
Journal of Machine Learning Research 21 (2020) 1-40 Submitted 4/19; Revised 10/19; Published 2/20

On Stationary-Point Hitting Time and Ergodicity of
Stochastic Gradient Langevin Dynamics

Xi Chen xchen3@stern.nyu.edu
Stern School of Business
New York University, New York, NY 10012, USA

Simon S. Du ssdu@ias.edu
School of Mathematics
Institute for Advanced Study, Princeton, NJ 08540, USA

Xin T. Tong mattxin@nus.edu.sg

Department of Mathematics

National University of Singapore, Singapore 119076 , Singapore

Editor: Michael Mahoney

Abstract

Stochastic gradient Langevin dynamics (SGLD) is a fundamental algorithm in stochastic
optimization. Recent work by Zhang et al. (2017) presents an analysis for the hitting
time of SGLD for the first and second order stationary points. The proof in Zhang et al.
(2017) is a two-stage procedure through bounding the Cheeger’s constant, which is rather
complicated and leads to loose bounds. In this paper, using intuitions from stochastic
differential equations, we provide a direct analysis for the hitting times of SGLD to the
first and second order stationary points. Our analysis is straightforward. It only relies on
basic linear algebra and probability theory tools. Our direct analysis also leads to tighter
bounds comparing to Zhang et al. (2017) and shows the explicit dependence of the hitting
time on different factors, including dimensionality, smoothness, noise strength, and step
size effects. Under suitable conditions, we show that the hitting time of SGLD to first-
order stationary points can be dimension-independent. Moreover, we apply our analysis to
study several important online estimation problems in machine learning, including linear
regression, matrix factorization, and online PCA.

1. Introduction

Adding noise to the stochastic gradient descent algorithm has been found helpful in training
deep neural networks (Neelakantan et al., 2015) and in turn improving performance in many
applications (Kaiser and Sutskever, 2015; Kurach et al., 2016; Neelakantan et al., 2016;
Zeyer et al., 2017). For example, Kurach et al. (2016) proposed a model named Neural
Random-Access Machine to learn basic algorithmic operations like permutation, merge,
etc. In their experiments, they found adding noise can significantly improve the success
rate. However, theoretical understanding of gradient noise is still limited. In this paper, we
study a particular noisy gradient-based algorithm, Stochastic Gradient Langevin Dynamics
(SGLD). This algorithm intends to minimize a nonnegative objective function of form

F (X) = Eω∼πf(X,ω), X ∈ Rd. (1.1)
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Often, the distribution π describes either a population distribution or an empirical
distribution over a given dataset. At each iteration, the SGLD is updated by

Xn+1 = Xn − ηn+1∇f(Xn, ωn+1) + δ0
√
ηn+1ζn+1. (1.2)

Here ∇f(Xn, ωn+1) is the stochastic gradient of the objective function, ωn are i.i.d. samples
from π, ζn+1 ∼ N (0, Id) is a standard d-dimensional Gaussian random vector, and ηn+1

is the step size parameter. As compared to the stochastic gradient descent (SGD), the
SGLD imposes a larger step size for the noise term (i.e.,

√
ηn+1 instead of ηn+1 for SGD

and ηn+1 will decrease to zero as n → ∞), which allows the SGLD to aptly navigate a
landscape containing multiple critical points. SGLD obtains its name because it is a discrete
approximation to the continuous Langevin diffusion process, which can be described by the
following stochastic differential equation (SDE)

dXt = −∇F (Xt)dt+ δ0dWt, (1.3)

On the other hand, it is worthwhile noting that SGLD is different from the direct discretiza-
tion of (1.3), which can be written as

Xn+1 = Xn − ηn+1∇F (Xn) + δ0
√
ηn+1ζn+1. (1.4)

Algorithm (1.4) is known as the Unadjusted Langevin Algorithm (ULA). It is used in
machine learning for sampling tasks, with some of its theoretical properties studied by
Dalalyan (2017b) (often assuming F is convex). But the implementation of ULA requires
the evaluation of the population gradient ∇F (Xn), which is often not available for machine
learning application as the distribution π in (1.1) is unavailable.

Theoretically, SGLD has been studied from various perspectives. Statistically, SGLD
has been shown to have better generalization ability than the simple stochastic gradient
descent (SGD) algorithm (Mou et al., 2018; Tzen et al., 2018). From the optimization point
of view, it is well known that SGLD traverses all stationary points asymptotically. More
recently, quantitative characterizations of the mixing-time are derived (Raginsky et al.,
2017; Xu et al., 2018a). However, bounds in these papers often depend on a quantity
called the spectral gap of Langevin diffusion process (Equation (1.3)), which in general
has an exponential dependence on the dimension. We refer readers to Section 2 for more
discussions.

While these bounds are pessimistic, in many machine learning applications, finding a
local minimum has already been useful. In other words, we only need the critical point
hitting time bound instead of mixing time bound.1 To the best of our knowledge, Zhang
et al. (2017) is the first work studying the hitting time property of SGLD. The analysis
of Zhang et al. (2017) consists of two parts. First, they defined a geometric quantity
called Cheeger’s constant of the target regions, and showed that the Cheeger’s constant of
certain regions (e.g. the union of all approximate local minima) can be estimated. Next,
they derived a generic bound that relates the hitting time of SGLD and this Cheeger’s
constant. Through these two steps, they showed the hitting time of critical points only has
a polynomial dependence on the dimension.

1. See Section 1.1 for the precise definition.
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However, due to this two-step analysis framework, the hitting time bound derived is
often not tight. Technically, it is very challenging to accurately estimate the Cheeger’s
constant of the region of interest. In particular, in many machine learning problems, useful
structures such as low-rank and sparsity are available, which can be potentially exploited
by SGLD to achieve faster convergence. Therefore, a natural research question is that:
instead of using a two-stage approach, is there a direct method to obtain tighter hitting
time bounds of SGLD that can incorporate underlying structural assumptions?

In this paper, we first consider the hitting time of SGLD to first order and second order
approximation stationary points. For both types of stationary points, we provide a simple
analysis of the hitting time of SGLD, which is motivated from the succinct continuous-
time analysis. Notably, our analysis only relies on basic real analysis, linear algebra, and
probability tools. In contrast to the indirect approach adopted by Zhang et al. (2017),
we directly estimate the hitting time of SGLD and thus obtain tighter bounds in terms of
the dimension, error metric, and other problem-dependent quantities such as smoothness.
Comparing our results with Zhang et al. (2017), we have two main advantages. First, our
results are applicable to decreasing step sizes—the setting widely used in practice. While
previous analysis (including Zhang et al. (2017)) mainly considers the constant step size
setting, which limits its potential applications. Second, in certain scenarios (see Section 6),
we can obtain dimension independent hitting time bounds, whereas bounds in Zhang et al.
(2017) all require at least a polynomial dependence of dimension.

In addition to hitting time, we further establish the ergodicity of SGLD, which is a
unique property of SGLD and does not hold for classical stochastic gradient nor perturbed
gradient methods (see, e.g., Jin et al. (2017) and references therein). Roughly speaking,
We show that SGLD can reach any given point in the state space given enough iterations.
Please see Section 5 for more details.

1.1. Preliminaries and Problem Setup

We use ‖ · ‖ to denote the Euclidean norm of a finite-dimensional vector. We also use
〈u, v〉 = uT v to denote the inner product of two vectors. For a real symmetric matrix A,
we use λmax (A) to denote its largest eigenvalue and λmin (A) its smallest eigenvalue. Let
O(·) denote standard Big-O notation, only hiding absolute constants.

In this paper we use either symbol B, C or D to denote problem dependent parameters.
The difference is, the C-constants can often be picked independently of the dimension,
but the B and D-constants usually increase with the dimension. Typical example can be,
the spectral norm of the d-dimensional identity matrix remains 1 for any d, but its trace
increases linearly with d. On the other hand, the B constants are in practice controlled by
the batch sizes. By writing two types of constants differently, it helps us to interpret the
performance of SGLD in high dimensional settings. On the other hand, our results hold
even if the C-constants increase with d, which is possible in certain scenarios. We denote
η1:n =

∑n
i=1 ηi, ηo:n =

∑n
i=o ηi , η21:n =

∑n
i=1 η

2
i . Throughout the paper, we use 0 < c < 1

to denote an absolute constant, which may change from line to line.

In this paper we focus on SGLD defined in Equation (1.2). Note that the stochastic
gradient ∇f(Xn, ωn+1) can be decomposed into two parts: one part is its mean ∇F (Xn),
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the other part is the difference between the stochastic gradient and its mean:

ξn+1 := ∇f(Xn, ωn+1)−∇F (Xn). (1.5)

We note that ξn+1 is a martingale difference series. With these notations, we can write the
SGLD iterates as

Xn+1 = Xn − ηn+1(∇F (Xn) + ξn+1) + δ0
√
ηn+1ζn+1 (1.6)

Note that the step size ηn is not a constant. This is crucial, since we know for SGD to
converge, the step size needs to converge to zero. In practice, it is often picked as an inverse
of polynomial,

ηn = η0n
−α, α ∈ [0, 1), (1.7)

where α = 0 leads to a constant step size.

We study the hitting time of SGLD. For a region R ⊆ Rd of interest, the hitting time
to R is defined as the first time that the SGLD sequence Xt falls into the region R:

τR = arg min
n≥0
{Xn ∈ R} . (1.8)

In this paper we are interested in finding approximate first order stationary points
(FOSP) and second order stationary points (SOSP) of the objective function. Note that
finding a FOSP or SOSP is sufficient for many machine learning applications. For convex
problems, an FOSP is already a global minimum and for certain problems like matrix
completion, an SOSP is a global minimum and enjoys good statistical properties as well (Ge
et al., 2017). Please see Section 2 for discussions.

Definition 1.1 (Approximate First Order Stationary Points (FOSP)) Given ε >
0, we define approximate first order stationary points as

Rfosp(ε) =
{
X ∈ Rd, ‖∇F (X)‖ ≤ ε

}
,

and denote by τfosp = arg minn≥0 {Xn ∈ Rfosp(ε)} the corresponding hitting time.

Definition 1.2 (Approximate Second Order Stationary Points (SOSP)) Given ε, λε >
0, we define approximate second order stationary points as

Rsosp(ε, λε) =
{
X ∈ Rd, ‖∇F (X)‖ ≤ ε, λmin

(
∇2F (X)

)
≥ −λε

}
,

and denote by τsosp = arg minn≥0 {Xn ∈ Rsosp(ε)} the corresponding hitting time.

We note that in Definition 1.2, λε is a function of ε, and it is often chosen as
√
ε in existing

works (Ge et al., 2017). The main objective of this paper is showing that τfosp and τsosp
are bounded in probability for SGLD sequence, and show how they depend on the problem
parameters.
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1.2. Organization

This paper is organized as follows. In Section 2, we review related works. In Section 3, we
present our hitting time analysis of SGLD to the first order stationary points. In Section 4,
we extend our analysis to second order stationary points. In Section 5, we establish the
ergodicity of SGLD. In Section 6, we provide three examples to illustrate the convergence
of SGLD for machine learning applications. We conclude and discuss future directions in
Section 7. Proofs for technical lemmas and the results in Section 6 are deferred to the
appendix.

2. Related Works

From the optimization point of view, Raginsky et al. (2017) gave a non-asymptotic bound
showing that SGLD finds an approximate global minimizer in poly (d, 1/ε, 1/λ∗) under cer-
tain conditions. In particular, this bound is a mixing-time bound and it depends on the
inverse of the uniform spectral gap parameter λ∗ of the Langevin diffusion dynamics (Equa-
tion (1.3)), which is in general O(e−d). More recently, Xu et al. (2018a) improved the
dimension dependency of the bound and analyzed the finite-sum setting and the variance
reduction variant of SGLD. All these bounds depend on the spectral gap parameter which
scales exponentially with the dimension. Tzen et al. (2018) gave a finer analysis on the
recurrence time and escaping time of SGLD through empirical metastability. While this
result does not depend on the spectral gap, there is not much discussion on how does SGLD
escape from saddle points. Therefore, finding a global minimum for a general non-convex
objective with a good dimension dependence might be too ambitious.

On the other hand, in many machine learning problems, finding an FOSP or an SOSP
is sufficient. Recently, a line of work shows FOSP or SOSP has already provided good sta-
tistical properties for achieving desirable prediction performance. Examples include matrix
factorization, neural networks, dictionary learning, e.t.c. (Hardt and Ma, 2016; Ge et al.,
2015; Sun et al., 2017; Ge et al., 2017; Park et al., 2017; Bhojanapalli et al., 2016; Du and
Lee, 2018; Du et al., 2018a; Ge et al., 2018; Du et al., 2018b; Mei et al., 2017).

These findings motivate the research on designing provably algorithms to find FOSP and
SOSP. For FOSP, it is well known that stochastic gradient descent finds an FOSP in polyno-
mial time (Ghadimi and Lan, 2016) and recently improved by Allen-Zhu and Hazan (2016);
Reddi et al. (2016) in the finite-sum setting. For finding SOSP, Lee et al. (2016) showed if
all SOSPs are local minima, randomly initialized gradient descent with a fixed step size also
converges to local minima almost surely. The classical cubic-regularization (Nesterov and
Polyak, 2006) and trust region (Curtis et al., 2014) algorithms find SOSP in polynomial
time if full Hessian matrix information is available. Later, Carmon et al. (2018); Agarwal
et al. (2017); Carmon and Duchi (2016) showed that the requirement of full Hessian access
can be relaxed to Hessian-vector products. When only gradient information is available, a
line of work shows noise-injection helps escape from saddle points and find an SOSP (Jin
et al., 2017; Du et al., 2017; Allen-Zhu, 2018; Jin et al., 2018; Levy, 2016). If we can only
access to stochastic gradient, Ge et al. (2015) showed that adding perturbation in each
iteration suffices to escape saddle points in polynomial time. The convergence rates are
improved later by Allen-Zhu and Li (2018); Allen-Zhu (2018); Xu et al. (2018b); Yu et al.
(2018); Daneshmand et al. (2018); Jin et al. (2019); Fang et al. (2019).
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Here, we want to emphasize these perturbed gradient methods are fundamentally differ-
ent from SGLD considered in the current paper. The noise injected in perturbed gradient
methods is of order O (ηn) and for SGLD, the noise is of order O

(√
ηn
)
, which is much

bigger than O (ηn). While both methods can find an SOSP in polynomial time, the larger
noise enables SGLD to traverse the entire state space, as we will demonstrate in Section 5.

Theoretically, however, there is a significant difference between SGD-based algorithms
and SGLD. In SGD, the squared norm of the noise scales quadratically with the step size,
which has a smaller order than the true gradient. On the other hand, in SGLD, the squared
norm of the noise scales linearly with the step size, which has the same order as the true
gradient. In this case, the noise in SGLD is lower bounded away from zero which enables
SGLD to escape saddle points. Nevertheless, this escape mechanism is subtle, and it requires
careful balances of hyper parameters and sophisticated analyses. To our knowledge, Zhang
et al. (2017) is the only work studied the hitting time of stationary points. As we discussed
in Section 1, their analysis is indirect, which leads to loose bounds. In this paper, we directly
analyze the hitting time of SGLD and obtain tighter bounds.

Finally, beyond improving the training process for non-convex learning problems, SGLD
and its extensions have also been widely used in Bayesian learning (Welling and Teh, 2011;
Chen et al., 2015; Ma et al., 2015; Dubey et al., 2016; Ahn et al., 2012) and approximate
sampling (Brosse et al., 2017; Bubeck et al., 2018; Durmus et al., 2017; Dalalyan, 2017a,b;
Dalalyan and Karagulyan, 2019). These directions are orthogonal to ours because their
primary goal is to characterize the probability distribution induced from SGLD.

3. Hitting Time to First Order Stationary Points

As the first step, in this section we analyze the hitting time to FOSP by SGLD.

3.1. Warm Up: A Continuous Time Analysis

We will first use a continuous time analysis to illustrate the main proof idea. Recall that if
we let the step size ηn → 0, the dynamics of SGLD can be characterized by an SDE

dXt = −∇F (Xt)dt+ δ0dWt.

Using Ito’s formula, we obtain the dynamics of F (Xt):

dF (Xt) = −‖∇F (Xt)‖2dt+
1

2
δ20tr(∇2F (Xt))dt+ δ0〈∇F (Xt), dWt〉.

Now given ε > 0 and recall τfosp is the hitting time of the first order stationary points
(FOSP). By Dynkin’s formula, for any T > 0, we have

0 ≤ EF (Xτfosp∧T ) = F (X0) + E
∫ τfosp∧T

0

(
1

2
δ20tr(∇2F (Xt))− ‖∇F (Xt)‖2

)
dt. (3.1)

Note that before τfsop, the gradient satisfies ‖∇F (Xt)‖ ≥ ε. If we assume the Hessian
satisfies ‖∇2F (x)‖ ≤ C2, then tr(∇2F (x)) ≤ C2d. Using the assumption that F (·) is
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non-negative, we can obtain the following estimate

F (X0) ≥E
∫ τfosp∧T

0

(
−δ20tr(∇2F (Xt)) + ‖∇F (Xt)‖2

)
dt

≥E
∫ τfosp∧T

0

(
ε2 − δ20tr(∇2F (Xt))

)
dt

≥(ε2 − C2dδ
2
0)Eτfosp ∧ T.

Therefore, re-arranging terms, we have

Eτfosp ∧ T ≤
F (X0)

ε2 − C2dδ20
.

Applying Markov’s inequality, we have

P(τfosp > T ) ≤ F (X0)

T (ε2 − C2dδ20)
.

The above derivations show if we pick a small δ0 ≤ ε√
2C2d

and T is large enough, we

know SGLD hits an approximate first order stationary point in time less than T with high
probability. In the next section, we use this insight from the continuous time analysis to
derive hitting time bound of the discrete time SGLD algorithm.

3.2. Discrete Time SGLD Analysis

We first list technical assumptions for bounding the hitting time. The first assumption is
on the objective function.

Assumption 3.1 There exists C2 > 0 such that for all x, the objective function satisfies
‖∇2F (x)‖ ≤ C2.

This condition assumes the spectral norm of the Hessian is bounded. It is a standard
smoothness assumption, which guarantees the gradient descent algorithm can hit an ap-
proximate first order stationary.

Our second assumption is on the noise from the stochastic gradient.

Assumption 3.2 There exists B1 > 0, B2 ≥ 1 such that for all x and any n ≥ 0, the
gradient noise ξn+1 defined in (1.5) satisfies,

EnξTn+1∇2F (x)ξn+1 ≤ B1, En‖ξn+1‖4 ≤ B2
2 .

In the sequel, we consider the natural filtration that describes the information up to the n-th
iteration,

Fn = σ{Xi, ωi, ξi, ζi, i = 0, 1, · · · , n},

while Pn and En denote the conditional probability and expectation with respect to Fn.
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This assumption states that the noise has bounded moments. Such an assumption is nec-
essary for guaranteeing the convergence even for SGD. Note here En‖ξn+1‖4 ≤ B2

2 also
implies En‖ξn+1‖2 ≤ B2 by Cauchy-Schwartz inequality. Furthermore, using the property
of the spectral norm, we know En‖ξn+1‖2 ≤ B2 also implies B1 ≤ C2B2. Here, we explicit
assume EnξTn+1∇2F (x)ξn+1 ≤ B1 for some B1 in order to exploit certain finer properties of
the problem. Now we are ready to state our first main theorem. Please recall the definition
of η0 from (1.6), and η0 and α from (1.7).

Theorem 3.3 Let ε > 0 be the desired accuracy and 0 < ρ < 1 be the failure probability.

Suppose we set δ0 ≤
ε
√
ρ

2
√
3dC2

, and η0 ≤ (6C2)
−1. Then there is an absolute constant Cα that

depends only on α such that

• for α ≥ 1
2 , if N ≥ Cα

(
F (X0)+B1C2η20

ρη0ε2

) 1
1−α

, or,

• for 0 < α ≤ 1
2 , if N ≥ Cα max

{(
F (X0)
ρη0ε2

) 1
1−α

,
(
B1C2η0
ρε2

) 1
α

}
, or,

• for α = 0, if η0 ≤ ε2ρ
24B1C2

and N ≥ 8F (X0)
ε2ρη0

,

we have

P(τfsop ≥ N) ≤ ρ.

This theorem states that SGLD can easily hit a first order stationary point. As compared
with Zhang et al. (2017), we provide an explicit hitting time estimate since we use a more
direct analysis. Note for different α, we have different hitting time estimates. The reason will
be clear in the following proof. Also note that the number of iterations can be independent
of the dimension, as long as B1 and C2 are dimension independent, and the volatility
parameter δ0 uses the correct scaling.

It is worth noting that there is no lower bound requirement on the volatility parameter
δ0. Indeed, when δ0 = 0, the SGLD degenerates as the SGD. We also note that SGD can
find an FOSP in finite iterations (see, Section B in Allen-Zhu (2018)). The capability of
finding FOSP is not a feature that is unique to SGLD.

Proof [Proof of Theorem 3.3] Our proof follows closely to the continuous time analysis in
the previous section. Denote ∆ = Xn+1−Xn = −ηn+1(∇F (Xn) + ξn+1) + δn+1ζn+1, where
δn+1 := δ0

√
ηn+1. This quantity corresponds to the dXt quantity in the continuous time

analysis. To proceed, we expand one iteration

F (Xn+1) = F (Xn) +

∫ 1

0
〈∇F (Xn + s∆),∆〉ds

= F (Xn) +

∫ 1

0
〈∇F (Xn),∆〉ds+

∫ 1

0
ds

∫ s

0
∆T∇2F (Xn + t∆)∆dt (3.2)

= F (Xn)− ηn+1‖∇F (Xn)‖2 + 〈δn+1ζn+1 − ηn+1ξn+1,∇F (Xn)〉

+
1

2
∆T∇2F (Xn + ψn+1∆)∆.
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Where ψn+1 is some number in [0, 1]. The last term can be bounded by

En∆T∇2F (Xn + ψn+1∆)∆ ≤ C2En‖∆‖2,

and furthermore by Holder’s inequality, i.e. E‖X + Y + Z‖2 ≤ 3E(‖X‖2 + ‖Y ‖2 + ‖Z‖2),

En‖∆‖2 ≤ 3η2n+1‖∇F (Xn)‖2 + 3η2n+1En‖ξn+1‖2 + 3δ2n+1En‖ζn+1‖2

≤ 3η2n+1‖∇F (Xn)‖2 + 3η2n+1B1 + 3δ2n+1d. (3.3)

So taking the expectation of Equation (3.2) and plugging in Equation (3.3), we have

EnF (Xn+1) ≤ F (Xn)− (ηn+1 − 3η2n+1C2)‖∇F (Xn)‖2 + 3C2η
2
n+1B1 + 3C2dδ

2
n+1

≤ F (Xn)− 1

2
ηn+1‖∇F (Xn)‖2 + 3C2η

2
n+1B1 + 3C2dδ

2
n+1. (3.4)

Summing this bound over all n = 0, · · · , N − 1, apply total expectation, we obtain

EF (XN ) ≤ F (X0)−
1

2
E

N∑
k=1

ηk‖∇F (Xk)‖2 + 3C2B1

N∑
k=1

η2k + 3C2d

N∑
k=1

δ2k

≤ F (X0)−
1

2
E

N∑
k=1

ηk‖∇F (Xk)‖2 + 3C2B1η
2
1:N + 3C2δ

2
0η1:Nd.

Rearranging terms, recall that F is nonnegative, we have

E
N∑
k=1

ηk‖∇F (Xk)‖2 ≤ 2
(
F (X0)− EF (XN ) + 3B1C2η

2
1:N + 3C2dδ

2
0η1:N

)
≤ 2

(
F (X0) + 3B1C2η

2
1:N + 3dC2δ

2
0η1:N

)
. (3.5)

Combining this bound and Markov’s inequality, we have

P(‖∇F (Xk)‖ ≥ ε, ∀k ≤ N) ≤
E
∑N

k=1 ηk‖∇f(Xk)‖2

η1:N ε2

≤
2F (X0) + 6B1C2η

2
1:N

ε2η1:N
+

6C2δ
2
0

ε2
d.

Lastly, note that

η1:N ≥ η0
∫ N

1
t−αdt = η0O(N1−α), η21:N ≤ η20 + η20

∫ N

1
t−2αdt = η20O(max{1, N1−2α}).

(3.6)
Plugging in our choice N and δ0, we have that the right hand side is smaller than ρ.
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4. Hitting Time Analysis to Second Order Stationary Points

Recall that without noise-injection, gradient descent cannot escape saddle points. Since
gradient descent can be viewed as a special case of SGD with ∇f(x, ω) = ∇F (x), it is
clear that SGD in general cannot escape saddle points. In contrast, SGLD is capable to
escape saddle points and find second order stationary points. In this section we analyze
the hitting time of second order stationary points. The key insight here is that because
we add Gaussian noise at each iteration, the accumulative noise together with the negative
eigenvalue of the Hessian will decrease the function value. Again, we first use a continuous
time analysis on a simple example to illustrate the main idea.

4.1. Warm Up: A Continuous Time Analysis for Escaping Saddle Points

To motivate our analysis, we demonstrate how does the Langevin dynamics escape a strict
saddle point. For this purpose, we assume X0 = 0, and F (x) = xTHx with H being a
symmetric matrix with λmin(H) < 0. This example characterizes the situation when the
SGLD starts at a saddle point. The resulting Langevin diffusion is actually an Ornstein
Uhlenbeck (OU) process,

dXt = −2HXtdt+ δ0dWt. (4.1)

Knowing it is an OU process, it can be written through an explicit formula,

Xt = δ0

∫ t

0
e−2H(t−s)dWs.

Thus by Itô’s isometry, if H has eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λd,

EF (Xt) = δ20

∫ t

0
tr(e−4H(t−s)H)ds =

δ20
4

tr(I−e−4Ht) =
δ20
4

d∑
i=1

(1−e−4λit) ≤ dδ20
4
− δ

2
0

4
e−4λ1t.

Since x = 0 is a strict saddle point, i.e., λ1 < 0, we can pick t = log 2d
−4λ1 to make EF (Xt) ≤

−dδ20
4 < 0, which indicates that Xt has escape the saddle point.

4.2. Escaping Saddle Points

In this section, we provide theoretical justifications on why SGLD is able to escape strict
saddle points. In addition to Assumptions 3.1 and 3.2 made in Section 3, we also need some
additional regularity conditions to guarantee that SGLD escape from strict saddle points.

Assumption 4.1 We assume the following hold for the objective function f .

• There exist C3 ≥ C2 > 0 such that for all pairs of x, x′, ‖∇2F (x) − ∇2F (x′)‖ ≤
C3‖x− x′‖. Note that C2 is defined in Assumption 3.1.

• There exists C0 such that |F (x)| ≤ C0 for all x.

• There exists D4 > 0 such that for all x, we assume the
∑d

i=1 λi(∇2F (x))1λi>0 ≤ D4.

10
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The first assumption states that the Hessian is Lipschitz and the second condition states the
function value is bounded. These two conditions are widely adopted in papers on analyzing
how the first order methods can escape saddle points (Ge et al., 2015; Jin et al., 2017). The
third condition states that the sum of positive eigenvalues is bounded D4. Note there is a
näıve upper bound D4 ≤ dC2. However, in many cases D4 can be much smaller than dC2.
We provide several examples in Section 6. So we take D4 as a separate parameter in order
to exploit more refined properties of the problem.

The following lemma characterizes the behavior of SGLD around a strict saddle point.
It can be viewed as a discrete version of the discussions in Section 4.1.

Lemma 4.2 (Escaping saddle point) Assume Assumptions 3.1, 3.2 and 4.1. If the
current iterate is Xo, for any fixed q > 0 and λH = λmax(−∇2F (Xo)) > 0. Denote

τb = min{n > o, ‖Xn −Xo‖ ≥ b}, b = qλH
C3

.

Denote D5 = 2
λH

log 16D4+40
λH

. There is a constant C6 = O(max{C3q
−1.5, λ−1H , 1, D5}). So

that if

2D5 ≤ ηo+1:n ≤ 3D5,

δ0 ≤ d−
3
2C
− 7

2
6 exp(−(9 + 18q)D5λH),

ηo ≤ B−12 δ20 , ‖∇F (Xo)‖ ≤ δ0
√
dmin{λH , 1, η−1o+1:n}.

Then

EoF (Xn∧τb) ≤ F (Xo)− ηo+1:nδ
2
0 .

This lemma states that SGLD is able to escape strict saddle points in polynomial time.
Its full proof can be found in Section A.1.

4.3. Hitting time of SOSP

With Lemma 4.2 at hand, it is easy to derive the following hitting time result for the second
order stationary point, given by Definition 1.2

Theorem 4.3 Assume Assumptions 3.1, 3.2 and 4.1. For any q > 0, let

Q = 2λ−1ε log
16D4 + 40

λε
,

and a constant C6 = O
(
max

{
q−1.5C3, λ

−1
ε , 1, Q

})
. Set the hyper parameters so that

δ0 = d−
3
2C
− 7

2
6

(
16D4 + 40

λε

)−(9+18q)

, η0 ≤
{
B−12 δ20 , C

−1
3 log

16D4 + 40

C3

}
.

Denote ε0 = 1
2 min{ε, δ0

√
min{λε, 1, Q−1}}, then

P(τsosp > N) ≤ 2C0 + ε20Q

ε20η1:N
.

11
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In other words, for any α ∈ [0, 1) and ρ > 0, SGLD will hit a second order stationary point
with probability 1− ρ, as long the iteration number

N ≥ Cα
(

2C0

ρη0ε20
+

Q

η0ρ

) 1
1−α

.

Here Cα is an abosolute constant that depends only on α.

This theorem states that SGLD is able to hit an SOSP in polynomial time, thus verifying
adding noise is helpful in non-convex optimization. This result has been established by
Zhang et al. (2017) using an indirect approach as we discussed in Section 1. Our proof relies
on a direct analysis. The proof intuition is simple and similar to what is demonstrated in
Section 4.1. Yet, there are three layers of technicalities. First, SGLD is an indiscretized
version of the Langevin diffusion process (4.1). This is the very reason why the deterministic
stepsize constant η0 is roughly the square of the stochastic volatility constant δ0. Second,
the loss function is only an approximation of xTHx considered in Section 4.1. Third, in
order to apply the approximation F (x) ≈ xTHx, x needs to be close to the critical point.
These issues lead to delicate requirements of the stochastic volatility constant δ0: if it is
too small, its strength is not enough for SGLD to escape the saddle point; if it is too large,
then the followup iterates will be far away for the approximation xTHx to be accurate.
The additional constants in Theorem 4.3, Q,C6, ε0 and Cα, are introduced to simplify the
proofs. We relegate the entire proof to Appendix A.

5. Ergodic behavior of SGLD

It is well known that the overdamped Langevin diffusion SDE dXt = −∇F (Xt)dt+ dWt is
ergodic, (Mattingly et al., 2002) if the loss function F is coercive in the following sense:

Assumption 5.1 There are constants c7 and D7 such that

‖∇F (x)‖2 ≥ c7F (x)−D7, ‖x‖ ≤ c7F (x) +D7, ∀x.

Unlike the regularity Assumptions 3.1-4.1, this condition “pushes” SGLD iterates back if
their function values get too large. Another popular version of it is known as the dissipative
condition (Raginsky et al., 2017; Xu et al., 2018a). Assumption 5.1 is weaker than the
dissipative condition, as explained in Dong and Tong (2020).

In other words, the stochastic process Xt can visit any specific point in the state space
with probability 1, as long as the algorithm has run long enough. It is also known that
direct time-homogeneous discretization of overdamped Langevin diffusion, i.e. ULA, can
inherit this property (Mattingly et al., 2002). While SGLD is not time-homogenous or a
direct discretization, we can still show that SGLD is ergodic in the following theorem.

Theorem 5.2 Under Assumption 5.1, for any ε, p0 > 0 and point z0, there is an N such
that

P(‖Xt − z0‖ ≤ ε for some t ≤ N) ≥ 1− p0.
An upper bound for N can be established as below if we define the following sequence of
constants

MV :=
8

c7

(
D7 + 6B1 + 6dδ20

)
, DX := max{D7 + c7MV , ‖z0‖, 1},

12
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DF = max{‖∇F (x)‖ : ‖x‖ ≤ 4DX}, ε0 := min

{
ε

2DF + 2
√
B2 + 1

,
DF

DX

}
,

n0 = min{t : ηt ≤ ε0} =

(
ε0
η0

) 1
α

,

cα =
1

4
P
(
‖Z − 2DX

δ0
√
ε0
e1‖ ≤ ε0

δ0
√
2ε0

)
,

where Z ∼ N(0, Id) and e1 = [1, 0, 0, . . . , 0] is the first Euclidean basis vector. with Then

N ≤ n0 +


⌈
2 log 1

2
MV /EF (Xn0 )

c7ε0

⌉
+ d log 1

2
p0

log(1−cα)e(1 + 8
c7ε0

)

4δ0p0η0


1

1−α

.

The proof of Theorem 5.2 follows a similar framework as in Meyn and Tweedie (1993);
Mattingly et al. (2002), which consists of two parts. In the first part, we show the compact
sub-level set {x : F (x) ≤ MV } will be visited by SGLD infinitely many times due to
Assumption 5.1. In particular, it will take

N0 ≤ n0 +


⌈
2 log 1

2
MV /EF (Xn0 )

c7ε0

⌉
4δ0p0η0


1

1−α

iterations to guarantees EF (XN0) ≤ MV , when n0 is the first iteration and the step size
is small enough. In the second part, we show that if F (xo) ≤ MV , then after a certain
number of iterations no, xo+no has a positive chance, bounded below by cα, to hit z0. This
can be done using stochastic controllability of the process. To combine this with the first

part, we set up a Bernoulli-trial type of argument, where the trial number d log 1
2
p0

log(1−cα)e shows
up naturally. It is also worth noting that since z0 is an arbitrary point in the state space, the
trial-success probability cα is often pessimistic and scales exponentially with the dimension.
This is in sharp contrast with Theorem 3.3 and 4.3.

Ergodicity is a feature of SGLD. It can be useful when the objective function F has
multiple local minimums, as SGLD can visit all of them and find the global minimum. This
is one general motivation of injecting randomness in algorithms, since GD with random
initialization may not converge to the local minimums in polynomial iterations (Du et al.,
2017). While Perturbed (S)GD can be ergodic with constant stepsize, it is not ergodic
with decreasing stepsizes. To see this, we consider a simple test case, where we can show
SGLD converges to N (0, 1/2) and PGD converges to the origin. Note that while PGD does
converge to the correct global minimum in this example, it is not ergodic and does not
explore the state space in long term.

Lemma 5.3 Suppose

F (x) =
1

2
x2, ξn = 0, δ0 = 1, ζn ∼ N (0, 1).

13
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The SGLD and PGD updates are given by

Xn = (1− ηn)Xn−1 +
√
ηnζn, Yn = (1− ηn)Yn−1 + ηnζn.

Assume that X0 = Y0 = 0, the stepsize decreases to zero and
∑∞

i=1 ηi = ∞. The limiting
distribution of Xn is N (0, 1/2) and the limiting distribution of Yn is the Dirac measure at
0.

6. Applications in Online Estimation Problems

In the previous sections, we have shown that, as long as the objective function satisfies some
smoothness conditions and the noise satisfies certain moment conditions, then SGLD hits a
first/second order stationary point in polynomial time in terms of the following parameters:

1. ‖∇2F (x)‖ ≤ C2.

2. EnξTn+1∇2F (x)ξn+1 ≤ B1.

3. En‖ξn+1‖2 ≤ B2, En‖ξn+1‖4 ≤ B2
2 .

4.
∑d

i=1 λi(∇2F (x))1λi>0 ≤ D4.

5. ‖∇2F (x)−∇2F (x′)‖ ≤ C3‖x− x′‖.

In particular, first order stationary point hitting time bound only relies on the first two
constants. And to verify Assumption 5.1, we need

‖∇F (x)‖2 ≥ c7F (x)−D7, ‖x‖ ≤ c7F (x) +D7, ∀x.

In this section we provide three concrete example problems, linear regression, online matrix
sensing, and online PCA to illustrate the usage of our analysis of SGLD. We will calculate
the specific problem dependent constants in Assumption 3.1 and Assumption 4.1. Note
that once we know these constants are bounded, Theorem 3.3 and Theorem 4.3 directly
imply polynomial time hitting time. For all examples, we investigate the stochastic opti-
mization setting, i.e., each random sample is only used once. All the proofs are deferred to
Appendix C.

When calculating the constants defined above, they often have a positive dependence
on the norm of the location x where they are evaluated. Therefore we will assume in below
that the iterate x is bounded. This assumption sometimes is assumed even in the general
theoretical analysis for simplicity Zhang et al. (2017). We remark this is not a restrictive
assumption. Since in practice, if the SGLD iterates diverge to infinity for a particular
application, it is a clear indication that the algorithm is not fit for this application.

6.1. Linear regression

Our first example is the classical linear regression problem. Let the n-th sample be ωn =
(an, bn), where the input an ∈ Rd is a sequence of random vectors independently drawn
from the same distribution N (0, A), and the response bn ∈ Rd follows a linear model,

bn = aTnx
∗ + εn. (6.1)
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Here, x∗ ∈ Rd represents the true parameters of the linear model, and {εn} are indepen-
dently and identically distributed (i.i.d.) N (0, 1) random variables, which are uncorrelated
with an. For simplicity, we assume an and εn have all moments being finite. We consider
the quadratic loss, i.e., given ωn = (an, bn), the loss function is

f(x, ωn) =
1

2
(aTnx− bn)2.

and the population loss function is defined as

F (x) =
1

2
(x− x∗)TA(x− x∗) +

1

2
. (6.2)

Note the underlying linear coefficient satisfies x∗ = arg minx (F (x) := Ef(x, ω)). The fol-
lowing proposition bounds the constants in Assumption 3.1 and 4.1.

Proposition 6.1 When ‖x − x∗‖ ≤ Γ, the constants for the population loss function in
(6.2) are give by

D4 = C2 = C3 = tr(A), B1 = ctr(A)3Γ2, B2 = ctr(A)2Γ2.

Here, c > 0 is a constant independent of other parameters. Moreover, we have

c7 =
1

4
λmin(A), D7 ≤

1

4
λmin(A)‖x∗‖2.

In other words, the number of iterations for the SGLD to hit a first order stationary point
only depends on tr(A), but not directly on the problem dimension d. When ‖A‖ is fixed,
tr(A) depends on the rank of A, which can be much smaller than d. Moreover, when the
spectrum of A is a summable sequence (e.g., λn(A) ∝ n−β where β > 1 and λn(A) is the
n-th largest eigenvalue of A), then tr(A) is independent of d. Such settings rise frequently
in Bayesian problems related to partial differential equations, where d in theory can be
infinity (Stuart, 2010).

6.2. Matrix Factorization

In the online matrix factorization problem, we want to minimize the following function

F (X) = ‖XXT −M‖2F , X ∈ Rm×r, (6.3)

where M has rank r and ‖ · ‖F denotes the Frobenius norm. The stochastic version is given
by

f(X,ω) = 〈ω,XXT −M〉2.
ω is assumed to be an m × m matrix with i.i.d. entries from N (0, 1). The following
proposition bounds the constants in Assumption 3.1 and 4.1.

Proposition 6.2 Suppose ‖M‖F , ‖XXT ‖F ≤ Γ for some constant Γ ≥ 1, the constants
for the population loss function (6.3) is bounded by

C2 = 24Γ, C3 = max{12
√

Γ, 24Γ}, D4 = (4m+ 2r)Γ, B1 = cmrΓ4, B2 = cmrΓ3.

Here, c is a constant independent of other parameters. Moreover

c7 ≥ 4λmax(M), D7 ≤ max{‖M‖F , 8dλ3max(M)}.

15



Chen, Du, and Tong

Similar to the linear regression case, if M is low rank or its spectrum decays rapidly to zero,
the number of iterations for the SGLD to hit a first order stationary point is independent
of the problem dimension.

6.3. Online PCA

In the online principle component analysis (PCA) problem, we consider the scenario where
we conduct PCA for data samples xi ∼ N (0,M). The population loss function is given by

F (X) =
1

2
‖XXT −M‖2F + C, X ∈ Rd×r, (6.4)

where C = ExixTi . The stochastic version is given by,

f(X,ωi) =
1

2
‖XXT − xixTi ‖2F =

1

2
‖XXT −M − ωi‖2F , ωi = xix

T
i −M.

The following proposition bounds the constants in Assumption 3.1 and 4.1.

Proposition 6.3 Suppose ‖M‖F , ‖XXT ‖F ≤ Γ for some constant Γ ≥ 1, the constants
for the population loss function (6.4) is bounded by

C2 = 24Γ, C3 = 12
√

Γ, D4 = 6mΓ, B1 = cΓ2tr(M)2, B2 = tr(M)2.

Moreover
c7 ≥ 4λmax(M), D7 ≤ max{‖M‖F , 8dλ3max(M)}.

Since the hitting time to a first order stationary point only depends on C2 and B1, Propo-
sition 6.3 shows that the SGLD hits a first order stationary point with the number of
iterations independent of the problem dimension.

7. Conclusion and Discussions

In this paper we present a direct analysis for hitting time of SGLD for the first and second
order stationary points. Our proof only relies on basic linear algebra, and probability theory.
Through this directly analysis, we show how different factors, such as smoothness of the
objective function, noise strength, and step size, affect the final hitting time of SGLD. We
also present three examples, online linear regression, online matrix factorization, and online
PCA, which demonstrate the usefulness of our theoretical results in understanding SGLD
for stochastic optimization tasks. An interesting future direction is to extend our proof
techniques to analyze SGLD for optimizing deep neural networks. We believe combing
recent progress in the landscape of deep learning (Yun et al., 2018; Kawaguchi, 2016; Du
and Lee, 2018; Hardt and Ma, 2016), this direction is promising.
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Appendix A. Technical Proofs of SOSP hitting analysis

In this section, we provide technical verifications of our claims made in Section 4.

A.1. Taylor expansions and preliminary lemmas

Our analysis relies on Taylor expansions near critical points. To this end, for any given
iterate Xo ∈ Ω, denote

vo := ∇F (Xo), H = ∇2F (Xo), λH = λmax(−∇2F (Xo)).

Assumption 4.1 leads to the following expansion

F (x) =F (Xo) + vTo (x−Xo) + (x−Xo)
TH(x−Xo) +R0(x−Xo), R0(x−Xo) ≤ C3‖x−Xo‖3,

∇F (x) =∇F (Xo) +H(x−Xo) +R1(x−Xo), R1(x−Xo) ≤ C3‖x−Xo‖2,
∇2F (x) =H +R2(x−Xo), ‖R2(x−Xo)‖ ≤ C3‖x−Xo‖.

where R1, R2 and R3 are reminder terms of Taylor expansion.
In order to apply the Taylor expansion, it is necessary for the subsequent iterates to be

close to Xo. To this end, we set up the following a-priori upper bound.

Lemma A.1 Assume Assumptions 3.1, 3.2 and 4.1. Suppose λH > 0. Consider the o-th
to n-th iterations, where the step sizes satisfy

ηn ≤ ηo ≤ min{(100C3)
−1, 19}.

Then we have the following deviation bound for any 1 > q > 0, Q = 5q−1λ−1H

Eo‖Xn∧τb −Xo‖2 ≤ 5q−1λ−1H exp((2 + 4q)ηo+1:nλH)ηo+1:n(δ20d+ λ−1H ‖vo‖
2 + ηoB2).

Eo‖Xn∧τb −Xo‖4 ≤ 250q−3λ−4H exp((4 + 12q)ηo+1:nλH)ηo+1:n(λ−2H ‖vo‖
4 + δ4od

2 + η2oB
2
2).

Here with a constant b ≤ qλH
C3

, τb is the stopping time of moving distance of at least b:

τb := inf{t : ‖Xn −Xo‖ ≥ b},

Therefore by Markov inequality,

Po(τb ≤ n) ≤ Eo‖Xn∧τb −Xo‖4

b4
≤ 250q−7 exp((4+12q)ηo+1:nλH)ηo+1:n(λ−2H ‖vo‖

4+δ40d
2+η2oB

2
2)C4

3λ
−5
H .√

Po(τb ≤ n) ≤ 17q−3.5 exp((2 + 6q)ηo+1:nλH)
√
ηo+1:n(λ−1H ‖vo‖

2 + δ20d+ ηoB2)λ
−2.5
H .

Proof Denote ∆Xn = Xn −Xo, it follows the recursion below,

∆Xn+1 = ∆Xn − ηn+1(vo +H∆Xn +R1(∆Xn))− ηn+1ξn+1 + δn+1ζn+1. (1.1)

Note that if τb > n, ‖∆Xn‖ ≤ b, so

‖∆Xn − ηn+1(vo +H∆Xn +R1(∆Xn))‖ ≤ (‖I − ηn+1H‖+ C3bηn+1)‖∆Xn‖+ ηn+1‖vo‖
≤ (1 + (1 + q)λHηn+1)‖∆Xn‖+ ηn+1‖vo‖.
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We take square of this bound, note that λH ≤ C2 ≤ C3, the following estimate holds because
of Young’s inequality

‖∆Xn − ηn+1(vo +H∆Xn +R1(∆Xn))‖2

≤ (1 + 2(1 + q)λHηn+1 + (1 + q)2λ2Hη
2
n+1)‖∆Xn‖2 + 4ηn+1‖vo‖‖∆Xn‖+ η2n+1‖vo‖2

≤ (1 + (2 + 3q)λHηn+1)‖∆Xn‖2 + 4ηn+1‖vo‖‖∆Xn‖+ η2n+1‖vo‖2

≤ (1 + (2 + 3q)λHηn+1)‖∆Xn‖2 + (qλHηn+1‖∆Xn‖2 + 4q−1λ−1H ηn+1‖vo‖2) + η2n+1‖vo‖2

≤ (1 + (2 + 4q)λHηn+1)‖∆Xn‖2 +Qηn+1‖vo‖2. (1.2)

Here we used that λ−1H ηn+1 ≥ C−13 ηn+1 ≥ η2n+1 and we let Q := 5q−1λ−1H . Combine this
with (1.1) we can conclude that, if τb > n

En‖∆Xn+1‖2 = ‖∆Xn − ηn+1(vo +H∆Xn +R1(∆Xn))‖2 + η2n+1B2 + δ2n+1d

≤ (1 + (2 + 4q)ηn+1λH)‖∆Xn‖2 + ηn+1(ηoB2 + δ20d+Q‖vo‖2).

Therefore we have

En‖∆Xτb∧n+1‖2 ≤ (1 + (2 + 4q)ηn+1λH)‖∆Xτb∧n‖
2 + ηn+1(ηoB2 + δ20d+Q‖vo‖2),

because it is trivial to verify if τb ≤ n. Next, because Eo‖∆Xτb∧o‖2 = 0, by Gronwall’s
inequality

Eo‖∆Xn∧τb‖
2 ≤ ηo+1:n exp((2 + 4q)ηo+1:nλH)(δ20d+Q‖vo‖2 + ηoB2).

Likewise, we can bound the fourth moment by taking square of (1.2)

‖∆Xn − ηn+1(vo +H∆Xn +R1(∆Xn))‖4

≤ (1 + (2 + 4q)λHηn+1)
2‖∆Xn‖4 + 2Qηn+1(1 + (2 + 4q)λHηn+1)‖∆Xn‖2‖vo‖2 +Q2η2n+1‖vo‖4

≤ (1 + qλHηn+1)(1 + (2 + 4q)λHηn+1)
2‖∆Xn‖4 + q−1Q2λ−1H ηn+1‖vo‖4 +Q2η2n+1‖vo‖4

≤ (1 + (4 + 10q)λHηn+1)‖∆Xn‖4 +Q3ηn+1‖vo‖4.

Therefore, by Young’s inequality, if τb > n

En‖∆Xn+1‖4 = ‖∆Xn − ηn+1(vo +H∆Xn +R1(∆Xn))‖4 + (Eη4n+1‖ξn+1‖4 + 3δ4n+1d
2)

+ 2‖∆Xn − ηn+1(vo +H∆Xn +R1(∆Xn))‖2(Eη2n+1‖ξn+1‖2 + δ2n+1d)

≤ ‖∆Xn − ηn+1(vo +H∆Xn +R1(∆Xn))‖4 + (Eη4n+1‖ξn+1‖4 + 3δ4n+1d
2)

+ qλHηn+1‖∆Xn − ηn+1(vo +H∆Xn +R1(∆Xn))‖4

+ q−1λ−1H (Eη2n+1‖ξn+1‖2 + δ2n+1d)2/ηn+1

≤ (1 + qλHηn+1)(1 + (4 + 10q)λHηn+1)‖∆Xn‖4 + (1 + qλHηn+1)ηn+1Q
3‖vo‖4

+Qηn+1(η
2
oB

2
2 + δ40d

2)

≤ (1 + (4 + 12q)λHηn+1)‖∆Xn‖4 + 2Q3λ−1H ηn+1(λ
−2
H ‖vo‖

4 + η2oB
2
2 + δ40d

2)

So we conclude that

En‖∆Xτb∧n+1‖4 ≤ (1+(4+12q)λHηn+1)‖∆Xτb∧n‖
4+2Q3λ−1H ηn+1(λ

−2
H ‖vo‖

4+η2oB
2
2 +δ40d

2),
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because it holds trivially when τb < n. Using Gronwall’s inequality,

Eo‖∆Xn∧τb‖
4 ≤ 2Q3λ−1H ηo+1:n exp((4 + 12q)ηo+1:nλH)(λ−2H ‖vo‖

4 + δ40d
2 + η2oB

2
2).

To continue, we need a series of estimates of matrix products. The following lemma
collects the results we need.

Lemma A.2 If H is a d× d real symmetric matrix with λH = λmax(−H) > 0. Let

Aj:k = (I − ηj+1H) · · · (I − ηkH)

Suppose ηi‖H‖ < 1
2 and

∑d
i=1 λi(H)1λi(H)>0 ≤ D4 We have the following estimates,

a) ‖Aj:k‖ = (1 + ηj+1λH) · · · (1 + ηkλH) ≤ exp(λHηj+1:k).

b)
∑n

j=o+1 ηj‖Aj:n‖ = ‖(I −Ao:n)H−1‖ ≤ ηo+1:n exp(λHηo+1:n).

c) (I−Ao:n)H−1Ao:n � 0. And if ηo+1:n ≥ C−13 e−ηo+1:nC3 , (I−Ao:n)H−1Ao:n � 1
2(C−13 e−ηo+1:nC3)I.

d)
∑n

j=o+1 ηjtrAj:nHAj:n ≤ −
1
4(exp(λHηo+1:n)− 1) + 2ηo+1:nD4.

e) If ηo+1:n ≥ 2
λH

log 16D4+40
λH

, then

n∑
j=o+1

δ20ηjtrAj:nHAj:n + η2jλmax(Aj:nHAj:n) ≤ −4δ20ηo+1:n.

Proof Since H is real symmetric, and Aj:k is a polynomial of H, the proofs goes by
checking the eigenvectors. Let −λH = λ1 < · · · < λd be the eigenvalues of H, and vi be
their eigenvectors with norm being 1. Then

Aj:kvi = (1− ηj+1λi) · · · (1− ηkλi)vi.

Since we assume that |ηiλi| < 1, so claim a) is straightforward.
Note that Aj−1,n + ηjHAj:n = Aj:n, An:n = I, so

∑n
j=1 ηjHAj:n = I − Ao:n. Because

Aj:n is a polynomial of H, it commutes with H, so
∑n

j=1 ηjAj:nH = I −Ao:n as well. Note

that (I −Ao:n)H−1 is a polynomial of H, so it is always well defined even if H is singular.
Therefore,

‖(I −Ao:n)H−1‖ =

n∑
j=o+1

ηj‖Aj:n‖ ≤ ηo+1:n max
o+1≤j≤n

‖Aj:n‖ ≤ ηo+1:n exp(λHηo+1:n).

As for claim c), it is easy to check that for any uni-norm eigenvector vi,

vTi (I −Ao:n)H−1Ao:nvi = λ−1i (1− ai)ai > 0, ai := (1− λiηo+1) · · · (1− λiηn).

We only need to show λ−1i (1− ai)ai ≥ 1
2(C−13 e−ηo+1:nC3).
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When λi ≤ 0, ai will be larger than 1, so

λ−1i (1− ai)ai ≥ λ−1i (1− ai) ≥ ηo+1:n,

and we can get to our claim c). We only need to concern the case that λi > 0. If ai >
1
2 ,

since (1− λiηo+1)(1− λiηo+2) ≥ (1− λiηo+1:o+2)

λ−1i (1− ai)ai ≥
1

2
λ−1i (1− ai) ≥

1

2
λ−1i (1− (1− λiηo+1:n)) ≥ 1

2
ηo+1:n.

This is larger than our claimed lower bound. When ai ≤ 1
2 , note that ai ≥ exp(−2λiηo+1:n),

so

λ−1i (1− ai)ai ≥
1

2
λ−1i ai ≥

1

2
C−13 exp(−2C3ηo+1:n).

As for claim d), note that vTi Aj:nHAj:nvi shares the same sign with λi, in particular it
is negative if λi < 0.

If λi ≥ 0, then

vTi A
2
j:nvi − vTi A2

j−1:nvi = (2ηjλi − η2jλ2i )vTi A2
j:nvi ≥ ηjvTi Aj:nHAj:nvi.

Summing over both sides for j = o+ 1 to n, we find

n∑
j=o+1

ηjv
T
i Aj:nHAj:nvi ≤ 1− vTi A2

o:nvi ≤ 1− exp(−2ηo+1:nλi).

If λi < 0,

vTi A
2
j:nvi − vTi A2

j−1:nvi = (2ηjλi − η2jλ2i )vTi A2
j:kvi ≥ 4ηjv

T
i Aj:nHAj:nvi.

n∑
j=o+1

ηjv
T
i Aj:nHAj:nvi ≤

1

4
− 1

4
vTi A

2
o:nvi ≤

1

4
− 1

4
exp(−ηo+1:nλi) ≤ 0.

Here we used that (1 + |λiηj |) ≥ exp(12 |λiηj |) when |λiηj | < 1
2 , which is true under our as-

sumption of step sizes. Note that − exp(−x) is a concave function, so by Jensen’s inequality,
for any m,

m∑
i=1

(1− exp(−xi)) ≤ m−m exp

(
−
∑m

i=1 xi
m

)
.
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Using this, assuming there are d+ positive eigenvalues, and their sum is below D4, we find
that

n∑
j=o+1

ηjtr(Aj:nHAj:n) =

d∑
i=1

n∑
j=o+1

ηjv
T
i Aj:nHAj:nvi

=

n∑
j=o+1

ηjv
T
1 Aj:nHAj:nv1 +

d∑
i:λi≥0

n∑
j=o+1

ηjv
T
i Aj:nHAj:nvi (1.3)

≤ 1

4
(1− exp(λHηo+1:n)) +

d∑
i:λi≥0

1− exp(−2ηo+1:nλi)

≤ 1

4
(1− exp(λHηo+1:n)) + d+

(
1− exp(−2ηo+1:nD4

d+
)
)

≤ 1

4
(1− exp(λHηo+1:n)) + 2ηo+1:nD4.

Claim e) is a consequence of claim d). Note that

n∑
j+1

η2j max
i
vTi Aj:nHAj:nvi ≤ ηo

n∑
j=o+1

d∑
i:λi≥0

ηjv
T
i Aj:nHAj:nvi.

This is the same as the second part of (1.3), we find it is bounded above by 2ηoηo+1:nD4 ≤
2δ20ηo+1:nD4. In other words, we find that

n∑
j+1

δ20ηjtr(Aj:nHAj:n) + η2j max
i
vTi Aj:nHAj:nvi ≤

δ20
4

(1− exp(λHηo+1:n)) + 4ηo+1:nδ
2
0D4.

Note that for any x, by convexity of eλx

eλx − 1 = λ

∫ x

0
eλydy ≥ λ

∫ x

0
e

1
2
λxdy = λxe

1
2
λx.

So it suffices to show that

λH exp(
1

2
λHηo+1:n) ≥ 16D4 + 40.

Taking log we have

ηo+1:n ≥
2

λH
log

16D4 + 40

λH
,

which is our condition.

A crucial step in the proof is a careful analysis of the noise and the reminder terms. In
the next lemma, we give estimates for these perturbations.
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Lemma A.3 Denote Aj:k =
∏k
i=j+1(I − ηiH), and ∆Xn = Xn − Xo, then it admits the

following decomposition,

∆Xn = Un + rn,

where

Un :=

n∑
j=o+1

Aj:n(−ηjvo + δjζj − ηjξj), rn :=

n∑
j=o+1

Aj:nηjR1(∆Xj).

Let event

A = {‖∆Xk‖ ≤ b, k = o, o+ 1, . . . , n} = {τb > n}.

Then

Eo‖Un‖2 ≤ η2o+1:n exp(2λHηo+1:n)(‖vo‖2 + dδ20 + ηoB2). (1.4)

Eo‖Un‖4 ≤ 162(ηo+1:n)2 exp(4λHηo+1:n)((ηo+1:n)2‖vo‖4 + d2δ40 + η2oB
2
2)

and

Eo‖rn‖21A ≤ 2(101ηo+1:n)3λ−1H C2
3 exp((6 + 12q)ηo+1:nλH)(λ−2H ‖vo‖

4 + δ40d
2 + η2oB

2
2).

Proof Since ζj are i.i.d. noises, it is easy to obtain an upper bound for Un by Lemma A.2
a) and b),

Eo‖Un‖2 = ‖(I −A0:n)H−1vo‖2 + δ20

n∑
j=o+1

ηjtr(A
2
j:n) +

n∑
j=o+1

η2j tr(A
2
j:nEoξjξTj )

≤ ‖(I −A0:n)H−1vo‖2 + dδ20

n∑
j=o+1

ηj‖Aj:n‖2 +

n∑
j=o+1

ηjηo‖Aj:n‖2tr(EoξjξTj )

(1.5)

≤ η2o+1:n exp(2λHηo+1:n)‖vo‖2 + (dδ20 + ηoB2)ηo+1:n exp(2λHηo+1:n) (1.6)

≤ η2o+1:n exp(2λHηo+1:n)(‖vo‖2 + dδ20 + ηoB2). (1.7)

The 4th moment can be bounded first by Holder’s inequality,

Eo‖Un‖4 ≤ 27‖(I −A0:n)H−1vo‖4 + 27Eo

∥∥∥∥∥∥
n∑

j=o+1

δjAj:nζj

∥∥∥∥∥∥
4

+ 27Eo

∥∥∥∥∥∥
n∑

j=o+1

ηjAj:nξj

∥∥∥∥∥∥
4

.

By Lemma A.2 a) and b),

‖(I −A0:n)H−1vo‖4 ≤ (ηo+1:n)4 exp(4λHηo+1:n)‖vo‖4.

Note that if xi are sequences of mean zero random vectors,

E‖
∑

xi‖4 =
∑
i,j,k,l

E〈xi, xj〉〈xk, xl〉 ≤
∑
i,j

E〈xi, xj〉2 + ‖xi‖2‖xj‖2 ≤ 2
∑
i,j

E‖xi‖2‖xj‖2
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Therefore

Eo

∥∥∥∥∥∥
n∑

j=o+1

δjAj:nζj

∥∥∥∥∥∥
4

≤ 2
n∑

i,j=o+1

δ2i δ
2
jEo‖Ai:nζi‖2‖Aj:nζj‖2 ≤ 2

n∑
i,j=o+1

δ2i δ
2
j exp(4λHηo+1:n)(d2 + 2d)

= 6(ηo+1:n)2δ4o exp(4λHηo+1:n)d2.

Likewise,

Eo

∥∥∥∥∥∥
n∑

j=o+1

ηjAj:nξj

∥∥∥∥∥∥
4

≤ 2
n∑

i,j=o+1

ηiηjη
2
oEo‖Ai:nξi‖2‖Aj:nξj‖2

≤ 2η2o(ηo+1:n)2 exp(4λHηo+1:n)B2
2 .

In conclusion,

Eo‖Un‖4 ≤ 162(ηo+1:n)2 exp(4λHηo+1:n)((ηo+1:n)2‖vo‖4 + d2δ40 + η2oB
2
2)

By Cauchy Schwartz, the estimates in Lemma A.1, and finally Lemma A.2 b),

Eo‖rn‖21A = Eo

∥∥∥∥∥∥
n∑

j=o+1

Aj:nηjR1(∆Xj)1A

∥∥∥∥∥∥
2

≤

 n∑
j=o+1

ηj‖Aj:n‖

 n∑
j=o+1

ηj‖Aj:n‖Eo1A‖R1(∆Xj)‖2


≤ 2

 n∑
j=1

ηj‖Aj:n‖

2

max
j≤n

C2
3Eo1A‖∆Xj‖4

≤ 500q−7(ηo+1:n)3λ−1H C2
3 exp((6 + 12q)ηo+1:nλH)(λ−2H ‖vo‖

4 + δ40d
2 + η2oB

2
2).
(1.8)

Here we used that η2oB
2
2 ≤ ηoB2.

A.2. Proof of Lemma 4.2

With these lemmas at hand, we are ready to prove Lemma 4.2.
Proof [Proof of Lemma 4.2] Let A be the event that τb > n, i.e. ‖Xk − Xo‖ ≤ b for all
o ≤ k ≤ n. We will decompose the desired quantity into two parts:

EoF (Xn∧τb)− F (Xo) = Eo(F (Xn∧τb)− F (Xo))1Ac + Eo(F (Xn)− F (Xo))1A. (1.9)

Let’s bound the first term. We apply a 2nd order Taylor expansion of F (x) near Xo, we
find for some point z, the following holds

|F (x)−F (Xo)| =
∣∣vTo (x−Xo) + (x−Xo)

T∇2F (z)(x−Xo)
∣∣ ≤ C3‖x−Xo‖2+‖vo‖‖x−Xo‖.
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Therefore by Lemma A.1, for a constant C6,

Eo|F (Xτb∧n)− F (Xo)|1Ac ≤
√

Eo|F (Xτb∧n)− F (Xo)|2Po(Ac)

≤
√

2(EoC2
3‖Xτb∧n −Xo‖4 + ‖vo‖2‖Xτb∧n −Xo‖2)

√
Po(Ac)

≤ exp((3 + 6q)ηo+1:nλH)
√

Po(Ac)

·
(

17q−1.5(ηo+1:n)1.5C3λ
−1/2
H (λ−1H ‖vo‖

2 + δ20d+ ηoB2)

+ 3‖vo‖
√
q−1ηo+1:nλ

−1/4
H

√
λ−1H ‖vo‖2 + δ2od+ ηoB2

)
(1.10)

≤ ηo+1:nC6 exp((3 + 6q)ηo+1:nλH)
√

Po(Ac)δ20d. (1.11)

In the last step above, we use the following comes from by our parameter setting,

ηoB2 ≤ δ20 , ‖vo‖ ≤ δ0
√

min{dλH , d, dη−1o+1:n}. (1.12)

Next, we bound Eo(F (Xn)− F (Xo))1A.
For the τb ≥ n case, we employ the Taylor expansion of F (x) near Xo:

F (Xn)− F (Xo) = vTo ∆Xn + ∆XT
nH∆Xn +R0(∆Xn)

= (vTo Un + UTnHUn) + vTo rn + 2rTnHUn + rTnHrn +R0(∆Xn).

This leads to the following bound

Eo(F (Xn)− F (Xo))1A ≤Eo(vTo Un + UTnHUn) + Eo
(
vTo rn + 2rTnHUn + rTnHrn +R0(∆Xn)

)
1A

+ Eo|vTo Un + UTnHUn|1Ac (1.13)

Note that Aj−1:n + ηjHAj:n = Aj:n, so

EvTo Un = −
n∑
j=1

ηjv
T
o Aj:nvo = −vTo (I −A0:n)H−1vo.

And by independence, we obtain EoUTnHUn

EoUTnHUn = vTo

 n∑
j=o+1

Aj:nηj

H

 n∑
j=o+1

Aj:nηj

 vo +
n∑

j=o+1

δ2j trAj:nHAj:n +
n∑

j=o+1

η2j trAj:nHAj:nEoξjξTj

= vTo (I −Ao:n)H−1(I −Ao:n)vo + δ20

n∑
j=o+1

ηjtrAj:nHAj:n +
n∑

j=o+1

η2j trAj:nHAj:nEoξjξTj .

So by Lemma A.2 c) and e), and that tr(CB) ≤ λmax(C)tr(B) for all symmetric C and
PSD matrix B, we find that

EovTo Un + UTnHUn = −vTo (I −A0:n)H−1A0:nvo + δ20

n∑
j=o+1

ηjtrAj:nHAj:n +
n∑

j=o+1

η2j trAj:nHAj:nEoξjξTj

≤
n∑

j=o+1

δ20ηjtrAj:nHAj:n +B2η
2
jλmax(Aj:nHAj:n)

≤ −4δ20ηo+1:n.
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Plug in estimates from Lemma A.3, note that η2o+1:n ≤ (ηo+1:n)2,

Eo(vTo Un + UTnHUn)1Ac ≤ ‖vo‖
√
Po(Ac)Eo‖Un‖2 + ‖H‖

√
Po(Ac)Eo‖Un‖4

≤ ηo+1:n exp(λHηo+1:n)
√

Po(Ac)dδ20 + 8C3ηo+1:n exp(2λHηo+1:n)dδ20
√

Po(Ac)

≤ ηo+1:nC6 exp(2λHηo+1:n)dδ20
√
Po(Ac). (1.14)

Recall that under our conditions,

max{‖vo‖2, ηo+1:n‖vo‖2, λ−1H ‖vo‖
2, ηoB2} ≤ δ20d.

So by Young’s inequality, and Lemma A.3, we can increase C6 so that the following hold

EovTo rn1A ≤ ‖vo‖
√

Eo‖rn‖21A ≤ C6(ηo+1:n)1.5 exp((3 + 6q)ηo+1:nλH)δ30d
3/2

2Eo1ArTnHUn ≤ 2
√

Eo1A‖rn‖2Eo1A‖HUn‖2 ≤ λ−0.5H C2
6 (ηo+1:n)2 exp((6+12q)ηo+1:nλH)δ30d

3
2 ,

Eo1ArTnHrn ≤ Eo1AC3‖rn‖2 ≤ C3
6λ
−1
H (ηo+1:n)3 exp((6 + 12q)ηo+1:nλH)δ40d

2.

Because of Young’s inequality and Lemma A.1

Eo1AR0(∆Xn) ≤ C3Eo1A‖∆Xn‖3 ≤ C3[Eo1A‖∆Xn‖4]
3
4 ≤ C6λ

−3
4

H (ηo+1:n)3 exp((9+18q)ηo+1:nλH)δ30d
3
2 .

Under our assumptions, δ0
√
d ≤ 1 so

Eo1A(vTo rn+2rTnHUn+rTnHrn+R0(∆Xn)) ≤ ηo+1:n exp((9+18q)ηo+1:nλH)(C3
6δ

3
0d

3
2 +C5

6δ
4
0d

2).
(1.15)

Put these estimates back in (1.13), and eventually in (1.9), we find

EoF (Xn∧τb)− F (Xo) ≤ −4δ20ηo+1:n (EovTo Un + UTnHUn)

+ ηo+1:n exp((9 + 18q)ηo+1:nλH)(C3
6δ

3
0d

3
2 + C5

6δ
4
0d

2) (from (1.15))

+ ηo+1:nC
2
6 exp(2λHηo+1:n)

√
Po(Ac)dδ20 (from (1.14))

+ ηo+1:nC
2
6 exp((3 + 6q)ηo+1:nλH)

√
Po(Ac)δ20d (from (1.11))

We also need to plug in the bound for
√
Po(Ac) from Lemma A.1, which is simplified by

(1.12): √
Po(τb ≤ n) ≤ C5

6 exp((2 + 6q)ηo+1:nλH)δ20d.

In conclusion, we have

EoF (Xn∧τb)− F (Xo)

ηo+1:n
≤ −4δ20 + C3

6 exp((9 + 18q)ηo+1:nλH)δ30d
3
2 + C7

6 exp((5 + 12q)ηo+1:nλH)δ40d
2.

Under our conditions,

1 ≥ C3
6 exp((9 + 18q)ηo+1:nλH)δ0d

3
2 , 1 ≥ C7

6 exp((5 + 12q)ηo+1:nλH)δ20d
2,

This leads to our final claim.
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A.3. Proof of Theorem 4.3

To conclude this section, we give the proof of Theorem 4.3 below.
Proof [Proof of Theorem 4.3] Consider the following sequence of stopping times with τ0 = 0,

τk+1 =


τk if τsosp ≤ τk;
τk + 1 if ‖∇F (Xτk)‖ ≥ 2ε0, τsosp > τk;

min{t : ητk+1:t ≥ 2Dk, or ‖Xt −Xτk‖ ≥ C3/2λH} otherwise.

Here Dk = 2
λH

log 16D4+40
λH

with λH = λmax(−∇2F (Xτk)).
If τsosp ≤ τk, then the following holds trivially

EτkF (Xτk+1
) = F (Xτk)− ε20ητk+1:τk+1

, a.s..

By (3.4) and strong Markov property, if ‖∇F (Xτk)‖ ≥ 2ε0,

EτkF (Xτk+1
) ≤ F (Xτk)− ε20ητk+1 = F (Xτk)− ε20ητk+1:τk+1

, a.s..

If ‖∇F (Xτk)‖ ≤ 2ε0, τsosp > τk, then λmax(−∇2F (Xτk)) > λε. By Lemma 4.2 and strong
Markov inequality, we also obtain the same inequality that

EτkF (Xτk+1
) ≤ F (Xτk)− ε20ητk+1:τk+1

, a.s..

Next we add in the requirement that time horizon is before N . Note that

1τk+1≥NF (Xτk+1∧N )− 1τk≤NF (Xτk∧N ) ≤ 1τk≤N≤τk+1
C0, ε20Q ≥ ε20ητk+1:τk+1∧N , a.s..

we have

EτkF (Xτk+1∧N )− F (Xτk∧N ) ≤ Eτk1τk+1≥N (C0 + ε20Q)− ε20ητk+1:τk+1∧N , a.s..

Also from our previous derivations,

Eτk1τk+1≤NF (Xτk+1
)− 1τk≤NF (Xτk)

= 1τk≤NEτk(F (Xτk+1
)− F (Xτk))− 1τk≤N≤τk+1

F (Xτk+1
)

≤ −1τk≤N ε
2
0Eτkητk+1:τk+1

− Eτk1τk≤N≤τk+1
F (Xτk+1

), a.s..

Let K be the first k such that τk ≥ N or τk ≥ τsosp. Then τsosp ∧N ≤ τK ∧N . Summing
the previous inequalities for all k ≤ K, and take total expectation,

E1τK≤NF (XτK∧N )− F (X0) ≤ E− ε20η1:τK−1 − 1N≤τKF (XτK ).

So we find that

Eη1:τK−1 ≤
1

ε20
E(F (XτK∧N )− F (X0)) ≤

2C0

ε20
.

Then note that for any k ητk−1:k ≤ 2Q, so

Eη1:τK ≤ 2Q+
2C0

ε20
.

So by Markov inequality

P(τsosp > N) ≤ Eη1:τK
η1:N

≤ 2Q+ 2C0ε
−2
0

η1:N
.
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Appendix B. Technical Proofs of ergodicity

B.1. Time points and recurrence

Since our SGLD is a time-inhomogeneous Markov chain, the first step is to design a sequence
of time points ni so that {Xni , i ≥ 0} is approximately a time-homogeneuous Markov chain.
This is done by Lemma B.1, where δ will be chosen as ε0 when applied to Theorem 5.2.

Once we have established these time points, we wish to show Xni visits a compact set
infinite many times. The compact set is chosen as a sub-level set of F .

Lemma B.1 Under Assumption 5.1, we have the following iteration indices:

a) Let n0 be an index such that ηn ≤ δ when n ≥ n0. Let nk be sequence of iteration index
nk+1 = inf{s > nk + 1 : ηnk+1:s ≥ δ}, then ηnk+1:nk+1

≤ 2δ.

b) We have the following Lyapunov-type inequality

EnkF (Xnk+1
) ≤ exp(− c7

2 δ)F (Xnk) + δ
(
D7 + 6δB1 + 6dδ20

)
. (2.1)

c) If we let

K :=

⌈
2 log 1

2MV /EF (Xn0)

c7δ

⌉
,

then

EF (XnK ) ≤MV :=
8

c7

(
D7 + 6δB1 + 6dδ20

)
.

d) Define a sequence of stopping times with τ0 = K,

τk+1 = inf{t : t ≥ τk + 1, F (Xnt) ≤MV }, k ≥ 1;

Then

Eτj ≤ K + j +
8j

c7δ
, j ≥ 1.

Remark B.2 If we have further tail conditions of the stochastic perturbation, it is often
possible to show eλF also have Lyapunov-type inequality. This will provide an exponential
tail bound for τj, and lead to geometric convergence in Theorem 5.2.

Proof For claim a), simply note the ηn decrease to zero as n → ∞. Moreover, by the
definition of nk

ηnk+1:nk+1
≤ ηnk+1:nk+1−1 + ηnk+1

≤ 2δ.

For claim b), recall the proof of Theorem 3.3, we have

EnF (Xn+1) ≤ F (Xn)− 1

2
ηn+1‖∇F (Xn)‖2 + 3η2n+1B1 + 3dδ20ηn+1.

We require that ‖∇F (X)‖2 ≥ c7F (X)−D7, so

EnF (Xn+1) ≤ (1− c7
2 ηn+1)F (Xn) +

1

2
ηn+1D7 + 3η2n+1B1 + 3dδ20ηn+1

≤ exp(− c7
2 ηn+1)F (Xn) +

1

2
ηn+1D7 + 3η2n+1B1 + 3dδ20ηn+1.
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By iterating this inequality m times, we have

EnF (Xn+m) ≤ exp(− c7
2 ηn+1:n+m)F (Xn) +

n+m∑
k=n+1

1

2
ηkD7 + 3η2kB1 + 3dδ20ηk

≤ exp(− c7
2 ηn+1:n+m)F (Xn) + ηn+1:n+m

(
1

2
D7 + 3ηn+1B1 + 3dδ20

)
.

In particular, we have

EnkF (Xnk+1
) ≤ exp(− c7

2 δ)F (Xnk) + δ
(
D7 + 6δB1 + 6dδ20

)
.

For claim c), iterate (2.1) k times, we have for small enough δ

EF (Xnk) ≤ exp(− c7k
2 δ)EF (Xn0) +

4

c7

(
D7 + 6δB1 + 6dδ20

)
,

and we can find

K :=

⌈
2 log 1

2MV /EF (Xn0)

c7δ

⌉
,

such that EF (XnK ) ≤MV . So if we increase n0 to nK we have the claimed result.
For claim d), consider stopping time τ := inf{k ≥ K : F (Xnk) ≤ MV }, denote V (k) =

F (Xnk). Then from claim b) we have

EnkV (k + 1) ≤ (1− γ)V (k) +BV , BV := δ
(
D7 + 6δB1 + 6dδ20

)
, γ := 1− exp(− c7

2 δ).

We will verify that for any t

EntV (τ ∧ (t+ 1)) + 2BV τ ∧ (t+ 1) ≤ V (τ ∧ t) + 2BV τ ∧ t a.s.. (2.2)

To see this, note that if τ ≤ t, the inequality (2.2) trivially holds. And if τ ≥ t+ 1,

V (t) ≤MV ≤
4BV
γ

,

and it suffices to show
EntV (t+ 1) + 2BV ≤ V (t) a.s..

But this can be obtained by observing that −γV (t) ≥ −4BV , so

EntV (t+ 1) ≤ V (t)− γV (t) + 2BV ≤ V (t)− 2BV a.s..

With (2.2) verified, we know that V (τ ∧ t) + 2BV τ ∧ t is a supermartingale, therefore by
letting t→∞, we find that

2BV EnKτ ≤ EnKV (τ) + 2BV EnKτ ≤ V (K) + 2BVK a.s..

In particular, note that τk+1 is essentially the next τ after τk + 1, so by strong Markov
property,

2BV Enτk (τk+1 − τk − 1) ≤ V (τk + 1) a.s..
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Taking total expectation, we have

2BV Eτk+1 − τk − 1 ≤ EV (τk + 1).

Adding over all k, note that τ0 = K, we have

Eτj ≤ K + j +
1

BV

j∑
k=0

EV (τk + 1).

Also note that V (τk) ≤MV , so

EV (τk + 1) = EEnτkV (τk+1) ≤ (1− γ)EV (τk) +BV ≤ (1− γ)MV +BV ≤MV .

So Eτj ≤ j +K + jMV
BV

.

B.2. Reachablity

In Markov chain analysis, one crucial step showing ergodicity is verifying that when the
Markov chain starts from a recurrent compact set, it has a positive chance of reach a
target. In our context, we wish to show the SGLD can visit a target point z0 with positive
probability bounded from below.

Lemma B.3 Under Assumption 5.1, suppose ‖Xni‖ ≤ DX , ‖z0‖ ≤ DX , then for any ε > 0

P
(
‖Xni+1 − z0‖ ≤ (8DX + 1)ε+ 2δ

√
B4

)
> cα :=

1

4
P
(
‖Z − 2DX

δ0
√
δ
e1‖ ≤ ε

δ0
√
2δ

)
,

where Z ∼ N(0, Id) and e1 = [1, 0, 0, . . . , 0] is the first Euclidean basis vector.

Proof For notational simplicity, we let ni = o and m = ni+1 − ni. By iterating (1.6) k
times, we write

Xo+k = Xo +
k∑
j=1

ηo+j∇F (Xo+j−1) + Yk + Zk

where

Yk :=

k∑
j=1

ηo+jξo+j , Zk :=

k∑
j=1

δ0
√
ηo+jζo+j .

Let z = z0 −Xo. Denote event:

A := {‖Zm − z‖ ≤ ε, ‖Zk‖ ≤ ‖z‖+ ε+ 2, ‖Yk‖ ≤ 2δ
√
B4, k = 1, . . . ,m}.

Apply Lemma B.4 with aj = ηo+j , we know that

P(A) ≥ 1

4
P
(
‖Z − z

δ0
√
δ
‖ ≤ δ0

√
δ/2
)
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Note that the lower bound decreases as ‖z‖ increase, so we can obtain an lower bound by
considering z with the maximum norm. Now consider when A takes place. Note that if
‖Xo+j‖ ≤ 4DX for all j ≤ k − 1 then ∇F (Xo+j) ≤ DF ,

‖Xo+k‖ ≤ ‖Xo‖+ ηo+1:o+kDF + ‖z‖+ ε+ 2δ
√
B4 ≤ 4DX ,

so ‖Xo+j‖ ≤ 4DX for all j = 1, . . . ,m. Moreover,

‖Xo+m − z0‖ ≤ ‖Zm − z0‖+ ‖Ym‖+ ηo+1:o+mDF ≤ (2DF + 1)ε+ 2δ
√
B4.

Lemma B.4 For any sequence ak > 0 such that δ ≤ a1:n :=
∑n

j=1 aj ≤ 2δ and δ < 1
d , the

following holds:

a) Suppose we let

Zk =
k∑
j=1

δ0
√
ajζj , ζj ∼ N (0, Id), k ≥ o+ 1

Then for any target vector z and distance r

P(‖Zn − z‖ ≤ r, ‖Zk‖ ≤ ‖z‖+ r + 2δ0, k = 1, . . . , n) ≥ 3

4
P(‖Z − z

δ0
√
δ
‖ ≤ r

δ0
√
2δ

)

where Z is a random variable follows N (0, Id).

b) Let FZ denote the σ-algebra generated by Z1, . . . , Zn as in a). Suppose ξk is a sequence
of random vectors, such that

E(ξk|FZ , ξj , j < k) = 0, E(‖ξk‖2|FZ , ξj , j < k) ≤ B4.

Let Yk =
∑k

j=1 ajξj then

P(‖Yk‖ ≤ 2δ
√
B4|FZ) ≥ 1

2
.

Proof For claim a), it is easy to verify the joint distribution of [Z1, . . . , Zn]/δ0 is the same
as the distribution of [Wt1 , . . . ,Wtn ], where ti = a1:i and W is a d-dimensional Wiener
process. Note that

P(‖Wtn − z‖ ≤ r/δ0) = P(‖
√
a1:nZ − z‖ ≤ r/δ0) = P(‖Z − z/

√
a1:n‖ ≤ r/δ0

√
a1:n)

≤ P(‖Z − z/
√
δ‖ ≤ r/δ0

√
2δ).

And when conditioned on Wtn = w, Wt<tn is known as a Brownian bridge. By Karatzas
and Shreve, The distribution of its path is the same as

Xt =
t

tn
w + (Bt −

t

tn
Btn),
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where Bt is another independent Wiener process. So with any w, ‖w‖ ≤ ‖z‖+ r,

P(‖Wt‖ ≤ ‖z‖+r+2,∀t ≤ tn|Wtn = w) = P(‖Xt‖ ≤ ‖z‖+r+2, t ≤ tn) ≥ P(‖Bt‖ ≤ 2, ∀t ≤ tn).

Consider bt = ‖Bt‖2− td. It is easy to check that bt is a martingale. Let τ = inf{t : ‖Bt‖2 ≥
4d}. Then

E‖Bt∧τ‖2 = Ebt∧τ + dEt ∧ τ ≤ dtn.

So by Markov inequality

P(‖Bt‖2 ≥ 4 for some t ≤ tn) ≤ P(‖Bt∧τ‖2 ≥ 4) ≤ dtn
4
≤ 1

4
.

Claim a) can be obtained by tower property.
For claim b), note that yk = ‖Yk‖2 − a1:kB4 is a supermartingale conditioned on FZ .

Let τ be the first time that ‖Yk‖2 ≥ 4δB4, then the expectation conditioned on FZ yields

EZ‖Yτ∧k‖2 ≤ EZa1:τ∧kB4 + Eyk∧τ ≤ B4EZa1:τ∧k ≤ 2B4δ

So Markov inequality leads to

PZ(Yk ≤ 2
√
δB4,∀k = 1, . . . , n) ≥ 1

2
.

B.3. Proof for Theorem 5.2

Once we have both recurrence and reachability, it is intuitive to see why SGLD can visit an
arbitrary point z0 in the space: SGLD will visit a sub-level set of F infinitely many times,
and each time it has a positive probability to visit z0.
Proof Let δ satisfies the following: Let n0 be an index such that ηn ≤ δ when n ≥ n0. Let
nk be sequence of iteration index nk+1 = inf{s > nk + 1 : ηnk+1:s ≥ δ}.

Define a sequence of stopping times with τ0 = K,

τ0 = t0, τk+1 = inf{t : t ≥ τk + 1, F (Xnt) ≤MV }, k ≥ 1;

and the stopping time
τ∗ = inf{t > 0 : ‖Xnt − z0‖ ≤ ε}.

To prove Theorem 5.2, it suffices to show that P(τ∗ ≥ T ) ≤ p0 with a choice of T . Then
note that for any J

P(τ∗ ≥ T ) = P(τ∗ ≥ T, τJ > T ) + P(τ∗ ≥ T, τJ ≤ T )

≤ P(τJ > T ) + P(‖Xnτk+1 − z0‖ > ε, τJ ≤ T, k = 1 · · · , J)

≤ P(τJ > T ) + P(‖Xnτk+1 − z0‖ > ε, k = 1 · · · , J).

Lemma B.1 shows that

EτJ ≤ K + J +
8J

c7δ
.
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In particular, by Markov inequality, we can choose an T ≥
K+J+ 8J

c7δ

2p0
such that

P(τJ ≥ T ) ≤ EτK
T
≤ 1

2
p0.

Note that F (Xnτk
) ≤MV implies ‖Xnτk

‖ ≤ DX . So by Lemma B.3, there is a cα such that

Pnτk (‖Xnτk+1 − z0‖ > (8DX + 1)ε+ 2δ
√
B4) ≤ 1− cα.

Because that Vi(τk) ≤MV , so

P(‖Xnτk+1 − z0‖ > ε, k = 1 · · · , J) = E
J∏
k=1

Pnτk (‖Xnτk+1 − z0‖ > ε) ≤ (1− cα)J .

Pick a large J = d log 1
2
p0

log(1−cα)e so that (1− cα)J ≤ 1
2p0. In summary we need

T ≤

⌈
2 log 1

2
MV /EF (Xn0 )

c7δ

⌉
+ d log 1

2
p0

log(1−cα)e(1 + 8
c7δ

)

2p0
.

Also recall that 2δT ≥ ηn0:nT ∝ η0n
1−α
T , so nT ∝ [ T

2δη0
]

1
1−α .

B.4. Proof of Lemma 5.3

Proof It is easy to see that Xn and Yn are both Gaussian distributed with mean being
zero, given the linearity. The variance at step n follow the update

V x
n = (1− ηn)2V x

n−1 + ηn, V y
n = (1− ηn)2V y

n−1 + η2n.

For any fixed ε > 0, there is an m so that ηn ≤ ε for all n ≥ m.
Then if V y

n−1 ≥ 2ε

V y
n ≤ (1− ηn)V y

n−1 − ηn(V y
n−1 − ηnV

y
n−1 − ηn) ≤ (1− ηn)V y

n−1 ≤ V
y
n−1.

If V y
k ≥ 2ε for m ≤ k ≤ n, V y

n ≤ exp(−ηm+1:n)V y
m. Since ηm+1:n → ∞, there is a τ such

that V y
τ ≤ 2ε. And after n ≥ τ , there is two scenarios, if V y

n−1 ≥ 2ε, V y
n ≤ V y

n−1. If
V y
n−1 ≤ 2ε, V y

n ≤ V y
n−1 + η2n ≤ 2ε+ 4ε2. So we conclude that

lim sup
n→∞

V y
n ≤ 2ε+ 4ε2.

Since this holds for all ε, we find that limn V
y
n = 0. As for V x

n , we set ∆x
n = V x

n − 1
2 . We

find its update rule follows

∆x
n = (1− ηn)2∆x

n +
1

2
η2n.

This is similar to the update rule of V y
n . So by the same arguments, we find that ∆x

n → 0
and V x

n → 1
2 .
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Appendix C. Technical Proofs in Section 6

In this section, we provide detailed calculations of the assumption constants for each example
discussed in Section 6

Proof [Proof of Proposition 6.1] The Hessian of F is given by A, which is PSD, so D4, C2

can be bounded by tr(A). Next, we check the noise term in the stochastic gradient:

ξn+1 = A(Xn+1 − x∗)− an+1(a
T
n+1Xn − bn+1) = (A− an+1a

T
n+1)(Xn − x∗) + εn+1an+1.

By Hölder’s inequality, there is a constant c such that

En‖ξn+1‖4 ≤ 8En‖(A− an+1a
T
n+1)(Xn − x∗)‖4 + 8En‖εn+1an+1‖4

≤ 8‖Xn − x∗‖4En(‖A‖+ ‖an+1‖2)4 + 24En‖an+1‖4

≤ 64‖Xn − x∗‖4‖A‖4 + 64× 105‖Xn − x∗‖4tr(A)4 + 24× 3tr(A)2

≤ c2tr(A)4(‖Xn − x∗‖4 + 1).

Therefore we can choose B2 = ctr(A)2(Γ2 + 1). By Cauchy’s inequality, then

EnξTn+1∇2F (Xn)ξn+1 ≤ tr(A)En‖ξn+1‖2 ≤ ctr(A)3(Γ2 + 1).

To check Assumption 5.1, note that ∇F (x) = A(x−x∗), so ‖∇F (x)‖2 ≥ 2λmin(A)F (x)2.
Also note that

F (x) =
1

2
(x− x∗)TA(x− x∗) +

1

2
≥ 1

2
λmin(A)‖x− x∗‖2 ≥ 1

4
λmin(A)‖x‖2− 1

4
λmin(A)‖x∗‖2.

Proof [Proof of Proposition 6.2] The gradient and Hessian are given by

∇F (X) = 2(XXT −M)X ⇒ ‖∇F (X)‖ ≤ 4‖Γ‖3.

The Hessian can be defined by its product with two specified matrices Z:

〈Z,∇2F (X)Z〉 = ‖XZT + ZXT ‖2F + 2〈XXT , ZZT 〉 − 2〈M,ZZT 〉

We check C2 = max‖Z‖F=1〈Z,∇2F (Xn)Z〉, but for any Z with Frobenius norm 1, we find
that

‖XnZ
T ‖2F ≤ ‖Xn‖2F ‖Z‖2F ≤ Γ, 〈XnX

T
n , ZZ

T 〉 ≤ ‖Xn‖2F ‖Z‖2 ≤ Γ, 〈M,ZZT 〉 ≥ 0,

So C2 ≤ 24Γ. Next we check D4 = tr+(∇2f). Since M is positive definite, so 〈M,ZZT 〉 ≥ 0,
so

〈Z,∇2F (X)Z〉 ≤ ‖XZT + ZXT ‖2F + 2〈XXT , ZZT 〉

Then for each eigenvector Z of ∇2f , its eigenvalue λ has its positive part bounded by

[λ]+ = [〈Z,∇2F (X)Z〉]+ ≤ ‖XZT + ZXT ‖2F + 2〈XXT , ZZT 〉
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Therefore
D4 ≤

∑
i,j

‖XeTi,j + ei,jX
T ‖2F + 2〈XXT , ei,je

T
i,j〉 ≤ (4m+ 2r)Γ.

which leads to the same bound.
Next we verify the bound for C3 = maxvi,vj ,vk |∂vi∂vj∂vkF (X)| for three different speci-

fied m× r matrices. Then the derivatives can be computed as

∂viF (X) = 2〈(XXT −M)X, vi〉

∂vj∂viF (X) = 2〈(vjXT +XvTj )X + (XXT −M)vj , vi〉

∂vk∂vj∂viF (X) = 2〈(vjvTk + vkv
T
j )X + (vjX

T +XvTj )vk + (vkX
T +XvTk )vj , vi〉

Clearly, when ‖vi‖F , ‖vj‖F , ‖vk‖F = 1, and ‖X‖F ≤
√

Γ.

|∂vk∂vj∂viF (X)| ≤ 12
√

Γ.

The stochastic gradient of this problem is given by

∇f(X,ω) = 〈XXT −M,ω〉(ω + ωT )X

So the gradient noise is given by Dn = XnX
T
n −M

ξn+1 = ∇f(Xn, ωn+1)−∇F (Xn) = (2Dn − 〈Dn, ωn+1〉(ωTn+1 + ωn+1))Xn.

Since ‖Dn‖F ≤ 2Γ, by Lemma C.1,

En‖ξn+1‖4F ≤ 8‖Dn‖4FΓ2 + 8E‖〈Dn, ω〉(ω + ωT )Xn‖4 ≤ cm2r2Γ6.

So B2 can be chosen as
√
cmrΓ3. This leads to

B1 = En〈ξn+1,∇2F (Xn)ξn+1〉 ≤ cmrΓ4.

To check Assumption 5.1, note that

‖X‖2F ≤ ‖XXT −M‖F + ‖M‖F .

Moreover

‖∇F (X)‖2 = 4tr((XXT −M)2XXT ) ≥ 4tr((XXT −M)3)− 4F (X)λmax(M)

≥ 4√
d
F (X)

3
2 − 4F (X)λmax(M).

So if F (X) ≥ 2dλ2max(M), then ‖∇F (X)‖2 ≥ 4λmax(M)F (X). As a consequence, the
following is always true

‖∇F (X)‖2 ≥ 4λmax(M)F (X)− 8dλ3max(M).
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Lemma C.1 Let A and B be two rank r m ×m symmetric matrices, for Gaussian noise
matrices, there is a universal constant c such that

E‖〈B,ω〉(ω + ωT )A‖4F ≤ cm2r2‖A‖4F ‖B‖4F .

Proof [Proof of Lemma C.1] Since the distribution of ω and matrix inner product are
invariant under rotation, so we can assume A is diagonal. Let λ1, . . . , λr be the diagonal
entries of A. Then

〈A,ω〉 =

r∑
i=1

λiωi,i ∼ N (0, ‖A‖2F ), E〈A,ω〉8 = 105‖A‖8F .

E‖〈B,ω〉(ω + ωT )A‖4F ≤
√
E〈B,ω〉8

√
E‖(ω + ωT )A‖8F ≤ 16

√
E〈B,ω〉4

√
E‖ωA‖8F

Next we note that with A being diagonal, then

‖ωA‖2F =
∑
i,j

λ2j |ωi,j |2 ≤ ‖A‖2F
∑
i,j

|ωi,j |2

Since
∑

i,j |ωi,j |2 ∼ χ2
mr, so E‖ωA‖8F = mr(mr+2)(mr+4)(mr+6) ≤ 2m4r4 for large m.

Proof [Proof of Proposition 6.3] The gradient is given by

∇F (X) = (XXT −M)X, ∇f(X,ω) = (XXT −M − ω)X

So the gradient noise is given by

ξn+1 = ∇f(Xn, ωn+1)−∇F (Xn) = ωn+1Xn.

The constants C2, D4, c5, D5 concern only of the population loss function F (X), which is
identical to the previous proposition. We just need to verify B2 and B1.

Let (λj , vj) be the (eigenvalues, eigenvectors) of M , then the data sample share the
same distribution as

xi ∼
d∑
j=1

√
λjzjvj , zj ∼ N (0, 1)

Note that for any combination of i, j, k, n, Ez2i z2j z2kz2n ≤ Ez8i = 105.

E‖xixTi ‖4F = E(
m∑
j=1

λjz
2
j )4 ≤ 105tr(M)4.

So there is a universal c such that

E‖ωi‖4F ≤ 8E‖xixTi ‖4F + 8‖M‖4F ≤ ctr(M)4.

So we can choose B2 = tr(M)2.
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Next we check B1 and C2. Recall that

〈Z,∇2F (X)Z〉 = ‖XZT + ZXT ‖2F + 2〈XXT , ZZT 〉 − 2〈M,ZZT 〉

So

B1 = En〈ξn+1,∇2F (Xn)ξn+1〉
= 4En‖Xnωn+1X

T
n + ωn+1X

T
nXn‖2F + 8〈XnX

T
n −M,Enωn+1XnX

T
n ω

T
n+1〉.

Then

‖Xnωn+1X
T
n ‖2F = 〈ωn+1, X

T
nXnωn+1X

T
nXn〉 = ‖XT

nXnωn+1‖2F ≤ ‖XT
nXn‖2F ‖ωn+1‖2F

The conditional expectation is bounded by cΓ2tr(M)2, and likewise for ‖ωn+1X
T
nXn‖2F So

B1 ≤ En
(
8‖ωn+1X

T
nXn‖2F + 8‖ωn+1X

T
nXn‖2F + 8‖ωn+1XnX

T
n ‖2F + 8〈M,ωn+1XnX

T
n ω

T
n+1〉

)
≤ cΓ2tr(M)2.

As for the empirical loss function, we notice the gradient and Hessian of it satisfies

∂vif(X,ω) = 2〈(XXT − xxT )X, vi〉

∂vj∂vif(X,ω) = 2〈(vjXT +XvTj )X + (XXT −M − ω)vj , vi〉

∂vk∂vj∂vif(X,ω) = 2〈(vjvTk + vkv
T
j )X + (vjX

T +XvTj )vk + (vkX
T +XvTk )vj , vi〉

Under our condition, it is clear that for any vi, vj , vk of Frobenious norm 1,

|∂vif(X,ω)| ≤ (Γ + ‖ω‖F )Γ
1
2 , |∂vj∂vif(X,ω)| ≤ (Γ + ‖ω‖F ), |∂vk∂vj∂vif(X,ω)| ≤ Γ

1
2 .
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