
Journal of Machine Learning Research 21 (2020) 1-37 Submitted 4/19; Revised 5/20; Published 6/20

Nesterov’s Acceleration for Approximate Newton

Haishan Ye HSYE CS@OUTLOOK.COM
Shenzhen Research Insititution of Big Data
The Chinese University of Hong Kong, Shenzen
2001 Longxiang Road, Shenzhen, China

Luo Luo LUOLUO@UST.HK
Department of Mathematics
Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong

Zhihua Zhang∗ ZHZHANG@MATH.PKU.EDU.CN

National Engineering Lab for Big Data Analysis and Applications
School of Mathematical Sciences
Peking University
5 Yiheyuan Road, Beijing, China

Editor: Qiang Liu

Abstract
Optimization plays a key role in machine learning. Recently, stochastic second-order methods have
attracted considerable attention because of their low computational cost in each iteration. However,
these methods might suffer from poor performance when the Hessian is hard to be approximate well
in a computation-efficient way. To overcome this dilemma, we resort to Nesterov’s acceleration
to improve the convergence performance of these second-order methods and propose accelerated
approximate Newton. We give the theoretical convergence analysis of accelerated approximate
Newton and show that Nesterov’s acceleration can improve the convergence rate. Accordingly, we
propose an accelerated regularized sub-sampled Newton (ARSSN) which performs much better than
the conventional regularized sub-sampled Newton empirically and theoretically. Moreover, we show
that ARSSN has better performance than classical first-order methods empirically.
Keywords: Nesterov’s Acceleration, Approximate Newton, Stochastic Second-order

1. Introduction

Optimization has become an increasingly important issue in machine learning. Many machine
learning models can be reformulated as the following optimization problem:

min
x∈Rd

F (x) ,
1

n

n∑
i=1

fi(x), (1)

where each fi is the loss with respect to (w.r.t.) the i-th training sample. There are many examples
such as logistic regressions, smoothed support vector machines, neural networks, and graphical
models.

∗. Corresponding author.

c©2020 Haishan Ye, Luo Luo, and Zhihua Zhang.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at
http://jmlr.org/papers/v21/19-265.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v21/19-265.html

YE, LUO, AND ZHANG

In the era of big data, large-scale optimization is an important challenge. The stochastic gradient
descent (SGD) method has been widely employed to reduce the computational cost per iteration
(Cotter et al., 2011; Li et al., 2014; Robbins and Monro, 1951). However, SGD has poor convergence
property. Hence, many variants have been proposed to improve the convergence rate of SGD (Johnson
and Zhang, 2013; Roux et al., 2012; Schmidt et al., 2017; Zhang et al., 2013). At the same time,
Nesterov’s acceleration technique has become a very effective tool for first-order methods (Nesterov,
1983). It greatly improves the convergence rate of gradient descent (Nesterov, 1983) and stochastic
gradient descent with variance reduction (Allen-Zhu, 2017; Lan and Zhou, 2018).

Recently, second-order methods have also received great attention due to their high conver-
gence rate. However, conventional second-order methods are very costly because they take heavy
computation to obtain the Hessian matrix. To conquer this weakness, one proposed a sub-sampled
Newton which only selects a subset of functions fi randomly to construct a sub-sampled Hessian
(Roosta-Khorasani and Mahoney, 2016; Byrd et al., 2011; Xu et al., 2016). Meanwhile, when the
Hessian can be written as∇2F (x) = [B(x)]TB(x) where B(x) is an available n× d matrix, Pilanci
and Wainwright (2017) applied the sketching technique to alleviate the computational burden of
computing Hessian and brought up sketch Newton. In fact, for many machine learning problems
which take fi(x) = `(bi, a

T
i x), where `(·, ·) is any convex smooth loss function and ai is a data point,

the sub-sampled Newton method can be regarded as a kind of sketch Newton because the Hessian
can be expressed as ∇2F (x) = ATDA = [D1/2A]T [D1/2A], where D is a diagonal matrix with
Di,i = ∇2`(bi, a

T
i x). Hence, when we refer to sketch Newton, we also include sub-sample Newton

methods. The sketch Newton has its advantages when the size of the training set is sufficiently larger
than the data dimension. In this case, one can approximate the Hessian efficiently via the sketching
technique. Most importantly, such an approximate Hessian guarantees that the sketch Newton keeps
a constant linear convergence rate independent of the condition number of the objective function (Ye
et al., 2017).

However, the sketch Newton can not function properly because its prerequisite is not satisfied in
many applications, where the number of training data is close to or even smaller than the actual size
of data dimensions. To compensate for this gap, regularized sketch Newton methods were proposed
(Erdogdu and Montanari, 2015; Roosta-Khorasani and Mahoney, 2016; Li et al., 2020). However,
though adding a regularizer is an effective way to reduce the sketching size, a small sketching size
will lead to a slow convergence rate. Ye et al. (2017) demonstrated that if approximate Hessian H(t)

satisfies

(1− η)∇2F (x(t)) � H(t) � (1 + η)∇2F (x(t)), (2)

where 0 < η < 1, then the approximate Newton converges linearly with the rate η. Hence, one can
sub-sample a small set of samples and constructs an approximate Hessian very efficiently but suffers
from a slow convergence rate.

In this paper, we aim to establish balance between the computational efficiency of constructed
approximate Hessian and the convergence rate. We resort to Nesterov’s acceleration technique
and propose the accelerated approximate Newton that one can construct an approximate Hessian
efficiently while keeping a fast convergence rate. We will show that using Nesterov’s acceleration
technique, the convergence rate can be promoted from η to 1−

√
1−η. Accordingly, we propose

accelerated regularized sub-sampled Newton (ARSSN) which applies random sampling to construct
approximate Hessian. ARSSN has a fast convergence rate but a low computational cost per iteration.

We summarize contribution of our work as follows:

2

NESTEROV’S ACCELERATION FOR APPROXIMATE NEWTON

• We introduce Nesterov’s acceleration technique to improve the convergence rate of second-
order methods (approximate Newton). This acceleration is of significance especially when the
number of samples n and the feature dimension d are close to each other in which, it causes
difficulties to construct a proper approximate Hessian with a low computational cost.

• Our theoretical analysis shows that by the acceleration technique, the convergence rate of the
approximate Newton can be improved to 1−

√
1− η from η with 0 < η < 1 when the initial

point is close to the optimal point. This result admits that accelerated approximate Newton can
construct an approximate Hessian by stochastic methods very efficiently while enjoying a fast
convergence rate.

• We propose Accelerated Regularized Sub-sampled Newton. Compared with classical first-
order methods, ARSSN presents a better performance which demonstrates the computational
efficiency of accelerated second-order methods. This is verified by the empirical study
indicating the ability of the acceleration technique to improve approximate Newton methods
effectively. In addition, the experiments also reveal a fact that adding curvature information
properly can always improve the algorithm’s convergence rate.

Organization. In the remainder of this paper, we introduce notation and preliminaries in Section 2.
In Section 3, we describe accelerated approximate Newton method in detail and provide its local
convergence analysis. In Section 4, we implement accelerated approximate Newton with random
sampling and propose accelerated regularized sub-sampled Newton method. In Section 5, we
conduct empirical studies on the accelerated approximate Newton and compare ARSSN with baseline
algorithms to validate its computational efficiency. Finally, we conclude our work in Section 6. All
proofs are provided in the appendices with the order of their appearance.

1.1. Related Work

Since Byrd et al. (2011) first proposed the sub-sampled Newton, stochastic second order methods have
become a hot research topic. Erdogdu and Montanari (2015) gave the quantitive convergence rate of
sub-sampled Newton and proposed a regularized sub-sampled Newton called NewSamp. Roosta-
Khorasani and Mahoney (2016) proposed several new variants of sub-sampled Newton, including
the methods which use sub-sampled Hessian and mini-batch gradient. Pilanci and Wainwright
(2017) first used sketching techniques within the context of Newton-like methods. The authors
proposed a randomized second-order method which performs an approximate Newton’s step using a
randomly sketched Hessian. Their algorithm is specialized to the case that the Hessian matrix can
be expressed as ∇2F (x) = BT (x)B(x) where B(x) ∈ Rn×d with n � d is readily available. In
addition, combining stochastic Hessian with Taylors expansion, Agarwal et al. (2017) conceived a
novel method named LiSSA, which is also termed as Newton-SGI (semi-stochastic gradient iteration)
method by Bollapragada et al. (2019).

On the other hand, Nesterov’s technique has been used in second-order methods with cubic
regularization and the exact Hessian to improve the convergence rate (Nesterov, 2008). Without the
strong convexity assumption, this method converges at the rate of O(1/t3). Monteiro and Svaiter
(2013) proposed A-NPEwhich also used the exact Hessian. A-NPE had a convergence rateO(1/t7/2)
when the objective function is only convex but its Hessian is Lipschitz continuous (Monteiro and
Svaiter, 2013). Very recently, accelerated second-order methods with cubic regularization under
inexact Hessian information have been proposed (Ghadimi et al., 2017; Chen et al., 2018). It is also

3

YE, LUO, AND ZHANG

notable that the convergence rate shown in (Ghadimi et al., 2017) is different from our work. Once
the approximate Hessian H(t) satisfies that

∥∥H(t) −∇2f(x)
∥∥ ≤ τ and the objective function is µ-

strongly convex, the convergence rate in Ghadimi et al. (2017) is 1−
√
τ/µwhich is no better than our

result. Note that even η is of small value such as 0.1 in Eqn. (2), the value of
∥∥H(t) −∇2f(x)

∥∥ can
still be large since Eqn. (2) can only derive that

∥∥H(t) −∇2f(x)
∥∥ ≤ η

∥∥∇2f(x)
∥∥ and

∥∥∇2f(x)
∥∥

is commonly of large value in practice. Be aware of this problem, our theoretical result provides
a much tighter convergence rate bound. However, we only provide a local convergence rate while
Ghadimi et al. (2017); Chen et al. (2018) gave global convergence rates. Furthermore, accelerated
second-order methods with cubic regularization should solve a costly sub-problem for each iteration.
In contrast, the algorithm in this paper is neat and remains a similar form to accelerated first-order
methods.

Nesterov and Stich (2017) and Tu et al. (2017) devised an accelerated block Gauss-Seidel method
by introducing the acceleration technique to block Gauss-Seidel. Nesterov and Stich (2017) chose a
fixed partitioning of the coordinates in advance while Tu et al. (2017) selected coordinates randomly.
Both algorithms can be regarded as combining the Nesterov’s acceleration with the random coordinate
Newton method.

2. Notation and Preliminaries

We first introduce notation that will be used in this paper. Then, we give some assumptions on the
objective function that will be used.

2.1. Notation

Given a matrix A = [aij] ∈ Rm×n of rank `, its condensed SVD is given as A =
∑`

i=1 σiuiv
T
i ,

where ui and vi are left and right singular vectors of A related to i-th largest singular value σi > 0.

Accordingly, ‖A‖ , σ1 is the spectral norm and ‖A‖F ,
√∑`

i=1 σ
2
` is the Frobenius norm. Using

the spectral norm and Frobenius norm, we can define the stable rank of A as sr(A) ,
‖A‖2F
‖A‖2 . If A is

symmetric positive semi-definite, then ui equals to vi and the singular value decomposition of A is
the identical to its eigenvalue decomposition. It also holds that λi(A) = σi(A), where λi(A) is the
i-th largest eigenvalue of A. Let λmax(A) and λmin(A) denote the largest and smallest eigenvalue
of A, respectively. If A is a symmetric positive semi-definite matrix, we can define A-norm as
‖x‖A =

√
xTAx. Furthermore, if matrix B is also symmetric positive semi-definite, we say B � A

when A−B is positive semi-definite.

2.2. Assumptions

In this paper, we focus on the problem in Eqn. (1). Moreover, we will make the following three
assumptions.

Assumption 1 The objective function F is µ-strongly convex, that is,

F (y) ≥ F (x) + [∇F (x)]T (y − x) +
µ

2
‖y − x‖2, for µ > 0.

Assumption 2 The gradient∇F (x) is L-Lipschitz continuous, that is,

‖∇F (x)−∇F (y)‖ ≤ L‖y − x‖, for L > 0.

4

NESTEROV’S ACCELERATION FOR APPROXIMATE NEWTON

Assumption 3 The Hessian∇2F (x) is γ-Lipschitz continuous, that is,

‖∇2F (x)−∇2F (y)‖ ≤ γ‖y − x‖, for γ > 0.

or equivalently

−γ
6
‖x− y‖3 ≤ F (y)−

[
F (x) + 〈∇F (x), y − x〉+

1

2
〈∇2F (x)(y − x), y − x〉

]
≤ γ

6
‖y − x‖3. (3)

By Assumptions 1 and 2, we define the condition number of function F (x) as: κ , L
µ .

2.3. Row Norm Squares Sampling

The row norm squares sampling matrix S = DΩ ∈ Rs×n w.r.t. A ∈ Rn×d is determined by
sampling probability pi, a sampling matrix Ω ∈ Rs×n and a diagonal rescaling matrix D ∈ Rs×s.
The sampling probability satisfies

pi ≥ β
‖Ai,:‖2

‖A‖2F
and

n∑
i=1

pi = 1,

where Ai,: means the i-th row of A and 0 < β is a constant. We construct S as follows. For every
j = 1, . . . , s, independently and with replacement, pick an index i from the set {1, 2 . . . , n} with
probability pi and set Ωji = 1 and Ωjk = 0 for k 6= i as well as Djj = 1/

√
pis.

The row norm squares sampling matrix has the following important property.

Theorem 1 (Tropp et al. (2015)) Let S ∈ Rs×n be a row norm squares sampling matrix w.r.t.
A ∈ Rn×d. If s = O

(
sr(A) log(d/δ)

βc2

)
, then it holds that

‖ATSTSA−ATA‖ ≤ c · ‖A‖2

with probability at least 1− δ.

3. Accelerated Approximate Newton

In practice, it is common that the concerned problem is ill-conditioned and the number of the training
data n and data dimension d are close to each other. In this case, the conventional sketch Newton
and its regularized variants can not construct a desirable approximate Hessian in a computation
efficient way while keeping a fast convergence rate. To conquer this dilemma, we take advantage of
Nesterov’s acceleration technique and propose accelerated approximate Newton. We describe the
algorithmic procedure of accelerated approximate Newton as follows.

First, we construct an approximate Hessian H(t) satisfying
(1− η)

(
E
[
[H(t)]−1

])−1
� ∇2F (y(t)) �

(
E
[
[H(t)]−1

])−1

(
E
[
[H(t)]−1

])−1
+∇2F (y(t)) � 2H(t)

(4)

for 0 < η < 1. The first condition of Eqn. (4) is similar to the left one of Eqn. (2), but the second
condition is much different from the right one of Eqn. (2). We will see that Condition (4) can be
easily satisfied in practice with high probability in the next section.

5

YE, LUO, AND ZHANG

Algorithm 1 Accelerated Approximate Newton.
1: Input: x(0) and x(1) are initial points sufficiently close to x∗; θ is the acceleration parameter.
2: for t = 1, . . . until termination do
3: Construct an approximate Hessian H(t) satisfying Eqn. (4);
4: y(t) = x(t) − 1−θ

1+θ

(
x(t) − x(t−1)

)
;

5: x(t+1) = y(t) − [H(t)]−1∇F (y(t)).
6: end for

Second, we update sequence x(t) as follows:y(t) = x(t) − 1− θ
1 + θ

(
x(t) − x(t−1)

)
,

x(t+1) = y(t) − [H(t)]−1∇F (y(t)),

(5)

where θ is chosen in terms of the value of η. It could be observed that the iteration (5) mostly
resembles the update procedure of Nesterov’s accelerated gradient descent where [H(t)]−1 is the
counterpart of step size. If we set θ = 1, the scheme (5) reduces to the update of approximate
Newton (Ye et al., 2017). Thus, we refer to a class of methods satisfying Eqn. (4) and (5) as the
accelerated approximate Newton.

We describe the accelerated approximate Newton in Algorithm 1 in detail.

3.1. Theoretical Analysis

In this section, we will give the local convergence properties of the accelerated approximate Newton
(Algorithm 1). Let us denote

H̄(t) ,
(
E[(H(t))−1]

)−1
and H̄∗ ,

(
E[(H∗)−1]

)−1
,

where H(t) and H∗ are the approximate Hessians constructed by stochastic methods at point y(t) and
x∗ respectively. We also denote

V (t) , F (x(t))− F (x∗) +
θ2

2
‖x∗ − v(t)‖2H̄? , (6)

where
v(t) = x(t−1) +

1

θ
(x(t) − x(t−1)), and θ =

√
1− η.

We will prove that V (t) will almost decrease with rate 1 −
√

1− η in expectation. The following
theorem gives a detailed description.

Theorem 2 Let F (x) be a convex function such that Assumptions 1 and 2 hold. Suppose that∇2F (x)
exists and Assumption 3 holds in a neighborhood of the minimizer x∗. The approximate Hessian H(t)

satisfies Condition (4). Matrices H(t+1) and H(t) satisfy that ‖H̄(t+1)− H̄(t)‖ ≤ γς‖y(t+1)− y(t)‖,
where ς is a constant. Then, Algorithm 1 has the following convergence properties

E
[
V (t+1)

]
≤ (1− θ)V (t) + γϕ

[
V (t)

]3/2
(7)

6

NESTEROV’S ACCELERATION FOR APPROXIMATE NEWTON

Method Iterations to obtain ε-suboptimal Condition Reference

Approximate Newton O
(

1
1−η · log

(
1
ε

))
Eqn. (2) Ye et al. (2017)

Accelerated Approximate Newton O
(

1√
1−η · log

(
1
ε

))
Eqn. (4) Theorem 2

Table 1: Compare accelerated approximate Newton with approximate Newton

where expectation is taken with respect to H(t). And ϕ is defined as

ϕ =
272κ3 + 12(θ3 + κ2)ς

(1 + θ)3µ3/2
+

32L(1 + θ2)ς

(1 + θ)3µ5/2
.

Remark 3 From Eqn. (7), we can observe that the accelerated approximate Newton method will
converge super-linearly at the beginning. This is because the second term on the right hand
of (7) dominates the convergence property at this phase. Once V (t) is small enough, then the
accelerated approximate Newton method will turn into linear convergence with the rate 1 − θ

because it holds that
[
V (t)

]3/2 � V (t) in this case. Our experiments validate such phenomenon. In
fact, approximate Newton method has similar convergence properties while approximate Newton
converges quadratically at the beginning (Pilanci and Wainwright, 2017; Xu et al., 2016; Erdogdu
and Montanari, 2015) opposed to the superlinear rate of the accelerated approximate Newton.

Remark 4 We only provide a local convergence rate of accelerated approximate Newton in Theorem
2. To achieve a fast convergence rate, x(t) is required to enter into the local region close enough to
the optima x∗. However, in real applications, this local region can be much large just as pointed
out in Nesterov (2018): the region of quadratic convergence of the Newton method is almost the
same as the region of the linear convergence of the gradient method. Therefore, we recommend to
run stochastic gradient descent several iterations to find a good initial point x(0) just as LiSSA does
(Agarwal et al., 2017), then use accelerated approximate Newton to obtain a high precision solution.

Theorem 2 shows that Algorithm 1 converges Q-linearly with rate 1−
√

1− η in expectation,
that is

lim
t→∞

E
[
V (t+1)

]
V (t)

= (1− θ) = 1−
√

1− η.

In contrast, with the approximate Hessian, the approximate Newton method can only achieve
a η convergence rate. To obtain an ε-suboptimal solution, approximate Newton method needs
O
(

1
1−η · log

(
1
ε

))
iterations while the complexity can be reduced to O

(
1√
1−η · log

(
1
ε

))
with the

acceleration. This shows that the acceleration technique can effectively promote the convergence
properties of the approximate Newton especially when η is close to one. The detailed comparisons
between approximate Newton and accelerated approximate Newton are listed in Table 1.

3.2. Inexact Solution of Sub-problem

Algorithm 1 takes [H(t)]−1∇F (y(t)) as the descent direction which is the solution of the following
problem

min
p

1

2
pTH(t)p− pT∇F (y(t)). (8)

7

YE, LUO, AND ZHANG

Algorithm 2 Accelerated Regularized Sub-sample Newton (ARSSN).

1: Input: initial points x(0) and x(1) sufficiently close to x∗, acceleration parameter θ, and sample
size s.

2: for t = 1, . . . until termination do
3: Select a sample set S of size s by random sampling and construct H(t) of the form (10)

satisfying Eqn. (4);
4: y(t) = x(t) − 1−θ

1+θ

(
x(t) − x(t−1)

)
;

5: x(t+1) = y(t) − [H(t)]−1∇F (y(t))
6: end for

In fact, an inexact solution of problem (8) can also work. If the direction vector p(t) satisfies

‖H(t)p(t) −∇F (y(t))‖ ≤ rε0‖∇F (y(t))‖, (9)

where 0 ≤ ε0 < 1 and r depends on the approximate Hessian, the inexactness of p(t) only affects the
convergence rate at most with ε0.

Theorem 5 Let F (x) and H(t) satisfy the properties described in Theorem 2. Assume the step 5
of Algorithm 1 to be replaced by x(t+1) = y(t) − p(t), where p(t) satisfies Equation (9) with
r ≤ θ2(1+θ)2

8(1+2θ2)κ2
. Then, Algorithm 1 converges as

E
[
V (t+1)

]
≤ (1− θ + ε0)V (t) + γϕ̃

[
V (t)

]3/2
.

where expectation is taken with respect to H(t) and ϕ̃ is defined as

ϕ̃ =
1

(1 + θ)3µ3/2

(
16
√

2(1 + θ2)κς + 16
√

2κ2ς + 12θ3ς + 62κ3
)
.

Theorem 5 reveals that the precision of solution to problem (8) will affect the convergence
rate directly. Hence, a high precision solution is preferred for the accelerated approximate Newton
methods. In addition, Theorem 5 shows that when the approximate Hessian H(t) is of large size
which causes difficulties to obtain the direct inversion of H(t), we only need to solve the problem (8)
to get a descent vector by algorithms such as conjugate gradient method (Nocedal and Wright, 2006).
Using this direction vector still guarantees that the accelerated approximate Newton methods will
converge but the convergence rate would undergo minor perturbation.

4. Accelerated Regularized Sub-sampled Newton

Commonly, the number of training data n and the data dimension d are close to each other in real
applications. Extant stochastic second-order methods such as the sub-sampled Newton and sketch
Newton are not suitable because the sketching size or sampled size will be less than d, and the
approximate Hessian is not invertible. Hence, adding a proper regularizer is a potential approach.
Accordingly, regularized sub-sample Newton methods have been proposed (Roosta-Khorasani and
Mahoney, 2016). To conquer the weakness of the low convergence rate of the regularized sub-
sample Newton, we propose the accelerated regularized sub-sample Newton method (ARSSN) in
Algorithm 2.

8

NESTEROV’S ACCELERATION FOR APPROXIMATE NEWTON

In Algorithm 2, H(t) is an approximation of ∇2F (y(t)) constructed via random sampling and
has the following form

H(t) = Ĥ(t) + α(t)I, (10)

where Ĥ(t) is the sub-sampled Hessian and α(t)I is the regularizer. Note that H(t) specifies a way
to construct the approximate Hessian by random sampling and gives rise to a kind of accelerated
approximate Newton. Therefore, the convergence property of Algorithm 2 can be analyzed by
Theorem 2.

We first focus on the explicit multiplication case where the Hessian∇2F (x) satisfies the follow-
ing structure

∇2F (x) = B(x)TB(x), B(x) ∈ Rn×d. (11)

Because the Hessian matrix can be represented by the multiplication of two explicit matrices, we call
it explicit multiplication case.

Then we analyze ARSSN applied to the finite sum case with the Hessian of finite sum form, i.e.

∇2F (x) =
1

n
∇2fi(x), with ∇2fi(x) ∈ Rd×d. (12)

Note that there are many cases in which the finite sum case can also be formulated as an explicit
multiplication case (11).

4.1. Explicit Multiplication Case

The explicit multiplication case (11) occurs frequently in machine learning applications who take
fi(x) = `(bi, a

T
i x), where `(·, ·) is any convex smooth loss function and ai is a data point with bi

being the corresponding label. In this case, the Hessian can be expressed as

∇2F (x) =
1

n
ATD(x)A =

(
1√
n

√
D(x)A

)T
︸ ︷︷ ︸

BT (x)

(
1√
n

√
D(x)A

)
︸ ︷︷ ︸

B(x)

, (13)

where D(x) ∈ Rn×n is a diagonal matrix with Di,i(x) = ∇2`(bi, a
T
i x) and A ∈ Rn×d is the data

matrix with i-th row being ai.
For the explicit multiplication case with the Hessian structure as Eqn. (11), we construct an

approximate Hessian as
H(t) = [S(t)B(t)]TS(t)B(t)︸ ︷︷ ︸

Ĥ(t)

+α(t)I, (14)

where S(t) ∈ Rs×n is a row norm squares random sampling matrix and α(t) is a regularizer parameter.

Lemma 6 Assume∇2F (x) satisfies Eqn. (11), S(t) ∈ Rs×n is a row norm squares sampling matrix
w.r.t. B(t) with s = O(c−2 · sr(B(t)) log d/δ), where 0 < c < 1 is a constant and 0 < δ < 1 is the
failure rate. Let approximate Hessian H(t) be constructed as Eqn. (14) with α(t) = 2c‖B(t)‖2. Then,
Condition (4) holds with η = 3cκ

1+3cκ and probability at least 1− δ.

9

YE, LUO, AND ZHANG

Method Time to reach ε-suboptimality Applicable to Reference
n close to d ?

Sketch Newton O
(
nd+ d3

)
log
(
1
ε

)
No Pilanci and Wainwright (2017)

SSN (leverage scores) Õ
(
nd+ d2κ3/2

)
log
(
1
ε

)
No Xu et al. (2016)

SSN (row norm squares) Õ
(
nd+ sr(B)dκ5/2

)
log
(
1
ε

)
Yes Xu et al. (2016)

RSSN Õ(κn3/4d(sr(B))2) log
(
1
ε

)
Yes Derived from Ye et al. (2017)

ARSSN Õ(
√
κn7/8d(sr(B))2) log

(
1
ε

)
Yes Theorem 8

Table 2: Compare ARSSN with previous works under explicit multiplication case (Eqn. 11). κ = L
µ

is the condition number of the objective function. sr(B) is the stable rank of B with
∇2F (x) = BT (x)B(x).

Remark 7 Lemma 6 only analyzes the case that S(t) is the row norm squares sampling matrix.
However, the same result still holds for the randomized sketching matrices such as count sketch
matrix (Clarkson and Woodruff, 2013; Woodruff, 2014). The core property of row norm squares
sampling is to make Ĥ(t) satisfy

∥∥∥Ĥ(t) −∇2F (x(t))
∥∥∥ ≤ c∥∥∇2F (x(t))

∥∥ as described in Theorem 1.
This result also holds for those randomized sketching matrices. In this paper, we focus on the row
norm squares sampling matrix because it does not need to be explicitly constructed and the overhead
of computing the sampling probabilities is only nnz(B(x)) which is identical to constructing the
gradient∇F (x).

Combining the properties of constructed approximate Hessian (14) described in Lemma 6 and
the convergence properties of accelerated approximate Newton, we can obtain the convergence
properties of ARSSN (Algorithm 2) under the explicit multiplication case.

Theorem 8 Let F (x) be a convex function under Assumptions 1 and 2. Suppose that∇2F (x) exists
and is of the form (11) in a neighborhood of the minimizer x∗. S(t) ∈ Rs×n is a row norm squares
sampling matrix w.r.t. B(t) with s = O(c−2 · sr(B(t)) log d/δ), where 0 < c < 1 is sample size
parameter and 0 < δ < 1 is the failure rate. Let us set regularizer α(t) = 2c‖B(t)‖2 and construct
the approximate Hessian H(t) as Eqn. (14). Assume ‖B(t+1) −B(t)‖ ≤ γ

2
√
L
‖y(t+1) − y(t)‖ for all

y(t+1) and y(t). Letting η = 3cκ
1+3cκ , where κ is the condition number of∇2F (y(t)), then Algorithm 2

has the following convergence property

E
[
V (t+1)

]
≤ (1− θ)V (t) + γϕ

[
V (t)

]3/2

with probability at least 1− δ. ϕ is defined as

ϕ =
272κ3 + 12(θ3 + κ2)ς

(1 + θ)3µ3/2
+

32L(1 + θ2)ς

(1 + θ)3µ5/2
, and, ς = 9 +

9n

4cs
.

Theorem 8 shows that Algorithm 2 converges Q-linearly with rate
(

1− 1√
1+3cκ

)
compared with(

1− 1
1+3cκ

)
of the regularized sub-sampled Newton (RSSN) with row norm squares sampling (Ye

et al., 2017). Let us set c = n−1/4, then the sample size s is about n1/2 and Algorithm 2 takes about

10

NESTEROV’S ACCELERATION FOR APPROXIMATE NEWTON

O(nd) time for each iteration. This matches the computational cost of computing gradient. In this
case, the computational cost of Algorithm 2 needs

O(
√

1 + 3cκnd) log

(
1

ε

)
≈ Õ(

√
κn7/8dsr2(B)) log

(
1

ε

)
,

while notation Õ(·) omits polynomial of log(d). In contrast, without acceleration, RSSN requires

O ((1 + 3cκ)nd) log

(
1

ε

)
≈ Õ(κn3/4dsr2(B)) log

(
1

ε

)
times. Assuming that condition number κ is of the same order as number of the training sample
which is common in practice, then ARSSN runs about n3/8 times faster than RSSN because of

κn3/4dsr2(B)
√
κn7/8dsr2(B)

=
√
κn−1/8 ≈ n3/8.

Therefore, ARSSN has considerable advantages over the regularized sub-sampled Newton especially
when either the number of the training data or the condition number of the Hessian are large.

Furthermore, we compare ARSSN with previous work in Table 2. We find that Sketch
Newton and sub-sampled Newton (SSN) with leverage score sampling can not be applied to the
problem with n and d being close to each other. With well chosen sketching size s and regularization,
they can be extended to solve the problem with n being close to d. However, the convergence of
these regularized Sketch Newton and SSN with leverage score sampling will degrade similar to
RSSN just as discussed in Remark 7. Then we compare ARSSN with SSN with row norm squares.
The computational complexity of SSN with row norm squares sampling is linear to O(dκ5/2). Once
κ is of order n, we can observe that SSN with row norm squares sampling requires about O(n9/8)
times computational cost than ARSSN.

Furthermore, if the objective function is quadratic, that is the Lipschitz constant of the Hessian
is zero, then the Hessian can be expressed as ∇2F (x) = BTB, B ∈ Rn×d. Let us construct an
approximate Hessian as

H(t) = [S(t)B]TS(t)B + α(t)I, (15)

where S(t) is a row norm squares random sampling matrix. Then we have the following corollary.

Corollary 9 Let F (x) be a convex and quadratic function subjected to Assumptions 1 and 2. S(t) ∈
Rs×n is a row norm squares sampling matrix w.r.t. B with s = O(c−2 · sr(B) log d/δ), where
0 < c < 1 is the sample size parameter and 0 < δ < 1 is the failure rate. Let us set regularizer
α(t) = 2c‖B‖2 and construct the approximate Hessian H(t) as Eqn. (15). Letting η = 3cκ

1+3cκ , where
κ is the condition number of the Hessian, then Algorithm 2 has the following convergence property

E
[
V (t+1)

]
≤
(

1− 1√
1 + 3cκ

)
V (t),

with probability at least 1− δ.

11

YE, LUO, AND ZHANG

Method Time to reach ε-accurate solution Reference

NewSamp Õ

(
λk+1

K n+
(

K
λk+1

)3/2
)
dκ̂ log

(
1
ε

)
Erdogdu and Montanari (2015)

LiSSA Õ
(
n+ (κ̂max)2κ̂

)
d log

(
1
ε

)
Agarwal et al. (2017)

RSSN Õ

(
λk+1

K n+
(

K
λk+1

)3/2
)
dκ̂ log

(
1
ε

)
Derived from Ye et al. (2017)

ARSSN Õ

(√
λk+1

K n+
(

K
λk+1

)2
)
d
√
κ̂ log

(
1
ε

)
Theorem 10

Table 3: Compare ARSSN with previous works under finite sum case (Eqn. 14). We assume that the
gradient can be computed in O(nd) and the Hessian-vector product∇2f(x)v takes O(d)
computational cost. We also assume that [H(t)]−1∇F (x) is computed by conjugated gradi-
ent. Condition number κ̂ and κ̂max are defined as κ̂ = K

µ and κ̂max = K
mini λmin(∇2f(x))

,

respectively. λk+1 denotes the (k + 1)-th largest eigenvalue of ∇2F (x). The notation Õ(·)
omits the polynomial of log(·) terms.

The above corollary shows that Algorithm 2 converges linearly with rate
(

1− 1√
1+3cκ

)
in

expectation when the objective function is convex and quadratic. If we set sample size s =
√
n, then

Algorithm 2 takes O(nd) time for each iteration which is the same as accelerated gradient descent.
By the above corollary, we can show that the convergence rate is

ρ = 1−O

(
n1/8

√
κ(sr(B) log d)1/4

)
.

If the stable rank of B is small, then above convergence rate implies that Algorithm 2 is almost faster
n1/8 times than the accelerated gradient descent whose convergence rate is ρ = 1−O

(
1√
κ

)
.

4.2. Finite-Sum Case

If the Hessian matrix satisfies the form (12), then we construct the approximate Hessian H(t) as
follows

H(t) =
1

|S|
∑
i∈S
∇2fi(x

(t))︸ ︷︷ ︸
Ĥ(t)

+α(t)I, (16)

and we sample each ∇2fi(x) uniformly. To analyze the convergence rate of ARSSN in finite sum
case, we assume that each fi(x) and F (x) in (1) have the following properties:

max
1≤i≤n

‖∇2fi(x)‖ ≤K <∞, (17)

λmin(∇2F (x)) ≥µ > 0. (18)

In this case, we do not need the Hessian to be the specific form (14) but require each individual
Hessian to be upper bounded.

12

NESTEROV’S ACCELERATION FOR APPROXIMATE NEWTON

Dataset n d sparsity source
gisette 5, 000 6, 000 dense libsvm dataset
sido0 12, 678 4, 932 dense Guyon
svhn 19, 082 3, 072 dense libsvm dataset
rcv1 20, 242 47, 236 0.16% libsvm dataset

real-sim 72, 309 20, 958 0.24% libsvm dataset
avazu 2, 085, 163 999, 975 0.0015% libsvm dataset

Table 4: Datasets summary (sparsity= #Non-Zero Entries
n×d). We use the first 2, 085, 163 training samples

of the full avazu training set.

Similar to the explicit multiplication case, to make H(t) satisfy condition (4), we need to obtain∥∥∥Ĥ(t) −∇2F (x(t))
∥∥∥ ≤ c∥∥∇2F (x(t))

∥∥ by the matrix Bernstein inequality. The following theorem
describes the convergence properties of Algorithm 2 when the approximate Hessian is constructed as
Eqn. (16).

Theorem 10 Let F (x) be a convex function under Assumptions 1 and 2. Suppose Eqn. (17) and (18)
hold. We construct the approximate Hessian H(t) as Eqn. (16) by uniformly sampling with sample
size s = O(c−2K2 log(d/δ)) with 0 < c < 1 and 0 < δ < 1. Let us set regularizer α(t) = 2c.
Assume ‖∇2fi(y

(t+1)) − ∇2fi(y
(t))‖ ≤ γ‖y(t+1) − y(t)‖ holds for all i ∈ {1, . . . , n}. Letting

η = 2c
µ+2c , then Algorithm 2 has the following convergence property

E
[
V (t+1)

]
≤ (1− θ)V (t) + γϕ

[
V (t)

]3/2

with probability at least 1− δ. ϕ is defined as

ϕ =
272κ3 + 12(θ3 + κ2)

(1 + θ)3µ3/2
+

32L(1 + θ2)

(1 + θ)3µ5/2
.

We compare ARSSN with previous work and list the detailed comparisons in Table 3. First, let
us choose c = λk+1 and deploy conjugate gradient to solve H(t)∇F (x). Assuming that∇2fi(x)v

can be computed in O(d), then it takes Õ
((

K
λk+1

)5/2
d

)
to approximate H(t)∇F (x) (This can be

guaranteed by Theorem 5). Since Theorem 10 shows ARSSN converges at the rate of 1−
√

µ
µ+2λk+1

,

we can obtain the computational cost to achieve an ε-suboptimal solution as

Õ

(
nd+

(
K

λk+1

)5/2

d

)√
λk+1

µ
log

(
1

ε

)
= Õ

(√
λk+1

K
n+

(
K

λk+1

)2
)
d
√
κ̂ log

(
1

ε

)
.

The computational cost of NewSamp and RSSN while with a convergence rate 1− η in contrast to
1−
√

1− η of ARSSN.
From the comparison in Table 3, we can observe that ARSSN obtain a faster convergence rate than

NewSamp and RSSN. Furthermore, compared with LiSSA, we can observe that ARSSN outperforms
LiSSA even κ̂ is of order n1/2 because LiSSA cubically depends on the κ̂ (κ̂max ≥ κ̂).

13

YE, LUO, AND ZHANG

0 1000 2000 3000 4000 5000 6000 7000 8000

Iteration

-3

-2

-1

0

1

2

3

4
lo

g(
er

r)

RSSN
ARSSN

(a) |S| = 1%

0 1000 2000 3000 4000 5000 6000 7000 8000

Iteration

-14

-12

-10

-8

-6

-4

-2

0

2

4

lo
g(

er
r)

RSSN
ARSSN

(b) |S| = 5%

0 1000 2000 3000 4000 5000 6000 7000 8000

Iteration

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

lo
g(

er
r)

RSSN
ARSSN

(c) |S| = 10%

Figure 1: Experiment on the ridge regression with different sample sizes |S|

5. Experiments

In this section, we will validate our theory empirically. We first compare accelerated regularized
sub-sampled Newton (Algorithm 2) with regularized sub-sampled Newton (Algorithm 3 in Appendix
called RSSN Roosta-Khorasani and Mahoney (2016)) on the ridge regression whose objective
function is a quadratic function. Then we conduct more experiments on a popular machine learning
problem called Ridge Logistic Regression, and compare accelerated regularized sub-sampled Newton
with other classical methods.

All algorithms except SVRG are implemented in MATLAB. To achieve the best performance
of SVRG (Johnson and Zhang, 2013), we implement it with C++ language. All experiments are
conducted on a laptop with Intel i7-7700HQ CPU and 8GB RAM.

5.1. Experiments on the Ridge Regression

Th objective function of ridge regression is defined as

F (x) = ‖Ax− b‖2 + λ‖x‖2, (19)

where λ is a regularizer controlling the condition number of the Hessian. In our experiments, we
choose dataset ‘gisette’ just as depicted in Table 4, and we set the regularizer λ = 1.

In the experiments, we set the sample size |S| to be 1%n, 5%n, and 10%n, respectively. The
regularizer α of Algorithm 2 is properly chosen according to |S|. ARSSN and RSSN share the same
sample size |S|. The acceleration parameter θ is appropriately selected and fixed. The experimental
result is reported in Figure 1.

We can see that ARSSN runs much faster than RSSN from Figure 1. This agrees with our
theoretical analysis. Furthermore, we can also observe that ARSSN converges faster as the sample
size |S| increases. When |S| = 10%n, ARSSN takes only about 3000 iterations to achieve an 10−14

error while it needs about 6000 iterations to achieve the same precision when |S| = 5%n.

5.2. Experiments on the Ridge Logistic Regression

We conduct experiments on the Ridge Logistic Regression problem whose objective function is

F (x) =
1

n

n∑
i=1

log[1 + exp(−bi〈ai, x〉)] +
λ

2
‖x‖2, (20)

14

NESTEROV’S ACCELERATION FOR APPROXIMATE NEWTON

0 20 40 60 80 100 120 140 160 180 200

Time (s)

-16

-14

-12

-10

-8

-6

-4

-2

0

2
lo

g(
er

r)

AGD
SVRG
RSSN, jSj = 10%
ARSSN, jSj = 5%
ARSSN, jSj = 10%

(a) λ = 1/n

0 50 100 150 200 250 300 350 400

Time (s)

-16

-14

-12

-10

-8

-6

-4

-2

0

2

lo
g(

er
r)

AGD
SVRG
RSSN, jSj = 10%
ARSSN, jSj = 5%
ARSSN, jSj = 10%

(b) λ = 10−1/n

0 50 100 150 200 250 300 350 400 450 500 550

Time (s)

-16

-14

-12

-10

-8

-6

-4

-2

0

2

lo
g(

er
r)

AGD
SVRG
RSSN, jSj = 10%
ARSSN, jSj = 5%
ARSSN, jSj = 10%

(c) λ = 10−2/n

Figure 2: Experiment on ‘gisette’

0 20 40 60 80 100 120 140 160 180 200

Time (s)

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

lo
g(

er
r)

AGD
SVRG
RSSN, jSj = 1%
ARSSN, jSj = 1%
ARSSN, jSj = 5%

(a) λ = 1/n

0 100 200 300 400 500 600 700 800 900 1000

Time (s)

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

lo
g(

er
r)

AGD
SVRG
RSSN, jSj = 1%
ARSSN, jSj = 1%
ARSSN, jSj = 5%

(b) λ = 10−1/n

0 200 400 600 800 1000 1200

Time (s)

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

lo
g(

er
r)

AGD
SVRG
RSSN, jSj = 1%
ARSSN, jSj = 1%
ARSSN, jSj = 5%

(c) λ = 10−2/n

Figure 3: Experiment on ‘sido0’

where ai ∈ Rd is the i-th input vector, and bi ∈ {−1, 1} is the corresponding label.
We conduct our experiments on six datasets: ‘gisette’, ‘sido0’, ‘svhn’, ‘rcv1’, ‘real-sim’, and

‘avazu’. The first three datasets are dense and the last three ones are sparse. We give a detailed
description of the datasets in Table 4. Notice that the size and dimension of the dataset are close to
each other, so the sketch Newton method (Pilanci and Wainwright, 2017; Xu et al., 2016) can not
be utilized. In our experiments, we try different settings of the regularizer λ, as 1/n, 10−1/n, and
10−2/n to represent different levels of regularization. Furthermore, in our experiments, we choose
zero vector x = [0, . . . , 0]T ∈ Rd as the initial point.

We compare ARSSN with RSSN (Algorithm 3 in appendix), AGD (Nesterov (1983)) and SVRG
(Johnson and Zhang (2013)) which are classical and popular optimization methods in machine
learning. In our experiments, the sample size |S| of ARSSN are chosen close to the square root of
training sample size. Such |S| guarantees that the time complexity of computing the inverse of the
approximate Hessian is similar to that of computing a full gradient. The regularizer α(t) is chosen
according to the sample size |S| and the norm of B(x(t)) in Eqn. (11) by Theorem 8. In practice, the
norm of B(x(t)) is close to each other for different iterations. Hence, we pick a fixed α properly.

In our experiment, the sub-sampled Hessian H(t) constructed in Algorithm 2 can be written as

H(t) = ÃT Ã+ (α+ λ)I,

where Ã ∈ R`×d and ` < n. We can resort to Woodbury’s identity to compute the inverse of H(t)

at cost of O(d`2). In our experiments on sparse datasets, we use conjugate gradient to obtain an
approximation of [H(t)]−1∇F (x(t)) which exploits the sparsity of Ã.

15

YE, LUO, AND ZHANG

0 50 100 150 200 250 300

Time (s)

-16

-14

-12

-10

-8

-6

-4

-2

0
lo

g(
er

r)

AGD
SVRG
RSSN, jSj = 1%
ARSSN, jSj = 1%
ARSSN, jSj = 5%

(a) λ = 1/n

0 100 200 300 400 500 600 700 800 900 1000

Time (s)

-15

-10

-5

0

lo
g(

er
r)

AGD
SVRG
RSSN, jSj = 1%
ARSSN, jSj = 1%
ARSSN, jSj = 5%

(b) λ = 10−1/n

0 200 400 600 800 1000 1200

Time (s)

-14

-12

-10

-8

-6

-4

-2

0

lo
g(

er
r)

AGD
SVRG
RSSN, jSj = 1%
ARSSN, jSj = 1%
ARSSN, jSj = 5%

(c) λ = 10−2/n

Figure 4: Experiment on ‘svhn’

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (s)

-16

-14

-12

-10

-8

-6

-4

-2

0

lo
g(

er
r)

AGD
SVRG
RSSN, jSj = 10%
ARSSN, jSj = 5%
ARSSN, jSj = 10%

(a) λ = 1/n

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (s)

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

lo
g(

er
r)

AGD
SVRG
RSSN, jSj = 10%
ARSSN, jSj = 5%
ARSSN, jSj = 10%

(b) λ = 10−1/n

0 2 4 6 8 10 12 14 16

Time (s)

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

lo
g(

er
r)

AGD
SVRG
RSSN, jSj = 10%
ARSSN, jSj = 5%
ARSSN, jSj = 10%

(c) λ = 10−2/n

Figure 5: Experiment on ‘rcv1’

For the acceleration parameter θ, it is hard to get the best value for ARSSN just like AGD. However,
our theoretical analysis implies that for large sample size |S|, a small θ should be chosen. In our
experiments, we empirically choose a proper θ.

We report our results in Figures 2 - 7 which illustrate that ARSSN converges significantly faster
than RSSN when these two algorithms have the same sample size. This shows Nesterov’s acceleration
technique can promote the performance of regularized sub-sampled Newton effectively. We can also
observe that ARSSN outperforms AGD significantly even when the sample size S is 1%n or even
less. This reveals such a fact that adding some curvature information is an effective approach for
improving the performance of accelerated gradient descent. It can also be observed that ARSSN
converges superlinear at first then turns into a linear convergence. This verifies that the discussion in
Remark 3.

Furthermore, ARSSN outperforms SVRG, especially when λ is small like λ = 10−2/n. When
λ = 10−1/n, ARSSN has comparable performance with SVRG on ‘sido0’, ‘rcv1’, ‘real-sim’, and
‘avazu’ while ARSSN has a much better performance on ‘gisette’ and ‘svhn’.

Moreover, the experiments reveal the fact that ARSSN has great advantages over other algorithms
when the objective function is ill-conditioned. The advantages of ARSSN increase as the ragularizer
λ decreasing and a small λ implies a large condition number of the objective function. Furthermore,
on ‘gisette’, ‘sido0’, ‘svhn’, other algorithms have relatively poor performance in the case that
λ = 10−2/n. But ARSSN shows desirable convergence property. This is another evidence that
ARSSN has advantages especially when the objective function is ill-conditioned.

16

NESTEROV’S ACCELERATION FOR APPROXIMATE NEWTON

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (s)

-16

-14

-12

-10

-8

-6

-4

-2

0
lo

g(
er

r)

AGD
SVRG
RSSN, jSj = 1%
ARSSN, jSj = 1%
ARSSN, jSj = 5%

(a) λ = 1/n

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

lo
g(

er
r)

AGD
SVRG
RSSN, jSj = 1%
ARSSN, jSj = 1%
ARSSN, jSj = 5%

(b) λ = 10−1/n

0 5 10 15 20 25 30 35

Time (s)

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

lo
g(

er
r)

AGD
SVRG
RSSN, jSj = 1%
ARSSN, jSj = 1%
ARSSN, jSj = 5%

(c) λ = 10−2/n

Figure 6: Experiment on ‘real-sim’

0 10 20 30 40 50 60 70 80

Time (s)

-16

-14

-12

-10

-8

-6

-4

-2

0

lo
g(

er
r)

AGD
SVRG
RSSN, jSj = 1%
ARSSN, jSj = 1%
ARSSN, jSj = 5%

(a) λ = 1/n

0 50 100 150 200 250 300 350 400

Time (s)

-15

-10

-5

0

lo
g(

er
r)

AGD
SVRG
RSSN, jSj = 10%
ARSSN, jSj = 5%
ARSSN, jSj = 10%

(b) λ = 10−1/n

0 500 1000 1500

Time (s)

-14

-12

-10

-8

-6

-4

-2

0

lo
g(

er
r)

AGD
SVRG
RSSN, jSj = 10%
ARSSN, jSj = 5%
ARSSN, jSj = 10%

(c) λ = 10−2/n

Figure 7: Experiment on ‘avazu’

6. Conclusion

In this paper, we have exploited the acceleration technique to promote convergence rate of second
order methods and proposed an framework named accelerated approximate Newton. We showed
that accelerated approximate Newton has a much better convergence behavior when the approximate
Hessian has low accuracy. We have also developed ARSSN algorithm based on the theory of
accelerated approximate Newton, which enjoys a fast convergence rate than existing stochastic
second-order optimization methods. Our experiments have shown that ARSSN performs much better
than conventional RSSN, which meets our theory well. ARSSN also has several advantages over
other classical algorithms which demonstrates the efficiency of accelerated second-order methods.

Acknowledgments

We thank the anonymous reviewers for their helpful suggestions. Zhihua Zhang has been supported
by the National Natural Science Foundation of China (No. 11771002), Beijing Natural Science
Foundation (Z190001), and Beijing Academy of Artificial Intelligence (BAAI). Haishan Ye has been
supported by the project of Shenzhen Research Institute of Big Data (named ‘Automated Machine
Learning’). Luo Luo has been supported by GRF 16201320.

17

YE, LUO, AND ZHANG

Algorithm 3 Regularized Sub-sample Newton (RSSN).
1: Input: x(0), 0 < δ < 1, regularizer parameter α, sample size |S| ;
2: for t = 0, 1, . . . until termination do
3: Select a sample set S, of size |S| and H(t) = 1

|S|
∑
j∈S ∇2fj(x

(t)) + αI;

4: Update x(t+1) = x(t) −
[
H(t)

]−1∇F (x(t));
5: end for

Appendix A. Regularized Sub-sampled Newton

The regularized Sub-sampled Newton method is described in Algorithm 3. Now we give its local
convergence properties in the following theorem.

Theorem 11 (Ye et al. (2017)) Let F (x) satisfy Assumption 1 and 2. Assume Eqns. (17) and (18)
hold, and let 0 < δ < 1, 0 ≤ ε1 < 1 and 0 < α be given. Assume β is a constant such that
0 < β < α+ σ

2 , the subsampled size |S| satisfies |S| ≥ 16K2 log(2d/δ)
β2 , and H(t) is constructed as in

Algorithm 3. Define

ε0 = max

(
β − α

σ + α− β
,

α+ β

σ + α+ β

)
,

which implies that 0 < ε0 < 1. We define ‖x‖M∗ = ‖[∇2F (x∗)]−
1
2x‖. If∇2F (x(t)) is γ-Lipschitz

continuous and x(t) satisfies

‖x(t) − x∗‖ ≤ µ

γκ
ν(t),

where 0 < ν(t) < 1, then Algorithm 3 has the following convergence properties

‖∇F (x(t+1))‖M∗ ≤ε0
1 + ν(t)

1− ν(t)
‖∇F (x(t))‖M∗ +

2

(1− ε0)2

γκ

µ
√
µ

(1 + ν(t))2

1− ν(t)
‖∇F (x(t))‖2M∗ .

Appendix B. Proof of Theorem 2

Proof of Theorem 2 By the update procedure of algorithm, we can prove that the energy func-
tion V (t+1) (defined in Eqn. 6) will decrease with rate 1 − θ compared with V (t) but with some
perturbations denoted as ∆1 + ∆2 + ∆3, that is,

E
[
V (t+1)

]
≤ (1− θ)V (t) + ∆1 + ∆2 + ∆3.

This result is proved in Lemma 12.
Next, we will show that these perturbations are high-order terms compared with the energy

function V (t). In Lemma 13, we first give the upper bound of
∥∥x(t) − x∗

∥∥ and
∥∥y(t) − x∗

∥∥. Using
these two bounds, in Lemma 14, we show that ∆1 + ∆2 + ∆3 is upper bounded as

∆1 + ∆2 + ∆3 ≤
γ

(1 + θ)3

(
272κ3 + 12(θ3 + κ2)ς

µ3/2
+

32L(1 + θ2)ς

µ5/2

)[
V (t)

]3/2
.

18

NESTEROV’S ACCELERATION FOR APPROXIMATE NEWTON

Combining the results of two lemmas, we can obtain that

E
[
V (t+1)

]
≤ (1− θ)V (t) +

γ

(1 + θ)3

(
272κ3 + 12(θ3 + κ2)ς

µ3/2
+

32L(1 + θ2)ς

µ5/2

)[
V (t)

]3/2
.

In the rest of this section, we will give the detailed descriptions and proofs of Lemma 12,
Lemma 13 and Lemma 14.

Lemma 12 Let F (x) be a convex function such that Assumptions 1 and 2 hold. Suppose that
∇2F (x) exists and is γ-Lipschitz continuous in a neighborhood of the minimizer x∗. Let H(t) be a
random matrix approximating∇2F (y(t)) satisfying Eqn. (4). We set θ =

√
1− η. Then, sequence

{x(t)} of Algorithm 1 has the following property

E
[
V (t+1)

]
≤ (1− θ)V (t) + ∆1 + ∆2 + ∆3,

where expectation is taken with respect to H(t). ∆1, ∆2, and ∆3 are defined as

∆1 =
γ

6

(
‖[H(t)]−1∇F (y(t))‖3 + (1− θ)‖x(t) − y(t)‖3 + θ‖x∗ − y(t)‖3

)
,

∆2 =
θ3

2
‖x∗ − y(t)‖2H̄∗ −

θ3

2
‖x∗ − y(t)‖2

H̄(t) +
1

2
‖H−1∇F (y(t))‖2H̄∗ −

1

2
‖H−1∇F (y(t))‖2

H̄(t) ,

∆3 =〈
(
H̄∗ − H̄(t)

)
[H̄(t)]−1∇F (y(t)), (1− θ)x(t) + θx∗ − y(t)〉.

Proof For notation convenience, we denote H = H(t). We also denote Ĥ = ∇2F (y(t)) and
H̄ =

(
E[H−1]

)−1. By the update procedure of algorithm, we have

F (y(t) −H−1∇F (y(t)))

(3)
≤F (y(t))− 〈∇F (y(t)), H−1∇F (y(t))〉+

1

2
‖H−1∇F (y(t))‖2

Ĥ
+
γ

6
‖H−1∇F (y(t))‖3

(3)
≤F (z)− 〈∇F (y(t)), z − y(t)〉 − 1

2

∥∥∥z − y(t)
∥∥∥2

Ĥ
− 〈∇F (y(t)), H−1∇F (y(t))〉

+
1

2
‖H−1∇F (y(t))‖2

Ĥ
+
γ

6
‖H−1∇F (y(t))‖3 +

γ

6
‖z − y(t)‖3

≤F (z)− 〈∇F (y(t)), z − y(t)〉 − 1− η
2
‖z − y(t)‖2H̄ − 〈∇F (y(t)), H−1∇F (y(t))〉

+
1

2
‖H−1∇F (y(t))‖2

Ĥ
+
γ

6
‖H−1∇F (y(t))‖3 +

γ

6
‖z − y(t)‖3. (21)

Inequality (21) is due to the condition (1− η)H̄ � Ĥ in Eqn. (4). Let us denote θ =
√

1− η. Then,
we have the following inequality

F (x(t+1)) ≤F (z)− 〈∇F (y(t)), z − y(t)〉+
1

2
‖H−1∇F (y(t))‖2

Ĥ
− 〈∇F (y(t)), H−1∇F (y(t))〉

− θ2

2
‖z − y(t)‖2H̄ +

γ

6
‖H−1∇F (y(t))‖3 +

γ

6
‖z − y(t)‖3.

19

YE, LUO, AND ZHANG

Setting z = x(t), z = x∗ respectively in above inequality, we obtain

(1− θ)F (x(t+1))

≤(1− θ)
(
F (x(t))− 〈∇F (y(t)), x(t) − y(t)〉+

1

2
‖H−1∇F (y(t))‖2

Ĥ
− θ2

2
‖x(t) − y(t)‖2H̄

− 〈∇F (y(t)), H−1∇F (y(t))〉+
γ

6
‖H−1∇F (y(t))‖3 +

γ

6
‖x(t) − y(t)‖3

)
,

and

θF (x(t+1)) ≤θ
(
F (x∗)− 〈∇F (y(t)), x∗ − y(t)〉+

1

2
‖H−1∇F (y(t))‖2

Ĥ
− θ2

2
‖x∗ − y(t)‖2H̄

− 〈∇F (y(t)), H−1∇F (y(t))〉+
γ

6
‖H−1∇F (y(t))‖3 +

γ

6
‖x∗ − y(t)‖3

)
.

Adding the above two inequalities and definition of ∆1, we get

F (x(t+1))− F (x∗)

≤(1− θ)(F (x(t))− F (x∗)) +
1

2
‖H−1∇F (y(t))‖2

Ĥ
− 〈∇F (y(t)), H−1∇F (y(t))〉

− θ3

2
‖x∗ − y(t)‖2H̄ − 〈∇F (y(t)), (1− θ)x(t) + θx∗ − y(t)〉 − (1− θ)θ2

2
‖x(t) − y(t)‖2H̄ + ∆1

≤(1− θ)(F (x(t))− F (x∗)) +
1

2
‖H−1∇F (y(t))‖2

Ĥ
− 〈∇F (y(t)), H−1∇F (y(t))〉

− 〈∇F (y(t)), (1− θ)x(t) + θx∗ − y(t)〉 − θ3

2
‖x∗ − y(t)‖2H̄ + ∆1. (22)

By the update iteration in Algorithm 2, we have

v(t+1) = x(t) +
1

θ
(x(t+1) − x(t)),

and

y(t) =
1

1 + θ
(x(t) + θv(t)). (23)

Thus, it holds that

θ2v(t+1) = (1− θ)θ2v(t) + θ3y(t) − θH−1∇F (y(t)). (24)

Now, we build the relation between ‖x? − v(t+1)‖H̄∗ and ‖x? − v(t)‖H̄∗ . First, we have

θ2

2
(‖x? − v(t+1)‖2H̄∗ − ‖y(t) − v(t+1)‖2H̄∗)

=
θ2

2
(‖x?‖2H̄∗ − ‖y(t)‖2H̄∗ − 2〈x? − y(t), H̄∗v(t+1)〉)

(24)
=

(1− θ)θ2 + θ3

2
(‖x?‖2H̄∗ − ‖y(t)‖2H̄∗)− 〈x? − y(t), H̄∗[(1− θ)θ2v(t) + θ3y(t) − θH−1∇F (y(t))]〉

20

NESTEROV’S ACCELERATION FOR APPROXIMATE NEWTON

=
(1− θ)θ2

2
(‖x? − v(t)‖2H̄∗ − ‖y(t) − v(t)‖2H̄∗) +

θ3

2
‖x? − y(t)‖2H̄∗

+ θ〈x∗ − y(t), H̄∗H−1∇F (y(t))〉.

Then, we expand ‖y(t) − v(t+1)‖2
H̄∗ as follows

θ2

2
‖y(t) − v(t+1)‖2H̄∗

=
1

2θ2
‖θ2y(t) − ((1− θ)θ2v(t) + θ3y(t) − θH−1∇F (y(t)))‖2H̄∗

(24)
=

1

2
‖(1− θ)θ(y(t) − v(t))−H−1∇F (y(t))‖2H̄∗

=
1

2
‖H−1∇F (y(t))‖2H̄∗ +

θ2(1− θ)2

2
‖y(t) − v(t)‖2H̄∗ − (1− θ)θ〈y(t) − v(t), H̄∗H−1∇F (y(t))〉

=
1

2
‖H−1∇F (y(t))‖2H̄∗ +

θ2(1− θ)2

2
‖y(t) − v(t)‖2H̄∗ + (1− θ)〈x(t) − y(t), H̄∗H−1∇F (y(t))〉.

Therefore, using two above equations, we have

θ2

2
‖x∗ − v(t+1)‖2H̄∗

=
θ2

2
(‖x? − v(t+1)‖2H̄∗ − ‖y(t) − v(t+1)‖2H̄∗) +

θ2

2
‖y(t) − v(t+1)‖2H̄∗

=
(1− θ)θ2

2
‖x? − v(t)‖2H̄∗ +

θ3

2
‖x? − y(t)‖2H̄∗ +

1

2
‖H−1∇F (y(t))‖2H̄∗

+ 〈H̄∗H−1∇F (y(t)), (1− θ)x(t) + θx∗ − y(t)〉 − θ3(1− θ)
2

‖y(t) − v(t)‖2H̄∗ .

By the definition of V (t) (defined in Eqn. (6)) and Eqn. (22), taking expectation with respect to
H , we obtain

E
[
V (t+1)

]
≤(1− θ)V (t+1) + ∆1 − 〈∇F (y(t)), (1− θ)x(t) + θx∗ − y(t)〉

+ 〈H̄∗E[H−1]∇F (y(t)), (1− θ)x(t) + θx∗ − y(t)〉+
θ3

2
‖x∗ − y(t)‖2H̄∗ −

θ3

2
‖x∗ − y(t)‖2H̄

+ E
[

1

2
‖H−1∇F (y(t))‖2

Ĥ
+

1

2
‖H−1∇F (y(t))‖2H̄∗ − 〈∇F (y(t)), H−1∇F (y(t))〉

]
=(1− θ)V (t) + ∆1 + 〈

(
H̄∗ − H̄

)
H̄−1∇F (y(t)), (1− θ)x(t) + θx∗ − y(t)〉

+
θ3

2
‖x∗ − y(t)‖2H̄∗ −

θ3

2
‖x∗ − y(t)‖2H̄ +

1

2
‖H−1∇F (y(t))‖2H̄∗ −

1

2
‖H−1∇F (y(t))‖2H̄

+ E
[

1

2
‖H−1∇F (y(t))‖2

Ĥ
+

1

2
‖H−1∇F (y(t))‖2H̄ − 〈∇F (y(t)), H−1∇F (y(t))〉

]
≤(1− θ)V (t) + ∆1 + ∆2 + ∆3,

where the last inequality is because of the condition (4) that

Ĥ + H̄ − 2H � 0,

21

YE, LUO, AND ZHANG

and
1

2
‖H−1∇F (y(t))‖2

Ĥ
+

1

2
‖H−1∇F (y(t))‖2H̄ − 〈∇F (y(t)), H−1∇F (y(t))〉

=
1

2

(
H−1∇F (y(t))

)T (
Ĥ + H̄ − 2H

)(
H−1∇F (y(t))

)
≤0.

Now, we begin to show that the perturbation terms in Lemma 12 are high-order terms compared
with V (t). First, we list some important results in the following lemma.

Lemma 13 Let F (x) satisfy the properties described in Lemma 12. Sequences {x(t)} and {y(t)}
satisfy that

‖x(t) − x∗‖2 ≤ 2

µ

(
F (x(t))− F (x∗)

)
(25)

and

‖y(t) − x∗‖ ≤ 2
√

2

(1 + θ)
√
µ

√
V (t). (26)

Proof By the definition of µ-strongly convex, we have

F (x(t)) ≥ F (x∗) +
〈
∇F (x∗), x(t) − x∗

〉
+
µ

2

∥∥∥x(t) − x∗
∥∥∥2
.

Combining the fact that∇F (x∗) = 0, we can obtain Eqn. (25).
By Eqn. (23), we have

‖y(t) − x∗‖ = ‖ 1

1 + θ

(
x(t) + θv(t)

)
− x∗‖ ≤ 1

1 + θ
‖x(t) − x∗‖+

θ

1 + θ
‖v(t) − x∗‖.

We also have
‖v(t) − x∗‖2 ≤ 1

λmin(H̄∗)
‖x∗ − v(t)‖2H̄∗ .

Due to the condition (4) which implies Ĥ∗ � H̄∗, where Ĥ∗ = ∇2F (x∗), and the problem is
µ-strongly convex, we have

1

λmin(H̄∗)
≤ 1

λmin(Ĥ∗)
≤ 1

µ
<

2

µ
.

Combining above results, we can bound ‖y(t) − x∗‖ as

‖y(t) − x∗‖ ≤
√

2

(1 + θ)
√
µ

(√
F (x(t))− F (x∗) + θ‖x∗ − v(t)‖H̄∗

)
≤ 2

(1 + θ)
√
µ

√
F (x(t))− F (x∗) + θ2‖x∗ − v(t)‖2

H̄∗

≤ 2
√

2

(1 + θ)
√
µ

√
V (t),

where the second inequality is because (a+ b)2 ≤ 2a2 + 2b2.

22

NESTEROV’S ACCELERATION FOR APPROXIMATE NEWTON

Lemma 14 Let F (x) satisfy the properties described in Lemma 12. Matrices H(t+1) and H(t)

satisfy that ‖H̄(t+1) − H̄(t)‖ ≤ γς‖y(t+1) − y(t)‖, where ς is a constant. Then, we have

∆1 + ∆2 + ∆3 ≤
γ

(1 + θ)3

(
272κ3 + 12(θ3 + κ2)ς

µ3/2
+

32L(1 + θ2)ς

µ5/2

)[
V (t)

]3/2
.

Proof We will bound the value of ∆1, ∆2 and ∆3 sequentially. First, we are going to bound ∆1.
By the L-smoothness property, we can bound ‖∇F (y(t))‖ as follows

‖∇F (y(t))‖ =
∥∥∥∇F (y(t))−∇F (x∗)

∥∥∥ ≤ L‖y(t) − x∗‖ ≤ 2
√

2L

(1 + θ)
√
µ

√
V (t). (27)

We also have∥∥∥x(t) − y(t)
∥∥∥ =

∥∥∥x(t) − x∗ +
(
x∗ − y(t)

)∥∥∥ ≤ ∥∥∥x(t) − x∗
∥∥∥+

∥∥∥x∗ − y(t)
∥∥∥

(25)
≤
√

2

µ

(
F (x(t))− F (x∗)

)
+
∥∥∥x∗ − y(t)

∥∥∥
(26)
≤
√

2

µ

(
F (x(t))− F (x∗)

)
+

2
√

2

(1 + θ)
√
µ

√
V (t)

≤ 4
√

2

(1 + θ)
√
µ

√
V (t), (28)

where the last inequality follows from the fact that F (x(t))− F (x∗) ≤ V (t).
Combining above results, we can bound ∆1 as follows.

∆1 =
γ

6

(
‖H−1∇F (y(t))‖3 + (1− θ)‖x(t) − y(t)‖3 + θ‖x∗ − y(t)‖3

)
≤γ

6

(
1

λ3
min(H(t))

∥∥∥∇F (y(t))
∥∥∥3

+ (1− θ)‖x(t) − y(t)‖3 + θ‖x∗ − y(t)‖3
)

(27),(28),(26)
≤ γ[V (t)]3/2

6

 1

λ3
min(H(t))

(
2
√

2L

(1 + θ)
√
µ

)3

+ (1− θ)

(
4
√

2

(1 + θ)
√
µ

)3

+ θ

(
2
√

2

(1 + θ)
√
µ

)3


≤γ[V (t)]3/2

6

 L3

λ3
min(H(t))

·

(
2
√

2

(1 + θ)
√
µ

)3

+

(
4
√

2

(1 + θ)
√
µ

)3


=
(2
√

2)3γ[V (t)]3/2

6(1 + θ)3µ3/2

(
L3

λ3
min(H(t))

+ 8

)
,

where the last inequality is because it holds for all 0 ≤ θ ≤ 1 that (1 − θ)a + θb ≤ max{a, b}.
Using the second condition of (4), we have∇2F (y(t)) � 2H(t). Combining µ ≤ λmin(∇2F (y(t)))
and the fact L/λmin(H(t)) ≥ 1, we can obtain that

∆1 ≤
(2
√

2)3γ[V (t)]3/2

6(1 + θ)3µ3/2

(
L3

λ3
min(H(t))

+ 8

)
≤ 9(2

√
2)3γ[V (t)]3/2

6(1 + θ)3µ3/2
· 23L3

µ3

=
192
√

2γκ3

(1 + θ)3µ3/2
· [V (t)]3/2 ≤ 272γκ3

(1 + θ)3µ3/2
· [V (t)]3/2.

23

YE, LUO, AND ZHANG

Next, we begin to bound ∆2. By the condition ‖H̄(t+1) − H̄(t)‖ ≤ γς‖y(t+1) − y(t)‖, we have

∆2 ≤
θ3

2
‖x∗ − y(t)‖2‖H̄ − H̄∗‖+

1

2
‖H−1∇F (y(t))‖2‖H̄ − H̄∗‖

≤γς
(
θ3

2
‖x∗ − y(t)‖2 +

1

2
‖H−1∇F (y(t))‖2

)
‖x∗ − y(t)‖

≤γς
(
θ3

2
+
L2‖H−1‖2

2

)
‖x∗ − y(t)‖3

(26)
≤ 12(θ3 + κ2)γς

(1 + θ)3µ3/2

[
V (t)

]3/2
.

Finally, we begin to bound ∆3. We have∥∥∥(1− θ)x(t) + θx∗ − y(t)
∥∥∥ (23)

=

∥∥∥∥x(t) − 1

1 + θ
(x(t) + θv(t))− θ(x(t) − x∗)

∥∥∥∥
=

∥∥∥∥ θ2

1 + θ
(x(t) − x∗)− θ

1 + θ
(v(t) − x∗)

∥∥∥∥
≤ θ2

1 + θ
· ‖x(t) − x∗‖+

θ

1 + θ
· ‖v(t) − x∗‖

≤
√

2θ2

(1 + θ)
√
µ

√
F (x(t))− F (x∗) +

θ

1 + θ

√
1

µ
‖v(t) − x∗‖H̄∗ (29)

≤
√

2θ2 +
√

2

(1 + θ)
√
µ

√
V (t). (30)

Inequality (29) is because of ‖v(t) − x∗‖ ≤ λ
−1/2
min (H̄∗)‖v(t) − x∗‖H̄∗ and 1/λmin(H̄∗) ≤ 1/µ.

Thus, we have

∆3 ≤‖
(
H̄∗ − H̄

)
H̄−1∇F (y(t))‖ ·

∥∥∥((1− θ)x(t) + θx∗ − y(t)
)∥∥∥

(30)
≤ ‖H̄−1‖ · ‖H̄∗ − H̄‖ · ‖∇F (y(t))‖ ·

√
2θ2 +

√
2

(1 + θ)
√
µ

√
V (t)

(27)
≤ ‖H̄−1‖ · 2

√
2L

(1 + θ)
√
µ

√
V (t) ·

√
2θ2 +

√
2

(1 + θ)
√
µ

√
V (t) · γς‖y(t) − x∗‖

(26)
≤ 32L(1 + θ2)γς

(1 + θ)3µ5/2

[
V (t)

]3/2
,

where the first inequality is due to Cauchy’s inequality and the last inequality also uses the fact
‖H̄−1‖ = 1/λmin(H̄) ≤ 2/µ.

Therefore, we obtain

∆1 + ∆2 + ∆3 ≤
(

272γκ3

(1 + θ)3µ3/2
+

12(θ3 + κ2)γς

(1 + θ)3µ3/2
+

32L(1 + θ2)γς

(1 + θ)3µ5/2

)[
V (t)

]3/2

=γ

(
272κ3 + 12(θ3 + κ2)ς

(1 + θ)3µ3/2
+

32L(1 + θ2)ς

(1 + θ)3µ5/2

)[
V (t)

]3/2
.

24

NESTEROV’S ACCELERATION FOR APPROXIMATE NEWTON

Appendix C. Proof of Theorem 5

The proof of Theorem 5 is close to the one of Theorem 2, so we will omit some detailed steps in the
following proof.

Lemma 15 Let F (x) and H(t) satisfy the properties described in Theorem 2. Assume the step 5 of
Algorithm 1 be replaced by x(t+1) = y(t+1) − p(t+1). p(t) satisfies Equation (9). Then, sequence
{x(t)} of Algorithm 1 has the following property

E
[
V (t+1)

]
≤ (1− θ)V (t) + ∆1 + ∆2 + ∆3,

where expectation is taken with respect to H(t). ∆1, ∆2, and ∆3 are defined as

∆1 =
γ

6

(
‖p(t)‖3 + (1− θ)

∥∥∥x(t) − y(t)
∥∥∥3

+ θ
∥∥∥x∗ − y(t)

∥∥∥3
)
,

∆2 =E〈H̄∗p(t), (1− θ)x(t) + θx∗ − y(t)〉 − 〈∇F (y(t)), (1− θ)x(t) + θx∗ − y(t)〉,

∆3 =E
[

1

2
‖p(t)‖2∇2F (y(t))

+
1

2
‖p(t)‖2H̄∗ − 〈∇F (y(t)), p(t)〉

]
+
θ3

2
‖x∗ − y(t)‖2H̄∗ −

θ3

2
‖x∗ − y(t)‖2

H̄(t) .

Proof For notation convenience, we denote H = H(t). We also denote Ĥ = ∇2F (y(t)) and
H̄ =

(
E[H−1]

)−1. Now, we have

F (y(t) − p(t))

≤F (y(t))− 〈∇F (y(t)), p(t)〉+
1

2
‖p(t)‖2

Ĥ
+
γ

6
‖p(t)‖3

≤F (z)− 〈∇F (y(t)), z − y(t)〉 − 1− η
2
‖z − y(t)‖2H̄ − 〈∇F (y(t)), p(t)〉+

1

2
‖p(t)‖2

Ĥ

+
γ

6

(
‖p(t)‖3 +

∥∥∥z − y(t)
∥∥∥3
)
.

Then, we have the following inequality

F (x(t+1)) ≤F (z)− 〈∇F (y(t)), z − y(t)〉+
1

2
‖p(t)‖2

Ĥ
− 〈∇F (y(t)), p(t)〉 − θ2

2
‖z − y(t)‖2H̄

+
γ

6

(
‖p(t)‖3 +

∥∥∥z − y(t)
∥∥∥3
)
.

Setting z = x(t), z = x∗ respectively in above inequality, we obtain

(1− θ)F (x(t+1)) ≤ (1− θ)
(
F (x(t))− 〈∇F (y(t)), x(t) − y(t)〉+

1

2
‖p(t)‖2

Ĥ
− θ2

2
‖x(t) − y(t)‖2H̄

− 〈∇F (y(t)), p(t)〉+
γ

6

(
‖p(t)‖3 +

∥∥∥x(t) − y(t)
∥∥∥))

and

θF (x(t+1)) ≤θ
(
F (x∗)− 〈∇F (y(t)), x∗ − y(t)〉+

1

2
‖p(t)‖2

Ĥ
− θ2

2
‖x∗ − y(t)‖2H̄

25

YE, LUO, AND ZHANG

− 〈∇F (y(t)), p(t)〉+
γ

6

(
‖p(t)‖3 +

∥∥∥x∗ − y(t)
∥∥∥3
))

.

Adding the above two inequalities and using the notation of ∆1, we get

F (x(t+1))− F (x∗)

≤(1− θ)(F (x(t))− F (x∗)) +
1

2
‖p(t)‖2

Ĥ
− 〈∇F (y(t)), p(t)〉

− 〈∇F (y(t)), (1− θ)x(t) + θx∗ − y(t)〉 − θ3

2
‖x∗ − y(t)‖2H̄ + ∆1.

By the update iteration in Algorithm 2, we have

θ2v(t+1) = (1− θ)θ2v(t) + θ3y(t) − θp(t). (31)

Now, we build the relation between ‖x? − v(t+1)‖H̄∗ and ‖x? − v(t)‖H̄∗ .
First, we have

θ2

2
(‖x? − v(t+1)‖2H̄∗ − ‖y(t) − v(t+1)‖2H̄∗)

=
(1− θ)θ2

2
(‖x? − v(t)‖2H̄∗ − ‖y(t) − v(t)‖2H̄∗) +

θ3

2
‖x? − y(t)‖2H̄ + θ〈x∗ − y(t), H̄∗p(t)〉.

Then, we expand θ2

2 ‖y
(t) − v(t+1)‖2

H̄∗ as follows

θ2

2
‖y(t) − v(t+1)‖2H̄∗

=
1

2θ2
‖θ2y(t) − ((1− θ)θ2v(t) + θ3y(t) − θp(t))‖2H̄∗

=
1

2
‖p(t)‖2H̄∗ +

θ2(1− θ)2

2
‖y(t) − v(t)‖2H̄∗ + (1− θ)〈x(t) − y(t), H̄∗p(t)〉,

Therefore, we have

θ2

2
‖x∗ − v(t+1)‖2H̄∗ =

(1− θ)θ2

2
‖x? − v(t)‖2H̄∗ +

θ3

2
‖x? − y(t)‖2H̄∗ +

1

2
‖p(t)‖2H̄∗

+ 〈H̄∗p(t), (1− θ)x(t) + θx∗ − y(t)〉 − θ3(1− θ)
2

‖y(t) − v(t)‖2H̄∗ .

Hence, taking expectation with respect to H , we obtain

E
[
F (x(t+1))− F (x∗) +

θ2

2
‖x∗ − v(t+1)‖2H̄∗

]
≤(1− θ)

(
(F (x(t))− F (x∗) +

θ2

2
‖x? − v(t)‖2H̄∗

)
+ ∆1

+ E〈H̄∗p(t), (1− θ)x(t) + θx∗ − y(t)〉 − 〈∇F (y(t)), (1− θ)x(t) + θx∗ − y(t)〉

+ E
[

1

2
‖p(t)‖2

Ĥ
+

1

2
‖p(t)‖2H̄∗ − 〈∇F (y(t)), p(t)〉

]
+
θ3

2
‖x∗ − y(t)‖2H̄∗ −

θ3

2
‖x∗ − y(t)‖2H̄

26

NESTEROV’S ACCELERATION FOR APPROXIMATE NEWTON

≤(1− θ)
(

(F (x(t))− F (x∗) +
θ2

2
‖x? − v(t)‖2H̄∗

)
+ ∆1 + ∆2 + ∆3,

where the last equality follows from the definition of ∆2 and ∆3.

Now, we begin to bound the value of ∆1, ∆2, and ∆3.

Lemma 16 Let F (x) and H(t) satisfy the properties described in Theorem 2. Assume the step 5 of
Algorithm 1 be replaced by x(t+1) = y(t) − p(t) and p(t) satisfies Equation (9) with r ≤ θ2(1+θ)2

8(1+2θ2)κ2
.

Furthermore, matrices H(t+1) and H(t) satisfy that ‖H̄(t+1) − H̄(t)‖ ≤ γς‖y(t+1) − y(t)‖, where ς
is a constant. Then, we have

∆1 + ∆2 + ∆3 ≤ ε0 · V (t) + γ · ϕ̃ ·
[
V (t)

]3/2
,

where ϕ̃ is defined as

ϕ̃ =
1

(1 + θ)3µ3/2

(
16
√

2(1 + θ2)κς + 16
√

2κ2ς + 12θ3ς + 31κ3
)
.

Proof We first bound the value of ∆1. We have

∆2 =E〈H̄∗p(t), (1− θ)x(t) + θx∗ − y(t)〉 − 〈∇F (y(t)), (1− θ)x(t) + θx∗ − y(t)〉

≤E
〈
H̄∗
(
p(t) −H−1∇F (y(t)

)
+ H̄∗H−1∇F (y(t))−∇F (y(t)), (1− θ)x(t) + θx∗ − y(t)

〉
≤‖(1− θ)x(t) + θx∗ − y(t)‖ ·

(
E‖p(t) −H−1∇F (y(t)‖ · ‖H̄∗‖+ ‖H̄∗H̄∇F (y(t))−∇F (y(t))‖

)
(30),(9)
≤
√

2θ2 +
√

2

(1 + θ)
√
µ

√
V (t) ·

(
rε0 · (E‖H−1‖) · ‖H̄∗‖ · ‖∇F (y(t)‖+ ‖H̄∗H̄∇F (y(t))−∇F (y(t))‖

)
≤
√

2θ2 +
√

2

(1 + θ)
√
µ

√
V (t) ·

(
2rε0L

θ2µ
‖∇F (y(t)‖+ ‖H̄∗H̄∇F (y(t))−∇F (y(t))‖

)
,

where the last inequality is because of condition (4) that∇2F (y(t)) � 2H(t) and H̄∗ � 1
1−η∇

2F (x∗).
Furthermore, we have

‖H̄∗H̄∇F (y(t))−∇F (y(t))‖ ≤‖H̄−1‖ · ‖H̄∗ − H̄‖ · ‖∇F (y(t))‖
(27)
≤ 2

µ
· 2

√
2L

(1 + θ)
√
µ

√
V (t) · γς‖y(t) − x∗‖

(26)
≤ 16κγς

(1 + θ)2µ
V (t).

Hence, we have

∆2 ≤
√

2θ2 +
√

2

(1 + θ)
√
µ

√
V (t) ·

(
2rε0κ

θ2
· 2

√
2L

(1 + θ)
√
µ

√
V (t) +

16κγς

(1 + θ)2µ
V (t)

)

=
8rε0(1 + θ2)κ2

θ2(1 + θ)2
· V (t) +

16
√

2γ(1 + θ2)κς

(1 + θ)3µ3/2
·
[
V (t)

]3/2
.

27

YE, LUO, AND ZHANG

Now, we begin to bound the value of ‖p(t)‖ which will be used in bounding the value of ∆2 and
∆3. We give the bound of ‖p(t)‖ as follows

‖p(t)‖ =‖H−1∇F (y(t))− (p(t) −H−1∇F (y(t)))‖
≤‖H−1∇F (y(t))‖+ ‖(p(t) −H−1∇F (y(t)))‖

≤‖H−1‖
(
‖∇F (y(t))‖+ ‖H(t)p(t) −∇F (y(t))‖

)
≤(1 + rε0)‖H−1‖ · ‖∇F (y(t))‖

≤ 4
√

2κ

(1 + θ)
√
µ

[
V (t)

]1/2
, (32)

where the last inequality is because of Eqn. (26) and condition (4) that ∇2F (y(t)) � 2H(t) and
µ ≤ λmin(∇2F (y(t))).

For the value of ∆3, we bound its first term as follows

E
[

1

2
‖p(t)‖2

Ĥ
+

1

2
‖p(t)‖2H̄ − 〈∇F (y(t)), p(t)〉

]
=E

[
1

2
‖p(t)‖2

Ĥ
+

1

2
‖p(t)‖2H̄ − ‖p

(t)‖2H + ‖p(t)‖2H − 〈∇F (y(t)), p(t)〉+
1

2
‖p(t)‖2H̄∗ −

1

2
‖p(t)‖2H̄

]
≤E

[
‖p(t)‖2H − 〈∇F (y(t)), p(t)〉+

1

2
‖p(t)‖2H̄∗ −

1

2
‖p(t)‖2H̄

]
=E

[
〈p(t), Hp(t) −∇F (y(t)) +

1

2
‖p(t)‖2H̄∗ −

1

2
‖p(t)‖2H̄〉

]
≤E

[
rε0 · ‖p(t)‖ · ‖∇F (y(t))‖+

1

2
‖p(t)‖2H̄∗ −

1

2
‖p(t)‖2H̄

]
,

where the first inequality is because of the condition (4) that Ĥ + H̄ − 2H � 0 and

1

2
‖p(t)‖2

Ĥ
+

1

2
‖p(t)‖2H̄ − ‖p

(t)‖2H =
1

2

(
p(t)
)T (

Ĥ + H̄ − 2H
)(

p(t)
)
≤ 0.

Hence, we have

E
[

1

2
‖p(t)‖2

Ĥ
+

1

2
‖p(t)‖2H̄ − 〈∇F (y(t)), p(t)〉

]
≤E

[
rε0 · ‖p(t)‖ · ‖∇F (y(t))‖+

1

2
‖p(t)‖2H̄∗ −

1

2
‖p(t)‖2H̄

]
(32)(27)
≤ E

[
rε0

4
√

2κ

(1 + θ)
√
µ

[
V (t)

]1/2
· 2

√
2L

(1 + θ)
√
µ

[
V (t)

]1/2
+

1

2
‖p(t)‖2 · ‖H̄∗ − H̄‖

]
(32)
≤ 16rε0κ

2

(1 + θ)2
V (t) +

8κ2

(1 + θ)2µ
V (t) · γς‖y(t) − x∗‖

(26)
≤ 16rε0κ

2

(1 + θ)2
V (t) +

16
√

2γςκ2

(1 + θ)3µ3/2

[
V (t)

]3/2
.

28

NESTEROV’S ACCELERATION FOR APPROXIMATE NEWTON

For the second term of ∆3, we have

θ3

2
‖x∗ − y(t)‖2H̄∗ −

θ3

2
‖x∗ − y(t)‖2H̄ ≤

θ3

2
‖x∗ − y(t)‖2‖H̄ − H̄∗‖

≤θ
3γς

2
‖x∗ − y(t)‖3

(26)
≤ 12θ3γς

(1 + θ)3µ3/2

[
V (t)

]3/2
.

Therefore, ∆3 is upper bounded by

∆3 ≤
16rε0κ

2

(1 + θ)2
V (t) +

16
√

2γςκ2 + 12θ3γς

(1 + θ)3µ3/2

[
V (t)

]3/2
.

Finally, we bound the value of ∆a as follows

∆1 =
γ

6

(
‖p(t)‖3 + (1− θ)

∥∥∥x(t) − y(t)
∥∥∥3

+ θ
∥∥∥x∗ − y(t)

∥∥∥3
)

(32)(28)(26)
≤ γ

6

(4
√

2κ

(1 + θ)
√
µ

[
V (t)

]1/2
)3

+ (1− θ)

(
4
√

2

(1 + θ)
√
µ

)3

+ θ

(
2
√

2

(1 + θ)
√
µ

)3


≤ 31γκ3

(1 + θ)3µ3/2

[
V (t)

]3/2
+

31γ

(1 + θ)3µ3/2

[
V (t)

]3/2

≤ 62γκ3

(1 + θ)3µ3/2

[
V (t)

]3/2
.

Therefore, we have

∆1 + ∆2 + ∆3

≤8rε0(1 + θ2)κ2

θ2(1 + θ)2
· V (t) +

16
√

2γ(1 + θ2)κς

(1 + θ)3µ3/2
·
[
V (t)

]3/2
+

16rε0κ
2

(1 + θ)2
· V (t)

+
16
√

2γςκ2 + 12θ3γς

(1 + θ)3µ3/2
·
[
V (t)

]3/2
+

62γκ3

(1 + θ)3µ3/2
·
[
V (t)

]3/2

=
8rε0(1 + 3θ2)κ2

θ2(1 + θ)2
· V (t) + γϕ̃ ·

[
V (t)

]3/2

≤ε0 · V (t) + γϕ̃ ·
[
V (t)

]3/2
,

where the last inequality is because of the condition about r.

Proof of Theorem 5 Combining Lemma 15 and Lemma 16, we have

E
[
V (t+1)

]
≤(1− θ)V (t) + ∆1 + ∆2 + ∆3

≤(1− θ)V (t) + ε0 · V (t) + γ · ϕ̃ ·
[
V (t)

]3/2

=(1− θ + ε0)V (t) + γ · ϕ̃ ·
[
V (t)

]3/2
.

29

YE, LUO, AND ZHANG

Appendix D. Proof of Theorem 8

The proof of Theorem 8 mainly lies on Theorem 2. First, we are going to prove Lemma 6 which
show that the conditions in Theorem 2 will be satisfied when row norm squares sampling strategy is
used to construct the approximate Hessian. Then we will compute the parameter ς in Theorem 2.
Proof of Lemma 6 For notation convenience, we will omit superscript and just use S, B and α
instead of S(t), B(t) and α(t). Let us denote H̄ =

(
E[H−1]

)−1 and Ĥ = ∇2F (y(t)).
First, we will prove the first condition of (4). By Jensen’s inequality, we have(

E[H−1]
)−1 � E[H].

Thus, we can obtain

(1− η)H̄ � (1− η)E[H] = (1− η)(Ĥ + 2α‖B‖2 · I),

where the equality follows from the fact that E[H] = Ĥ + 2α‖B‖2 · I . We also have

(1− η)
(
Ĥ + 2α‖B‖2 · I

)
− Ĥ =

2cκσ2
min(B)

1 + 3cκ
· I − 3cκ

1 + 3cκ
Ĥ � 0.

Therefore, we get
(1− η)H̄ � ∇2F (y(t)),

By Theorem 1, we have
‖BTB −BTSTSB‖ ≤ α/2, (33)

with probability at least 1− δ. This implies Ĥ � H and we can obtain Ĥ �
(
E[H−1]

)−1. Thus, the
first condition of Eqn. (4) is satisfied.

Then, we begin to prove that the second condition of Eqn. (4) is satisfied. Using Eqn. (33), we
can obtain that

yT
(
Ĥ − [SB]TSB

)
y ≤ α‖y‖2

⇒yT
(
Ĥ + αI + Ĥ − 2([SB]TSB + αI)

)
y ≤ 0

⇒Ĥ + E[H]− 2H � 0.

Furthermore, by the fact that (E[H−1])−1 � E[H], we obtain

Ĥ + H̄ − 2H � Ĥ + E[H]− 2H � 0.

That is the second condition of Eqn. (4) is satisfied.

Now, we determine the parameter ς in Theorem 2.

Lemma 17 Assume ∇2F (x) satisfies Eqn. (11). S(t) ∈ Rs×n is a row norm squares sampling
matrix w.r.t. B(t) with s = O(c−2 · sr(B(t)) log d/δ), where 0 < c < 1 is sample size parameter and
0 < δ < 1 is the failure rate. Let us set regularizer α(t) = 2c‖B(t)‖2 and construct the approximate
Hessian H(t) as Eqn. (14). Assume ‖B(t+1) −B(t)‖ ≤ γ

2
√
L
‖y(t+1) − y(t)‖. Then, we have

‖H̄(t+1) − H̄(t)‖ ≤
(

9 +
9n

4cs

)
· γ · ‖y(t+1) − y(t)‖.

30

NESTEROV’S ACCELERATION FOR APPROXIMATE NEWTON

Proof First, we have

H̄(t) − H̄(t+1) = H̄(t)
(
E(H(t+1))−1 − E(H(t))−1

)
H̄(t+1)

and

E(H(t))−1 =
∑

pS

(
α(t) + [S(t)B(t)]TS(t)B(t)

)−1
,

where pS is the probability of choosing such sampling matrix S(t).
Now, we assume that the same sampling probability is the same for different t. This assumption

is reasonable because when x(t) is close to the optimal point x∗, the sampling probability is close to
each other, and Theorem 1 also shows that a slight disturbance of sampling probability will not affect
approximation precision severely.

Under this assumption, we just S instead of S(t) and S(t+1). Now, we have

‖E(H(t+1))−1 − E(H(t))−1‖

=

∥∥∥∥∑ pS

((
α(t+1) + [SB(t+1)]TSB(t+1)

)−1
−
(
α(t) + [SB(t)]TSB(t)

)−1
)∥∥∥∥

=
∥∥∥∑ pS · [H(t+1)]−1

(
α(t) − α(t+1) + [SB(t)]TSB(t) − [SB(t+1)]TSB(t+1)

)
[H(t)]−1

∥∥∥
≤
∑

pS [α(t)]−1[α(t+1)]−1
(
‖α(t) − α(t+1)‖+ ‖[SB(t)]TSB(t) − [SB(t+1)]TSB(t+1)‖

)
.

First, we have

‖α(t) − α(t+1)‖ =2c
∣∣∣‖B(t)‖2 − ‖B(t+1)‖2

∣∣∣
=2c

∣∣∣‖B(t)‖ − ‖B(t+1)‖
∣∣∣ (‖B(t)‖+ ‖B(t+1)‖

)
≤ 2cγ

2
√
L

(
‖B(t)‖+ ‖B(t+1)‖

)
‖y(t) − y(t+1)‖

≤2cγ‖y(t) − y(t+1)‖,

where the last inequality is because of ‖B(t)‖2 = ‖∇2F (y(t))‖ ≤ L.
Let denote ∆ = B(t+1) −B(t), we also have∑

pS‖[SB(t)]TSB(t) − [SB(t+1)]TSB(t+1)‖

≤
∑

pS‖[SB(t)]TSB(t) − [S(B(t) + ∆)]TS(B(t)+∆)‖

≤
∑

pS‖∆‖‖STS‖‖B(t)‖

≤γ
2

(∑
pS‖STS‖

)
‖y(t+1) − y(t)‖.

Now, we need to bound
∑
pS‖STS‖. By the property of sampling matrix, we have∑

pS‖STS‖ =
∑
i1...is

pi1 . . . pis
1

s
‖diag(

1

pi1
, . . . ,

1

pis
)‖ ≤ n

s
.

31

YE, LUO, AND ZHANG

Therefore, we have

‖E(H(t+1))−1 − E(H(t))−1‖ ≤[α(t)]−1[α(t+1)]−1
(

2c+
n

2s

)
γ‖y(t+1) − y(t)‖

≤
2c+ n

2s

2c‖∇2F (y(t))‖‖∇2F (y(t+1))‖
γ‖y(t+1) − y(t)‖.

By the condition (4), we bound the norm of H̄(t) as follows

‖H̄(t)‖ ≤ ‖∇2F (y(t))‖+ ‖H(t)‖ ≤ 3‖∇2F (y(t))‖.

Similarly, we also have
‖H̄(t+1)‖ ≤ 3‖∇2F (y(t+1))‖.

Combining above results, we have

‖H̄(t) − H̄(t+1)‖ ≤‖H̄(t)‖ · ‖H̄(t+1)‖ · ‖E(H(t+1))−1 − E(H(t))−1‖

≤9‖∇2F (y(t))‖‖∇2F (y(t+1))‖ ·
c+ n

4s

c‖∇2F (y(t))‖‖∇F (y(t+1))‖
γ‖y(t+1) − y(t)‖

=9
(

1 +
n

4cs

)
γ‖y(t+1) − y(t)‖.

Therefore, we obtain that ς = 9 + 9n
4cs .

Combining above two lemmas, we can easily prove Theorem 8.
Proof of Theorem 8 First, we will prove that∇2F (x) is γ-Lipschitz continuous. By the assumption∥∥B(t+1) −B(t)

∥∥ ≤ γ

2
√
L

∥∥y(t+1) − y(t)
∥∥, we have∥∥∥∇2F (y(t+1))−∇2F (y(t))

∥∥∥ =
∥∥∥[B(t+1)]TB(t+1) − [B(t+1)]TB(t+1)

∥∥∥
≤
(∥∥∥B(t+1)

∥∥∥+
∥∥∥B(t)

∥∥∥) · ∥∥∥B(t+1) −B(t)
∥∥∥

≤2
√
L · 1

2
√
L

∥∥∥y(t+1) − y(t)
∥∥∥ =

∥∥∥y(t+1) − y(t)
∥∥∥ ,

where the last inequality is because because of ‖B(t)‖2 = ‖∇2F (y(t))‖ ≤ L.
Next, we will use Theorem 2 to prove the theorem. By Lemma 6, we can see that Condition 4

holds with probability at least 1−δ. By Lemma 17, we obtain the value of ς in Theorem 2. Therefore,
we can obtain the result.

Appendix E. Proof of Theorem 10

The proof of Theorem 10 is similar to the one of Theorem 8. First, we show that Condition (4) holds
with high probability. We calculate the value of ς in Theorem 2.

32

NESTEROV’S ACCELERATION FOR APPROXIMATE NEWTON

Proof of Theorem 10 First, by assumption
∥∥∇2fi(y

(t+1))−∇2fi(y
(t))
∥∥ ≤ γ

∥∥y(t+1) − y(t)
∥∥ for

all i ∈ {1, . . . , n} and y(t), we can obtain that

∥∥∥∇2F (y(t+1))−∇2F (y(t))
∥∥∥ =

∥∥∥∥∥ 1

n

n∑
i=1

(
∇2fi(y

(t+1))−∇2fi(y
(t))
)∥∥∥∥∥

≤ 1

n

n∑
i=1

∥∥∥∇2fi(y
(t+1))−∇2fi(y

(t))
∥∥∥ ≤ γ ∥∥∥y(t+1) − y(t)

∥∥∥ ,
that is,∇2F (x) is γ-Lipschitz continuous. Next, we will use Theorem 2 to prove our theorem.

For notation convenience, we will omit superscript. We denote and H̄ =
(
E[H−1]

)−1 and
Ĥ = ∇2F (y(t)). By Jensen’s inequality, we have(

E[H−1]
)−1 � E[H].

Thus, we can obtain

(1− η)H̄ � (1− η)E[H] = (1− η)(Ĥ + 2α‖B‖2 · I).

We also have

(1− η)
(
Ĥ + 2c · I

)
− Ĥ � 2cµ

µ+ 2c
· I − 2c

µ+ 2c
Ĥ � 0.

where the last inequality is because of Eqn. (18). Therefore, we get

(1− η)H̄ � ∇2F (y(t)). (34)

Consider random matrices H(t)
j = ∇2fj(x

(t)), j = 1, . . . , s being sampled uniformly. Then, we

have E[H
(t)
j] = ∇2F (x(t)) for all j = 1, . . . , s. By (17) and the positive semi-definite property of

H
(t)
j , we have λmax(H

(t)
j) ≤ K and λmin(H

(t)
j) ≥ 0.

We define random matrices Xj = H
(t)
j −∇2F (x(t)) for all j = 1, . . . , |S|. We have E[Xj] = 0,

‖Xj‖ ≤ 2K and ‖Xj‖2 ≤ 4K2. By the matrix Bernstein inequality (Tropp et al., 2015), we have

‖H(t) −∇2F (x(t))‖ ≤
√

2 · 4K2 log 2d/δ

s
+

2K log 2d/δ

3s
,

with probability at least 1− δ. When the sample size |S| = O(c−2K2 log d/δ), we have

‖H(t) −∇2F (x(t))‖ ≤ α

2
(35)

holds with probability 1 − δ. This implies Ĥ � H and we can obtain that Ĥ �
(
E[H−1]

)−1.
Combining Eqn. (34), we can obtain that the first condition of Eqn. (4) is satisfied. Eqn. (35) also
implies that

yT
(
Ĥ − [SB]TSB

)
y ≤ α‖y‖2

33

YE, LUO, AND ZHANG

⇒yT
(
Ĥ + αI + Ĥ − 2([SB]TSB + αI)

)
y ≤ 0

⇒Ĥ + E[H]− 2H � 0.

Furthermore, by the fact that (E[H−1])−1 � E[H], we obtain

Ĥ + H̄ − 2H � Ĥ + E[H]− 2H � 0.

That is the second condition of Eqn. (4) is satisfied.
Similar to the proof of Theorem 8, we need to calculate the value of ς . First, we have

H̄(t) − H̄(t+1) = H̄(t)
(
E(H(t+1))−1 − E(H(t))−1

)
H̄(t+1)

and

E(H(t))−1 =
∑

pS

α(t) +
1

|S|
∑
j∈S
∇2fj(y

(t))

−1

,

where pS is the probability of choosing such a subset S. Hence, we have

‖E(H(t+1))−1 − E(H(t))−1‖

=

∥∥∥∥∥∥
∑

pS

α(t) +
1

|S|
∑
j∈S
∇2fj(y

(t+1))

−1

−

α(t) +
1

|S|
∑
j∈S
∇2fj(y

(t))

−1∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑

pS · [H(t+1)]−1

α(t) − α(t+1) +
1

|S|
∑
j∈S
∇2fj(y

(t))− 1

|S|
∑
j∈S
∇2fj(y

(t+1))

 [H(t)]−1

∥∥∥∥∥∥
≤
∑

pS [α(t)]−1[α(t+1)]−1

‖α(t) − α(t+1)‖+ ‖ 1

|S|
∑
j∈S
∇2fj(y

(t))− 1

|S|
∑
j∈S
∇2fj(y

(t+1))‖


≤ 1

4c2

∑
pS

∥∥∥∥∥∥ 1

|S|
∑
j∈S
∇2fj(y

(t))− 1

|S|
∑
j∈S
∇2fj(y

(t+1))

∥∥∥∥∥∥ ,
where the last inequality is because α(t) = 2c. We also have

∑
pS

∥∥∥∥∥∥ 1

|S|
∑
j∈S
∇2fj(y

(t))− 1

|S|
∑
j∈S
∇2fj(y

(t+1))

∥∥∥∥∥∥
≤ 1

|S|
∑

pS
∑
j∈S
‖∇2fj(y

(t))−∇2fj(y
(t+1))‖

≤γ
∑

pS‖y(t+1) − y(t)‖ = γ · ‖y(t+1) − y(t)‖.

Hence, in this case, ς = 1. We can obtain the convergence property by Theorem 2.

34

NESTEROV’S ACCELERATION FOR APPROXIMATE NEWTON

References

Naman Agarwal, Brian Bullins, and Elad Hazan. Second-order stochastic optimization for machine
learning in linear time. The Journal of Machine Learning Research, 18(1):4148–4187, 2017.

Zeyuan Allen-Zhu. Katyusha: the first direct acceleration of stochastic gradient methods. In
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages 1200–
1205. ACM, 2017.

Raghu Bollapragada, Richard H Byrd, and Jorge Nocedal. Exact and inexact subsampled newton
methods for optimization. IMA Journal of Numerical Analysis, 39(2):545–578, 2019.

Richard H Byrd, Gillian M Chin, Will Neveitt, and Jorge Nocedal. On the use of stochastic hessian
information in optimization methods for machine learning. SIAM Journal on Optimization, 21(3):
977–995, 2011.

Xi Chen, Bo Jiang, Tianyi Lin, and Shuzhong Zhang. On adaptive cubic regularized newton’s
methods for convex optimization via random sampling. arXiv preprint arXiv:1802.05426, 2018.

Kenneth L Clarkson and David P Woodruff. Low rank approximation and regression in input sparsity
time. In Proceedings of the forty-fifth annual ACM symposium on Theory of computing, pages
81–90. ACM, 2013.

Andrew Cotter, Ohad Shamir, Nati Srebro, and Karthik Sridharan. Better mini-batch algorithms
via accelerated gradient methods. In Advances in neural information processing systems, pages
1647–1655, 2011.

Murat A Erdogdu and Andrea Montanari. Convergence rates of sub-sampled newton methods. In
Advances in Neural Information Processing Systems, pages 3034–3042, 2015.

Saeed Ghadimi, Han Liu, and Tong Zhang. Second-order methods with cubic regularization under
inexact information. arXiv preprint arXiv:1710.05782, 2017.

I. Guyon. Sido: A phamacology dataset. URL http://www.causality.inf.ethz.ch/
data/SIDO.html.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In Advances in Neural Information Processing Systems, pages 315–323, 2013.

Guanghui Lan and Yi Zhou. An optimal randomized incremental gradient method. Mathematical
programming, 171(1-2):167–215, 2018.

Mu Li, Tong Zhang, Yuqiang Chen, and Alexander J Smola. Efficient mini-batch training for
stochastic optimization. In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 661–670. ACM, 2014.

Xiang Li, Shusen Wang, and Zhihua Zhang. Do subsampled newton methods work for high-
dimensional data? In AAAI, pages 4723–4730, 2020.

35

http://www.causality.inf.ethz.ch/data/SIDO.html
http://www.causality.inf.ethz.ch/data/SIDO.html

YE, LUO, AND ZHANG

Renato DC Monteiro and Benar Fux Svaiter. An accelerated hybrid proximal extragradient method for
convex optimization and its implications to second-order methods. SIAM Journal on Optimization,
23(2):1092–1125, 2013.

Yu Nesterov. Accelerating the cubic regularization of newtons method on convex problems. Mathe-
matical Programming, 112(1):159–181, 2008.

Yurii Nesterov. A method of solving a convex programming problem with convergence rate o (1/k2).
In Soviet Mathematics Doklady, volume 27, pages 372–376, 1983.

Yurii Nesterov. Lectures on convex optimization, volume 137. Springer, 2018.

Yurii Nesterov and Sebastian U Stich. Efficiency of the accelerated coordinate descent method on
structured optimization problems. SIAM Journal on Optimization, 27(1):110–123, 2017.

Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science & Business Media,
2006.

Mert Pilanci and Martin J. Wainwright. Newton sketch: A near linear-time optimization algorithm
with linear-quadratic convergence. SIAM Journal on Optimization, 27(1):205–245, 2017.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical
statistics, pages 400–407, 1951.

Farbod Roosta-Khorasani and Michael W Mahoney. Sub-sampled newton methods ii: Local
convergence rates. arXiv preprint arXiv:1601.04738, 2016.

Nicolas L Roux, Mark Schmidt, and Francis R Bach. A stochastic gradient method with an
exponential convergence rate for finite training sets. In Advances in Neural Information Processing
Systems, pages 2663–2671, 2012.

Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic
average gradient. Mathematical Programming, 162(1-2):83–112, 2017.

Joel A Tropp et al. An introduction to matrix concentration inequalities. Foundations and Trends R©
in Machine Learning, 8(1-2):1–230, 2015.

Stephen Tu, Shivaram Venkataraman, Ashia C. Wilson, Alex Gittens, Michael I. Jordan, and Benjamin
Recht. Breaking locality accelerates block gauss-seidel. In Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, pages
3482–3491, 2017.

David P Woodruff. Sketching as a tool for numerical linear algebra. Foundations and Trends R© in
Theoretical Computer Science, 10(1–2):1–157, 2014.

Peng Xu, Jiyan Yang, Farbod Roosta-Khorasani, Christopher Ré, and Michael W Mahoney. Sub-
sampled newton methods with non-uniform sampling. In Advances in Neural Information Pro-
cessing Systems, pages 3000–3008, 2016.

Haishan Ye, Luo Luo, and Zhihua Zhang. Approximate newton methods and their local convergence.
In International Conference on Machine Learning, pages 3931–3939, 2017.

36

NESTEROV’S ACCELERATION FOR APPROXIMATE NEWTON

Lijun Zhang, Mehrdad Mahdavi, and Rong Jin. Linear convergence with condition number indepen-
dent access of full gradients. In Advance in Neural Information Processing Systems 26 (NIPS),
pages 980–988, 2013.

37

	Introduction
	Related Work

	Notation and Preliminaries
	Notation
	Assumptions
	Row Norm Squares Sampling

	Accelerated Approximate Newton
	Theoretical Analysis
	Inexact Solution of Sub-problem

	Accelerated Regularized Sub-sampled Newton
	Explicit Multiplication Case
	Finite-Sum Case

	Experiments
	Experiments on the Ridge Regression
	Experiments on the Ridge Logistic Regression

	Conclusion
	Regularized Sub-sampled Newton
	Proof of Theorem 2
	Proof of Theorem 5
	Proof of Theorem 8
	Proof of Theorem 10

