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Abstract

Tree data are ubiquitous because they model a large variety of situations, e.g., the architec-
ture of plants, the secondary structure of RNA, or the hierarchy of XML files. Nevertheless,
the analysis of these non-Euclidean data is difficult per se. In this paper, we focus on the
subtree kernel that is a convolution kernel for tree data introduced by Vishwanathan and
Smola in the early 2000’s. More precisely, we investigate the influence of the weight function
from a theoretical perspective and in real data applications. We establish on a 2-classes
stochastic model that the performance of the subtree kernel is improved when the weight of
leaves vanishes, which motivates the definition of a new weight function, learned from the
data and not fixed by the user as usually done. To this end, we define a unified framework
for computing the subtree kernel from ordered or unordered trees, that is particularly suit-
able for tuning parameters. We show through eight real data classification problems the
great efficiency of our approach, in particular for small data sets, which also states the high
importance of the weight function. Finally, a visualization tool of the significant features
is derived.

Keywords: classification of tree data; kernel methods; subtree kernel; weight function;
tree compression

1. Introduction

1.1. Analysis of tree data

Tree data naturally appear in a wide range of scientific fields, from RNA secondary struc-
tures in biology (Le et al., 1989) to XML files (Costa et al., 2004) in computer science through
dendrimers (Mart́ın-Delgado et al., 2002) in chemistry and physics. Consequently, the sta-
tistical analysis of tree data is of great interest. Nevertheless, investigating these data is
difficult due to the intrinsic non-Euclidean nature of trees.

Several approaches have been considered in the literature to deal with this kind of
data: edit distances between unordered or ordered trees (see Bille, 2005, and the references
therein), coding processes for ordered trees (Shen et al., 2014), with a special focus on
conditioned Galton-Watson trees (Azäıs et al., 2019; Bharath et al., 2016). One can also
mention the approach developed in (Wang and Marron, 2007). In the present paper, we
focus on kernel methods, a complementary family of techniques that are well-adapted to
non-Euclidean data.
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Azäıs and Ingels

Kernel methods consists in mapping the original data into a (inner product) feature
space. Choosing the proper feature space and finding out the mapping might be very
difficult. Furthermore, the curse of dimensionality takes place and the feature space may
be extremely big, therefore impossible to use. Fortunately, a wide range of prediction
algorithms do not need to access that feature space, but only the inner product between
elements of the feature space. Building a function, called a kernel, that simulates an inner
product in an implicit feature space, frees us from constructing a mapping. Indeed, K :
X 2 → R is said to be a kernel function on X if, for any (x1, . . . , xn) ∈ X n, the Gram matrix
[K(xi, xj)]1≤i,j≤n is positive semidefinite. By virtue of Mercer’s theorem (1909), there exists

a (inner product) feature space Y and a mapping ϕ : X → Y such that, for any (x, y) ∈ X 2,
K(x, y) = 〈ϕ(x), ϕ(y)〉Y . This technique is known as the kernel trick. Algorithms that
can use kernels include Support Vector Machines (SVM), Principal Components Analyses
(PCA) and many others. We refer the reader to the books (Cristianini et al., 2000; Schölkopf
and Smola, 2001; Shawe-Taylor et al., 2004) and the references therein for more detailed
explanations of theory and applications of kernels.

To use kernel-based algorithms with tree data, one needs to design kernel functions
adapted to trees. Convolution kernels, introduced by Haussler (1999), measure the similarity
between two complex combinatorial objects based on the similarity of their substructures.
Based on this strategy, many authors have developed convolution kernels for trees, among
them the subset tree kernel (Collins and Duffy, 2002), the subtree kernel (Vishwanathan
and Smola, 2002) and the subpath kernel (Kimura et al., 2011). A recent state-of-the-art
on kernels for trees can be found in the thesis of Da San Martino (2009), as well as original
contributions on related topics. In this article, we focus on the subtree kernel as defined by
Vishwanathan and Smola (2002). In this introduction, we develop some concepts on trees
in Subsection 1.2. They are required to deal with the precise definition of the subtree kernel
in Subsection 1.3 as well as the aim of the paper presented in Subsection 1.4.

1.2. Unordered and ordered rooted trees

Rooted trees A rooted tree T is a connected graph with no cycle such that there exists
a unique vertex R(T ), called the root, which has no parent, and any vertex different from
the root has exactly one parent. The leaves L(T ) are all the vertices without children. The
height of a vertex v of a tree T can be recursively defined as H(v) = 0 if v is a leaf of T and

H(v) = 1 + max
w∈C(v)

H(w)

otherwise. The height H(T ) of the tree T is defined as the height of its root, i.e., H(T ) =
H(R(T )). The outdegree of T is the maximal branching factor that can be found in T , that
is

deg(T ) = max
v∈T

# C(v),

where C(v) denotes the set of children of v. For any vertex v of T , the subtree T [v] rooted
in v is the tree composed of v and all its descendants D(v). S(T ) denotes the set of subtrees
of T .

Unordered trees Rooted trees are said unordered if the order between the sibling vertices
of any vertex is not significant. The precise definition of unordered rooted trees, or simply
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unordered trees, is obtained from the following equivalence relation: two trees T1 and T2

are isomorphic (as unordered trees) if there exists a one-to-one correspondence Φ from the
set of vertices of T1 into the set of vertices of T2 such that, if w is a child of v in T1, then
Φ(w) is a child of Φ(v) in T2. The set of unordered trees is the quotient set of rooted trees
by this equivalence relation.

Ordered trees In ordered rooted trees, or simply ordered trees, the set of children of any
vertex is ordered. As before, ordered trees can be defined as a quotient set if one adds the
concept of order to the equivalence relation: two trees T1 and T2 are isomorphic (as ordered
trees) if there exists a one-to-one correspondence Φ from the set of vertices of T1 into the
set of vertices of T2 such that, if w is the rth child of v in T1, then Φ(w) is the rth child of
Φ(v) in T2.

In the whole paper, T ∗ denotes the set of ∗-trees with ∗ ∈ {ordered, unordered}.

1.3. Subtree kernel

The subtree kernel has been introduced by Vishwanathan and Smola (2002) as a convolution
kernel on trees for which the similarity between two trees is measured through the similarity
of their subtrees. A subtree kernel K on ∗-trees is defined as,

∀T1, T2 ∈ T ∗, K(T1, T2) =
∑
τ∈T ∗

wτ κ (Nτ (T1), Nτ (T2)) , (1)

where wτ is the weight associated to τ , Nτ (T ) counts the number of subtrees of T that are
isomorphic (as ∗-trees) to τ and κ is a kernel function on N, Z or R (see Schölkopf and
Smola, 2001, Section 2.3 for some classic examples). Assuming κ(0, n) = κ(n, 0) = 0, the
formula (1) of K becomes

K(T1, T2) =
∑

τ∈S(T1)∩S(T2)

wτ κ (Nτ (T1), Nτ (T2)) ,

making the sum finite. Indeed, all the subtrees τ ∈ T ∗ \ S(T1) ∩ S(T2) do not count
in the sum (1). In this paper, as for Vishwanathan and Smola (2002), we assume that
κ(n,m) = nm, then

K(T1, T2) =
∑

τ∈S(T1)∩S(T2)

wτ Nτ (T1)Nτ (T2). (2)

which is the subtree kernel as introduced by Vishwanathan and Smola (2002).

The weight function τ 7→ wτ is the only parameter to be tuned. In the literature,
the weight is always assumed to be a function of a quantity measuring the “size” of τ ,
in particular its height H(τ). Then wτ is taken as an exponential decay of this quantity,
wτ = λH(τ) for some λ ∈ [0, 1] (Aiolli et al., 2006; Collins and Duffy, 2002; Da San Martino,
2009; Kimura et al., 2011; Vishwanathan and Smola, 2002). This choice can be justified in
the following manner. If a subtree τ is counted in the kernel, then all its subtrees are also
counted. Then an exponential decay counterbalances the exponential growth of the number
of subtrees.
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In the literature, two algorithms have been proposed to compute the subtree kernel
for ordered trees. The approach of (Vishwanathan and Smola, 2002) is based on string
representations of trees, while the authors of (Aiolli et al., 2006; Da San Martino, 2009)
extensively use DAG reduction of tree data, an algorithm that achieves lossly compression
of trees. To the best of our knowledge, the case of unordered trees has only been considered
through the arbitrary choice of a sibling order.

1.4. Aim of the paper

The aim of the present paper is threefold:

1. We investigate the theoretical properties of the subtree kernel on a 2-classes model of
random trees in Section 2. More precisely, we provide a lower-bound for the contrast
of the kernel in Proposition 2. Indeed, the higher the contrast, the less data are
required to achieve a given performance in prediction (see Balcan et al., 2008, for
general similarity functions and Corollary 3 for the subtree kernel). We exploit this
result to show in Subsection 2.4 that the contrast of the subtree kernel is improved if
the weight of leaves vanishes. The relevance of the model is discussed in Remark 1.

2. We rely on Aiolli et al. (2006); Da San Martino (2009) on ordered trees to develop
in Section 3 a unified framework based on DAG reduction for computing the sub-
tree kernel from ordered or unordered trees, with or without labels on their vertices.
Subsection 3.1 is devoted to DAG reduction of unordered then ordered trees. DAG
reduction of a forest is introduced in Subsection 3.2. Then, the subtree kernel is
computed from the annotated DAG reduction of the data set is Subsection 3.3. We
notice in Remark 13 that DAG reduction of the data set is costly but makes possible
super-fast repeated computations of the kernel, which is particularly adapted for tun-
ing parameters. This is the main advantage of the DAG computation of the subtree
kernel compared to the algorithm based on string representations (Vishwanathan and
Smola, 2002). Our method allows the implementation of any weighting function, while
the recursive computation of the subtree kernel proposed by (Da San Martino, 2009,
Chapter 6) also uses DAG reduction of tree data but makes an extensive use of the ex-
ponential form of the weight (combining equations (3.12) and (6.2) from Da San Mar-
tino (2009)). We also investigate the theoretical complexities of the different steps of
the DAG computation for both ordered and unordered trees (see Proposition 7 and
Remark 13). This kind of question has been tackled in the literature only for ordered
trees and from a numerical perspective (Aiolli et al., 2006, Section 4).

3. As aforementioned, we show in the context of a stochastic model that the performance
of the subtree kernel is improved when the weight of leaves is 0 (see Section 2). Relying
on this (see also Remark 5 on the possible generalization of this result), we define in
Section 4 a new weight function, called discriminance, that is not a function of the size
of the argument as in the literature, but is learned from the data. The learning step
of the discriminance weight function strongly relies on the DAG computation of the
subtree kernel presented above because it allows the enumeration of all the subtrees
composing the data set without redundancies. We explore in Section 5 the relevance of
this new weighting scheme across several data sets, notably on the difficult prediction
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problem of the language of a Wikipedia article from its structure in Subsection 5.2.
Beyond very good classification results, we show that the methodology developed in
the paper can be used to extract the significant features of the problem and provide
a visualization at a glance of the data set. In addition, we remark that the average
discriminance weight decreases exponentially as a function of the height (except for
leaves). Thus, the discriminance weight can be interpreted as the second order of the
exponential weight introduced in the literature. Application to real-world data sets
in Subsections 5.3, 5.4 and 5.5 shows that the discriminance weight is particularly
relevant for small databases when the classification problem is rather difficult, as
depicted in Fig. 18.

Finally, concluding remarks are presented in Section 6. Technical proofs have been
deferred into Appendices A and B.

2. Theoretical study

In this section, we define a stochastic model of 2-classes tree data. From this ideal data set,
we prove the efficiency of the subtree kernel and derive the sufficient size of the training
data set to get a classifier with a given prediction error. We also state on this simple model
that the weight of leaves should always be 0. We emphasize that this study is valid for both
ordered and unordered trees.

2.1. Two trees as different as possible

Our goal is to build a 2-classes data set of random trees. To this end, we first define two
typical trees T0 and T1 that are as different as possible in terms of subtree kernel.

Let T0 and T1 be two trees that fulfill the following conditions:

1. ∀ i ∈ {0, 1}, ∀u, v ∈ Ti \ L(Ti), if u 6= v then Ti[u] 6= Ti[v], i.e, two subtrees of Ti are
not isomorphic (except leaves).

2. ∀u ∈ T0\L(T0), ∀ v ∈ T1\L(T1), T0[u] 6= T1[v], i.e., any subtree of T0 is not isomorphic
to a subtree of T1 (except leaves).

These two assumptions ensure that the trees T0 and T1 are as different as possible.
Indeed, it is easy to see that

K(T0, T1) = w•#L(T0)#L(T1),

which is the minimal value of the kernel and where ω• is the weight of leaves. We refer to
Fig. 1 for an example of trees that satisfy these conditions.

Figure 1: Two trees T0 and T1 that fulfill conditions 1 and 2.
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Trees of class i will be obtained as random editions of Ti. In the sequel, Ti(v 7→ τ)
denotes the tree Ti in which the subtree rooted at u has been replaced by τ . These random
edits will tend to make trees of class 0 closer to trees of class 1. To this end, we introduce
the following additional assumption. Let (τh) a sequence of trees such that H(τh) = h.

3. Let u ∈ T0 and v ∈ T1. We consider the edited trees T ′0 = T0(u 7→ τH(u)) and
T ′1 = T1(v 7→ τH(v)). Then, ∀u′ ∈ T ′0 \

(
τH(u) ∪ L(T ′0)

)
, ∀ v′ ∈ T ′1 \

(
τH(v) ∪ L(T ′1)

)
,

T ′0[u′] 6= T ′1[v′].

In other words, if one replaces subtrees of T0 and T1 by subtrees of the same height, then
any subtree of T0 is not isomorphic to a subtree of T1 (except the new subtrees and leaves).
This means that the similarity between random edits of T0 and T1 will come only from the
new subtrees and not from collateral modifications. We refer to Fig. 2 for an example of
trees that satisfy these conditions.

Figure 2: Two trees T0 and T1 that fulfill conditions 1, 2 and 3.

2.2. A stochastic model of 2-classes tree data

From now on, we assume that, for any h > 0, τh is not a subtree of T0 nor T1. For the sake
of simplicity, T0 and T1 have the same height H. In addition, if u ∈ Ti then T ui denotes
Ti(u 7→ τH(u)).

The stochastic model of 2-classes tree data that we consider is defined from the binomial
distribution Pρ = B(H, ρ/H) on support {0, . . . ,H} with mean P ρ = ρ. The parameter
ρ ∈ [0, H] is fixed. In the data set, class i is composed of random trees T ui , where the vertex
u has been picked uniformly at random among vertices of height h in Ti, where h follows Pρ.
Furthermore, the considered training data set is well-balanced in the sense that it contains
the same number of data of each class.

Intuitively, when ρ increases, the trees are more degraded and thus two trees of different
class are closer. ρ somehow measures the similarity between the two classes. In other words,
the larger ρ, the more difficult is the supervised classification problem.

Remark 1 The structure of a markup document such as an HTML page can be described by a
tree (see Subsection 5.1 and Fig. 6 for more details). In this context, the tree Ti, i ∈ {0, 1},
can be seen as a model of the structure of a webpage template. By assumption, the two
templates of interest are as different as possible. However, they are completed in a similar
manner, for example to present the same content in two different layouts. Edition of the
templates is modeled by random edit operations. They tend to bring trees from different
templates closer.
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2.3. Theoretical guarantees on the subtree kernel

Balcan et al. (2008) have introduced a theory that describes the effectiveness of a given
kernel in terms of similarity-based properties. A similarity function over X is a pairwise
function K : X 2 → [−1, 1] (Balcan et al., 2008, Definition 1). It is said (ε, γ)-strongly good
(Balcan et al., 2008, Definition 4) if, with probability at most 1− ε,

Ex′,y[K(x, x′)−K(x, y)] ≥ γ,

where label(x) = label(x′) 6= label(y). From this definition, the authors derive the following
simple classifier: the class of a new data x is predicted by 1 if x is more similar on average to
points in class 1 than to points in class 0, and 0 otherwise. In addition, they prove (Balcan
et al., 2008, Theorem 1) that a well-balanced training data set of size 32/γ2 log(2/δ) is
sufficient so that, with probability at least 1− δ, the above algorithm applied to an (ε, γ)-
strongly good similarity function produces a classifier with error at most ε+ δ.

We aim to prove comparable results for the subtree kernel that is not a similarity
function. To this end, we focus for i ∈ {0, 1} on

∆i
x = Eu,v[K(T xi , T

u
i )−K(T xi , T

v
1−i)]. (3)

We emphasize that the two following results (Proposition 2 and Corollary 3) assume
that the weight of leaves ω• is 0. For the sake of readability, we introduce the following
notations, for any 0 ≤ h ≤ H and i ∈ {0, 1},

Ki,h = max
{u∈Ti :H(u)=h}

K(Ti[u], Ti[u]),

Ci,h =
K(Ti, Ti)−Ki,h

#L(Ti)
,

Gρ(h) = 1−
H∑

k=h+1

Pρ(k).

The following results are expressed in terms of a parameter 0 ≤ h < H. The statement
is then true with probability Gρ(h). This is equivalent to state a result that is true with
probability 1− ε, for any ε > 0.

Proposition 2 If wTi > 0 then ∆i
x = 0 if and only if x = R(Ti). In addition, if ρ > H/2,

for any 0 ≤ h < H, with probability Gρ(h), one has

∆i
x ≥ Pρ(0)Ci,h. (4)

Proof The proof lies in Appendix A.

This result shows that the two classes can be well-separated by the subtree kernel.
The only data that can not be separated are the trees completely edited. In addition, the
lower-bound in (4) is of order H exp(−ρ) (up to a multiplicative constant).
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Corollary 3 For any 0 ≤ h ≤ H, a well-balanced training data set of size

2 maxiK(Ti, Ti)
2

miniC2
i,h

exp(2ρ)

H2
log

(
2

δ

)
is sufficient so that, with probability at least 1−δ, the aforementioned classification algorithm
produces a classifier with error at most 1−Gρ(h) + δ.

Proof The proof is based on the demonstration of (Balcan et al., 2008, Theorem 1). How-
ever, in our setting, the kernel K is bounded by maxiK(Ti, Ti) and not by 1. Consequently,
by Hoeffding bounds, the sufficient size of the training data set if of order

2 log

(
2

δ

)
maxiK(Ti, Ti)

2

γ2
, (5)

where γ can be read in Proposition 2, γ = Pρ(0)Ci,h ≥ Pρ(0) miniCi,h. The coefficient
2 lies because we consider here the total size of the data set and not only the number of
examples of each class. Together with Pρ(0) ∼ H exp(−ρ), we obtain the expected result.

2.4. Weight of leaves

Here K+ is the subtree kernel obtained from the weights used in the computation of K
together with a positive weight on leaves, w• > 0. We aim to show that K+ separates the
two classes less than K. ∆+,i

x denotes the conditional expectation (3) computed from K+.

Proposition 4 For any x ∈ Ti,
∆+,i
x = ∆i

x + w•#L(Ti[x])Di,1−i,

where Di,1−i = Eu,v[#L(T ui )−#L(T v1−i)].

Proof We have the following decomposition, for any trees T1 and T2,

K+(T1, T2) = K(T1, T2) + w•#L(T1)#L(T2),

in light of the formula (2) of K. Thus, with (3),

∆+,i
x = Eu,v

[
K(T xi , T

u
i ) + w•#L(T xi )#L(T ui )−K(T xi , T

v
1−i)− w•#L(T xi )#L(T v1−i)

]
= ∆i

x + Eu,v [w•#L(T xi )(#L(T ui )−#L(T vi ))] ,

which ends the proof.

The sufficient number of data provided in Corollary 3 is obtained (5) through the square
ratio of maxiK(Ti, Ti) over mini ∆i

x. First, it should be noticed that K+(Ti, Ti) > K(Ti, Ti).
In addition, by virtue of Proposition 4, either ∆+,0

x ≤ ∆0
x or ∆+,1

x ≤ ∆1
x (and the inequal-

ity is strict if trees of classes 0 and 1 have not the same number of leaves on average).
Consequently,

min
i

∆+,i
x ≤ min

i
∆i
x,

and thus the sufficient number of data mentioned above is minimum for ω• = 0.
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Remark 5 The results stated in this section establish that the subtree kernel is more effi-
cient when the weight of leaves is 0. It should be placed in perspective with the exponential
weighting scheme of the literature (Aiolli et al., 2006; Collins and Duffy, 2002; Da San Mar-
tino, 2009; Kimura et al., 2011; Vishwanathan and Smola, 2002) for which the weight of
leaves is maximal. We conjecture that the accuracy of the subtree kernel should be in general
improved by imposing a null weight to any subtree present in two different classes. This can
not be established from the model for which the only such subtrees are the leaves. Relying
on this, one of the objectives of the sequel of the paper is to develop a learning method for
the weight function that improves in practice the classification results (see Sections 4 and
5).

3. DAG computation of the subtree kernel

In this section, we define DAG reduction, an algorithm that achieves both compression of
data and enumeration of all subtrees of a tree without redundancies. DAG reduction of a
tree is presented in Subsection 3.1, while Subsection 3.2 is devoted to the compression of a
forest. In Subsection 3.3, we state that the subtree kernel can be computed from the DAG
reduction of data set of trees.

3.1. DAG reduction of a tree

Trees can present internal repetitions in their structure. Eliminating these structural redun-
dancies defines a reduction of the initial data that can result in a Directed Acyclic Graph
(DAG). In particular, beginning with Sutherland (1963), DAG representations of trees are
also much used in computer graphics where the process of condensing a tree into a graph is
called object instancing (Hart and DeFanti, 1991). DAG reduction can be computed upon
unordered or ordered trees. We begin with the case of unordered trees.

Unordered trees We consider the equivalence relation “existence of an unordered tree
isomorphism” on the set of the subtrees of a tree T : Q(T ) = (V,E) denotes the quotient
graph obtained from T using this equivalence relation. V is the set of equivalence classes
on the subtrees of T , while E is a set of pairs of equivalence classes (C1, C2) such that
R(C2) ∈ C(R(C1)) up to an isomorphism. The graph Q(T ) is a DAG (Godin and Ferraro,
2010, Proposition 1) that is a connected directed graph without path from any vertex v to
itself. Let (C1, C2) be an edge of the DAG Q(T ). We define L(C1, C2) as the number of
occurrences of a tree of C2 just below the root of any tree of C1. The tree reduction of T is
defined as the quotient graph Q(T ) augmented with labels L(C1, C2) on its edges. We refer
to Fig. 3a for an example of DAG reduction of an unordered tree. Two different algorithms
that allow the computation of the DAG reduction of an unordered tree but that share the
same time-complexity in O(#T 2 deg(T ) log(deg(T ))) are presented by Godin and Ferraro
(2010).

Ordered trees In the case of ordered trees, it is required to preserve the order of the
children in the DAG reduction. As for unordered trees, we consider the quotient graph
Q(T ) = (V,E) obtained from T using the equivalence relation between ordered trees. V is
the set of equivalence classes on the subtrees of T . Here, the edges of the graph are ordered
as follows. (C1, C2) is the rth edge between C1 and C2 if R(C2) is the rth child of R(C1) up
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to an isomorphism. We obtain a DAG with ordered edges that compresses the initial tree
T . An example of DAG reduction of an ordered tree is presented in Fig. 3b. Polynomial
algorithms have been developed to allow the computation of a DAG, with complexities
ranging in O(#T 2) to O(#T ) for ordered trees (Downey et al., 1980).

2

(a) Unordered (b) Ordered

Figure 3: A tree (left) and its DAG reduction (right) seen (a) as an unordered tree and (b)
as an ordered tree. In each figure, roots of isomorphic subtrees are displayed with the same
color, which is reproduced on the corresponding vertex of the DAG. Note that the subtree
on the left is colored differently in the two cases, whether the order of its children is relevant
or not. If no label is specified on an edge (in the unordered case), it is equal to 1.

In this paper, R∗(T ) denotes the DAG reduction of T as ∗-tree, ∗ ∈ {ordered,unordered}.
It is crucial to notice that the function R∗ is a one-to-one correspondence, which means that
DAG reduction is a lossless compression algorithm. In other words, T can be reconstructed
from R∗(T ) and (R∗)−1 stands for the inverse function.

The DAG structure inherits of some properties of trees. For a vertex ν in a DAG D,
we will denote by C(ν) (P(ν), respectively) the set of children (parents, respectively) of ν.
H(ν) and deg(ν) are inherited as well. Similarly to trees, we denote by D[ν] the subDAG
rooted in ν composed of ν and all its descendants in D.

3.2. DAG reduction of a forest

Let TFT be the super-tree obtained from a forest of ∗-trees FT = (T1, . . . , TN ) by placing
in this order each Ti as a subtree of an artificial root. We define the DAG reduction of the
forest FT as R∗(FT ) = R∗(TFT ).

However, if the forest FT is stocked as a forest of compressed DAGs, that is, FD =
(D1, . . . , DN ) (with Di = R∗(Ti)), it would be superfluous to decompress all trees before
reducing the super-tree. So, one would rather compute R∗(FT ) directly from FD. From now
on, we consider only forests of DAGs that we will denote unambiguously F . In this context,
R∗(F) stands for the DAG reduction of the forest of trees ((R∗)−1(D1), . . . , (R∗)−1(DN )).
We define the degree of the forest as deg(F) = maxNi=1 deg(Di).

Computing R∗(F) from (D1, . . . , DN ) is in two steps: (i) we construct a super-DAG DF
from F = (D1, . . . , DN ) by placing in this order each Di as a subDAG of an artificial root
(with time-complexity O(deg(F)

∑N
i=1 #Di)), and (ii) we recompress DF using Algorithm 1.

Fig. 4 illustrates step by step Algorithm 1 on a forest of two trees seen as unordered then
ordered trees.
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Algorithm 1: DagRecompression

Data: DF the superdag obtained from a forest of DAG reductions of ∗-trees,
∗ ∈ {ordered, unordered}

Result: R∗(F)
1 Construct, within one exploration of DF , the mapping h 7→ DFh where DFh is the

set of vertices of DF at height h
2 for h from 0 to H(DF )− 1 do
3 Let σ(h) =

{
f−1({S}) : S ∈ Im f,#f−1({S}) ≥ 2

}
be the set of vertices to be

merged at height h, where f : ν ∈ DFh 7→ C(ν)
4 if σ(h) = ∅ then
5 Exit algorithm;
6 else
7 for M in σ(h) do
8 Choose one element νM in M to remain in DF
9 Denote by δM the other elements of M

10 for ν in DF such that H(ν) > h do
11 for µ in C(ν) such that ∃M ∈ σ(h), δM 3 µ do
12 Delete µ from C(ν)
13 Add νM in C(ν)

14 for M ∈ σ(h) do
15 Delete δM from DF

16 return DF

It should be noticed that Im f (that appears line 3) depends on ∗. Indeed, if ∗ = ordered, Im f is the set of
all lists of children; otherwise, Im f is the set of all multisets of children.

Proposition 6 Algorithm 1 correctly computes R∗(F).

Proof Starting from the leaves, we examine all vertices of same height in DF . Those with
same children (with respect to ∗) are merged into a single vertex. The algorithm stops when
at some height h, we cannot find any vertices to be merged. Vertices that are merged in the
algorithm represents isomorphic subtrees, so it suffices to prove that the algorithm stops at
the right time. Let h be the first height for which σ(h) = ∅.

Suppose by contradiction that some vertices were to be merged at some height h′ > h.
They represent isomorphic subtrees, so that their respective children should also be merged
together, and all of their descendants by induction. As any vertex of height h′′ + 1 admits
at least one child of height h′′, σ(h) would not be empty, which is absurd.

Proposition 7 Algorithm 1 has time-complexity:

1. O(# DF deg(F)(log deg(F) +H(DF ))) for unordered trees;

2. O(# DF deg(F)H(DF )) for ordered trees.

Proof The proof lies in Appendix B.
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Remark 8 One might also want to treat online data, but without recompressing the whole
data set when adding a single entry in the forest. Let R∗(F) be the already recompressed
forest and D a new DAG to be introduced in the data. It suffices to place D has the rightmost
child of the artificial root of R∗(F) to get DF∪D, then run Algorithm 1 to obtain R∗(F∪D).

3.3. DAG annotation and kernel computation

We consider a data set composed of two parts: the train data set Xtrain = (T1, . . . , Tn) and
the data set to predict Xpred = (Tn+1, . . . , TN ). In the train data set, the classes of the data
are assumed to be known. Our aim is to compute two Gram matrices G = [K(Ti, Tj)]i,j ,
where:

• (i, j) ∈ Xtrain ×Xtrain for the training matrix Gtrain;

• (i, j) ∈ Xpred ×Xtrain for the prediction matrix Gpred.

SVM algorithms will use Gtrain to learn their classifying rule, and Gpred to make predic-
tions (Cristianini et al., 2000, Section 6.1). Other algorithms, such as kernel PCA, would
also require to compute a Gram matrix before processing (Schölkopf and Smola, 2001, Sec-
tion 14.2). We denote by ∆ = R∗(Xtrain∪Xpred) the DAG reduction of the data set and, for
any 1 ≤ i ≤ N , Di = R∗(Ti). DAG computation of the subtree kernel requires to annotate
the DAG with different pieces of information.

Origins In order to compute the subtree kernel, it will be necessary to retrieve from the
vertices of ∆ their origin in the data set, that is, from which tree they come from. For any
vertex ν in ∆ \ R(∆), the origin of ν is defined as

o(ν) =
{
i ∈ {1, . . . , n, n+ 1, . . . , N} : Di 3 ν

}
.

Assuming that (D1, . . . , DN ) are children of the root of ∆ in this order (which is achieved
if ∆ had been constructed following the ideas developed in Subsection 3.2) leads to the
following proposition.

Proposition 9 Origins can be calculated using the recursive formula,

∀ ν ∈ ∆ \ R(∆), o(ν) =

 {i} if ν is the ith child of R(∆),⋃
p∈P(ν)

o(p) otherwise.

Proof Using the assumption, origins are correct for the children of R(∆). If Di 3 ν for
some i ∈ {1, . . . , N} and ν ∈ ∆, then Di ⊇ D(ν). The statement follows by induction.
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Frequency vectors Remember that in (2) Nτ (T ) counts the number of subtrees of a
tree T that are ∗-isomorphic to the tree τ . To compute the kernel, we need to know this
value, and we claim that we can compute it using only ∆. We associate to each vertex
ν ∈ ∆ \ R(∆) a frequency vector ϕν where, for any 1 ≤ i ≤ N , ϕν(i) = N(R∗)−1(∆[ν])(Ti).

Proposition 10 Frequency vectors can be calculated using the recursive formula,

∀ ν ∈ ∆ \ R(∆), ϕν =

(1{i∈ o(ν)})i∈{1,...,N} if ν ∈ C(R(∆)),∑
p∈P(ν)

L(p, ν)ϕp otherwise,

where either L(p, ν) = 1 if ∗ = ordered, or L(p, v) is the label on the edge between p and ν
in ∆ if ∗ = unordered.

Proof Let ν be in ∆\R(∆). If ν ∈ C(R(∆)), then ν represents the root of a tree Ti (possi-
bly several trees if there are repetitions in the data set), and therefore ϕν(i) = NTi(Ti) = 1.
Otherwise, suppose by induction that ϕp(i) is correct for all p ∈ P(ν), and any i. We fix
p ∈ P(ν). ν appears L(p, ν) times as a child of p, so if (R∗)−1(∆[p]) appears ϕp(i) times
in Ti, then the number of occurrences of (R∗)−1(∆[ν]) in Ti as a child of (R∗)−1(∆[p]) is
L(p, ν)ϕp(i). Summing over all p ∈ P(ν) leads ϕν(i) to be correct as well.

DAG weighting The last thing that we lack to compute the kernel is the weight function.
Remember that it is defined for trees as a function w : T → R+. As we only need to know
the weights of the subtrees associated to vertices of ∆, we define the weight function for
DAG as, for any ν ∈ ∆, ων = w(R∗)−1(∆[ν]).

Remark 11 In light of Propositions 9 and 10, it should be noted that both o and ϕ can be
calculated in one exploration of ∆. By definition, this is also true for ω.

DAG computation of the subtree kernel We introduce the matching subtrees func-
tion M as

M : {1, . . . , N}2 → 2∆

(i, j) 7→ {ν ∈ ∆ : {i, j} ⊆ o(ν)}

where 2∆ is the powerset of the vertices of ∆. Note that M is symmetric. This leads us to
the following proposition.

Proposition 12 For any Ti, Tj ∈ Xtrain ∪ Xpred, we have

K(Ti, Tj) =
∑

ν∈M(i,j)

ων ϕν(i)ϕν(j).

Proof By construction, it suffices to show that R∗(S(Ti) ∩ S(Tj)) = M(i, j). Let
τ ∈ S(Ti) ∩ S(Tj). Then R∗(τ) ∈ R∗(Ti) and R∗(τ) ∈ R∗(Tj). Necessarily, R∗(τ) ∈ ∆
and {i, j} ⊆ o(R∗(τ)). So R∗(τ) ∈ M(i, j). Reciprocally, let ν ∈ M(i, j). We denote
τ = (R∗)−1(ν). As {i, j} ⊆ o(ν), then τ ∈ S(Ti) ∩ S(Tj).
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Remark 13 M can be created in O(N2#∆) within one exploration of ∆ and allows after-
ward computations of the subtree kernel K(Ti, Tj) in O(#M(i, j)) = O(min(#Di,#Dj)),
which is more efficient than the O(#Ti + #Tj) algorithm proposed by Vishwanathan and
Smola (2002) (the time-complexity is announced by Kimura et al. (2011, Section 1)). How-
ever, since the whole process through Algorithm 1 is costly, the global method that we propose
in this paper is not faster than existing algorithms. Nonetheless, our algorithm is partic-
ularly adapted to repeated computations from the same data, e.g., for tuning parameters.
Indeed, once M and ∆ have been created, they can be stored and are ready to use. An
illustration of this property is provided from experimental data in Fig. 19.

Remark 14 The DAG computation of the subtree kernel investigated in this section relies
on Aiolli et al. (2006); Da San Martino (2009). Our work and the aforementioned papers are
different and complementary. First, our framework is valid for both ordered and unordered
trees, while these papers focus only on ordered trees. In addition, the method developed by
Aiolli et al. (2006); Da San Martino (2009) is only adapted to exponential weights (see
equations (3.12) and (6.2) from Da San Martino (2009)). Thus, even if this algorithm is
also based on DAG reduction of trees, it is less general than ours since the weight function
is not constrained (see in particular Section 4 where the weight function is learned from the
data). Finally, in Aiolli et al. (2006, Section 4), the time-complexities are studied only from
a numerical point of view, while we state theoretical results.

4. Discriminance weight function

For a given probability level and a given classification error, and under the stochastic model
of Subsection 2.2, we state in Subsection 2.4 that the sufficient size of the training data
set is minimum when the weight of leaves is 0. In other words, counting the leaves, which
are the only subtrees that appear in both classes, does not provide a relevant information
to the classification problem associated to this model. As mentioned in Remark 5, we
conjecture that, in a more general model, this result would be true for any subtree present
in both classes. In this section, we propose to rely on this idea by defining a new weight
function, learned from the data and called discriminance weight that assigns a large weight
to subtrees, that help to discriminate the classes, i.e., that are present or absent in exactly
one class, and a low weight otherwise.

The training data set is divided into two parts: Xweight = (T1, . . . , Tm) to learn the
weight function, and Xclass = (Tm+1, . . . , Tn) to estimate the Gram matrix. For the sake of
readability, ∆ denotes the DAG reduction of the whole data set, including Xweight, Xclass

and Xpred. In addition, we assume that the data are divided into K classes numbered from
1 to K.

For any vertex ν ∈ ∆ \ R(∆), we define the vector ρν of length K as,

∀ 1 ≤ k ≤ K, ρν(k) =
1

#Ck

∑
Ti∈Ck

1{i∈ o(ν)},

where (Ck)1≤k≤K forms a partition of Xweight such that Ti ∈ Ck if and only if Ti is in
class k. In other words, ρν(k) is the proportion of data in class k that contain the subtree
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Azäıs and Ingels

(R∗)−1(∆[ν]). Therefore, ρν belongs to the K-dimensional hypercube. It should be noticed
that ρν is a vector of zeros as soon as (R∗)−1(∆[ν]) is not a subtree of a tree of Xweight.

For any 1 ≤ k ≤ K, let ek (ek, respectively) be the vector of zeros with a unique 1 in
position k (vector of ones with a unique 0 in position k, respectively). If ρν = ek, the vertex
ν corresponds to the subtree (R∗)−1(∆[ν]), which only appears in class k: ν is thus a good
discriminator of this class. Otherwise, if ρν = ek, the vertex ν appears in all the classes
except class k and is still a good discriminator of the class. For any vertex ν, δν measures
the distance between ρν and its nearest point of interest ek or ek,

δν =
K

min
k=1

min(|ρν − ek|, |ρν − ek|).

It should be noted that the maximum value of δν depends on the number of classes and
can be larger than 1. If δν is small, then ρν is close to a point of interest. Consequently,
since ν tends to discriminate a class, its weight should be large. In light of this remark, the
discriminance weight of a vertex ν is defined as ων = f(1− δν), where f : (−∞, 1]→ [0, 1]
is increasing with f(x) = 0 for x ≤ 0 and f(1) = 1. Fig. 5 illustrates some usual choices for
f . In the sequel, we chose ων = f∗(1− δν) with the smoothstep function f∗ : x 7→ 3x2− 2x3.
We borrowed the smoothstep function from computer graphics (Ebert and Musgrave, 2003,
p. 30), where it is mostly used to have smooth transition in a threshold function.

Figure 5: The discriminance weight is
defined by ωτ = f(1 − δτ ) where f :
(−∞, 1]→ [0, 1] is increasing with f(0) =
0 and f(1) = 1. This figure presents some
usual choices for f .

0

1

1ε

identity
smoothstep
smoothstep ◦ smoothstep
threshold

Since leaves appear in all the trees of the training data set, ρ• is a vector of ones and thus
δ• = 1, which implies ω• = 0. This is consistent with the result developed in Subsection 2.4
on the stochastic model. As aforementioned, the discriminance weight is inspired from the
theoretical results established in Subsection 2.4 and the conjecture presented in Remark 5.
The relevance in practice of this weight function will be investigated in the sequel of the
paper through two applications.

Remark 15 The discriminance weight is defined from the proportion of data in each class
that contain a given subtree, for all the subtrees appearing in the data set. It is thus required
to enumerate all these subtrees. This is done, without redundancy, via the DAG reduction
∆ of the data set defined and investigated in Section 3. As the m trees of the training data
set dedicated to learning the discriminance weight are partitioned into K classes, computing
one ρν vector is of complexity O(m). Therefore, computing all of them is in O(#∆m). In
addition, computing all values of δν is in O(#∆K2), as there are 2K Euclidean distances to
be computed for each vector of length K. All gathered, computing the discriminance weight
function has an overall complexity of O(#∆(N +K2)).

16



The Weight Function in the Subtree Kernel is Decisive

5. Real data analysis

This section is dedicated to the application of the methodology developed in the paper to
eight real data sets with various characteristics in order to show its strengths and weak-
nesses. The related questions are supervised classification problems. As mentioned in Sub-
section 3.3, our approach consists in computing the Gram matrices of the subtree kernel via
DAG reduction and with a new weight function called the discriminance (see Section 4). In
particular, we aim to compare the usual exponential weight of the literature and the latter
in terms of prediction capability. In all the sequel, the Gram matrices are used as inputs
to SVM algorithms in order to tackle these classification problems. We emphasize that this
approach is not restricted to SVM but can be applied with other prediction algorithms.

5.1. Preliminaries

In this subsection, we introduce (i) the protocol that we have followed to investigate several
data sets, together with a description of (ii) the classification metrics that we use to assess
the quality of our results, (iii) an extension of DAG reduction to take into account discrete
labels on vertices of trees, and (iv) the standard method to convert a markup document
into a tree. It should be already noted that all the data sets presented in the sequel are
composed of trees (that can be ordered or unordered, labeled or not) together with their
class.

Protocol For each data set, we have followed the same presentation and procedure. First,
a description of the data is made notably via histograms describing the size, outdegree,
height and class repartition of trees. Given the dispersion of some of these quantities, we
have binned together the values that does not fit inside the interval [Q1 − 1.5 · IQR;Q3 +
1.5 · IQR] where IQR = Q3 −Q1 is the interquartile range. Therefore, the flattened-large
bins that appears in some histograms represents those outliers bins. The objective of this
part is to show the wide range of data sets considered in the paper.

In a second time, we evaluated the performance of the subtree kernel on a classification
task via two methods: (i) for exponential weights τ 7→ λH(τ) we randomly split the data
in thirds, two for training a SVM, and one for prediction; (ii) for discriminance weight, we
also randomly split the data in thirds, one for training the discriminance weight, one for
training a SVM, and the last one for prediction. We repeated 50 times this random split for
discriminance, and for different values of λ. The classification results are assessed by some
metrics defined in the upcoming paragraph, and gathered in boxplots. The first application
example, presented in Subsection 5.2, is slightly different since (i) we have worked with 50
distinct databases, and (ii) the results have been completed with a deeper analysis of the
discriminance weights, in relation with the usual weighting scheme of the literature.

Classification metrics To quantify the quality of a prediction, we use four standard
metrics that are accuracy, precision, recall and F-score. For a class k, one can have true
positives TPk, false positives FPk, true negatives TNk and false negatives FNk. In a binary
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Azäıs and Ingels

classification problem, those metrics are defined as,

Accuracy(k) =
TPk + TNk

TPk + FPk + FNk + TNk
,

Precision(k) =
TPk

TPk + FPk
,

Recall(k) =
TPk

TPk + FNk
,

F-score(k) =
2 Precision(k) Recall(k)

Precision(k) + Recall(k)
.

For a problem with K > 2 classes, we adopt the macro-average approach, that is,

Metric =
1

K

K∑
k=1

Metric(k).

We used the implementation available in the scikit-learn Python library, via the two
functions accuracy_score and precision_recall_fscore_support.

DAG reduction with labels In the sequel, some of the presented data sets are composed
of labeled trees, that are trees which each vertex possesses a label. Labels are supposed to
take only a finite number of different values. Two labeled ∗-trees are said isomorphic if (i)
they are ∗-isomorphic, and (ii) the underlying one-to-one correspondence mapping vertices
of T1 into vertices of T2 is such that ∀ v ∈ T1, v and Φ(v) have the same label. The set
of labeled ∗-trees is the quotient set of rooted trees by this equivalence relation. It should
be noticed that the subtree kernel as well as DAG reduction are defined through only the
concept of isomorphic subtrees. As a consequence, they can be straightforwardly extended
to labeled ∗-trees. This formalization is an extension of the definition introduced by the
authors of Aiolli et al. (2006); Da San Martino (2009), as they consider only ordered labeled
trees, whereas we can consider unordered labeled trees as well.

From a markup document to a tree Some of the data sets come from markup doc-
uments (XML or HTML files). From such a document, one can extract a tree structure,
identifying each couple of opening and closing tags as a vertex, which children are the inner
tags. It should be noticed that, during this transcription, semantic data is forgotten: the
tree only describes the topology of the document. Fig. 6 illustrates the conversion from
HTML to tree on a small example. Such a tree is ordered but can be considered as unordered.
Finally, a tag can also be chosen as a label for the corresponding vertex in the tree.

5.2. Prediction of the language of a Wikipedia article from its topology

Classification problem and results Wikipedia pages are encoded in HTML and, as
aforementioned, can therefore be converted into trees. In this context, we are interested
in the following question: does the (ordered or unordered) topology of a Wikipedia article
(as an HTML page) contain the information of the language in which it has been written?
This can be formulated as a supervised classification problem: given a training data set
composed of the tree structures of Wikipedia articles labeled with their language, is a
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<html>
<body>

<h1>
Lorem ipsum dolor sit amet, consectetur adipiscing elit.

</h1>
<p>

Sed non risus.
</p>
<ul>

<li>
Suspendisse lectus tortor, dignissim sit amet,
adipiscing nec, ultricies sed, dolor.

</li>
<li>

Cras elementum ultrices diam.
<ol>

<li>
Maecenas ligula massa, varius a,
semper congue, euismod non, mi.

</li>
<li>

Proin porttitor, orci nec nonummy
molestie, enim est eleifend mi,
non fermentum diam nisl sit amet erat.

</li>
</ol>

</li>
<li>

Duis semper. Duis arcu massa, scelerisque vitae,
consequat in, pretium a, enim.

</li>
</ul>
<p>

Pellentesque congue. Ut in risus volutpat libero
pharetra tempor.

</p>
</body>

</html>

Figure 6: Underlying ordered tree structure (right) present in a HTML document (left). Each
level in the tree is colored in the same way as the corresponding tags in the document.
Natural order from top to bottom in the HTML document corresponds to left-to-right order
in the tree.

prediction algorithm able to predict the language of a new data only from its topology?
The interest of this question is discussed in Remark 16.

In order to tackle this problem, we have built 50 databases of 480 trees each, converted
from Wikipedia articles as follows. Each of the databases is composed of 4 data sets:

• a data set to predict Xpred made of 120 trees;

• a small train data set X small
train made of 40 trees;

• a medium train data set Xmedium
train made of 120 trees;

• and a large train data set X large
train made of 200 trees.

For each data set, and each language, we picked Wikipedia articles at random using
the Wikipedia API1, and converted them into unlabeled trees. It should be noted that the
probability to have the same article in at least two different languages is extremely low.
For each database, we aim at predicting the language of the trees in Xpred using a SVM
algorithm based on the subtree kernel for ordered and unordered trees, and trained with
X size

train where size ∈ {small,medium, large}. Fig. 7 provides the description of one typical
database. All trees seem to share common characteristics, regardless of their class.

Classification results over the 50 databases are displayed in Fig. 8. Discriminance weight-
ing achieves highly better results than exponential weighting, with all metrics greater than
90% on average from only 200 training data. This points out that the language informa-
tion exists in the structure of Wikipedia pages, whether they are considered as ordered or
unordered trees, unlike what intuition as well as subtree kernel with exponential weighting
suggest. It should be added that the variance of all metrics seem to decrease with the size
of the training data set when using discriminance.

1https://www.mediawiki.org/wiki/API:Random (last accessed in April 2020)
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Figure 7: Description of a Wikipedia data set (480 trees).
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Figure 8: Classification results for the 50 Wikipedia databases as ordered (left) and un-
ordered (right) trees. λ values stands for exponential decay weight of the form τ 7→ λH(τ).
The colors of the boxplot indicates, for each size ∈ {small,medium, large}, the results ob-
tained for the classification of Xpred from X size

train.

These numerical results show the great interest of the discriminance weight, in particular
with respect to an exponential weight decay. Nevertheless, it should be compelling in this
context to understand the classification rule learned by the algorithm. Indeed, this could
lead to explain how the information of the language is present in the topology of the article.

Comprehensive learning and data visualization When a learning algorithm is ef-
ficient for a given prediction problem, it is interesting to understand which features are
significant. In the subtree kernel, the features are the subtrees appearing in all the trees of
all the classes. Looking at (2), the contribution of any subtree τ to the subtree kernel with
discriminance weighting is the product of two terms: the discriminance weight wτ quanti-
fies the ability of τ to discriminate a class, while κ(Nτ (T1), Nτ (T2)) evaluates the similarity
between T1 and T2 with respect to τ through the kernel κ. As explained in Section 4, if wτ
is close to 1, τ is an important feature in the prediction problem.
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As shown in Section 3, DAG reduction provides a tool to compress a data set without
loss. We recall that each vertex of the DAG represents a subtree appearing in the data.
Consequently, we propose to visualize the important features on the DAG of the data set
where the radius of the vertices is an increasing function of the discriminance weight. In
addition, each vertex of the DAG can be colored as the class that it helps to discrimine,
either positively (the vertex of the DAG corresponds to a subtree that is present almost
only in the trees of this class), or negatively. This provides a visualization at a glance of
the whole data set that highlights the significant features for the underlying classification
problem. We refer the reader to Fig. 10 for an application to one of our data sets. Thanks
to this tool, we have remarked that the subtree corresponding to the License at the bottom
of any article highly depends on the language, and thus helps to predict the class.

Distribution of discriminance weights To provide a better understanding of our re-
sults, we have analyzed in Fig. 9 the distribution of discriminance weights of one of our large
training data sets. It shows that the discriminance weight behaves on average as a shifted
exponential. Considering the great performance achieved by the discriminance weight, this
illustrates that exponential weighting presented in the literature is indeed a good idea, when
setting w• = 0 as shown in Subsection 2.4 or suggested in (Vishwanathan and Smola, 2002,
6 Experimental results). However, a closer look to the distribution in Fig. 9 (left) reveals
that important features in the kernel are actually outliers: relevant information is both
far from the average behavior and scarce. To a certain extent and regarding these results,
discriminance weight is the second order of the exponential weight.

Figure 9: Estimation of the distribution of the discriminance weight function h 7→ {wν :
H(ν) = h, ν ∈ R∗(X )} from one large training Wikipedia data set of unordered trees (left)
and fit of its average behavior (in red) to an exponential function (in blue). All ordered
and unordered data sets show a similar behavior.

Remark 16 The classification problem considered in this subsection may seem unrealis-
tic as ignoring the text information is obviously counterproductive in the prediction of the
language of an article. Nevertheless, this application example is of interest for two main
reasons. First, this prediction problem is difficult as shown by the bad results obtained from
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the subtree kernel with exponential weights (see Fig. 8). As highlighted in Fig. 10 and 9 (left),
the subtrees that can discriminate the classes are very unfrequent and diverse (in terms of
size and structure), so difficult to be identified. On a different level, as Wikipedia has a very
large corpus of pages, it provides a practical tool to test our algorithms and investigate the
properties of our approach. Indeed, we can virtually create as many different data sets as
we want by randomly picking articles, ensuring that we avoid overfitting.

5.3. Markup documents data sets

We present and analyze in this subsection three data sets obtained from markup documents.

INEX 2005 and 2006 These data sets originate from the INEX competition (Denoyer
and Gallinari, 2007). There are XML documents, that we have been considering as ordered
and unordered in our experiments. INEX 2005 is made of 9 630 documents arranged in 11
classes, whereas INEX 2006 has 18 classes for 12 107 documents. For INEX 2005, classes
can be split into two groups of trees with similar characteristics, as shown in Fig. 11 (left).
However, inside each group, all trees are alike. In the case of INEX 2006, no special group
seems to emerge from topological characteristics of the data, as pointed out in Fig. 11 (right).

The classification results are depicted in Fig. 12, for both data sets, and with trees
considered successively as ordered and unordered. For INEX 2005, both exponential decay
and discriminance achieve similar good performance. However, for INEX 2006, neither of
them are able to achieve significant results. Actually, discriminance performs slightly worse
than exponential decay. From these results we deduce that subtrees do not seem to form the
appropriate substructure to capture the information needed to properly classify the data.

0 10 20 30 40 50 60 70 80 90
0.0
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Figure 11: Description of INEX 2005 (9 630 trees, left) and INEX 2006 (12 107 trees, right)
data sets.

Videogame sellers We manually collected, for two major websites selling videogames2,
the URLs of the top 100 best-selling games, and converted them into ordered labeled trees.
As webpages might seem similar to some extent, the trees are actually very different, as
highlighted in Fig. 13. We found that the subtree kernel retrieves this information as, for

2https://store.steampowered.com and https://www.gog.com (last accessed in April 2020)
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Figure 12: Classification results for INEX 2005 (top) and INEX 2006 (bottom) as ordered
(left) and unordered (right) trees.

both exponential decay and discriminance weights, we achieved 100% of correct classifica-
tions in all our tests.
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Figure 13: Description of the videogame sellers data set (200 trees).
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5.4. Biological data sets

In this subsection, three data sets from the literature are analyzed, all related to biological
topics.

Vascusynth The Vascusynth data set from Hamarneh and Jassi (2010); Jassi and Hamarneh
(2011) is composed of 120 unordered trees that represent blood vasculatures with different
bifurcations numbers. In a tree, each vertex has a continuous label describing the radius
r of the corresponding vessel. We have discretized these continuous labels in three cate-
gories: small if r < 0.02, medium if 0.02 ≤ r < 0.04 and large if r ≥ 0.04 (all values are in
arbitrary unit). We split up the trees into three classes, based on their bifurcation number.
Based on Fig. 14 (left), we can distinguish between the three classes by looking only at the
size of trees. Contrary to the videogame sellers data set that had the same property, the
classification does not achieve 100% of good classification, as depicted in Fig. 14 (right).
On average, discriminance performs better than the other weights, despite having a larger
variance. This is probably due to the small size of the data set, as the discriminance is
learned only with around 13 trees per class.
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Figure 14: Description of the Vascusynth data set (120 trees, left) and classification results
(right).

Hicks et al. cell lineage trees Across cellular division, tracking the lineage of a single
cell naturally defines a tree. In a recent article, Hicks et al. (2019) have been investigating
the variability inside cell lineages trees of three different species. From the encoding of
the data that they have provided as a supplementary material3, we have extracted ordered
unlabeled trees that are presented in Fig. 15 (left). The data set contains, for two classes,
trees of outdegree 0 (i.e., isolated leaves) that can be considered as noise. With respect to
the exponential weight, the value of the kernel between such trees will be identical, whether
they belong to the same class or to two different classes. They therefore contribute to
reducing the kernel’s ability to effectively discriminate between these two classes. On the
other hand, the discriminance weight will assign them a zero value, “de-noising”, in a way,

3https://doi.org/10.1101/267450 (last accessed in April 2020)
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the data. This observation may explain why discriminance weight achieves better results
than exponential weight.
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Figure 15: Description of the Hicks et al. data set (345 trees, left) and classification results
(right).

Faure et al. cell lineage trees Faure et al. (2015) have developed a method to con-
struct cell lineage trees from microscopy and provided their data online4. We extracted 300
unordered and unlabeled trees, divided between three classes. It seems from Fig. 16 (left)
that one class among the three can be distinguished from the two others. Classification
results can be found in Fig. 16 (right): the discriminance weight performs better than the
exponential weight, whatever the value of the parameter.
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Figure 16: Description of the Faure et al. data set (300 trees, left) and classification results
(right).

4https://bioemergences.eu/bioemergences/openworkflow-datasets.php (last accessed in April 2020)
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5.5. LOGML

The LOGML data set is made of user sessions on an academic website, namely the Rens-
selaer Polytechnic Institute Computer Science Department website5, that registered the
navigation of users across the website. 23 111 unordered labeled trees are present, divided
into two classes. The trees are very alike, as shown in Fig. 17 (left), and the classification
results of Fig. 17 (right) are very similar to INEX 2005, where all weight functions behave
similarly, without any advantage for the discriminance weight in terms of prediction.
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Figure 17: Description of the LOGML data set (23 111 trees, left) and classification results
(right).

6. Concluding remarks

6.1. Main interest of the DAG approach: learning the weight function

In Section 2, we have shown on a 2-classes stochastic model that the efficiency of the subtree
kernel is improved by imposing that the weight of leaves is null. As explained in Remark 5,
we conjecture that the weight of any subtree present in two different classes should be 0.
The main interest of the DAG approach developed in Section 3 is that it allows to learn
the weight function from the data, as developed in Section 4 with the discriminance weight
function. Our method has been implemented and tested in Section 5 on eight real data sets
with very different characteristics that are summed up in Table 1.

As a conclusion of our experiments, we have analyzed the relative improvement in pre-
diction obtained with the discriminance weight against the best exponential weight in order
to show both the importance of the weight function and the relevance of the method devel-
oped in this paper. More precisely, for each data set and each classification metric, we have
calculated

RI =
Metricdiscr −max(Metricλ)

max(Metricλ)
,

from the average values of the different metrics. The results are presented in Fig. 18. We
have found that, except in one case, discriminance behaves as good as exponential weight

5https://science.rpi.edu/computer-science (last accessed in April 2020)
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decay and even performs better in most of the data sets. Furthermore, one can observe
a kind of trend, where the relative improvement decreases when the number of trees in
the training data set is increasing, which proves the great interest of the discriminance to
handle small data sets, provided that (i) the problem is difficult enough that the exponential
weights are not already high performing, as it is the case in the Videogames sellers data
set, and (ii) the data set is not too small, as for Vascusynth. Indeed, as the discriminance is
learned independently from the SVM, one must have enough training data to divide them
efficiently. Nevertheless, it should be noted that, in the framework of the DAG approach,
results from the discriminance weight can be obtained much faster due to the fact that
the Gram matrices are estimated from one half of the training data set, while learning the
discrimance is very fast as it can be done in one traversal of the DAG (see time-complexity
presented in Remark 15). Finally, we have investigated on a single example some properties
of the discriminance, discovering that it can be interpreted as a second-order exponential
weight, as well as a method for visualizing the important features in the data.

data set W
ikipedia

Videogames

IN
EX

2005

IN
EX

2006

Vascu
synth

Hick
s et

al.

Faure
et

al.

LOGML

Ord. / Unord. Both Ord. Both Both Unord. Ord. Unord. Unord.
labeled 7 X X X X 7 7 X

Number of trees 160 – 320 200 9 630 12 107 120 345 300 23 111
Number of classes 4 2 11 18 3 3 3 2

Table 1: Summary of the 8 data sets.

6.2. Interest of the DAG approach in terms of computation time

As shown in Fig. 16 (right), the exponential decay classification results for the Faure et al.
data set are very dependent on the value chosen for the parameter λ. In this case, it can be
interesting to tune this parameter and estimate its best value with respect to a prediction
score. This requires to compute the Gram matrices from different weight functions. We
present in Fig. 19 the computation time required to compute the Gram matrices from a given
number of values of the parameter. As expected from the theoretical results, we observe a
linear dependency: the intercept corresponds to the computation time required to compute
and annotate the DAG reduction, while the slope is associated with the time required to
compute the Gram matrices, which is proportional to the average of O(min(#Ti,#Tj)) (see
Remark 13). This can be compared to the time-complexity of the algorithm developed in
Vishwanathan and Smola (2002) which is the average of O(#Ti + #Tj). Consequently, the
corresponding computation times should be proportional to at least twice the slope that
we observe with the DAG approach. This shows another interest of our method that is
not related to the discriminance weight function. It should be faster to compute several
repetitions of the subtree kernel from the DAG approach than from the previous algorithm
(Vishwanathan and Smola, 2002) provided that the number of repetitions is large enough.
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Figure 18: Relative improvement RI (in percentage) of the discriminance against the best
value of λ for all data sets (sorted by increasing number of trees in the training data set)
and all metrics.
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6.3. Implementation and reproducibility

The treex library for Python (Azäıs et al., 2019) is designed to manipulate rooted trees,
with a lot of diversity (ordered or not, labeled or not). It offers options for random gener-
ation, visualization, edit operations, conversions to other formats, and various algorithms.
We implemented the subtree kernel as a module of treex so that the interested reader can
manipulate the concepts discussed in this paper in a ready-to-use manner.

Basically, the subtree_kernel module allows the computation of formula (2) with op-
tions for choosing (i) κ among some classic choices of kernels (Schölkopf and Smola, 2001,

29
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Section 2.3) and (ii) the weight function among exponential decay or discriminance. Resort-
ing to dependencies to scikit-learn, tools for processing databases and compute SVM are
also provided for the sake of self-containedness. Finally, visualization tools are also made
available to perform the comprehensive learning approach discussed in Subsection 5.2.

Installing instructions and the documentation of treex can be found from Azäıs et al.
(2019). For the sake of reproducibility, the databases used in Section 5, as well as the scripts
that were designed to create them and process them, can be made available upon request
to the authors.
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Appendix A. Proof of Proposition 2

The proof is mainly based on the following technical lemma, which statement requires the
following notation. If u is a vertex of a tree T , F(u) denotes the family of u, i.e., the set
composed of the ascendants of u, u, and the descendants of u in T . We recall that D(u)
stands for the set of descendants of u.

Lemma 17 Let u, v ∈ Ti, i ∈ {1, 2}. One has

K(T ui , T
v
i ) = K(Ti, Ti)−

∑
x∈Bu,v

ωTi[x] +K(τH(u), τH(v)),

where

Bu,v =

{
D(u) ∪ {u} if u = v,
F(u) ∪ F(v) else.

(6)

Let u ∈ T1 and v ∈ T2. Then,

K(T u1 , T
v
2 ) = K(τH(u), τH(v)).

Proof We begin with the case u 6= v. The result relies on the following decomposition
which is valid under the assumptions made on Ti and the sequence (τh),

S(T ui ) ∩ S(T vi ) =
[
S(Ti) \ {Ti[z] : z ∈ F(u) ∪ F(v)}

]
∪
[
S(τH(u)) ∩ S(τH(v))

]
.

Together with (2),

K(T ui , T
v
i ) =

∑
θ∈S(Ti)\{Ti[z] : z∈F(u)∪F(v)}

wθNθ(T
u
i )Nθ(T

v
i )

+
∑

θ∈S(τH(u))∩S(τH(v))

wθNθ(T
u
i )Nθ(T

v
i ).
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If θ ∈ S(τH(u))∩ S(τH(v)), then Nθ(T
z
i ) = Nθ(τH(z)), z ∈ {u, v}, because, for any h > 0,

τh is not a subtree of T0 nor T1 by assumption. Thus,∑
θ∈S(τH(u))∩S(τH(v))

wθNθ(T
u
i )Nθ(T

v
i ) =

∑
θ∈S(τH(u))∩S(τH(v))

wθNθ(τH(u))Nθ(τH(v))

= K(τH(u), τH(v)), (7)

in light of (2) again. Furthermore, if θ ∈ S(Ti) \ {Ti[z] : z ∈ F(u) ∪ F(v)}, then
Nθ(T

z
i ) = Nθ(Ti), z ∈ {u, v}, and∑

θ∈S(Ti)\{Ti[z] : z∈F(u)∪F(v)}

wθNθ(T
u
i )Nθ(T

v
i ) =

∑
θ∈S(Ti)\{Ti[z] : z∈F(u)∪F(v)}

wθNθ(Ti)Nθ(Ti)

=
∑

θ∈S(Ti)

wθNθ(Ti)Nθ(Ti)

−
∑

θ∈{Ti[u] : u∈F(v)∪F(w)}

wθNθ(Ti)Nθ(Ti)

= K(Ti, Ti)−
∑

θ∈{Ti[z] : z∈F(u)∪F(v)}

wθ, (8)

since Nθ(Ti) = 1 because of the first assumption on Ti. (7) and (8) state the first result.
When u = v, the decomposition is slightly different,

S(T ui ) =
[
S(Ti) \ {Ti[z] : z ∈ {u} ∪ D(u)}

]
∪ S(τH(u)),

but the rest of the proof is similar. Finally, the formula for K(T u1 , T
v
2 ) is a direct conse-

quence of the third assumption on T1, T2 and the sequence (τh).

By virtue of the previous lemma, one can derive the following result on the quantity ∆i
x

defined by (3).

Lemma 18 Let x ∈ Ti, i ∈ {1, 2}. One has

∆i
x = K(Ti, Ti)− Eu

 ∑
z∈Bx,u

wTi[z]

 .
Proof In light of Lemma 17, one has

∆i
x = K(Ti, Ti)− Eu

 ∑
z∈Bx,u

wTi[z]

+ Eu
[
K(τH(x), τH(u))

]
− Ev

[
K(τH(x), τH(v))

]
.

By assumption on the stochastic model of random trees, H(u) and H(v) have the same
distribution and thus Eu[K(τH(x), τH(u))] = Ev[K(τH(x), τH(v))], which states the expected
result.
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The next decomposition is useful to prove the result of interest. If cih denotes the number
of subtrees of height h appearing in Ti, h ≥ 0, then the probability of picking a particular
vertex u is Pρ(H(u))/ciH(u) and thus

Eu

 ∑
z∈Bx,u

wTi[z]

 =
Pρ(H(x))

ciH(x)

∑
z∈{x}∪D(x)

wTi[z] +
∑

u∈Ti\{x}

Pρ(H(u))

ciH(u)

∑
z∈Bx,u

wTi[z].

In addition, for u ∈ Ti \ {x},∑
z∈{x}∪D(x)

ωTi[z] = K(Ti[x], Ti[x]), (9)

∑
z∈Bx,u

ωTi[z] = K(Ti, Ti)−
∑

z /∈F(x)∪F(u)

ωTi[z]. (10)

(9) and (10) together with Lemma 18 show that

∆i
x =

Pρ(H(x))

ciH(x)

(K(Ti, Ti)−K(Ti[x], Ti[x]) +
∑

u∈Ti\{x}

Pρ(H(u))

ciH(u)

∑
z /∈F(x)∪F(u)

ωTi[z].

The left-hand term (and the right-hand term when wTi > 0) is null if and only if
x = R(Ti), which shows the first result. In addition,

∆i
x ≥

Pρ(H(x))

ciH(x)

(K(Ti, Ti)−K(Ti[x], Ti[x]) ,

which states the expected formula (4) with Pρ(0) ≤ Pρ(H(x)) (true if ρ > H/2) and
ciH(x) ≤ #L(Ti). The conclusion comes from the fact that the probability of drawing a

vertex x of height greater than h is Gρ(h).

Appendix B. Proof of Proposition 7

We denote by Dh the set of vertices at height h in any DAG D, and ∗ ∈ {ordered, unordered}
the type of isomorphism considered. From the forest (D1, . . . , DN ), we construct the DAG
∆ such that (i) Di is a subDAG of ∆ for all i, (ii) H(∆) = maxiH(Di), (iii) all vertices in ∆
have degree maxi deg(Di), and (iv) at each height except 0 and H(D), #∆h = maxi #Dh

i .
If ∆ is placed N times under an artificial root, and then recompressed by the algorithm,
indeed the output contains the recompression of the original forest. Therefore, this case is
the worst possible for the algorithm, and we claim that it achieves the proposed complexity.

Let ∆ be now a DAG with following properties : #∆ = m, H(∆) = H, at each height
h /∈ {0, H}, #∆h = n (so that n(H − 2) + 2 = m), and all vertices have degree d. DF is
the super-DAG obtained after placing N copies of ∆ under an artificial root. We then have
# DF = 1 +Nm so that O(# DF ) = O(Nm) = O(NHn) and deg(F) = deg(∆) = d.

At the beginning of the algorithm, constructing the mapping h 7→ DFh in one exploration
of DF has complexity O(# DF ). We will now examine the complexity of the further steps,
with respect to n,m, d,H and N . We introduce the following lemma :
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Lemma 19 Constructing σ(h) has time-complexity:

1. O
(∑

ν∈DFh # C(ν) log # C(ν)
)

for unordered trees;

2. O
(∑

ν∈DFh # C(ν)
)

for ordered trees.

Proof When sorting lists of size L, merge sort is known to have O(L logL) complexity in
the worst case (Skiena, 2012). Accordingly, we introduce

g∗(x) =

{
x if ∗ = ordered;

x(1 + log x) if ∗ = unordered.

At height h, we construct σ(h) = {f−1(S) : S ∈ Im(f), #f−1(S) ≥ 2} where f : ν ∈
DFh 7→ C(ν). Finding the preimage of f requires first to construct f , by copying the chil-
dren of each vertex in DFh (in the unordered case, we also need to sort them, so that we
get rid of the order and can properly compare them). Then we only need to explore once
the image and check whether an element has two or more antecedents. The global cost is
then O(

∑
ν∈DFh g∗(# C(ν))).

We reuse the notation g∗ from the proof of Lemma 19. With respect to ∆, the complexity
for constructing σ(·) is O(Nng∗(d)). Exploring the elements of σ(h) for (i) choosing a vertex
νM to remain, and (ii) delete the other elements δM has complexity O(Nn). In addition,
at height h′ > h, exploring the children to replace them or not costs O(

∑
ν∈DFh′ # C(ν)) =

O(Ndn).

The global complexity C(DF ) of the algorithm is then

C(DF ) = O(# DF ) +

H(∆)∑
h=0

O(Nng∗(d)) +O(Nn) +
∑
h′>h

O(Ndn).

Remark that
∑H(D)

h=0 O(Nn) = O(Nm) = O(# DF ), this leads to

C(DF ) = O(# DF g
∗(deg(F))) +O

(
Ndn

H(D)∑
h=0

∑
h′>h

1

)
.

The right-hand inner sum is in O(H2). As

O(NdnH2) = O(# DF Hd) = O(# DF H(DF ) deg(F)),

this leads to our statement.
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Romain Azäıs, Alexandre Genadot, and Benôıt Henry. Inference for conditioned Galton-
Watson trees from their Harris path. To appear in ALEA, 2019.

Maria-Florina Balcan, Avrim Blum, and Nathan Srebro. A theory of learning with similarity
functions. Machine Learning, 72(1-2):89–112, 2008. doi: 10.1007/s10994-008-5059-5.
URL https://doi.org/10.1007/s10994-008-5059-5.

Karthik Bharath, Prabhanjan Kambadur, Dipak Dey, Rao Arvin, and Veerabhadran Bal-
adandayuthapani. Statistical tests for large tree-structured data. Journal of the American
Statistical Association, 2016.

Philip Bille. A survey on tree edit distance and related problems. Theoretical Computer
Science, 337(1-3):217 – 239, 2005. ISSN 0304-3975. doi: http://dx.doi.org/10.1016/j.tcs.
2004.12.030.

Michael Collins and Nigel Duffy. Convolution kernels for natural language. In Advances in
neural information processing systems, pages 625–632, 2002.

Gianni Costa, Giuseppe Manco, Riccardo Ortale, and Andrea Tagarelli. A tree-based ap-
proach to clustering xml documents by structure. In Jean-François Boulicaut, Floriana Es-
posito, Fosca Giannotti, and Dino Pedreschi, editors, Knowledge Discovery in Databases:
PKDD 2004, pages 137–148, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg. ISBN
978-3-540-30116-5.

Nello Cristianini, John Shawe-Taylor, et al. An introduction to support vector machines and
other kernel-based learning methods. Cambridge university press, 2000.

Giovanni Da San Martino. Kernel methods for tree structured data. PhD thesis, alma, 2009.

Ludovic Denoyer and Patrick Gallinari. Report on the xml mining track at inex 2005 and
inex 2006: categorization and clustering of xml documents. In SIGIR Forum, volume 41,
pages 79–90, 2007.

Peter J. Downey, Ravi Sethi, and Robert Endre Tarjan. Variations on the common
subexpression problem. J. ACM, 27(4):758–771, October 1980. ISSN 0004-5411. doi:
10.1145/322217.322228. URL http://doi.acm.org/10.1145/322217.322228.

David S. Ebert and F. Kenton Musgrave. Texturing & modeling: a procedural approach.
Morgan Kaufmann, 2003.

E Faure, T Savy, B Rizzi, C Melani, M Remeš́ıkova, R Špir, O Drbĺıková, R Čunderĺık,
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