
Journal of Machine Learning Research 21 (2020) 1-5 Submitted 5/19; Revised 12/19; Published 1/20

MFE: Towards reproducible meta-feature extraction

Edesio Alcobaça edesio@usp.br

Felipe Siqueira felipe.siqueira@usp.br

Adriano Rivolli rivolli@utfpr.edu.br

Luís P. F. Garcia luis.garcia@unb.br

Jefferson T. Oliva jeffersonoliva@utfpr.edu.br

André C. P. L. F. de Carvalho andre@icmc.usp.br
Institute of Mathematical and Computer Sciences
University of São Paulo
Av. Trabalhador São-carlense, 400, São Carlos, São Paulo 13560-970, Brazil

Editor: Alexandre Gramfort

Abstract
Automated recommendation of machine learning algorithms is receiving a large deal of
attention, not only because they can recommend the most suitable algorithms for a new
task, but also because they can support efficient hyper-parameter tuning, leading to better
machine learning solutions. The automated recommendation can be implemented using
meta-learning, learning from previous learning experiences, to create a meta-model able
to associate a data set to the predictive performance of machine learning algorithms. Al-
though a large number of publications report the use of meta-learning, reproduction and
comparison of meta-learning experiments is a difficult task. The literature lacks extensive
and comprehensive public tools that enable the reproducible investigation of the differ-
ent meta-learning approaches. An alternative to deal with this difficulty is to develop a
meta-feature extractor package with the main characterization measures, following uniform
guidelines that facilitate the use and inclusion of new meta-features. In this paper, we pro-
pose two Meta-Feature Extractor (MFE) packages, written in both Python and R, to fill
this lack. The packages follow recent frameworks for meta-feature extraction, aiming to
facilitate the reproducibility of meta-learning experiments.
Keywords: Machine Learning, AutoML, Meta-Learning, Meta-Features

1. Introduction

Machine learning (ML) algorithms have been successfully used to analyze and solve a large
number of real-world problems. Since each ML algorithm has an inductive bias, the choice
of the most suitable one is not a trivial task. Meta-learning (MtL) can be used to rec-
ommend suitable ML algorithms for a data set. For such, MtL looks for a function able
to map the characteristics of a data set to the expected performance of a selected set of
algorithms (Smith-Miles, 2009). This process is commonly referred to as an algorithm rec-
ommendation problem (Brazdil et al., 2008). The MtL literature presents proposals for
the recommendation of ML algorithms (Reif et al., 2014), preprocessing techniques (Garcia
et al., 2016), and the need for hyperparameter tuning (Mantovani et al., 2019). MtL can also

©2020 Edesio Alcobaça, Felipe Siqueira, Adriano Rivolli, Luís P. F. Garcia, Jefferson T. Oliva, André C. P. L. F. de
Carvalho.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v21/19-348.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v21/19-348.html

Alcobaça, et al.

be used to recommend hyperparameter settings (Brazdil et al., 2008) and as a component
of automated machine learning (AutoML) systems (Feurer et al., 2015).

A typical MtL task uses a meta-data set, where each meta-instance has, as predictive
attributes (meta-features), features extracted from a data set. Furthermore, a meta-data
set has as a target attribute (meta-target), the algorithm that in previous experiments
reached the best predictive performance for the analyzed data set (Brazdil et al., 2008).
The standard meta-features can be organized into five groups (Rivolli et al., 2018): simple,
statistical, information-theoretic, model-based and landmarking (Smith-Miles, 2009; Reif
et al., 2014).

MtL experiments are considered difficult to be replicated because essential details about
the experiments are missing in many studies. These details are usually the data charac-
terization process and the meta-feature hyperparameters used. Despite some attempts to
overcome this problem, such as Data Characteristic Tools (DCT) (Lindner and Studer,
1999), OpenML (OML) (Vanschoren et al., 2013) and BYUMetalearn (BYUM)1, they are
not enough. DCT includes a few simple, statistical, and information-theoretic meta-features.
OML does automatic data characterization, however limiting the user choice (e.g., it is not
possible to combine measures with different summary functions). BYUM, a package un-
der development, presents only some standard meta-features. Furthermore, these tools do
not follow recent frameworks and formalization for meta-features (Pinto et al., 2016; Rivolli
et al., 2018).

The framework presented in Pinto et al. (2016) organizes the automatic meta-feature
extraction process, but it does not address the reproducibility problem. Rivolli et al. (2018)
extend that work proposing a framework to systematize meta-feature extraction. This ex-
tended framework addressed the standard implementation and use of meta-features.

The Meta Feature Extractor (MFE) packages complement this survey by providing tools
for meta-feature extraction that enables the MtL research reproducibility. They agree with
the formalization presented in Rivolli et al. (2018) and implement the main MtL meta-
features. These packages, available in Python (pymfe2) and R (mfe3), are detailed in this
work.

The remainder of this paper is organized as follows. Section 2 describes the meta-feature
definition adopted. Section 3 describes the meta-features framework, the groups of meta-
features implemented and the proposed packages, pymfe for Python and mfe for R. Finally,
Section 4 concludes this text and points out future work directions.

2. Meta-feature Formal Definition

In the MtL literature, meta-features are measures used to characterize data sets and/or
their relations with algorithm bias (Brazdil et al., 2008). Rivolli et al. (2018) formalize the
meta-feature definition as a set of k values, extracted from a data set D, by a function
f : D → Rk, described by Equation 1. In this equation, m : D → Rk′ is a characterization
measure applied to the data set D, σ : Rk′ → Rk is a summarization function, and hm and
hσ are hyperparameters for m and σ, respectively.

1. https://github.com/byu-dml/metalearn
2. https://pypi.org/project/pymfe/
3. https://cran.r-project.org/package=mfe

2

https://github.com/byu-dml/metalearn
https://pypi.org/project/pymfe/
https://cran.r-project.org/package=mfe

MFE: Towards reproducible meta-feature extraction

f
(
D
)
= σ

(
m(D, hm), hσ

)
(1)

The measure m can extract more than one value from each data set, i.e., k′ can vary
according to D, which can be mapped to a vector of fixed length k using a summarization
function σ. In MtL, where a fixed cardinality is needed, the summarization functions can
be, e.g., mean, minimum, maximum, skewness and kurtosis. Thus, a meta-feature is a
combination of a measure and a summarization function.

The MFE implementation packages follow the standardization proposed in Rivolli et al.
(2018) and implement meta-features from the previously mentioned groups. They imple-
ment cutting edge meta-features, including more than 90 measures and 12 summarization
functions. Both packages have the same measures and produce similar output for each
measure and summarization function, allowing cross-platform executions. The implemented
meta-features and their taxonomy classification and mathematical definitions are presented
in Rivolli et al. (2018).

3. Project Overview

The MFE packages are an initiative to increase reproducibility in MtL research, bring for-
malization, categorization, and implementation of cutting edge meta-features. The proposed
packages offer a broad set of meta-features and are also open to anyone who wants to con-
tribute. Some facilities are adopted to manage the MFE updates and continuous expansion:

Software Quality: To ensure code quality, numerous unit tests are performed with high
code coverage (more than 90% on pymfe and mfe). Moreover, pymfe assures code
consistency by following PEP8 Python code convention, and mfe, testthat package
convention. Inclusion of new code is automatically checked, and quality metrics are
provided to validate and enforce continuous software quality.

Continuous Integration: Travis CI is used to allow continuous code integration, build-
ing, and software test. Thus, both users and developers can easily use and contribute
to the packages.

Community-based development: External contributions are welcome and encour-
aged. They can be included via Git and GitHub. These tools allow collaborative
programming, issue tracking, code integration, and discussion about new ideas.

Documentation: Reliable and consistent documentation are provided using sphinx
(Python version), vignettes and roxygen2 (the last two in R version). Both show
how to extract the meta-features for different configurations.

The Python version has widespread and robust open source libraries, such as numpy,
sklearn, and scipy. The pymfe implementation, which is sklearn-inspired, provides two
methods: (i) fit computes all data transformations and pre-computations required for
the selected meta-features; (ii) extract applies the characterization measures followed by
summarization returning the meta-features. Similarly, the R version uses robust open sources
libraries, such as the stats and utils but also more advanced libraries like e1071, rpart,
infotheo and rrcov. The meta-fetures are extracted by the function metafeatures.

The user has complete control of the meta-feature extraction in both packages. For a
given data set, meta-features can be selected individually, in groups, or all of them. It

3

Alcobaça, et al.

is also possible to choose none or as many summary functions as wished. The packages
compute meta-features faster, performing several initial pre-computations of routines that
are common to various measures, avoiding code re-execution.

Table 1 compares the main characteristics of MFE against existing alternatives. The
comparison includes the meta-feature groups available, the number of extracted meta-
features, and whether their extraction is systematic. As can be seen, MFE support six more
meta-feature groups than these alternatives: relative landmarking (Rivolli et al., 2018), sub-
sampling landmarking (Soares et al., 2001), clustering-based (Pimentel and de Carvalho,
2019), concept (Rivolli et al., 2018), itemset (Song et al., 2012) and complexity (Lorena
et al., 2019). Moreover, the MFE packages offers the most extensive set and follow recent
frameworks.

Name

Meta-feature Groups
Meta
features SystematicSimple Statistical Info.

Theo.
Model
Based Landmarking Clustering Concept Itemset Complexity

◦ Rel. Sub.
DCT 21 no
OML 226 no
BYUM v0.5.4 231 no
PyMFE v0.2.0 1572 yes

Table 1: Comparison between meta-feature tools. The ◦ indicates simple landmarking. Rel
and Sub are relative and subsample landmarking, respectively.

The packages are available on GitHub4,5. They have been visited/cloned many times
and contain more than 900 commits at the edition time. Additional information, such as
installation, documentation, and examples are provided and centralized on GitHub.

4. Conclusion

The MFE packages followed frameworks that allow the systematic meta-features extraction
for MtL, ensuring experimental reproducibility. Moreover, as they are open-source software,
it is possible to share and modify the code, stimulating collaboration among MtL researchers.
Future work directions include updating the packages with new meta-features soon after their
proposal. Also, address some limitations, such as support for missing values and extraction
of meta-features for regression tasks.

Acknowledgments

This study was funded by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
- Brasil (CAPES) - Finance Code 001, CNPq, FAPESP (grants 2018/14819-5, 2016/18615-0
and 2013/07375-0) and Intel Inc., for providing hardware resource and DevCloud, used in
part of the experiments. We also would like to thank Davi Pereira-Santos, Saulo Martiello
Mastelini for their comments.

4. https://github.com/ealcobaca/pymfe
5. https://github.com/rivolli/mfe

4

https://github.com/ealcobaca/pymfe
https://github.com/rivolli/mfe

MFE: Towards reproducible meta-feature extraction

References

P. Brazdil, C. Giraud-Carrier, C. Soares, and R. Vilalta. Metalearning: Applications to Data
Mining. Springer Science & Business Media, 2008.

M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hutter. Efficient
and robust automated machine learning. In Advances in Neural Information Processing
Systems, pages 2962–2970, 2015.

L. P. F. Garcia, A. C. P. L. F. de Carvalho, and A. C. Lorena. Noise detection in the
meta-learning level. Neurocomputing, 176:14–25, 2016.

G. Lindner and R. Studer. Ast: Support for algorithm selection with a cbr approach.
In European Conference on Principles of Data Mining and Knowledge Discovery, pages
418–423, 1999.

A. C. Lorena, L. P. F. Garcia, J. Lehmann, M. C. P. Souto, and T. K. Ho. How complex is
your classification problem?: A survey on measuring classification complexity. Association
for Computing Machinery Computing Surveys (CSUR), 52(5):107, 2019.

R. G. Mantovani, A. L. D. Rossi, E. Alcobaça, J. Vanschoren, and A. C. P. L. F. de Carvalho.
A meta-learning recommender system for hyperparameter tuning: predicting when tuning
improves svm classifiers. Information Sciences, 2019.

B. A. Pimentel and A. C. P. L. F. de Carvalho. A new data characterization for selecting
clustering algorithms using meta-learning. Information Sciences, 477:203–219, 2019.

F. Pinto, C. Soares, and J. Mendes-Moreira. Towards automatic generation of metafeatures.
In Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages 215–226,
2016.

M. Reif, F. Shafait, M. Goldstein, T. Breuel, and A. Dengel. Automatic classifier selection
for non-experts. Pattern Analysis and Applications, 17(1):83–96, 2014.

A. Rivolli, L. P. F. Garcia, C. Soares, J. Vanschoren, and A. C. P. L. F. de Carvalho. To-
wards reproducible empirical research in meta-learning. Computing Research Repository,
arXiv:1808.10406v2, 2018. URL http://arxiv.org/abs/1808.10406v2.

K. A. Smith-Miles. Cross-disciplinary perspectives on meta-learning for algorithm selection.
Association for Computing Machinery Computing Surveys (CSUR), 41(1):1–25, 2009.

C. Soares, J. Petrak, and P. Brazdil. Sampling-based relative landmarks: Systematically test-
driving algorithms before choosing. In Portuguese Conference on Artificial Intelligence,
pages 88–95. Springer, 2001.

Q. Song, G. Wang, and C. Wang. Automatic recommendation of classification algorithms
based on data set characteristics. Pattern Recognition, 45(7):2672–2689, 2012.

J. Vanschoren, J. N. van Rijn, B. Bischl, and L. Torgo. OpenML: Networked science in
machine learning. Special Interest Group on Knowledge Discovery in Data Explorations
Newsletter, 15(2):49 – 60, 2013.

5

http://arxiv.org/abs/1808.10406v2

	Introduction
	Meta-feature Formal Definition
	Project Overview
	Conclusion

