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Abstract

Although multivariate count data are routinely collected in many application areas, there
is surprisingly little work developing flexible models for characterizing their dependence
structure. This is particularly true when interest focuses on inferring the conditional in-
dependence graph. In this article, we propose a new class of pairwise Markov random
field-type models for the joint distribution of a multivariate count vector. By employing a
novel type of transformation, we avoid restricting to non-negative dependence structures or
inducing other restrictions through truncations. Taking a Bayesian approach to inference,
we choose a Dirichlet process prior for the distribution of a random effect to induce great
flexibility in the specification. An efficient Markov chain Monte Carlo (MCMC) algorithm
is developed for posterior computation. We prove various theoretical properties, includ-
ing posterior consistency, and show that our COunt Nonparametric Graphical Analysis
(CONGA) approach has good performance relative to competitors in simulation studies.
The methods are motivated by an application to neuron spike count data in mice.

Keywords: Conditional independence, Dirichlet process, Graphical model, Markov ran-
dom field, Multivariate count data

1. Introduction

Graphical models provide an appealing framework to characterize dependence in multivari-
ate data Xi = (Xi1, . . . , XiP ) in an intuitive way. This article focuses on undirected graphi-
cal models or Markov random fields (MRFs). In this approach, each random variable is as-
signed as a node of a graph G which is characterized by the pair (V,E). Here V and E denote
the set of nodes and set of connected edges of the graph G, with V = {1, . . . , P} and E ⊆
V ×V . The graph G encodes conditional independence relationships in the data. We say Xl

and Xk are conditionally independent if P (Xl, Xk|X−(l,k)) = P (Xl|X−(l,k))P (Xk|X−(l,k)),
with X−(l,k) denoting all random variables excluding Xl and Xk. Conditional independence
between two random variables is equivalent to the absence of an edge between those two
corresponding nodes in the graph. Thus the conditional independence of Xl and Xk would
imply that the edge (k, l) is not present i.e. (k, l) /∈ E.

c©2020 Arkaprava Roy, and David B Dunson.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v21/19-362.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v21/19-362.html


Roy and Dunson

Although there is a rich literature on graphical models, most of the focus has been
specifically on Gaussian graphical models. For bounded discrete data, Ising (Ravikumar
et al., 2010; Kolar et al., 2010) and multinomial graphical models (Jalali et al., 2011) have
been studied. However, for unbounded count-valued data, the existing literature is limited.
Multivariate count data are routinely collected in genomics, sports, imaging analysis, and
text mining among many other areas, but most of the focus has been on latent factor and
covariance structure models (Wedel et al., 2003; Zhou et al., 2012). The goal of this article
is to address this gap and provide a flexible framework for statistical inference in count
graphical models.

Besag first introduced pair-wise graphical models, deemed ‘auto-models’ in his seminal
paper on MRFs (Besag, 1974). To define a joint distribution on a spatial lattice, he started
with an exponential family representation of the marginal distributions and then added first-
order interaction terms. In the special case of count data, he introduced the Poisson auto-
model. In this approach, the random variable at the i-th location Xi follows a conditional
Poisson distribution with mean µi, dependent on the neighboring sites. Then µi is given
the form µi = exp(αi +

∑
j βijXj). It can be shown that this conditional density model

admits a joint density if and only if βij ≤ 0 for all pairs of (i, j). Hence, only non-negative
dependence can be accommodated. Gamma and exponential auto-models also have the
same restriction due to the non-negativity of the random variables.

Yang et al. (2013) truncated the count support within the Poisson auto-model to allow
both positive and negative dependence, effectively treating the data as ordered categorical.
Allen and Liu (2012) fit the Poisson graphical model locally in a manner that allows both
positive and negative dependence, but this approach does not address the problem of global
inference on G. Chiquet et al. (2018) let Xij ∼ Poi(exp(µj +Zij)) for 1 ≤ i ≤ n, 1 ≤ j ≤ V
and Zi ∼MVN(0,Σ). The graph is inferred through sparse estimation of Σ−1. Hadiji et al.
(2015) proposed a non-parametric count model, with the conditional mean of each node an
unknown function of the other nodes. Yang et al. (2015) defined a pairwise graphical model
for count data that only allows negative dependence. Inouye et al. (2016a,b, 2017) models
multivariate count data under the assumption that the square root or more generally the j-
th root, of the data is in an exponential family. This model allows for positive and negative
dependence but under strong distributional assumptions.

In the literature on spatial data analysis, many count-valued spatial processes have
been proposed, but much of the focus has been on including spatial random effects instead
of an explicit graphical structure. De Oliveira (2013) considered a random field on the
mean function of a Poisson model to incorporate spatial dependence. However, conditional
independence or dependence structure in the mean does not necessarily represent that of
the data. The Poisson-Log normal distribution, introduced by Aitchison and Ho (1989),
is popular for analyzing spatial count data (Chan and Ledolter, 1995; Diggle et al., 1998;
Chib and Winkelmann, 2001; Hay and Pettitt, 2001). Here also the graph structure of the
mean does not necessarily represent that of the given data. Hence, these models cannot be
regarded as graphical models for count data. To study areal data, conditional autoregressive
models (CAR) have been proposed (Gelfand and Vounatsou, 2003; De Oliveira, 2012; Wang
and Kockelman, 2013). Although these models have an MRF-type structure, they assume
the graph G is known based on the spatial adjacency structure, while our focus is on inferring
unknown G.
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Gaussian copula models are popular for multivariate non-normal data (Xue-Kun Song,
2000; Murray et al., 2013). Mohammadi et al. (2017) developed a computational algorithm
to build graphical models based on Gaussian copulas using methods developed by Dobra
et al. (2011). However, it is difficult to model multivariate counts with zero-inflated or
multimodal marginals using a Gaussian copula.

Within a semiparametric framework, Liu et al. (2009) proposed a nonparanormal graph-
ical model in which an unknown monotone function of the observed data follows a multi-
variate normal model with unknown mean and precision matrix subject to identifiability
restrictions. This model has been popular for continuous data, providing a type of Gaus-
sian copula. For discrete data, the model is not directly appropriate, as mapping discrete
to continuous data is problematic. To the best of our knowledge, there has been no work
on nonparanormal graphical models for counts. In general, conditional independence can-
not be ensured if the function of the random variable is not continuous. For example if f
is not monotone continuous, then conditional independence of X and Y does not ensure
conditional independence of f(X) and f(Y ).

In addition to proposing a flexible graphical model for counts, we aim to develop ef-
ficient Bayesian computation algorithms. Bayesian computation for Gaussian graphical
models (GGMs) is somewhat well-developed (Dobra and Lenkoski, 2011; Wang, 2012, 2015;
Mohammadi et al., 2015). Unfortunately, outside of GGMs, the likelihood-based inference
is often problematic due to intractable normalizing constants. For example, the normalizing
constant in the Ising model is too expensive to compute except for very small P . There
are approaches related to surrogate likelihood (Kolar and Xing, 2008) by relaxation of the
log-partition function (Banerjee et al., 2008). Kolar et al. (2010) use conditional likelihood.
Besag (1975) chose a product of conditional likelihoods as a pseudo-likelihood to estimate
MRFs. For exponential family random graphs, Van Duijn et al. (2009) compared maximum
likelihood and maximum pseudo-likelihood estimates in terms of bias, standard errors, cov-
erage, and efficiency. Zhou and Schmidler (2009) numerically compared the estimates from
a pseudo-posterior with exact likelihood-based estimates and found they are very similar in
small samples for Ising and Potts models. Also for pseudo-likelihood based methods asymp-
totic unbiasedness and consistency have been studied (Comets, 1992; Jensen and Künsch,
1994; Mase, 2000; Baddeley and Turner, 2000). Pensar et al. (2017) showed consistency of
marginal pseudo-likelihood for discrete-valued MRFs in a Bayesian framework.

Recently Dobra et al. (2018) used pseudo-likelihood for estimation of their Gaussian
copula graphical model. Although pseudo-likelihood is popular in the frequentist domain
for count data (Inouye et al., 2014; Ravikumar et al., 2010; Yang et al., 2013), its usage
is still the nonstandard in Bayesian estimation for count MRFs. This is mainly because
calculating conditional densities is expensive for count data due to unbounded support,
making posterior computations hard to conduct. We implement an efficient Markov Chain
Monte Carlo (MCMC) sampler for our model using pseudo-likelihood and pseudo-posterior
formulations. Our approach relies on a provably accurate approximation to the normalizing
constant in the conditional likelihood. We also provide a bound for the approximation error
due to the evaluation of the normalizing constant numerically.

In Section 2, we introduce our novel graphical model. In Section 3, some desirable
theoretical results are presented. Then we discuss computational strategies in Section 4
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and present simulation results in Section 5. We apply our method to neuron spike data in
mice in Section 6. We end with some concluding remarks in Section 7.

2. Modeling

Before introducing the model, we define some of the Markov properties related to the
conditional independence of an undirected graph. A clique of a graph is the set of nodes
where every two distinct nodes are adjacent; that is, connected by an edge. Let us define
N (j) = {l : (j, l) ∈ E}. For three disjoint sets A, B and C of V , A is said to be separated
from B by C if every path from A to B goes through C. A path is an ordered sequence
of nodes i0, i1, . . . , im such that (ik−1, ik) ∈ E. The joint distribution is locally Markov if
Xj ⊥ V \ {Xj , N(j)}|N(j). If for three disjoint sets A,B and C of V , XA and XB are
independent given XC whenever A and B are separated by C, the distribution is called
globally Markov. The joint density is pair-wise Markov if for any i, j ∈ V such that
(i, j) /∈ E, Xi and Xj are conditionally independent.

We consider here a pair-wise MRF (Wainwright et al., 2007; Chen et al., 2014) which
implies the following joint probability mass function (pmf) for the P dimensional random
variable X,

Pr(X1, . . . , XP ) ∝ exp

{ P∑
i=1

f(Xi) +
P∑
l=2

∑
j<l

f(Xj , Xl)

}
, (1)

where f(Xi) is called a node potential function, f(Xj , Xl) an edge potential function and
we have f(Xj , Xl) = 0 if there is no edge (j, l). Thus this distribution is pair-wise Markov
by construction. Then (1) satisfies the Hammersley-Clifford theorem (Hammersley and
Clifford, 1971), which states that a probability distribution having a strictly positive density
satisfies a Markov property with respect to the undirected graph G if and only if its density
can be factorized over the cliques of the graph. Since our pair-wise MRF is pair-wise Markov,
we can represent the joint probability mass function as a product of mass functions of the
cliques of graph G. The existence of such a factorization implies that this distribution has
both global and local Markov properties.

Completing a specification of the MRF in (1) requires an explicit choice of the poten-
tial functions f(Xj) and f(Xj , Xl). In the Gaussian case, one lets f(Xj) = −αjX2

j and
f(Xj , Xl) = −βjlXjXl, where αj and βjl correspond to the diagonal and off-diagonal ele-
ments of the precision matrix Σ−1 = cov(X)−1. In general, the node potential functions
can be chosen to target specific univariate marginal densities. If the marginal distribution is
Poisson, the appropriate node potential function is f(Xj) = αjXj− log(Xj !). One can then
choose the edge potential functions to avoid overly restrictive constraints on the dependence
structure, such as only allowing non-negative correlations. Yang et al. (2013) identify edge
potential functions with these properties for count data by truncating the support; for ex-
ample, to the range observed in the sample. This reduces the ability to generalize results,
and in practice, estimates are sensitive to the truncation level. We propose an alternative
construction of the edge potentials that avoids truncation.
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2.1 Model

We propose the following modified pmf for P -dimensional count-valued data X,

Pr(X1, . . . , XP ) ∝ exp

( P∑
j=1

[αjXj − log(Xj !)]−
P∑
l=2

∑
j<l

βjlF (Xj)F (Xl)

)
,

where F (·) is a monotone increasing bounded function with support [0,∞), f(Xj) = αjXj−
log(Xj !) and f(Xj , Xl) = −βjlF (Xj)F (Xl) using the notation of (1).

Lemma 1 Let F (·) be uniformly bounded by U , then the normalizing constant, say A(α, β),
can be bounded as,

exp

( P∑
j=1

exp(αj)− U2
P∑
l=2

∑
j<l

|βjl|
)
≤ A(α, β) ≤ exp

( P∑
j=1

exp(αj) + U2
P∑
l=2

∑
j<l

|βjl|
)
.

These bounds can be obtained by elementary calculations. The constant A(α, β) is the
sum of the above pmf over the support of X. The sum reduces to a product of P many
exponential series sums after replacing the function F (·) by its maximum.

Thus by modifying the edge potential function in this way using a bounded function of
X, we can allow unrestricted support for all the parameters, allowing one to estimate both
positive and negative dependence. Under the monotonicity restrictions on F (·), inference on
the conditional independence structure tends to be robust to the specific form chosen. We let
F (·) = (tan−1(·))θ for some positive θ ∈ R+ to define a flexible class of monotone increasing
bounded functions. The exponent θ provides additional flexibility, including impacting
the range of F (X),

(
0, (π2 )θ

)
. The parameter θ can be estimated along with the other

parameters, including the baseline parameters α controlling the marginal count distributions
and the coefficients βjl controlling the graphical dependence structure. For simplicity and
interpretability, we propose to estimate θ to minimize the difference in covariance between
F (X) and X. Figure 1 illustrates how θ controls the range and shape of F (·). Figure 2
shows how the difference between covariances of F (X) and X vary for different values of
θ in sparse and non-sparse data cases. In both cases, the difference function has a unique
minimizer. Although the same strategy could be used to tune the truncation parameter
in the Yang et al. (2013) approach, issues arise in estimating the support of the data based
on a finite sample, as new data may fall outside of the estimated support. Besides, their
approach is less flexible in relying on parametric assumptions, while we use a mixture model
for the αs to induce a nonparametric structure.

Letting Xt denote the tth independent realization of X, for t = 1, . . . , n, the pmf is

Pr(Xt1, . . . , XtP ) ∝ exp

( P∑
j=1

[αtjXtj − log(Xtj !)]−

P∑
l=2

∑
j<l

βjl(tan−1(Xtj))
θ(tan−1(Xtl))

θ

)
, (2)
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Figure 1: F (·) = (tan−1)θ(·) for different values of θ. The parameter θ controls both shape
and range of F (·).

Figure 2: ‖cov(tan−1(X)θ)−cov(X)‖F for different values of θ. ‖‖F stands for the Frobenius
norm.
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where αtj ’s are coefficients of different node potential functions and βjl’s are coefficients of
the edge potential functions as before. We vary αtj with t to allow more flexibility in mod-
eling the marginal densities. If βjl = 0, then Xtj and Xtl are conditionally independent for
all t. We call our proposed method COunt Nonparametric Graphical Analysis (CONGA).

Now we reparametrize (2) using log(λtj) = αtj and rewrite the model as,

Pr(Xt1, . . . , XtP ) ∝
P∏
j=1

λ
Xtj

tj

Xtj !
exp

(
−

P∑
l=2

∑
j<l

βjl(tan−1(Xtj))
θ(tan−1(Xtl))

θ

)
. (3)

This reparametrizated model is more intuitive to understand. Due to the Poisson type
marginal in (3), this model is suitable for data with over-dispersed marginals with respect
to the Poisson at each node. Over-dispersion is typical in broad applications. We consider
this reparametrized model in the rest of the paper.

2.2 Prior structure

To proceed with Bayesian computation, we put priors on the parameters. We have two sets
of parameters in (3), β and λ. For the βjl parameters, we choose simple iid Gaussian priors.
It is straightforward to consider more elaborate shrinkage or variable selection priors for
the βjl’s, but we find usual Gaussian priors have good performance in small to moderate-
dimensional applications

The parameter λtj ’s represent random effects; these parameters are not individually
identifiable and are given random effects distributions λtj ∼ Dj . The distribution Dj con-
trols over-dispersion and the shape of the marginal count distribution for the jth node. To
allow these marginals to be flexibly determined by the data, we take a Bayesian nonpara-
metric approach using Dirichlet process priors Dj ∼DP(MjD0), with D0 a Gamma base
measure and Mj a precision parameter, having Mj ∼Ga(c, d) for increased data adaptivity.

3. Theoretical properties

We explore some of the theoretical properties of our proposed CONGA method.

Theorem 2 If we have βjl = 0, then Xtj and Xtl are conditionally independent for all t
under (3).

This result is easy to verify by simply calculating the conditional probabilities. The details
of the proof are in the Appendix.

We study posterior consistency under a fixed P and increasing n regime, assuming the
prior of Section 2.2 with prespecified θ. Let Gj be the density on αtj , induced by λtj ∼ Dj .
Let the parameter space for Gj be Gj and that for β be Rq, where q = P (P −1)/2. Thus the
complete parameter space for κ = {β,G1, . . . , Gp} is Ψ = Rq × G1 × · · · × GP . We consider
the prior Γ̃j on Gj and χ on β.

Let κ0 be the truth for κ. We make the following assumptions.
Assumptions

1. For some large T > 0, let Ga = {G : G([−T, T ]) = 1}. Then G0
j ∈ G and G0

j is in the

support of Γ̃j .
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2. For some large C > 0, let Q = {β : ‖β‖∞ < C}, where ‖ · ‖∞ stands for the infinity
norm. Then β0 ∈ Q and β0 is in the support of χ.

3. E(Xtj) <∞ for all pairs of (t, j)

Theorem 3 Under the assumptions, 1-3, the posterior for κ is consistent at κ0.

We show that the truth belongs to the Kullback-Leibler support of the prior. Thus the

posterior probability of any neighborhood around the true p.m.f converges to one in P
(n)
κ0 -

probability as n goes to∞ as a consequence of Schwartz (1965). Here P
(n)
κ is the distribution

of a sample of n observations with parameter κ. Hence, the posterior is weakly consistent.
The posterior is said to be strongly consistent if the posterior probability of any neighbor-
hood around the true p.m.f convergences to one almost-surely. Support of the data is a
countable space. The weak and strong topologies on countable spaces are equivalent by
Scheffe’s theorem. In particular, weak topology and total variation topology are equivalent
for discrete data. Weak consistency implies strong consistency. Thus the posterior for κ is
also strongly consistent at κ0. A detailed proof is in the Appendix.

Instead of assuming bounded support on the true distribution of random effects, one
can also assume it to have sub-Gaussian tails. The posterior consistency result still holds
with minor modifications in the current proof. Establishing graph selection consistency of
the proposed method is an interesting area of future research when p is growing with n and
λtj ’s are fixed effects. Since we are interested in a non-parametric graphical model, we do
not explore that in this paper.

4. Computation

As motivated in Section 2.1, we estimate θ to minimize the differences in the sample covari-
ance of X and F (X). In particular, the criteria is to minimize ‖cov(tan−1(X)θ)−cov(X)‖F .
This is a simple one dimensional optimization problem, which is easily solved numerically.

To update the other parameters, we use an MCMC algorithm, building on the approach
of Roy et al. (2018). We generate proposals for Metropolis-Hastings (MH) using a Gibbs
sampler derived under an approximated model. To avoid calculation of the global normal-
izing constant in the complete likelihood, we consider a pseudo-likelihood corresponding
to a product of conditional likelihoods at each node. This requires calculations of P local
normalizing constants which is computationally tractable.

The conditional likelihood at the j-th node is,

P (Xtj |Xt,−j) =

exp
[
{log(λtj)Xtj − log(Xtj !)} −

∑
j 6=l βjl{tan−1(Xtj)}θ{tan−1(Xtl)}θ

]∑∞
Xtj=0 exp

[
{log(λtj)Xtj − log(Xtj !)} −

∑
j 6=l βjl{tan−1(Xtj)}θ{tan−1(Xtl)}θ

] (4)

The normalizing constant is

∞∑
Xtj=0

exp
[
{log(λtj)Xtj − log(Xtj !)} −

∑
j 6=l

βjl{tan−1(Xtj)}θ{tan−1(Xtl)}θ
]
.
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We truncate this sum at a sufficiently large value B for the purpose of evaluating the
conditional likelihood. The error in this approximation can be bounded by

exp(λtj)(1− CP (B + 1, λtj)) exp

{
−

∑
j 6=l:βjl<0

βjl(π/2)θ(tan−1(Xtl))
θ

}
,

where CP (x, l) is the cumulative distribution function of the Poisson distribution with
mean l evaluated at x. The above bound can in turn be bounded by a similar expression
with (tan−1(Xtl))

θ replaced by (π/2)θ. One can tune B based on the resulting bound on
the approximation error. In our simulation setting, even B = 70 makes the above bound
numerically zero. We use B = 100 as a default choice for all of our computations.

We update λ.j using the MCMC sampling scheme described in Chapter 5 of Ghosal
and Van der Vaart (2017) for the Dirichlet process mixture prior of λij based on the above
conditional likelihood. For clarity this algorithm is described below:

(i) Calculate the probability vector Qj for each j such that Qj(k) = Pois(Xij , λkj) and
Qj(i) = MjGa(λi,j , a+Xi,j , b+ 1).

(ii) Sample an index l from 1 : T with probability Qj/
∑

kQj(k).

(iii) If l 6= i, λij = λlj . Otherwise sample a new value as described below.

(iv) Mj is sampled from Gamma(c + U, d − log(δ)), where U is the number of unique
elements in λ.j , δ is sampled from Beta(Mj , T ), and Mj ∼Ga(c, d) a priori.

When we have to generate a new value for λtj in step (iii), we consider the following
scheme.

(i) Generate a candidate λctj from Gamma(a+Xtj , b+ 1).

(ii) Adjust the update λctj = λ0
tj +K1(λctj−λ0

tj), where λ0
tj is the current value and K1 < 1

is a tuning parameter, adjusted with respect to the acceptance rate of the resulting
Metropolis-Hastings (MH) step.

(iii) We use the pseudo-likelihood based on the conditional likelihoods in (4) to calculate
the MH acceptance probability.

To generate β, we consider a new likelihood that the standardized (tan−1(Xtl))
θ follows

a multivariate Gaussian distribution with precision matrix Ω such that Ωpq = Ωqp = βpq
with p < q and Ωpp = (V ar((tan−1(Xtl))

θ)−1)pp. Thus diagonal entries do not change
over iterations. We update Ωl,−l = {Ωl,i : i 6= l} successively. We also define Ω−l,−l as the
submatrix by removing l-th row and column. Let s = (F (x)− F̄ (X))T (F (x)− F̄ (X)). Thus
s is the P × P gram matrix of (tan−1X)θ, standardized over columns.

(i) Generate an update for Ωl,−l using the posterior distribution as in Wang (2012). Thus
a candidate Ωc

l,−l is generated from MVN(−Csl,−l, C), where C = ((s22 + γ)Ω−1
−l,−l +

D−1
l )−1, where Dl is the prior variance corresponding to Ωl,−l
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(ii) Adjust the update Ωc
l,−l = Ω0

l,−l + K2
(Ωc

l,−l−Ω0
l,−l)

‖(Ωc
l,−l−Ω0

l,−l)‖2
, where Ω0

l,−l is the current value

and K2 is a tuning parameter, adjusted with respect to the acceptance rate of the
following MH step. Also K2 should always be less than ‖(Ωc

l,−l − Ω0
l,−l)‖2.

(iii) Use the pseudo-likelihood based on the conditional likelihoods in (4), multiplying over
t to calculate the MH acceptance probability. π(θ0|θc) = π̃(θG) and π(θc|θ0) = π̃(θ′G),
where θG is the original Gibbs update.

5. Simulation

We consider four different techniques for generating multivariate count data. One approach
is based on a Gaussian copula type setting. The other three are based on competing
methods. We compare the methods based on false positive and false negative proportions.
We include an edge in the graph between the jth and lth nodes if the 95% credible interval
for βjl does not include zero. There is a decision-theoretic proof to justify such an approach
in Thulin (2014). We compare our method CONGA with TPGM, SPGM, LPGM, huge,
BDgraph, and ssgraph. The first three are available in R package XMRF and the last two are
in R packages BDgraph and ssgraph respectively. The function huge is from R package huge
which fits a nonparanormal graphical model. The last two methods fit graphical models
using Gaussian copulas and ssgraph uses spike and slab priors in estimating the edges.

To simulate data under the first scheme, we follow the steps given below.

(i) Generate n many multivariate normals of length c from MVN(0c,Ω
−1
c×c), where 0c is

the vector of zeros of length c. This produces a matrix X of dimension n× c.

(ii) We calculate the matrix Pn×c, which is Pij = Φ(Xij), where Φ is the cumulative
density function of the standard normal.

(iii) The Poisson random variable Yn×c is Yij = QP (Pij , λ) for a given mean parameter λ
with QP the quantile function of Poisson(λ).

Let X:,l denote the l-th column of X. In the above data generation setup, Ωpq = 0
implies that Y:,p and Y:,q are conditionally independent due to Lemma 3 of Liu et al. (2009).
The marginals are allowed to be multimodal at some of the nodes, which is not possible
under the other simulation schemes.

Apart from the above approach, we also generate the data using R package XMRF from the
models Sub-Linear Poisson Graphical Model (SPGM), Truncated Poisson graphical Model
(TPGM) (Yang et al., 2013), and Local Poisson Graphical Model (LPGM) (Allen and Liu,
2012).

We choose ν3 = 100, which is the prior variance of the normal prior of βjl for all j, l.
The choice ν3 = 100 makes the prior weakly informative. The parameter γ is chosen to be
5 as given in Wang (2012). For the gamma distribution, we consider a = b = 1. For the
Dirichlet process mixture, we take c = d = 10. We consider n = 100 and P = 10, 30, 50.
We collect 5000 post burn MCMC samples after burning in 5000 MCMC samples.

We compare the methods based on two quantities p1 and p2. We define these as p1

= Proportion of falsely connected edges in the estimated graph (false positive) and p2 =
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Proportion of falsely not connected edges in the estimated graph (false negative). We show
the pair (p1, p2) in Tables 1 to 3 for number of nodes 10, 30 and 50. All of these results
are based on 50 replications. To evaluate the performance of CONGA, we calculate the
proportion of replications where zero is included in the corresponding 95% credible region,
constructed from the MCMC samples for each replication. For the other methods, the
results are based on the default regularization as given in the R package XMRF. Our proposed
method overwhelmingly outperforms the other methods when the data are generated using
a Gaussian copula type setting instead of generating from TPGM, SPGM, or LPGM. For
other cases, our method performs similarly to competing methods when the number of nodes
is large. In these cases, the competing methods TPGM, SPGM, or LPGM are levering on
modeling assumptions that CONGA avoids. CONGA beats BDgraph and ssgraph in almost
all the scenarios in terms of false-positive proportions. The false-negative proportions are
comparable. The function ‘huge’ performs similarly to CONGA when the data are generated
using TPGM, SPGM, and LPGM. But CONGA is better than all other methods when the
data are generated using the Gaussian copula type setting. This is likely because the other
cases correspond to simulating data from one of the competitor’s models.

Table 1: Performance of the competing methods against our proposed method with 10
nodes. Top row indicates the method used to estimate and the first column indi-
cates the method used to generate the data. p1 and p2 stand for false positive and
false negative proportions.

CONGA TPGM SPGM LPGM bdgraph ssgraph huge

Data generation
method p1 p2 p1 p2 p1 p2 p1 p2 p1 p2 p1 p2 p1 p2

Multi-Poisson 0.08 0 0.22 0.29 0.21 0.34 0.22 0.29 0 0.90 0.27 0.07 0.16 0.20

TPGM 0.04 0.25 0.10 0.02 0.07 0.03 0.10 0.03 0 0.93 0.30 0.15 0.12 0.13

SPGM 0.06 0.23 0.09 0.04 0.07 0.03 0.09 0.04 0 0.95 0.28 0.14 0.12 0.12

LPGM 0.05 0.24 0.07 0.06 0.11 0.07 0.07 0.07 0 0.92 0.31 0.15 0.10 0.09

Table 2: Performance of the competing methods against our proposed method with 30
nodes. Top row indicates the method used to estimate and the first column indi-
cates the method used to generate the data. p1 and p2 stand for false positive and
false negative proportions.

CONGA TPGM SPGM LPGM bdgraph ssgraph huge

Data generation
method p1 p2 p1 p2 p1 p2 p1 p2 p1 p2 p1 p2 p1 p2

Multi-Poisson 0 0 0.08 0.57 0.04 0.76 0.08 0.57 0.43 0.25 0.42 0.25 0.13 0.25

TPGM 0.06 0.23 0.05 0.23 0.06 0.23 0.06 0.23 0.41 0.20 0.37 0.21 0.09 0.19

SPGM 0.07 0.22 0.06 0.23 0.06 0.22 0.06 0.23 0.40 0.21 0.38 0.21 0.08 0.18

LPGM 0.07 0.23 0.06 0.22 0.06 0.22 0.06 0.21 0.39 0.19 0.40 0.22 0.08 0.19
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Table 3: Performance of the competing methods against our proposed method with 50
nodes. Top row indicates the method used to estimate and the first column indi-
cates the method used to generate the data. p1 and p2 stand for false positive and
false negative proportions.

CONGA TPGM SPGM LPGM bdgraph ssgraph huge

Data generation
method p1 p2 p1 p2 p1 p2 p1 p2 p1 p2 p1 p2 p1 p2

Multi-Poisson 0 0 0.01 0.88 0.02 0.76 0.02 0.75 0.46 0.22 0.44 0.25 0.15 0.26

TPGM 0.11 0.23 0.03 0.29 0.03 0.33 0.03 0.33 0.42 0.23 0.43 0.25 0.07 0.21

SPGM 0.11 0.25 0.03 0.33 0.03 0.31 0.03 0.33 0.43 0.21 0.41 0.26 0.08 0.22

LPGM 0.12 0.23 0.03 0.32 0.03 0.34 0.03 0.31 0.43 0.23 0.44 0.26 0.08 0.21

6. Neuron spike count application

The dataset records neuron spike counts in mice across 37 neurons in the brain under the
influence of three different external stimuli, 2-D sinusoids with vertical gradient, horizontal
gradient, and the sum. These neurons are from the same depth of the visual cortex of a
mouse. The data are collected for around 400-time points. In Figure 3, we plot the marginal
densities of the spike counts of four neurons under the influence of stimuli 0. We see that
there are many variations in the marginal densities, and the densities are multi-modal for
some of the cases. Marginally at each node, we also have that the variance is more than
the corresponding mean for each of the three stimuli.

6.1 Estimation

We apply exactly the same computational approach as used in the simulation studies. To
additionally obtain a summary of the weight of evidence of an edge between nodes j and
l, we calculate Sjl =

(
|0.5 − P (βjl > 0)|

)
/0.5, with P (βjl > 0) the posterior probability

estimated from the MCMC samples. We plot the estimated graph with edge thickness
proportional to the values of Sjl. Thus thicker edges suggest greater evidence of an edge in
Figures 4 to 6. To test for similarity in the graph across stimuli, we estimate 95% credible

regions for ∆s,s′

jl = βsjl − βs
′
jl , denoting the difference in the (j, l) edge weight parameter

under stimuli s and s′, respectively. We flag those edges (j, l) having 95% credible intervals

for ∆s,s′

jl not including zero as significantly different across stimuli.

6.2 Inference

We find that there are 129, 199, and 110 connected edges respectively for stimuli 0, 1, and
2. Among these edges, 38 are common for stimulus 0 and 1. The number is 15 for stimulus
0 and 2, and 28 for stimulus 1 and 2. There are 6 edges that are common for all of the
stimuli. These are (13,16), (8,27), (5,8), (33,35), (3,4) and (9, 14). Each node has at least
one edge with another node. We plot the estimated network in Figures 4 to 6. We calculate
the number of connected edges for each node and list the 5 most connected nodes in Table 4.
We also list the most significant 10 edges for each stimulus in Table 5. We find that node
27 is present in all of them. This node seems to have significant interconnections with other
nodes for all of the stimuli. We also test the similarity in the estimated weighted network
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Figure 3: Marginal densities of spike count of the four selected neurons under the influence
of stimuli 0.

13



Roy and Dunson

across stimuli. Here we find 82.13% similarity between the estimated weighted networks
under the influence of stimulus 0 and 1. It is 84.98% for the pair 0 and 2. For 1 and 2, it
is 79.43%. Stimulus 0 is a combination of stimuli 1 and 2. This could be the reason that
the estimated graph under influence of stimulus 0 has the highest similarity with the other
estimated graphs.

Figure 4: Estimated weighted network under the influence of stimuli 0. The edge width is
proportional to the degree of significance.

Figure 5: Estimated weighted network under the influence of stimuli 1. The edge width is
proportional to the degree of significance.
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Figure 6: Estimated weighted network under the influence of stimuli 2. The edge width is
proportional to the degree of significance.

Table 4: Top 5 nodes with maximum number of connected edges under the influence of
stimuli 0, 1 and 2 are listed below.

Stimuli 0 Stimuli 1 Stimuli 2

Node Number of Node Number of Node Number of
number connected edges number connected edges number connected edges

37 12 27 16 32 11
6 11 3 15 23 10
9 11 5 14 3 9
25 11 8 14 18 9
27 11 23 14 27 9
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Table 5: Top 10 most significant edges under the influence of stimulus 0, 1 and 2 with 1 as
the estimated measure of significance are listed below.

Stimuli 0 Stimuli 1 Stimuli 2

Neuron 1 Neuron 2 Neuron 1 Neuron 2 Neuron 1 Neuron 2

24 35 24 28 14 30
26 30 24 30 16 35
26 37 24 35 21 35
28 37 24 37 21 36
29 33 26 28 24 28
30 32 26 31 24 29
30 35 28 37 24 37
31 33 34 37 25 26
35 36 35 36 26 36
35 37 36 37 31 36

7. Discussion

Our count nonparametric graphical analysis (CONGA) method is useful for multivariate
count data, and represents a starting point for more elaborate models and other research
directions. One important direction is to time series data. In this respect, a simple extension
is to define an autoregressive process for the baseline parameters αtj , inducing correlation
in αt−1,j and αtj , while leaving the graph as fixed in time. A more elaborate extension
would instead allow the graph to evolve dynamically by replacing the βjl parameters with
βtjl, again defining an appropriate autoregressive process.

In this paper, we proposed to tune θ by minimizing the difference ‖cov((tan−1(X))θ)−
cov(X)‖F . However, we could have easily placed a prior on θ and updated it within our
posterior sampling algorithm. As the gradient of the pseudo-likelihood with respect to θ
is easy to compute, it is possible to develop efficient gradient-based updating algorithms.
When λtj ’s are fixed effects, an interesting area of research is to establish graph selection
consistency. Such a theory would likely give us more insight regarding the role of θ. Graph
selection is expected to suffer both for too small and too large θ.

An additional interesting direction is flexible graphical modeling of continuous positive-
valued multivariate data. Such a modification is conceptually straightforward by changing
the term log(Xtj !) to the corresponding term in the gamma distribution. All the required
functions to fit the CONGA algorithm along with a supplementary R code with an example
usage are provided at https://github.com/royarkaprava/CONGA.
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Appendix

Proof of Theorem 2

The conditional probability is given by,

P (Xtj , Xtl|Xt,−(j,l)) =

exp
(∑

h∈(j,l)(αthXth − log(Xth!)−
∑

g 6=h βgh(tan−1(Xtg))
θ(tan−1(Xth))θ

)∑∞
Xtj=0

∑∞
Xtl=0 exp

(∑
h∈(j,l)(αthXth − log(Xth!)−

∑
g 6=h βgh(tan−1(Xtg))θ(tan−1(Xth))θ

) ,
where Xt,−(j,l) = {Xti : i 6= (j, l)} and log(λth) = αth. Since βjl = 0, we can break
the exponentiated terms into two such that Xtj and Xjl are separated out. That would
immediately give us, P (Xtj , Xtl|Xt,−(j,l)) = P (Xtj |Xt,−(j,l))P (Xtl|Xt,−(j,l)).

Proof of Theorem 3

For q, q∗ ∈ the space of probability measure P, let the Kullback-Leibler divergences be given
by

K(q∗, q) =

∫
q∗ log

q∗

q
V (q∗, q) =

∫
q∗ log2 q

∗

q
.

Let us denote pi,α,β(Xi) as the probability distribution of the data given below,

1

A(αi, β)
exp

( P∑
j=1

[αijXij − log(Xij !)] +
P∑
l=2

∑
j<l

βijl(tan−1(Xij))
θ(tan−1(Xil))

θ

)
,

where A(αi, β) is the normalizing constant and αi = {αi1, . . . , αiP }, β = {βjl : 1 ≤ j < l ≤
P}. Let E(Xij) = Q. We have,

∂ log(A(αi, β))

∂αij
=
A(αij , β)

A(αi, β))
E(Xij) ≤ Q, as,

A(αij , β)

A(αi, β))
≤ 1,

and

∂(A(αi, β))

∂βjl
≤ (

π

2
)2θ(A(αi, β))

Thus we have, ∂ log(A(αi,β))
∂αik

≤ Q for all 1 ≤ k ≤ P and ∂ log(A(αi,β))
∂βjl

≤ (π2 )2θ.

This implies,

−
P∑
j=1

vij ≤ log
pi,κ0(Xi)

pi,κ(Xi)
≤

P∑
j=1

vij ,

where vtj = (TQXtj + C
∑P

l=2

∑
j<l(tan−1(Xtj)) + (π2 )2θ(T + qC). We have E(vtj) < ∞

due to the last assumption. From the dominated convergence theorem as n→∞, we have
κ converges to κ0. Thus Kullback-Leibler divergences go to zero.

Thus the posterior is weakly consistent. The weak and strong topologies on count-
able spaces are equivalent by Scheffe’s theorem. Thus the posterior for κ is also strongly
consistent at κ0.
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