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Abstract

In many areas, practitioners need to analyze large data sets that challenge conventional
single-machine computing. To scale up data analysis, distributed and parallel computing
approaches are increasingly needed. Here we study a fundamental and highly important
problem in this area: How to do ridge regression in a distributed computing environment?
Ridge regression is an extremely popular method for supervised learning, and has several
optimality properties, thus it is important to study. We study one-shot methods that
construct weighted combinations of ridge regression estimators computed on each machine.
By analyzing the mean squared error in a high-dimensional random-effects model where
each predictor has a small effect, we discover several new phenomena.

Infinite-worker limit: The distributed estimator works well for very large numbers
of machines, a phenomenon we call “infinite-worker limit”.

Optimal weights: The optimal weights for combining local estimators sum to more
than unity, due to the downward bias of ridge. Thus, all averaging methods are suboptimal.

We also propose a new Weighted ONe-shot DistributEd Ridge regression algorithm
(WONDER). We test WONDER in simulation studies and using the Million Song Dataset
as an example. There it can save at least 100x in computation time, while nearly preserving
test accuracy.

Keywords: distributed learning, ridge regression, high-dimensional statistics, random
matrix theory

1. Introduction

Computers have changed all aspects of our world. Importantly, computing has made data
analysis more convenient than ever before. However, computers also pose limitations and
challenges for data science. For instance, hardware architecture is based on a model of
a universal computer—a Turing machine—but in fact has physical limitations of storage,
memory, processing speed, and communication bandwidth over a network. As large data
sets become more and more common in all areas of human activity, we need to think
carefully about working with these limitations.
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How can we design methods for data analysis (statistics and machine learning) that
scale to large data sets? A general approach is distributed and parallel computing. Roughly
speaking, the data is divided up among computing units, which perform most of the com-
putation locally, and synchronize by passing relatively short messages. While the idea is
simple, a good implementation can be hard and nontrivial. Moreover, different problems
have different inherent needs in terms of local computation and global communication re-
sources. For instance, in statistical problems with high levels of noise, simple one-shot
schemes like averaging estimators computed on local data sets can sometimes work well.

In this paper, we study a fundamental problem in this area. We are interested in linear
regression, which is arguably one of the most important problems in statistics and machine
learning. A popular method for this model is ridge regression (aka Tikhonov regulariza-
tion), which regularizes the estimates using a quadratic penalty to improve estimation and
prediction accuracy. We aim to understand how to do ridge regression in a distributed
computing environment. We are also interested in the important high-dimensional setting,
where the number of features can be very large. In fact our approach allows the dimension
and sample size to have any ratio. We also work in a random-effects model where each
predictor has a small effect on the outcome, which is the model for which ridge regression
is best suited.

We consider the simplest and most fundamental method, which performs ridge regression
locally on each data set housed on the individual machines or other computing units, sends
the estimates to a global datacenter (or parameter server), and then constructs a final one-
shot estimator by taking a linear combination of the local estimates. As mentioned, such
methods are sometimes near-optimal, and it is therefore well-justified to study them. We
will later give several additional justifications for our work.

However, in contrast to existing work, we introduce a completely new mathematical
approach to the problem, which has never been used for studying distributed ridge regres-
sion before. Specifically, we leverage and further develop sophisticated recent techniques
from random matrix theory and free probability theory in our analysis. This enables us
to make important contributions, that were simply unattainable using more “traditional”
mathematical approaches.

To give a sense of our results, we provide a brief discussion here. We have a data set
consisting of n datapoints, for instance 1000 heart disease patients. Each datapoint has
an outcome yj , such as blood pressure, and features xj , such as age, height, electronic
health records, lab results, and genetic variables. Our goal is to predict the outcome of
interest (i.e., blood pressure) for new patients based on their features, and to estimate the
relationship of the outcome to the features.

The samples are distributed across several sites, for instance patients from different
countries are housed in different data centers. We will refer to the sites as “machines”,
though they may actually be other computing entities, such as entire computer networks
or data centers. In many important settings, it can be impossible to share the data across
the different sites, for instance due to logistical or privacy reasons.

Therefore, we assume that each site has a subset of the samples. Our approach is to
train ridge regression on this local data. As usual, we can arrange the local data set (say
on the i-th machine) into a feature matrix Xi, where each row contains a sample (i.e.,
datapoint), and an outcome vector Yi where each entry is an outcome. We compute the
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local ridge regression estimates

β̂i = (X>i Xi + λiIp)
−1X>i Yi,

where λi are some regularization parameters. We then aggregate them by a weighted
combination, constructing the final one-shot distributed ridge estimator (where k is the
number of sites)

β̂dist =
k∑
i=1

wiβ̂i.

The important questions here are:

1. How does this work?

2. How to tune the parameters? (such as the regularization parameters and weights)

Question 1 is of interest because we wish to know when one-shot methods are a good
approach, and when they are not. For this we need to understand the performance as a
function of the key problem parameters, such as the signal strength, sample size, and dimen-
sion. For question 2, the challenge is posed by the constraints of the distributed computing
environment, where standard methods for parameter tuning such as cross-validation may
be expensive.

In this work we are able to make several crucial contributions to these questions. We
work in an asymptotic setting where n, p grow to infinity at the same rate, which effectively
gives good results for any n, p. We study a linear-random effects model, where each regressor
has a small random effect on the outcome. This is a good model for the applications
where ridge regression is used, because ridge does not assume sparsity, and has optimality
properties in certain dense random effects models. Importantly, this analysis does not
assume any sparsity in a high-dimensional setting. Sparsity has been one of the biggest
driving forces in statistics and machine learning in the last 20 years. Our work is in a
different line of work, and shows that meaningful results are available without sparsity.

We find the limiting mean squared error of the one-shot distributed ridge estimator. This
enables us to characterize the optimal weights and tuning parameters, as well as the relative
efficiency compared to centralized ridge regression, meaning the ratio of the risk of usual
ridge to the distributed estimator. This can precisely pinpoint the computation-accuracy
tradeoff achieved via one-shot distributed estimation. See Figure 1 for an illustration.

As a consequence of our detailed and precise risk analysis, we make several qualitative
discoveries that we find quite striking:

1. Efficiency depends strongly on signal strength. The statistical efficiency of
the one-shot distributed ridge estimator depends strongly on signal strength. The
efficiency is generally high (meaning distributed ridge regression works well) when the
signal strength is low.

2. Infinite-worker limit. The one-shot distributed estimator does not lose all efficiency
compared to the ridge estimator even in the limit of infinitely many machines. Some-
what surprisingly, this suggests that simple one-shot weighted combination methods
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Figure 1: Efficiency loss due to one-shot distributed learning. This plot shows the relative
mean squared error of centralized ridge regression compared to optimally weighted
one-shot distributed ridge regression. This quantity is at most unity, and the
larger, the “better” distributed ridge works. Specifically, the model is asymptotic,
and we show the dependence of the Asymptotic Relative Efficiency (ARE) on the
aspect ratio γ = lim p/n (where n is sample size and p is dimension) and on the
signal strengh α =

√
E‖β‖2, in the infinite-worker limit when we distribute our

data over many machines. We show (a) surface and (b) contour plots of the ARE.
See the text for details.

for distributed ridge regression can work well even for very large numbers of ma-
chines. The statement that this can be achieved by communication-efficient methods
is nontrivial. This finding is clearly important from a practical perspective.

3. Decoupling. When the features are uncorrelated, the problem of choosing the opti-
mal regularization parameters decouples over the different machines. We can choose
them in a locally optimal way, and they are also globally optimal. We emphasize that
this is a very delicate result, and is not true in general for correlated features. More-
over, this discovery is also important in practice, because it gives conditions under
which we can choose the regularization parameters separately for each machine, thus
saving valuable computational resources.

4. Optimal weights do not sum to unity. Our work uncovers unexpected properties
of the optimal weights. Naively, one may think that the weights need to sum to unity,
meaning that we need a weighted average. However, it turns out the optimal weights
sum to more than unity, because of the negative bias of the ridge estimator. This
means that any type of averaging method is suboptimal. We characterize the optimal
weights and under certain conditions find their explicit analytic form.

Based on these results, we propose a new Weighted ONe-shot DistributEd Ridge regres-
sion algorithm (WONDER). We also confirm these results in detailed simulation studies
and on an empirical data example, using the Million Song Dataset. Here WONDER can be
used over 100-way splits of the data with 5% loss of prediction accuracy.
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We also emphasize that some aspects of our work can help practitioners directly (e.g.,
our new algorithm), while others are developed for deepening our understanding of the
nature of the problem. We discuss the practical implications of our work in Section 4.5.

The paper is structured as follows. We discuss some related work in Section 1.1. We
start with finite sample results in Section 2. We provide asymptotic results for features
with an arbitrary covariance structure in Section 3. We consider the special case of an
identity covariance in Section 4. In Section 5 we provide an explicit algorithm for optimally
weighted one-shot distributed ridge. We also study in detail the properties of the estimation
error, relative efficiency (including minimax properties in Section 4.6), tuning parameters
(and decoupling), as well as optimal weights, including answers to the questions above.
We provide numerical simulations throughout the paper, and additional ones in Section 6,
along with an example using an empirical data set. The code for our paper is available at
github.com/dobriban/dist_ridge.

1.1. Related work

Here we discuss some related work. Historically, distributed and parallel computation has
first been studied in computer science and optimization (see e.g., Bertsekas and Tsitsiklis,
1989; Lynch, 1996; Blelloch and Maggs, 2010; Boyd et al., 2011; Rauber and Rünger, 2013;
Koutris et al., 2018). However, the problems studied there are quite different from the ones
that we are interested in. Those works often focus on problems where correct answers are
required within numerical precision, e.g., 16 bits of accuracy. However, when we have noisy
data sets, such as in statistics and machine learning, numerical precision is neither needed
nor usually possible. We may only hope for 3-4 bits of accuracy, and thus the problems are
different.

The area of distributed statistics and machine learning has attracted increasing attention
only relatively recently, see for instance Mcdonald et al. (2009); Zhang et al. (2012, 2013c);
Li et al. (2013); Zhang et al. (2013b,a); Chen and Xie (2014); Mackey et al. (2011); Zhang
et al. (2015); Braverman et al. (2016); Jordan et al. (2019); Rosenblatt and Nadler (2016);
Smith et al. (2018); Banerjee et al. (2019); Zhao et al. (2016); Xu et al. (2018); Fan et al.
(2019); Lin et al. (2017); Lee et al. (2017); Volgushev et al. (2019); Shang and Cheng (2017);
Battey et al. (2018); Zhu and Lafferty (2018); Chen et al. (2019, 2018); Wang et al. (2019);
Shi et al. (2018); Duan et al. (2018); Liu et al. (2018); Cai and Wei (2020), and the references
therein. See Huo and Cao (2018) for a review. We can only discuss the most closely related
papers due to space limitations.

Zhang et al. (2013c) study the MSE of averaged estimation in empirical risk minimiza-
tion. Later Zhang et al. (2015) study divide and conquer kernel ridge regression, showing
that the partition-based estimator achieves the statistical minimax rate over all estimators,
when the number of machines is not too large. These results are very general, however
they are not as explicit or precise as our results. In addition they consider fixed dimen-
sions, whereas we study increasing dimensions under random effects models. Lin et al.
(2017) improve the above results, removing certain eigenvalue assumptions on the kernel,
and sharpening the rate.

Guo et al. (2017) study regularization kernel networks, and propose a debiasing scheme
that can improve the behavior of distributed estimators. This work is also in the same
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framework as those above (general kernel, fixed dimension). Xu et al. (2018) propose a
distributed General Cross-Validation method to choose the regularization parameter.

Rosenblatt and Nadler (2016) consider averaging in distributed learning in fixed and
high-dimensional M-estimation, without studying regularization. Lee et al. (2017) study
sparse linear regression, showing that averaging debiased lasso estimators can achieve the
optimal estimation rate if the number of machines is not too large. A related work is Battey
et al. (2018), which also includes hypothesis testing under more general sparse models.
These last two works are on a different problem (sparse regression), whereas we study ridge
regression in random-effects models.

2. Finite Sample Results

We start our study of distributed ridge regression by a finite sample analysis of estimation
error in linear models. Consider the standard linear model

Y = Xβ + ε. (1)

Here Y ∈ Rn is the n-dimensional continuous outcome vector of n independent samples
(e.g., the blood pressure level of n patients, or the amount of time spent on an activity
by n internet users), X is the n × p design matrix containing the values of p features
for each sample (e.g., demographical and genetic variables of each patient). Moreover,
β = (β1, . . . , βp)

> ∈ Rp is the p-dimensional vector of unknown regression coefficients.

Our goals are to predict the outcome variable for future samples, and also to esti-
mate the regression coefficients. The outcome vector is affected by the random noise
ε = (ε1, . . . , εn)> ∈ Rn. We assume that the coordinates of ε are independent random
variables with mean zero and variance σ2.

The ridge regression (or Tikhonov regularization) estimator is one of the most popular
methods for estimation and prediction in linear models. Recall that the ridge estimator of
β is

β̂(λ) = (X>X + nλIp)
−1X>Y,

where λ is a tuning parameter. This estimator has many justifications. It shrinks the coeffi-
cients of the usual ordinary least squares estimator, which can lead to improved estimation
and prediction. When the entries of β and ε are i.i.d. Gaussian, and for suitable λ, it is the
posterior mean of β given the outcomes, and hence is a Bayes optimal estimator for any
quadratic loss function, including estimation and prediction error.

Suppose now that we are in a distributed computation setting. The samples are dis-
tributed across k different sites or machines. For instance, the data of users from a partic-
ular country may be stored in a separate datacenter. This may happen due to memory or
storage limitations of individual data storage facilities, or may be required by data usage
agreements. As mentioned, for simplicity we call the sites “machines”.

We can write the partitioned data as

X =

X1
...
Xk

 , Y =

Y1
...
Yk

 .
6
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Thus the i-th machine contains ni samples whose features are stored in the ni × p matrix
Xi and also the corresponding ni × 1 outcome vector Yi.

Since the ridge regression estimator is a widely used gold standard method, we would
like to understand how we can approximate it in a distributed setting. Specifically, we will
focus on one-shot weighting methods, where we perform ridge regression locally on each
subset of the data, and then aggregate the regression coefficients by a weighted sum. There
are several reasons to consider weighting methods:

1. This is a practical method with minimal communication cost. When communication
is expensive, it is imperative to develop methods that minimize communication cost.
In this case, one-shot weighting methods are attractive, and so it is important to
understand how they work. In a well-known course on scalable machine learning,
Alex Smola calls such methods “idiot-proof” (Smola, 2012), meaning that they are
straightforward to implement (unlike some of the more sophisticated methods).

2. Averaging (which is a special case of one-shot weighting) has already been studied
in several works on distributed ridge regression (e.g., Zhang et al. (2015); Lin et al.
(2017)), and much more broadly in distributed learning, see the related work section
for details. Such methods are known to be rate-optimal under certain conditions.

3. However, in our setting, we are able to discover several new phenomena about one-shot
weighting. For instance, we can quantify in a much more nuanced way the accuracy
loss compared to centralized ridge regression.

4. Weighting may serve as a useful initialization to iterative methods. In practical dis-
tributed learning problems, iterative optimization algorithms such as distributed gra-
dient descent or ADMM (Boyd et al., 2011) may be used. However, there are examples
where the first step of the iterative method has worse performance than a simple av-
eraging (Pourshafeie et al., 2018). Therefore, we can imagine hybrid or warm start
methods that use weighting as an initialization. This also suggests that studying
one-shot weighting is important.

Therefore, we define local ridge estimators for each data set Xi, Yi, with regularization
parameter λi as

β̂i(λi) = (X>i Xi + niλiIp)
−1X>i Yi.

We consider combining the local ridge estimators at a central server via a one-step weighted
summation. We will find the optimally weighted one-shot distributed estimator

β̂dist(w) =

k∑
i=1

wiβ̂i.

Note that, unlike ordinary least squares (OLS), the local ridge estimators are always well-
defined, i.e. ni can be smaller than p. Also, for the distributed OLS estimator averaging
local OLS solutions, it is natural to require

∑
iwi = 1, because this ensures unbiasedness

(Dobriban and Sheng, 2018). However, the ridge estimators are biased, so it is not clear if
we should put any constraints on the weights. In fact we will find that the optimal weights
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typically do not sum to unity. These features distinguish our work from prior art, and lead
to some surprising consequences.

Throughout the paper, we will frequently use the notations Σ̂ = n−1X>X and Σ̂i =
n−1
i X>i Xi. A stepping stone to our analysis is the following key result.

Theorem 1 (Finite sample risk and optimal weights) Consider the distributed ridge
regression problem described above. Suppose we have a data set with n datapoints (samples),
each with an outcome and p features. The data set is distributed across k sites. Each site
has a subset Xi, Yi of the data, with the ni × p matrix Xi of features of ni samples, and
the corresponding outcomes Yi. We compute the local ridge regression estimator β̂i(λi) =
(X>i Xi + niλiIp)

−1X>i Yi with fixed regularization parameters λi > 0 on each data set. We
send the local estimates to a central location, and combine them via a weighted sum, i.e.,
β̂dist(w) =

∑k
i=1wiβ̂i.

Under the linear regression model (1), the optimal weights that minimize the mean
squared error of the distributed estimator are

w∗ = (A+R)−1v,

where the quantities v,A,R are defined below.

1. v is a k-dimensional vector with i-th coordinate β>Qiβ, where Qi = (Σ̂i + λiIp)
−1Σ̂i

are p× p matrices.

2. A is a k × k matrix with (i, j)-th entry β>QiQjβ.

3. R is a k × k diagonal matrix with i-th diagonal entry n−1
i σ2 tr[(Σ̂i + λiIp)

−2Σ̂i].

The mean squared error of the optimally weighted distributed ridge regression estimator
β̂dist with k sites equals

MSE∗dist(k) = E‖β̂dist(w∗)− β‖2 = ‖β‖2 − v>(A+R)−1v,

See Appendix F.1 for the proof. The argument proceeds via a direct calculation, recog-
nizing that finding the optimal weights for combining the local estimators β̂i can be viewed
as a k-parameter regression problem of β on β̂i, for i = 1, . . . , k.

This result quantifies the mean squared error of the optimally weighted distributed ridge
estimator for fixed regularization parameters λi. Later we will study how to choose the
regularization parameters optimally. The result also gives an exact formula for the optimal
weights. However, the optimal weights depend on the unknown regression coefficients β,
and are thus not directly usable in practice. Instead, our approach is to make stronger
assumptions on β under which we can develop estimators for the weights.

Computational efficiency. We take a short detour here to discuss computational effi-
ciency. Here by computational efficiency we mean the total time consumption. Computing
one ridge regression estimator (X>X + λIp)

−1X>Y for a fixed regularization parameter λ
and n×p design matrix X can be done in time O(npmin(n, p)) by first computing the SVD
of X. This automatically gives the ridge estimator for all values of λ.

How much time can we save by distributing the data? Suppose first that n ≥ p, in
which case the total time consumption is O(np2). Computing ridge locally on the i-th
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machine takes O(nipmin(ni, p)) time. Suppose next that we distribute equally to k of
machines, and we also have ni = n/k ≥ p. Then the time consumption is reduced to
O((n/k)p2) = O(np2/k). In this case we can say that the total time consumption decreases
proportionally to the number of machines. This shows the benefit of parallel data processing.

On the other extreme, if n ≤ p, then ni = n/k ≤ p, the total time consumption is reduced
from O(n2p) to O((n/k)2p) = O(n2p/k2). This shows that the total time consumption
decreases quadratically in the number of machines (albeit of course the constant is much
worse). If we are in an intermediate case where n ≥ p and ni = n/k ≤ p, then the time
decreases at a rate between linear and quadratic.

2.1. Addressing reader concerns

At this stage, our readers may have several concerns about our approach. We address some
concerns in turn below.

1. Does it make sense to average ridge estimators, which can be biased?

A possible concern is that we are working with biased estimators. Would it make sense
to debias them first, before weighting? A similar approach has been used for sparse
regression, with the debiased Lasso estimators (Lee et al., 2017; Battey et al., 2018).
However, our results allow the regularization parameters to be arbitrarily close to zero,
which leads to least squares estimators, with an inverse or pseudoinverse (X>i Xi)

†.
These are the “natural” debiasing estimators for ridge regression. For OLS, these
are exactly unbiased, while for pseudoinverse, they are approximately so. Hence our
approach allows nearly unbiased estimators, and we automatically discover when this
is the optimal method.

2. Is it possible to improve the weighted sum of local ridge estimators β̂i in trivial ways?

One-shot weighting is merely a heuristic. If it were possible to improve it in a simple
way, then it would make sense to study those methods instead of weighting. However,
we are not aware of such methods. For instance, one possibility is to try and add
the constant vector into the regression on the global parameter server, because this
may help reduce the bias. In simulation studies, we have observed that this approach
does not usually lead to a perceptible decrease in MSE. Specifically we have found
that under the simulation setting common throughout the paper, the MSEs with and
without a constant term are close (see Appendix A for details).

3. Asymptotics under Linear Random-effects Models

The finite sample results obtained so far can be hard to interpret, and do not allow us to di-
rectly understand the performance of the optimal one-shot distributed estimator. Therefore,
we will consider an asymptotic setting that leads to more insightful results.

Recall that our basic linear model is Y = Xβ+ε, where the error ε is random. Next, we
also assume that a random-effects model holds. We assume β is random—independently of
ε—with coordinates that are themselves independent random variables with mean zero and
variance p−1σ2α2. Thus, each feature contributes a small random amount to the outcome.
Ridge regression is designed to work well in such a setting, and has several optimality
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properties in variants of this model. The parameters are now θ = (σ2, α2): the noise
level σ2 and the signal-to-noise ratio α2 respectively. This parametrization is standard and
widely used (e.g. Searle et al. (2009); Dicker and Erdogdu (2017); Dobriban and Wager
(2018)).

To get more insight into the performance of ridge regression in a distributed environment,
we will take an asymptotic approach. Notice from Theorem 1 that the mean squared error
depends on the data only through simple functionals of the sample covariance matrices Σ̂
and Σ̂i, such as

β>(Σ̂i + λiIp)
−1Σ̂iβ, β>(Σ̂i + λiIp)

−1Σ̂i(Σ̂j + λjIp)
−1Σ̂jβ, tr[(Σ̂i + λiIp)

−2Σ̂i].

When the coordinates of β are i.i.d., the means of the quadratic functionals become pro-
portional to the traces of functions of the sample covariance matrices. This motivates us
to adopt models from asymptotic random matrix theory, where the asymptotics of such
quantities are a central topic.

We begin by introducing some key concepts from random matrix theory (RMT) which
will be used in our analysis. We will focus on ”Marchenko-Pastur” (MP) type sample
covariance matrices, which are fundamental and popular in statistics (see e.g., Bai and
Silverstein (2010); Anderson (2003); Paul and Aue (2014); Yao et al. (2015)). A key concept
is the spectral distribution, which for a p×p symmetric matrix A is the distribution FA that
places equal mass on all eigenvalues λi(A) of Σ. This has cumulative distribution function
(CDF) FA(x) = p−1

∑p
i=1 1(λi(A) ≤ x). A central result in the area is the Marchenko-

Pastur theorem, which states that eigenvalue distributions of sample covariance matrices
converge (Marchenko and Pastur, 1967; Bai and Silverstein, 2010). We state the required
assumptions below:

Assumption 1 Consider the following conditions:

1. The n×p design matrix X is generated as X = ZΣ1/2 for an n×p matrix Z with i.i.d.
entries (viewed as coming from an infinite array), satisfying E[Zij ] = 0 and E[Z2

ij ] = 1,
and a deterministic p× p positive semidefinite population covariance matrix Σ.

2. The sample size n grows to infinity proportionally with the dimension p, i.e. n, p→∞
and p/n→ γ ∈ (0,∞).

3. The sequence of spectral distributions FΣ := FΣ,n,p of Σ := Σn,p converges weakly to a
limiting distribution H supported on [0,∞), called the population spectral distribution.

Then, the Marchenko-Pastur theorem states that with probability 1, the spectral distri-
bution F

Σ̂
of the sample covariance matrix Σ̂ also converges weakly (in distribution) to a

limiting distribution Fγ := Fγ(H) supported on [0,∞) (Marchenko and Pastur, 1967; Bai
and Silverstein, 2010). The limiting distribution is determined uniquely by a fixed-point
equation for its Stieltjes transform, which is defined for any distribution G supported on
[0,∞) as

mG(z) :=

∫ ∞
0

1

t− z
dG(t), z ∈ C \ R+.
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With this notation, the Stieltjes transform of the spectral measure of Σ̂ satisfies

m
Σ̂

(z) = p−1 tr[(Σ̂− zIp)−1]→a.s. mFγ (z), z ∈ C \ R+,

where mFγ (z) is the Stieltjes transform of F . In addition, we denote by m′(z) the derivative
of the Stieltjes transform. Then, it is also known that

p−1 tr[(Σ̂− zIp)−2]→a.s. m
′
Fγ (z).

The results stated above can be expressed in a different, and perhaps slightly more
modern language, using deterministic equivalents (Serdobolskii, 2007; Hachem et al., 2007;
Couillet et al., 2011; Dobriban and Sheng, 2018). For instance, the Marchenko-Pastur
law is a consequence of the following result. For any z where it is well-defined, consider
the resolvent (Σ̂ − zIp)

−1. This random matrix is equivalent to a deterministic matrix
(xpΣ− zIp)−1 for a certain scalar xp = x(Σ, n, p, z), and we write

(Σ̂− zIp)−1 � (xpΣ− zIp)−1.

Here two sequences of n×n matrices An, Bn (not necessarily symmetric) of growing dimen-
sions are equivalent, and we write

An � Bn
if

lim
n→∞

tr [Cn(An −Bn)] = 0

almost surely, for any sequence Cn of n × n deterministic matrices (not necessarily sym-
metric) with bounded trace norm, i.e., such that lim sup ‖Cn‖tr <∞ (Dobriban and Sheng,
2018). Informally, any linear combination of the entries of An can be approximated by the
entries of Bn. This also can be viewed as a kind of weak convergence in the matrix space
equipped with an inner product (trace). From this, it also follows that the traces of the two
matrices are equivalent, from which we can recover the MP law.

In Dobriban and Sheng (2018), we collected some useful properties of the calculus of
deterministic equivalents. In this work, we use those properties extensively. We also develop
and use a new differentiation rule for the calculus of deterministic equivalents (see Appendix
B).

We are now ready to study the asymptotics of the risk. We express the limits of in-
terest in two equivalent forms, one in terms of population quantities (such as the limiting
spectral distribution H of Σ), and one in terms of sample quantities (such as the limiting
spectral distribution Fγ of Σ̂). Moreover, we will denote by T a random variable distributed
according to H, so that EH [g(T )] denotes the mean of g(T ) when T is a random variable
distributed according to the limit spectral distribution H.

The key to obtaining the results based on population quantities is that the quadratic
forms involving β have asymptotic equivalents that only depend on α2, σ2, based on the
concentration of quadratic forms. Specifically, we have

β>Aβ ≈ 1

p
σ2α2 · tr(A)

for suitable matrices A (see the proof of Theorem 2 for details). The key to the results
based on sample quantities is the MP law and the calculus of deterministic equivalents.

11
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Theorem 2 (Asymptotics for distributed ridge, arbitrary subsample size) In the
linear random-effects model under Assumption 1, suppose in addition that the eigenvalues
of Σ are uniformly bounded away from zero and infinity, and that the entries of Z have a
finite (8 + ε)-th moment for some ε > 0. Suppose moreover that the local sample sizes ni
grow proportionally to p, so that p/ni → γi > 0.

Then the optimal weights for distributed ridge regression, and its mean square error,
converge to definite limits. Recall from Theorem 1 that we have the formulas w∗ = (A +
R)−1v and MSE∗dist = ‖β‖2 − v>(A+R)−1v for the optimal finite sample weights and risk,
and thus it is enough to find the limit of v,A and R. These have the following limits:

1. With probability one, we have the convergence v → V ∈ Rk. The i-th coordinate of
the limit V has the following two equivalent forms, in terms of population and sample
quantities, respectively:

Vi = σ2α2EH
xiT

xiT + λi
= σ2α2

[
1− λimFγi

(−λi)
]
.

Recall that H is the limiting population spectral distribution of Σ, and T is a random
variable distributed according to H. Among the empirical quantities, Fγi is the limiting

empirical spectral distribution of Σ̂i and xi := xi(H,λi, γi) > 0 is the unique solution
of the fixed point equation

1− xi = γi

[
1− λi

∫ ∞
0

dH(t)

xit+ λi

]
= γi

[
1− EH

λi
xiT + λi

]
.

It is part of the theorem’s claim that there is such an xi.

2. With probability one, A → A ∈ Rk×k. For i 6= j, the (i, j)-th entry of A is, in terms
of the population spectral distribution H,

Aij = σ2α2EH
xixjT

2

(xiT + λi)(xjT + λj)
.

The i-th diagonal entry of A is, in terms of population and sample quantities, respec-
tively,

Aii = σ2α2

1− EH
2λixiT + λ2

i

(xiT + λi)2
+
λ2
i γixi

(
EH T

(xiT+λi)2

)2

1 + γiλiEH T
(xiT+λi)2


= σ2α2

[
1− 2λimFγi

(−λi) + λ2
im
′
Fγi

(−λi)
]
.

3. With probability one, the diagonal matrix R converges, R → R ∈ Rk×k, where of
course R is also diagonal. The i-th diagonal entry of R is, in terms of population and
sample quantities, respectively,

Rii = σ2

[
xiEH T

(xiT+λi)2

1 + λiγiEH T
(xiT+λi)2

]
= σ2

[
γimFγi

(−λi)− γiλim′Fγi (−λi)
]
.

12
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The limiting weights and mean square error are then

W∗k = (A+R)−1V

and

Mk = σ2α2 − V >(A+R)−1V.

See Appendix F.2 for the proof. The statement may look complicated, but the formulas
simplify considerably in the uncorrelated case Σ = Ip, on which we will focus later. More-
over, these limiting formulas are also fundamental for developing consistent estimators for
the optimal weights. To develop an algorithm for the practically common general covariance
case, the following theorem is crucial.

Theorem 3 (Asymptotics for distributed ridge, equal subsample size) Consider the
assumptions and the notations of Theorem 2. We further assume the samples are equally
distributed across the local machines, i.e. n1 = n2 = · · · = nk = n/k and γ1 = γ2 = · · · =
γk = kγ. We use the same tuning parameter λ for each local estimator. Then the limiting
optimal weights W∗k and the limiting MSE Mk have the following forms:

W∗k = (1, 1, . . . , 1)> · σ
2α2(1− λm)

F + kG
and Mk = σ2α2 − σ4α4(1− λm)2k

F + kG
.

Here F and G are defined as follows:

F = σ2α2kγλ
2(m− λm′)2

1− kγ + kγλm′
+ σ2kγ(m− λm′)

and

G = σ2α2

(
1− 2λm+ λ2m′ − kγλ2(m− λm′)2

1− kγ + kγλm′

)
where m := mFkγ (−λ) and m′ := −dm

dλ .

See Appendix F.3 for the proof and an explanation of why we need to assume the samples
are uniformly distributed. Based on this theorem, we are able to develop an algorithm which
works for arbitrary covariance structures. See Section 5 for the details.

Now we discuss the problem of estimating the optimal weights, which is crucial for
developing practical methods. The results in Theorem 3 show that to estimate the weights
consistently, if the tuning parameter λ is known, we only need to estimate α2, σ2 consistently.
The reason is that we can use tr[(Σ̂i+λI)−1]/p to approximate m, and use tr[(Σ̂i+λI)−2]/p
to approximate m′.

Estimating these two parameters is a well-known problem, and several approaches have
been proposed, for instance restricted maximum likelihood (REML) estimators (Jiang, 1996;
Searle et al., 2009; Dicker, 2014; Dicker and Erdogdu, 2016; Jiang et al., 2016), etc. We can
use—for instance—results from Dicker and Erdogdu (2017), who showed that the Gaussian
MLE is consistent and asymptotically efficient for θ = (σ2, α2) even in the non-Gaussian
setting of this paper (see Appendix C for a summary).

13
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4. Special Case: Identity Covariance

When the population covariance matrix is the identity, that is Σ = I, the results simplify
considerably. In this case the features are nearly uncorrelated. It is known that the limiting
Stieltjes transform mFγ := mγ of Σ̂ has the explicit form (Marchenko and Pastur, 1967):

mγ(z) =
(z + γ − 1) +

√
(z + γ − 1)2 − 4zγ

−2zγ
. (2)

As usual in the area, we use the principal branch of the square root of complex numbers.

4.1. Properties of the estimation error and asymptotic relative efficiency

We can use the closed form expression for the Stieltjes transform to get explicit formulas
for the optimal weights. From Theorem 2, we conclude the following simplified result:

Theorem 4 (Asymptotics for isotropic population covariance) In addition to the
assumptions of Theorem 2, suppose that the population covariance matrix Σ = I. Then
the limits of v,A and R have simple explicit forms:

1. The i-th coordinate of V is:

Vi = σ2α2 [1− λimγi(−λi)] ,

where mγi(−λi) is the Stieltjes transform given above in equation (2).

2. The entries of A are

Aij =

{
σ2α2 [1− λimγi(−λi)] ·

[
1− λjmγj (−λj)

]
, for i 6= j

σ2α2
[
1− 2λimγi(−λi) + λ2

im
′
γi(−λi)

]
, for i = j.

3. The i-th diagonal entry of R is

Rii = σ2γi
[
mγi(−λi)− λim′γi(−λi)

]
.

The limiting optimal weights for combining the local ridge estimators areW∗k = (A+R)−1V ,
and MSE of the optimally weighted distributed estimator is

Mk =
σ2α2

1 +
∑k

i=1
V 2
i

σ2α2(Rii+Aii)−V 2
i

.

See Appendix F.4 for the proof. This theorem shows the surprising fact that the limiting
risk decouples over the different machines. By this we mean that the limiting risk can be
written in a simple form, involving a sum of terms depending on each machine, without any
interaction. This seems like a major surprise.

To explain in more detail the decoupling phenomenon, let us study how the local risks
are related to the distributed risks. Define V = V (γ, λ) to be the limiting scalar V ∈ R
defined above, in the special case k = 1. Explicitly, this is the limit of the quantity β>Qβ,

14
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where Q = (Σ̂ + λIp)
−1Σ̂, as given in Theorem 1 applied for k = 1. Let D be the scalar

expression D(γ, λ) = σ2α2(R+A)− V when k = 1. With these notations, the risk M1 of
ridge regression when computed on the entire data set equals

M1(γ, λ) =
σ2α2

1 + V (γ,λ)
D(γ,λ)

.

Moreover, the risk of optimally weighted one-shot distributed ridge over k subsets, with
arbitrary regularization parameters λi, equals

Mk(γ1, . . . , γk, λ1, . . . , λk) =
σ2α2

1 +
∑k

i=1
V 2
i (γi,λi)
Di(γi,λi)

.

Then one can check that we have the following equations connecting the risk computed on
the entire data set and the distributed risk:

σ2α2

Mk(γ1, . . . , γk, λ1, . . . , λk)
− 1 =

k∑
i=1

σ2α2

M1(γi, λi)
− k,

Mk(γ1, . . . , γk, λ1, . . . , λk) =
1∑k

i=1
1

M1(γi,λi)
+ 1−k

σ2α2

.

These equations are precisely what we mean by decoupling. The distributed risk can be
written as a function of the type 1/(

∑
i 1/xi + b) of the distributed risks. Therefore, there

are no “interactions” between the different risk functions. Similar expressions have been
obtained for linear regression (Dobriban and Sheng, 2018).

Next, we discuss in more depth why the limiting risk decouples. Mathematically, the key
reason is that when Σ = I, the limit of Aij for i 6= j decouples into a product of two terms.
Therefore, the distributed risk function involves a quadratic form with zero off-diagonal
terms. This is not the case for general population covariance Σ. We provide an explanation
via free probability theory in Appendix D.

An important consequence of the decoupling is that we can optimize the individual risks
over the tuning parameters λi separately.

Proposition 5 (Optimal regularization (tuning) parameters) Under the assumptions
of Theorem 4, the optimal regularization (tuning) parameters λi that minimize the local
MSEs also minimize the distributed risk Mk. They have the form

λi =
γi
α2
, i = 1, 2, . . . , k.

Moreover, the risk Mk of distributed ridge regression with optimally tuned regularization
parameters is

Mk =
σ2α2

1 +
∑k

i=1

[
α2

γimγi (−γi/α2)
− 1
] ,
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Figure 2: Plots of the optimal risk function φ as a function of the aspect ratio γ (denoted
by x in the plots), for different signal strength parameters α.

See Appendix F.5 for the proof.
The main goal of our paper is to study the behavior of the one-shot distributed ridge

estimator and compare it with the centralized estimator. It is helpful to first understand
the properties of the optimal risk function φ(γ) := γmγ(−γ/α2). The optimal risk function
equals the optimally tuned global risk M1 up to a factor σ2. It has the explicit form

φ(γ) = γmγ(−γ/α2) =
−γ/α2 + γ − 1 +

√
(−γ/α2 + γ − 1)2 + 4γ2/α2

2γ/α2
.

Proposition 6 (Properties of the optimal risk function) The optimal risk function
φ(γ) has the following properties:

1. Monotonicity: φ(γ) is an increasing function of γ ∈ [0,∞) with limγ→0+ φ(γ) = 0
and limγ→+∞ φ(γ) = α2.

2. Concavity: When α ≤ 1, φ(γ) is a concave function of γ ∈ [0,∞). When α > 1,
φ(γ) is convex for small γ (close to 0), and concave for large γ.

See Appendix F.6 for the proof. See also Figure 2 for plots of φ for different α, which
show its monotonicity and convexity properties. The aspect ratio γ characterizes the di-
mensionality of the problem. It makes sense that φ(γ) is increasing, since the regression
problem should become more difficult as the dimension increases. For the second property,
the concavity of the function means that it grows very fast to approach its limit. When the
signal-to-noise ratio α2 is small, the risk is concave, so it grows fast with the dimension.
But when the signal-to-noise ratio becomes large, the risk will grow much slower at the
beginning. Here the phase transition happens at α2 = 1. This gives insight into the effect
of the signal-to-noise ratio on the regression problem.

To compare the distributed and centralized estimators, we will study their (asymptotic)
relative efficiency (ARE), which is the (limit of the) ratio of their mean squared errors.
Here we assume each estimator is optimally tuned. This quantity, which is at most unity,
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captures the loss of efficiency due to the distributed setting. An ARE close to 1 is “good”,
while an ARE close to 0 is “bad”. From the results above, it follows that the ARE has the
form

ARE =
M1

Mk
=
γmγ(−γ/α2)

α2

[
1 +

k∑
i=1

(
α2

γimγi(−γi/α2)
− 1

)]
≤ 1.

We have the following properties of the ARE.

Theorem 7 (Properties of the asymptotic relative efficiency (ARE)) The asymp-
totic relative efficiency (ARE) has the following properties:

1. Worst case is equally distributed data: For fixed k, α2 and γ, the ARE attains
its minimum when the samples are equally distributed across k machines, i.e. γ1 =
γ2 = · · · = γk = kγ. We denote the minimal value by ψ(k, γ, α2). That is

min
γ1,...,γk

ARE = ψ(k, γ, α2) :=
γmγ(−γ/α2)

α2

(
1− k +

α2

γmkγ(−kγ/α2)

)
.

2. Adding more machines leads to efficiency loss: For fixed α2 and γ, ψ(k, γ, α2) is
a decreasing function on k ∈ [1,∞) with limk→1+ ψ(k, γ, α2) = 1 and infinite-worker
limit

lim
k→∞

ψ(k, γ, α2) = h(α2, γ) < 1.

Here we can view ψ as a continuous function of k for convenience, although originally
it is only well-defined for k ∈ N. We emphasize that the infinite-worker limit tells us
how much efficiency we have for a very large number of machines. It is a nontrivial
result that this quantity is strictly positive.

3. Form of the infinite-worker limit: As a function of α2 and γ, h(α2, γ) has the
explicit form

h(α2, γ) =
−γ/α2 + γ − 1 +

√
(−γ/α2 + γ − 1)2 + 4γ2/α2

2γ

(
1 +

α2

γ(1 + α2)

)
.

4. Edge cases of the infinite-worker limit: For fixed α2, h(α2, γ) is an increasing
function of γ ∈ [0,∞) with limit

lim
γ→0

h(α2, γ) =
1

1 + α2
, lim

γ→∞
h(α2, γ) = 1.

On the other hand, for fixed γ, h(α2, γ) is a decreasing function of α2 ∈ [0,∞) with
limit

lim
α2→0

h(α2, γ) = 1, lim
α2→∞

h(α2, γ) =

{
1− 1

γ2
, γ > 1,

0, 0 < γ ≤ 1.
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Figure 3: Plots of the asymptotic relative efficiency ψ when the data set are evenly dis-
tributed, for different α and γ. See Theorem 7 for the properties of the ARE.

See Appendix F.7 for the proof. See Figure 3 for some plots of the evenly distributed
ARE ψ for various α and γ and Figure 1 for the surface and contour plots of h(α2, γ). The
efficiency loss tends to be larger (ARE is smaller) when the signal-to-noise ratio α2 is larger.
The plots confirm the theoretical result that the efficiency always decreases with the number
of machines. Relatively speaking, the distributed problem becomes easier and easier as the
dimension increases, compared to the aggregated problem (i.e., the ARE increases in γ for
fixed parameters). This can be viewed as a blessing of dimensionality.

We also observe a nontrivial infinite-worker limit. Even in the limit of many machines,
distributed ridge does not lose all efficiency. This is in contrast to doing linear regression
on each machine, where all efficiency is lost when the local sample sizes are less than the
dimension (Dobriban and Sheng, 2018). This is one of the few results in the distributed
learning literature where one-step weighting gives nontrivial results for arbitrary large k,
i.e., we can take k →∞ and we still obtain nontrivial results. We find this quite remarkable.

Overall, the ARE is generally large, except when γ is small and α is large. This is a
setting with strong signal and relatively low dimension, which is also the “easiest” setting
from a statistical point of view. In this case, perhaps we should use other techniques for
distributed estimation, such as iterative methods.

4.2. Properties of the optimal weights

Next, we study properties of the optimal weights. This is important, because choosing them
is a crucial practical question. The literature on distributed regression typically considers
simple averages of local estimators, for which β̂dist = k−1

∑k
i=1 β̂i (see, e.g. Zhang et al.

(2015); Lee et al. (2017); Battey et al. (2018)). In contrast, we will find that the optimal
weights do not sum up to unity.

Formally, we have the following properties of the optimal weights.

Theorem 8 (Properties of the optimal weights) The asymptotically optimal weights
W∗k = (A+R)−1V have the following properties:
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Figure 4: Plots of optimal weights for different α.

1. Form of the optimal weights: The i-th coordinate of Wk is:

Wk,i =

(
α2

γimγi(−γi/α2)

)
·

 1

1 +
∑k

i=1

[
α2

γimγi (−γi/α2)
− 1
]
 ,

and the sum of the limiting weights is always greater than or equal to one:

k∑
i=1

Wk,i ≥ 1.

When k ≥ 2, the sum is strictly greater than one.

2. Evenly distributed optimal weights: When the samples are evenly distributed, so
that all limiting aspect ratios γi are equal, γi = kγ, then all Wk,i equal the optimal
weight function W(k, γ, α2), which has the form

W(k, γ, α2) =
α2

α2k + (1− k)kγ ·mkγ(−kγ/α2)
.

This can also be written in terms of the optimal risk function φ(γ, α2) defined above
as

W(k, γ, α2) =
α2

α2k − (k − 1)φ(kγ, α2)
.

3. Limiting cases: For fixed k and α2, the optimal weight function W(k, γ, α2) is an
increasing function of γ ∈ [0,∞) with limγ→0+W(γ) = 1/k and limγ→∞W(γ) = 1.

See Appendix F.8 for the proof. See Figures 4 and 5 for some plots of the optimal weight
function with k = 2. We can see that the optimal weights are usually large, and always
greater than 1/k. When the signal-to-noise ratio α2 is small, the weight function is concave
and increases fast to approach one. In the low dimensional setting where γ → 0, the weights
tend to the uniform average 1/k. Hence in this setting we recover the classical uniform
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(a) Surface (b) Contour

Figure 5: Surface and contour plots of the optimal weights.

averaging methods, which makes sense, because ridge regression with optimal regularization
parameter tends to linear regression in this regime.

How much does optimal weighting help? It is both interesting and important to know
this, especially compared to naive uniform weighting, because it allows us to compare our
proposed weighting method to the “baseline”. See Figure 6. We have plotted the risk of
distributed ridge regression for both the optimally weighted version and the simple average,
as a function of the regularization parameter. We observe that optimal weighting can lead
to a 30-40% decrease in the risk. Therefore, our proposed weighting scheme can lead to a
substantial benefit.

Why are the weights large, and why do they sum to a quantity greater than one? The
short intuitive answer is that ridge regression is negatively (or downward) biased, and so
we must counter the effect of bias by upweighting. This also can be viewed as a way of
debiasing. In different contexts, it is already well known that debiasing can play a kew role
in distributed learning (Lee et al. (2017); Battey et al. (2018)). We provide a slightly more
detailed intuitive explanation in Appendix E.

4.3. Out-of-sample prediction

So far, we have discussed the estimation problem. In real applications, out-of-sample pre-
diction is also of interest. We consider a test datapoint (xt, yt), generated from the same
model yt = x>t β + εt, where xt, εt are independent of X, ε. We want to use x>t β̂ to predict
yt, and the out-of-sample prediction error is defined as E(yt − x>t β̂)2. Then we have the
following proposition.

Proposition 9 (Out-of-sample prediction error and relative efficiency) Under the
conditions of Theorem 4, the limiting out-of-sample prediction error of the optimal dis-
tributed estimator β̂dist is

Ok = σ2 +Mk.
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Figure 6: Distributed risk as a function of the regularization parameter. We plot both the
risk with optimal weights (MSE opt) and the risk obtained from sub-optimal
averaging (MSE avg). We set α = 1, γ = 0.17 and k = 5, 10.

Thus, the asymptotic out-of-sample relative efficiency, meaning the ratio of prediction er-
rors, is

OE =
O1

Ok
=
M1 + σ2

Mk + σ2
,

and the efficiency for prediction is higher than for estimation OE ≥ ARE. Furthermore,
when the samples are equally distributed, the relative efficiency has the form

Ψ(k, γ, α2) =
1 + γmγ(−γ/α2)

1 +
α2γmkγ(−kγ/α2)

α2+(1−k)γmkγ(−kγ/α2)

,

and the corresponding infinite-worker limit (taking k →∞) is

H(α2, γ) =
1 + γmγ(−γ/α2)

1 + γα2(1+α2)
α2+γ(1+α2)

.

See Appendix F.9 for the proof and Figure 7 for some plots. This proposition implies
that, for the identity covariance case, the efficiency loss of the distributed estimator in terms
of the test error is always less than the loss in terms of the estimation error. When the
signal-to-noise ratio α2 is small, the relative efficiency is always very large and close to 1.
This observation can be an encouragement to use our distributed methods for out-of-sample
prediction.

4.4. Choosing the regularization parameter

Previous work found that, under certain conditions, the regularization parameters on the
individual machines should be chosen as if they had the all samples (Zhang et al., 2015).
Our findings are consistent with these results. However, the reasons behind our findings
are very different from prior work. The intuition for the previous results is that the vari-
ance of distributed estimators averages out, while the bias does not do so. Therefore, the
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Figure 7: Limit of OE: (a) surface and (b) contour plots of H(α2, γ).

regularization parameters should be chosen such that the local bias is lower than for locally
optimal tuning. This means that we should use smaller regularization parameters locally.

In our case, we find that for isotropic covariance, the optimal risk decouples across
machines. Hence, the regularization parameters on the machines can be chosen optimally
for each machine. Moreover, in our asymptotics the locally optimal choice is a constant
multiple of the globally optimal choice, namely the multiple in front of the identity matrix
in the local ridge estimator (X>i Xi + niλiIp)

−1X>i Yi should be λi = p/(niα
2) whereas the

globally optimal λ is λ = p/(nα2).

Roughly speaking, this derivation reaches the same conclusion as prior work about
the choice of regularization parameters, namely that the regularization parameters on the
machines should be chosen as if they had the all samples. However, we emphasize that our
results are very different, because the optimal weighting procedure has weights summing
to greater than unity. Moreover, we also consider the proportional-limit case, and the
conclusion for regularization parameters only applies to the isotropic case.

4.5. Implications and practical relevance

We discuss some of the implications of our results. Our finite-sample results show that the
optimal way to weight the estimators depends on functionals of the unknown parameter
β, while the asymptotic results in general depend on the eigenvalues of Σ̂ (or Σ). These
are unavailable in practice, and hence these results can typically not be used on real data
sets. However, since our results are precise and accurate (they capture the truth about the
problem), we interpret this as saying that the problem is hard in general. Meaning that
optimal weighting for ridge regression is a challenging statistical problem. In practice that
means that we may be content with uniform weighting. It remains to be investigated in
future work how much we should up-adjust those equal weights.

The optimal weights become usable in the case of spherical data, when Σ = I (or, more
accurately, the limiting spectral distribution of Σ is the point mass at unity). In practice, we
can get closer to this assumption by using some form of whitening on the data, for instance
by scaling all variables to the same scale, by estimating Σ over restricted classes, such
as assuming block-covariance structures. Alternatively, we can use correlation screening,
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where we remove features with high correlation. At this stage, all these approaches are
heuristic, but we include them to explain how our results can be relevant in practice. It is
a topic of future research to make these ideas more concrete. In the algorithm we proposed
in Section 5, we use grid search to find a good tuning parameter under general covariance
structures.

On the theoretical side, our results can also be interpreted as a form of reduction between
statistical problems. If we can estimate the quadratic functionals of the unknown regression
parameter involved in our weights, then we can do optimally weighted ridge regression.
In this sense, we reduce distributed ridge regression to the estimation of those quadratic
functionals. We think that in the challenging and novel setting of distributed learning, such
reductions can be both interesting and potentially useful.

An important question is “Should we use distributed linear or ridge regression?”. If we
have ni ≥ p and linear regression is defined on each local machine, then we can use either
distributed linear (Dobriban and Sheng, 2018) or ridge regression. Linear regression has
the advantage that the optimal weights are easy to find. Therefore, if we cannot reasonably
reduce to the case Σ = I, it seems we should use linear regression.

4.6. Minimax optimality of the optimal distributed estimator

To deepen our understanding of the distributed problem, we next show that the optimal
distributed ridge estimator is asymptotically rate-minimax. Suppose without loss of gener-
ality that the noise level σ2 = 1, and let Sp−1(α) = {β ∈ Rp; ||β|| = α} denote the sphere
of radius α ≥ 0 in Rp centered at the origin. Then the minimax risk for estimating β over
the sphere Sp−1(α) is

r(α) = inf
β̂

sup
β∈Sp−1(α)

R(β̂, β) = inf
β̂

sup
β∈Sp−1(α)

Eβ||β̂ − β||2,

where the expectation is over both X and ε. This problem has been well studied by Dicker
(2016), who reduced it to the following Bayes problem. Let π be the uniform measure on
Sp−1(α). Then the Bayes risk with respect to π is

rB(α) = inf
β̂

∫
Sp−1(α)

R(β̂, β)dπ(β) = inf
β̂

Eπ||β̂ − β||2.

The Bayes estimator is the posterior mean β̂Sp−1(α) = Eπ(β|y,X). So the corresponding

Bayes risk is rB(α) = Eπ||β̂Sp−1(α) − β||2. Then, the Bayes estimator also minimizes the
original minimax risk and r(α) = rB(α) (Dicker, 2016).

Recall that the ridge estimator with optimally tuned regularization parameter is

β̂r(α) = (X>X +
p

α2
Ip)
−1X>Y,

which can be interpreted as the posterior mean of β under the normal prior assumption
β ∼ N (0, α2/pIp). When p is very large, the normal distribution N (0, α2/pIp) is very close

to the uniform distribution on Sp−1(α), so we would expect that β̂Sp−1(α) ≈ β̂r(α). With
this intuition, Dicker (2016) further showed that, as p, n → ∞, p/n → γ ∈ (0,∞), for any
β ∈ Sp−1(α)

lim
n,p→∞

[
R(β̂Sp−1(α), β)−R(β̂r(α), β)

]
= 0.
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So the global ridge estimator is asymptotically exact minimax.
We call an estimator is asymptotically rate-minimax if asymptotically its risk is at most

a constant times the minimax risk. For our distributed problem, we have the following
result:

Theorem 10 (Minimax optimality) For fixed signal strength α2, the optimally weighted
distributed ridge estimator is asymptotically rate minimax. Specifically, its risk Mk is less
than the risk M1 of the global ridge estimator multiplied by a constant C = 1 + α2 which
only depends on the signal strength α2, and not on the aspect ratio γ = lim p/n and number
of machines k. Specifically

Mk ≤ (1 + α2)M1.

Moreover, for fixed aspect ratio γ > 1, the distributed risk Mk is less than the global risk
M1 times a constant C ′ = γ2/(γ2 − 1) which is independent of α2 and k, i.e.

Mk ≤
γ2

γ2 − 1
M1.

Therefore, in either case, the optimally weighted distributed ridge estimator is asymptotically
rate minimax.

See Section F.10 for the proof. The minimax optimality result is nontrivial, and does
not hold for some simpler estimators. For instance, for the null estimator β̂null = 0, the
corresponding ARE can be written in terms of the optimal risk function φ(γ) as

lim
n,p→∞

R(β̂r(α), β)

R(β̂null, β)
=
φ(γ)

α2
=
γmγ(−γ/α2)

α2
.

When γ → ∞, we know that γ/α2mγ(−γ/α2) → 1, so that even the null estimator is
asymptotically exact minimax. In this regime, exact minimaxity is a weak result. When
γ → 0 however, we have γ/α2mγ(−γ/α2)→ 0 for any α, and so the null estimator does not
perform well (has zero efficiency). However, the distributed estimator is still asymptotically
rate-minimax.

5. WONDER: Algorithms for Weighted One-shot Distributed Ridge
Regression

So far, most of our results on distributed ridge regression are purely theoretical. In practice,
it would be very helpful to have an implementable algorithm. In fact, our theory for
distributed ridge regression allows us to develop an efficient algorithm which works for
designs X with arbitrary covariance structures Σ.

Recall that we have n samples distributed across k machines. For simplicity, let us
assume the samples are equally distributed. On the i-th machine, we compute a local ridge
estimator β̂i, local estimators σ̂2

i , α̂
2
i of the signal-to-noise ratio and the noise level. From

Theorem 3, we know that the other quantities needed to find the optimal weights are m,m′

and λ. For m and m′, by the definition of the Stieltjes transform, they can be approximated
by

tr[(Σ̂i + λI)−1]

p
≈ m(−λ) and

tr[(Σ̂i + λI)−2]

p
≈ m′(−λ).
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Algorithm 1: WONDER: Weighted ONe-shot DistributEd Ridge regression algo-
rithm, general design

Input : Data matrices (ni × p) and outcomes (ni × 1), (Xi, Yi) distributed across
k sites

Output: Distributed ridge estimator β̂dist of regression coefficients β

1 for i← 1 to k do

2 Compute the MLE θ̂i = (σ̂2
i , α̂

2
i ) locally on i-th machine;

3 Send θ̂i to the global data center;

4 end

5 At the data center, combine θ̂i to get a global estimator θ̂ = (σ̂2, α̂2) = k−1
∑k

i=1 θ̂i
and send it back to the local machines;

6 Choose a set of tuning parameters S around the initial guess λ0 = kp/(nα̂2);
7 for λ ∈ S do
8 for i← 1 to k do

9 Compute the local ridge estimator β̂i(λ) = (X>i Xi + niλIp)
−1X>i Yi;

10 Compute the weight ωi for the i-th local estimator by using the formulas
from Theorem 3:

ωi(λ) =
σ̂2α̂2(1− λm)

F + kG
where we use tr[(X>i Xi/ni + λI)−1]/p to approximate m, and use
tr[(X>i Xi/ni + λI)−2]/p to approximate m′;

11 Send β̂i(λ) and ωi(λ) to the global data center;

12 end
13 Evaluate the performance of the distributed ridge estimator

β̂dist(λ) =
∑k

i=1 ωi(λ)β̂i(λ) on validation sets;

14 end
15 Select the best tuning parameter λ∗ and output the corresponding distributed ridge

estimator β̂dist(λ
∗) =

∑k
i=1 ωi(λ

∗)β̂i(λ
∗).

Here we only need to use local data. The remaining question is: how do we choose the tuning
parameter λ? One way may be grid search. From the theory for the isotropic design, a
proper initial guess would be λ = kp/(nα2). Then we can search around this initial guess
to find a good parameter with small prediction error.

We assume the data are already mean-centered, which can be performed exactly in one
additional round of communication, or approximately by centering the individual data sets.

Now we have all the quantities we need for our Weighted ONe-shot DistributEd Ridge
regression algorithm (WONDER). We send them to a global machine or data center, and
aggregate them to compute a weighted ridge estimator. See Algorithm 1 for more details.
WONDER is communication efficient as the local machines only need to send the local ridge
estimator β̂i and some scalars to the global datacenter.

For identity covariance, our results lead to a much simpler WONDER algorithm which
requires even less communication and computation. See Algorithm 2.
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Algorithm 2: WONDER: Weighted ONe-shot DistributEd Ridge regression algo-
rithm, isotropic design

Input : Data matrices (ni × p) and outcomes (ni × 1), (Xi, Yi) distributed across
k sites

Output: Distributed ridge estimator β̂dist of regression coefficients β

1 for i← 1 to k do

2 Compute the MLE θ̂i = (σ̂2
i , α̂

2
i ) locally on i-th machine;

3 Set local aspect ratio γi = p/ni;
4 Set regularization parameter λi = γi/α̂

2
i ;

5 Compute the local ridge estimator β̂i(λi) = (X>i Xi + niλiIp)
−1X>i Yi;

6 Send θ̂i, γi and β̂i to the global data center.

7 end

8 At the data center, combine θ̂i to get a global estimator θ̂ = (σ̂2, α̂2), by

θ̂ = k−1
∑k

i=1 θ̂i;
9 Evaluate the optimal risk functions for i = 1, 2, . . . , k

φ(γi) = γimγi(−γi/α̂2) =
−γi/α̂2 + γi − 1 +

√
(−γi/α̂2 + γi − 1)2 + 4γ2

i /α̂
2

2γi/α̂2
;

10 Compute the optimal weights ω, where the i-th coordinate of ω is

ωi =

(
α̂2

φ(γi)

)
·

 1

1 +
∑k

i=1

[
α̂2

φ(γi)
− 1
]
 ;

11 Output the distributed ridge estimator β̂dist =
∑k

i=1 ωiβ̂i.

In the above WONDER algorithms, we combine the local estimators of the noise level
and signal strength θ̂i to find a global estimator θ̂. A simple method is to take the aver-
age: θ̂ = k−1

∑k
i=1 θ̂i. Another option is to use inverse-variance weighting, based on the

asymptotic variance of the MLE (which then of course has to be estimated).

Based on the results so far, it follows that our WONDER algorithm can consistently
estimate the limiting optimal weights, and moreover it has asymptotically optimal mean
squared error among all weighted distributed ridge estimators, at least for the identity
covariance case. We omit the details.

6. Experimental Results

We present some numerical results in addition to the ones already shown in the paper.
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Figure 8: Realized relative efficiency in a regression simulation.

6.1. Finite-sample comparison of relative efficiency for isotropic covariance

Figure 8 shows a comparison of the theoretical formulas for ARE and realized relative
efficiency in a regression simulation. Here the regression model is Y = Xβ + ε, where X
is n× p with i.i.d. standard normal entries, β is a p-dimensional random vector with i.i.d.
mean 0, variance α2/p normal entries, and ε also has i.i.d standard normal entries. For each
k = 1, 2, 5, 10, 20, 50, we split the data equally into k groups and perform ridge regression
on each group. For each group, we choose the same tuning parameter λi = p/(niα

2). For
the global regression on the entire data set, we choose the tuning parameter λ = p/(nα2)
optimally.

We show the results of the expression for the realized relative efficiency ‖β̂−β‖2/‖β̂dist−
β‖2 compared to the theoretical ARE. We generate 100 independent copies of ε, perform
regression, recording the realized relative efficiency ||β̂ − β||2/||β̂dist − β||2, as well as its
overall Monte Carlo mean. For the first plot, we take n = 1000, p = 100, and α = σ = 1.

As we can see in the plot, the theoretical formula is accurate only for a small number
of machines. It turns out that this is due to finite-sample effects. In the second plot, we
set n = 10000, p = 1000 and α = σ = 1 such that the aspect ratio γ = p/n is the same as
before. In that case the theoretical formula becomes very accurate.

6.2. Choosing the regularization for general covariance

How can we choose the optimal regularization parameters when the predictors have a general
covariance structure Σ? In this case, our theoretical results do not give an explicit expression
for the optimal regularization parameters. In practice, one can use techniques like cross-
validation to do selections. Here we present simulation results to shed light on the important
question of how to choose them.

We use a similar simulation setup as in the previous sections, except we generate the
datapoints independently from an autoregressive model of order one (AR-1), i.e., each
datapoint xi is generated as xi ∼ N (0,Σ), where Σij = ρ|i−j|, and ρ is the autocorrelation
parameter. We choose ρ = 0.9. We also choose n = 3000, p = 500, and report the results of
a simulation where we average over nmc = 20 independent realizations of β. Figure 9 shows
the optimal distributed risk M∗(k) as a function of the local regularization parameter λ. We
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Figure 9: Distributed risk as a function of the regularization parameter. We plot the risk
of the optimally weighted distributed estimator for an AR-1 covariance structure.
We set α = 1, γ = 0.17 and k = 1, 2, 5, 10.

set all local regularization parameters to equal values, which is reasonable, since the local
problems are exchangeable. We also parametrize the regularization parameters as multiples
of the optimal parameter for the isotropic case (which equals kγ/α2).

We observe that for k = 1, the optimal parameter is the same as in the isotropic case.
This makes sense, because the optimal regularization parameter for one machine is always
the same, regardless of the structure of the design. However for k > 1, we observe that the
regularization parameters are smaller than the isotropic ones. This is an insight that has
apparently not been available before. It is an interesting topic of future work to develop an
intuitive understanding.

6.3. Experiments on empirical data

In this section, we present an empirical data example to examine the accuracy of our
theoretical results. It is reasonable to compare the performance of different estimators in
terms of the prediction (test) error. Figure 10 shows a comparison of three estimators
including our optimal weighted estimator on the Million Song Year Prediction Dataset
(MSD) (Bertin-Mahieux et al., 2011).
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Figure 10: Million Song Year Prediction Dataset (MSD). Optimal weighted average (WON-
DER), Naive average, and regression on 1/k fraction of data.

Specifically, we perform the following steps in our data analysis. We download the data
set from the UC Irvine Machine Learning Repository. The original data set hasN = 515, 345
samples and p = 91 features. The data set has already been divided into a training set and
a test set. The training set consists of the first 463, 715 samples and the test set contains the
rest. We attempt to predict the release year of a song. Before doing distributed regression,
we first center and normalize both the design matrix X and the outcome Y . Now we are
ready to do ridge regression under the distributed setting.

For each experiment, we randomly choose ntrain = 10, 000 samples from the training set
and ntest = 1, 000 samples from the test set. We construct the estimators on the training
samples. Then we perform ridge regression in a distributed way to obtain our optimal
weighted WONDER estimator as described in Algorithm 1. We measure its performance
on the test data by computing its MSE for prediction. We choose the number of machines
to be k = 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, and we distribute the data evenly across the
k machines. Here we try different tuning parameters λ around kp/(ntrain · α̂2), and use
λ = 3kp/(ntrain · α̂2) as our final parameter. (In practice, one may try a 1-D grid search to
find the right scale.)

For comparison, we also consider two other estimators:

1. The distributed estimator where we take the naive average (weight for each local
estimator is simply 1/k) and choose the local tuning parameter λ = p/(ntrain · α̂2).
This formally agrees with the divide-and-conquer type estimator proposed in Zhang
et al. (2015).

2. The estimator using only a fraction 1/k of the data, which is just one of the local
estimators. For this estimator, we choose the tuning parameter λ = kp/(ntrain · α̂2).
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We repeat the experiment for T = 100 times, and report the average and 1/4 standard
deviation over all experiments on Figure 10. Each time we randomly collect new training
and test sets.

From Figure 10, we observe the following:

1. The WONDER estimator has smaller MSE than both the local estimator and the
naive averaged estimator, which means optimal weighting can indeed help.

2. It seems that data splitting does not have huge impact on the performance of the
WONDER estimator. This phenomenon is compatible with our theory. Since the
signal-to-noise ratio α2 is about 1.2 for this data set, we are in a low SNR scenario.
From Proposition 9 and Figure 7, we see that the performance of the distributed
estimator is close to the global estimator in terms of the prediction error.

To conclude, in terms of computation-statistics tradeoff, this example suggests a very
positive outlook on using distributed ridge regression via WONDER: The accuracy is af-
fected very little even though the data is split up into 100 parts. Thus we save at least 100x
in computation time, while we have nearly no loss in performance.

Finally, we mention that in Figure 4 of Zhang et al. (2015), the authors also compare the
performance of the distributed estimator to the local estimator on the same Million Song
data set. We notice that the MSE of prediction in their experiments is usually between
80 and 90, and variance is typically very small. In our experiments, both the MSE and
variance are larger. The reason for this seems to be that they consider more general kernel
ridge regression.
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Appendix A. Adding a Constant to the Regression

We show below the details of the derivation of optimal weights for ridge regression when
we also add a constant to the (biased) local estimators. In our calculation from Theorem
1, we need to change some details as follows:

We need to define a new matrix B̂ = [β̂1, . . . , β̂k, p
−1/21p] and new weights w = [w;wk+1].

Clearly, we still have that

B = [Eβ̂1, . . . ,Eβ̂k, p−1/21p] = [Q1β; . . . ;Qkβ, p
−1/21p].

The new matrix R is now diagonal with all entries as before, and the lower right corner
entry is Rk+1 = 0.
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We consider the same regression problem as before, except we add an intercept into the
matrix B as above. The same algebraic form of the optimal weights and risk holds, with
the new definitions above. The optimal risk is now

M∗(k) = ‖β‖2 − v>(A+R)−1v

where

v = B>β = [vec[β>Qiβ]; p−1/21>p β]

A =

[
mx[β>QiQjβ] vec[p−1/21>p Qiβ]

vec[p−1/21>p Qiβ] 1

]
R = diag

[
n−1
i tr[(Σ̂i + λiIp)

−2Σ̂i]; 0
]

Qi = (Σ̂i + λiIp)
−1Σ̂i

In simulation studies, we have observed that this approach typically does not lead to a
significant decrease in MSE.

Appendix B. Differentiation Rule for Calculus of Deterministic
Equivalents

Theorem 11 (Differentiation rule) Suppose T = Tn and S = Sn are two (deterministic
or random) matrix sequences of growing dimensions such that f(z, Tn) � g(z, Sn), where
the entries of f and g are analytic functions in z ∈ D and D is an open connected subset
of C. Suppose that for any sequence Cn of deterministic matrices with bounded trace norm
we have

| tr [Cn(f(z, Tn)− g(z, Sn))] | ≤M

for every n and z ∈ D. Then we have f ′(z, Tn) � g′(z, Sn) for z ∈ D, where the derivatives
are entry-wise with respect to z.

To prove this theorem, we need to introduce a lemma from complex analysis which is a
consequence of the dominated convergence theorem and Cauchy’s integral formula.

Lemma 12 (see Lemma 2.14 in Bai and Silverstein (2010)) Let f1, f2, . . . be ana-
lytic on the domain D, satisfying |fn(z)| ≤ M for every n and z ∈ D. Suppose that there
is an analytic function on D such that fn(z)→ f(z) for all z ∈ D. Then it also holds that
f ′n(z)→ f ′(z) for all z ∈ D.

The proof of theorem 11 is clear. Since tr [Cn(f(z, Tn)− g(z, Sn))] is a sequence of
analytic functions on D with uniform bound, then from the definition of the deterministic
equivalence, we have tr [Cn(f(z, Tn)− g(z, Sn))] → 0. By lemma 12, the derivative also
converges to 0 for all z ∈ D, which finishes the proof.
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Appendix C. Gaussian MLE for Signal and Noise Components

Recall that our model is Y = Xβ + ε where β and ε are independent. Let θ = (σ2, α2) and
define the Gaussian log-likelihood,

`(θ) = −1

2
log(σ2)− 1

2n
log det

(
α2

p
XX> + I

)
− 1

2σ2n
Y >

(
α2

p
XX> + I

)−1

Y.

Note that `(θ) is the log-likelihood for θ under the Gaussian assumption of β ∼ N (0, (σ2α2/p)I)
and ε ∼ N (0, σ2I). For the MLE

θ̂ = (σ̂2, α̂2) = argmax
σ2,α2≥0

`(θ),

we have the following result from Dicker and Erdogdu (2017).

Theorem 13 (Consistency and asymptotic normality, Dicker and Erdogdu (2017))
Suppose θ = (σ2, α2) are the true parameters, then θ̂ → θ in probability as p/n → γ. Fur-
thermore, define the Fisher information matrix for θ under the Gaussian assumption model

In(θ) =

[
I2(θ) I3(θ)
I3(θ) I4(θ)

]
,

where

Ik(θ) =
1

2nσ8−2k
tr

[(
1

p
XX>

)k−2(α2

p
XX> + I

)2−k]
, k = 2, 3, 4.

Then n1/2In(θ)1/2(θ̂ − θ)→ N (0, I2) in distribution as p/n→ γ.

In addition, if we put some assumptions on X as we did in Theorem 1 and denote the
limiting spectral distribution of p−1XX> by Fγ , then the entries of the Fisher information
matrix In(θ) have limits

Ik(θ)→a.s. Jk(θ) =
1

2σ8−2k

∫ (
s

α2s+ 1

)k−2

dFγ(s), k = 2, 3, 4.

Thus In(θ) converges almost surely to a limiting information matrix I(θ) which character-
izes the asymptotic variance of the MLE θ̂.

Appendix D. Explaining Decoupling via Free Probability Theory

In this section, we provide an explanation via free probability theory for why the limiting
distributed risk decouples. Specifically, we explain why the limit of the quantities β>Qiβ ·
β>Qjβ for i 6= j becomes a product of terms depending on i, j.

We will use some basic notions from free probability theory (Voiculescu et al., 1992;
Hiai and Petz, 2006; Nica and Speicher, 2006; Anderson et al., 2009; Couillet and Debbah,
2011). Let us define our non-commutative probability space as(

A = (L∞− ⊗Mp(R)), τ =
1

p
tr

)
,

32



WONDER: Weighted One-shot Distributed Ridge Regression in High Dimensions

where L∞− denotes the collection of random variables with all moments finite and Mp(R) is
the space of p×p real matrices. Recall that, a sequence of random variables {a1,p, a2,p, . . . , ak,p} ⊂
A is said to be asymptotically free almost surely if

τ [
m∏
j=1

Pj(aij ,p − τ(Pj(aij ,p)))]→a.s. 0,

for any positive integer m, any polynomials P1, . . . , Pm and any indices i1, . . . , im ∈ [k] with
no two adjacent ij equal. Suppose Ap, Bp are two sequences of independent random matrices
and at least one of them is orthogonally invariant, then it is well-known that {Ap, Bp} ⊂ A
is asymptotically free almost surely.

Now, let us assume that X>X is orthogonally invariant, which is the case when X>X
follows the white Wishart distribution. Then clearly X>i Xi and X>j Xj are asymptotically
free almost surely. It follows that Qi and Qj are also asymptotically free almost surely. By
using the definition of asymptotic freeness, we have for i 6= j

τ [(Qi −
1

p
tr(Qi)I)(Qj −

1

p
tr(Qj)I)]→a.s. 0,

which is equivalent to

1

p
tr(QiQj)−

1

p
tr(Qi)

1

p
tr(Qj)→a.s. 0.

Hence, under the random-effects assumption for β, the limit of β>β · β>QiQjβ (i 6= j) will
decouple and is the same as the limit of β>Qiβ · β>Qjβ.

Appendix E. Intuitive Explanation for the Need to Use Weights
Summing to Greater than Unity

Consider a much more simplified problem, where we are estimating a scalar parameter θ.
We have an estimator θ̂, which is generally biased, and we would like to find the scale
multiple c · θ̂ that minimizes the mean squared error. A calculation reveals that

M(c) = E(c · θ̂ − θ)2 = c2E(θ̂2)− 2c · Eθ̂ · θ + θ2

Hence the optimal scale factor is c = Eθ̂ · θ/E(θ̂2).

We can achieve a better understanding of this optimal scale if we consider the bias-
variance decomposition of θ̂. Let us define the bias and the variance as

B = Eθ̂ − θ
V = E(θ̂ − Eθ̂)2

We then see that the optimal scale factor is

c =
B + θ

V + (B + θ)2
θ = 1− V +B(B + θ)

V + (B + θ)2
.
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This quantity is an “inflation factor”, i.e., greater than or equal to unity, if V +B(B+θ) ≤ 0.
This can be written as

V +B2 ≤ −Bθ

Hence, this condition can only hold if the bias B has opposite sign with θ. This would be
the case for a shrinkage estimator θ. In that case, the condition could hold if the parameter
θ has a large magnitude.

Returning to our main problem, ridge regression is a shrinkage estimator, and averages
of ridge regression estimators are still shrinkage estimators. Therefore, it makes sense that
their weighted average should be inflated to minimize mean squared error. This provides
an intuitive explanation for why the weights sum to greater than one.

Appendix F. Proofs

F.1. Proof of Theorem 1

We can calculate the MSE of the weighted sum as

M(w) = E
∥∥∥∑wiβ̂i − β

∥∥∥2
= E(

∑
wiβ̂i − β)>(

∑
wj β̂j − β)

=
∑
ij

wiwj · Eβ̂>i β̂j − 2
∑
i

wiEβ̂>i β + ‖β‖2.

Let B̂ be the p× k matrix defined as B̂ = [β̂1, . . . , β̂k]. Then we can write the above MSE
as

M(w) = w>EB̂>B̂w − 2Eβ>B̂w + ‖β‖2.

Let also
B = EB̂ = [Eβ̂1, . . . ,Eβ̂k].

Since the local estimators are independent, we can write

M(w) = w>(B>B +R)w − 2β>Bw + ‖β‖2,

where R is a diagonal matrix with entries

Ri = E‖β̂i‖2 − ‖Eβ̂i‖2 = E‖β̂i − Eβ̂i‖2.

The objective function M(w) can be viewed as corresponding to a k-parameter linear re-
gression problem, with unknown parameters wi, design matrix B and outcome vector β.
Specifically, we regress β on EB̂ = E[β̂1, . . . , β̂k]. Therefore, the optimal weights are

w∗ = (B>B +R)−1B>β,

and the optimal risk equals

M∗ = M(w∗) = β>
[
Ip −B(B>B +R)−1B>

]
β.
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Now, to find B = EB̂, we need Eβ̂i. The expectation of the ridge regression estimator for
the full data set is

Eβ̂(λ) = E(X>X + nλIp)
−1X>Y = (X>X + nλIp)

−1X>Xβ.

Letting Σ̂ = n−1X>X, this equals Eβ̂(λ) = (Σ̂ + λIp)
−1Σ̂β. Similarly,

Eβ̂i(λi) = (X>i Xi + niλiIp)
−1X>i Xiβ.

Let Qi = Qi(λi) = (X>i Xi + niλiIp)
−1X>i Xi be those matrices and let Σ̂i = n−1X>i Xi.

Then the above equals Qi = (Σ̂i + λiIp)
−1Σ̂i, and

B = [Q1β; . . . ;Qkβ].

Therefore, B>B has entries β>QiQjβ, while B>β has entries β>Qiβ. Moreover,

Ri = E‖β̂i − Eβ̂i‖2 = E‖(X>i Xi + niλiIp)
−1X>i εi‖2 = σ2 tr[(X>i Xi + niλiIp)

−2X>i Xi].

We can also write this as Ri = n−1
i σ2 tr[(Σ̂i + λiIp)

−2Σ̂i]. To conclude the optimal risk, we
have

M∗(k) = ‖β‖2 − v>(A+R)−1v,

where

v = B>β = vec[β>Qiβ],

A = mat[β>QiQjβ],

R = diag
[
n−1
i σ2 tr[(Σ̂i + λiIp)

−2Σ̂i]
]
,

Qi = (Σ̂i + λiIp)
−1Σ̂i.

Here we used the vectorization and to-matrix operators vec,mat. For the global MSE, we
only need to consider the special case where k = 1, which gives us

E||β̂ − β||2 = M∗(1) = ‖β‖2 − (β>Qβ)2

β>Q2β + σ2 tr[(X>X + nλIp)−2X>X]
,

where Q = (Σ̂ + λIp)
−1Σ̂. This finishes the argument.

F.2. Proof of Theorem 2

The first step is to use the well-known concentration of quadratic forms to reduce to trace
functionals (See e.g. Lemma C.3 of Dobriban and Wager (2018) which is based on Lemma
B.26 of Bai and Silverstein (2010)). Since β is independent of the data X with mean zero
and finite variance, under the moment assumptions imposed in the theorem, we have

β>Qiβ − σ2α2/p · trQi →a.s. 0,

β>QiQjβ − σ2α2/p · trQiQj →a.s. 0,

β>Q2
iβ − σ2α2/p · trQ2

i →a.s. 0.

Let us compute the limits of v,A and R respectively.
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1. Limit of v: First of all, we have already known that

β>Qiβ − σ2α2/p · trQi →a.s. 0,

so it is sufficient to consider the limit of trQi/p. Since

trQi/p = 1− λi tr[(Σ̂i + λiIp)
−1]/p.

assuming that the spectral distribution of Σ̂i converges almost surely to Fγi , we thus
have

trQi/p→a.s. 1− λiEFγi (T + λi)
−1 = 1− λimFγi

(−λi).

Above we have introduced the Stieltjes transform mFγi
as a limiting object. So,

β>Qiβ →a.s. σ
2α2[1− λimFγi

(−λi)].

For the form in terms of the population spectral distribution H, if p/n → γ and the
spectral distribution of Σ converges to H, we have by the general Marchenko-Pastur
(MP) theorem of Rubio and Mestre (Rubio and Mestre, 2011), that

(Σ̂ + λI)−1 � (xpΣ + λI)−1,

where xp is the unique positive solution of the fixed point equation

1− xp =
xp
n

tr
[
Σ(xpΣ + λI)−1

]
.

When n, p→∞, xp → x and x satisfies the equation

1− x = γ

[
1− λ

∫ ∞
0

dH(t)

xt+ λ

]
.

We remark that the assumptions made in the theorem suffice for using the Rubio-
Mestre result. Moreover, we only use a special case of their result, similar to Dobriban
and Sheng (2018). Hence from the calculus of deterministic equivalents (Dobriban and
Sheng, 2018), we can take the traces of the matrices in question to obtain

trQi/p = 1− λi tr[(Σ̂i + λiIp)
−1]/p � 1− λi tr[(xiΣ + λiI)−1]/p→a.s. EH

xiT

xiT + λi
,

where xi = x(H, γi,−λi) is the unique solution of

1− xi = γi

[
1− λi

∫ ∞
0

dH(t)

xit+ λi

]
.

2. Limit of A: Let us consider the cases i 6= j and i = j separately.
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(a) i 6= j: We begin by

β>QiQjβ − σ2α2/p · trQiQj →a.s. 0.

Based on the above expression for Qi, we have

QiQj = Ip−λi(Σ̂i+λiIp)
−1−λj(Σ̂j +λjIp)

−1 +λiλj(Σ̂i+λiIp)
−1(Σ̂j +λjIp)

−1.

So the key will be to find the limit of

Eij = p−1 tr{(Σ̂i + λiIp)
−1(Σ̂j + λjIp)

−1}.

From the general MP theorem, since p/ni → γi, we have for all i,

(Σ̂i + λiIp)
−1 � (xipΣ + λiIp)

−1.

Here xip is the unique positive solution of the fixed point equation

1− xip =
xip
ni

tr
[
Σ(xipΣ + λiI)−1

]
,

and xip → xi as ni, p→∞. By the product rule of the calculus of deterministic
equivalents, we have for i 6= j

(Σ̂i + λiIp)
−1(Σ̂j + λjIp)

−1 � (xipΣ + λiIp)
−1(xjpΣ + λjIp)

−1.

Hence by the trace rule of deterministic equivalents,

Eij � p−1 tr[(xipΣ + λiIp)
−1(xjpΣ + λjIp)

−1]

Moreover, since the spectral distribution of Σ converges to H, we find for i 6= j

Eij → EH
1

(xiT + λi)(xjT + λj)
.

Putting it together,

QiQj � Ip−λi(xipΣ+λiIp)
−1−λj(xjpΣ+λjIp)

−1+λiλj(xipΣ+λiIp)
−1(xjpΣ+λjIp)

−1.

So, again by the trace rule of deterministic equivalents, we have

p−1 tr{QiQj} →a.s. 1− EH
λi

xiT + λi
− EH

λj
xjT + λj

+ EH
λiλj

(xiT + λi)(xjT + λj)

= xixjEH
T 2

(xiT + λi)(xjT + λj)
.

Therefore, for i 6= j

Aij → σ2α2

[
xixjEH

T 2

(xiT + λi)(xjT + λj)

]
.
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(b) i = j: In this case,
β>Q2

iβ − σ2α2/p · trQ2
i → 0,

where Q2
i = Ip − 2λi(Σ̂i + λiIp)

−1 + λ2
i (Σ̂i + λiIp)

−2. We can easily find the
limit of trQ2

i /p in terms of empirical quantities, based on our knowledge of the
convergence of Stieltjes transforms and its derivatives:

trQ2
i /p→ 1− 2λimFγi

(−λi) + λ2
im
′
Fγi

(−λi).

Therefore, for i = j

Aii → σ2α2[1− 2λimFγi
(−λi) + λ2

im
′
Fγi

(−λi)].

We can also express the limit of Aii in terms of the population spectral distribu-
tion H by using Theorem 11. For our purpose, let T = Σ, S = Σ̂, while

f(z, T ) = (xpT − zI)−1,

g(z, S) = (S − zIp)−1.

From Rubio and Mestre (2011), we know that for each z ∈ D := C\R+, f(z,Σ) �
g(z, Σ̂). xp is defined as

xp =
1

n
tr[(I +

p

n
epI)−1] =

1

1 + (p/n)ep
=

1

1 + γpep
,

and ep = ep(z) is the Stieltjes transform of a certain positive measure on R+,
obtained as the unique solution of the equation

ep =
1

p
tr[Σ(xpΣ− zIp)−1].

It is well-known that xp(z), ep(z) are both analytic functions on D. Then we can
check that the conditions of theorem 11 hold in this case. First of all, for an
invertible matrix A, A−1 = (detA)−1A∗, where A∗ is the adjugate matrix of A.
Since xp is analytic, it is easy to verify that det(xpΣ− zIp),det(Σ̂− zIp) and all

entries of (xpΣ − zIp)∗, (Σ̂ − zIp)∗ are analytic functions of z. So the entries of

f(z,Σ) and g(z, Σ̂) are analytic in D.

Next, we want to bound

tr[Cn((xpΣ− zIp)−1 − (Σ̂− zIp)−1)] ≤ ||Cn||tr · ||(xpΣ− zIp)−1 − (Σ̂− zIp)−1||2.

For a fixed δ > 0, let us define a domain Dδ := {z ∈ D : Rez < −δ} ∪ {z ∈ D :
|Imz| > δ}. Then, it is sufficient to find a uniform bound for ||(xpΣ − zIp)−1 −
(Σ̂−zIp)−1||2 on Dδ. In fact, we can bound ||(xpΣ−zIp)−1||2 and ||(Σ̂−zIp)−1||2
separately.

i. Bounding ||(Σ̂− zIp)−1||2:

||(Σ̂− zIp)−1||2 = σmax((Σ̂− zIp)−1) = max
i

1

|l̂i − z|
,
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where l̂i is the i-th eigenvalue of Σ̂. Since l̂i is always non-negative, we have

1

|l̂i − z|
=

1

|l̂i − Rez − iImz|
=

1√
(l̂i − Rez)2 + (Imz)2

≤ 1

δ
.

ii. Bounding ||(xpΣ− zIp)−1||2:
In this case, we need to use the properties of ep and xp. Recall that ep is the
Stieltjes transform of a certain measure on R+, i.e.

ep(z) =

∫ ∞
0

1

t− z
dµ(t) =

∫ ∞
0

1

t− Rez − iImz
dµ(t)

=

∫ ∞
0

t− Rez

(t− Rez)2 + (Imz)2
dµ(t) + i

∫ ∞
0

Imz

(t− Rez)2 + (Imz)2
dµ(t).

So

xp =
1

1 + γpep
=

1

1 + γpRe(ep) + iγpIm(ep)

=
1 + γpRe(ep)

(1 + γpRe(ep))2 + (γpIm(ep))2
− i γpIm(ep)

(1 + γpRe(ep))2 + (γpIm(ep))2
.

When z ∈ Dδ, we can check that Re(xp) > 0. Meanwhile, Im(xp) and Im(z)
have opposite signs.
Now, let us consider

||(xpΣ− zIp)−1||2 = σmax((xpΣ− zIp)−1) = max
k

1

|xplk − z|
,

where lk is the k-th eigenvalue of Σ. Since lk is non-negative, we have

1

|xplk − z|
=

1

|lkRe(xp) + ilkIm(xp)− Rez − iImz|

=
1√

(lkRe(xp)− Rez)2 + (lkIm(xp)− Imz)2

≤ 1

δ
.

Finally, since δ is arbitrary, we can conclude that f ′(z,Σ) � g′(z, Σ̂) for all z ∈ D.

Then let us compute the derivatives. For invertible A = A(z), we have

d(A−1)

dz
= −A−1dA

dz
A−1,

where the derivative is entry-wise. Thus

f ′(z, T ) = −(xpT − zI)−1(x′pT − I)(xpT − zIp)−1 = −(xpT − zIp)−2(x′pT − I),

g′(z, S) = (S − zIp)−2.
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Next, we need to calculate x′ = dx/dz, where x(z) is the limit of xp(z). In fact,
by looking at the expression of xp(z), it is not hard to find that xp(z) is uniformly
bounded on D. By using a similar argument, we have x′p → x′ on D. To find x′,
let us start from the following fixed-point equation

1− x = γ

[
1 + zEH

1

xT − z

]
.

Take derivatives on both sides to get

−x′ = γ

[
zEH

1

xT − z

]′
−x′ = γ

[
EH

1

xT − z
+ EH

z − zTx′

(xT − z)2

]
x′
[
−1 + γzEH

T

(xT − z)2

]
= γEH

xT

(xT − z)2

x′ =
γEH xT

(xT−z)2

−1 + γzEH T
(xT−z)2

.

Therefore we obtain

(Σ̂− zI)−2 � (xpΣ− zIp)−2(I − x′pΣ)

p−1 tr(Σ̂− zI)−2 � −x′pp−1 tr[Σ(xpΣ− zI)−2] + p−1 tr[(xpΣ− zIp)−2]

→
γEH xT

(xT−z)2

1− γzEH T
(xT−z)2

EH
T

(xT − z)2
+ EH

1

(xT − z)2

=
γx
(
EH T

(xT−z)2

)2

1− γzEH T
(xT−z)2

+ EH
1

(xT − z)2
.

Now, let z = −λ and then we will have

(Σ̂ + λI)−2 � (xpΣ + λI)−2(I − x′pΣ)

p−1 tr(Σ̂ + λI)−2 →
γx
(
EH T

(xT+λ)2

)2

1 + γλEH T
(xT+λ)2

+ EH
1

(xT + λ)2
.

Finally, we can simply replace Σ̂, λ, γ, x by Σ̂i, λi, γi, xi to get the desired results.

3. Limit of R: Recall that Ri = n−1
i σ2 tr[(Σ̂i + λiIp)

−2Σ̂i]. We note p−1 tr(Σ̂ + λI)−2 →
m′Fγ (−λ) and Σ̂(Σ̂ + λI)−2 = (Σ̂ + λI)−1 − λ(Σ̂ + λI)−2, so

tr[Σ̂(Σ̂ + λI)−2]

n
→ γ[mFγ (−λ)− λm′Fγ (−λ)].

Hence
Rii → σ2

[
γi[mFγi

(−λi)− λm′Fγi (−λi)]
]
.

40



WONDER: Weighted One-shot Distributed Ridge Regression in High Dimensions

Next, we find a limit in terms of population parameters

Σ̂(Σ̂ + λI)−2 = (Σ̂ + λI)−1 − λ(Σ̂ + λI)−2

� (xpΣ + λI)−1 − λ(xpΣ + λI)−2(I − x′pΣ)

p−1 tr Σ̂(Σ̂ + λI)−2 � p−1 tr(xpΣ + λI)−1 − λp−1 tr
[
(I − x′pΣ)(xpΣ + λI)−2

]
→ EH

1

xT + λ
− λ

γx
(
EH T

(xT+λ)2

)2

1 + γλEH T
(xT+λ)2

− EH
λ

(xT + λ)2

= EH
xT

(xT + λ)2
− λ

γx
(
EH T

(xT+λ)2

)2

1 + γλEH T
(xT+λ)2

=
xEH T

(xT+λ)2

1 + λγEH T
(xT+λ)2

,

where we used the differentiation rule of the calculus of deterministic equivalents.
Hence we finally find the limit

Rii → σ2

[
xiEH T

(xiT+λi)2

1 + λiγiEH T
(xiT+λi)2

]
.

F.3. Proof of Theorem 3

Notice that, when the samples are equally distributed and we use the same tuning parameter
λ for all the local estimators, a direct consequence is that xi = xj = x for all i, j, where x
is the unique solution of the following fixed point equation

1−x = kγ

[
1− λ

∫ ∞
0

dH(t)

xt+ λ

]
= kγ

[
1− EH

λ

xT + λ

]
= kγ(1−λmFkγ (−λ)) = kγ(1−λm).

In this case, we can express Aij as

Aij = σ2α2EH
(xT )2

(xT + λ)2
= σ2α2

∫
(xt)2

(xt+ λ)2
dH(t).

In order to express Aij in terms of the sample quantities, we can start from the following
equality ∫

1

xt+ λ
dH(t) = m.

Take derivatives with respect to λ, we have∫
x′t+ 1

(xt+ λ)2
dH(t) = m′.

Rearrange terms, we have∫
x′t+ 1

(xt+ λ)2
dH(t) =

∫
(xt+ λ− λ) · x′x + 1

(xt+ λ)2
dH(t) =

x′

x
m+

(
1− λx′

x

)∫
1

(xt+ λ)2
dH(t) = m′.
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On the other hand, take derivatives with respect to λ on the fixed point equation for x gives
us

x′ = kγ(m− λm′).

So ∫
1

(xt+ λ)2
dH(t) =

xm′ − x′m
x− λx′

=
(1− kγ)m′ + 2kγλmm′ − kγm2

1− kγ + kγλ2m′
.

Then we have ∫
(xt)2

(xt+ λ)2
dH(t) =

∫
(xt+ λ− λ)2

(xt+ λ)2
dH(t)

= 1− 2λm+ λ2

∫
1

(xt+ λ)2
dH(t)

= 1− 2λm+ λ2m′ − kγλ2(m− λm′)2

1− kγ + kγλm′
.

Now we the expressions for V,A,R, we also know W∗k = (A +R)−1V and Mk = σ2α2 −
V >(A+R)−1V . By using the auxiliary functions F ,G defined in the theorem, we have

Mk = σ2α2− 1

G
V >(1 · 1>+diag(F/G))−1V = σ2α2−(σ2α2(1− λm))2

G
1>(1 · 1>+diag(F/G))−11,

where 1 = (1, 1, · · · , 1)> is the all-one vector. Then similar to the proof of Theorem 2, we
can use the Sherman-Morrison formula to simply the expression, this leads to

Mk = σ2α2 − (σ2α2(1− λm))2

G
1>
(

diag(F/G)−1 − diag(F/G)−11 · 1> diag(F/G)−1

1 + 1> diag(F/G)−11

)
1

= σ2α2 − (σ2α2(1− λm))2

G

(
kG
F
− k2G2/F2

1 + kG/F

)
= σ2α2

(
1− σ2α2(1− λm)2k

F + kG

)
.

Similarly, we can express the optimal weights W∗k as

W∗k =
1

G
(1 · 1> + diag(F/G))−1V

=
σ2α2(1− λm)

G
(1 · 1> + diag(F/G))−11

=
σ2α2(1− λm)

G

(
diag(F/G)−1 − G2/F2

1 + kG/F
1 · 1>

)
1

=
σ2α2(1− λm)

F + kG
1.

Why do we need to assume the samples are uniformly distributed across machines? This
is a technical assumption. The key difficulty in analyzing MSE and optimal weights comes
from the off-diagonal entries of A:

Aij = σ2α2EH
xixjT

2

(xiT + λi)(xjT + λj)
.
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Here, xi is uniquely determined by the aspect ratio γi = p/ni, the tuning parameter λi, and
the population distribution H. The terms we can handle are of form

EH
(xiT )k

(xiT + λi)l
, k, l ∈ N∗.

We can calculate these by taking derivatives of the Stieltjes transform EH 1
xiT+λi

and doing
further calculations.

We may decompose Aij into

Aij = σ2α2

(
1− λiEH

1

xiT + λi
− λjEH

1

xjT + λj
+ λiλjEH

1

(xiT + λi)(xjT + λj)

)
.

In general, it is hard to further simplify the last term of the above decomposition. But if
we assume the subsample sizes are all equal, then the optimal tuning parameters λi should
also be equal by symmetry. Thus, all xi are the same and we can rewrite the last term into

λ2
iEH

1

(xiT + λi)2
,

which is something we can deal with as mentioned above. Besides, from a practical perspec-
tive, if the samples are not uniformly distributed, we may need to do much more rounds
of communication (compare to Algorithm 1) to find the optimal tuning parameters λi and
the optimal weights ωi.

F.4. Proof of Theorem 4

The proof for v and R is clear by Theorem 2. For the limit of A, the diagonal case is also
direct. When i 6= j, recall that

Eij = p−1 tr{(Σ̂i + λiIp)
−1(Σ̂j + λjIp)

−1} → EH
1

(xiT + λi)(xjT + λj)
.

For H = δ1, the expectation decouples, we find

Eij →
1

xi + λi
· 1

xi + λj
= mγi(−λi)mγj (−λj).

Therefore,
Aij → σ2α2[1− λimγi(−λi)] · [1− λjmγj (−λj)].

Now let us put everything together. Recall that the optimal risk has the form MSE∗dist =
‖β‖2 − v>(A+R)−1v. Based on the above discussion, we have

σ2α2(A+R)→ σ2α2(A+R) = V V > +D,

where D is a diagonal matrix with i-th diagonal entry σ2α2(Rii+Aii)−V 2
i . Then, by using

the Sherman−Morrison formula, we have

V >(V V > +D)−1V =
V >D−1V

1 + V >D−1V
.

43



Dobriban and Sheng

So the limiting distributed risk is

Mk = σ2α2 − σ2α2 V >D−1V

1 + V >D−1V
=

σ2α2

1 + V >D−1V
=

σ2α2

1 +
∑k

i=1
V 2
i
Di

,

which finishes the proof.

F.5. Proof of Proposition 5

Recall that

V 2
i

Di
=

σ4α4(1− λimγi(−λi))2

σ4α4λ2
i [m

′
γi(−λi)−m2

γi(−λi)] + σ4α2γi[mγi(−λi)− λim′γi(−λi)]

=
α2(1− λimγi(−λi))2

α2λ2
i [m

′
γi(−λi)−m2

γi(−λi)] + γi[mγi(−λi)− λim′γi(−λi)]
,

and our goal is to find λi that maximizes V 2
i /Di. Luckily, from Dobriban and Wager (2018)

it follows that for k = 1, i.e. when there is only one machine, the optimal choice of the
tuning parameter λ is γ/α2. This means that the maximizer of V 2/D is λ = γ/α2. Now,
due to the decoupled structure of Mk, the optimal tuning parameters are λi = γi/α

2.
Plugging in the parameters, we have

V 2
i

Di
=

α2

γimγi(−γi/α2)
− 1.

Then the optimal risk can be simplified to

Mk =
σ2α2

1 +
∑k

i=1

[
α2

γimγi (−γi/α2)
− 1
] .

When k = 1, this equals to σ2γmγ(−γ/α2) which matches the known result from Dobriban
and Wager (2018).

F.6. Proof of Proposition 6

The explicit form is easy to derive by plugging z = −γ/α2 into the formula of mγ(z). Next,
we can check monotonicity by computing φ′(γ):

φ′(γ) =
α2

2γ2

(
1 +

(1− 1/α2)γ − 1√
[(1− 1/α2)γ − 1]2 + 4γ2/α2

)
> 0.

Finally, for the convexity, let us consider the two cases separately.

1. α ≤ 1: With some effort, we find the second derivative of φ

φ′′(γ) =

α2

(
2γ2

α2 −
(

((1− 1
α2 )γ − 1)2 + 4γ2

α2

) (
(1− 1

α2 )γ − 1)
)
−
(

((1− 1
α2 )γ − 1)2 + 4γ2

α2

)3/2
)

γ3[((1− 1/α2)γ − 1)2 + 4γ2/α2]3/2
.
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To analyze the second derivative, it is helpful to denote 1− (1− 1
α2 )γ by ∆. Clearly,

in this case, ∆ ≥ 1. Then we can rewrite φ′′ as

φ′′(γ) =
α2

γ3[∆2 + 4γ2/α2]3/2

(
2γ2

α2
+ (∆2 +

4γ2

α2
)∆− (∆2 +

4γ2

α2
)3/2

)
=

α2

γ3[∆2 + 4γ2/α2]3/2

(
2γ2

α2
+ (∆2 +

4γ2

α2
)

(
∆−

√
∆2 +

4γ2

α2

))

=
α2

γ3[∆2 + 4γ2/α2]3/2

2γ2

α2
− 4γ2

α2
· ∆2 + 4γ2/α2

∆ +
√

∆2 + 4γ2

α2


=

α2

γ3[∆2 + 4γ2/α2]3/2

2γ2

α2
− 4γ2

α2
·
√

∆2 + 4γ2/α2

∆ +
√

∆2 + 4γ2

α2


≤ α2

γ3[∆2 + 4γ2/α2]3/2

(
2γ2

α2
− 4γ2

α2
· 1

2

)
= 0.

Thus, φ(γ) is always concave in this case.

2. α > 1: Here we can consider the Taylor expansion of φ′′ near the origin. We can check
that φ′′(γ) = 2(1 − 1/α2)γ3 + o(γ3) as γ → 0, which means φ′′(γ) > 0 for small γ.
When γ is very large, we can immediately see that φ′′(γ) < 0, since the leading order
in the numerator of φ′′(γ) is −γ3. Then the desired result follows.

F.7. Proof of Theorem 7

For the first property, minimizing the ARE is equivalent to maximizing the following quan-
tity

k∑
i=1

γimγi(−γi/α2)

α2
=

k∑
i=1

φ(γi)

α2
.

It is helpful to introduce r(t) = φ(γ), where t = 1/γ. We can easily compute that

r′(t) =
α2

2

(
−1 +

t− (1− 1/α2)√
(t− (1− 1/α2))2 + 4/α2

)
< 0 , r′′(t) =

2

[(t− (1− 1/α2))2 + 4/α2]3/2
> 0.

Thus, r(t) is a decreasing and convex function. We can show the ARE achieves minimum
when the samples are equally distributed by considering the following optimization problem

max
ti

k∑
i=1

r(ti)

α2

subject to

k∑
i=1

ti =
1

γ
,

ti ≥ 0, i = 1, 2, . . . , k.

45



Dobriban and Sheng

We denote the objective by R(t1, . . . , tk), and the corresponding Lagrangian by Rξ = R −
ξ(
∑

i ti − 1/γ). Then it is easy to check that the condition
∂Rξ
∂ti

= 0 reduces to

r′(ti)

α2
− ξ = 0, i = 1, 2, . . . , k.

Since r′(t) is also monotone, the unique solution to the stationary condition is t1 = t2 =
· · · = tk = 1/(kγ). If some ti equals to 0, then it reduces to a problem with k− 1 machines.
So it remains to check the boundary case where only one ti is non-zero and equals to 1/γ.
Obviously, this is the trivial case where the ARE is 1. Therefore, we have shown that the
ARE attains its minimum when the samples are equally distributed across k machines.

Next, for fixed α2 and γ, we can check

∂ψ

∂k
=
γmγ(−γ/α2)

α2

α2

2γ
·

(
γ/α2 + γ

)2
k + γ/α2 − γ√

(γ/α2 + γ)2 k2 + 2 (γ/α2 − γ) k + 1
− 1 + α2

2

 ≤ 0.

Moreover, the limit of ψ is

h(α2, γ) = lim
k→∞

ψ(k, γ, α2) =
γmγ(−γ/α2)

α2

(
1 +

α2

γ(1 + α2)

)
=
−γ/α2 + γ − 1 +

√
(−γ/α2 + γ − 1)2 + 4γ2/α2

2γ

(
1 +

α2

γ(1 + α2)

)
.

Then for fixed α2, we can differentiate h(α2, γ) with respect to γ:

∂h

∂γ
= − α2

γ2(1 + α2)
·
−γ/α2 + γ − 1 +

√
(−γ/α2 + γ − 1)2 + 4γ2/α2

2γ

+

(
1 +

α2

γ(1 + α2)

)
·

1− 1/α2 + (−γ/α2+γ−1)(1−1/α2)+4γ/α2√
(−γ/α2+γ−1)2+4γ2/α2

2γ

−
(

1 +
α2

γ(1 + α2)

)
·
−γ/α2 + γ − 1 +

√
(−γ/α2 + γ − 1)2 + 4γ2/α2

2γ2
.

After tedious calculation, we find ∂h
∂γ ≥ 0. Finally, we can evaluate the limit of h as γ → 0

and γ →∞
lim
γ→0

h(α2, γ) =
1

1 + α2
, lim

γ→∞
h(α2, γ) = 1.

On the other hand, for fixed γ, we can check that h is a decreasing function of α2 and

lim
α2→0

h(α2, γ) = 1, lim
α2→∞

h(α2, γ) =

{
1− 1

γ2
, γ > 1,

0, 0 < γ ≤ 1.

F.8. Proof of Theorem 8

Recall that the optimal weights are w∗ = (A+R)−1v and σ2α2(A+R)→ V V >+D. Denote
the limit of the optimal weights by W , so that we have

W = σ2α2(V V > +D)−1V =
σ2α2D−1V

1 + V >D−1V
.
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When we choose λi = γi/α
2 for each i, we can write the limiting optimal weights as

W =Mk ·D−1V.

So, it follows from the formulas of Mk, D and V that

Wi =

(
α2

γimγi(−γi/α2)

)
·

 1

1 +
∑k

i=1

[
α2

γimγi (−γi/α2)
− 1
]
 .

For the sum of the coordinates, we have

1>W =

∑k
i=1

(
α2

γimγi (−γi/α2)

)
1 +

∑k
i=1

[
α2

γimγi (−γi/α2)
− 1
] =

∑k
i=1

(
α2

γimγi (−γi/α2)

)
1− k +

∑k
i=1

(
α2

γimγi (−γi/α2)

) ≥ 1.

In the special case where all γi are equal, i.e., γi = kγ, we have all Wi equal to

Wi =

α2

kγ·mkγ(−kγ/α2)

1− k + α2

γ·mkγ(−kγ/α2)

=
1

k + (1− k) · kγ/α2 ·mkγ(−kγ/α2)
.

In terms of the optimal risk function φ(γ) = φ(γ, α) = γmγ(−γ/α2) defined before, this
can also be written as the following optimal weight function

W(k, γ, α) =
1

k − (k − 1) · φ(kγ)/α2
.

The monotonicity and the limits of W can be checked directly.

F.9. Proof of Proposition 9

Recall the definition of the out-of-sample prediction error is E‖yt − x>t β̂‖2. So for any
estimator β̂, under the assumption Σ = I, we have

E‖yt − x>t β̂‖2 = E‖x>t (β̂ − β) + εt‖2 = E‖x>t (β̂ − β)‖2 + σ2

= E[(β̂ − β)>xt · x>t (β̂ − β)] + σ2

= E[(β̂ − β)>Σ(β̂ − β)] + σ2

= E‖β̂ − β‖2 + σ2.

When we consider the distributed estimator and take the limit, we obtain

Ok = σ2 +Mk,

and the formula for OE. For the inequality between OE and ARE, it is sufficient to notice
that ARE ≤ 1. Finally, the explicit formulas follow easily from previous results.
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F.10. Proof of Theorem 10

It is equivalent to show that the ARE is always greater than or equal to 1/(1 + α2). To do
this, we need to use Theorem 7. From the first property, we have ARE≥ ψ(k, γ, α2). Then,
since ψ is a decreasing function of k, it is lower bounded by its limit at infinity, which is
h(α2, γ). Finally, h(α2, γ) is an increasing function of γ, so it is lower bounded by the limit
at 0, which is 1/(1 +α2). When γ > 1, h(α2, γ) is a decreasing function of α2, so it is lower
bounded by the limit at infinity, which is 1− 1/γ2. The desired result follows.
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