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Abstract

We consider the problem of learning causal models from observational data generated by lin-
ear non-Gaussian acyclic causal models with latent variables. Without considering the effect of
latent variables, the inferred causal relationships among the observed variables are often wrong.
Under faithfulness assumption, we propose a method to check whether there exists a causal path
between any two observed variables. From this information, we can obtain the causal order among
the observed variables. The next question is whether the causal effects can be uniquely identified
as well. We show that causal effects among observed variables cannot be identified uniquely under
mere assumptions of faithfulness and non-Gaussianity of exogenous noises. However, we are able
to propose an efficient method that identifies the set of all possible causal effects that are compat-
ible with the observational data. We present additional structural conditions on the causal graph
under which causal effects among observed variables can be determined uniquely. Furthermore,
we provide necessary and sufficient graphical conditions for unique identification of the number of
variables in the system. Experiments on synthetic data and real-world data show the effectiveness
of our proposed algorithm for learning causal models.

Keywords: Causal Discovery, Structural Equation Models, Non-Gaussianity, Latent Variables,
Independent Component Analysis.

1. Introduction

One of the primary goals in empirical sciences is to discover causal relationships among a set of
variables of interest in various natural and social phenomena. Such causal relationships can be
recovered by conducting controlled experiments. However, performing controlled experiments is
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often expensive or even impossible due to technical or ethical reasons. Thus, it is vital to develop
statistical methods for recovering causal relationships from non-experimental data.

Probabilistic graphical models are commonly used to represent causal relations. Alternatively,
Structural Equation Models (SEM) which further specify mathematical equations among the vari-
ables can be used to represent probabilistic causal influences. Linear SEMs are a special class of
SEMs where each variable is a linear combination of its direct causes and an exogenous noise. Since
non-linear approaches often need large sample sizes to produce reliable results (see explanations in
(Shimizu, 2014), Section 2.5) and the relationships between variables are approximately linear in
many situations (after preprocessing, if needed), linear SEMs are widely used in practice, on the
raw data or preprocessed data with proper nonlinear transformations. Under the causal sufficiency
assumption, by utilizing conventional causal structure learning algorithms such as PC (Spirtes et al.,
2000) and IC (Pearl, 2009), we can identify a class of models that are equivalent in the sense that
they represent the same set of conditional independence assertions obtained from data. If we have
background knowledge about the data-generating mechanism, we may further narrow down the pos-
sible models that are compatible with the observed data (Peters et al., 2016; Ghassami et al., 2018;
Salehkaleybar et al., 2018; Zhang et al., 2017; Peters and Bühlmann, 2013; Zhang and Hyvärinen,
2009; Salehkaleybar et al., 2017; Hoyer et al., 2009; Janzing et al., 2012). For instance, Shimizu
et al. (2006) proposed a linear non-Gaussian acyclic model (LiNGAM) discovery algorithm that
can identify causal structure uniquely, thanks to the assumption of non-Gaussian distributions for
the exogenous noises in the linear SEM model. However, LiNGAM algorithm and its regression-
based variant (DirectLiNGAM) (Shimizu et al., 2011) rely on the causal sufficiency assumption,
i.e., no unobserved common causes exist for any pair of variables that are under consideration in the
model.

In the presence of latent variables, Hoyer et al. (2008) showed that linear SEM can be converted
to a canonical form where each latent variable has at least two children and no parents. Such la-
tent variables are commonly called “latent confounders”. Furthermore, they proposed a solution
which casts the problem of identifying causal effects among observed variables into an overcom-
plete Independent Component Analysis (ICA) problem (Hyvärinen et al., 2004) and returns multiple
causal structures that are observationally equivalent. The time complexity of searching such struc-
tures can be as high as

(
p
po

)
where po and p are the number of observed and total variables in the

system, respectively. Entner and Hoyer (2010) proposed a method that identifies a partial causal
structure among the observed variables by recovering all the unconfounded sets1 and then learning
the causal effects for each pair of variables in the set. However, their method may return an empty
unconfounded set if latent confounders are the cause of most of observed variables in the system
such as the simple example of Figure 1. Chen and Chan (2013) showed that a causal order and
causal effects among observed variables can be identified if the latent confounders have Gaussian
distribution and exogenous noises of observed variables are simultaneously super-Gaussian or sub-
Gaussian. In (Tashiro et al., 2014), the ideas in DirectLiNGAM was extended to the case where
latent confounders exist in the system. The proposed solution first tries to find a root variable (a
variable with no parents). Then, the effect of such variable is removed by regressing it out. This
procedure continues until any variable and its residual becomes dependent. Subsequently, a similar
iterative procedure is used to find a sink variable and remove its effect from other variables. How-

1. A set of variables is called unconfounded if there is no variable outside the set which is confounder of some variables
in the set. In Figure 1, variable V3 is a confouder of variables V1 and V2 but it is not observable. Thus, the set of
variables V1 and V2 is not unconfounded.
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Figure 1: An example of causal graphs: V1 and V2 are observed variables while V3 is latent.

ever, this solution may not recover causal order in some causal graphs such as the one in Figure
1.2 Shimizu and Bollen (2014) proposed a Bayesian approach for estimating the causal direction
between two observed variables when the sum of non-Gaussian independent latent confounders has
a multivariate t-distribution. They compute log-marginal likelihoods to infer causal directions.

There exist work in the literature that tried to recover causal structure among observed variables
in the presence of latent variables for the settings other than linear non-Gaussian model. In general
cases, Spirtes et al. (2000) proposed Fast Causal Inference (FCI) algorithm that can identify some
causal paths in the presence of latent variables by performing conditional independence test without
assuming constraints on the causal mechanism (e.g., linearity). However, it cannot guarantee the
existence of causal paths in some cases such as the one where a pair of observed variables has a
direct causal influence from one to the other and there is also a confounder for them. Elidan and
Friedman (2005) proposed a method to learn Bayesian networks with latent variables based on in-
formation bottleneck concept. In the proposed method, the structure of network is learnt for a given
number of hidden variables by a scored based approach with a structural expectation maximiza-
tion approach. In the literature of exploratory factor analysis, there exist work such as (Jennrich
and Bentler, 2011), which proposed a bi-factor analysis for the case with at most two latent vari-
ables in the system. In the field of Markov random model, Chandrasekaran et al. (2010) considered
Gaussian Markov random field model with latent variables and tried to identify conditional inde-
pendences between observed variables given all variables in the system by considering a sparsity
assumption on the conditional graphical model between the observed variables. Spirtes et al. (1995)
utilized an extension of “Verma constraints” to learn causal strcutures in nested Markov models
with latent variables. Kummerfeld and Ramsey (2016) proposed a method to learn causal structure
by examining the rank of submatrices of correlation matrix for the specific class of measurement
model where each observed variable has exactly one latent parent.

Rather surprisingly, although the causal structure is in general not fully identifiable in the pres-
ence of latent variables, we will show that the causal order among the observed variables is still
identifiable under the faithfulness assumption. In order to obtain a causal order, we first check
whether there exists a causal path between any two observed variables. Subsequently, from this
information, we obtain a causal order among them. Having established a causal order, we aim to
figure out whether the causal effects are uniquely identifiable from observational data. We show
by an example that causal effects among observed variables is not uniquely identifiable even if
the faithfulness assumption holds true and the exogenous noises are non-Gaussian. We propose a
method to identify the set of all possible causal effects efficiently in time that are compatible with
the observational data. Furthermore, we present some structural conditions on the causal graph un-

2. In Figure 1, the root variable (V3) is latent and the regressor of sink variable V2 and the residual are not independent
without considering the latent variable V3 in the set of regressors. Thus, no root or sink variable can be identified in
the system.
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der which causal effects among the observed variables can be identified uniquely. We also provide
necessary and sufficient graphical conditions under which the number of latent variables is uniquely
identifiable. One of the applications of determining the number of latent variables from the obser-
vational data is in psychometrics, where the analysis of testing data often requires to estimate how
many latent variables, the items are measuring (Silva and Scheines, 2005; Kummerfeld and Ramsey,
2016).

The rest of this paper is organized as follows. In Section 2, we define the problem of identi-
fying causal orders and causal effects in linear causal systems with latent variables. In Section 3,
we propose our approach to learn the causal order among the observed variables and provide nec-
essary and sufficient graphical conditions under which the number of latent variables is uniquely
identifiable. In Section 4, we present a method to find the set of all possible causal effects which are
consistent with the observational data and give conditions under which causal effects are uniquely
identifiable. We conduct experiments to evaluate the performance of proposed solutions in Section
5 and conclude in Section 6.

2. Problem Definition

2.1. Notations

In a directed graph G = (V, E) with the vertex set V = {V1, · · · , Vp} and the edge set E, we
denote a directed edge from Vi to Vj by (Vi, Vj). A directed path P = (Vi0 , Vi1 , · · · , Vik) in G is a
sequence of vertices of G where there is a directed edge from Vij to Vij+1 for any 0 ≤ j ≤ k − 1.
We define the set of variables {Vi1 , · · · , Vik−1

} as the intermediate variables on the path P . We say
that a path is a latent path if all the intermediate variables on the path are latent. We use notation
Vi  Vj to show that there exists a directed path from Vi to Vj . If there is a directed path from Vi to
Vj , Vi is ancestor of Vj and that Vj is a descendant of Vi. More formally, anc(Vi) = {Vj |Vj  Vi}
and des(Vi) = {Vj |Vi  Vj}. Each variable Vi is an ancestor and a descendant of itself.

We denote vectors and matrices by boldface letters. The vectors Ai,: and A:,i represent i-th row
and column of matrix A, respectively. The (i, j) entry of matrix A is denoted by [A]i,j . For n×m
matrix A and n× p matrix B, the notation [A,B] denotes the horizontal concatenation. For n×m
matrix A and p×m matrix B, the notation [A; B] shows the vertical concatenation.

2.2. System Model

Consider a linear SEM among a set of variables V = {V1, · · · , Vp}:

V = AV + N, (1)

where the vectors V and N denote the random variables in V and their corresponding exogenous
noises, respectively. The entry (i, j) of matrix A shows the strength of direct causal effect of
variable Vj on variable Vi. We assume that the causal relations among random variables can be
represented by a directed acyclic graph (DAG). Thus, the variables in V can be arranged in a causal
order, such that no latter variable causes any earlier variable. We denote such a causal order on
the variables by k in which k(i), i ∈ {1, · · · , p} shows the position of variable Vi in the causal
order. A can be converted to a strictly lower triangular matrix by permuting its rows and columns
simultaneously based on the causal order.
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Figure 2: Causal graph of Example 1.

Example 1 Consider the following linear SEM with four random variables {V1, · · · , V4}:
V1

V2

V3

V4

 =


0 e 0 d
0 0 0 0
0 a 0 0
0 b c 0



V1

V2

V3

V4

+


N1

N2

N3

N4

 ,
where a, b, c, d and e are some constants (see Figure 2). A causal order in this SEM model would be:
k(1) = 4, k(2) = 1, k(3) = 2, k(4) = 3. Hence, matrix PAPT is strictly lower triangular where P
is a permutation matrix associated with k defined by the following non-zero entries: {(k(i), i)|1 ≤
i ≤ 4}.

We split random variables in V into an observed vector Vo ∈ Rpo and a latent vector Vl ∈ Rpl

where po and pl are the number of observed and latent variables, respectively. Without loss of
generality, we assume that first po entries of V are observable, i.e. Vo = [V1, · · · , Vpo ]T and
Vl = [Vpo+1, · · · , Vp]T . Therefore,[

Vo

Vl

]
=

[
Aoo Aol

Alo All

] [
Vo

Vl

]
+

[
No

Nl

]
, (2)

where No and Nl are the vectors of exogenous noises of Vo and Vl, respectively. Furthermore, we
have: A = [Aoo,Aol; Alo,All].

The causal order among all variables k, induces a causal order ko among the observed variables
as follows: For any two observed variables Vi, Vj , 1 ≤ i, j ≤ po, ko(i) < ko(j) if k(i) < k(j).
Similarly, k induces a causal order among latent variables. We denote this causal order by kl. It
can be easily shown that Aoo and All can be converted to strictly lower triangular matrices by
permuting rows and columns simultaneously based on causal orders ko and kl, respectively.

Example 2 In Example 1, suppose that only variables V1 and V2 are observable. Then, the causal
order among observed variables would be: ko(1) = 2 and ko(2) = 1. Thus, PAooPT is a strictly
lower triangular matrix where P = [0, 1; 1, 0]. For the latent variables, kl(3) = 1 and kl(4) = 2.

In the remainder of this section, we briefly describe LiNGAM algorithm, which is capable of
recovering the matrix A uniquely if all variables in the model are observable and exogenous noises
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are non-Gaussian (Shimizu et al., 2006). The vector V in Equation (1) can be written as a linear
combination of exogenous noises as follows:

V = BN, (3)

where B = (I − A)−1. The above equation fits into the standard linear Independent Component
Analysis (ICA) framework, where independent non-Gaussian components are all variables in N.
By utilizing statistical techniques in ICA (Hyvärinen et al., 2004), matrix B can be identified up to
scaling and permutations of its columns. More specifically, the independent components of ICA as
well as the estimated B matrix are not uniquely determined because permuting and rescaling them
does not change their mutual independence. So without knowledge of the ordering and scaling of
the noise terms, the following general ICA model for V holds:

V = B̃Ñ, (4)

where Ñ contains independent components and these components (resp. the columns of B̃) are a
permuted and rescaled version of those in N (resp. the columns of B). In what follows, we use B
for matrix B = (I−A)−1 while B̃ is the mixing matrix for the ICA model, as given in (4). Hence
B̃ can be written as:

B̃ = BPΛ,

where P is a permutation matrix and Λ is a diagonal scaling matrix. Yet the corresponding causal
model, represented by A, can be uniquely identified because of its acyclicity constraint. In partic-
ular, the inverse of B can be converted uniquely to a lower triangular matrix having all-ones on its
diagonal by some scaling and permutation of the rows.

3. Identifying Causal Orders among Observed Variables

Since the graph with adjacency matrix A is acyclic, there exists an integer d such that Ad = 0.
Thus, we can rewrite B in the following form:

B = (I−A)−1 =
d−1∑
k=0

Ak. (5)

It can be seen that there exists a causal path of length k from the exogenous noise of variable Vi
to variable Vj if entry (j, i) of matrix Ak is nonzero. We define [B]j,i as the total causal effect of
variable Vi on variable Vj .

Assumption 1 (Faithfulness assumption) The total causal effect from variable Vi to Vj is nonzero
if there is a causal path from Vi to Vj . Thus, we have: [B]j,i 6= 0 if Vi  Vj .

In the following lemma, we list two consequences of the faithfulness assumption that are imme-
diate from the definition.

Lemma 1 Under the faithfulness assumptions, for any two observed variables Vi and Vj , 1 ≤
i, j ≤ po, the following holds:
(i) Suppose that Vi  Vj . If [B]i,k 6= 0 for some k 6= j, then [B]j,k 6= 0.
(ii) If there is no causal path between Vi and Vj , then [B]i,j = 0 and [B]j,i = 0.

6
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Based on Equation (2), we can write Vo in terms of No and Nl as follows

Vo = (I−D)−1No + (I−D)−1Aol(I−All)
−1Nl, (6)

where D = Aoo + Aol(I−All)
−1Alo. Let Bo := (I−D)−1, Bl := (I−D)−1Aol(I−All)

−1,
and N := [No; Nl]. Thus, Vo = B′N where B′ := [Bo,Bl]. This equation fits into a linear over-
complete ICA where the exogenous noises are non-Gaussian and the number of observed variables
is less than the number of variables in the system. The following proposition asserts when the
columns of matrix B′ are still identifiable up to permutations and scaling.

Definition 2 (Reducibility of a matrix) A matrix is reducible if two of its columns are linearly de-
pendent.

Proposition 3 ((Eriksson and Koivunen, 2004), Theorem 3) In the linear over-completer ICA prob-
lem, the columns of mixing matrix can be identified up to some scaling and permutation if it is not
reducible.

Lemma 4 The columns of B′ corresponding to any two observed variables are linearly indepen-
dent.

Proof Consider any two observed variables Vi and Vj . We know that [B′]i,i and [B′]j,j are non-
zero. Furthermore, B′ is a sub-matrix of B. Hence, based on Lemma 1 (ii), if there is no causal
path between Vi and Vj , we have: [B′]i,j = 0 and [B′]j,i = 0. Thus, [B′]:,i and [B′]:,j are not
linearly dependent. Furthermore, if one of the variable is the ancestor of the another one, let say
Vi ∈ anc(Vj), according to Lemma 1 (i), [B′]j,i 6= 0 while [B′]i,j = 0. Thus, [B′]:,i and [B′]:,j are
also not linearly dependent in this case and the proof is complete.

Although columns of B′ corresponding to the observed variables are pairwise linearly inde-
pendent, a column corresponding to a latent variable Vi might be linearly dependent on a column
corresponding to an observed or latent variable Vj (see Example 3). In that case, we can remove
the column [B′]:,i and Ni from matrix B′ and vector N, respectively and replace Nj by Nj + αNi

where α is a constant such that [B′]:,i = α[B′]:,j . We can continue this process until all the remain-
ing columns are pairwise linearly independent. Let B′′ and N′′ be the resulting mixing matrix and
exogenous noise vector, respectively. According to Lemma 4, all the columns of B′ corresponding
to observed variables are in B′′. We utilize matrix B′′ to recover a causal order among the observed
variables.

Since matrix B′′ is not reducible, its column can be identified up to some scaling and per-
mutation according to Proposition 3. Let B̃′′ be the recovered matrix containing columns of B′′.
Consider any two observed variables Vi and Vj , i.e., 1 ≤ i, j ≤ po. We extract two rows of B̃′′

corresponding to variables Vi and Vj . Let n0∗ be the number of columns in [B̃′′i,:; B̃
′′
j,:] whose first

entries are zero but second entries are nonzero. Similarly, let n∗0 be the number of columns that
their first entries are nonzero but their second entries are zero. The following lemma asserts that
the existence of a causal path between Vi and Vj can be checked from n0∗ and n∗0 (or equivalently,
B̃′′).

Lemma 5 Under the faithfulness assumption, the existence of a causal path between any two ob-
served variable can be inferred from matrix B̃′′.
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Figure 3: Causal graph of Example 3.

Proof. First, we show that if Vi  Vj , then n0∗ > 0 and n∗0 = 0. We know that matrix [B̃′′i,:; B̃
′′
j,:]

can be converted to [B′′i,:; B
′′
j,:] by some permutation and scaling of its columns. Moreover, B′′ con-

tains some of the columns of B′ including all the columns corresponding to the observed variables.
Thus, from Lemma 1, we know that if [B′′]i,k 6= 0 for any k 6= j, then [B′′]j,k 6= 0. Moreover, we
have: [B′′]j,j 6= 0 and [B′′]i,j = 0. Hence, we can conclude that: n0∗ > 0 and n∗0 = 0.

If n0∗ > 0 and n∗0 = 0, then Vi  Vj . By contradiction, suppose that there is no causal path
between Vi and Vi or Vj  Vi. The second case (Vj  Vi) does not happen due to what we just
proved. Furthermore, from Lemma 1, we know that [B′′]i,i 6= 0, [B′′]i,j = 0. Therefore, n∗0 > 0
which is in contradiction with our assumption. Hence, we can conclude that n0∗ > 0 and n∗0 = 0
if and only if Vi  Vj .

We can construct an auxiliary directed graph whose vertices are the observed variables and a
directed edge exists from Vi to Vj if Vi  Vj (which we can infer from n∗0 and n0∗). Any causal
order over the auxiliary graph is a correct causal order among the observed variables Vo.

Example 3 Consider the causal graph in Figure 3. Suppose that variables V3 and V4 are latent.
B′ would be: [

1 0 0 a
d 1 e c+ ad+ be

]
.

We can remove the third column from B′ and update the vector N to [N1;N2 + eN3;N4]. Thus,
matrix B′′ is equal to: [

1 0 a
d 1 c+ ad+ be

]
,

which is not reducible. Without loss of generality, assume that the recovered matrix B̃′′ is equal to
B′′. Therefore, n0∗ = 1 and n∗0 = 0. Hence, we can infer that there is a causal path from V1 to V2.

3.1. Recovering the Number of Variables in the System

According to Proposition 3, the number of variables in the system can be recovered if and only if
matrix B′ is not reducible. Furthermore, Equation (6) implies that matrix B′ is not reducible if and
only if the columns of matrix [Ipo×po ,Aol(I −All)

−1] are not linearly independent. In the rest of
this section, we will present equivalent necessary and sufficient graphical conditions under which
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Figure 4: Causal graph of Example 5. V1 and V2 are the only observed variables.

the number of variables in the systems can be uniquely identified. But before that, we present a
simple example where [Ipo×po ,Aol(I −All)

−1] is reducible and give a graphical interpretation of
it.

Example 4 Consider a linear SEM with three variables V1, V2, and V3 where V3 = N3, V1 = αV3+
N1, and V2 = βV1+N2. Thus, the corresponding causal graph would be: V3 → V1 → V2. Suppose
that V3 is the only latent variable. Hence, All = 0, Aol = [α; 0], and Aol(I − All)

−1 = [α; 0]
which is linearly dependent on the first column of I. In fact, latent variable V3 can be absorbed in
variable V1 by changing the exogenous noise of V1 from N1 to N1 + αN3. Thus, the number of
variables in this model cannot be identified uniquely in this model.

Definition 6 (Absorbing) Variable Vi is said to be absorbed in variable Vj if the exogenous noise
of Vi is set to zero Ni ← 0, and the exogenous noise of Vj is replaced by Nj ← Nj + [B]j,iNi. We
define absorbing a variable in ∅ by setting its exogenous noise to zero.

Definition 7 (Absorbablity) Let P ′Vo
be the joint distribution of the observed variables after absorb-

ing Vi in Vj . We say Vi is absorbable in Vj if P ′Vo
= PVo .

The following theorem characterizes the graphical conditions where a latent variable is ab-
sorbable. The proof of theorem is given in Appendix A.

Theorem 8
(a) A latent variable is absorbable in ∅ if and only if it has no observable descendant.
(b) A latent variable Vj is absorbable in variable Vi (observed or latent), if and only if all paths
from Vj to its observable descendants go through Vi.

Example 5 Consider a linear SEM with corresponding causal graph in Figure 4 where V1 and V2

are the only observed variables. V7 satisfies condition (a) and its exogenous noise can be set to
zero. Furthermore, V3 and V4 satisfy condition (b) with respect to V5 and they can be absorbed in
V5 by setting the exogenous noise of V5 to N5 + (αγ + β)N3 + γN4. Finally, V6 satisfies condition
(b) and it can be absorbed in V2. Note that V8 and V5 cannot be absorbed in V1 or V2.

Definition 9 We say a causal graph is minimal if none of its variables are absorbable.

9
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Based on above definition, a causal graph is minimal if none of the latent variables satisfy
the conditions in Theorem 8. We borrowed the terminology of minimal causal graphs from Pearl
(1988) for polytree causal structures. In (Pearl, 1988), a causal graph is called minimal if it has
no redundant latent variables in the sense that the joint distribution without latent variables remains
a connected tree. Later, Etesami et al. (2016) showed that in minimal latent directed information
polytrees, each node has at least two children. The following lemma asserts that the same argument
holds true for the non-absorbable latent variables in our setting. The proof of lemma is given in
Appendix B.

Lemma 10 A latent variable is non-absorbable if it has at least two non-absorbable children.

The next theorem gives necessary and sufficient graphical conditions for non-reduciblity of
matrix B′. The proof of theorem is given in Appendix C.

Theorem 11 B′ is not reducible almost surely if and only if the corresponding causal graph G is
minimal.

Corollary 12 Under faithfulness assumption and non-Gaussianity of exogenous noises, the number
of variables in the system is identifiable almost surely if the corresponding graph is minimal.

Proof. Based on Theorem 11, we know that matrix B′ is not reducible almost surely if the cor-
responding causal graph G is minimal. Furthermore, according to Proposition 3, the number of
variables in the systems is identifiable if matrix B′ is not reducible. This completes the proof.

4. Identifying Total Causal Effects among Observed Variables

In this section, first, we will show by an example that total causal effects among observed variables
cannot be identified uniquely under the faithfulness assumption and non-Gaussianity of exogenous
noises.3 However, we can obtain all the possible solutions. Furthermore, under some additional
assumptions on linear SEM, we show that one can uniquely identify total causal effects among
observed variables.

4.1. Example of non-Uniqueness of Total Causal Effects

Consider the causal graph in Figure 5 where Vi and Vj are observed variables and Vk is a latent
variable. The direct causal effects from Vk to Vi, from Vk to Vj , and from Vi to Vj are α, γ, and β,
respectively. We can write Vi and Vj based on the exogenous noises of their ancestors as follows:

Vi = αNk +Ni,

Vj = βNi + (αβ + γ)Nk +Nj .
(7)

Now, we construct a second causal graph depicted in Figure 5 where the exogenous noises of
variables Vi and Vk are changed to αNk and Ni, respectively. Furthermore, we set the direct causal
effects from Vk to Vi, from Vk to Vj , and from Vi to Vj to 1, −γ/α, and β + (γ/α), respectively. It

3. This example has also been studied in (Hoyer et al., 2008).

10
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Figure 5: An example of non-identifiability of causal effects from observed variable Vi to observed
variable Vj .

can be seen that equations in (7) do not change while the direct causal effect from Vi to Vj becomes
β + (γ/α) in the second causal graph. Thus, we cannot identify causal effect from Vi to Vj merely
by observational data from Vi and Vj . In Appendix D, we extend this example to the case where
there might be multiple latent variables on the path from Vk to Vi and Vj , and from Vi to Vj .

The above example shows that causal effects may not be identified even by assuming non-
Gaussianity of exogenous noises if we have some latent variables in the system. In the following,
we first show that the set of all possible total causal effects can be identified. Afterwards, we
will present a set of structural conditions under which we can uniquely identify total causal effects
among observed variables.

4.2. Identifying the Set of All Possible Total Causal Effects

Since the subgraph corresponding to All is a DAG, there exists an integer dl such that All
dl = 0.

Hence, we can rewrite matrix D given in (6) as follows

D = Aoo +

dl−1∑
k=0

AolAll
kAlo. (8)

Lemma 13 Matrix D in (6) can be converted to a strictly lower triangular matrix by permuting
columns and rows simultaneously based on the causal order ko.

Proof. Let P be the permutation matrix corresponding to the causal order ko. We want to show that
PDPT is strictly lower triangular. It suffices to prove PAolAll

kAloPT is strictly lower triangular
for any 0 ≤ k ≤ dl−1. Suppose that there exists a nonzero entry, (i, j), in PAolAll

kAloPT where
j ≥ i. Then, there should be a directed path from observed variable Vk−1

o (j) to Vk−1
o (i) of length

k+ 2 through latent variables in the causal graph where k−1
o (i) is the index of an observed variable

whose order is i in the causal order ko. This means variable Vk−1
o (j) should come before variable

Vk−1
o (i) in any causal order. But this violates the causal order ko.

Previously, we showed that existence of a causal path between any two observed variables Vi
and Vj can be determined by performing over-complete ICA. Let deso(Vi) be the set of all observed

11
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descendants of Vi, i.e., deso(Vi) = {Vj |Vi  Vj , 1 ≤ j ≤ po}. We will utilize deso(Vi)’s to
enumerate all possible total causal effects among the observed variables.

Remark 14 From Lemma 4, we have: deso(Vi) 6= deso(Vj) for any 1 ≤ i, j ≤ po.

As we discussed in Section 3, under non-Gaussianity of exogenous noises, the columns of B′′

can be determined up to some scalings and permutations by solving an overcomplete ICA problem.
Let pr be the number of columns of B′′. Furthermore, without loss of generality, assume that
variables Vpo+1, Vpo+2, · · · , Vpr are the latent variables in the system whose corresponding columns
remain in B′′.

Theorem 15 Let ri := |{j : deso(Vi) = deso(Vj), 1 ≤ j ≤ pr}|, for any 1 ≤ i ≤ po. Under the
assumptions of faithfulness and non-Gaussianity of exogenous noises, the number of all possible
D’s that can generate the same distribution for Vo according to (2), is equal to Πpo

i=1ri.

Proof. According to Proposition 3, under non-Gaussianity of exogenous noises, the columns of B′′

can be determined up to some scalings and permutations by solving an overcomplete ICA problem.
Furthermore, for the column corresponding to the noise Ni, 1 ≤ i ≤ po, we have ri possible
candidates with the same set of indicies of non-zero entries where all of them are pairwise linearly
independent. Let B′o be a po × po matrix by selecting one of the candidates for each column
corresponding to noise Ni, 1 ≤ i ≤ po. Thus, we have Πpo

i=1ri possible matrices.4 Now, for each
B′o, we just need to show that there exists an assignment for Aoo, Alo, Aol, and All such that
they satisfy (6) and Aoo and All can be converted to strictly lower triangular matrices with some
simultaneous permutations of columns and rows.

Let Alo = 0pl×po and All = 0pl×pl . Assume that B′l consists of the remaining columns which
are not in B′o. We also add columns corresponding to latent absorbed variables to B′l. Now, we
set Aoo and Aol to I − B′o

−1 and B′o
−1B′l, respectively. By these assignments, the proposed

matrix A = [Aoo,Aol; Alo,All] satisfies in (6). Thus, we just need to show that I − B′o
−1 can

be converted to a strictly lower triangular matrix by some permutations. To do so, first note that
from Lemma 13, we know that matrix D can be converted to a strictly lower triangular matrix by a
permutation matrix P. Furthermore, based on this property of matrix D, we have: Dpo = 0. Thus,
we can write:

P(I−D)−1PT =

po−1∑
k=0

PDkPT =

po−1∑
k=0

(PDPT )k.

Since matrix (PDPT )k is a lower triangular matrix for any k ≥ 0, (I−D)−1 can be converted
to a lower triangular matrix by permutation matrix P. Furthermore, the set of nonzero entries of
B′o is the same as the one of (I − D)−1. Thus, PB′oPT is also a lower triangular matrix where
all diagonal elements of it are equal to one. Hence, we can write B′o in the form of B′o = I + B′′o
where PB′′oPT is a strictly lower triangular matrix. Therefore, we have:

P(I−B′o
−1

)PT = P(I−
po−1∑
k=0

(−1)kB′′o
k
)PT = P(

po−1∑
k=1

(−1)k+1B′′o
k
)PT , (9)

4. Please note that diagonal entries of B′o should be equal to one. Otherwise we can normalize each column to its
on-diagonal entry.

12
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Algorithm 1
1: Input: Collection of the sets deso(Vi), 1 ≤ i ≤ po.
2: Run an over-complete ICA algorithm over observed variables Vo and obtain matrix B̃′′.
3: for i = 1 : pr do
4: Ii = {k|[B̃′′:,i]k 6= 0}
5: for j = 1 : po do
6: if Ii = deso(Vj) then
7: [B̂o]:,j = B̃′′:,i/[B̃

′′
:,i]j

8: end if
9: end for

10: end for
11: Output: B̂o

where the last term shows that I −B′o
−1 can be converted to a strictly lower triangular matrix and

the proof is complete.

Comparing our results with (Hoyer et al., 2008), we can obtain all sets deso(Vi)’s and determine
which columns can be selected as corresponding columns of observed variables inO(p2

opr) and then
enumerate all the possible total causal effects while the proposed algorithm in (Hoyer et al., 2008)
requires to search a space of

(
pr
po

)
different possible choices. Moreover, we can identify a causal

order uniquely with the same time complexity by utilizing the method proposed in Section 3.

4.3. Unique Identification of Causal Effects under Structural Conditions

Based on Theorem 15, in this part, we propose a method to identify total causal effects uniquely
under some structural conditions.

Assumption 2 Assume that for any observed variables Vi and any latent variable Vk, we have:
deso(Vk) 6= deso(Vi).

Assumption 2 is a very natural condition that one expects to hold for unique identifiability of
causal effects. This is because if Assumption 2 fails, then based on Theorem 15, there are multiple
sets of total causal effects that are compatible with the observed data.

Theorem 16 Under Assumptions 1-2, and non-Gaussianity of exogenous noises, the total causal
effect between any two observed variables can be identified uniquely.

Proof. Let matrix [B̃′′]po×pr be the output of over-complete ICA problem whose columns are the
columns in matrix B′′. We define Ii as the the set of indices of nonzero entries of column B̃′′:,i, i.e.
Ii = {k|[B̃′′:,i]k 6= 0}. We know that Ii = deso(Vj) if B̃′′:,i corresponds to the observed variable Vj .
Moreover, under Assumption 2, any observed variable Vi and any variable Vj (observed or latent)
have different sets deso(Vi) and deso(Vj). Thus, each set Ii is just equal to one of deso(Vi)’s, let
say deso(Vj). The column B̃′′:,i normalized by [B̃′′:,i]j shows the total causal effects from variable j
to other observed variables.

13
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The description of the proposed solution in Theorem 16 is given in Algorithm 1. It is noteworthy
that the example in Section 4.1 (given in Figure 5) violates the conditions in Theorem 16 since
deso(Vk) = deso(Vi). We have shown for this example that the causal effect from Vi to Vj cannot
be identified uniquely.

5. Experiments

In this section, we first evaluate the performance of the proposed method in recovering causal or-
ders from synthetic data, generated according to the causal graph in Figure 1. Our experiments
show that the proposed method returns a correct causal order while, as we mentioned in Introduc-
tion section, previous methods proposed for linear non-Gaussian SEM with latent variables, might
require additional assumptions in order to recover causal relations. More specifically, they do not
have theoretical guarantee to recover the causal order or checking the existence of causal paths in
our setting. Nevertheless, we evaluated the performances of lvLiNGAM (Hoyer et al., 2008), Pair-
wise lvLiNGAM (Entner and Hoyer, 2010), ParceLiNGAM (Tashiro et al., 2014), ICA-LiNGAM
(Shimizu et al., 2006), Direct-LiNGAM (Shimizu et al., 2011) and FCI algorithm (Spirtes et al.,
2000). We also consider another causal graph which satisfies Assumption 2 and demonstrate that
the proposed method can return the correct causal effects. Next, we evaluate the performance of
the proposed method for different number of variables in the system. Afterwards, for real data, we
consider the daily closing prices of four world stock indicies and check the existence of causal paths
between any two indicies. The results are compatible with common beliefs in economy.

5.1. Synthetic data

First, for the causal graph in Figure 1, we generated 1000 samples of observed variables V1 and
V2 where nonzero entries of matrix A is equal to 0.9. We utilized the Reconstruction ICA (RICA)
algorithm (Le et al., 2011) to solve the over-complete ICA problem as follows: Let vo be a po × n
matrix containing observational data where [vo]i,j is j-th sample of variable Vi and n is the number
of samples. First, the sample covariance matrix of vo is eigen-decomposed, i.e., 1/(n − 1)(vo −
v̄o)(vo − v̄o)T = UΣUT where U is the orthogonal matrix, Σ is a diagonal matrix, and v̄o is the
sample mean vector. Then, the observed data is pre-whitened as follows: w = Σ−1/2U(vo − v̄o).
The RICA algorithm tries to find matrix Z that is the minimizer of the following objective function:

minimize
Z

n∑
i=1

pr∑
j=1

g(ZT
:,jw:,i) +

λ

n

n∑
i=1

‖ZZTw:,i −w:,i‖22,

where parameter λ controls the cost of penalty term. We estimated matrix B̃′′ by UΣ1/2Z∗ where
Z∗ is the optimal solution of the above optimization problem.

In order to estimate the number of columns of B̃′′, we held out 250 of samples for model
selection. More specifically, we solved the over-complete ICA problem for different number of
columns, evaluated the fitness of each model by computing the objective function of RICA over
the hold-out set, and selected the model with minimum cost. In order to check whether an entry is
equal to zero, we used the bootstrapping method (Efron and Tibshirani, 1994), which generates 10
bootstrap samples by sampling with replacement from training data. For each bootstrap sample, we
executed RICA algorithm to obtain an estimation of B̃′′. Since in each estimation, columns are in
arbitrary permutation, we need to match similar columns in estimations of B̃′′. To do so, in each
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Figure 6: An example of causal graphs satisfying structural conditions.

estimation, we divided all entries of a column by the entry with the maximum absolute value in that
column. Then, we picked each column from the estimated mixing matrix, computed its l2 distance
from each column of another estimated mixing matrix, and matched to the one with a minimum
distance. Afterwards, we used a t-test with confidence level of 95% to check whether an entry is
equal to zero from the bootstrap samples. An estimation of B̃′′ from a bootstrap sample is given as
follows: [

−0.0272 0.5238 1
1 1 0.8579

]
.

Moreover, experimental results showed the correct support of B̃′′, i.e.,
[0, 1, 1; 1, 1, 1] can be recovered with merely 10 bootstrap samples. Thus, there is a causal path
from V1 to V2. Furthermore, for the causal graph V1 ← V3 → V2 in which V3 is only the latent
variable, we repeated the same procedure explained above. An estimation of B̃′′ from one of the
bootstrap samples is given as follows:[

1 −0.046 0.9838
−0.031 1 1

]
.

From experiments, the estimated support of B̃′′ from bootstrap samples was: [0, 1, 1; 1, 0, 1].
Thus, we can conclude that there is no causal path between V1 and V2. Next, we considered the
causal graph in Figure 6 where V4 is the only latent variable. The direct causal effects of all directed
edges are equal to 0.9. An estimation of B̃′′ from one of the bootstrap samples is given as follows:−0.049 0.892 1 1

−0.024 1 0.523 −0.042
1 −0.02 0.527 −0.032

 .
Thus, we can deduce that there is only a causal path from V2 to V1. We can also estimate total

causal effects between observed variables since this causal graph satisfies Assumption 2. The output
of Algorithm 1 is:  1 0.892 −0.049

−0.042 1 −0.024
−0.032 −0.02 1

 .
which is close to the true causal effects. We evaluated previous methods for learning the causal
graphs in Figure 1, Figure 6, and the causal graph V1 ← V3 → V2. Table 1 shows whether each of
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Figure 1 Figure 6 V1 ← V3 → V2

lvLiNGAM (Hoyer et al., 2008) X × X
Pairwise lvLiNGAM (Entner and Hoyer, 2010) × × X

ParceLiNGAM (Tashiro et al., 2014) × × ×
ICA-LiNGAM (Shimizu et al., 2006) X × ×

Direct-LiNGAM (Shimizu et al., 2011) X × ×
FCI (Spirtes et al., 2000) × × ×

Proposed algorithm X X X

Table 1: Comparison of methods in recovering causal paths for the causal graphs in Figure 1, Figure
6, and the causal graph V1 ← V3 → V2.

p 10 15 20 25 30
c = 2 0.7 1.41 1.66 3.09 3.48
c = 3 0.76 1.48 1.75 3.33 3.84

Table 2: Running time (in seconds) of Algorithm 1 for differnet number of variables in the system
and different graph densities c = 2, 3.

them can find all causal paths correctly. It can be seen that only the proposed algorithm is successful
in recovering the causal paths in all considered causal graphs.

We generated 1000 DAGs of size p by first selecting a causal order among variables randomly
and then connecting each pair of variables with probability c/(p− 1), where c is the average degree
of each node. We generated data from a linear SEM where nonzero entries of matrix A were drawn
uniformly from the range [−0.9,−0.5] ∪ [0.5, 0.9] and the exogenous noises followed a uniform
distribution. In the remainder of this part, we assume that the number of latent variable is known.
We first evaluated the running time of Algorithm 1 and compared it with the proposed algorithm
in (Hoyer et al., 2008), which can provide all possible total causal effects. In the experiments, we
selected pl = p/2 variables randomly as latent variables. The running time of Algorithm 1 is given
in Table 2 for c = 2, 3. In our experiments, the algorithm in (Hoyer et al., 2008) did not return any
output in 10 minutes and it is only feasible on small graphs with fewer than six variables.

We evaluated the performance of the proposed algorithm and compared it with the previous
ones, including Pairwise lvLiNGAM (Entner and Hoyer, 2010), ParceLiNGAM (Tashiro et al.,
2014), LiNGAM (Shimizu et al., 2006), and Direct-LiNGAM (Shimizu et al., 2011), in the presence
of latent variables. More specifically, we define precision of an algorithm as the fraction of correctly
recovered causal paths among recovered causal paths between any two observed variables. We also
define its recall as the fraction of recovered causal paths among actual causal paths between any two
observed variables. Figure 7 shows presions and recalls of the mentioned algorithms for different
number of variables p = 10, 15, 20, different number of observed variables, and different average
degrees c = 4, 7. One can see that none of the algorithms has the best performance in all settings.
However, the proposed algorithm and Pairwise lvLiNGAM (Entner and Hoyer, 2010) are the top two
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 7: Precisions/Recalls of Pairwise lvLiNGAM (Entner and Hoyer, 2010), ParceLiNGAM
(Tashiro et al., 2014), ICA-LiNGAM (Shimizu et al., 2006), Direct-LiNGAM (Shimizu
et al., 2011) and the proposed algorithm in the presence of latent variables: (a) Precisions
for p = 10, c = 4, (b) Recalls for p = 10, c = 4, (c) Precisions for p = 10, c = 7, (d)
Recalls for p = 10, c = 7, (e) Precisions for p = 15, c = 4, (f) Recalls for p = 15, c = 4,
(g) Precisions for p = 15, c = 7, (h) Recalls for p = 15, c = 7, (i) Precisions for p = 20,
c = 4, (j) Recalls for p = 20, c = 4, (k) Precisions for p = 20, c = 7, (l) Recalls for
p = 20, c = 7.

algorithms in terms of precision. Moreover, LiNGAM (Shimizu et al., 2006) and Direct-LiNGAM
(Shimizu et al., 2011) have the best performance in terms of recall.

5.2. Real data

We considered the daily closing prices of the following world stock indicies from 10/12/2012 to
10/12/2018, obtained from Yahoo financial database: Dow Jones Industrial Average (DJI) in USA,
Nikkei 225 (N225) in Japan, Euronext 100 (N100) in Europe, Hang Seng Index (HSI) in Hong
Kong, and the Shanghai Stock Exchange Composite Index (SSEC) in China.

Let ci(t) be the closing price of i-th index on day t. We define the corresponding return by
Ri(t) := (ci(t) − ci−1(t))/ci−1(t). We considered the returns of indicies as an observational data
and applied the proposed method in Section 3 in order to check the existence of a causal path
between any two indicies. Figure 8 depicts the causal relationships among the indicies. In this
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DJI N100

HSI

SSEC N225

Figure 8: The causal relationships among five world stock indicies obtained from the proposed
method in Section 3.

figure, there is a directed edge from index i to index j if we find a causal path from i to j. As can
be seen, there are causal paths from DJI to HSI, N225, and N100 which is commonly known to
be true in the stock market (Hyvärinen et al., 2010). Furthermore, HSI is influenced by all other
indicies and SSEC only affects HSI which these findings are compatible with the previous results in
(Hyvärinen et al., 2010).

6. Conclusions

We considered the problem of learning causal models from observational data in linear non-Gaussian
acyclic models with latent variables. Under the faithfulness assumption, we proposed a method to
check whether there exists a causal path between any two observed variables. Moreover, we gave
necessary and sufficient graphical conditions to uniquely identify the number of variables in the
system. From the information about the existence of a directed path, we could obtain a causal
order among the observed variables. Additionally, we considered the problem of estimating total
causal effects. We showed by an example that causal effects among observed variables cannot be
identified uniquely even under the assumptions of faithfulness and non-Gaussianity of exogenous
noises. However, we can identify all possible set of total causal effects that are compatible with the
observational data efficiently in time. Furthermore, we presented structural conditions under which
we can learn total causal effects among observed variables uniquely. Experiments on synthetic data
and real-world data showed the effectiveness of our proposed algorithms on learning causal models.
One of our future research directions is to extend the results to the case of cyclic linear SEMs. We
believe that methods similar to the one proposed in this paper can recover some of the causal paths
in the system. Another direction of future work entails developing causal structure learning algo-
rithms for nonlinear SEM with latent variables by exploiting recent progress in non-linear ICA. In
addition, it is desirable to develop a principled, efficient approach to selecting the optimal number
of latent variables.
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Appendix A. Proof of Theorem 8

“if” part:
We say a directed path is latent if all the variables on the path except the endpoint are latent. The
“if” parts of conditions in Theorem 8 can be rewritten as follows:
(a) Latent variable Vpo+j , 1 ≤ j ≤ pl, is absorbable in ∅ if it has no observable descendant.
(b1) Latent variable Vpo+j , 1 ≤ j ≤ pl, is absorbable in observed variable Vi, 1 ≤ i ≤ po, if Vi is
the only observed variable influenced by Vpo+j through some latent paths.
(b2) Latent variable Vpo+j , 1 ≤ j ≤ pl, is absorbable in latent variable Vpo+k, 1 ≤ k ≤ pl, if all
latent paths from Vpo+j to observed variables go through Vpo+k.
It is easy to show that conditions (b1) and (b2) are equivalent to “if” part of condition (b) in Theo-
rem 8. From (6), we know that Vo = (I−D)−1[I,Aol(I−All)

−1]N where entry (i, j) of matrix
(I−D)−1Aol(I−All)

−1 is the total causal effect of latent variable Vpo+j to the observed variable
Vi. This entry would be zero if no directed path exists from latent variable Vpo+j to observed vari-
able Vi. Now, we prove the correctness of above conditions:
(a) If a latent variable Vpo+j has no observable descendant, then the j-th column of Aol(I−All)

−1

is all zeros. Hence, there would be no changes in [I,Aol(I −All)
−1]N by setting Npo+j to zero.

Therefore, there would be no change in PVo .
(b1) Since latent variable Vpo+j only influences one observed variable through latent paths, [Aol(I−
All)

−1]:,j has only one non-zero entry and therefore linearly dependent on one of columns of iden-
tity matrix, let say i-th column. Moreover, the total causal effect from Vpo+j to Vi, i.e., [B]i,po+j

is equal to [Aol(I −All)
−1]i,j since there is no causal path from Vpo+j to Vi that goes through an

observed variable other than Vi. Thus, we replace Ni by Ni + [Aol(I − All)
−1]i,jNpo+j and set

Npo+j to zero and there would be no change in [I,Aol(I−All)
−1]N.

(b2) Consider any observed variable Vi, 1 ≤ i ≤ po. If all latent paths of Vpo+j go though Vpo+k,
then [Aol(I−All)

−1]i,j = [Aol(I−All)
−1]i,k[B]po+k,po+j since all the paths from Vpo+j to Vpo+k

are latent. Thus, we can change Npo+k to Npo+k + [B]po+k,po+jNpo+j and set Npo+j to zero and
there would be no change in [I,Aol(I−All)

−1]N.
“only if” part:
Now, we prove that the conditions (a), (b1), and (b2) are the only absorbable case. It can be easily
shown that an observed variable cannot be absorbed into any other observed or latent variables.
Thus, it is just needed to consider the following cases:

• Absorbing a latent variable in an observed variable: Suppose that a latent variable Vj can
be absorbed in an observed variable Vi. Furthermore, assume that Vj also influences other
observed variable Vk through latent path(s). That is, there exist some paths that start from Vj
and end in Vk without traversing, Vi. Let γ 6= 0 be the causal strength of such paths. Then,
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[B]k,j = [B]k,i× [B]i,j + γ. To absorb Vj in Vi, γ should be zero which would contradict the
faithfulness assumption.

• Absorbing a latent variable in another latent variable: Suppose that a latent variable Vj can
be absorbed in another latent variable Vi but for some observed variable Vk, all latent paths
from Vj do not go through Vi. Let γ be the causal strength of such paths. Then, [B]k,j =
[B]k,i × [B]i,j + γ. To absorb Vj in Vi, γ should be zero which contradicts the faithfulness
assumption.

Appendix B. Proof of Lemma 10

Suppose that a latent variable Vi has at least two non-absorbable children such as Vj and Vk. We
need to consider three cases:

• If both of Vj and Vk are observed variables, then Vi is not absorbable according to Theorem
8.

• Suppose that Vj and Vk are latent variables. Each of them must reach at least two observed
variables through latent paths (due to condition (b) in Theorem 8). Thus, Vi also reaches those
observed variables through latent paths. Furthermore, all latent paths starting from Vi do not
go through only one latent variable. Hence, none of the conditions in Theorem 8 are satisfied
and Vi is not absorbable.

• One of Vj or Vk, let say variable Vj , is observed. Vk must reach an observed variable other
than Vj through some latent paths. Otherwise, it is absorbable. Therefore, Vi is not absorbable
since it does not satisfy any conditions in Theorem 8.

Appendix C. Proof of Theorem 11

If G is not minimal, then it can be easily seen that B′ is also reducible. Now, suppose that G is
minimal. We want to show that B′ is also not reducible almost surely. By contradiction, suppose
that B′ is reducible. Then two columns of [I,Aol(I −All)

−1] must be linearly dependent. Now,
two cases should be considered:

• One column of Aol(I − All)
−1, let say i-th column, and one column of I are linearly de-

pendent. Hence, all the latent paths starting from latent variable Vpo+i influences only one
observed variable (Condition (b) in Theorem 8). Thus, G is not minimal which is a contra-
diction.

• Two columns of Aol(I − All)
−1, let say i, j are linearly dependent. If the corresponding

columns have only one non-zero entry, then both of them can be absorbed in an observed
variable (Condition (b) in Theorem 8). Thus, G is not minimal. Now, suppose that these
columns have more than one nonzero entry each, let say entries k and l. Without loss of
generality, suppose that Vpo+i is the ancestor of Vpo+j ( the same argument still holds true if
neither is an ancestor of the other). Let hi be the maximum length of latent paths starting from
latent variable Vpo+i. By induction on hi, we will show that i, j-th columns of Aol(I−All)

−1

are linearly dependent with measure zero. The case of hi = 1 is trivial. Suppose that for
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hi = r, the statement holds true. We will prove it for hi = r + 1. Let latent variable Vpo+u

be a child of Vpo+i and assume some paths from Vpo+u do not go through Vpo+j . Let [C]i,j
be the total causal strength of only latent paths from Vj to Vi. We know that:

[C]k,po+j/[C]l,po+j = [C]k,po+i/[C]l,po+i. (10)

Furthermore,

[C]k,po+i = [C]k,po+u[C]po+u,po+i + c′, [C]l,po+i = [C]l,po+u[C]po+u,po+i + c′′, (11)

for some values c′, c′′. Moreover, [C]po+u,po+i = [A]po+u,po+i + c′′′ for some c′′′. Plugging
(11) into (10), we have:

([C]k,po+u[C]l,po+j − [C]k,po+j [C]l,po+u)[A]po+u,po+i =

[C]l,po+jc
′ − [C]k,po+jc

′′ − ([C]k,po+u[C]l,po+j − [C]k,po+j [C]l,po+u)c′′′.

The above equation holds with measure zero if [C]k,po+u[C]l,po+j − [C]k,po+j [C]l,po+u 6= 0
which is true with measure one from the induction hypothesis.

Appendix D. An Example of non-Identifiability of Total Causal Effects

Let P = (Vi0 , Vi1 , · · · , Vir−1 , Vir) be a causal path of length r from variable Vi0 to variable Vir . We
define the weight of path P , denoted by ωp , as the product of direct causal strengths of edges on
the path:

ωP =
r−1∏
s=0

[A]is+1,is . (12)

Suppose that ΠVi,Vj be the set of all causal paths from variable Vi to variable Vj . It can be shown
that the total causal effect from Vi to Vj can be computed by the following equation:

[B]j,i =
∑

P∈ΠVi,Vj

ωP . (13)

Now, consider a causal graph in Figure 5 where Vi and Vj are observed variables and Vk is
latent variable. There exist causal paths from Vk to Vi and Vj , and from Vi to Vj with the following
properties:

• Let Π′Vk,Vj
be the causal paths from variable Vk to variable Vj where Vi is not on any of these

paths. We assume that Π′Vk,Vj
6= ∅.

• All intermediate variables in ΠVk,Vi , Π′Vk,Vj
and ΠVi,Vj are latent.

We can write Vi and Vj based on the exogenous noises of their ancestors as follows:

Vi = αNk +
∑

Vr∈anc(Vi)\Vk

[B]i,rNr,

Vj = βNi + γNk +
∑

Vr∈anc(Vj)\{Vk,Vi}

[B]i,rNr,
(14)
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where α =
∑

P∈ΠVk,Vi
ωP , β =

∑
P∈ΠVi,Vj

ωP , and γ =
∑

P∈Π′Vk,Vj

ωP .

Now, we construct a causal graph depicted in Figure 5 where the exogenous noises of variables
Vi and Vk are changed to αNk and Ni, respectively. Furthermore, we pick three paths P1 ∈ ΠVk,Vi ,
P2 ∈ Π′Vk,Vj

, P3 ∈ ΠVi,Vj where:

P1 = (Vk, Vu1 , · · · , Vi),
P2 = (Vk, Vu2 , · · · , Vj),
P3 = (Vi, Vu3 , · · · , Vj).

By our first property on the paths, we can find two paths P1 and P2 such that Vu1 6= Vu2 . We
also change matrix A to matrix A′ where all the entries of A′ are the same as A except three entries
[A′]u1,k, [A′]u2,k, and [A′]u3,i. We will adjust these three entries such that the total causal effects
from Vk to Vi, from Vk to Vj , and from Vi to Vj become 1, −γ/α, and β + γ/α, respectively.
Moreover, these adjustments should not change the dependencies of observed variables Vi and Vj to
the exogenous noises of their ancestors given in Equation (14). It can be shown that we can change
the three mentioned causal effects to our desired values by the following adjustments:

[A′]u1,k =
1−

∑
P∈ΠVk,Vi

\{P1} ωP

ωP1/[A]u2,k
,

[A′]u2,k =
−γ/α−

∑
P∈Π′Vk,Vj

\{P2} ωP

ωP2/[A]u2,k
,

[A′]u3,i =
β + γ/α−

∑
P∈ΠVi,Vj

\{P3} ωP

ωP3/[A]u3,i
.

Now, consider any latent variable Vu which is on one of the paths in ΠVk,Vi , Π′Vk,Vj
, or ΠVi,Vj .

Changes in those mentioned three edges cannot affect the total causal effect from Vu to Vi or Vj
since the edges (Vk, Vu1), (Vk, Vu2), and (Vi, Vu3) are not a part of any paths from Vu to Vi or Vj .
Thus, equations in (14) do not change while the total causal effect from Vi to Vj becomes β+γ/α in
the second causal graph. It is noteworthy to mention that changes in the equations of latent variables
are not important since we are not observing these variables.
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