence as in (Smith et al., 2017). Furthermore,
our algorithm does not assume convexity for the loss function and thus can be applied
to non-convex loss functions.

2. Then, we address the efficiency issue, which has only been partially studied in previous
works (Smith et al., 2017). Following an approach similar to (Bassily and Smith, 2015),
we propose an algorithm for our loss functions which has only 1-bit communication
cost and O(1) computation cost for each client, and achieves asymptotically the same
error bound as the original one. Additionally, we present a novel analysis for the
server showing that if the loss function is convex and Lipschitz and the convex set
satisfies some natural conditions, then there is an algorithm which achieves the error
bound of O(pα) and runs in polynomial time in 1

α (instead of exponential time as in
(Smith et al., 2017)) if the loss function is (∞, T )-smooth.

3. In our second attempt, we study the conditions on the loss function guaranteeing
a sample complexity which depends polynomially on p (in both terms of α and
c). We show that for any 1-Lipschitz generalized linear convex loss function, i.e.,

1. Note that these two results are for non-interactive (ε, δ)-LDP, and we mainly focus on non-interactive
ε-LDP algorithms. Thus, we omit terms related to log(1/δ) in this paper.
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`(w;x, y) = f(yi〈w, xi〉) for some 1-Lipschitz convex function f , there is a non-
interactive (ε, δ)-LDP algorithm, whose sample complexity for achieving error α in
empirical risk depends only linearly, instead of exponentially, on the dimensionality
p. Our idea is based on results from Approximation Theory. We first consider the
case of hinge loss functions. For this class of functions, we use Bernstein polynomi-
als to approximate their derivative functions after smoothing, and then we apply the
Stochastic Inexact Gradient Descent algorithm (Dvurechensky and Gasnikov, 2016).
Next we extend the result to all convex general linear functions. The key idea is to
show that any 1-Lipschitz convex function in R can be expressed as a linear combi-
nation of some linear functions and hinge loss functions, i.e., plus functions of inner
product [〈w, s〉]+ = max{0, 〈w, s〉}. Based on this, we propose a general method which
is called the polynomial of inner product approximation.

4. Finally, we show the generality of our technique by applying polynomial approximation
to other problems. Specifically, we give a non-interactive LDP algorithm for answering
the class of k-way marginals queries, by using Chebyshev polynomial approximation,
and a non-interactive LDP algorithm for answering the class of smooth queries, by
using trigonometric polynomial approximation.

Table 1 shows the detailed comparisons between our results and the results in (Smith
et al., 2017; Zheng et al., 2017).

Preliminary results of this work have already appeared in the 2018 Thirty-second Con-
ference on Neural Information Processing Systems (NeurIPS’18) (Wang et al., 2018) and in
the 2019 Algorithmic Learning Theory (ALT’19) (Wang et al., 2019).

2. Related Work

Differentially private convex optimization, first formulated by Chaudhuri and Monteleoni
(2009) and Chaudhuri, Monteleoni, and Sarwate (2011), has been the focus of an active line
of work for the past decade, such as (Wang et al., 2017a; Bassily et al., 2014; Kifer et al.,
2012; Chaudhuri et al., 2011; Talwar et al., 2015; Wang and Xu, 2019). We discuss here
only those results which are related to the local model.

Kasiviswanathan et al. (2011) initiated the study of learning under local differential
privacy. Specifically, they showed a general equivalence between learning in the local model
and learning in the statistical query model. Beimel et al. (2008) gave the first lower bounds
for the accuracy of LDP protocols, for the special case of counting queries (equivalently,
binomial parameter estimation).

The general problem of LDP convex risk minimization was first studied by Duchi et al.
(2013), which provided tight upper and lower bounds for a range of settings. Subsequent
work considered a range of statistical problems in the LDP setting, providing upper and
lower bounds—we omit a complete list here.

Smith et al. (2017) initiated the study of the round complexity of LDP convex optimiza-
tion, connecting it to the parallel complexity of (non-private) stochastic optimization.

Convex risk minimization in the non-interactive LDP model received considerable recent
attentions (Zheng et al., 2017; Smith et al., 2017; Wang et al., 2018) (see Table 1 for details).
Smith et al. (2017) first studied the problem with general convex loss functions and showed
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Methods Sample Complexity Assumption on the Loss Function

(Smith et al., 2017, Claim 4) Õ(4pα−(p+2)ε−2) 1-Lipschitz

(Smith et al., 2017, Theorem 10) Õ(2pα−(p+1)ε−2) 1-Lipschitz and Convex

Smith et al. (2017) Θ(pε−2α−2) Linear Regression

Zheng et al. (2017) O
(
p( 8
α)4 log log(8/α)(4

ε )
2c log(8/α)+2( 1

α2ε2
)
)

Smooth Generalized Linear

This Paper Õ
(
(c0p

1
4 )pα−(2+ p

2
)ε−2

)
(8, T )-smooth

This Paper Õ(4p(p+1)D2
pε
−2α−4) (∞, T )-smooth

This Paper p ·
(
C
α3

)O(1/α3)
/εO( 1

α3
) Hinge Loss

This Paper p ·
(
C
α3

)O(1/α3)
/εO( 1

α3
) 1-Lipschitz Convex Generalized Linear

Table 1: Comparisons on the sample complexities for achieving error α in the empirical
risk, where c is a constant. We assume that ‖xi‖2, ‖yi‖ ≤ 1 for every i ∈ [n] and
the constraint set ‖C‖2 ≤ 1. Asymptotic statements assume ε, δ, α ∈ (0, 1/2) and
ignore dependencies on log(1/δ).

that the exponential dependence on the dimensionality is unavoidable for a class of non-
interactive algorithms. In this paper, we investigate the conditions on the loss function that
allow us to avoid the issue of exponential dependence on p in the sample complexity.

The work most related to ours (i.e., the second attempt) is that of (Zheng et al., 2017),
which also considered some specific loss functions in high dimensions, such as sparse lin-
ear regression and kernel ridge regression. The major differences with our results are the
following. Firstly, although they studied a similar class of loss functions (i.e., Smooth
Generalized Linear Loss functions) and used the polynomial approximation approach, their
approach needs quite a few assumptions on the loss function in addition to the smoothness
condition, such as Lipschitz smoothness and boundedness on the higher order derivative
functions, which are clearly not satisfied by the hinge loss functions. Contrarily, our results
only assume the 1-Lipschitz convex condition on the loss function. Secondly, even though
the idea in our algorithm for the hinge loss functions is similar to theirs, we also consider
generalized linear loss function by using techniques from approximation theory.

Kulkarni et al. (2017); Zhang et al. (2018) recently studied the problem of releasing
k-way marginal queries in LDP. They compared different LDP methods to release marginal
statistics, but did not consider methods based on polynomial approximation.

For other problems under LDP model, (Bun et al., 2018; Bassily and Smith, 2015; Bassily
et al., 2017; Hsu et al., 2012) studied heavy hitter problem, (Ye and Barg, 2017; Kairouz
et al., 2016; Wang et al., 2017b; Acharya et al., 2018) considered local private distribution
estimation. The polynomial approximation approach has been used under the central model
in (Aldà and Rubinstein, 2017; Wang et al., 2016; Thaler et al., 2012; Zheng et al., 2017).
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3. Preliminaries

Differential privacy in the local model. In LDP, we have a data universe D, n players
with each holding a private data record xi ∈ D, and a server coordinating the protocol. An
LDP protocol executes a total of T rounds. In each round, the server sends a message,
which is also called a query, to a subset of the players requesting them to run a particular
algorithm. Based on the query, each player i in the subset selects an algorithm Qi, runs it
on her own data, and sends the output back to the server.

Definition 2 (Evfimievski et al., 2003; Dwork et al., 2006) An algorithm Q is (ε, δ)-locally
differentially private (LDP) if for all pairs x, x′ ∈ D, and for all events E in the output
space of Q, we have

Pr[Q(x) ∈ E] ≤ eεPr[Q(x′) ∈ E] + δ.

A multi-player protocol is (ε, δ)-LDP if for all possible inputs and runs of the protocol, the
transcript of player i’s interaction with the server is (ε, ε)-LDP. If T = 1, we say that the
protocol is ε non-interactive LDP. When δ = 0, we call it is ε-LDP.

Algorithm 1 1-dim LDP-AVG

1: Input: Player i ∈ [n] holding data vi ∈ [0, b], privacy parameter ε.
2: for Each Player i do
3: Send zi = vi + Lap( bε )
4: end for
5: for The Server do
6: Output a = 1

n

∑n
i=1 zi.

7: end for

Since we only consider non-interactive LDP through the paper, we will use LDP as
non-interactive LDP below.

As an example that will be useful throughout the paper, the next lemma shows a
property of an ε-LDP algorithm for computing 1-dimensional average.

Lemma 3 For any ε > 0, Algorithm 1 is ε-LDP. Moreover, if player i ∈ [n] holds value
vi ∈ [0, b] and n > log 2

β with 0 < β < 1, then, with probability at least 1 − β, the output
a ∈ R satisfies:

|a− 1

n

n∑
i=1

vi| ≤
2b
√

log 2
β√

nε
.

Bernstein polynomials and approximation We give here some basic definitions that
will be used in the sequel; more details can be found in (Aldà and Rubinstein, 2017; Lorentz,
1986; Micchelli, 1973).

Definition 4 Let k be a positive integer. The Bernstein basis polynomials of degree k are
defined as bv,k(x) =

(
k
v

)
xv(1− x)k−v for v = 0, · · · , k.
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Definition 5 Let f : [0, 1] 7→ R and k be a positive integer. Then, the Bernstein polynomial
of f of degree k is defined as Bk(f ;x) =

∑k
v=0 f(v/k)bv,k(x). We denote by Bk the Bernstein

operator Bk(f)(x) = Bk(f, x).

Bernstein polynomials can be used to approximate some smooth functions over [0, 1].

Definition 6 ((Micchelli, 1973)) Let h be a positive integer. The iterated Bernstein

operator of order h is defined as the sequence of linear operators B
(h)
k = I − (I − Bk)h =∑h

i=1

(
h
i

)
(−1)i−1Bi

k, where I = B0
k denotes the identity operator and Bi

k is defined as Bi
k =

Bk ◦ Bk−1
k . The iterated Bernstein polynomial of order h can be computed as B

(h)
k (f ;x) =∑k

v=0 f( vk )b
(h)
v,k(x), where b

(h)
v,k(x) =

∑h
i=1

(
h
i

)
(−1)i−1Bi−1

k (bv,k;x).

Iterated Bernstein operator can well-approximate multivariate (h, T )-smooth functions.

Definition 7 ((Micchelli, 1973)) Let h be a positive integer and T > 0 be a constant. A
function f : [0, 1]p 7→ R is (h, T )-smooth if it is in class Ch([0, 1]p) and its partial derivatives
up to order h are all bounded by T . We say it is (∞, T )-smooth, if for every h ∈ N it is
(h, T )-smooth.2

Note that (h, T )-smoothness is incomparable with the Lipschitz smoothness. In (h, T )-
smoothness, we assume it is smooth up to the h-th order while Lipschitz smooth is only for
the first order, from this view, (h, T )-smoothness is stronger than the Lipschitz smoothness.
However, in Lipschitz smoothness we assume the gradient norm of the function will be
bounded by some constant while (h, T )-smoothness assumes that each partial derivative (or
each coordinate of the gradient) is bounded by some constant, so from this view Lipschitz
smoothness is stronger than (h, T )-smoothness.

Lemma 8 ((Micchelli, 1973)) If f : [0, 1] 7→ R is a (2h, T )-smooth function, then for all

positive integers k and y ∈ [0, 1], we have |f(y) − B(h)
k (f ; y)| ≤ TDhk

−h, where Dh is a
constant independent of k, f and y.

The above lemma is for univariate functions, which has been extended to multivariate
functions in Aldà and Rubinstein (2017).

Definition 9 Assume f : [0, 1]p 7→ R and let k1, · · · , kp, h be positive integers. The multi-
variate iterated Bernstein polynomial of order h at y = (y1, . . . , yp) is defined as:

B
(h)
k1,...,kp

(f ; y) =

p∑
j=1

kj∑
vj=0

f(
v1

k1
, . . . ,

vp
kp

)

p∏
i=1

b
(h)
vi,ki

(yi). (2)

We denote B
(h)
k = B

(h)
k1,...,kp

(f ; y) if k = k1 = · · · = kp.

Lemma 10 ((Aldà and Rubinstein, 2017)) If f : [0, 1]p 7→ R is a (2h, T )-smooth func-
tion, then for all positive integers k and y ∈ [0, 1]p, we have

|f(y)−B(h)
k (f ; y)| ≤ O(pTDhk

−h).

Where Dh is a universal constant only related to h.

2. Ch([0, 1]p) means the class of functions that is h-th order smooth in the interval [0, 1]p.
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In the following, we will rephrase some basic definitions and lemmas on Chebyshev
polynomial approximation.

Definition 11 The Chebyshev polynomials {T (x)n}n≥0 are recursively defined as follows

T0(x) ≡ 1, T1(x) ≡ x and Tn+1(x) = 2xTn(x)− Tn−1(x).

It satisfies that for any n ≥ 0

Tn(x) =


cos(n arccos(x)), if |x| ≤ 1

cosh(narccosh(x)), if x ≥ 1

(−1)n cosh(narccosh(−x)), if x ≤ −1

Definition 12 For every ρ > 0, let Γρ be the ellipse Γ of foci ±1 with major radius 1 + ρ.

Definition 13 For a function f with a domain containing in [−1, 1], its degree-n Cheby-
shev truncated series is denoted by Pn(x) =

∑n
k=0 akTk(x), where the coefficient ak =

2−1[k=0]
π

∫ 1
−1

f(x)Tk(x)√
1−x2 dx.

Lemma 14 (Cheybeshev Approximation Theorem (Trefethen, 2013)) Let f(z) be
a function that is analytic on Γρ and has |f(z)| ≤ M on Γρ. Let Pn(x) be the degree-n
Chebyshev truncated series of f(x) on [−1, 1]. Then, we have

max
x∈[−1,1]

|f(x)− Pn(x)| ≤ 2M

ρ+
√

2ρ+ ρ2
(1 + ρ+

√
2ρ+ ρ2)−n,

|a0| ≤M , and |ak| ≤ 2M(1 + ρ+
√

2ρ+ ρ2)−k.

The following theorem shows the convergence rate of the Stochastic Inexact Gradient
Method (Dvurechensky and Gasnikov, 2016), which will be used in our algorithm. We
first give the definition of inexact oracle (see Appendix C for the algorithm of SIGM).

Definition 15 For an objective function f , a (γ, β, σ) stochastic oracle returns a tuple
(Fγ,β,σ(w; ξ), Gγ,β,σ(w; ξ)) (ξ means the randomness in the algorithm) such that

Eξ[Fγ,β,σ(w; ξ)] = fγ,β,σ(w),

Eξ[Gγ,β,σ(w; ξ)] = gγ,β,σ(w),

Eξ[‖Gγ,β,σ(w; ξ)− gγ,β,σ(w)‖22] ≤ σ2,

0 ≤ f(v)− fγ,β,σ(w)− 〈gγ,β,σ(w), v − w〉 ≤ β

2
‖v − w‖2 + γ,∀v, w ∈ C.

Lemma 16 ((Dvurechensky and Gasnikov, 2016)) Assume that f(w) is endowed with
a (γ, β, σ) stochastic oracle with β ≥ O(1). Then, the sequence wk generated by SIGM al-
gorithm satisfies the following inequality

E[f(wk)]−min
w∈C

f(w) ≤ Θ(
βσ‖C‖22√

k
+ γ).

9
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4. LDP-ERM with Smooth Loss Functions

In this section, we will mainly focus on reducing the sample complexity of 1
α . We first show

that if the loss function is ∞-smooth (with some additional assumptions), then its sample
complexity can be reduced to only polynomial in 1

α instead of exponential dependency in
the previous paper. Then we talk about how to reduce the communication and computation
cost for each user and also provide an algorithm which can let the server solve the problem
more efficient.

In this section, we impose the following assumptions on the loss function.

Assumption 1: We let x denote (x, y) for simplicity unless specified otherwise. We assume
that there is a constraint set C ⊆ [0, 1]p and for every x ∈ D and w ∈ C, `(·;x) is well defined
on [0, 1]p and `(w;x) ∈ [0, 1]. These closed intervals can be extended to arbitrarily bounded
closed intervals.

Note that our assumptions are similar to the ‘Typical Settings’ in (Smith et al., 2017),
where C ⊆ [0, 1]p appears in their Theorem 10, and `(w;x) ∈ [0, 1] from their 1-Lipschitz
requirement and ‖C‖2 ≤ 1. We note that the above assumptions on xi, yi and C are quite
common for the studies of LDP-ERM (Smith et al., 2017; Zheng et al., 2017).

4.1 Basic Idea

Definition 9 and Lemma 10 tell us that if the value of the empirical risk function, i.e. the
average of the sum of loss functions, is known at each of the grid points (v1k ,

v2
k · · ·

vp
k ), where

(v1, · · · , vp) ∈ T = {0, 1, · · · , k}p for some large k, then the function can be well approxi-
mated. Our main observation is that this can be done in the local model by estimating the
average of the sum of loss functions at each of the grid points using Algorithm 1. This is
the idea of Algorithm 2.

Algorithm 2 Local Bernstein Mechanism

1: Input: Player i ∈ [n] holds a data record xi ∈ D, public loss function ` : [0, 1]p ×D 7→
[0, 1], privacy parameter ε > 0, and parameter k.

2: Construct the grid T = {v1k , . . . ,
vp
k }{v1,...,vp}, where {v1, . . . , vp} ∈ {0, 1, · · · , k}p.

3: for Each grid point v = (v1k , . . . ,
vp
k ) ∈ T do

4: for Each Player i ∈ [n] do
5: Calculate `(v;xi).
6: end for
7: Run Algorithm 1 with ε = ε

(k+1)p and b = 1 and denote the output as L̃(v;D).
8: end for
9: for The Server do

10: Construct Bernstein polynomial, as in (2), based on the perturbed empirical loss
function values {L̃(v;D)}v∈T . Denote L̃(·;D) the corresponding function.

11: Compute wpriv = arg minw∈C L̃(w;D).
12: end for

10
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Theorem 17 For any ε > 0 and 0 < β < 1, Algorithm 2 is ε-LDP.3 Assume that the
loss function `(·;x) is (2h, T )-smooth for all x ∈ D, some positive integer h and constant

T = O(1). If the sample complexity n satisfies the condition of n = O
(

log 1
β

4p(h+1)

ε2D2
h

)
, then

by setting k = O
(

(
Dh
√
pnε

2(h+1)p
√

log 1
β

)
1

h+p

)
, with probability at least 1− β we have:

ErrD(wpriv) ≤ Õ
( log

h
2(h+p) ( 1

β )D
p

p+h

h p
p

2(h+p) 2
(h+1)p h

h+p

n
h

2(h+p) ε
h
h+p

)
, (3)

where Õ hides the log and T terms.

Proof The proof of the ε-LDP comes from Lemma 3 and the basic composition theorem
of differential privacy. Without loss of generality, we assume that T=1.

To prove the theorem, it is sufficient to estimate supw∈C |L̃(w;D) − L(w;D)| ≤ α for
some α. Since if it is true, denoting w∗ = arg minw∈C L(w;D), we have L(wpriv;D) −
L(w∗;D) ≤ L(wpriv;D) − L̃(wpriv;D) + L̃(wpriv;D) − L̃(w∗;D) + L̃(w∗;D) − L(w∗;D) ≤
L(wpriv;D)− L̃(wpriv;D) + L̃(w∗;D)− L(w∗;D) ≤ 2α.

Since we have

sup
w∈C
|L̃(w;D)− L(w;D)| ≤ sup

w∈C
|L̃(w;D)−B(h)

k (L̂, w)|+ sup
w∈C
|B(h)

k (L̂, w)− L(w;D)|.

The second term is bounded by O(Dhp
1
kh

) by Lemma 10.

For the first term, by (2) and Algorithm 2, we have

sup
w∈C
|L̃(w;D)−B(h)

k (L̂, w)| ≤ max
v∈T
|L̃(v;D)− L̂(v;D)| sup

w∈C

p∑
j=1

k∑
vj=0

|
p∏
i=1

b
(h)
vi,k

(wi)|. (4)

By Proposition 4 in (Aldà and Rubinstein, 2017), we have

p∑
j=1

k∑
vj=0

|
p∏
i=1

b
(h)
vi,k

(wi)| ≤ (2h − 1)p.

The following lemma bounds the term of maxv∈T |L̃(v;D)−L(v;D)|, which is obtained by
Lemma 3.

Lemma 18 If 0 < β < 1, k and n satisfy the condition of n ≥ p log(2/β) log(k + 1), then
with probability at least 1− β, for each v ∈ T , the following holds

|L̃(v;D)− L(v;D)| ≤ O(

√
log 1

β

√
p
√

log(k)(k + 1)p

√
nε

).

3. Note that we can use Advanced Composition Theorem in (Dwork et al., 2014) to reduce the noise. For
simplicity, we omit it here; the following algorithms are also the same.

11
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Proof [Proof of Lemma 18] By Lemma 3, for a fixed v ∈ T , if n ≥ log 2
β , we have, with

probability 1 − β, |L̃(v;D) − L(v;D)| ≤
2
√

log 2
β√

nε
. Taking the union of all v ∈ T and then

taking β = β
(k+1)p (since there are (k+ 1)p elements in T ) and ε = ε

(k+1)p , we get the proof.

By the fact that (k + 1) < 2k, we have in total

sup
w∈C
|L̃(w;D)− L(w;D)| ≤ O(

Dhp

kh
+

2(h+1)p
√

log 1
β

√
p log kkp

√
nε

). (5)

Now, we take k = O(
Dh
√
pnε

2(h+1)p
√

log 1
β

)
1

h+p . Since n = O(4p(h+1)

ε2pD2
h

), we have log k > 1. Plugging

it into (5), we get

sup
w∈C
|L̃(w;D)− L(w;D)| ≤ Õ(

log
h

2(h+p) ( 1
β )D

p
p+h

h p
1
2

+ p
2(h+p) 2

(h+1)p h
h+p

√
h+ pn

h
2(h+p) ε

h
h+p

)

= Õ(
log

h
2(h+p) ( 1

β )D
p

p+h

h p
p

2(h+p) 2(h+1)p

n
h

2(h+p) ε
h
h+p

).

Also, we can see that n ≥ p log(2/β) log(k + 1) is true for n = O(4p(h+1)

ε2pD2
h

). Thus, the

theorem follows.

From (3) we can see that in order to achieve error α, the sample complexity needs to
be

n = Õ(log
1

β
D

2p
h
h p

p
h 4(h+1)pε−2α−(2+ 2p

h
)). (6)

This implies the following special cases.

Corollary 19 If the loss function `(·;x) is (8, T )-smooth for all x ∈ D and some constant
T , and n, ε, β, k satisfy the condition in Theorem 17 with h = 4, then with probability at
least 1− β, the sample complexity to achieve α error is

n = Õ
(
α−(2+ p

2
)ε−2(45

√
D4p

1
4 )p
)
.

Note that the sample complexity for general convex loss functions in (Smith et al.,
2017) is n = Õ

(
α−(p+1)ε−22p

)
, which is considerably worse than ours when α ≤ O(1

p), that
is either in the low dimensional case or with high accuracy.

Corollary 20 If the loss function `(·;x) is (∞, T )-smooth for all x ∈ D and some constant
T , and n, ε, β, k satisfy the condition in Theorem 17 with h = p, then with probability at
least 1− β, the output wpriv of Algorithm 2 satisfies:

ErrD(wpriv) ≤ Õ
( log 1

β

1
4D

1
2
p p

1
4

√
2

(p+1)p

n
1
4 ε

1
2

)
,

12
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where Õ hides the log and T terms. Thus, to achieve error α, with probability at least 1−β,
the sample complexity needs to be

n = Õ
(

max{4p(p+1) log(
1

β
)D2

ppε
−2α−4,

log 1
β4p(p+1)

ε2D2
p

}
)
. (7)

It is worth noticing that from (6) we can see that when the term h
p grows, the term α

decreases. Thus, for loss functions that are (∞, T )-smooth, we can get a smaller dependency
than the term α−4 in (7). For example, if we take h = 2p, then the sample complexity

is n = O(max{cp
2

2 log 1
βD2p

√
pε−2α−3,

log 1
β
cp

2

ε2D2
2p
}) for some constants c, c2. When h → ∞,

the dependency on the error becomes α−2, which is the optimal bound, even for convex
functions.

Our analysis on the empirical excess risk does not use the convexity assumption. While
this gives a bound which is not optimal, even for p = 1, it also says that our result holds for
non-convex loss functions and constrained domain set, as long as they are smooth enough.

From (7), we can see that our sample complexity is lower than the one in (Smith et al.,
2017) when α ≤ O( 1

16p ). It is notable that this bound is less reasonable since in practice
could be very large. However, there are still many cases where the condition still holds. For
example, in low dimensional space to achieve the best performance for ERM, quite often
the error is set to be extremely small, e.g., α = 10−10 ∼ 10−14(Johnson and Zhang, 2013).

Using the convexity assumption of the loss function, we can also give a bound on the
population excess risk. Here we will show only the case of (∞, T ), as the general case is
basically the same.

Theorem 21 Under the conditions in Corollary 20, if we further assume that the loss
function `(·;x) is convex and 1-Lipschitz for all x ∈ D, then with probability at least 1−2β,
we have:

ErrP(wpriv) ≤ Õ
((
√

log 1/β)
1
4D

1
4
p p

1
8

4
√

2
p(p+1)

βn
1
12 ε

1
4

)
.

That is, if we have sample complexity

n = Õ
(

max{
log 1

β4p(p+1)

ε2D2
p

, (
√

log 1/β)3D3
pp

3
2 8p(p+1)ε−3α−12β−12

)
,

then ErrP(wpriv) ≤ α.

Corollary 20 provides a partial answer to our motivational questions. That is, for loss
functions which are (∞, T )-smooth, there is an ε-LDP algorithm for the empirical and
population excess risks achieving error α with sample complexity which is independent of
the dimensionality p in the term of α. This result does not contradict the results in (Smith
et al., 2017). Indeed, the example used to show the unavoidable dependency between the
sample complexity and α−Ω(p), to achieve an α error, is actually non-smooth.

13
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4.2 More Efficient Algorithms

Algorithm 2 has computational time and communication complexity for each player which
are exponential in the dimensionality. This is clearly problematic for every realistic practical
application. For this reason, in this section, we investigate more efficient algorithms. For
convenience, in this section we focus only on the case of (∞, T )-smooth loss functions, but
our results can easily be extended to more general cases.

We first consider the computational issue on the users side. The following lemma,
shows an ε-LDP algorithm (which is different from Algorithm 1) for efficiently computing
p-dimensional average (notice the extra conditions on n and p compared with Lemma 3).

Lemma 22 ((Nissim and Stemmer, 2018)) Consider player i ∈ [n] holding data vi ∈
Rp with coordinate between 0 and b. Then for 0 < β < 1, 0 < ε such that n ≥ 8p log(8p

β ) and
√
n ≥ 12

ε

√
log 32

β , there is an ε-LDP algorithm, LDP-AVG, with probability at least 1 − β,

the output a ∈ Rp satisfying4:

max
j∈[d]
|aj −

1

n

n∑
i=1

[vi]j | ≤ O(
bp√
nε

√
log

p

β
).

Moreover, the computational cost for each user is O(1).

By using Lemma 22 and by discretizing the grid with some interval steps, we can design
an algorithm which requires O(1) computation time and O(log n)-bits communication per
player (see (Nissim and Stemmer, 2018) for details; in Appendix B we have an algorithm
with O(log log n)-bits communication per player). However, we would like to do even better
and obtain constant communication complexity.

Instead of discretizing the grid, we apply a technique, proposed first by Bassily and
Smith (2015), which permits us to transform any ‘sampling resilient’ ε-LDP protocol into
a protocol with 1-bit communication complexity (at the expense of increasing the shared
randomness in the protocol). Roughly speaking, a protocol is sampling resilient if its output
on any dataset S can be approximated well by its output on a random subset of half of the
players.

Since our algorithm only uses the LDP-AVG protocol, we can show that it is indeed
sampling resilient. Inspired by this result and the algorithm behind Lemma 22, we propose
Algorithm 3 and obtain the following theorem.

Theorem 23 For any 0 < ε ≤ ln 2 and 0 < β < 1, Algorithm 3 is ε-LDP. If the loss

function `(·;x) is (∞, T )-smooth for all x ∈ D and n = Õ(max{
log 1

β
4p(p+1)

ε2D2
p

, p(k+1)p log(k+

1), 1
ε2

log 1
β}), then by setting k = O

(
(

Dp
√
pnε

2(p+1)p
√

log 1
β

)
1
2p
)
, the results in Corollary 20 hold with

probability at least 1− 4β. Moreover, for each player the time complexity is O(1), and the
communication complexity is 1-bit.

4. Note that here we use an weak version of their result, one can get a finer analysis. For simplicity, we
will omit it in the paper.
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Algorithm 3 Player-Efficient Local Bernstein Mechanism with 1-bit communication per
player

1: Input: Player i ∈ [n] holds a data record xi ∈ D, public loss function ` : [0, 1]p ×D 7→
[0, 1], privacy parameter ε ≤ ln 2, and parameter k.

2: Preprocessing:
3: Generate n independent public strings
4: y1 = Lap(1

ε ), · · · , yn = Lap(1
ε ).

5: Construct the grid T = {v1k , . . . ,
vp
k }{v1,...,vp}, where {v1, . . . , vp} ∈ {0, 1, · · · , k}p.

6: Partition randomly [n] into d = (k + 1)p subsets I1, I2, · · · , Id, and associate each Ij to
a grid point T (j) ∈ T .

7: for Each Player i ∈ [n] do
8: Find Il such that i ∈ Il. Calculate vi = `(T (l);xi).

9: Compute pi = 1
2

Pr[vi+Lap( 1
ε
)=yi]

Pr[Lap( 1
ε
)=yi]

10: Sample a bit bi from Bernoulli(pi) and send it to the server.
11: end for
12: for The Server do
13: for i = 1 · · ·n do
14: Check if bi = 1, set z̃i = yi, otherwise z̃i = 0.
15: end for
16: for each l ∈ [d] do
17: Compute v` = n

|Il|
∑

i∈I` z̃i

18: Denote the corresponding grid point (v1k , . . . ,
vp
k ) ∈ T of Il, then denote

L̂((v1k , · · · ,
vp
k );D) = vl.

19: end for
20: Construct Bernstein polynomial for the perturbed empirical loss {L̂(v;D)}v∈T as in

Algorithm 2. Denote L̃(·;D) the corresponding function.
21: Compute wpriv = arg minw∈C L̃(w;D).
22: end for
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Now we study the algorithm from the server’s computational complexity perspective.
The polynomial construction time complexity is O(n), where the most inefficient part is
finding wpriv = arg minw∈C L̃(w;D). In fact, this function may be non-convex; but unlike
general non-convex functions, it can be α-uniformly approximated by the empirical loss
function L(·;D) if the loss function is convex (by the proof of Theorem 17), although we do
not have access to the empirical risk function. Thus, we can see this problem as an instance
of Approximately-Convex Optimization, which has been studied recently by (Risteski and
Li, 2016). Before doing that, we first give the definition of the condition on the constraint
set.

Definition 24 ((Risteski and Li, 2016)) We say that a convex set C is µ-well condi-
tioned for µ ≥ 1, if there exists a function F : Rp 7→ R such that C = {x|F (x) ≤ 0} and for

every x ∈ ∂K : ‖∇
2F (x)‖2

‖∇F (x)‖2 ≤ µ.

Lemma 25 (Theorem 3.2 in (Risteski and Li, 2016)) Let ε,∆ be two real numbers

such that ∆ ≤ max{ ε2

µ
√
p ,

ε
p} ×

1
16348 . Then, there exists an algorithm A such that for any

given ∆-approximate convex function f̃ over a µ-well-conditioned convex set C ⊆ Rp of
diameter 1 (that is, there exists a 1-Lipschitz convex function f : C 7→ R such that for every
x ∈ C, |f(x) − f̃(x)| ≤ ∆), A returns a point x̃ ∈ C with probability at least 1 − δ in time
Poly(p, 1

ε , log 1
δ ) and with the following guarantee: f̃(x̃) ≤ minx∈C f̃(x) + ε.

Based on Lemma 25 (for L̃(w;D)) and Corollary 20, and taking ε = O(pα), we have the
following.

Theorem 26 Under the conditions in Corollary 20, and assuming that n satisfies n =
Õ(4p(p+1) log(1/β)D2

ppε
−2α−4), that the loss function `(·;x) is 1-Lipschitz and convex for

every x ∈ D, that the constraint set C is convex and ‖C‖2 ≤ 1, and satisfies µ-well-condition
property (see Definition 24), if the error α satisfies α ≤ C µ

p
√
p for some universal constant

C, then there is an algorithm A which runs in Poly(n, 1
α , log 1

β ) time for the server,5 and

with probability 1−2β the output w̃priv of A satisfies L̃(w̃priv;D) ≤ minw∈C L̃(w;D)+O(pα),
which means that ErrD(w̃priv) ≤ O(pα).

Combining Theorem 26 with Corollary 20, and taking α = α
p , we have our final result:

Theorem 27 Under the conditions of Corollary 20, Theorem 23 and 26, for any C µ√
p >

α > 0, if we further set

n = Õ(4p(p+1) log(1/β)D2
pp

5ε−2α−4),

then there is an ε-LDP algorithm, with O(1) running time and 1-bit communication per
player, and Poly( 1

α , log 1
β ) running time for the server. Furthermore, with probability at

least 1− 5β, the output w̃priv satisfies ErrD(w̃priv) ≤ O(α).

Note that comparing with the sample complexity in Theorem 27 and Corollary 20, we have
an additional factor of O(p4); however, the α terms are the same.

5. Note that since here we assume n is at least exponential in p, thus the algorithm is not fully polynomial.
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5. LDP-ERM with Convex Generalized Linear Loss Functions

In Section 4, we have seen that under the condition of (∞, T )-smoothness for the loss
function, the sample complexity can actually have polynomial dependence on p and α.
However, as shown in (7), there is still another exponential term cp

2
in the sample complexity

that needs to be removed.

In this section, we show that if the loss function is generalized linear, the sample complex-
ity for achieving error α is only linear in the dimensionality p. We first give the assumptions
that will be used throughout this section.

Assumption 2: We assume that ‖xi‖2 ≤ 1 and |yi| ≤ 1 for each i ∈ [n] and the constraint
set ‖C‖2 ≤ 1. Unless specified otherwise, the loss function is assumed to be generalized
linear, that is, the loss function `(w;xi, yi) ≡ f(yi〈xi, w〉) for some 1-Lipschitz convex
function f .

The generalized linear assumption holds for a large class of functions such as Generalized
Linear Model and SVM. We also note that there is another definition for general linear
functions, `(w;x, y) = f(〈w, x〉, y), which is more general than our definition. This class of
functions has been studied in (Kasiviswanathan and Jin, 2016); we leave as future research
to extend our work to this class of loss functions.

5.1 Sample Complexity for Hinge Loss Function

We first consider LDP-ERM with hinge loss function and then extend the obtained result
to general convex linear functions.

The hinge loss function is defined as `(w;xi, yi) = f(yi〈xi, w〉) = [1
2 − yi〈w, xi〉]+, where

the plus function [x]+ = max{0, x}, i.e., f(x) = max{0, 1
2−x} for x ∈ [−1, 1].6 Note that to

avoid the scenario that 1− yi〈w, xi〉 is always greater than or equal to 0, we use 1
2 , instead

of 1 as in the classical setting.

Before showing our idea, we first smooth the function f(x). The following lemma shows
one of the smooth functions that is close to f in the domain of [−1, 1] (note that there are
other ways to smooth f ; see (Chen and Mangasarian, 1996) for details).

Lemma 28 Let fβ(x) =
1
2
−x+

√
( 1
2
−x)2+β2

2 be a function with parameter β > 0. Then, we
have

1. |fβ(x)− f(x)|∞ ≤ β
2 , ∀x ∈ R.

2. fβ(x) is 1-Lipschitz, that is, f ′(x) is bounded by 1 for x ∈ R.

3. fβ is 1
β -smooth and convex.

4. f ′β(x) is (2, O( 1
β2 ))-smooth if β ≤ 1.

The above lemma indicates that fβ(x) is a smooth and convex function which well
approximates f(x). This suggests that we can focus on fβ(yi〈w, xi〉), instead of f . Our idea
is to construct a locally private (γ, β, σ) stochastic oracle for some γ, β, σ to approximate

6. The reader should think about about particular function f , not just a general f .
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f ′β(yi〈w, xi〉) in each iteration, and then run the SIGM step of (Dvurechensky and Gasnikov,

2016). By Lemma 28, we know that f ′β is (2, O( 1
β2 ))-smooth; thus, we can use Lemma 8 to

approximate f ′β(x) via Bernstein polynomials.

Let Pd(x) =
∑d

i=0 ci
(
d
i

)
xi(1− x)d−i be the d-th order Bernstein polynomial (ci = f ′β( id)

, where maxx∈[−1,1] |Pd(x)− f ′β(x)| ≤ α
4 (i.e., d = c 1

β2α
for some constant c > 0). Then, we

have∇w`(w;x, y) = f ′(y〈w, x〉)yxT , which can be approximated by [
∑d

i=0 ci
(
d
i

)
(y〈w, x〉)i(1−

y〈w, x〉)d−i]yxT . The idea is that if (y〈w, x〉)i, (1 − y〈w, x〉)d−i and yxT can be approx-
imated locally differentially privately by directly adding d + 1 numbers of independent
Gaussian noises, which means it is possible to form an unbiased estimator of the term
[
∑d

i=0 ci
(
d
i

)
(y〈w, x〉)i(1− y〈w, x〉)d−i]yxT . The error of this procedure can be estimated by

Lemma 16. Details of the algorithm are given in Algorithm 4.

Algorithm 4 Hinge Loss-LDP

1: Input: Player i ∈ [n] holds data (xi, yi) ∈ D, where ‖xi‖2 ≤ 1, ‖yi‖2 ≤ 1; privacy
parameters ε, δ; Pd(x) =

∑d
j=0 ci

(
d
j

)
xj(1−x)d−j be the d-th order Bernstein polynomial

for the function of f ′β, where ci = f ′β( id) and fβ(x) is the function in Lemma 28.
2: for Each Player i ∈ [n] do

3: Calculate xi,0 = xi + σi,0 and yi,0 = yi + zi,0, where σi,0 ∼ N (0, 32 log(1.25/δ)
ε2

Ip) and

zi,0 ∼ N (0, 32 log(1.25/δ)
ε2

).
4: for j = 1, · · · , d(d+ 1) do

5: xi,j = xi + σi,j , where σi,j ∼ N (0, 8 log(1.25/δ)d2(d+1)2

ε2
Ip)

6: yi,j = yi + zi,j , where zi,j ∼ N (0, 8 log(1.25/δ)d2(d+1)2

ε2
)

7: end for
8: Send {xi,j}d(d+1)

j=0 and {yi,j}d(d+1)
j=0 to the server.

9: end for
10: for the Server side do
11: for t = 1, 2, · · · , n do
12: Randomly sample i ∈ [n] uniformly.
13: Set ti,0 = 1
14: for j = 0, · · · , d do
15: ti,j = Πjd+j

k=jd+1yi,k〈wt, xi,k〉 and ti,0 = 1

16: si,j = Πjd+d
k=jd+j+1(1− yi,k〈wt, xi,k〉) and si,d = 1

17: end for
18: Denote G(wt, i) = (

∑d
j=0 cj

(
d
j

)
ti,jsi,j)yi,0x

T
i,0.

19: Update SIGM in (Dvurechensky and Gasnikov, 2016) by G(wt, i)
20: end for
21: end for
22: return wn

Theorem 29 For each i ∈ [n], the term G(wt, i) generated by Algorithm 4 will be an(
α
2 ,

1
β , O(

d3dCd4
√
p

ε2d+2 + α + 1)
)

stochastic oracle (see Definition 15) for function Lβ(w;D) =
1
n

∑n
i=1 fβ(yi〈xi, w〉), where fβ is the function in Lemma 28, where C4 is some constant.
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From Lemmas 28, 16 and Theorem 29, we have the following sample complexity bound
for the hinge loss function under the non-interactive local model.

Theorem 30 For any ε > 0 and 0 < δ < 1, Algorithm 4 is (ε, δ) non-interactively locally
differentially private.7 Furthermore, for the target error α, if we take β = α

4 and d = 2
β2α

=

O( 1
α3 ). Then with the sample size n = Õ( d

6dCdp
ε4d+4α2 ), the output wn satisfies the following

inequality

EL(wn, D)−min
w∈C

L(w,D) ≤ α,

where C is some constant.

Remark 31 Note that the sample complexity bound in Theorem 30 is quite loose for pa-
rameters other than p. This is mainly due to the fact that we use only the basic com-
position theorem to ensure local differential privacy.8 It is possible to obtain a tighter
bound by using Advanced Composition Theorem (Dwork et al., 2010) (this is the same
for other algorithms in this section). Details of the improvement are omitted from this
version. We can also extend to the population risk by the same algorithm, the main

difference is that now G(w, i) is a
(
α
2 ,

1
β , O(

d3dCd4
√
p

ε2d+2 + α + 1)
)

stochastic oracle, where

σ2 = E(x,y)∼P‖`(w;x, y) − E(x,y)∼P`(w;x, y)‖22. For simplicity of presentation, we omitt
the details here.

5.2 Extension to Generalized Linear Convex Loss Functions

In this section, we extend our results for the hinge loss function to generalized linear convex
loss functions L(w,D) = 1

n

∑n
i=1 f(yi〈xi, w〉) for any 1-Lipschitz convex function f .

One possible way (for the extension) is to follow the same approach used in previous
section. That is, we first smooth the function f by some function fβ. Then, we use Bernstein
polynomials to approximate the derivative function f ′β, and apply an algorithm similar to
Algorithm 4. One of the main issues of this approach is that we do not know whether
Bernstein polynomials can be directly used for every smooth convex function. Instead,
we will use some ideas in approximation theory, which says that every 1-Lipschitz convex
function can be expressed by a linear combination of the absolute value functions and linear
functions.

To implement this approach, we first note that for the plus function f(x) ≡ max{0, x},
by using Algorithm 4 we can get the same result as in Theorem 30. Since the absolute value
function |x| = 2 max{0, x} − x, Theorem 30 clearly also holds for the absolute function.
The following key lemma shows that every 1-dimensional 1-Lipschitz convex function f :
[−1, 1] 7→ [−1, 1] is contained in the convex hull of the set of absolute value and identity
functions. We need to point out that Smith et al. (2017) gave a similar lemma. Their proof
is, however, somewhat incomplete and thus we give a complete one in this paper.

7. Note that in the non-interactive local model, (ε, δ)-LDP is equivalent to ε-LDP by using the protocol
given in Bun et al. (2018); this allows us to omit the term of δ.

8. There could be some improvement on the term of 1
α

if we use advanced composition theorem. However,
since the dependency of 1

α
is already exponential, and it will be still exponential after the improvement.

So here the improvement will be very incremental.
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Lemma 32 Let f : [−1, 1] 7→ [−1, 1] be a 1-Lipschitz convex function. If we define the
distribution Q which is supported on [−1, 1] as the output of the following algorithm:

1. first sample u ∈ [f ′(−1), f ′(1)] uniformly,

2. then output s such that u ∈ ∂f(s) (note that such an s always exists due to the fact
that f is convex and thus f ′ is non-decreasing); if multiple number of such as s exist,
return the maximal one,

then, there exists a constant c such that

∀θ ∈ [−1, 1], f(θ) =
f ′(1)− f ′(−1)

2
Es∼Q|θ − s|+

f ′(1) + f ′(−1)

2
θ + c.

Proof Let g(θ) = Es∼Q|s− θ|. Then, we have the following for every θ, where f ′(θ) is well
defined,

g′(θ) = Es∼Q[1s≤θ]− Es∼Q[1s>θ]

=
[f ′(θ)− f ′(−1)]− [f ′(1)− f ′(θ)]

f ′(1)− f(−1)

=
2f ′(θ)− (f ′(1) + f ′(−1))

f ′(1)− f ′(−1)
.

Thus, we get

F ′(θ) =
f ′(1)− f ′(−1)

2
g′(θ) +

f ′(1) + f ′(−1)

2
= f ′(θ).

Next, we show that if F ′(θ) = f ′(θ) for every θ ∈ [0, 1], where f ′(θ) is well defined, there is
a constant c which satisfies the condition of F (θ) = f(θ) + c for all θ ∈ [0, 1].

Lemma 33 If f is convex and 1-Lipschitz, then f is differentiable at all but countably many
points. That is, f ′ has only countable many discontinuous points.

Proof [Proof of Lemma 33] Since f is convex, we have the following for 0 ≤ s < u ≤ v <
t ≤ 1

f(u)− f(s)

u− s
≤ f(t)− f(v)

t− v
,

This is due to the property of 3-point convexity, where

f(u)− f(s)

u− s
≤ f(t)− f(u)

t− u
≤ f(t)− f(v)

t− v
.

Thus, we can obtain the following inequality of one-sided derivation, that is,

f ′−(x) ≤ f ′+(x) ≤ f ′−(y) ≤ f ′+(y)

for every x < y. For each point where f ′−(x) < f ′+(x), we pick a rational number q(x) which
satisfies the condition of f ′−(x) < q(x) < f ′+(x). From the above discussion, we can see
that all these q(x) are different. Thus, there are at most countable many points where f is
non-differentiable.
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From the above lemma, we can see that the Lebesgue measure of these dis-continuous
points is 0. Thus, f ′ is Riemann Integrable on [−1, 1]. By Newton-Leibniz formula, we have
the following for any θ ∈ [0, 1],∫ θ

−1
f ′(x)dx = f(θ)− f(−1) =

∫ θ

−1
F ′(x)dx = F (x)− F (−1).

Therefore, we get F (θ) = f(θ) + c and complete the proof.

Algorithm 5 General Linear-LDP

1: Input: Player i ∈ [n] holds raw data record (xi, yi) ∈ D, where ‖xi‖2 ≤ 1 and ‖yi‖2 ≤ 1;

privacy parameters ε, δ; hβ(x) =
x+
√
x2+β2

2 and Pd(x) =
∑d

j=0 cj
(
d
j

)
xj(1−x)j is the d-th

order Bernstein polynomial approximation of h′β(x). Loss function ` can be represented
by `(w;x, y) = f(y〈w, x〉).

2: for Each Player i ∈ [n] do

3: Calculate xi,0 = xi + σi,0 and yi,0 = yi + zi,0, where σi,0 ∼ N (0, 32 log(1.25/δ)
ε2

Ip) and

zi,0 ∼ N (0, 32 log(1.25/δ)
ε2

)
4: for j = 1, · · · , d(d+ 1) do

5: xi,j = xi + σi,j , where σi,j ∼ N (0, 8 log(1.25/δ)d2(d+1)2

ε2
Ip)

6: yi,j = yi + zi,j , where zi,j ∼ N (0, 8 log(1.25/δ)d2(d+1)2

ε2
)

7: end for
8: Send {xi,j}d(d+1)

j=0 and {yi,j}d(d+1)
j=0 to the server.

9: end for
10: for the Server side do
11: for t = 1, 2, · · · , n do
12: Randomly sample i ∈ [n] uniformly.

13: Randomly sample d(d+ 1) numbers of i.i.d s = {sk}
d(d+1)
k=1 ∈ [−1, 1] based on the

distribution Q in Lemma 32.
14: Set ti,0 = 1
15: for j = 0, · · · , d do

16: ti,j = Πjd+i
k=jd+1(

yi,k〈wt,xi,k〉−sk
2 ) and ti,0 = 1

17: ri,j = Πjd+d
k=jd+i+1(1− yi,k〈wt,xi,k〉−sk

2 ) and ri,d = 1
18: end for
19: Denote G(wt, i, s) = (f ′(1)− f ′(−1))(

∑d
j=0 cj

(
d
j

)
ti,jri,j)yi,0x

T
i,0 + f ′(−1).

20: Update SIGM in (Dvurechensky and Gasnikov, 2016) by G(wt, i, s)
21: end for
22: end for
23: return wn

Using Lemma 32 and the ideas discussed in the previous section, we can now show that
the sample complexity in Theorem 30 also holds for any general linear convex function. See
Algorithm 5 for the details.
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Theorem 34 Under Assumption 2, where the loss function ` is `(w;x, y) = f(y〈w, x〉)
for any 1-Lipschitz convex function f , for any ε, δ ∈ (0, 1], Algorithm 5 is (ε, δ) non-
interactively differentialy private. Moreover, given the target error α, if we take β = α

4

and d = 2
β2α

= O( 1
α3 ). Then with the sample size n = Õ( d

6dCdp
ε4d+4α2 ), the output wn satisfies

the following inequality

EL(wn, D)−min
w∈C

L(w,D) ≤ α,

where C is some universal constant independent of f .

Remark 35 The above theorem suggests that the sample complexity for any generalized lin-
ear loss function depends only linearly on p. However, there are still some not so desirable
issues. Firstly, the dependence on α is exponential, while we have already shown in the Sec-
tion 4 that it is only polynomial (i.e., α−4) for sufficiently smooth loss functions. Secondly,

the term of ε is not optimal in the sample complexity, since it is ε−Ω( 1
α3

), while the optimal
one is ε−2 (Smith et al., 2017). We leave it as an open problem to remove the exponential
dependency. Thirdly, the assumption on the loss function is that `(w;x, y) = f(y〈w, x〉),
which includes the generalized linear models and SVM. However, as mentioned earlier, there
is another slightly more general function class `(w;x, y) = f(〈w, x〉, y) which does not always
satisfy our assumption, e.g., linear regression and `1 regression. For linear regression, we
have already known its optimal bound Θ(pα−2ε−2); for `1 regression, we can use a method
similar to Algorithm 4 to achieve a sample complexity which is linear in p. Thus, a natural
question is whether the sample complexity is still linear in p for all loss functions `(w;x, y)
that can be written as f(〈w, x〉, y).

We can see from Algorithm 4 and 5 that, both of the computation and communication cost
of each user will be O(d2) = O( 1

α6 ). So, our question is, can we reduce these costs just as
in the Section 4? We will leave it as future research.

Additional to the aforementioned improvements, another advantage of our method is
that it can be extended to other LDP problems. Below we show how it can be used to
answer the class of k-way marginals and smooth queries under LDP.

6. LDP Algorithms for Learning k-way Marginals Queries and Smooth
Queries

In this section, we show further applications of our idea by giving LDP algorithms for
answering sets of queries. All the queries considered in this section are linear, that is, of the
form qf (D) = 1

|D|
∑

x∈D f(x) for some function f . It will be convenient to have a notion of
accuracy for the algorithm to be presented with respect to a set of queries. This is defined
as follow:

Definition 36 Let Q denote a set of queries. An algorithm A is said to have (α, β)-
accuracy for size n databases with respect to Q, if for every n-size dataset D, the following
holds: Pr[∃q ∈ Q, |A(D, q)− q(D)| ≥ α] ≤ β.
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6.1 k-way Marginals Queries

Now we consider a database D = ({0, 1}p)n, where each row corresponds to an individuals
record. A marginal query is specified by a set S ⊆ [p] and a pattern t ∈ {0, 1}|S|. Each such
query asks: ‘What fraction of the individuals in D has each of the attributes set to tj?’. We
will consider here k-way marginals which are the subset of marginal queries specified by a
set S ⊆ [p] with |S| ≤ k. K-way marginals could represent several statistics over datasets,
including contingency tables, and the problem is to release them under differential privacy
has been studied extensively in the literature (Hardt et al., 2012; Gupta et al., 2013; Thaler
et al., 2012; Gaboardi et al., 2014). All these previous works have considered the central
model of differential privacy, and only the recent work (Kulkarni et al., 2017) studies this
problem in the local model, while their methods are based on Fourier Transform. We now
use the LDP version of Chebyshev polynomial approximation to give an efficient way of
constructing a sanitizer for releasing k-way marginals.

Since learning the class of k-way marginals is equivalent to learning the class of monotone
k-way disjunctions (Hardt et al., 2012), we will only focus on the latter. The reason of why
we can locally privately learning them is that they form a Q-Function Family.

Definition 37 (Q-Function Family) Let Q = {qy}y∈YQ⊆{0,1}m be a set of counting queries
on a data universe D, where each query is indexed by an m-bit string. We define the in-
dex set of Q to be the set YQ = {y ∈ {0, 1}m|qy ∈ Q}. We define a Q-Function Family
FQ = {fQ,x : {0, 1}m 7→ {0, 1}}x∈D as follows: for every data record x ∈ D, the function
fQ,x : {0, 1}m 7→ {0, 1} is defined as fQ,x(y) = qy(x). Given a database D ∈ Dn, we define
fQ,D(y) = 1

n

∑n
i=1 fQ,xi(y) = 1

n

∑n
i=1 qy(x

i) = qy(D), where xi is the i-th row of D.

This definition guarantees that Q-function queries can be computed from their values
on the individual’s data xi. We can now formally define the class of monotone k-way
disjunctions.

Definition 38 Let D = {0, 1}p. The query set Qdisj,k = {qy}y∈Yk⊆{0,1}p of monotone k-way
disjunctions over {0, 1}p contains a query qy for every y ∈ Yk = {y ∈ {0, 1}p||y| ≤ k}. Each
query is defined as qy(x) = ∨pj=1yjxj. The Qdisj,k-function family FQdisj,k = {fx}x∈{0,1}p
contains a function fx(y1, y2, · · · , yp) = ∨pj=1yjxj for each x ∈ {0, 1}p.

Definition 38 guarantees that if we can uniformly approximate the function fQ,x by
polynomials px, then we can also have an approximation of fQ,D, i.e., we can approximate
qy(D) for every y or all the queries in the class Q. Thus, if we can locally privately estimate
the sum of coefficients of the monomials for the m-multivariate functions {px}x∈D, then we
can uniformly approximate fQ,D. Clearly, this can be done by Lemma 22, if the coefficients
of the approximated polynomial are bounded.

In order to uniformly approximate the Qdisj,k-function, we use Chebyshev polynomials.

Definition 39 (Chebyshev Polynomials) For every k ∈ N and γ > 0, there exists a
univariate real polynomial pk(x) =

∑tk
j=0 cix

i of degree tk such that tk = O(
√
k log( 1

γ )); for

every i ∈ [tk], |ci| ≤ 2
O(
√
k log( 1

γ
))

; and p(0) = 0, |pk(x)− 1| ≤ γ,∀x ∈ [k].
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Algorithm 6 Local Chebyshev Mechanism for Qdisj,k

1: Input: Player i ∈ [n] holds a data record xi ∈ {0, 1}p, privacy parameter ε > 0, error
bound α, and k ∈ N.

2: for Each Player i ∈ [n] do
3: Consider the p-multivariate polynomial qxi(y1, . . . , yp) = pk(

∑p
j=1 yj [xi]j), where pk

is defined as in Lemma 40 with γ = α
2 .

4: Denote the coefficients of qxi as a vector q̃i ∈ R(p+tktk
)
(since there are

(
p+tk
tk

)
coeffi-

cients in a p-variate polynomial with degree tk), note that each q̃i can bee seen as a
p-multivariate polynomial qxi(y).

5: end for
6: for The Server do

7: Run LDP-AVG from Lemma 3 on {q̃i}ni=1 ∈ R(p+tktk
)

with parameter ε, b =

p
O(
√
k log( 1

γ
))

, denote the output as q̃D ∈ R(p+tktk
)
, note that q̃D also corresponds to a

p-multivariate polynomial.
8: For each query y inQdisj,k (seen as a d dimension vector), compute the p-multivariate

polynomial q̃D(y1, . . . , yp).
9: end for

Lemma 40 ((Thaler et al., 2012)) For every k, p ∈ N, such that k ≤ p, and every
γ > 0, there is a family of p-multivariate polynomials of degree t = O(

√
k log( 1

γ ))with

coefficients bounded by T = p
O(
√
k log( 1

γ
))

, which uniformly approximate the family FQdisj,k

over the set Yk (Definition 38) with error bound γ. That is, there is a family of polynomials
P such that for every fx ∈ FQdisj,k

, there is px ∈ P which satisfies supy∈Yk |px(y)−fx(y)| ≤ γ.

By combining the ideas discussed above and Lemma 40, we have Algorithm 6 and the
following theorem.

Theorem 41 For ε > 0 Algorithm 6 is ε-LDP. Also, for 0 < β < 1, there are constants
C,C1 such that for every k, p, n ∈ N with k ≤ p, if

n = O(max{
pC
√
k log 1

α log 1
β

ε2α2
,
log 1

β

ε2
, pC1

√
k log 1

α log
1

β
}),

this algorithm is (α, β)-accurate with respect to Qdisj,k. The running time for each player

is Poly(pO(
√
k log 1

α
)), and the running time for the server is at most O(n) and the time for

answering a query is O(pC2

√
k log 1

α ) for some constant C2. Moreover, as in Section 4.2, the
communication complexity can be improved to 1-bit per player.

6.2 Smooth Queries

We now consider the case where each player i ∈ [n] holds a data record in the continuous
interval xi ∈ [−1, 1]p and we want to estimate the kernel density for a given point x0 ∈ Rp.
A natural question is: If we want to estimate Gaussian kernel density of a given point
x0 with many different bandwidths, can we do it simultaneously under ε local differential
privacy?
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Algorithm 7 Local Trigonometry Mechanism for QChT
1: Input: Player i ∈ [n] holds a data record xi ∈ [−1, 1]p, privacy parameter ε > 0, error

bound α, and t ∈ N. T pt = {0, 1, · · · , t − 1}p. For a vector x = (x1, . . . , xp) ∈ [−1, 1]p,
denote operators θi(x) = arccos(xi), i ∈ [p].

2: for Each Player i ∈ [n] do
3: for Each v = (v1, v2, · · · , vp) ∈ T pt do
4: Compute pi;v = cos(v1θ1(xi)) · · · cos(vpθp(xi))
5: end for
6: Let pi = (pi;v)v∈T pt .
7: end for
8: for The Server do
9: Run LDP-AVG from Lemma 3 on {pi}ni=1 ∈ Rtp with parameter ε, b = 1, denote the

output as p̃D.
10: For each query qf ∈ QChT . Let gf (θ) = f(cos(θ1), cos(θ2), · · · , cos(θp)).

11: Compute the trigonometric polynomial approximation pt(θ) of gf (θ), where pt(θ) =∑
r=(r1,r2···rp),‖r‖∞≤t−1 cr cos(r1θ1) · · · cos(rpθp) as in (8). Denote the vector of the coef-

ficients c ∈ Rtp .
12: Compute p̃D · c.
13: end for

We can view this kind of queries as a subclass of the smooth queries. So, like in the case
of k-way marginals queries, we will give an ε-LDP sanitizer for smooth queries. Now we
consider the data universe D = [−1, 1]p, and dataset D ∈ Dn. For a positive integer h and
constant T > 0, we denote the set of all p-dimensional (h, T )-smooth function (Definition
7) as ChT , and QChT = {qf (D) = 1

n

∑
x∈D f(D), f ∈ ChT } the corresponding set of queries.

The idea of the algorithm is similar to the one used for the k-way marginals; but instead
of using Chebyshev polynomials, we will use trigonometric polynomials. We now assume
that the dimensionality p, h and T are constants so all the result in big O notation will be
omitted. The idea of Algorithm 7 is based on the following Lemma.

Lemma 42 ((Wang et al., 2016)) Assume γ > 0. For every f ∈ ChT , defined on [−1, 1]p,
let gf (θ1, . . . , θp) = f(cos(θ1), . . . , cos(θp)), for θi ∈ [−π, π]. Then there is an even trigono-

metric polynomial p whose degree for each variable is t(γ) = ( 1
γ )

1
h :

p(θ1, . . . , θp) =
∑

0≤r1,...,rp<t(γ)

cr1,...,rp

p∏
i=1

cos(riθi), (8)

such that 1) p γ-uniformly approximates gf , i.e. supx∈[−π,π]p |p(x) − gf (x)| ≤ γ, 2) the
coefficients are uniformly bounded by a constant M which only depends on h, T and p, 3)

moreover, the entire set of the coefficients can be computed in time O
(
( 1
γ )

p+2
h

+ 2p

h2 poly log 1
γ )
)
.

By (8), we can see that all the p(x) which corresponds to gf (x), representing functions
f ∈ ChT , have the same basis

∏p
i=1 cos(riθi). So we can use Lemma 3 and 22 to estimate the

average of the basis. Then, for each query f the server can only compute the corresponding
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coefficients {cr1,r2,··· ,rp}. This idea is implemented in Algorithm 7 for which we have the
following result.

Theorem 43 For any ε > 0, Algorithm 7 is ε-LDP. Also for α > 0, 0 < β < 1, if

n = O(max{log
5p+2h

2h (
1

β
)ε−2α−

5p+2h
h ,

1

ε2
log(

1

β
)})

and t = O((
√
nε)

2
5p+2h ), then Algorithm 7 is (α, β)-accurate with respect to QChT . Moreover,

the time for answering each query is Õ((
√
nε)

4p+4
5p+2h

+ 4p

5ph+2h2 ), where O omits h, T, p and some
log terms. For each player, the computation and communication cost could be improved to
O(1) and 1 bit, respectively, as in Section 4.2.

7. Conclusions and Discussions

In this paper, we studied ERM under the non-interactive local differential privacy model
and made two attempts to resolve the issue of exponential dependency in the dimention-
ality. In our first attempt, we showed that if the loss function is smooth enough, then the
sample complexity to achieve α error is α−c for some positive constant c, which improves
significantly on the previous result of α−(p+1).

Moreover, we proposed efficient algorithms for both player and server views. In our
second attempt, we show that the sample complexity for any 1-Lipschtiz generalized linear
convex function is only linear in p and exponential on other terms by using polynomial of
inner product approximation. Moreover, our techniques can also be extended some other
related problems such as answering k-way-marginals and smooth queries in the local model.

There are still many open problems left. Firstly, as we showed in this paper, the α term
can be polynomial in the sample complexity when the loss function is smooth enough while
the p term can be polynomial when the loss function is generalized linear. Thus, a natural
question is to determine whether it is possible to get an algorithm whose sample complexity
is fully polynomial in all the terms when the loss function is generalized linear and smooth
enough, such as logistic regression. Secondly, although we have shown the advantages of
these two methods, we do not know the practical performance of these methods.
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Appendix A. Details of Omitted Proofs

In this section, we provide the details of the omitted proofs for the theorems, lemmas, and
corollaries stated in previous sections.
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A.1 Proofs in Section 3

Lemma 44 ((Nissim and Stemmer, 2018)) Suppose that x1, · · · , xn are i.i.d sampled
from Lap(1

ε ). Then for every 0 ≤ t < 2n
ε , we have

Pr(|
n∑
i=1

xi| ≥ t) ≤ 2 exp(−ε
2t2

4n
).

Proof [Proof of Lemma 3] Consider Algorithm 1. We have |a − 1
n

∑n
i=1 vi| = |

∑n
i=1 xi
n |,

where xi ∼ Lap( bε ). Taking t =
2
√
n
√

log 2
β

ε and applying Lemma 44, we prove the lemma.

A.2 Proofs in Section 4.1

Proof [Proof of Corollaries 19 and 20] Since the loss function is (∞, T )-smooth, it is
(2p, T )-smooth for all p. Thus, taking h = p in Theorem 17, we get the proof.

Lemma 45 [(Shalev-Shwartz et al., 2009)] If the loss function ` is L-Lipschitz and
µ-strongly convex, then with probability at least 1− β over the randomness of sampling the
data set D, the following is true,

ErrP(θ) ≤

√
2L2

µ

√
ErrD(θ) +

4L2

βµn
.

Proof [Proof of Theorem 21] For the general convex loss function `, we let ˆ̀(θ;x) =
`(θ;x) + µ

2‖θ‖
2 for some µ > 0. Note that in this case the new empirical risk becomes

L̄(θ;D) = L̂(θ;D)+ µ
2‖θ‖

2. Since µ
2‖θ‖

2 does not depend on the dataset, we can still use the

Bernstein polynomial approximation for the original empirical risk L̂(θ;D) as in Algorithm
2, and the error bound for L̄(θ;D) is the same. Thus, we can get the population excess risk
of the loss function ˆ̀, ErrP,ˆ̀(θpriv) by Corollary 20 and have the following relation,

ErrP,`(θpriv) ≤ ErrP,ˆ̀(θpriv) +
µ

2
.

By Lemma 45 for ErrP,ˆ̀(θpriv), where ˆ̀(θ;x) is 1 + ‖C‖2 = O(1)-Lipschitz, we have the
following,

ErrP,`(θpriv) ≤ Õ(

√
2

µ

log
1
8

1
βD

1
4
p p

1
8

4
√

2
(p+1)p

n
1
8 ε

1
4

+
4

βµn
+
µ

2
).

Taking µ = O( 1
12√n), we get

ErrP,`(θpriv) ≤ Õ(
log

1
8

1
βD

1
4
p p

1
8

4
√

2
(p+1)p

βn
1
12 ε

1
4

).

Thus, we have the theorem.
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A.3 Proofs in Section 4.2

Proof [Proof of Theorem 23] By (Bassily and Smith, 2015) it is ε-LDP. The time
complexity and communication complexity is obvious. As in (Bassily and Smith, 2015), it
is sufficient to show that the LDP-AVG is sampling resilient.

The STAT in (Bassily and Smith, 2015) corresponds to the average in our problem, and
φ(x, y) corresponds to maxj∈[p] |[x]j − [y]j |. By Lemma 22, we can see that with probability
at least 1− β,

φ(Avg(v1, v2, · · · , vn); a) = O(
bp√
nε

√
log

p

β
).

Now let S be the set obtained by sampling each point vi, i ∈ [n] independently with proba-
bility 1

2 . Note that by Lemma 22, we have the subset S. If |S| ≥ Ω(max{p log( pβ ), 1
ε2

log 1
β})

with probability 1− β,

φ(Avg(S); LDP-AVG(S)) = O(
b
√
p√
|S|ε

√
log

p

β
).

Now by Hoeffdings inequality, we can get |n/2−|S|| ≤
√
n log 4

β with probability 1−β. Also

since n = Ω(log 1
β ), we know that |S| ≥ O(n) ≥ Ω(p log( pβ )) is true. Thus, with probability

at least 1− 2β, φ(Avg(S); LDP-AVG(S)) = O( bp√
nε

√
log p

β ).

Actually, we can also get φ(Avg(S); Avg(v1, v2, · · · , vn)) ≤ O( bp√
nε

√
log p

β ). We now

assume that vi ∈ R. Note that Avg(S) = v1x1+···+vnxn
x1+···+xn , where each xi ∼ Bernoulli(1

2).
Denote M = x1 +x2 + · · ·+xn. By Hoeffdings Inequality, we have with probability at least

1− β
2 , |M − n

2 | ≤
√
n log 4

β . We further denote N = v1x1 + · · ·+ vnxn. Also, by Hoeffdings

inequality, with probability at least 1− β, we get |N − v1+···+vn
2 | ≤ b

√
n log 2

β . Thus, with

probability at least 1− β, we have:

|N
M
− v1 + · · ·+ vn

n
| ≤
|N −

∑n
i=1 vi/2|
M

+ |
n∑
i=1

vi/2||
1

M
− 2

n
|

≤
|N −

∑n
i=1 vi/2|
M

+
nb

2
| 1

M
− 2

n
|. (9)

For the second term of (9), | 1
M −

2
n | = |n/2−M |

M n
2

. We know from the above |n/2 −M | ≤√
n log 4

β . Also since n = Ω(log 1
β ), we get M ≥ O(n). Thus, | 1

M −
2
n | ≤ O(

√
log 1

β√
nn

).

The upper bound of the second term is O(
b
√

log 1
β√

n
), and the same for the first term.

For p dimensions, we just choose β = β
p and take the union. Thus in total we have

φ(Avg(S); Avg(v1, v2, · · · , vn)) ≤ O( b√
nε

√
log p

β ) ≤ O( bp√
nε

√
log p

β ).

In summary, we have shown that

φ(AVG-LDP(S); Avg(v1, v2, · · · , vn)) ≤ O(
bp√
nε

√
log

p

β
)
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with probability at least 1− 4β.

Proof [Proof of Theorem 26] Let θ∗ = arg minθ∈C L(θ;D), θpriv = arg minθ∈C L̃(θ;D).
Under the assumptions of α, n, k, ε, β, we know from the proof of Theorem 17 and Corollary
20 that supθ∈C |L̃(θ;D)− L(θ;D)| ≤ α. Also by setting ε = 16348pα and α ≤ 1

16348
µ
p
√
p , we

can see that the condition in Lemma 25 holds for ∆ = α. So there is an algorithm whose
output θ̃priv satisfies

L̃(θ̃priv;D) ≤ min
θ∈C

L̃(θ;D) +O(pα).

Thus, we have

L(θ̃priv;D)− L(θ∗;D) ≤ L(θ̃priv;D)− L̃(θpriv;D) + L̃(θpriv;D)− L(θ∗;D),

where

L(θ̃priv;D)− L̃(θpriv;D) ≤ L(θ̃priv;D)− L̃(θ̃priv;D) + L̃(θ̃priv;D)− L̃(θpriv;D)

≤ O(pα).

Also L̃(θpriv;D) − L̂(θ∗;D) ≤ L̃(θ∗;D) − L̂(θ∗;D) ≤ α. Thus, the theorem follows. The
running time is determined by n. This is because when we use the algorithm in Lemma
25, we have to use the first order optimization. That is, we have to evaluate some points
at L̃(θ;D), which will cost at most O(Poly(n, 1

α)) time (note that L̃ is a polynomial with
(k + 1)p ≤ n coefficients).

A.4 Proofs in Section 5

Proof [Proof of Lemma 28] It is easy to see that items 1 is true. Item 2 is due to the

following |f ′β(x)| = |
−1+

x− 1
2√

(x− 1
2 )2+β2

2 | ≤ 1. Item 3 is because of the following 0 ≤ f ′′β (x) =
β2

((x− 1
2

)2+β2)
3
2
≤ 1

β . For item 4 we have |f (3)
β (x)| = 3β2x

(x2+β2)
5
2
≤ 3

β2 .

Proof [Proof of Theorem 29] For simplicity, we omit the term of δ, which will not affect
the linear dependency. Let

Ĝ(w, i) = [

d∑
j=0

cj

(
d

j

)
(yi〈w, xi〉)j(1− yi〈w, xi〉)d−j ]yixTi ,

where cj = f ′β( jd) and

EiĜ(w, i) =
1

n

n∑
i=1

Ĝ(w, i) = Ĝ(w).

For the term of G(w, i), the randomness comes from sampling the index i and the Gaussian
noises added for preserving local privacy.
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Note that in total Eσ,z,iG(w, i) = Ĝ(w), where σ = {σi,j}
d(d+1)

2
j=0 and z = {zi,j}

d(d+1)
2

j=0 .

It is easy to see that Eσ,zG(w, i) = E[(
∑d

j=0 cj
(
d
j

)
ti,jsi,j)yi,0x

T
i,0 | i] = Ĝ(w, i), which

is due to the fact that Eti,j = (yi〈w, xi〉)j , Esi,j = (1 − yi〈w, xi〉)d−j and each ti,j , si,j is
independent. We now calculate the variance for this term with fixed i. Firstly, we have
Var(yi,0x

T
i,0) = O( p

ε4
). For each ti,j , we get

Var(ti,j) ≤ Πjd+j
k=jd+1Var(yi,k)(Var(< wi, xi,k >) + (E(wTi xi,k))

2) ≤ Õ
(
(C1

d(d+ 1)

ε2
)2j
)
.

and similarly we have

Var(si,j) ≤ Õ
(
(C2

d(d+ 1)

ε2
)2(d−j)).

Thus we have

Var(ti,jsi,j) ≤ Õ
(
(C3

d(d+ 1)

ε2
)2d
)
.

Since function f ′β is bounded by 1 and
(
d
j

)
≤ dd for each j. In total, we have

Var(G(wt, i)|i) ≤ O(d · dd · (C3
d(d+ 1)

ε2
)2d · p

ε4
) = Õ

(d6dCdp

ε4d+4

)
.

Next we consider Var(Ĝ(w, i)). Since

‖Ĝ(w, i)− f ′β(yix
T
i w)yix

T
i ‖22 = ‖[

d∑
j=0

cj

(
d

j

)
(yi〈w, xi〉)j(1− yi〈w, xi〉)d−j − f ′β(w)]yix

T
i ‖22

≤ (
1

β2d
)2 ≤ α2

4
,

we get

Var(Ĝ(w, i)) ≤ O
(
E[‖Ĝ(w, i)− f ′β(yix

T
i w)yix

T
i ‖22] + E[Ĝ(w)−∇Lβ(w;D)‖22]

+ E[‖f ′β(yix
T
i w)yix

T
i −∇Lβ(w;D)‖22]

)
≤ O((α+ 1)2).

In total, we have E[‖G(w, i)− Ĝ(w)‖22] ≤ E[‖G(w, i)− Ĝ(w, i)‖22] +E[‖Ĝ(w, i)− Ĝ(w)‖22] ≤
Õ
(
(
d3dCd4

√
p

ε2d+2 + α+ 1)2
)
.

Also, we know that

Lβ(v;D)− Lβ(w;D)− 〈Ĝ(w), v − w〉 =

Lβ(v;D)− Lβ(w;D)− 〈∇Lβ(w;D), v − w〉+ 〈∇Lβ(w;D)−G(w), v − w〉

≤ 1

2β
‖v − w‖22 +

α

2
,

since Lβ is 1
β -smooth and |〈∇Lβ(w)−G(w), v − w〉| ≤ α

2 .

Thus, G(w, i) is an
(
α
2 ,

1
β , O(

d3dCd4
√
p

ε2d+2 + α+ 1)
)

stochastic oracle of Lβ.
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Proof [Proof of Theorem 30]

The guarantee of differential privacy is by Gaussian mechanism and composition theo-
rem.

By Theorem 29, Lemma 28 and 16, we have

ELβ(wn, D)−min
w∈C

Lβ(w,D) ≤ O(
(
d3dCd4

√
p

ε2d+2 + α+ 1)

β
√
n

+
1

β2d
) = O(

d3dCd4
√
p

ε2d+2β
√
n

+
α

2
).

By Lemma 28, we know that

EL(wn, D)−min
w∈C

L(w,D) ≤ O(β +
d3dCd4

√
p

ε2d+2β
√
n

+
α

2
).

Thus, if we take β = α
4 , d = 2

β2α
= O( 1

α3 ) and n = Ω(
d6dCd5p

ε4d+4α2 ), we have

EL(wn, D)−min
w∈C

L(w,D) ≤ α.

Proof [Proof of Theorem 34]

Let hβ denote the function hβ(x) =
x+
√
x2+β2

2 . By Lemma 32 we have

f(θ) = (f ′(1)− f ′(−1))Es∼Q
|s− θ|

2
+
f ′(1) + f ′(−1)

2
θ + c.

Now, we consider function Fβ(θ), which is

Fβ(θ) = (f ′(1)− f ′(−1))Es∼Q[2hβ(
θ − s

2
)− θ − s

2
] +

f ′(1) + f ′(−1)

2
θ + c.

From this, we have

∇Fβ(θ) = (f ′(1)− f ′(−1))Es∼Q[∇hβ(
θ − s

2
)] +

f ′(1) + f ′(−1)

2
− f ′(1)− f ′(−1)

2
.

Note that since |x| = 2 max{x, 0}−x, we can get 1) |Fβ(θ)−f(θ)| ≤ O(β) for any θ ∈ R, 2)
Fβ(x) is O( 1

β )-smooth and convex since hβ(θ − s) is 1
β -smooth and convex, and 3) Fβ(θ) is

O(1)-Lipschitz. Now, we optimize the following problem in the non-interactive local model:

Fβ(w;D) =
1

n

n∑
i=1

Fβ(yi〈xi, w〉).

For each fixed i and s, we let

Ĝ(w, i, s) = (f ′(1)− f ′(−1))[

d∑
j=1

cj

(
d

j

)
ti,jri,j ]yix

T
i + f ′(−1).
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Then, we have Eσ,zG(w, i, s) = Ĝ(w, i, s). By using a similar argument given in the proof
of Theorem 29, we get

Var(Ĝ(w, i, s)|i, s) ≤ Õ
(d6dCdp

ε4d+4

)
.

Thus, for each fixed i we have

EsĜ(w, i, s) = Ḡ(w, i) = (f ′(1)− f ′(−1))[Es∼Q
d∑
j=1

cj

(
d

j

)
(
yi〈w, xi〉 − s

2
)j

(1− yi〈w, xi〉 − s
2

)d−j ]yix
T
i + f ′(−1).

Next, we bound the term of Var(Ĝ(w, i, s)|i) ≤ O(d2d+2).

Let ti,j = Πjd+j
k=jd+1(yi〈wt,xi〉−sk2 ). Then, we have

Var(ti,j) ≤ Πjd+j
k=jd+1|yi|

2Var(〈wt, xi〉 − sk) ≤ O(1).

And similarly for Var(ri,j). Thus, we get

Var(Ĝ(w, i, s)|i) ≤ O(
d∑
j=1

c2
j

(
d

j

)2

Var(ti,jri,j)) = O(d2d+2).

Since EiḠ(w, i) = Ĝ = 1
n

∑n
i=1 Ḡ(w, i), we have Var(Ḡ(w, i)) ≤ O((α + 1)2) by a similar

argument given in the proof of Theorem 29. Thus, in total we have

E‖G(w, i, s)− Ĝ‖22 ≤ Õ
(d6dCdp

ε4d+4

)
The other part of the proof is the same as that of Theorem 29.

A.5 Proofs in Section 6

Proof [Proof of Theorem 41] It is sufficient to prove that

sup
y∈Yk
|q̃D(y)− qy(D)| ≤ γ +

T
(
p+tk
tk

)2√
log

(p+tktk
)

β√
nε

,

where T = p
O(
√
k log( 1

γ
))

. Now we denote pD ∈ R(p+tktk
)

as the average of q̃i. That is, it is the
unperturbed version of p̃D. By Lemma 40, we have supy∈Yk |pD(y)− qy(D)| ≤ γ. Thus it is
sufficient to prove that

sup
y∈Yk
|q̃D(y)− pD(y)| ≤

T
(
p+tk
tk

)2√
log

(p+tktk
)

β√
nε

.
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Since both q̃D and pD can be viewed as
(
p+tk
tk

)
-dimensional vectors, we then have

sup
y∈Yk
|p̃D(y)− pD(y)| ≤ ‖p̃D − pD‖1.

Also, since each coordinate of pD(y) is bounded by T by Lemma 40, we can see that if
n = Ω(max{ 1

ε2
log 1

β ,
(
p+tk
tk

)
log
(
p+tk
tk

)
log 1/β}), then by Lemma 3, with probability at least

1− β, the following is true

‖p̃D − pD‖1 ≤
T
(
p+tk
tk

)2√
log

(p+tktk
)

β√
nε

.

Thus, if taking γ = α
2 and by the fact that

(
p+tk
tk

)
= pO(tk), we get the proof.

Proof [Proof of Theorem 43] Let t = ( 1
γ )

1
h . It is sufficient to prove that supqf∈QCh

T

|p̃D ·
cf − qf (D)| ≤ α. Let pD denote the average of {pi}ni=1, i.e. the unperturbed version of
p̃D. Then by Lemma 42, we have supqf∈QCh

T

|pD · cf − qf (D)| ≤ γ. Also since ‖cf‖∞ ≤M ,

we have supqf∈QCh
T

|p̃D · cf − pD · cf | ≤ O(‖p̃D − pD‖1). By Lemma 3, we know that

if n = Ω(max{ 1
ε2

log 1
β , t

2p log 1
β}), then ‖p̃D − pD‖1 ≤ O(

t
5p
2

√
log( 1

β
)

√
nε

) with probability at

least 1 − β. Thus, we have supqf∈QCh
T

|p̃D · cf − qf (D)| ≤ O(γ +
( 1
γ

)
5p
2h

√
log( 1

β
)

√
nε

). Taking

γ = O((1/
√
nε)

2h
5p+2h ), we get supqf∈QCh

T

|p̃D · cf − qf (D)| ≤ O(
√

log( 1
β )( 1√

nε
)

2h
5p+2h ) ≤ α.

The computational cost for answering a query follows from Lemma 42 and b · c = O(tp).

Appendix B. Omitted Details in Section 4.2

Recently, Bun et al. (2018) proposed a generic transformation, GenProt, which could trans-
form any (ε, δ) (so as for ε) non-interactive LDP protocol to an O(ε)-LDP protocol with the
communication complexity for each player being O(log log n) (at the expense of increasing
the shared randomness in the protocol), which removes the condition of ’sample resilient’ in
(Bassily and Smith, 2015). The detail is in Algorithm 8. The transformation uses O(n log n

β )
independent public string. The reader is referred to (Bun et al., 2018) for details. Actually,
by Algorithm 8, we can easily get an O(ε)-LDP algorithm with the same error bound.

Theorem 46 For any given ε ≤ 1
4 , under the condition of Corollary 20, Algorithm 8 is

10ε-LDP. If T = O(log n
β ), then with probability at least 1− 2β, Corollary 20 holds. More-

over, the communication complexity of each layer is O(log log n) bits, and the computational
complexity for each player is O(log n

β ).
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Algorithm 8 Player-Efficient Local Bernstein Mechanism with O(log log n) bits communi-
cation complexity.

1: Input: Each user i ∈ [n] has data xi ∈ D, privacy parameter ε, public loss function
` : [0, 1]p ×D 7→ [0, 1], and parameter k, T .

2: Preprocessing:
3: For every (i, T ) ∈ [n]× [T ], generate independent public string yi,t = Lap(⊥).
4: Construct the grid T = {v1k ,

v2
k , · · · ,

vp
k }v1,v2,··· ,vp , where {v1, v2, · · · , vp} =

{0, 1, · · · , k}p.
5: Randomly partition [n] in to d = (k + 1)p subsets I1, I2, · · · , Id, with each subset Ij

corresponding to an grid in T denoted as T (j).
6: for Each Player i ∈ [n] do
7: Find the subset I` such that i ∈ I`. Calculate vi = `(T (l);xi).

8: For each t ∈ [T ], compute pi,t = 1
2

Pr[vi+Lap(
1
ε
)=yi,t]

Pr[Lap(⊥)=yi,t]

9: For every t ∈ [T ], if pi,t 6∈ [ e
−2ε

2 , e
2ε

2 ], then set pi,t = 1
2 .

10: For every t ∈ [T ], sample a bit bi,t from Bernoulli(pi,t).
11: Denote Hi = {t ∈ [T ] : bi,t = 1}
12: If Hi = ∅, set Hi = [T ]
13: Sample gi ∈ Hi uniformly, and send gi to the server.
14: end for
15: for The Server do
16: for Each l ∈ [d] do
17: Compute v` = n

|I`|
∑

i∈I` gi.

18: Denote the corresponding grid point (v1k ,
v2
k , · · · ,

vp
k ) ∈ T as `; then let

L̂((v1k ,
v2
k , · · · ,

vp
k );D) = v`.

19: end for
20: Construct perturbed Bernstein polynomial of the empirical loss L̃ as in Algorithm

2. Denote the function as L̃(·, D).
21: Compute wpriv = arg minw∈C L̃(w;D).
22: end for

Appendix C. Detailed Algorithm of SIGM in Lemma 16

Let a ≥ 1, b ≥ 0, p ≥ 1 be some parameters. Let us assume that we know a number R such
that ‖w∗‖2 ≤ R. We choose

αi =
1

a
(
i+ p

p
)p−1 (10)

βi = β +
bσ

R
(i+ p+ 1)

2p−1
2 (11)

Bi = aα2
i =

1

a
(
i+ p

p
)2p−2. (12)

We also define Ak =
∑n

i=0 αi and ηi = αi+1

Bi+1
and α0 = A0 = B0

Lemma 47 (Theorem 3.4 in (Dvurechensky and Gasnikov, 2016)) Assume that f(w)
is endowed with a (γ, β, σ) stochastic oracle (Fγ,β,σ(w; ξ), Gγ,β,σ(w; ξ)) with β ≥ O(1). By
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choosing the parameters above with a = 2
p−1
2 and b = 2

5−2p
4 p

1−2p
2 , then the sequence yk

generated by Algorithm 9

Ex0,x1,··· ,xk [f(yk)]−min
y∈C

f(y) ≤ Θ(
βR2

kp
+
σR√
k

+ kp−1γ).

Taking p = 1, this is just Lemma 16.

Algorithm 9 Stochastic Intermediate Gradient Method

1: Input: The sequences {αi}i≥0, {βi}i≥0, {Bi}i≥0, functions d(x) = 1
2‖x‖

2, Bregman
distance V (x, z) = d(X)− d(Z)− 〈∇d(z), x− z〉.

2: Compute x0 = arg minx∈C{d(x)}.
3: Let ξ0 be a realization of the random variable ξ.
4: Computer Gγ,β,σ(x0; ξ0).
5: Compute

y0 = arg min
x∈C
{β0d(x) + α0〈Gγ,β,σ(x0; ξ0), x− x0〉. (13)

6: for k = 0, · · · , T − 1 do
7: Compute

zk = arg min
x∈C

βkd(x) +
k∑
i=0

αi〈Gγ,β,σ(xi; ξi), x− xi〉 (14)

8: Let xk+1 = ηkzk + (1− ηk)yk.
9: Let ξk+1 be a realization of the random variable ξ.

10: Compute Gγ,β,σ(xk+1; ξk+1)
11: Compute

x̂k+1 = arg min
x∈C

βkV (x, zk) + αk+1〈Gγ,β,σ(xk+1; ξk+1), x− zk〉. (15)

12: Let wk+1 = ηx̂k+1 + (1− ηk)yk.
13: Let yk+1 =

Ak+1−Bk+1

Ak+1
yk +

Bk+1

Ak+1
wk+1.

14: end for
15: return yT .
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