
Journal of Machine Learning Research 21 (2020) 1-33 Submitted 4/19; Revised 1/20; Published 7/20

Posterior sampling strategies based on discretized stochastic
differential equations for machine learning applications

Frederik Heber frederik.heber@gmail.com
Alan Turing Institute,
96 Euston Rd,
Kings Cross,
London NW1 2DB, UK

Žofia Trst’anová z.trstanova@criteo.com
Criteo Labs,
32 Rue Blanche,
75009 Paris, France

Benedict Leimkuhler b.leimkuhler@ed.ac.uk
School of Mathematics,
University of Edinburgh,
Edinburgh EH9 2NX, UK

Editor: Francois Caron

Abstract
With the advent of GPU-assisted hardware and maturing high-efficiency software plat-
forms such as TensorFlow and PyTorch, Bayesian posterior sampling for neural networks
becomes plausible. In this article we discuss Bayesian parametrization in machine learning
based on Markov Chain Monte Carlo methods, specifically discretized stochastic differ-
ential equations such as Langevin dynamics and extended system methods in which an
ensemble of walkers is employed to enhance sampling. We provide a glimpse of the po-
tential of the sampling-intensive approach by studying (and visualizing) the loss landscape
of a neural network applied to the MNIST data set. Moreover, we investigate how the
sampling efficiency itself can be significantly enhanced through an ensemble quasi-Newton
preconditioning method. This article accompanies the release of a new TensorFlow soft-
ware package, the Thermodynamic Analytics ToolkIt, which is used in the computational
experiments.
Keywords: Bayesian posterior sampling, Markov Chain Monte Carlo, Neural network
training, software platforms for machine learning, ensemble sampling strategies

1. Introduction

The fundamental role of neural networks (NNs) is readily apparent from their widespread use
in machine learning in applications such as natural language processing (Young et al. (2017)),
social network analysis (Gómez et al. (2015)), medical diagnosis (Bone et al. (2015); Johnson
et al. (2018)), vision systems (Sebe et al. (2005)), and robotic path planning (LeCun et al.
(2015)). The greatest success of these models lies in their flexibility, their ability to represent
complex, nonlinear relationships in high-dimensional data sets, and the availability of frame-
works that allow NNs to be implemented on rapidly evolving GPU platforms (Krizhevsky

c©2020 Frederik Heber, Žofia Trst’anová, Benedict Leimkuhler.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v21/19-339.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v21/19-339.html

Heber, Trst’anová, Leimkuhler

et al. (2012); He et al. (2016)). The industrial appetite for deep learning has led to very
rapid expansion of the subject in recent years, although, as pointed out by Dunson (2018),
at times the mathematical and theoretical understanding of these methods has been swept
aside in the rush to advance the methodology.

The potential impact on society of machine learning algorithms demands that their ex-
position and use be subject to the highest standards of clarity, ease of interpretation, and
uncertainty quantification. Typical NN training seeks to optimize the parameters of the
network (biases and weights) under the constraint that the training data set is well ap-
proximated (Hardt et al. (2016); Goodfellow et al. (2014)). In the Bayesian setting, the
parameters of a neural network are defined by the observations, but only in the probabilistic
sense, thus specific parameter values are only realized as modes or means of the associated
distribution, which can require substantial computation. Bayesian approaches based on
exploration of the posterior probability distribution have been discussed throughout the de-
velopment of neural networks (MacKay (1992); Neal (1992); Hinton and Van Camp (1993);
Barber and Bishop (1998)), and underpin much of the work in this field, but they are less
commonly implemented in practice for “big data” applications due to legitimate concerns
about efficiency (Welling and Teh (2011)). While the idea of sampling (or partially sam-
pling) the posterior of large scale neural networks is not new, improvements in computers
continually render this goal more plausible. For a recent discussion, see the PhD thesis of
Gal (2016), which again champions the use of a (Bayesian) statistical framework, mention-
ing among other aims the prospect for meaningful uncertainty quantification in deep neural
networks. Posterior sampling has the potential for broad impact in several research areas
related to NN construction, including: (i) the relationship between network architecture
and parameterization efficiency (Safran and Shamir (2016); Livni et al. (2014); Haeffele and
Vidal (2017); Soltanolkotabi et al. (2019)), (ii) the visualization of the loss manifold and
the parameterization process (see Draxler et al. (2018); Im et al. (2017); Li et al. (2018);
Goodfellow et al. (2014)), and (iii) the assessment of the generalization capability of net-
works (see Dinh et al. (2017); Hochreiter and Schmidhuber (1997); Kawaguchi et al. (2020);
Hoffer et al. (2017)).

We have recently developed the Thermodynamic Analytics ToolkIt (TATi), a python
framework whose purpose is to facilitate the sampling of the posterior parameter distribu-
tion of automated machine learning systems with a balance of ease of use and computational
efficiency, by leveraging highly optimised computational procedures within TensorFlow .1 Al-
though still at an early stage in its development, this software package makes possible the
exploration of sampling-based approaches in the high-dimensional setting. This article pro-
vides the motivation for TATi by illustrating that it facilitates analysis of the loss manifold
in a way which would be impossible using standard optimization methods.

The standard approach to Bayesian sampling in high dimensions relies on Markov Chain
Monte Carlo methods, but these can be difficult to scale to large system size. In the context
of deep learning, we use the term large to refer both to large data set size (which translates
into expensive likelihood computations) and to large numbers of parameters (usually the
consequence of adopting a deep learning paradigm). We base our software on discretized
stochastic differential equations which offer a reliable and accurate means of computing

1. Installation of TATI is as simple as pip install tati from the unix command line; the software includes
a readable user guide and programmer’s manual, see https://pypi.org/project/tati/.

2

https://pypi.org/project/tati/

Posterior sampling based on discretized SDEs

Markov Chain Monte Carlo (MCMC) sampling paths while providing rigorous results with
statistical error bounds (Leimkuhler et al. (2015)). An underlying assumption in using
software like this is that the exploration is limited to a bounded region of the parameter
space by some structural features of the problem and/or its regularization. The methodology
we describe could also be extended to include an explicit localization scheme to implement
a quasi-stationary (spatially restricted) distribution Collet et al. (2012), although we do
not discuss this here. Our approach is instead to rely on the inclusion of a temperature
parameter which allows tuning the sampling process to retain compatibility with commonly
used optimization methods (and consistent with other recent approaches based on “cold
posteriors” for machine learning applications Wenzel et al. (2020); Baldock and Marzari
(2019)).

As an indication of the possible scope for practical posterior sampling in large scale ma-
chine learning, we note that Markov Chain Monte Carlo methods like those implemented in
TATi have been successfully deployed in the more mature setting of very large scale molec-
ular simulations in computational sciences for applications in physics, chemistry, material
science and biology, with variables numbering in the millions or even billions (Klein and
Shinoda (2008); Zhao et al. (2013); Kadau et al. (2004)). The goal in molecular dynamics
is similarly the sampling of a target probability distribution, although the distribution typi-
cally arises from semi-empirical modelling of interactions among atoms of the substances of
interest. The scientific communities in molecular sciences are developing highly efficient “en-
hanced sampling” procedures to tackle the computational difficulties of large scale sampling
(see the surveys (Elber (2016); Bernardi et al. (2015)) for some examples of the wide variety
of methods being used in biomolecular applications). In analogy with molecular dynamics,
the focus on posterior sampling makes possible the elucidation of reduced descriptions of
neural networks through concepts such as free energy calculation (Leliévre et al. (2010))
and transition path sampling (Bolhuis et al. (2002)). Although we reserve detailed study of
these ideas for future work, the fundamental tool in their construction and practical imple-
mentation is the ability to compute sample sequences efficiently and reliably using MCMC
paths. Further potential benefits of the posterior sampling approach lie in the fact that it
offers a means of high-dimensional uncertainty quantification through standard statistical
methodology (Smith (2013); Gal (2016)).

We favor schemes based on underdamped Langevin dynamics (with canonical momen-
tum variables). Such methods have excellent properties in terms of accuracy of statistical
averages and convergence rates (Leimkuhler et al. (2015); Leliévre et al. (2010)). A variety
of other methods are available which are also based on second order dynamics (Chen et al.
(2014); Patterson and Teh (2013); Shang et al. (2015); Matthews and Weare (2018)). One
of the purposes of the TATi software is to provide a relatively simple mechanism for the im-
plementation and evaluation of sampling strategies of statistical physics in machine learning
applications. 2

2. While TensorFlow ’s graph programming structure is well explained and motivated by its developers and
provides efficient execution on GPUs, it is not straightforward for numerical analysts, statisticians and
statistical physicists to modify in order to test their methods. TATi therefore uses a simplified interface
structure that allows algorithms to be coded directly in pure Python and then linked to TensorFlow
for efficient calculation of gradients for arbitrary TensorFlow models. As a consequence, building and
testing a new sampling scheme in TATi requires little knowledge of the underpinnings of TensorFlow .

3

Heber, Trst’anová, Leimkuhler

Another goal we have had in mind in this study is to gain insight into the loss landscape
(given by the log of the posterior density) so as to better understand its structure vis a vis the
performance of parameterization algorithms. The loss is not convex in general ((LeCun et al.,
1998, sect. 4)), and its corrugated (“metastable”) structure has been compared to models
of spin-glasses (Choromanska et al. (2015)): there is a band of minima close to the global
minimum as lower bound and whose multitude diminishes exponentially for larger loss values.
The availability of an efficient sampling scheme gives a means of better understanding the
loss landscape and its relation to the network (and properties of the data set). We illustrate
some of the potential for such studies in Section 3 of this article, where we examine the loss
landscape of an MNIST classification problem.

Finally, we note that the statistical perspective underpins many optimization schemes
in current use in machine learning, such as the Stochastic Gradient Descent (SGD) method.
The stochasticity enters into this method through the subsampling of the dataset at every
iteration of the optimization algorithm, due to ‘minibatching’. Several stochastic optimi-
sation methods have been proposed which aim to improve the computational efficiency or
reduce generalisation error, e. g., RMSprop (Hinton et al. (2014)), AdaGrad (Duchi et al.
(2011)), Adam (Kingma and Ba (2014)), entropy-SGD (Chaudhari et al. (2019)). Stochastic
Gradient Langevin Dynamics (SGLD) (Welling and Teh (2011)), and these, similarly, can
be given a statistical (sampling) interpretation. Indeed, when its stepsize is held fixed and
under simplifying assumptions on the character of the gradient noise, it can be viewed as a
first-order discretization of overdamped Langevin dynamics. We discuss SGD and SGLD in
Sec 2, in order to motivate SDE sampling methods.

The remainder of this paper is structured as follows: Section 2 provides an overview of
MCMC, Langevin dynamics schemes and other sampling strategies and the concepts from
numerical error analysis that underpin our approach. We also outline there the Ensemble
Quasi-Newton method (Leimkuhler et al. (2018)). Subsequently, in Section 3, we discuss the
accuracy of various schemes as well as their convergence behavior in the context of neural
network posterior sampling. We also elaborate on how the approach we describe can be
used to handle moderate-dimensional sampling on the MNIST dataset. The last part of this
section consists of a demonstration of the convergence acceleration of the EQN sampler in
the MNIST application. The numerical results presented in the paper represent a proof-
of-concept for the utility of the posterior sampling paradigm and the TATi software which
implements it.

2. Markov Chain Monte Carlo Methods and Stochastic Differential
Equations

In this section, we provide a brief introduction to the MCMC methods we have used for
sampling high dimensional distributions. These methods include schemes based on dis-
cretization of stochastic differential equations, especially Langevin dynamics. We discuss
in some detail the construction of numerical schemes in order to control the finite time
stepsize bias. Moreover, we also describe an ensemble quasi-Newton method implemented
in TATi that adaptively rescales the dynamics to enhance sampling of poorly conditioned
target posteriors.

4

Posterior sampling based on discretized SDEs

Assume that we are given a dataset D = (X ,Y) = {(xi, yi)}Mi=1 comprising inputs and
outputs of an unknown functional relationship. We also assume we are given a neural
network defined by a vector of parameters θ ∈ Ω ⊂ RN which acts on an input x ∈ X to
produce output f(x, θ). The goal of training the network is then typically formulated as
solving an optimization problem over the parameters given the dataset:

min
θ∈RN

L(θ,D), (1)

where the function L(θ,D) is the total loss function associated to the dataset D, defined by

L(θ,D) =
∑

(x,y)∈D
l(f(x, θ), y) =

M∑

i=1

l(f(xi, θ), yi). (2)

The loss function l(ŷ, y) depends on the metric choice, for example the squared error, loga-
rithmic loss, cross entropy loss, etc (Rosasco et al. (2004)). The total loss is in general not
a convex function of the parameters θ even though l may be convex as a function of y, ŷ.
When the loss landscape is rough there are likely to be many local minima and flattened
intermediate states in the loss manifold L(θ,D), as well as many saddles, see Baldi and
Hornik (1989); Choromanska et al. (2015).

The parametrization procedure is based on optimization algorithms, which generate a
sequence of parameter vectors θ0, θ1, . . . , θk, . . ., converging to a (local) minimizer of (1) as
k → ∞. The basic optimization algorithm is the Gradient Descent (GD), which uses the
negative gradient to update the parameter values, i. e.,

θk+1 = θk − ε∇L(θk), (3)

where ε is the stepsize (or learning rate), which is either constant or may be varied during
the computation. GD converges for a convex function and for a smooth non-convex total
loss function it converges to the nearest local minimum (Nocedal and Wright (1999)).

Gradient calculations are the primary computational burden when training neural net-
works, i. e., the computational cost of a gradient can be taken as a reasonable measure of
computational work. As the total loss L implicitly depends on the whole dataset, one natu-
ral idea that reduces the computational cost is to exploit the redundancy in the dataset by
estimating the gradient of the average loss from a subset of the data, that is, to replace the
gradient in each parameterization step by the approximation

∇L̃(θ) ≈ M
m

∑

i∈Sk

∇l(f(xi, θ), yi).

Where Sk represents a randomized data subset (re-randomized throughout the training
process) of dimension m, this method, which has many variants, is referred to as SGD.

We are interested in the Bayesian inference formulation, where θ is the parameter vector
and we wish to sample from the posterior distribution π(θ | D) of the parameters given a
dataset of size M > 0,

π(θ | D) ∝ π0(θ)
M∏

i=1

π((xi, yi) | θ),

5

Heber, Trst’anová, Leimkuhler

with prior probability density π0(θ), and likelihood π((x, y) | θ).
Stochastic Gradient Langevin Dynamics (SGLD) (Welling and Teh (2011)) generates a

step based on a subset of the data and injects additional noise. The additive noise creates a
controllable stochastic model with known ergodic properties and it improves the numerical
stability and convergence properties of the training algorithm. For additional discussion
of these points see Leimkuhler et al. (2019), where small injected noise has been shown to
substantially accelerate and improve robustness of the training process for neural network
models.

The SGLD parameter update is using a sequence of stepsizes {εn} and reads

θk+1 = θk − εk∇L̃(θk) +
√

2β−1εkGk, (4)

with
∇L̃(θ) = −β−1∇ log

(
π0(θ)

)
− β−1M

m

∏

i∈Sk

∇ log
(
π((xi, yi) | θ)

)

where β > 0 is a constant (in physics, it would be associated with reciprocal temperature)
and again Sk is a random subset of indices 1, . . . ,M of size m. The original algorithm uses a
diminishing stepsize sequence, however, Vollmer et al. (2016) showed that fixing the stepsize
has the same efficiency, up to a constant.

Under the assumption that the gradient noise is uncorrelated and identically distributed
from step to step, it is easy to demonstrate that SGLD with fixed stepsize is an Euler-
Maruyama (first order) discretization of overdamped Langevin dynamics (Welling and Teh
(2011)):

dθ = −∇L̃(θ)dt+
√

2β−1dWt. (5)

This creates a natural starting point for our approach: we simply change the perspective
to focus on the sampling of the posterior distribution, rather than the identification of its
mode.

In case a full gradient is used, dynamics (5) preserves the Boltzmann distribution with
measure proportional to an exponential function of the negative loss:

π(dθ) ∝ e−βL(θ)dθ. (6)

Given a generic process providing samples θk asymptotically distributed with respect to
a defined target measure π, it is possible to use sampling paths to estimate integrals with
respect to π. Define the finite time average of a C∞ function ϕ by

ϕ̂(K) :=
1

K + 1

K∑

k=0

ϕ (θk) .

For an ergodic process, we have

lim
K→∞

ϕ̂(K) =

∫

Ω
ϕ(θ)π(dθ). (7)

The convergence rate of the limit above is given by the Central Limit Theorem (CLT).
Given a generic process generating samples θk from a target distribution with density π, the
variance of an observable ϕ behaves, asymptotically for large K, as

var ϕ̂(K) ∼ τϕ varϕ/K

6

Posterior sampling based on discretized SDEs

where τϕ is the integrated autocorrelation time, see Goodman and Weare (2010, sect. 3). τϕ
can be viewed as a measure of the redundancy of the sampled values or the number of steps
until the sampled values of ϕ decorrelate, thus τϕ = 1 is optimal, i. e., immediately stepping
from one independent state to the next. The Integrated Autocorrelation Time (IAT) τϕ can
also be calculated as

τϕ = 1 + 2

∞∑

1

Cϕ(k)

Cϕ(0)
with Cϕ(k) = cov[ϕ

(
θk
)
, ϕ
(
θ0

)
], (8)

where the covariance is averaged over the initial condition.
In practice, the process of discretization of the SDE introduces asymptotic bias, which

is controlled by the stepsize, however it is nonetheless possible and useful to compute the
IAT in such a case to describe the convergence to the asymptotically perturbed equilibrium
distribution.

Langevin Dynamics. Sampling from (6) is one of the main challenges of computational
statistical physics. There are three popular alternative approaches to sample from (6):
discretization of continuous stochastic differential equations (SDEs), Metropolis-Hastings
based algorithms and deterministic dynamics, as well as combinations among the three
groups.

Langevin dynamics is an extended version of (5):
{
dθt = M−1pt dt,

dpt = −∇L(θt) dt− γM−1pt dt+ σ dWt,
(9)

where p is the momentum variable and γ > 0 is the friction. The fluctuation-dissipation
relation σ2 = 2γ

β ensures that the extended (canonical) distribution with density

πext ∝ exp
[
−β
(
pTM−1p/2

)]
π(θ)

is preserved; the target distribution is recovered by marginalization.
Whereas the momentum is a physical variable in statistical mechanics, it is introduced

as an artificial auxiliary variable in the machine learning application. M in (9) is a positive
definite mass matrix, which can in many cases be taken to the identity matrix.

The discretization of stochastic dynamics introduces bias in the invariant distribution
(see below, for discussion). Although the bias can be removed through the incorporation of
a Metropolis-Hastings (MH) step, such methods do not always scale well with the dimen-
sion Beskos and Stuart (2009); Robert (2015); and the MH test is often neglected in practice.
For example the “unadjusted Langevin algorithm” of Durmus and Moulines (2019) tolerates
the presence of small stepsize-dependent bias, in order to obtain faster convergence (reduced
asymptotic variance or lower integrated autocorrelation time for observables of interest) and
better overall efficiency.

Systematic design of schemes. The mathematical foundation for the construction of
discretization schemes for (9) by splitting of the generator of the dynamics is now well
understood (Leimkuhler et al. (2015)). Although different choices can be made, the usual

7

Heber, Trst’anová, Leimkuhler

starting point is an additive decomposition of the generator of dynamics (9) into three
operators L = A+B +O, where

A := M−1p · ∇θ, B := −∇L(θ) · ∇p, O := −γM−1p · ∇p + σ∆p , (10)

The main idea is that each of these sub-dynamics can be resolved exactly in the weak
(distributional) sense. Note that the (“O” step) dynamics

dpt = −γM−1pt dt+ σ dWt, (11)

has an analytical solution

pt = αtp0 + σ

∫ t

0
αt−sdWs , αt := e−γM

−1t. (12)

A Lie-Trotter splitting of the elementary evolution generated by A,B, and O provides six
possible first-order splitting schemes of the general form

PZ,Y,Xε = eεZ eεY eεX ,

with all possible permutations (Z, Y,X) of (A,B,O), and second-order splitting schemes are
then obtained by a Strang splitting of the elementary evolutions generated by A,B, and O.

Using the notation for the three operators of the sub-dynamics (10), we define the follow-
ing updates which will be combined in the full scheme for the discretization of the Langevin
dynamics with stepsize ε:

Aε : θ → θ + εp,

Bε : p→ p− ε∇L(θ),

Oε : p→ αp+
√
β−1(1− α2)R,

(13)

with α = e−γε and R ∼ N (0, 1). A numerical methods is easily specified by a string such as
‘ABO’. This is an instance of the Geometric Langevin Algorithm (Bou-Rabee and Owhadi
(2010)). We also consider symmetric compositions of several basic steps. The ‘BAOAB’
scheme is in this notation Bε/2Aε/2OεAε/2Bε/2. This method can be written out in detail
as a step from (θk, pk) to (θk+1, pk+1) as follows:

pk+1/2 = pk − ε
2∇L(θk),

θk+1/2 = θk + ε
2M

−1pk+1/2,

p̃k+1/2 = αpk+1/2 +
√
β−1(1− α2)Rk,

θk+1 = θk+1/2 + ε
2M

−1p̃k+1/2,

pk+1 = p̃k+1/2 − ε
2∇L(θk+1).

Given the sequence of samples (θk, pk) determined using such a method, we can approx-
imate expected values of a C∞ function of θ and p using the standard estimator based on
trajectory averages

ϕ̂K =
1

K + 1

K∑

k=0

ϕ (θk, pk) . (14)

8

Posterior sampling based on discretized SDEs

It can be shown in certain cases that these discrete averages converge to an ensemble average,

lim
K→∞

ϕ̂K =

∫

Ω
ϕ(θ, p) dπε (θ, p) = Eπε(ϕ) ,

where πε represents the stationary density of the (biased) discrete process. Under specific
assumptions on the splitting scheme (Leimkuhler et al. (2015)), an expansion may be made
in the time stepsize of the invariant measure of the splitting scheme which guarantees that
the error in an ergodic approximation of an observable average is bounded relative to εq,
where q depends on the detailed structure of the numerical method. Thus

Eπε(ϕ) = Eπext(ϕ) +O(εq).

Schemes such as “ABO” can be shown to be first order (q = 1), whereas BAOAB and
ABOBA are second order. Delicate cancellations imply that BAOAB can exhibit an un-
expected fourth order of accuracy in the “high friction” limit (γ → ∞) when the target is
sampling of configurational (θ-dependent) quantities. The latter method also has remark-
able features with respect configurational averages in harmonic systems and near-harmonic
systems Leimkuhler and Matthews (2015).

All explicit Langevin integrators are subject to stability restrictions which require that
the product of stepsize and the frequency of the fastest oscillatory mode is bounded.

Hybrid Monte Carlo Hybrid Monte-Carlo, also called Hamiltonian Monte Carlo, is a
MCMC method based on the Metropolis-Hastings algorithm that allows one to sample
directly from the target distribution π. Starting from an initial position (θ, p), the momenta
are re-sampled from N

(
0,Mβ−1

)
and a proposal (θ̃, p̃) is obtained by evaluating KHMC

times the Verlet method, i.e., Bε/2AεBε/2. The proposal is then accepted with a probability
given by the Metropolis ratio:

min
(

1, e−β(H(θ̃,p̃)−H(θ,p))
)
, (15)

where the energy H is given by H(θ, p) = L(θ,D) + 1
2p
TM−1p. In case the proposal is

rejected, the state is reset to the starting point (θ, p). The number of steps KHMC is often
randomized. The parameterization of this method depends on the trade-off between the
larger time stepsizes ε and the number of steps KHMC, implying higher rejection rates for
the proposals and smaller stepsizes leading to potentially slow exploration of the parameter
space. To our knowledge, there is currently no extension of HMC to the case of noisy
gradients which retains the exact sampling property.

Multiple walkers: the ensemble quasi-Newton method We next comment on more
exotic sampling schemes which can give higher sampling efficiency. One such scheme is
the preconditioned method developed in Leimkuhler et al. (2018) which we refer to as the
“ensemble quasi-Newton” (EQN) method. The idea of this scheme is easily motivated by
reference to a simple harmonic model problem in two space dimensions in which the stiffness
(or frequency of oscillation) is very high in one direction and not in the other. The stepsize
for stable simulation using a Langevin dynamics strategy will be determined by the high
frequency term meaning that the exploration rate suffers in the slowest direction. Effectively

9

Heber, Trst’anová, Leimkuhler

the integrated autocorrelation time in the “slow” direction is large compared to the timestep
of dynamics.

In the harmonic case it is easy to rescale the dynamical system in such a way that
sampling proceeds rapidly. In the more complicated setting of nonlinear systems in multiple
dimensions, the idea that a few directions may restrict the progress of the sampling still has
merit, but we no longer have direct access to the underpinning frequencies. The idea is to
determine this rescaling adaptively and dynamically during simulation. There are several
ways to do this in practice (see LeCun et al. (1991) for an early related work on using Hessian
information to speed up convergence of GD).

As a simple illustration consider a Gausssian mixture model as shown in Figure 1. Here,
a poor choice of initial condition has led to a naive sampling path (here generated using
Euler-Maruyama and shown in white) getting stuck for a long time in a poorly scaled basin.
Eventually the sampler proceeds to the deeper (and more relevant) basin, but not before
a great deal of useless computational effort has been expended. Note that the stepsize
threshold for stable integration of the SDE is inversely proportional to the frequency of the
largest normal mode of oscillation in the local basin, thus it is not possible to simply ’step
over’ the irrelevant intermediate region by using large stepsizes. This process mimics the
behavior of many optimization schemes as well.

In the paper of Leimkuhler et al. (2018) modified dynamics (“Ensemble Quasi-Newton”
or EQN for short) is based on construction of the covariance matrix of the walker collection.
This matrix is computed during simulation to determine the appropriate dynamical rescal-
ing. The implementation is somewhat involved, thus making it an excellent demonstration
of TATi’s versatility and robustness.

We next briefly describe the EQN scheme; for more detail, the reader is referred to
Leimkuhler et al. (2018) (and, in particular, the Python code referenced within it). Suppose
we have L walkers (replicas). Denote by θi the position vector of the ith walker and by
pi the corresponding momentum vector, each of which is a vector in RN , where N is the
number of parameters of the network. We assume that the mass matrix of the underlying
system is the identity matrix, for simplicity. The equations of motion for the ith walker
then take the form

dθi = Bi(θ)pidt, (16)

dpi = −Bi(θ)T∇L(θi)dt+ div
(
Bi(θ)

T
)
dt− γpidt+

√
2β−1γdWi. (17)

Here dWi has the previous interpretation of a Wiener increment and div is the tensor di-
vergence. The matrix Bi estimates the matrix square root of the covariance matrix which
depends on the locations of all the walkers.

10

Posterior sampling based on discretized SDEs

Figure 1: Slow exploration of a complex landscape using a (naive) canonical sampler. Here Euler-
Maruyama has been applied to overdamped Langevin dynamics to sample a Gaussian
mixture model on a two-dimensional state space. A poor initialization in this case leads
to the extended sampling of an irrelevant intermediate basin (it contributes little to
the sampling of the overall canonical measure). The consequence of poor scaling of the
intermediate region is wasted computational effort. The goal of the enhanced sampling
procedures is to accelerate the exploration in poorly scaled domains.

Under discretization, we compute steps in configurations θk,i and momenta pk,i ∈ RN at
iteration step k with walker index i. We use a variant of the BAOAB discretization applied
to walker i:

pk+1/2,i = pk,i −
ε

2
Bk,i∇L(θk,i), (18a)

θk+1/2,i = θk,i +
ε

2
Bk+1/2,i pk+1/2,i, (18b)

p̂k+1/2,i = αpk+1/2,i +
(α+ 1)ε

2
div
(
BT
k+1/2,i

)
+

√
1− α2

β
Rk,i, (18c)

θk+1,i = θk+1/2,i +
ε

2
Bk+1/2,i p̂k+1/2,i, (18d)

pk+1,i = p̂k+1/2,i −
ε

2
∇L(θk+1,i). (18e)

As in the code of Leimkuhler et al. (2018), we make the calculation in (18b) explicit by
updating Bk,i only infrequently, typically every 1,000 steps, and we define Bk,i by

Bk,i =
√
1 + η cov

(
θk,[i], θk,[i]

)
, (19)

11

Heber, Trst’anová, Leimkuhler

In the above, the matrix square root is understood in the sense of a Cholesky factorization,
η ≥ 0 is a covariance blending constant, and θk,[i] is the set of all walker positions at
timestep k, excluding those of walker i itself. Note that for moderate η the choice (19) is
always positive definite even if L < N . However, with (19) the affine invariance property, an
elegant feature of the original system, no longer strictly holds. Nonetheless, the simplified
method has been shown to work very well in practice (Leimkuhler et al., 2018, sect. 4).

3. Numerical Experiments

In this section, we first look at the convergence rates and accuracy of the samplers described
previously for the simplified case of a harmonic oscillator, comparing them with analytically
known rates. Next we turn to a very simple clustering problem to further explore the error
(bias) introduced by SDE schemes; we show that a particular discretization (“BAOAB”) of
underdamped Langevin dynamics offers extraordinarily high accuracy compared to several
alternative, mimicing observations about this scheme in the molecular dynamics setting.
Subsequently, we use the MNIST dataset on single-layer and multi-layer perceptrons to
illustrate an enhanced loss landscape visualization technique that obtains its projection
directions from sampling trajectories. Finally, we present results on the ensemble quasi-
Newton (EQN) method described in Section 2 for a Gaussian model and for a single layer
perceptron applied to the MNIST dataset.

3.1 Sampler Properties and Error Analysis

In this error analysis, we explore a state {θ, p} with position θ and momentum p of a single
degree of freedom. The kinetic energy is defined as ϕ(θ, p) = 1

2p
T p, where we have set the

mass matrix to unity. Its asymptotic value in the canonical distribution is given by the
number of parameters N and the (inverse) temperature β as 1

2β (Leimkuhler and Matthews,
2012, sect. 6.1.5). The virial is defined as ϕ(θ, p) =

∑N
i θi ·∇iL(θ) = θ ·∇L(θ), where ∇iL(θ)

is the derivative of the loss function with respect to the parameter θi. Its asymptotic value
is two times that of the kinetic energy, as a consequence of the virial theorem. For this
theorem to hold we need a potential that is unbounded from above and grows sufficiently
rapidly at infinity, see appendix A.1 for a derivation.

Averages of the kinetic energy or of the virial are examples of time integrals of (7) that
can be used to assess the accuracy of the chosen dynamics and discretization, since their
asymptotic values are known. As we are interested in discretized integrals over finite number
of time steps, which are accessible in numerical computations in the absence of analytical
solutions, we look at estimators (14) of the following form

ϕ̂N =
1

N

N−1∑

n=0

ϕ(qn, pn).

The total error with respect to the expected value Eµ(ϕ) for the invariant probability mea-
sure µ decomposes as

E
(
|ϕ̂N − Eµ(ϕ)|2

)
= (E(ϕ̂N)− Eµ(ϕ))2 + E

(
|ϕ̂N − E(ϕ̂N)|2

)
, (20)

12

Posterior sampling based on discretized SDEs

i.e. it is a combination of the discretization error, from the finite step size when discretizing
the dynamics (9), and the sampling error that results from the inability to sample over an
infinite time or to generate an infinite number of steps. The first source is also sometimes
referred to as the perfect sampling bias, emphasizing its presence even in the limit of infinitely
many samples.

In the extreme case of a vanishing gradient, only the sampling error is present. This
error will decay so that its variance is proportional to 1/N . A more interesting case is that
of a “harmonic potential” I(θ) = aθ2/2, in which case the truncation error is nontrivial.

3.1.1 Truncation Error for Harmonic Potential

We have contributions to the total error (20) from both the sampling error and the dis-
cretization error. We will see that the latter may dominate when the scale a of the potential
and therefore the average gradients are sufficiently large. We concentrate here on the em-
pirical results; refer to Leimkuhler and Matthews (2012, sect. 7.4) for a general discussion
of harmonic problems in the context of Langevin dynamics. We use a single-layer percep-
tron with a single input node and a single output node with linear activation and zero
bias, i. e. fθ(xi) = θ1xi. We use the mean squared loss function. Then, such a harmonic
potential can be easily introduced by a dataset with the square root of the prefactor as
its single feature and a zero label, i. e. the only dataset item is (X,Y) = (

√
a, 0). We use

three different factors a ∈ {0.01, 1, 4}. Moreover, we use the following sets of parameters
for γ ∈ {0.01, 0.1, 1, 10, 100}, β = 10, and ε ∈ {2−2, 2−3, 2−4, 2−5, 2−6}. Here, we employ
BAOAB as the sampler with N = 106 sampling steps.

0.0156 0.0312 0.0625 0.125 0.25

0.0001

0.001

0.01

0.1

Step width

A
v
er
a
g
e
k
in
et
ic

en
er
g
y
er
ro
r γ

slope: −0.44
0.01

slope: −0.38
0.1

slope: −0.35
1

slope: −0.2
10

slope: 0.08
100

(a) Small prefactor a = 0.01

0.0156 0.0312 0.0625 0.125 0.25

0.0001

0.001

0.01

0.1

Step width

A
v
er
a
g
e
k
in
et
ic

en
er
g
y
er
ro
r γ

slope: 0.63
0.01

slope: 1.54
0.1

slope: 1.92
1

slope: 1.89
10

slope: 1.94
100

(b) Large prefactor a = 4

Figure 2: Highlighting the sampling error with respect to the step size by showing the relative
error of the average kinetic energy with respect to its asymptotic value for the “quadratic
potential” case. (a) If the gradients are small, the system performs a pure random walk
and results are independent of the step size. (b) Given large enough gradients relative
to the temperature the convergence order of the integration method with the step size
becomes apparent, here second order for BAOAB in the momenta.

Examining Figure 2a where we use a small prefactor a, we notice that the error decreases
with increasing step size because α becomes smaller and therefore we obtain more random
walk-like behavior. However, it does not entirely depend on α, but also to some extent on
the step size ε. For the highest value of γ = 100 we again have a flat line due to the lower
bound enforced by the CLT.

13

Heber, Trst’anová, Leimkuhler

In Figure 2b with a large prefactor a for large step sizes all of the curves coincide
regardless of γ and the behavior has reversed: now the error becomes smaller for smaller
step sizes. Naturally, the reason for this change is the discretization error that arises because
of substantial non-zero gradients, and that the error depends on the step size ε. Measuring
the slope in the domain where all curves overlap for a = 4, we obtain values of up to 2,
i. e. second order convergence in the discretization error as expected from BAOAB. In place
of the prefactor a we could also have varied the inverse temperature β to the same effect
that only depends on the scale of the noise relative to the scale of the gradients.

Using a higher-order sampler allows for a smaller error at a given step size or to use larger
step sizes (and therefore sample more space) for a given error threshold. Note that the step
size is bounded from above by a stability threshold. The benefit of the trade-off between
accuracy and computational effort is limited however, and it is likely that very high order
schemes (beyond the second order splittings discussed here) are not efficacious in TATi, in
keeping with previous studies in molecular dynamics (Leimkuhler and Matthews (2015)).

For comparison, we also look at the average virials in Figure 3. However, they depend
only on the position and not on momentum. Note that the BAOAB scheme has nil perfect
sampling bias for purely configurational quantities such as virials. Here, we are instead using
the Geometric Langevin Algorithm (GLA) 2nd order sampler but keep all the other aspects
of the method unchanged.

0.0156 0.0312 0.0625 0.125 0.25

0.01

0.1

1

Step width

A
v
er
a
g
e
v
ir
ia
ls

er
ro
r

γ
slope: −0.45

0.01

slope: −0.32
0.1

slope: −0.45
1

slope: −0.85
10

slope: −1.25
100

(a) Small prefactor a = 0.01

0.0156 0.0312 0.0625 0.125 0.25

0.001

0.01

0.1

Step width

A
v
er
a
g
e
v
ir
ia
ls

er
ro
r

γ
slope: 1
0.01

slope: 1.81
0.1

slope: 2.27
1

slope: 1.99
10

slope: 1.82
100

(b) Large prefactor a = 4

Figure 3: Relative error of the average virial with respect to its asymptotic value for the “quadratic
potential” case using GLA2 sampler. Again, we see second order convergence, here in
the positions, given the gradients are large enough relative to the noise, see also Figure 2.

We obtain the same qualitative picture for the average virials sampling with GLA2 as
we got with the average kinetic energy sampling with BAOAB. Again, for a large enough
prefactor the discretization error dominates. Inspecting the slopes in the doubly logarithmic
plots, we find values around 2 that peak for γ = 1.

3.1.2 Langevin Sampler Performance in a Two-Cluster Classification
Problem

In the following we will be inspecting the average virial, obtained over sampled, finite trajec-
tories in order to assess the accuracies of positions obtained from various samplers. We will
be investigating the following samplers: Stochastic Gradient Langevin Dynamics (SGLD),
Geometric Langevin Algorithm (GLA) 1st and 2nd order, and BAOAB.

14

Posterior sampling based on discretized SDEs

Very long runs are needed to bring forth the different convergence order of the discretiza-
tion error because of the involved statistical errors. Therefore, we still use a very simple
dataset: it consists of 500 points drawn from two Gaussians in two dimensions, one cen-
tered at [2, 2] with label 1, the other centered at [−2,−2] with label −1. The points are
additionally perturbed by 0.1 relative noise.

We use a single layer perceptron with two input nodes, a single output node with linear
activation and mean squared loss. Therefore, the network has N = 3 parameters in total,
two weight degrees and one bias degree.

The parameters are first equilibrated for 2,000 steps with a learning rate of 0.03 with
Gradient Descent (GD). Next, we perform sampling runs from the resulting position for
106 steps at various step sizes ε. In the case of a sampler based on Langevin dynamics,
we use a friction constant γ = 10 and an inverse temperature β = 10. Note that, because
we start at an equilibrated position with zero gradients and because the potential function
is squared, positions are only rescaled when using other temperatures if the same random
number sequence is used. We use 100 different seeds and average the last average value per
trajectory over all seeds.

10−2 10−1

10−3

10−2

10−1

100

Step size

∣ ∣ ∣N
D
O
F

2
−
E

a
v
g

v
ir

·β
∣ ∣ ∣

SGLD

GLA1

GLA2

BAOAB

Figure 4: Order of convergence for the discretization error for four samplers of the average average
virial for the simple two clusters dataset. Dynamics become unstable if the largest step
sizes are increased by a factor of two. GLA1 has first order (slope 0.86). SGLD (slope
2.18) and GLA2 (slope 2.01) have second order. BAOAB’s accuracy on the position
marginal is so good that its second to fourth order convergence cannot be seen against
the lower bound of the CLT.

In Figure 4 we give the absolute error between the average virial and its asymptotic
value scaled by the inverse temperature β per sampler for each step size employed. Note
again that the virial depends on the positions and the gradient. Moreover, we remark that
increasing the largest step size shown for each sampler individually by a factor of two would

15

Heber, Trst’anová, Leimkuhler

cause the dynamics to become unstable. Naturally, the exact threshold depends on the
magnitude of the gradients and therefore on the dataset.

The slopes have been obtained from least squares regression fits where the data point to
the smallest step size have been weighted by 1

10 .
We make the following observations: GLA2 has second order convergence in the average

virial, GLA1 has first-order convergence. BAOAB shows such great accuracy at this finite
trajectory length that its second to fourth order convergence does not show as it reaches
the CLT limit. These results are in absolute agreement with results from an analysis on
harmonic problems, see (Leimkuhler and Matthews, 2012, sect. 7.4.1). Note that SGLD
exhibits second-order convergence in the virial in this example; actually this is an artifact
of the way the data has been graphed: the SGLD ’step size’ can be viewed as the square
root of the step size

√
ε of the other samplers, see (Leimkuhler and Matthews, 2012, p. 36),

i.e. it is really a first order scheme when expressed in the standard way.
From these results the sampling method of choice seems to be BAOAB which has supe-

rior accuracy in the positions and general second order convergence at little computational
overhead and extra memory requirement, compared to SGLD. Note that SGLD is based
on Brownian dynamics, thus lacking momenta, and therefore is expected to be less effi-
cient in exploration for multimodal problems than BAOAB or other Langevin dynamics
samplers Leimkuhler and Matthews (2015).

A similar study on the MNIST dataset is impeded by its wide-spread covariance eigen-
value spectrum, shown in the next section. There we encounter both large and small gradi-
ents and therefore have a mixture of the “flat potential” and “harmonic potential” cases which
obscures the covergence orders. However, choosing a high-accuracy integration method is
nonetheless very important there as well, as the presence of large gradients (or large direc-
tional derivatives) will dominate the exploration.

3.2 Application: Loss Manifold Analysis for MNIST dataset

We now consider the MNIST training data set of 70,000 grey-scale images of 28x28 pixels,
see LeCun. We have divided these into a validation set of 10,000 images, a test set of 5,000
images and a training data set of 55,000 images.

The simplest network to tackle this classification problem is a single layer perceptron
with 784 input nodes and 10 output nodes. We use linear output activation and the softmax
cross-entropy as loss function. The accuracy is quantified by the strongest output (argmax).

In a first experiment, we use SGD as optimizer with a batch size of 550, i. e. 1 % of the
dataset size, for 9000 steps and an initial learning rate of 0.5 that is reduced to 0.05 while
the batch size is increased to 5,500 after 3,000 steps and finally down to 0.01 with no more
mini-batching after 6,000 steps. With this particular training scheme, we obtain a loss of
0.265 and 92.6% accuracy on the training dataset and a loss of 0.271 and 92.6% accuracy
on the test dataset, c. f. 91.6% and 92.4% in LeCun et al. (1998).

The resulting loss per step is given in Figure 5a. There are fluctuations due to the
stochastic gradients that decrease with the learning rate and with the batch size.

Note that we stop the optimization after a finite number of steps and not when the
gradients has a zero norm. Therefore, the points encountered in the loss landscape during

16

Posterior sampling based on discretized SDEs

0 2,000 4,000 6,000 8,000

0.316

1

3.16

Step

L
o
ss

0.2

0.4

0.6

0.8

1

A
cc
u
ra
cy

(a) Loss (solid) and accuracy (dotted) along the op-
timization trajectory consisting of three parts
(blue, gray and black) where only every 10th
step is shown. The optimization yields 92.6%
test and training set accuracy.

0 0.2 0.4 0.6 0.8 1

·106

0

20

40

step

lo
ss

426

427

428

(b) Loss values along the sampled trajectories
where only every 10th step is shown where tra-
jectories obviously deviate rapidly from the ini-
tially same starting position. Each run only dif-
fers by the random number seed, hence being
subject to different thermal noise.

Figure 5: Loss values along the optimization and three sampling trajectories.

optimization are just critical points. Nonetheless, we will refer to them as “quasi-minima”
in the following as the gradient norm is very small.

In order to inspect the quality of the quasi-minimum found, we need to look at the
resulting loss manifold in a neighborhood. As the network has 7850 degrees of freedom in
total, we need appropriate techniques for its visualization. Several of these are discussed in
Li et al. (2018). The current state-of-the-art is to project onto two random directions, as
proposed in Goodfellow et al. (2014), that frequently only shows little variation (Li et al.
(2018)).

With the sampling approach proposed here, there is a different alternative. Starting in
at or near a quasi-minimum, a walker generates a cloud of points iteratively by following the
chosen dynamics. Therefore, sampling provides us with a cloud of points that expands within
that basin according to rules of these dynamics: if the basin is flat in certain directions, the
cloud’s expansion will prefer these over directions where the walls are steep. The strength
of the preference is controlled by the (inverse) temperature parameter β that allows the
method to overcome walls to a certain steepness and height.

If we analyze the sampled point cloud’s principal components, using the eigensystem of
the covariance matrix, then it’s major principal component points along the direction where
the basin is flattest.

In the following, we compare two components associated with a) the largest eigenvalue,
and b) an arbitrarily chosen small eigenvalue of the covarance matrix. This will allow us to
get a notion of the extent of the flat part of the basin.

The covariance matrix is computed from a single sampling run of 106 steps using BAOAB
as the sampler with a step size ε = 0.125, γ = 10, β = 10, and a batch size of 550.

17

Heber, Trst’anová, Leimkuhler

In the following we have performed three of these sampling runs starting from the same
position, equilibrated with SGD with the same batch size of 550, for 5000 steps with a
learning rate of 0.5. The only point in using multiple runs is to exclude the possibility
that subsequent results depend simply on a specific, rare combination of samples taken.
Therefore, each run differs only by the random number seed and is thus only subject to
different thermal noise. Note that the specific initial position will not have an effect as the
temperature is high enough to bring the walker quickly to a completely different position:
see Figure 5b for loss values of all trajectories. There, the loss increases from its initial
value because of the small value chosen for β, i. e. a high sampling temperature. The walker
typically assumes positions far away from equilibrium.

For reasons of computational efficiency we note the following: to obtain the covariance
matrix of very high-dimensional networks the trajectories from several (parallel) runs can
be combined to overcome the computational burden. Moreover, a truncated eigendecom-
position, e. g., using the power method and shift-and-invert, would fully suffice to obtain
the largest and a small eigenvalue within a certain range and their associated eigenvectors,
taking advantage of symmetry and positive semi-definiteness.

The resulting computed eigenvalue spectra are given in Figure 6. Note that we have
truncated the spectrum here to 1000 non-zero eigenvalues.

0 200 400 600 800 1,000
100

101

102

103

104

105

106

Index

E
ig
en

v
a
lu
e

seed

426

427

428

Figure 6: Logarithmic depiction of the eigenvalues of the covariance matrix of three sampled trajec-
tories. Each legend entry refers to the (different) random number seed employed. Spectra
are in good agreement with about 1% deviation between the three random number seeds.

All three curves in Figure 6 coincide approximately in the logarithmic scale, with a
deviation of about 1%. This leads us to assume that the sampling runs have indeed been long
enough for the system to lose memory of its initialization and have produced representative
thermodynamic samples from the target ensemble. We hypothesize that this eigenvalue
spectrum is representative of the general covariance structure at large scale for MNIST and
for the particular model chosen.

18

Posterior sampling based on discretized SDEs

Observe that there is a strong decay of the eigenvalue magnitudes3.
The decay in the eigenvalue spectrum expresses itself as few eigenvectors with very large

eigenvalues and many eigenvectors whose eigenvalues have at least 3 or 4 orders of magnitude
smaller eigenvalues. We judge this variation in scale as the spectrum’s major feature.

To highlight the extent of the flat part, we pick the first and 64th eigenvalues and use
their associated eigenvectors as the directions v1 and v0 in which we plot the loss manifold.
The direction v1 represents the large covariance, while v0 represents the small covariance.4

The strong decay indicates that random directions are poorly suited for the loss visual-
ization (at least for MNIST and for the chosen model) as, on average, these will not relate to
directions of strong covariance. Hence, the flattest manifold parts will be missed on average
when choosing random directions.

For visualizing the loss manifold, we sample it on an equidistant grid with 41 sam-
ples per axis along the two chosen directions v0 = (W0, b0), v1 = (W1, b1), split into
weight components Wj ∈ R784×10 and bias components bj ∈ R10. We evaluate L̃(c0, c1) =∑

i=1 σ(f̃(c0, c1), yi) with the softmax cross-entropy σ and f̃(c0, c1) = (W + c0W0 + c1W1) ·
x + B + b0 + b1, i. e. the loss constrained to the two-dimensional subspace and centered
at the obtained (local) quasi-minimum at (W,B). We use different intervals per axis of
[−10i, 10i] with i ∈ {1, 0, . . . ,−4,−5}, endpoints included. For visualizing the previously
obtained optimization trajectories, we re-evaluate them using the full training dataset (i. e.
no mini-batches) per step and project them onto the two chosen directions. Note that also
each sampled point of the loss manifold is evaluated using the full training dataset.

In Figure 7 we look at four of these manifold plots where we give the sampled manifold
and the projected optimization trajectory. The x and y axes correspond to the two chosen
directions, the z axis gives the loss as ln | L̃(c0, c1)− L0) |, with respect to the lowest loss L0

value found overall, at the specific point (c0, c10) in case of the sampled manifold and the
true loss in case of the projected trajectory. Because of the projection the trajectory steps
will not lie on the manifold itself.

In Figure 7a we recognize a large funnel where the c0 direction is associated with the
large eigenvalue and the c1 direction is associated with the small eigenvalue. We see that
the optimization trajectory gradually enters the funnel in (b). However, in (c) we realize
that the previously obtained optimization trajectory ends prematurely, not in the possibly
global minimum but stuck in one of the lower minima on the funnel wall in (d).

The intuition therefore is that the loss manifold resembles a large funnel whose extension
though differs significantly in each direction. Its walls are corrugated with many local
minima, see Figure 8, especially at its bottom. Note that this funnel is not a product of
the logarithmic scale, again see Figure 8 where a normal scale is used. This corresponds
well with the observation in Goodfellow et al. (2014) that optimization runs never encounter
serious obstacles and that there is a “sea of minima” in a small band of the loss bounded
from below as proposed in Choromanska et al. (2015) from translating results on spherical
spin-glasses. Note though that the latter was derived for a different loss function.

This study hints at the usefulness of second-order methods also for optimization, see
Bottou et al. (2018) for a review.

3. The decay resembles the Marchenko-Pastur distribution which describes the singular values of random
matrices. However, we do not pursue this further in the scope of this article.

4. Picking the 1st and the 100th eigenvalue would have given an essentially equivalent visulization.

19

Heber, Trst’anová, Leimkuhler

−10
0

10

−10 −5 0
5

10

−15

−10

−5

0

c0c1

ln
|L̃
(c

0
,c

1
)
−
L
0
|

(a) [− 101, 101]

−1
0

1

−1 −0.5 0
0.5 1

−15

−10

−5

0

c0c1

ln
|L̃
(c

0
,c

1
)
−

L
0
|

(b) [− 100, 100]

−0.1
0

0.1

−0.1
−5 · 10−2 0

5 · 10−2
0.1

−15

−10

−5

c0
c1

ln
|L̃
(c

0
,c

1
)
−
L
0
|

(c) [− 10−1, 10−1]

−1
0

1

·10−2

−1 −0.5 0
0.5 1

·10−2

−15

−10

−5

c0c1

ln
|L̃
(c

0
,c

1
)
−

L
0
|

(d) [− 10−2, 10−2]

Figure 7: Visualization of the regularly sampled loss manifold for the MNIST dataset of single-
layer perceptron with softmax cross-entropy loss function and linear activations. The two
coordinate directions c0, c1 correspond to the 1st and 64th eigenvalues (descending) of
a covariance matrix sampled from a very long run. The z-axis, in log scale, corresponds
to ln (L̃(c0, c1)− L0), where L0 is the smallest loss encountered overall. The value for z
is also used to color the manifold. Additionally, an optimization trajectory using SGD
consisting of three consecutive parts is given where after each leg the learning rate is
reduced and batch size is increased. The terminal point of its last leg provides the point
of origin. Only every 50th step is shown. Note that we show the exact loss for the whole
training dataset for both manifold and trajectory. A red square shows the subsequent
plot’s domain.

Even in the limited scope of the two-dimensional projection we have seen that a minimum
associated with an even smaller loss would have been attainable. However, the differences in
the loss values are marginal, namely less than 10−5. Naturally, this analysis is not complete.
There are possibly multiple funnels from multiple minima with high barriers in between, as
in the disconnectivity graphs by Ballard et al. (2017). Recent work (Draxler et al. (2018)),
however, suggests the contrary and corroborates our finding of a single funnel with many
minima at its bottom. We conclude by remarking that this type of analysis can also easily
be extended to multi-layer perceptrons, which we briefly touch in the next section, and
potentially to more advanced network architectures. Note that for multi-layer perceptron,

20

Posterior sampling based on discretized SDEs

−2
0

2

·10−2

−1
−0.5

0
0.5

1

·10−2

0.8

1

·10−5

c0c1

|L̃
(c

0
,c

1
)
−
L
0
|

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

·10−5

Figure 8: Sweep in the direction c0 over five times the domain length with respect to Figure 7d.
The walls of the funnel’s bottom are dented with many local minima. Note that the
figure is in linear scale for comparison to the log-scale before.

scale invariance needs to be accounted for, see Li et al. (2018) for a normalization scheme.
There, multiple minima may be encountered due to symmetries.

3.3 Application: More Complex Networks for MNIST Dataset

The previous model with no hidden layer used linear activations; only its loss function was
non-linear. In this subsection, we consider very briefly the same dataset with a multi-layer
perceptron with a single hidden layer of 100 nodes and sigmoidal hidden activation functions.
This is to illustrate that the technique is not limited to linear models. We use again linear
activations in the output layer and softmax cross-entropy as loss functions. This model
has 79,510 degrees of freedom, i. e. an order of magnitude more than the linear model used
before. We will not distinguish in the following between degrees of freedom associated to
the first hidden layer and those associated to the output layer.

We have implemented GD with a Barzilei-Borwein step width choice (BBGD), see Tan
et al. (2016), using the full gradient information. We use 3000 BBGD steps with an initial
learning rate of 0.05. This advanced optimization method is not required for the sampling’s
starting point, there SGD would suffice. However, it yields an improved origin of the loss
landscape in the following visualization.

Covariance directions have been obtained through sampling with the same parameters
as with the linear model. Then, centered around the located quasi-minimum and using the
1st and 100th covariance direction sorted by their associated eigenvalue, we again sample on
an equidistant grid in the subspace spanned by these two directions v1 and v0. Again, the
sampling still finds parametrizations θ with smaller loss than located during optimization
whose lowest serves as reference L0.

In Figure 9 we give the resulting subspace manifold of the loss landscape for the sigmoid
hidden activations function and the softmax cross-entropy loss. For the network using a 100

21

Heber, Trst’anová, Leimkuhler

−10
0

10

−10 −5 0 5 10

−15

−10

−5

c0c1

ln
(L̃

(c
0
,c

1
))

(a) [− 101, 101]

−0.1
0

0.1

−0.1
−5 · 10−2 0

5 · 10−2
0.1

−24

−22

−20

−18

c0

c1

ln
(L̃

(c
0
,c

1
)
−

L
0
)

(b) [− 10−1, 10−1]

Figure 9: Visualization of the regularly sampled loss manifold for the MNIST dataset of multi-
layer perceptron with 100 hidden nodes, softmax cross-entropy loss function, sigmoid
hidden activations and linear output activations. The two coordinate directions c0, c1
correspond to directions associated with the 1st and 100th eigenvalues (descending) of
a covariance matrix sampled from a very long run. The value for z, also used to color
the manifold, is as follows. (a): The z-axis, in log scale, corresponds to ln (L̃(c0, c1))
with c0, c1 ∈ [−10, 10], i. e. the absolute logarithmic loss on the largest sampled interval
in the two chosen covariance directions. (b): The z-axis, also in log scale, corresponds
to ln (L̃(c0, c1)− L0) with c0, c1 ∈ [−0.1, 0.1], where L0 is the smallest loss encountered
overall.

hidden nodes we have found a quasi-minimum during optimization that achieves a perfect
accuracy of 1.0 on the training set. Its accuracy on the test set is slightly lower with 0.975.

In Fig. 9a we look at the overall shape of the loss landscape in logarithmic representa-
tion at a length scale of 10. We find a very smooth funnel. On a smaller scale of length 0.1
in Fig. 9b, where we look again at the logarithmic difference to the smallest loss encoun-
tered overall, we notice that there are multiple local minima close to the funnel’s bottom.
Not shown is the sampled domain of length scale 0.01 where we then would see a heavily
corrugated landscape.

This suggests that we see a similar landscape as with the linear model before where the
bottom of the funnel is corrugated and that there is a plethora of states with small loss
values.

3.4 Application: Ensemble Quasi-Newton Method

Returning to the analysis of the linear model, we have seen there is a large degree of
anisotropy in the funnel observed in the loss manifold for the MNIST dataset. This re-
sults in significant variation in the projections of the gradient into different subspaces and
is precisely the situation which motivated the development of the ensemble quasi-Newton
scheme of Section 2.

TATi facilitates the implementation of a scheme such as the ensemble quasi-Newton
method (see Section 2) by its multiple walker framework. In Appendix B, we describe
the TATi implementation. Next, we investigate the method’s qualities in a simple, well
understood model before returning to the MNIST dataset.

22

Posterior sampling based on discretized SDEs

3.4.1 Gaussian Model

A prototypical setting whose analytical properties are well-known is given by sampling from
the Gaussian model,

exp (−wTCw) (21)

with a covariance matrix C ∈ Rd×d, where d is the dimension of the parameter space. Here,
we naturally encounter directions that are “slow” to sample, identified by large eigenvalues
in C. In fact, when we (only) look at the covariance structure of the MNIST loss manifold,
we replace it by an effective Gaussian model of that particular covariance matrix.

Transfering this model to the setting of sampling loss manifolds of neural networks is
straight-forward: We use the mean squared loss lθ

(
f(θ, xi), yi

)
=
(
f(θ, xi) − yi

)2 with the
network’s prediction f(θ, xi). Then, inserting into (2) in the case of n-dimensional input data
xi ∈ Rn, single-dimensional output yi ∈ R, and a single-layer perceptron, i.e., fθ(x) = w·x+b
with the parameters θ = {w, b} in the form of weights w ∈ Rn and of a bias b ∈ R, we obtain

L(θ,D) =
∑

i

(w · xi + b− yi)2.

Setting the bias b and all outputs yi to zero, we get

L(θ,D) =
∑

i

(w · xi)2 =
∑

i

n∑

l,m=1

wl(xl,ixm,i)wm =
n∑

l,m=1

wl

(∑

i

xl,ixm,i

)
wm.

Note that we sample from the canonical Gibbs distribution exp
(
−βL(θ,D)

)
. Therefore,

the dataset needs to consist of rank-1 factors xi that represent the chosen covariance matrix
with components Clm =

∑
i xl,ixm,i in order to match this with (21). These factors can

be obtained for example through an eigendecomposition C = V ΛV T as the eigenvectors
Vi times the square root of their associated eigenvalue Λi,i. Naturally, any other (even
non-orthogonal) decomposition into rank-1 factors would be admissible, too.

In order to produce random covariance matrices C of a certain structure, we resort to
the following approach: We generate a random symmetric matrix, compute its eigendecom-
position and modify the diagonal matrix D to consist of values picked from an equidistant
spacing of the interval [1, 100], where endpoints are included. This way we obtain a set of or-
thogonal vectors pointing uniformly randomly in Rn, see Mezzadri (2007), and we make sure
to generate both slow (eigenvalues close to 100) and fast (eigenvalues close to 1) directions.

Having generated a random covariance matrix C for dimensions n ∈ {2, 4, 8, 16, 32, 64, 128}
and having created the resulting dataset as its rank-1 factors, we sample the mean squared
loss manifold of the single-layer perceptron using the BAOAB sampler. We use 50,000 steps
with a time step size ε = 0.125, inverse temperature β = 1, friction constant γ = 1, and
covariance blending factor of η = 10.

We measure the exploration speed in the Gaussian model by looking at the IAT τ per
random direction, that we know from the random matrix’ eigendecomposition, by projecting
it onto each eigenvector and measure the IAT using the package acor (Goodman (2009)).

In Figure 10 we see that using the EQN scheme with 8 or 16 walkers significantly im-
proves the Integrated Autocorrelation Time ε for the slow directions. We note that the fast

23

Heber, Trst’anová, Leimkuhler

1 8 16

0

10

20

30

40

Number of walkers

IA
T

τ
direction

0

1

2

3

1 8 16
0

200

400

Number of walkers

IA
T

τ

direction

0

1

2

3

4

5

6

7

Figure 10: Integrated Autocorrelation Time (IAT) ε over the number of walkers for Gaussian
models of dimensions n ∈ {4, 64} where only up to the first 8 directions are shown. Five
Sampling runs have been completed for each random covariance matrix and average IAT
and standard deviation is shown. With a single walker standard BAOAB sampling is
employed, with multiple walkers the EQN method is used.

directions are unaffected. We remind the reader that each walker samples its own trajec-
tory. Hence, we generate up to 16 trajectories in parallel and do so ten times more efficiently
because of the reduction in the IATs.

3.4.2 MNIST

We now turn to the MNIST dataset again for a real-world application of the EQN method.
We constrain the training dataset to two classes, namely the digits 7 and 9. This results in
11,169 training dataset items for this two-class problem. We employ the same single-layer
perceptron as before.

For the IAT computation we have extracted distinct covariance matrices per walker Ci =

cov(θ
(n)
i , θ

(n)
i), obtained the eigendecomposition C = V ΛV T , extracted the eigenvectors Vj

of the 20 dominant eigenvalues, and projected the walker’s trajectory onto these, πi,j(n) =

θ
(n)
i ·Vj . Finally, we calculated the IAT of each πi,j(n) using the acor package and averaged
over all walkers i.

Using walker-individual covariance matrices does not generally change results compared
to a single covariance matrix obtained from averaging the trajectory over all walkers; how-
ever, it makes them more stable. Because of the high dimensionality of the parameter space
R1,568 already small perturbations may cause vectors to become orthogonal5. This phe-
nomena is explained by the “Concentration of Measure”, see Ledoux (2001). The eigenvalue
spectra themselves are stable for each walker, bounded in deviation by the Bauer-Fike the-
orem. Note further that the preconditioning matrix B(n)

i is also uniquely defined for each
walker.

Due to computations necessary for the additional preconditioning matrix, there is a slight
walker-dependent overhead compare to the case of single walker: For 8 walkers we measured
about 40% overhead per walker, for 16 walkers we obtained 50%.

5. The more dimensions a space has, the more likely it becomes for two random vectors to be orthogonal
to each other, see also (Li et al., 2018, sect. 7.1).

24

Posterior sampling based on discretized SDEs

0 5 10 15 20

0

1

2

3

4

5

6

·104

Index

IA
T

τ

η η

0 (Langevin) 1

10 100
1000 10000
100000 1000000

Figure 11: Integrated Autocorrelation Time (IAT) τ for the first 20 covariance eigenvectors over the
number of walkers for the MNIST two class problem. We observe a strong improvement
of up to a factor of 4 for the slowest Integrated Autocorrelation Time (IAT) which relates
to a similar increase in exploration speed, e. g., when using η of 10,000 (EQN)compared
to η = 0 (standard Langevin).

In Figure 11 we then look at the IAT over the first 20 covariance eigenvectors for various
values of the covariance blending constant η. We used a fixed number of 8 walkers, a
batch size of 550, an inverse temperature constant of β = 10, the friction constant set to
γ = 10 and a step size ε = 0.125 with the BAOAB sampler. All runs are started from an
equilibrated position using SGD with batch size of 550 and a learning rate of 0.1 for 5,000
steps. We recompute the covariance matrix after 10,000 steps. The trajectories were stored
with only every 100th sampling step. Hence, the ε values in the Figure have been rescaled
appropriately.

As there is a scaling invariance with respect to the biases of the output layer due to
the argmax function, we have fixed the biases for the sampling to the values obtained from
a prior optimization. At the moment, the EQN implementation cannot deal with such
invariances. They represent “flat valleys” in the loss landscape and the walkers will be
pushed by the preconditioning along the valley in vain search for its bounds. Such a valley
can be hypothesized from the spectrum of the covariance matrix, see Figure 6, where the
first eigenvalue with 2.1 · 106 is unusually high, and when the EQN does not effectively

25

Heber, Trst’anová, Leimkuhler

reduce the IATs although the eigenvalue spectrum indicates it, c. f. (Leimkuhler et al., 2018,
p. 281).

We generally observe that especially the first five IAT values are dramatically reduced
and see an improvement of up to a factor of 4. The covariance blending can be chosen
robustly, up to very high values. This indicates that the covariance matrix itself, despite
L < N , is already positive definite.

4. Conclusion

We have discussed comparisons of sampling strategies based primarily on stochastic differ-
ential equations, with a focus on issues such as sampling efficiency and accuracy. All the
methods discussed are implemented in the TATi software. Relying on TensorFlow , the TATi
implementation efficiently runs in parallel and also on GPU-assisted hardware.

We have looked in our evaluation at the MNIST loss manifold for a single-layer percep-
tron and a multi-layer perceptron using softmax cross-entropy. We find that it resembles
an anisotropic funnel on the large scale combined with many local minima at its bottom
matching well the band of minima bounded from below and exponentially decaying in density
with higher loss values predicted in Choromanska et al. (2015). This motivated an ensemble
method employing a number of so-called walkers to obtain a local approximation of the
covariance that, when turned into a preconditioner, results in a significant improvement of
the sampling speed.

The focus on posterior sampling using SDEs provides us with a starting point for a
wide range of improvements. For example we are currently exploring schemes based on
simulated tempering Marinari and Parisi (1992); Martinsson et al. (2019) and diffusion
maps Trstanova et al. (2020); the latter approach allows simulation data obtained using e.g.
Langevin dynamics to be distilled into a few collective variables which succinctly describe
the progress of transition between neighboring local minima. We are also exploring the use
of the sampling paradigm as a tool to design neural networks with improved sparsity and
generalizability.

Acknowledgments

The authors acknowledge funding through a Rutherford fellowship from the Alan Turing
Institute in London (R-SIS-003, R-RUT-001) and EPSRC grant no. EP/P006175/1 (Data
Driven Coarse Graining using Space-Time Diffusion Maps, B. Leimkuhler PI), as well as B.
Leimkuhler’s Turing Fellowship (The Alan Turing Institute is supported by EPSRC grant
EP/N510129/1). The computing resources were provided by a Microsoft Azure Sponsorship
award (MS-AZR-0143P).

In relation to the development of the TATi software, the authors would also like to
express their gratitude to the Research Software Engineering Team of the Alan Turing
Institute led by James Hetherington and especially to Martin O’Reilly for support in using
the Azure platform. Charles Matthews provided valuable comments on a preliminary draft
of the article, leading to a much improved exposition.

26

Posterior sampling based on discretized SDEs

Appendix A. Virial Theorem

The virial is defined as G =
∑N

i θipi with positions θ and momenta p. The virial theorem
states that dG

dt = 0 which would imply through

dG

dt
=

N∑

i

pipi +
N∑

i

θi
∂L(θ)

∂θi
(22)

that the first term, twice the kinetic energy, equals the negative of the second.
Let us inspect the second term and look at its average over the whole domain using the

Gibbs measure with a single degree of freedom (N = 1),
∫
R θ · ∇L(θ) exp (−βL(θ))dθ∫

R exp (−βL(θ))dθ
,

where β is the inverse temperature.
Let us ignore the denominator for the moment and integrate the nominator by parts.

We obtain with the derivative ∂
∂θ exp (−βL(θ)) = −β exp (−βL(θ))∂L(θ)

∂θ ,
∫

R
θ · ∇L(θ) exp (−βL(θ))dθ =

[
θ · −1

β exp (−βL(θ))
]
−
∫

R
1 · −1

β exp (−βL(θ))dθ.

If the boundary term vanishes, we obtain
∫
R

1
β exp (−βL(θ))dθ∫

R exp (−βL(θ))dθ
= 1

β .

In other words, the average virial, the second term, would be identical to two times the
average kinetic energy 1

β , the first term in (22).

Hence, all that remains is to show that
[
θ · exp (−βL(θ))

]∞
−∞

= 0. Naturally, this holds

if lim|θ|→∞ L(θ)→∞ to the effect that exp (−βL(θ))→ 0 faster than |θ| → ∞, noting that
the exponential increases faster than any polynomial.

In other words, the potential L(θ) needs to be unbounded and to increase faster than |θ|
for the virial theorem to hold.

A.1 Virial and MNIST

If for the MNIST dataset, a single-layer perceptron with a softmax cross-entropy function
is employed, then the virial theorem does not hold.

The output of the single-layer perceptron is fi(θ) =
∑

jWi,jxj + bi with weight matrix
θ and bias vector b, i. e. θ = (W, b).

As the cross entropy is −∑i yi log pi(f(θ)) and the softmax function is pi(f(θ)) =
exp fi(θ)∑
i exp fi(θ)

, we have exp (β
∑

i yi log pi(f(θ))) =
∏
i pi(f(θ))βyi .

Let us set all parameters components to zero except for a single weight component Wi,j

where at least for one item in the dataset we have xj 6= 0. Then we obtain Wi,j(Wi,jxj)
βyi

as the integrand for this data item (xi, yi) and the boundary integral will not converge (to
zero) in this case.

Note that this issue could be addressed by the addition of an L2 regularization strategy.

27

Heber, Trst’anová, Leimkuhler

Appendix B. Ensemble Quasi-Newton Implementation in TATi

In Listing 1 we provide a rapid prototype of the algorithm using TATi’s simulation module.

Listing 1: Example implementation of EQN using TATi’s simulation module. We require for the
number of walkers L > 1. We have skipped (. . .) the details of instantiation of the
interface class tati setting the options.

import math
import numpy as np
import t en so r f l ow
import TATi . s imu la t ion as t a t i

nn = t a t i (
. . . .

)
opt ions = nn . get_options ()

def baoab_update_step (nn , momenta , o ld_gradients , p r econd i t i one r , step_width , beta , gamma,
walker_index) :
def B(step_width , g rad i en t s) :

non loca l momenta
momenta −= .5 ∗ step_width ∗ np . dot (np . t ranspose (p r e cond i t i one r) , g r ad i en t s)

def A(step_width , momenta) :
nn . parameters [walker_index] += .5 ∗ step_width ∗ pr e cond i t i one r . dot (momenta)

def O(step_width , beta , gamma) :
non loca l momenta
alpha = math . exp(−gamma ∗ step_width)
momenta = alpha ∗ momenta + \

math . sq r t ((1 . − math .pow(alpha , 2 .)) / beta) ∗ np . random . standard_normal (momenta
. shape)

B(step_width , o ld_gradients)
A(step_width , momenta)
O(step_width , beta , gamma)
A(step_width , momenta)
g rad i en t s = nn . g rad i en t s (walker_index=walker_index)
B(step_width , g rad i en t s)

return grad ients , momenta

p r e cond i t i one r = [np . i d e n t i t y ((nn . num_parameters ())) for i in range (opt ions . number_walkers)]
normal i za t ion = 1 . / (f loat (nn . num_walkers ()) − 1 .)

def update_precondit ioner () :
for walker_index in range (nn . num_walkers ()) :

means = normal i za t ion ∗np . add . reduce ([nn . parameters [i] for i in range (nn . num_walkers ()) i f
i != walker_index])

covar iance = normal i za t ion ∗np . add . reduce (\
[np . outer (nn . parameters [i] − means , nn . parameters [i] − means) \
for i in range (nn . num_walkers ()) i f i != walker_index])

p r e cond i t i one r [walker_index] = np . l i n a l g . cho le sky (\
opt ions . covar iance_blending ∗ covar iance + np . i d e n t i t y ((nn . num_parameters ())))

momenta = [np . z e ro s ((nn . num_parameters ())) for i in range (opt ions . number_walkers)]
o ld_gradients = [np . z e ro s ((nn . num_parameters ())) for i in range (opt ions . number_walkers)]

def perform_step () :
for walker_index in range (nn . num_walkers ()) :

o ld_gradients [walker_index] , momenta [walker_index] = baoab_update_step (
nn , momenta [walker_index] , o ld_gradients [walker_index] ,
p r e cond i t i one r=pre cond i t i one r [walker_index] ,
step_width=opt ions . step_width ,
beta=opt ions . inverse_temperature , gamma=opt ions . f r i c t i on_cons tant , walker_index=

walker_index)

for s tep in range (opt ions . max_steps) :
i f (s tep) % opt ions . covar iance_after_steps :

update_precondit ioner ()
perform_step ()

The full implementation with TensorFlow in TATi requires special care with the con-
ditionals for the infrequent updates of Bi, needs to copy the network parameters to avoid
changes within the parallel execution, and needs to compute the covariance matrices. All
implemented samplers have been adapted in a similar way as in (18) to allow for precondi-

28

Posterior sampling based on discretized SDEs

tioning. For performance reasons the computation of B(n)
i could be done entirely through

rank-1 updates.

References

P. Baldi and K. Hornik. Neural networks and principal component analysis: Learning from
examples without local minima. Neural Networks, 2(1):53–58, 1989.

R. Baldock and N. Marzari. Bayesian neural networks at finite temperature. 2019.
arXiv:1904.04154.

A.J. Ballard, R. Das, S. Martiniani, D. Mehta, L. Sagun, J.D. Stevenson, and D.J. Wales.
Energy landscapes for machine learning. Phys. Chem. Chem. Phys., 19:12585–12603,
2017.

D. Barber and C. M. Bishop. Ensemble learning in bayesian neural networks. Neural
Networks and Machine Learning, 168:215–238, 1998.

R. Bernardi, M. Melo, and K. Schulten. Enhanced sampling techniques in molecular dy-
namics simulations of biological systems. Biochimica et Biophysica Acta, 1850(5):872 –
877, 2015.

A. Beskos and A. Stuart. Computational complexity of Metropolis-Hastings methods in high
dimensions. In Pierre L’ Ecuyer and Art B. Owen, editors, Monte Carlo and Quasi-Monte
Carlo Methods 2008, pages 61–71. Springer, 2009.

P.G. Bolhuis, D. Chandler, C. Dellago, and P.L. Geissler. Transition path sampling: throw-
ing ropes over rough mountain passes, in the dark. Annual Review of Physical Chemistry,
53(1):291–318, 2002.

D. Bone, M. Goodwin, M. Black, C.-C. Lee, K. Audhkhasi, and S. Narayanan. Applying
machine learning to facilitate autism diagnostics: pitfalls and promises. J. Autism Dev.
Disord., 45:1121–1136, 2015.

L. Bottou, F. Curtis, and J. Nocedal. Optimization methods for large-scale machine learning.
SIAM Review, 60(2):223–311, 2018.

N. Bou-Rabee and H. Owhadi. Long-run accuracy of variational integrators in the stochastic
context. SIAM J. Num. Anal., 48(1):278–297, 2010.

P. Chaudhari, A. Choromanska, S. Soatto, Y. LeCun, C. Baldassi, C. Borgs, J. Chayes,
L. Sagun, and R. Zecchina. Entropy-sgd: biasing gradient descent into wide valleys. J.
Stat. Mech., 2019(12):124018, 2019.

T. Chen, E. Fox, and C. Guestrin. Stochastic gradient hamiltonian monte carlo. In 31st
International Conference on Machine Learning, pages 1683–1691, 2014.

A. Choromanska, M. Henaff, M. Mathieu, G. Ben Arous, and Y. LeCun. The loss surfaces
of multilayer networks. J. Mach. Learn. Res., 38:192–204, 2015.

29

Heber, Trst’anová, Leimkuhler

P. Collet, S. Martinez, and J. San Martin. Quasi-stationary distributions: Markov chains,
diffusions and dynamical systems. Springer, 2012.

L. Dinh, R. Pascanu, S. Bengio, and Y. Bengio. Sharp minima can generalize for deep nets.
In D. Precup and Y.-W. Teh, editors, Proceedings of the 34th International Conference
on Machine Learning, volume 70, pages 1019–1028, 2017.

Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred Hamprecht. Essentially no
barriers in neural network energy landscape. In Jennifer Dy and Andreas Krause, editors,
Proceedings of the 35th International Conference on Machine Learning, volume 80, pages
1309–1318, 2018.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and
stochastic optimization. J. of Mach. Learn. Res., 12:2121–2159, 2011.

D.B. Dunson. Statistics in the big data era: Failures of the machine. Stat. Probab. Lett.,
136:4–9, 2018.

A. Durmus and E. Moulines. High-dimensional Bayesian inference via the Unadjusted
Langevin Algorithm. Bernoulli, 25(4):2854–2882, 2019.

R. Elber. Perspective: computer simulations of long time dynamics. J. Chem. Phys., 144:
060901, 2016.

Y. Gal. Uncertainty in deep learning. PhD thesis, Cambridge University, 2016.

I.J. Goodfellow, O. Vinyals, and A.M. Saxe. Qualitatively characterizing neural network
optimization problems. In Int. Conf. Learn. Represent., 2014.

J. Goodman. ACOR package, 2009. URL http://www.math.nyu.edu/faculty/goodman/
software/.

J. Goodman and J. Weare. Ensemble samplers with affine invariance. Commun. Appl. Math.
Comput. Sci., 5(1):65–80, 2010.

C.L. Gómez, I. Santos, J.G. de la Puerta, P.G. Bringas, and P. Galán-García. Supervised
machine learning for the detection of troll profiles in twitter social network: application
to a real case of cyberbullying. Logic Journal of the IGPL, 24(1):42–53, 10 2015.

B.D. Haeffele and R. Vidal. Global optimality in neural network training. Proc. - 30th IEEE
Conf. Comput. Vis. Pattern Recognition, CVPR 2017, 2017-Janua(3):4390–4398, 2017.

M. Hardt, B. Recht, and Y. Singer. Train faster, generalize better: Stability of stochastic
gradient descent. In 33rd International Conference on Machine Learning, New York, NY,
2016. JMLR: Workshops and Conference Proceedings, Vol. 48.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proc.
IEEE Conf. Comput. Vis. pattern Recognit., pages 770–778, 2016.

G. Hinton, N. Srivastava, K. Swervsky, and T. Tieleman. rmsprop: Divide the gradient by
a running average of its recent magnitude, 2014. unpublished.

30

http://www.math.nyu.edu/faculty/ goodman/software/
http://www.math.nyu.edu/faculty/ goodman/software/

Posterior sampling based on discretized SDEs

G.E. Hinton and D. Van Camp. Keeping the neural networks simple by minimizing the
description length of the weights. In Proceedings of the sixth annual conference on Com-
putational learning theory, pages 5–13. ACM, 1993.

S. Hochreiter and J. Schmidhuber. Flat Minima. Neural Comput., 9(1):1–42, 1997.

E. Hoffer, I. Hubara, and D. Soudry. Train longer, generalize better: closing the general-
ization gap in large batch training of neural networks. In Adv. Neur. Inf. Proc. Sys. 31,
2017.

D.J. Im, M. Tao, and K. Branson. An empirical analysis of the optimization of deep network
loss surfaces. 2017. arXiv:1612.04010.

K. Johnson, J. Torres Soto, B. Glicksberg, K. Shameer, R. Miotto, M. Ali, E. Ashley,
and J. Dudley. Artificial intelligence in cardiology. Journal of the American College of
Cardiology, 71:2668–2679, 2018.

K. Kadau, T.C. Germann, and P.S. Lomdahl. Large scale molecular dynamics simulation
of 19 billion particles. International Journal of Modern Physics C, 15(01):193–201, 2004.

K. Kawaguchi, L. Kaelbling, and Y. Bengio. Generalization in deep learning. 2020.
arXiv:1710.05468v6.

D.P. Kingma and J. Ba. Adam: A method for stochastic optimization. 2014.
arXiv:1412.6980.

M.L. Klein and W. Shinoda. Large-scale molecular dynamics simulations of self-assembling
systems. Science, 321(5890):798–800, 2008.

A. Krizhevsky, I. Sutskever, and G.E. Hinton. Imagenet classification with deep convolu-
tional neural networks. In Adv. Neur. Inf. Proc. Syst. 25, pages 1097–1105, 2012.

Y. LeCun. MNIST dataset. URL http://yann.lecun.com/exdb/mnist/. accessed 2018.

Y. LeCun, I. Kanter, and S.A. Solla. Eigenvalues of covariance matrices: Application to
neural-network learning. Phys. Rev. Lett., 66(18):2396–2399, 1991.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to docu-
ment recognition. Proc. IEEE, 86(11):2278–2324, 1998.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436, 2015.

M. Ledoux. The concentration of measure phenomenon. Mathematical surveys and mono-
graphs ; no. 89. American Mathematical Society, Providence, R.I., 2001.

B. Leimkuhler and C. Matthews. Rational construction of stochastic numerical methods for
molecular sampling. Appl. Math. Res. eXpress, 2013(1):34–56, 2012.

B. Leimkuhler and C. Matthews. Molecular Dynamics. Springer International Publishing,
Heidelberg, 1st edition, 2015.

31

http://yann.lecun.com/exdb/mnist/

Heber, Trst’anová, Leimkuhler

B. Leimkuhler, C. Matthews, and G. Stoltz. The computation of averages from equilibrium
and nonequilibrium Langevin molecular dynamics. IMA J. Numer. Anal., 36(1):13–79,
2015.

B. Leimkuhler, C. Matthews, and J. Weare. Ensemble preconditioning for Markov chain
Monte Carlo simulation. Stat. Comput., 28(2):277–290, 2018.

B. Leimkuhler, C. Matthews, and T. Vlaar. Partitioned integrators for thermodynamic
parameterization of neural networks. Foundations of Data Science, 1:457–489, 2019. doi:
10.3934/fods.2019019.

T. Leliévre, M. Rousset, and G. Stoltz. Free Energy Computations. Imperial College Press,
2010.

H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein. Visualizing the loss landscape of
neural nets. In Adv. Neur. Inf. Proc. Sys. 32, 2018.

R. Livni, S. Shalev-Shwartz, and O. Shamir. On the computational efficiency of training
neural networks. In Adv. Neur. Inf. Proc. Syst. 27, pages 855–863, 2014.

D.J. MacKay. A practical bayesian framework for backpropagation networks. Neural Com-
putation, 4:448–472, 1992.

E Marinari and G Parisi. Simulated tempering: a new monte carlo scheme. Europhysics
Letters (EPL), 19(6):451–458, jul 1992.

Anton Martinsson, Jianfeng Lu, Benedict Leimkuhler, and Eric Vanden-Eijnden. The sim-
ulated tempering method in the infinite switch limit with adaptive weight learning. J.
Stat. Mech., 2019(1):013207, jan 2019.

C. Matthews and J. Weare. Langevin Markov Chain Monte Carlo with stochastic gradients.
2018. arXiv:1805.08863.

F. Mezzadri. How to generate random matrices from the classical compact groups. Notices
of the AMS, 54:592–604, 2007.

R.M. Neal. Bayesian training of backpropagation networks by the hybrid monte carlo
method. Technical Report CRG-TR-92-1, Dept. of Computer Science, University of
Toronto, 1992.

J. Nocedal and S.J. Wright. Numerical Optimization. Springer-Verlag, New York, 1. edition,
1999.

S. Patterson and Y.-W. Teh. Stochastic gradient Riemannian Langevin dynamics on the
probability simplex. In Adv. Neur. Inf. Proc. Syst. 26, pages 3102–3110, 2013.

C.P. Robert. The Metropolis-Hastings algorithm, pages 1–15. American Cancer Society,
2015.

Lorenzo Rosasco, Ernesto De Vito, Andrea Caponnetto, Michele Piana, and Alessandro
Verri. Are loss functions all the same? Neural Computation, 16(5):1063–1076, 2004.

32

Posterior sampling based on discretized SDEs

Itay Safran and Ohad Shamir. On the quality of the initial basin in overspecified neural
networks. In Proceedings of the 33rd International Conference on International Conference
on Machine Learning - Volume 48, ICML’16, pages 774–782. JMLR.org, 2016.

N. Sebe, I. Cohen, A. Garg, and T.S. Huang. Machine learning in computer vision. In
Computational Imaging and Vision, 2005.

X. Shang, Z. Zhu, B. Leimkuhler, and A. Storkey. Covariance-controlled adaptive Langevin
thermostat for large-scale Bayesian sampling. In Adv. Neural Inf. Process. Syst. 28, pages
37–45, 2015.

R. Smith. Uncertainty quantification: theory, implementation, and applications. SIAM,
2013.

M. Soltanolkotabi, A. Javanmard, and J.D. Lee. Theoretical insights into the optimization
landscape of over-parameterized shallow neural networks. IEEE Transactions on Infor-
mation Theory, 65(2):742–769, Feb 2019.

Conghui Tan, Shiqian Ma, Yu-Hong Dai, and Yuqiu Qian. Barzilai-Borwein step size for
stochastic gradient descent. In Adv. Neural Inf. Process. Syst. 29, 2016.

Z. Trstanova, B. Leimkuhler, and T. Lelièvre. Local and global perspectives on diffusion
maps in the analysis of molecular systems. Proceedings of the Royal Society A, 476(2233):
20190036, 2020.

S.J. Vollmer, K.C. Zygalakis, and Y.-W. Teh. Exploration of the (non-) asymptotic bias and
variance of stochastic gradient langevin dynamics. J. Mach. Learn. Res., 17(1):5504–5548,
2016.

M. Welling and Y.-W. Teh. Bayesian learning via stochastic gradient langevin dynamics.
Proc. 28th Int. Conf. Mach. Learn., pages 681–688, 2011.

F. Wenzel, K. Roth, B.S. Veeling, J. Swiatkowski, L. Tran, S. Mandt, J. Snoek, T. Salimans,
R. Jenatton, and S. Nowozin. How good is the bayes posterior in deep neural networks
really? In Proceedings of the 37th International Conference on Machine Learning, Vienna,
Austria, PMLR 119, 2020.

T. Young, D. Hazarika, S. Poria, and E. Cambria. Recent trends in deep learning based
natural language processing. CoRR, abs/1708.02709, 2017.

G. Zhao, J.R. Perilla, E.L. Yufenyuy, X. Meng, B. Chen, J. Ning, J. Ahn, A.M. Greenborn,
K. Schulten, C. Aiken, and P. Zhang. Mature hiv-1 capsid structure by cryo-electron
microscopy and all-atom molecular dynamics. Nature, 497:643–646, 2013.

33

	Introduction
	Markov Chain Monte Carlo Methods and Stochastic Differential Equations
	Numerical Experiments
	Sampler Properties and Error Analysis
	Truncation Error for Harmonic Potential
	Langevin Sampler Performance in a Two-Cluster Classification Problem

	Application: Loss Manifold Analysis for MNIST dataset
	Application: More Complex Networks for MNIST Dataset
	Application: EQN Method
	Gaussian Model
	MNIST

	Conclusion
	Virial Theorem
	Virial and MNIST

	Ensemble Quasi-Newton Implementation in TATi

