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Abstract

Robust covariance matrix estimation is a fundamental task in statistics. The recent

discovery on the connection between robust estimation and generative adversarial nets

(GANs) by Gao et al. (2019) suggests that it is possible to compute depth-like robust

estimators using similar techniques that optimize GANs. In this paper, we introduce a

general learning via classification framework based on the notion of proper scoring rules.

This framework allows us to understand both matrix depth function, a technique of rate-

optimal robust estimation, and various GANs through the lens of variational approxima-

tions of f -divergences induced by proper scoring rules. We then propose a new class of

robust covariance matrix estimators in this framework by carefully constructing discrimi-

nators with appropriate neural network structures. These estimators are proved to achieve

the minimax rate of covariance matrix estimation under Huber’s contamination model.

The results are also extended to robust scatter estimation for elliptical distributions. Our

numerical results demonstrate the good performance of the proposed procedures under

various settings against competitors in the literature.

Keywords: robust statistics, neural networks, minimax rate, data depth, contamination

model, GAN

1. Introduction

We study robust covariance matrix estimation under Huber’s contamination model (Huber,

1964, 1965). In this setting, one has observations X1, ..., Xn
iid∼ (1 − ε)N(0,Σ) + εQ in

Rp, and the goal is to estimate the covariance matrix Σ using contaminated data without

any assumption on the contamination distribution Q. Even though many robust covariance

matrix estimators have been proposed and analyzed in the literature (Maronna, 1976; Tyler,
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1987; Zuo and Serfling, 2000; Han and Liu, 2013; Mitra and Zhang, 2014; Wegkamp and

Zhao, 2016), the problem of optimal covariance estimation under the contamination model

has not been investigated until the recent work by Chen et al. (2018). It was shown in Chen

et al. (2018) that the minimax rate with respect to the squared operator norm ‖Σ̂−Σ‖2op is
p
n ∨ ε

2. An important feature of the minimax rate is its dimension-free dependence on the

contamination proportion ε through the second term ε2. An estimator that can achieve the

minimax rate is given by the maximizer of the covariance matrix depth function (Zhang,

2002; Chen et al., 2018; Paindaveine and Van Bever, 2018).

Despite its statistical optimality, the robust covariance matrix estimator that maximizes

the depth function cannot be efficiently computed unless the dimension of the data is

extremely low. This is the same weakness that is also shared by Tukey’s halfspace depth

(Tukey, 1975) and Rousseeuw and Hubert’s regression depth (Rousseeuw and Hubert, 1999).

In fact, even an approximate algorithm that computes these depth functions takes O(eCp)

in time (Rousseeuw and Struyf, 1998; Amenta et al., 2000; Chan, 2004; Chen et al., 2018).

On the other hand, a recent connection between depth functions and Generative Ad-

versarial Nets (GANs) was discovered by Gao et al. (2019). The GAN (Goodfellow et al.,

2014) is a very popular technique in deep learning to learn complex distributions such as

the generating process of images. In the formulation of GAN, there is a generator and a

discriminator. The generator, modeled by a neural network, is trying to learn a distribution

as close to the data as possible, while the discriminator, modeled by another neural network,

is trying to distinguish samples from the generator and data. If the generator class and the

discriminator class are chosen appropriately, this two-player game will reach its equilibrium

when the discriminator cannot tell the difference between samples from the generator and

the data, and that means the generator has successfully learned the underlying distribution

of the data. Since GAN can be written as a minimax optimization problem, this suggests a

mathematical resemblance to the robust estimators that are maximizers of depth functions,

which are maximin optimization problems. Indeed, under the framework of f -Learning, it

was shown by Gao et al. (2019) that both procedures are minimizers of variational lower

bounds of f -divergence functions. While GAN minimizes the Jensen-Shannon divergence,

the robust estimators induced by depth functions all minimize the total variation distance.

An alternative perturbation view on the connection between GAN and robust estimation

was later discussed by Zhu et al. (2019).

The connection between GAN, or more generally, f -GAN (Nowozin et al., 2016), and

robust estimation opens a door of approximating these hard-to-compute depth functions by

neural networks, and then standard techniques used routinely to train GANs can be applied

to compute various robust estimators. Appropriate choices of neural network structures

have been discussed in Gao et al. (2019), but only for optimal robust location estimation.

In this paper, our goal is to understand appropriate network structures for optimal

robust covariance or scatter matrix estimation under the framework of learning via clas-

sification. Our main result shows that the network structures for optimal robust location

estimation may not have sufficient discriminative power for optimal covariance matrix es-
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timation. Therefore, we propose necessary modifications of the network structures so that

optimal covariance matrix estimation under Huber’s contamination model can be achieved.

The idea of learning via classification has longstanding roots in statistics and machine

learning (Diggle and Gratton, 1984; Freund and Schapire, 1996; Buja et al., 2005; Hyvärinen,

2005; Gneiting and Raftery, 2007; Mohamed and Lakshminarayanan, 2016; Dawid, 2007;

Devroye and Lugosi, 2012; Sutherland et al., 2016; Arjovsky et al., 2017; Gutmann et al.,

2018; Bińkowski et al., 2018; Baraud and Birgé, 2018). In this paper, we further expand

this scope of statistical learning by building a general estimation framework using classi-

fication with cost functions derived from proper scoring rules (Buja et al., 2005; Gneiting

and Raftery, 2007; Dawid, 2007). Our framework is partly inspired by the discussion in

Mohamed and Lakshminarayanan (2016). Connections between proper scoring rules and

f -GANs are also observed in Tan et al. (2019). Using Savage representation (Savage, 1971),

we identify a class of smooth objective functions that can be used for training optimal ro-

bust procedures under Huber’s contamination model. The variational lower bounds of these

objective functions cover important special cases including GANs and depth functions.

Main Contributions. We summarize our main contributions of the paper as follows.

• We formulate a general framework of learning via classification using the concept

of proper scoring rules. We show that the class of learning procedures under this

framework has a one-to-one correspondence to a class of symmetric f -divergences,

thanks to the Savage representation of the proper scoring rules. As a result, it leads

to various forms of GANs and depth functions that are suitable for robust estimation

under Huber’s contamination model.

• We propose appropriate neural network structures for the classifiers in the proper

scoring rules in the context of optimal robust covariance matrix estimation. We show

that symmetry and boundedness of the activation function are the keys to the optimal

robust estimation of covariance matrix. In addition, width and depth of the network

structure would also have an influence in practice. Depending on whether the intercept

node is included or not, we show that the neural network is required to have at least

one or two hidden layers for the robust covariance estimation task.

• We also study robust scatter matrix estimation under general elliptical distributions.

We show that in such a semiparametric learning setting, one does not need to use

a more complicated discriminator, and only the generator of the GAN needs to be

modified.

Connections to the Literature. Our work is closely related to the recent developments on the

statistical properties of GANs and the literature of robust covariance estimation under Hu-

ber’s contamination model. For example, generalization bounds of GANs were established

by Zhang et al. (2017). Nonparametric density estimation using GANs was studied by Liang
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(2017). Provable guarantees of learning Gaussian distributions with quadratic discrimina-

tors were established by Feizi et al. (2017). Theoretical guarantees of learning Gaussian

mixtures, exponential families and injective neural network generators were obtained by

Bai et al. (2018). The connection between GANs and robust estimation was established by

Gao et al. (2019) and also studied by Zhu et al. (2019). Polynomial-time algorithms for

robust covariance matrix estimation under Huber’s contamination model have been consid-

ered by Lai et al. (2016); Diakonikolas et al. (2016); Du et al. (2017); Diakonikolas et al.

(2017) among others in the literature, with the main focus on error bounds in Frobenius

norm and total variation loss.

Paper Organization. The rest of the paper is organized as follows. We develop an estimation

framework of proper scoring rules in Section 2. In Section 3, we discuss robust covariance

matrix estimation under this framework, and propose appropriate neural network classes

for this task. An extension to simultaneous mean and covariance estimation is considered in

Section 4. In Section 5, we consider general robust scatter matrix estimation under elliptical

distributions. Our numerical results are given in Section 6. Section 7 collects all the proofs

in the paper.

Notation. We close this section by introducing the notation used in the paper. For a, b ∈ R,

let a∨b = max(a, b) and a∧b = min(a, b). For an integer m, [m] denotes the set {1, 2, ...,m}.
Given a set S, |S| denotes its cardinality, and IS is the associated indicator function. For

two positive sequences {an} and {bn}, the relation an . bn means that an ≤ Cbn for

some constant C > 0, and an � bn if both an . bn and bn . an hold. For a vector

v ∈ Rp, ‖v‖ denotes the `2 norm, ‖v‖∞ the `∞ norm, and ‖v‖1 the `1 norm. For a

matrix A ∈ Rd1×d2 , we use ‖A‖op to denote its operator norm, which is its largest singular

value. We use P and E to denote generic probability and expectation whose distribution

is determined from the context. For two probability distributions P1 and P2, their total

variation distance is TV(P1, P2) = supB |P1(B) − P2(B)|. The sigmoid function, the ramp

function, and the rectified linear unit function (ReLU) are denoted by sigmoid(x) = 1
1+e−x ,

ramp(x) = max(min(x+ 1/2, 1), 0), and ReLU(x) = max(x, 0).

2. An Estimation Framework of Proper Scoring Rules

The idea of learning via classification can be formulated as a two-player game. Given a

probability distribution P , two players act with strategies T ∈ T and Q ∈ Q to optimize

the cost function DT (P,Q). The first player chooses a classification rule T in the class T to

distinguish samples generated by P from samples generated by Q. The second player then

chooses a probability distribution Q in the class Q so that samples generated by Q cannot

be distinguished from samples generated by P even when the first player uses the optimal

classification rule. This minimax game can be formulated as

min
Q∈Q

max
T∈T

DT (P,Q). (1)
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The minimax strategy for the second player argminQ∈QmaxT∈T DT (P,Q) can then be used

to learn the distribution P . This is the principle behind the idea of GANs (Goodfellow et al.,

2014; Nowozin et al., 2016) and many other statistical learning procedures in the literature

(Diggle and Gratton, 1984; Freund and Schapire, 1996; Buja et al., 2005; Hyvärinen, 2005;

Gneiting and Raftery, 2007; Mohamed and Lakshminarayanan, 2016; Dawid, 2007; Devroye

and Lugosi, 2012; Sutherland et al., 2016; Arjovsky et al., 2017; Gutmann et al., 2018;

Bińkowski et al., 2018; Baraud and Birgé, 2018). In this section, we discuss a class of

cost functions DT (P,Q) induced by proper scoring rules. We show that the divergence

function DT (P,Q) = maxT∈T DT (P,Q) can be viewed as a variational lower bound of some

f -divergence, and the minimax strategy (1) used as a robust estimator has an interesting

connection with the matrix depth function in the literature (Zhang, 2002; Chen et al., 2018;

Paindaveine and Van Bever, 2018).

2.1 Proper Scoring Rules

Consider a binary event space Ω = {0, 1}. A probabilistic forecast is a quoted probability

t ∈ [0, 1] for either 0 or 1 to occur. A scoring rule S is defined as a pair of functions S(·, 1)

and S(·, 0). To be specific, S(t, 1) is the forecaster’s reward if he or she quotes t when the

event 1 occurs, and S(t, 0) is the reward when the event 0 occurs.

Suppose the event occurs with probability p. Then, the expected reward for the fore-

caster is given by the formula

S(t; p) = pS(t, 1) + (1− p)S(t, 0).

It is called a proper scoring rule if

S(p; p) ≥ S(t; p), for any t ∈ [0, 1],

or equivalently p ∈ argmaxt∈[0,1] S(t; p). The scoring rule is strictly proper when the equality

above holds if and only if t = p. In this paper, we restrict our discussion to binary proper

scoring rules. Readers interested in more general definitions are referred to Buja et al.

(2005); Gneiting and Raftery (2007); Dawid (2007).

2.2 The Savage Representation

A scoring rule S is regular if both S(·, 0) and S(·, 1) are real-valued, except possibly that

S(0, 1) = −∞ or S(1, 0) = −∞. The celebrated Savage representation (Savage, 1971)

asserts that a regular scoring rule S is proper if and only if there is a convex function G(·),
such that {

S(t, 1) = G(t) + (1− t)G′(t),
S(t, 0) = G(t)− tG′(t).

(2)

Here, G′(t) is a subgradient of G at the point t. Moreover, the statement also holds for

strictly proper scoring rules when convex is replaced by strictly convex.
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For any regular proper scoring rule, the convex function G(·) can be determined by

G(t) = S(t; t) = tS(t, 1) + (1− t)S(t, 0),

and the Savage representation simply says that S(t; t) is a convex function in t.

2.3 Relation to f-Divergence

Given two probability distributions P and Q, a divergence function D(P,Q) measures the

difference between P and Q. It satisfies the following two properties:

1. For any P and Q, D(P,Q) ≥ 0.

2. Whenever P = Q, D(P,Q) = 0.

Following the principle outlined in Mohamed and Lakshminarayanan (2016), we show that a

general class of divergence functions can be induced from proper scoring rules. To motivate

the derivation, we consider a classification problem by introducing a binary latent variable

y ∈ {0, 1}. The conditional distribution of X given y is specified as X|(y = 1) ∼ P and

X|(y = 0) ∼ Q. We also assume that P(y = 1) = 1
2 so that the joint distribution (X, y) is

fully specified. The classification problem is to find a function T (X) ∈ [0, 1] that forecasts

the probability of y = 1 given X. With a proper scoring rule {S(·, 1), S(·, 0)}, it is natural

to consider the following cost function for the task,

E [yS(T (X), 1) + (1− y)S(T (X), 0)]

=
1

2
EX∼PS(T (X), 1) +

1

2
EX∼QS(T (X), 0).

Then, one can find a good classification rule T (·) by maximizing the above objective over

T ∈ T . This leads to the following definition of a divergence function,

DT (P,Q) = max
T∈T

[
1

2
EX∼PS(T (X), 1) +

1

2
EX∼QS(T (X), 0)

]
−G(1/2), (3)

where G(·) is the convex function in the Savage representation of the proper scoring rule.

The definition (3) can be understood as a variational lower bound of some f -divergence.

Given a convex function f(·) that satisfies f(1) = 0, recall that the definition of the f -

divergence between P and Q is given by

Df (P‖Q) =

∫
f

(
dP

dQ

)
dQ.

Proposition 1 Given any regular proper scoring rule {S(·, 1), S(·, 0)} and any class T 3{
1
2

}
, DT (P,Q) is a divergence function, and

DT (P,Q) ≤ Df

(
P
∥∥∥1

2
P +

1

2
Q
)
, (4)

where f(t) = G(t/2) − G(1/2). Moreover, whenever T 3 dP
dP+dQ , the inequality above

becomes an equality.
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Proof Suppose T 3
{

1
2

}
, then DT (P,Q) ≥ 1

2S(1/2, 1) + 1
2S(1/2, 0)−G(1/2) = 0. When

P = Q, we have DT (P,Q) ≤ maxt∈[0,1] [G(t)−G(1/2)− (t− 1/2)G′(t)] ≤ 0 by the convex-

ity of G(·), and therefore DT (P,Q) = 0, which implies it is a divergence function. Since

{S(·, 1), S(·, 0)} is a proper scoring rule, p(x)S(T (x), 1) + q(x)S(T (x), 0) is maximized at

T (x) = p(x)
p(x)+q(x) . Thus,

DT (P,Q) ≤ 1

2
EX∼PS

(
dP

dP + dQ
(X), 1

)
+

1

2
EX∼QS

(
dP

dP + dQ
(X), 0

)
−G(1/2)

=
1

2
EX∼PG

(
dP

dP + dQ
(X)

)
+

1

2
EX∼QG

(
dP

dP + dQ
(X)

)
−G(1/2)

= Df

(
P
∥∥∥1

2
P +

1

2
Q
)
,

and obviously the inequality above becomes an equality when T 3 dP
dP+dQ .

It is worth noting that Df

(
P
∥∥∥1

2P + 1
2Q
)

is in general not symmetric with respect to

P and Q. However, when the regular proper scoring rule is symmetric in the sense that

S(t, 1) = S(1− t, 0), we have G(t) = G(1− t), or equivalently, f(t) = f(2− t), in which case

the corresponding f -divergence satisfies

Df

(
P
∥∥∥1

2
P +

1

2
Q
)

= Df

(
Q
∥∥∥1

2
P +

1

2
Q
)
,

and is symmetric.

2.4 Variational Lower Bounds and GANs

The variational form of the divergence function makes it easy to define a sample version

of (3). Replacing EX∼P in (3) by the empirical measure, we have a divergence function

between 1
n

∑n
i=1 δXi and Q, which is a useful objective function for statistical estimation.

Given a class of probability measures Q, the induced estimator of P is defined by

P̂ = argmin
Q∈Q

max
T∈T

[
1

n

n∑
i=1

S(T (Xi), 1) + EX∼QS(T (X), 0)

]
. (5)

We drop the term −G(1/2) in (3) because it is a constant that does not affect the definition

of (5). The formula (5) has an interpretation of a minimax game between two players. The

goal of the first player is to find the best discriminator T that learns whether a sample is

from the empirical distribution or the model distribution Q. The second player is to find a

model distribution Q as close to the empirical distribution as possible so that the first player

cannot tell the difference. In the context of deep learning, both the discriminator class T and

the generator class Q are modeled by neural networks, and (5) is recognized as the technique

of Generative Adversarial Nets proposed by Goodfellow et al. (2014). The relation between

GANs and proper scoring rules was discussed by Mohamed and Lakshminarayanan (2016)

in the context of learning implicit models.
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2.5 Examples

1. Log Score. The log score is perhaps the most commonly used rule because of its

various intriguing properties (Jiao et al., 2015). The scoring rule with S(t, 1) = log t

and S(t, 0) = log(1 − t) is regular and strictly proper. Its Savage representation is

given by the convex function G(t) = t log t+ (1− t) log(1− t), which is interpreted as

the negative Shannon entropy of Bernoulli(t). The corresponding divergence function

DT (P,Q), according to Proposition 1, is a variational lower bound of the Jensen-

Shannon divergence

JS(P,Q) =
1

2

∫
log

(
dP

dP + dQ

)
dP +

1

2

∫
log

(
dQ

dP + dQ

)
dQ+ log 2.

Its sample version (5) is the original GAN proposed by Goodfellow et al. (2014) that

is widely used in learning distributions of images.

2. Zero-One Score. The zero-one score S(t, 1) = 2I{t ≥ 1/2} and S(t, 0) = 2I{t < 1/2}
is also known as the misclassification loss. This is a regular proper scoring rule but

not strictly proper. The induced divergence function DT (P,Q) is a variational lower

bound of the total variation distance

TV(P,Q) = P

(
dP

dQ
≥ 1

)
−Q

(
dP

dQ
≥ 1

)
=

1

2

∫
|dP − dQ|.

The sample version (5) is recognized as the TV-GAN that was extensively studied by

Gao et al. (2019) in the context of robust estimation.

3. Quadratic Score. Also known as the Brier score (Brier, 1950), the definition is given

by S(t, 1) = −(1 − t)2 and S(t, 0) = −t2. The corresponding convex function in the

Savage representation is given by G(t) = −t(1− t). By Proposition 1, the divergence

function (3) induced by this regular strictly proper scoring rule is a variational lower

bound of the following divergence function,

∆(P,Q) =
1

8

∫
(dP − dQ)2

dP + dQ
,

known as the triangular discrimination. The sample version (5) belongs to the family

of least-squares GANs proposed by Mao et al. (2017).

4. Boosting Score. The boosting score was introduced by Buja et al. (2005) with S(t, 1) =

−
(

1−t
t

)1/2
and S(t, 0) = −

(
t

1−t

)1/2
and has an connection to the AdaBoost algo-

rithm. The corresponding convex function in the Savage representation is given by

G(t) = −2
√
t(1− t). The induced divergence function DT (P,Q) is thus a variational

lower bound of the squared Hellinger distance

H2(P,Q) =
1

2

∫ (√
dP −

√
dQ
)2
.
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5. Beta Score. A general Beta family of proper scoring rules was introduced by Buja

et al. (2005) with S(t, 1) = −
∫ 1
t c

α−1(1− c)βdc and S(t, 0) = −
∫ t

0 c
α(1− c)β−1dc for

any α, β > −1. The log score, the quadratic score and the boosting score are special

cases of the Beta score with α = β = 0, α = β = 1, α = β = −1/2. The zero-one

score is a limiting case of the Beta score by letting α = β → ∞. Moreover, it also

leads to asymmetric scoring rules with α 6= β.

2.6 Relation to The Matrix Depth Function

Consider the covariance matrix estimation problem with contaminated observationsX1, ..., Xn
iid∼

(1− ε)N(0,Σ) + εQ. A robust estimator is defined by

Σ̂ = argmin
Γ∈Ep

max
‖u‖=1

[
1

n

n∑
i=1

I{|uTXi|2 ≤ βuTΓu} ∨ 1

n

n∑
i=1

I{|uTXi|2 ≥ βuTΓu}

]
, (6)

where Ep is the set of all p × p covariance matrices, and β is a scalar determined by the

equation P(N(0, 1) ≤
√
β) = 3/4. The estimator (6) is the minimizer of what is known

as the matrix depth function (Zhang, 2002; Chen et al., 2018; Paindaveine and Van Bever,

2018). The intuition is that βuT Σ̂u is approximately the squared median absolute deviation

of uTX1, ..., u
TXn for all directions u’s, and the scalar β is defined so that uT Σ̂u estimates

the variance on the direction of u. It was shown by Chen et al. (2018) that the estimator

(6) achieves the error bound

‖Σ̂− Σ‖2op .
p

n
∨ ε2,

with high probability as long as ‖Σ‖op = O(1). Moreover, the rate p
n ∨ ε

2 was also proved

to be minimax optimal by Chen et al. (2018).

In this section, we will discuss the relation between (6) and GAN, and we will show that

(6) can be viewed as a variant of TV-GAN with a particular choice of the discriminator

class. This fact motivates us to investigate more general GANs that are appropriate for

robust covariance matrix estimation in Section 3.

Consider the zero-one score, and then (5) is specialized as

P̂ = argmin
Q∈Q

max
T∈T

[
1

n

n∑
i=1

I{T (Xi) ≥ 1/2}+ EX∼QI{T (X) < 1/2}

]
. (7)

We also consider a variation of (7) defined by

P̂ = argmin
Q∈Q

max
T∈TQ

[
1

n

n∑
i=1

I{T (Xi) ≥ 1/2}+ EX∼QI{T (X) < 1/2}

]
. (8)

The subtle difference of (8) compared with (7) is the dependence of the discriminator class

on Q. In fact, both (8) and (7) can be regarded as the minimizers of variational lower bounds

of the total variation distance. The connection between (8) and various depth functions in

robust estimation was discussed in an f -Learning framework by Gao et al. (2019). For the
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purpose of covariance matrix estimation, we now show that (8) can be specialized into (6).

We first set

Q = {N(0,Γ) : Γ ∈ Ep} ,

and then choose

TN(0,Γ) =

{
T =

dN(0, βΓ̃)

dN(0, βΓ̃) + dN(0, βΓ)
: Γ̃−1 = Γ−1 + r̃uuT ∈ Ep, |r̃| ≤ r, ‖u‖ = 1

}
.

The choice of the local discriminator class TN(0,Γ) can be motivated by the conclusion

of Proposition 1 that the optimal discriminator between P and Q is dP
dP+dQ . By direct

calculation, we have

I

{
dN(0, βΓ̃)

dN(0, βΓ̃) + dN(0, βΓ)
(X) ≥ 1/2

}
= I

{
r̃|uTX|2 ≤ log(1 + βr̃uTΓu)

}
. (9)

Therefore, we can write (8) as

Σ̂ = argmin
Γ∈Ep

max
‖u‖=1
|r̃|≤r

[
1

n

n∑
i=1

I
{
r̃|uTXi|2 ≤ log(1 + βr̃uTΓu)

}

−PX∼N(0,Γ)

{
r̃|uTX|2 ≤ log(1 + βr̃uTΓu)

}]
. (10)

Since limr̃→0
log(1+βr̃uT Γu)

r̃uT Γu
= β, the limiting event of (9) is either I{|uTX|2 ≤ βuTΓu}

or I{|uTX|2 ≥ βuTΓu}, depending on whether r̃ tends to zero from left or from right.

Moreover, PX∼N(0,Γ){|uTX|2 ≤ βuTΓu} = 1/2 by the definition of β. Therefore, as r → 0,

the formula (10) becomes (6).

Despite the statistical optimality of the estimator (6), its optimization is computationally

infeasible in practice whenever the dimension exceeds 10 (Chen et al., 2018). This is partly

due to the fact that the zero-one loss is not smooth. However, even the smooth version

of the TV-GAN was shown to be computationally intractable, which motivates Gao et al.

(2019) to consider alternative proper scoring rules such as the log score in the setting of

robust mean estimation.

The rest of the paper is devoted to the investigation of GANs that not only enjoy the

statistical optimality (6), but also use discriminator classes that are easier to optimize.

For this purpose, we are going to replace the zero-one score in (6)-(8) by smooth scoring

rules. To leverage the computational strategies developed in the deep learning community

(Goodfellow et al., 2014; Radford et al., 2015; Salimans et al., 2016), we will consider

discriminator classes that are family of neural network classifiers. It turns out the choice of

the neural network structure is a very subtle issue in robust covariance matrix estimation.

10
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3. Network Structures for Robust Covariance Matrix Estimation

We study the property of the estimator (5) in the context of robust covariance matrix

estimation. Define

Ep(M) = {Γ ∈ Ep : ‖Γ‖op ≤M} .

For covariance matrix estimation, we write (5) as

Σ̂ = argmin
Γ∈Ep(M)

max
T∈T

[
1

n

n∑
i=1

S(T (Xi), 1) + EX∼N(0,Γ)S(T (X), 0)

]
. (11)

We consider i.i.d. observations drawn from Huber’s ε-contamination model (Huber,

1964, 1965). That is,

X1, ..., Xn
iid∼ (1− ε)N(0,Σ) + εQ. (12)

In other words, each observation has an ε probability to be drawn from an unknown con-

tamination distribution Q. A more general data generating process is called the strong

contamination model. In such a setting, we have

X1, ..., Xn
iid∼ P for some P satisfying TV(P,N(0,Σ)) ≤ ε, (13)

which means that the observations are drawn from an unknown probability distribution in

a total variation neighborhood of N(0,Σ). It is easy to see that (12) implies (13) so that

(13) is a more general notion of contamination. While the contamination is only allowed to

be added into good samples in (12), the adversarial can now choose to remove some good

samples after looking at the data in the setting of (13). See Diakonikolas et al. (2016) for

a detailed discussion on various contamination models.

Under both (12) and (13), the minimax rate of covariance matrix estimation with respect

to the loss function ‖Σ̂− Σ‖2op is p
n ∨ ε

2, and can be achieved by (6). This fact was proved

by Chen et al. (2018) under Huber’s contamination model (12), and the same proof can be

extended to the strong contamination model (13).

In this section, we study the statistical properties of (11) with general proper scoring

rules. We will discuss appropriate choices of the discriminator class T for robust covariance

matrix estimation. We consider T that is some family of neural network classifiers. Then,

the structure of the neural nets is essential in determining the statistical properties of

(11). We will present two network structures that are not appropriate for robust covariance

matrix estimation, and then show simple modifications of the two structures lead to optimal

estimation.

3.1 Inappropriate Network Structures

Consider the following two discriminator classes. The first class contains two-layer sigmoid

neural nets,

T1 =

T (x) = sigmoid

∑
j≥1

wjsigmoid(uTj x)

 :
∑
j≥1

|wj | ≤ κ, uj ∈ Rp
 . (14)

11
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The second class also contains two-layer neural nets, but uses ReLU activations in the

hidden layer,

T2 =

T (x) = sigmoid

∑
j≥1

wjReLU(uTj x)

 :
∑
j≥1

|wj | ≤ κ, ‖uj‖ ≤ 1

 . (15)

The network structures of T1 and T2 are visualized in Figure 1. The reasons that they do

Figure 1: Two structures of neural nets that are not suitable for robust covariance matrix estimation.

not work are different for the two structures. To construct concrete counterexamples, we

focus on the log score in this section. That is, we consider the estimator

Σ̂ = argmin
Γ∈Ep(M)

max
T∈T

[
1

n

n∑
i=1

log T (Xi) + EX∼N(0,Γ) log(1− T (X))

]
. (16)

The first class (14) leads to optimal robust mean estimation, but fails to learn the

covariance matrix even if there is no contamination in the data. The following result shows

the capability of (14) in learning a mean vector.

Proposition 2 Consider the estimator

θ̂ = argmin
η∈Rp

max
T∈T1

[
1

n

n∑
i=1

log T (Xi) + EX∼N(η,Ip) log(1− T (X))

]
,

with T1 specified by (14). Assume p
n + ε2 ≤ c for some sufficiently small constant c > 0,

and set κ = O
(√

p
n + ε

)
. With i.i.d. observations X1, ..., Xn ∼ P , we have

‖θ̂ − θ‖2 ≤ C
( p
n
∨ ε2

)
,

with probability at least 1− e−C′(p+nε2) uniformly over all ‖θ‖ ≤M = O(1) and all P such

that TV(P,N(θ, Ip)) ≤ ε. The constants C,C ′ > 0 are universal.

The success of robust estimation via a two-layer neural network was first proved by Gao

et al. (2019) under Huber’s ε-contamination model. Proposition 2 extends the result to the

strong contamination model. However, the same neural network structure cannot learn a

covariance matrix, as is shown by the following result.

12
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Proposition 3 With T1 specified by (14), the function

F (Σ,Γ) = max
T∈T1

[
EX∼N(0,Σ) log T (X) + EX∼N(0,Γ) log(1− T (X))

]
is a constant for all Σ,Γ ∈ Ep.

In an ideal situation where ε = 0 and n =∞, the estimator (16) becomes argminΓ F (Σ,Γ).

However, Proposition 3 shows that the objective function F (Σ,Γ) is completely flat, and

thus every Γ is a global minimizer.

The second discriminator class (15) has a different problem. It actually leads to optimal

covariance matrix estimation when ε = 0, but it does not lead to robust estimation.

Proposition 4 Consider the estimator (16), where T = T2 is specified by (15) with at least

two units in the hidden layer. Assume p
n ≤ c for some sufficiently small constant c > 0,

and set κ = O
(√

p
n

)
. With i.i.d. observations X1, ..., Xn ∼ N(0,Σ), we have

‖Σ̂− Σ‖2op ≤ C
p

n
,

with probability at least 1 − e−C′p uniformly over all ‖Σ‖op ≤ M = O(1). The constants

C,C ′ > 0 are universal.

The comparison between Proposition 3 and Proposition 4 shows that the subtle difference

between the activation functions in the hidden layer directly affects the consistency of

covariance matrix estimation. A simple change from sigmoid to ReLU leads to an optimal

error rate in Proposition 4. Mathematically, this can be explained by the feature matching

effect of GANs (Liu et al., 2017; Gao et al., 2019), which asserts that GAN cannot distinguish

two generating processes with the same expectation of g(·). In other words, only features

in the form of Eg(X) can be learned from the data. Here g(·) is a feature map such that

sigmoid(g(·)) is an element of the discriminator class and X is distributed according to the

generative process. For the class (14), we have

EX∼N(0,Σ)sigmoid(uTX) = 1/2, (17)

for any u and any Σ, due to the symmetric property of the sigmoid activation function. The

fact that the right hand side of (17) is a constant, independent of Σ, means that different

choices of Σ’s cannot be differentiated by the classifier {sigmoid(uTX) : u ∈ Rp}. On the

other hand, (15) uses the ReLU activation, and thus

EX∼N(0,Σ)ReLU(uTX) =
√
uTΣu

√
2

π
. (18)

Since the right hand side of (18) depends on Σ through uTΣu, the factor uTΣu, which is

the variance of uTX, can be learned. Thus, the classifier {ReLU(uTX) : u ∈ Rp} is able to

learn the whole covariance Σ by learning uTΣu with all u ∈ Rp. In summary, the difference

13
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between Proposition 3 and Proposition 4 is a consequence of the symmetric property of the

activation function.

However, as long as there is contamination in the data, the structure (15) does not

lead to robust estimation. We show a one-dimensional counterexample in the following

proposition.

Proposition 5 With T2 specified by (15), we have

[(1−ε)σ+ετ ]2 ∈ argmin
γ2

max
T∈T2

[
EX∼(1−ε)N(0,σ2)+εN(0,τ2) log T (X) + EX∼N(0,γ2) log(1− T (X))

]
,

for any σ2, τ2 > 0.

The proposition considers a setting with an ε fraction of contaminated observations gen-

erated from N(0, τ2). Then, in the ideal situation with n = ∞, [(1 − ε)σ + ετ ]2 is global

minimizer. Since the value of τ is not restricted, this global minimizer can be arbitrarily

far away from the variance σ2 of the good samples. Intuitively, this is because the ReLU

activation function is unbounded, and therefore, an ε change of the probability can change

the right hand side of (18) arbitrarily.

3.2 Appropriate Network Structures

The network structures (14) and (15) can both be slightly modified to achieve optimal

robust covariance matrix estimation. For the first discriminator class (14), we only need

to add an intercept node in the input layer, which leads to the definition of the following

discriminator class,

T3 =

T (x) = sigmoid

∑
j≥1

wjsigmoid(uTj x+ bj)

 :
∑
j≥1

|wj | ≤ κ, uj ∈ Rp, bj ∈ R

 . (19)

For the second class (15), we need to add an extra sigmoid hidden layer. This gives

T4 =

{
T (x) = sigmoid

∑
j≥1

wjsigmoid

(
H∑
l=1

vjlReLU(uTl x)

) :

∑
j≥1

|wj | ≤ κ1,

H∑
l=1

|vjl| ≤ κ2, ‖ul‖ ≤ 1

}
. (20)

These two modifications of (14) and (15) are illustrated in Figure 2.

We study the covariance matrix estimator (11) with a general regular proper scoring

rule. Recall that a regular proper scoring rule admits the Savage representation (2) with a

convex function G(·). We impose the following assumption on the convex function G(·).

Condition 6 (Smooth Scoring Rules) We assume G(2)(1/2) > 0 and G(3)(t) is contin-

uous at t = 1/2. Moreover, there is a universal constant c0 > 0, such that 2G(2)(1/2) ≥
G(3)(1/2) + c0.
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Figure 2: Simple fixes of the two network structures (14) and (15).

Condition 6 implies the scoring rule {S(·, 1), S(·, 0)} is induced by two smooth functions,

which excludes the zero-one loss. This is fine, because the zero-one loss was already studied

as the matrix depth function in Chen et al. (2018). This paper only focuses on scoring rules

that are feasible to optimize, and thus it is sufficient to restrict our results to smooth ones.

The condition 2G(2)(1/2) ≥ G(3)(1/2)+c0 is automatically satisfied by a symmetric scoring

rule, because S(t, 1) = S(1 − t, 0) immediately implies that G(3)(1/2) = 0. For the Beta

score with S(t, 1) = −
∫ 1
t c

α−1(1−c)βdc and S(t, 0) = −
∫ t

0 c
α(1−c)β−1dc for any α, β > −1,

it is easy to check that such a c0 (only depending on α, β) exists as long as |α− β| < 1.

Theorem 7 Consider the estimator (11) that is induced by a regular proper scoring rule

that satisfies Condition 6, and T = T3 is specified by (19). Assume p
n + ε2 ≤ c for some

sufficiently small constant c > 0, and set κ = O
(√

p
n + ε

)
. Then, under the data generating

process (13), we have

‖Σ̂− Σ‖2op ≤ C
( p
n
∨ ε2

)
,

with probability at least 1−e−C′(p+nε2) uniformly over all ‖Σ‖op ≤M = O(1). The constants

C,C ′ > 0 are universal.

The theorem shows that the discriminator class (19) leads to optimal robust covariance

matrix estimation, while the only difference between (14) and (19) is the inclusion of the

intercept neuron in the bottom layer of the network in the class (19). In contrast to the

common understanding that whether to include the intercept neuron in a neural network

structure is only a matter of data normalization, here for the purpose of robust covariance

matrix estimation using proper scoring rules, it is a fundamental issue.

The number κ explicitly controls the size of the weights of the networks, and thus the

Rademacher complexity of the discriminator class. The constraint κ = O
(√

p
n + ε

)
is

critical for the robust estimator Σ̂ to achieve the optimal rate under the contamination

model. In addition, a small κ also ensures that the closeness of the objective functions

implies the closeness of the model parameters. On the other hand, if the population version

is considered (with n =∞ and ε = 0), the true covariance matrix Σ can be exactly identified

by the network structure (19) without any restriction on κ.
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We also remark that the width of the network structure is not important. It can take

any number from 1 to arbitrarily large. This is because the complexity of a neural net-

work class can be characterized by the norm constraint instead of the explicit number of

nodes (Bartlett, 1998; Bartlett and Mendelson, 2002). In practice, however, wide network

structures will improve the behavior of gradient-based algorithms.

Theorem 8 Consider the estimator (11) that is induced by a regular proper scoring rule

that satisfies Condition 6, and T = T4 is specified by (20). Assume p
n + ε2 ≤ c for some

sufficiently small constant c > 0. Set H ≥ 2, κ1 = O
(√

p
n + ε

)
, and 1 ≤ κ2 = O(1). Then,

under the data generating process (13), we have

‖Σ̂− Σ‖2op ≤ C
( p
n
∨ ε2

)
,

with probability at least 1−e−C′(p+nε2) uniformly over all ‖Σ‖op ≤M = O(1). The constants

C,C ′ > 0 are universal.

The ReLU activation function is widely used in training deep neural network models

because of its superior optimization properties (Glorot et al., 2011). To estimate a covari-

ance matrix, Theorem 8 shows that it can only be used after the two top layers. Otherwise,

according to Proposition 5, the estimator would not be robust against arbitrary contami-

nation.

4. Simultaneous Estimation of Mean and Covariance

In this section, we consider a more general setting where the data generating process is

X1, ..., Xn
iid∼ P for some P satisfying TV(P,N(θ,Σ)) ≤ ε. (21)

That is, both the mean vector θ and the covariance matrix Σ are unknown. We consider

the estimation procedure

(θ̂, Σ̂) = argmin
η∈Rp,Γ∈Ep(M)

max
T∈T

[
1

n

n∑
i=1

S(T (Xi), 1) + EX∼N(η,Γ)S(T (X), 0)

]
. (22)

Note that the generator class is {N(η,Γ) : η ∈ Rp,Γ ∈ Ep(M)} compared with the centered

class in (11).

We also introduce a more general discriminator class of deep neural nets. We first define

a sigmoid bottom layer

Gsigmoid =
{
g(x) = sigmoid(uTx+ b) : u ∈ Rp, b ∈ R

}
.

Then, with G1(B) = Gsigmoid, we inductively define

Gl+1(B) =

g(x) = ReLU

∑
h≥1

vhgh(x)

 :
∑
h≥1

|vh| ≤ B, gh ∈ Gl(B)

 .
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Note that the neighboring two layers are connected via ReLU activation functions. Finally,

the network structure is defined by

T L(κ,B) =

{
T (x) = sigmoid

∑
j≥1

wjgj(x)

 :
∑
j≥1

|wj | ≤ κ, gj ∈ GL(B)

}
. (23)

This is a neural network class that consists of L hidden layers. When L = 1, (23) recovers

the definition of the class (19).

Theorem 9 Consider the estimator (22) that is induced by a regular proper scoring rule

that satisfies Condition 6. The discriminator class T = T L(κ,B) is specified by (23).

Assume p
n + ε2 ≤ c for some sufficiently small constant c > 0. Set 1 ≤ L = O(1), 1 ≤ B =

O(1), and κ = O
(√

p
n + ε

)
. Then, under the data generating process (21), we have

‖θ̂ − θ‖2 ≤ C
( p
n
∨ ε2

)
,

‖Σ̂− Σ‖2op ≤ C
( p
n
∨ ε2

)
,

with probability at least 1−e−C′(p+nε2) uniformly over all θ ∈ Rp and all ‖Σ‖op ≤M = O(1).

The constants C,C ′ > 0 are universal.

5. Elliptical Distributions

One of the most important statistical properties of the depth-based estimator (6) is its

ability to adapt to general elliptical distributions (Chen et al., 2018). In this section, we

show that the same property can also be achieved by robust estimators induced by proper

scoring rules.

Definition 10 (Fang (2017)) A random vector X ∈ Rp follows an elliptical distribution

if and only if it has the representation X = θ+ ξAU , where θ ∈ Rp and A ∈ Rp×r are model

parameters. The random variable U is distributed uniformly on the unit sphere {u ∈ Rr :

‖u‖ = 1} and ξ ≥ 0 is a random variable in R independent of U . The vector θ and the

matrix Σ = AAT are called the location and the scatter of the elliptical distribution.

For any unit vector u, the distribution of ξuTU does not depend on u because of the

symmetry of U . Define H(·) to be the distribution function of ξuTU . Since there is a one-to-

one relation between H(·) and the distribution of ξ, the distribution of X = θ+ξAU is fully

determined by the triplet (θ,Σ, H), and therefore we write the distribution as E(θ,Σ, H).

See Figure 3 for an illustration.

Note that Σ and H are not identifiable, this is because ξAU = (aξ)(a−1A)U for any

a > 0. To overcome this issue, we restrict H to the following class

H =

{
H is a distribution function : H(t) +H(−t) ≡ 1,

∫
R(|t|)dH(t) =

∫
R(|t|)dΦ(t)

}
,
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Figure 3: An illustration of a bivariate elliptical distribution (θ,Σ, H). From left to right: the

density function, the contour whose shape is determined by Σ, and the marginal density of H.

where Φ(·) is the distribution function of N(0, 1), and

R(|t|) =

{
|t|, |t| ≤ 1,

1, |t| > 1,
(24)

which is recognized as the clipped `1 function. The restriction H ∈ H is without loss of

generality. This is because the function F (a) = ER(|aξuTU |) is increasing for all a > 0,

so that the equation F (a) =
∫
R(|t|)dΦ(t) must have a solution. Here, we do not use the

simpler absolute function, because the first moment of ξuTU may not exist.

Definition 11 The elliptical distribution X = θ + ξAU has a canonical parametrization

(θ,Σ, H) with Σ = AAT and H ∈ H. We use the notation E(θ,Σ, H) to denote the

elliptical distribution in its canonical form.

With the canonical representation, the parameters θ,Σ, H are all identifiable. The scatter

matrix Σ is proportion to the covariance matrix whenever the covariance matrix exists.

Moreover, for multivariate Gaussian N(θ,Σ), its canonical parametrization is (θ,Σ,Φ), and

the scatter matrix and the covariance matrix are identical.

The goal of this section is to estimate both the location θ and the scatter Σ with

observations

X1, ..., Xn
iid∼ P for some P satisfying TV(P,E(θ,Σ, H)) ≤ ε. (25)

To achieve this goal, we further require that H belongs to the following class

H(M ′) =

{
H ∈ H :

∫ 1/3

1/4
dH(t) ≥ 1

M ′

}
.

The number M ′ > 0 is assumed to be some large constant. It is easy to see that H =

∪M ′>0H(M ′). The regularity condition H ∈ H(M ′) will be easily satisfied as long as there

is a constant probability mass of H contained in the interval [1/4, 1/3]. This condition

prevents some of the probability mass from escaping to infinity.

Define the estimator

(θ̂, Σ̂, Ĥ) = argmin
η∈Rp,Γ∈Ep(M),H∈H(M ′)

max
T∈T

[
1

n

n∑
i=1

S(T (Xi), 1) + EX∼E(η,Γ,H)S(T (X), 0)

]
.

(26)
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To accommodate for the more general generator class in (26), we consider the discriminator

class T̄ L(κ,B), which has the same definition (23), except that

G1(B) = Gramp =
{
g(x) = ramp(uTx+ b) : u ∈ Rp, b ∈ R

}
.

In other words, T̄ L(κ,B) and T L(κ,B) only differs in the choice of the nonlinear activation

function of the bottom layer. We remark that the discriminator class T L(κ,B) also works for

the elliptical distributions, but the theory would require a condition that is less transparent.

The theoretical guarantee of the estimator (26) is given by the following theorem.

Theorem 12 Consider the estimator (26) that is induced by a regular proper scoring rule

that satisfies Condition 6. The discriminator class is specified by T = T̄ L(κ,B) with the

dimension of (wj) to be at least 2. Assume p
n + ε2 ≤ c for some sufficiently small constant

c > 0. Set 2 ≤ L = O(1), 1 ≤ B = O(1), and κ = O
(√

p
n + ε

)
. Then, under the data

generating process (25), we have

‖θ̂ − θ‖2 ≤ C
( p
n
∨ ε2

)
,

‖Σ̂− Σ‖2op ≤ C
( p
n
∨ ε2

)
,

with probability at least 1 − e−C′(p+nε2) uniformly over all θ ∈ Rp, all ‖Σ‖op ≤ M = O(1),

and all H ∈ H(M ′) with M ′ = O(1). The constants C,C ′ > 0 are universal.

6. Numerical Studies

We present our numerical results in this Section. We first give details of implementations in

Section 6.1. We then compare our proposed methods with other methods in the literature

in Section 6.2. Simultaneous location and scatter estimation and comparisons of different

scoring rules are investigated in Section 6.3 and Section 6.4, respectively.

6.1 Implementations

In order to implement the proposed methods for scatter estimation, we need to specify the

generator networks. Depending on whether the data is centered and whether the distribu-

tion family is known, we consider the following four types of generator networks:

• G1(Z;A) = AZ. The random vector Z is sampled from E(0, Ip, H). Then, according

to Definition 10, we have G1(Z;A) ∼ E(0,Σ, H) with Σ = AAT . This is the simplest

generator network suitable for centered observations with a known distribution family.

• G2(U, z;A,wg) = gwg(z)AU . When the distribution family is unknown, we can rep-

resent an E(0, AAT , H) random variable by ξAU according to Definition 10. This

leads to the generator network G2(U, z;A,wg), where we model ξ by gwg(z), a neural

work with parameter wg and input vector z ∼ N(0, Iq). The input dimension q will

be specified later.
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• G3(Z;A, θ) = θ + AZ. This is an extension of G1 when the observations are not

centered.

• G4(U, z;A,wg, θ) = θ + gwg(z)AU . This is an extension of G2 when the observations

are not centered.

The algorithm to implement proper scoring rule GAN with the generator network G1(Z;A)

is given below.

Algorithm 1 argminA maxw
[

1
n

∑n
i=1 S(Dw(Xi), 1) + EZ∼E(0,Ip,H)S(Dw(G1(Z;A)), 0)

]
Input:

1. Observations O = {X1, . . . , Xn} ⊂ Rp,
2. Learning rates γd/γg for the discriminator/generator,

3. Batch size m,

4. Iterations for discriminator/generator steps in each epoch Kd/Kg,

5. Total epochs T ,

6. Average epochs T0.

Initialization:

1. Initialize Σ̂0 by scaled Kendall’s τ , apply singular value decomposition Σ̂0 = V0Λ0V
T

0 ,

and set A0 = V0Λ
1/2
0 .

2. Initialize the discriminator network by Xavier (Glorot and Bengio, 2010), where the first

layer of Dw(x) is initialized by some Gaussian distribution.

1: for t = 1, . . . , T do

2: for k = 1, . . . ,Kd do

3: Sample mini-batch {X1, . . . , Xm} from O. Sample {Z1, . . . , Zm} from

E(0, Ip, H);

4: gw ← ∇w
[

1
m

∑m
i=1 S(Dw(Xi), 1) + 1

m

∑m
i=1 S(Dw(G1(Zi;A)), 0)

]
;

5: w ← w + γdgw;

6: end for

7: for k = 1, . . . ,Kg do

8: Sample {Z1, . . . , Zm} from E(0, Ip, H);

9: gA ← ∇A
[

1
m

∑m
i=1 S(Dw(G1(Zi;A)), 0)

]
;

10: A← A− γggA;

11: end for

12: end for

Return: The average over the last T0 epochs Σ̂ = 1
T0

∑T
t=T−T0+1AtA

T
t .

Several remarks for Algorithm 1 are given below:

• Some variations and extra details. We provide general proper scoring rule GAN in

Algorithm 1, and different choices of {S(·, 1), S(·, 0)} in Section 2.5 leads to variant

GANs. An extra implementation detail is that after every T1 epochs, we update the

learning rates γg and γd by αγg and αγd with some α ∈ (0, 1) for better convergence.

20



GENERATIVE ADVERSARIAL NETS FOR ROBUST SCATTER ESTIMATION

• Discriminator network structures. The structure of the discriminator network is set as

p-2p-bp/2c-1. We consistently observe that this wide structure outperforms a narrow

ones such as p-bp/2c-bp/4c-1. The choice of nonlinearity follows that of (20), except

we use LeakyReLU(x) = max(0.2x, x) instead of ReLU(x) to avoid vanishing gradients.

This slight change will not affect the theoretical results in the paper.

• Identifiability and calibration. Suppose X ∼ E(θ,AAT , H) so that it has the represen-

tation X = θ + ξAU . Then, the matrix ÂÂT output by Algorithm 1 is an estimator

for AAT up to a multiplicative constant due to the identifiability issue discussed in

Section 5. Therefore, we need to define the version of AAT and calibrate the estimator

ÂÂT accordingly. In Section 5, the multiplicative constant is determined through the

equation ER(|aξuTU |) =
∫
R(|t|)dΦ(t). Note that here the choice of Φ is arbitrary,

and thus in our numerical studies, it is more convenient to replace the Gaussian cu-

mulative distribution function (CDF) Φ by the CDF of the distribution that we are

working with. For example, consider a multivariate t-distribution Tv(θ,Σ) with den-

sity proportional to
(
1 + (x− θ)TΣ−1(x− θ)/v

)−(v+p)/2
, we will find a factor a > 0

such that EU,zR(agŵg
(z)uTU) = EX∼Tv(0,1)R(|X|) is satisfied, where U is uniformly

distributed on the unit sphere and z ∼ N(0, Iq). Our final estimator is given by

a−2ÂÂT . With this scaling, the estimator is directly targeted at the Σ in the formula

of the density of Tv(θ,Σ).

The following table summarizes the hyperparameters that can reproduce our numerical

results for p = 100. Hyperparameters for other dimensions can be found in https://

github.com/zhuwzh/Robust-GAN-Scatter.

generator ξ network gwg(z) discriminator σ1 γd/γg Kd/Kg T/T0 α/T1

G1/G3 - 100-200-50-1 0.0025 0.025/0.1 12/3 500/25 0.2/200

G2/G4 48-32-24-12-1 100-200-50-1 0.025 0.05/0.025 12/3 500/25 0.2/200

Table 1: Hyperparameters used in our numerical studies. Here, σ1 is the standard deviation of the

Gaussian initialization in the first layer (next to the input) of the discriminator network. Other

parameters are introduced in Algorithm 1.

6.2 Comparisons with Other Methods

In this section, we compare the performance of JS-GAN against other methods for robust

scatter estimation in the literature. We first introduce some other robust scatter matrix

estimators that we will compare with. The definitions of these robust matrix estimator are

all up to some scaling factor. Tyler’s M-estimator (Tyler, 1987) is defined as a solution

of
∑n

i=1
XiX

T
i

XT
i Σ−1Xi

= cΣ for some c > 0. Note that it is a special case of Maronna’s M-

estimator (Maronna, 1976). Properties of Tyler’s M-estimator were studied by Dümbgen

(1998); Dümbgen and Tyler (2005); Zhang (2002); Zhang et al. (2016). The second robust

estimator of scatter that we will compare with is the scaled Kendall’s τ . The Kendall’s τ
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correlation coefficient (Kendall, 1938) between the jth and the kth variables is defined as

τ̂jk =
2

n(n− 1)

∑
i<i′

sign ((Xi −Xi′)j(Xi −Xi′)k) .

Then, K̂ = (K̂jk) with K̂jk = sin
(
π
2 τ̂jk

)
is an estimator of the correlation matrix (Kruskal,

1958; Han and Liu, 2014). To obtain an estimator for the scatter matrix, define a diagonal

matrix Ŝ with diagonal entries Ŝjj = Median({X2
ij}ni=1). Then, the scaled Kendall’s τ

estimator for the scatter matrix is Ŝ1/2K̂Ŝ1/2. Thirdly, we introduce the minimum volume

ellipsoid estimator (MVE) by Leroy and Rousseeuw (1987). It finds the ellipsoid covering

at least n/2 points of {Xi}ni=1 with the minimum volume and then use the shape of the

ellipsoid as the scatter matrix estimator. Properties of MVE have been studied by Davies

(1992). Finally, we consider the dimension halving method proposed by Lai et al. (2016)

based on the idea of higher moment certification. We remark that among all the methods

that we compare here, dimension halving is the only method that is designed for Huber’s

contamination model. For comparison of performances, we rescale all the estimators by some

constant factors so that all of them are targeted at the same population scatter matrix.1

The comparisons cover the following scenarios from different perspectives.

Influence of Tail. We first study the influence of the tail behavior. We consider i.i.d.

observations from (1−ε)Tv(0,Σar)+εTv(51p, 5Ip), where (Σar)jk = (1/2)|j−k| and 1p stands

for the p-dimensional vector with all entries 1’s. Note that the second moment of the

multivariate t-distribution exists only when v > 2.

degrees of freedom v G1(Z;A) G2(U, z;A,wg) Dimension Halving Tyler’s M-estimator Kendall’s τ MVE Sample Covariance

1 0.2808 (0.0440) 0.3350 (0.0681) - 372.9637 (582.3385) 52.5653 (0.6361) 50.2995 (0.6259) -

2 0.3450 (0.0157) 0.4059 (0.0254) - 55.5152 (1.1901) 64.7625 (0.4798) 20.1941 (1.8645) -

4 0.2751 (0.0147) 0.2775 (0.0456) 1.2834 (0.0512) 38.7569 (0.2740) 72.8037 (0.3369) 0.1920 (0.0299) 64.5601 (0.3930)

8 0.2131 (0.0162) 0.2113 (0.0306) 0.8902 (0.0728) 39.0265 (0.2014) 77.2117 (0.3486) 0.1753 (0.0218) 72.7087 (0.3512)

16 0.1764 (0.0120) 0.2076 (0.0210) 0.8354 (0.0926) 39.1167 (0.3200) 79.2252 (0.2728) 0.1683 (0.0136) 75.4209 (0.2811)

32 0.1576 (0.0067) 0.2056 (0.0202) 0.8572 (0.0687) 39.1985 (0.2153) 80.2075 (0.1706) 0.1493 (0.0085) 76.5790 (0.4061)

Table 2: Simulation results with n = 50, 000, p = 100, ε = 0.2 and v ∈ {1, 2, 4, 8, 16, 32}. G1(Z;A) =

AZ, and G2(U, z;A,wg) = gwg (z)AU . We show the average error ‖Σ̂ − Σ‖op in each cell with

standard deviation in parenthesis from 10 repeated experiments.

Table 2 summarizes the results with the degrees of freedom v varying from 1 to 32.

We observe that JS-GANs (with generator networks G1 and G2) are overall the two best

methods, especially when v ∈ {1, 2}. Dimension halving performs better than Tyler’s

M-estimator and Kendall’s τ , because it is the only one that is designed for Huber’s con-

tamination model among all other methods. Among the remaining three methods, MVE

is greatly influenced by the value of v, while Kendall’s τ and Tyler’s M-estimator does not

seem to be robust in this setting.

1. Dimension halving is designed to estimate the covariance matrix when it exists. For the t-distribution

with degrees of freedom v, the final estimator needs to be scaled by v
v−2

when v > 2. The results for

v ∈ {1, 2} are omitted for dimension halving because the covariance does not exist.
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Distance of Contamination. We then study the effect of the distance of the contamination

distribution. In this experiment, we sample i.i.d. observations from (1− ε)N(0, Ip) + εδs1p .

That is, we model the contamination by a Dirac distribution with each coordinate being s,

and we vary the value of s in this experiment.

factor s G1(Z;A) G2(U, z;A,wg) Dimension Halving Tyler’s M-estimator Kendall’s τ MVE2 Sample Covariance

0.5 0.2000 (0.0251) 0.2057 (0.0104) 0.1949 (0.0085) 98.7102 (3.7054) 3.8098 (0.0158) 5.1546 (0.0424) 4.7303 (0.0307)

1 0.1699 (0.0168) 0.1607 (0.0084) 0.2163 (0.0077) 103.3438 (2.4459) 23.4627 (0.0732) 17.5985 (0.0964) 16.5368 (0.0667)

2 0.1705 (0.0145) 0.1576 (0.0097) 0.2762 (0.0159) 137.6124 (1.1288) 84.5634 (0.0750) 45.9484 (0.1704) 43.9837 (0.1812)

4 0.1530 (0.0059) 0.1557 (0.0142) 0.2982 (0.0110) 264.7385 (0.5537) 92.0462 (0.1206) 76.8558 (0.2466) 75.5743 (0.1890)

8 0.1600 (0.0094) 0.1555 (0.0116) 0.3008 (0.0184) 366.0933 (0.3620) 92.1079 (0.1124) 92.4466 (0.0811) 91.8662 (0.1037)

Table 3: Simulation results with n = 50, 000, p = 100, ε = 0.2 and s ∈ {0.5, 1, 2, 4, 8}. G1(Z;A) =

AZ, and G2(U, z;A,wg) = gwg
(z)AU . We show the average error ‖Σ̂ − Σ‖op in each cell with

standard deviation in parenthesis from 10 repeated experiments.

The results summarized in Table 3 show that JS-GANs and dimension halving are

much better than the other three methods. The errors of Kendall’s τ and MVE exhibit

clear increasing patterns as s grows. Tyler’s M-estimator does not seem to be robust under

this setting.

It is also interesting to note that JS-GANs and dimension halving have different error

behaviors. The error of dimension halving grows slowly as s increases, while the errors of JS-

GANs decrease. This is because as the contamination distribution δs1p is moving away from

N(0, Ip), the discriminator network in GANs gets better at distinguishing contamination

from the true model.

Dependence on (ε, n, p). Lastly, we show the comparison results in Tables 4-6 when the con-

tamination proportion ε, the sample size n, and the dimension p vary. We consider i.i.d. ob-

servations from (1− ε)N(0,Σar)+ εQ with (Σar)jk = (1/2)|j−k| and Q ∈ {N(51p, 5Ip), δ51p}.

ε Q G1(Z;A) G2(U, z;A,wg) Dimension Halving Tyler’s M-estimator Kendall’s τ MVE Sample Covariance

0.02
N(51p, 5Ip) 0.1438 (0.0109) 0.1829 (0.0221) 0.7709 (0.0720) 4.1114 (0.0410) 5.9289 (0.0362) 0.1286 (0.0115) 49.1036 (0.1110)

δ51p 0.1373 (0.0053) 0.1782 (0.0106) 0.7758 (0.0688) 105.4027 (2.1131) 6.4535 (0.0385) 20.0688 (17.1654) 48.9504 (0.0237)

0.05
N(51p, 5Ip) 0.1434 (0.0096) 0.1834 (0.0123) 0.7633 (0.0639) 11.4392 (0.0739) 15.3559 (0.0430) 0.1313 (0.0117) 118.9069 (0.1821)

δ51p 0.1443 (0.0076) 0.1888 (0.0172) 0.7781 (0.0533) 130.9782 (0.3241) 16.8037 (0.0559) 49.7855 (17.4420) 118.6118 (0.0534)

0.1
N(51p, 5Ip) 0.1500 (0.0111) 0.1881 (0.0143) 0.7548 (0.0435) 22.5296 (0.1511) 33.1473 (0.0867) 0.1420 (0.0169) 225.1574 (0.2899)

δ51p 0.1470 (0.0072) 0.1957 (0.0135) 0.7740 (0.0678) 198.0822 (0.6326) 36.5264 (0.0924) 63.8083 (22.3797) 224.6905 (0.0994)

0.2
N(51p, 5Ip) 0.1620 (0.0102) 0.2000 (0.0157) 0.7285 (0.0862) 39.3082 (0.2273) 81.2740 (0.1081) 0.1420 (0.0107) 400.3554 (0.4956)

δ51p 0.1632 (0.0206) 0.1938 (0.0155) 0.9365 (0.0788) 235.5581 (0.8650) 92.1920 (0.1281) 81.8603 (0.1722) 399.3472 (0.1132)

Table 4: Simulation results with n = 50, 000, p = 100 and ε ∈ {0.02, 0.05, 0.1, 0.2}. G1(Z;A) = AZ,

and G2(U, z;A,wg) = gwg
(z)AU . We show the average error ‖Σ̂ − Σ‖op in each cell with standard

deviation in parenthesis from 10 repeated experiments.

2. We apply the function cov.rob in the R package MASS. However, the function cannot be applied when

some observations are linearly dependent. We add a small random perturbation N(0, 0.01) to the original

data before applying cov.rob.
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n Q G1(Z;A) G2(U, z;A,wg) Dimension Halving Tyler’s M-estimator Kendall’s τ MVE Sample Covariance

5, 000
N(51p, 5Ip) 1.0186 (0.0677) 0.6449 (0.0576) 1.0813 (0.0593) 38.6494 (0.4477) 81.0570 (0.4043) 0.4724 (0.0623) 400.5247 (0.8093)

δ51p 0.9142 (0.0717) 0.6152 (0.0751) 1.1796 (0.1257) 233.2116 (2.9582) 92.0669 (0.2453) 82.1385 (0.3717) 399.5117 (0.3461)

10, 000
N(51p, 5Ip) 0.3465 (0.0722) 0.5852 (0.0816) 0.9489 (0.0563) 39.1785 (0.5876) 81.1670 (0.2038) 0.3225 (0.0350) 400.5247 (0.8093)

δ51p 0.3293 (0.0166) 0.4244 (0.0632) 1.0558 (0.0796) 235.6172 (1.8062) 92.1067 (0.3140) 82.1225 (0.4402) 399.2921 (0.3031)

20, 000
N(51p, 5Ip) 0.2382 (0.0084) 0.2867 (0.0183) 0.7934 (0.0527) 39.1790 (0.2643) 81.1848 (0.1246) 0.2198 (0.0162) 400.5247 (0.8093)

δ51p 0.2459 (0.0151) 0.2835 (0.0287) 0.9463 (0.0793) 234.2984 (1.8534) 92.1426 (0.2296) 81.9923 (0.3232) 399.4243 (0.1186)

50, 000
N(51p, 5Ip) 0.1547 (0.0082) 0.1866 (0.0211) 0.8185 (0.0847) 39.2105 (0.2365) 81.2640 (0.0727) 0.1447 (0.0127) 400.5247 (0.8093)

δ51p 0.1580 (0.0101) 0.1947 (0.0201) 0.8988 (0.0821) 235.0871 (0.9106) 92.1250 (0.1733) 82.0914 (0.2233) 399.5099 (0.1755)

Table 5: Simulation results with p = 100, ε = 0.2 and n ∈ {5000, 10000, 20000, 50000}. G1(Z;A) =

AZ, and G2(U, z;A,wg) = gwg
(z)AU . We show the average error ‖Σ̂ − Σ‖op in each cell with

standard deviation in parenthesis from 10 repeated experiments.

p Q G1(Z;A) G2(U, z;A,wg) Dimension Halving Tyler’s M-estimator Kendall’s τ MVE Sample Covariance

10
N(51p, 5Ip) 0.0498 (0.0116) 0.0541 (0.0139) 0.5800 (0.0268) 2.8370 (0.0345) 8.1053 (0.0540) 0.0475 (0.0133) 40.4843 (0.1282)

δ51p 0.0519 (0.0093) 0.1072 (0.0424) 0.5587 (0.0236) 10.8566 (0.0327) 9.2230 (0.0838) 6.3590 (0.0458) 39.4842 (0.0345)

25
N(51p, 5Ip) 0.0813 (0.0127) 0.1059 (0.0106) 0.6090 (0.0256) 8.7515 (0.0373) 20.2953 (0.0788) 0.0637 (0.0084) 100.4339 (0.2658)

δ51p 0.0813 (0.0089) 0.1188 (0.0269) 0.6010 (0.0261) 43.3639 (0.2047) 23.0388 (0.1104) 18.8767 (0.0685) 99.4246 (0.0432)

50
N(51p, 5Ip) 0.1171 (0.0111) 0.1296 (0.0089) 0.6238 (0.0197) 18.9115 (0.1781) 40.6553 (0.0731) 0.1034 (0.0081) 200.4463 (0.2247)

δ51p 0.1044 (0.0090) 0.1444 (0.0174) 0.6420 (0.0438) 125.5211 (0.5539) 46.0510 (0.0870) 40.0609 (0.2258) 199.4370 (0.0693)

100
N(51p, 5Ip) 0.1538 (0.0052) 0.1893 (0.0131) 0.6406 (0.0211) 39.2077 (0.1659) 81.1823 (0.0865) 0.1454 (0.0147) 400.4037 (0.2775)

δ51p 0.1552 (0.0087) 0.1957 (0.0150) 0.6385 (0.0279) 235.5848 (1.2379) 92.0734 (0.0988) 82.0031 (0.2379) 399.3505 (0.1138)

200
N(51p, 5Ip) 0.2154 (0.0066) 0.2630 (0.0125) 0.6824 (0.0274) 80.0833 (0.5008) 162.3562 (0.1491) 0.2115 (0.0100) 800.2610 (0.4365)

δ51p 0.2159 (0.0057) 0.2559 (0.0099) 0.6628 (0.0206) 731.8936 (1.5718) 184.2577 (0.1533) 166.0049 (0.3709) 799.4495 (0.1780)

Table 6: Simulation results with n = 50, 000, ε = 0.2 and p ∈ {10, 25, 50, 100, 200}. G1(Z;A) = AZ,

and G2(U, z;A,wg) = gwg (z)AU. We show the average error ‖Σ̂ − Σ‖op in each cell with standard

deviation in parenthesis from 10 repeated experiments.

The results are summarized in Tables 4-6. As ε gets larger, Table 4 shows that the errors

of Tyler’s M-estimator, Kendall’s τ and MVE all grow significantly, while the dependence

on ε for the other three estimators are very mild. The same pattern also appears in Table

6 as the dimension p grows. For Table 5, we observe that the errors of the two GANs and

dimension halving all decrease as n grows. In contrast, the errors of Tyler’s M-estimator

and Kendall’s τ almost stay as constant when n varies because of the contamination. MVE

exhibits different behaviors for the two contamination distributions. Its error decreases as

n grows when the contamination distribution is N(51p, 5Ip) and stays as constant when the

contamination distribution is δ51p .

In summary, our numerical results show that Tyler’s M-estimator and Kendall’s τ do not

work well under Huber’s contamination model. MVE works well for certain contamination

distributions but is certainly not robust against all contamination distributions. The GANs

proposed in the paper and dimension halving all work very well because they are designed

for robust estimation under Huber’s contamination model. Among the three, the GANs

constantly have smaller errors than dimension halving. This is not surprising given the

minimax optimality of the GANs under Huber’s contamination model established in this

paper.

24



GENERATIVE ADVERSARIAL NETS FOR ROBUST SCATTER ESTIMATION

6.3 Simultaneous Estimation of Location and Scatter

In this section, we study robust simultaneous location and scatter estimation. Our goal is

to compare the performances of the four generator networks G1, G2, G3 and G4. Table 7

summarizes the numerical results under four different settings of contamination models. We

observe that the networks G3 and G4 have similar performances in terms of estimating the

scatter as the networks G1 and G2 that only estimate the scatter. We can also compare G2

with G1 and G4 with G3, since G1 and G3 assume the knowledge of the distribution family,

while G2 and G4 estimate the distribution via the additional gwg(z). Even though the

additional knowledge of the distribution family does help G1 and G3 to outperform G2 and

G4, the advantage is not significant in terms of estimating the scatter and is negligible in

terms of location estimation. These observations imply that the most complicated network

G4 works very well for adaptive estimation under the general elliptical distribution family.

(P,Q)
G1(z;A) = Az G3(z;A,µ) = Az + µ G2(u, z;A,wg) = gwg(z)Au G4(u, z;A,wg, µ) = gwg(z)Au+ µ

‖Σ̂− Σ‖op ‖Σ̂− Σ‖op ‖θ̂ − θ‖ ‖Σ̂− Σ‖op ‖Σ̂− Σ‖op ‖θ̂ − θ‖
(N(0, Ip), N(5, 5Ip)) 0.1615 (0.0134) 0.1537 (0.0155) 0.0508 (0.0054) 0.1624 (0.0141) 0.1694 (0.0105) 0.0519 (0.0048)

(N(0,Σar), δ41p) 0.1530 (0.0059) 0.1640 (0.0106) 0.0547 (0.0039) 0.1557 (0.0142) 0.1880 (0.0134) 0.0544 (0.0073)

(T1(0,Σar), T1(5, 5Ip)) 0.2808 (0.0440) 0.2512 (0.0479) 0.0656 (0.0065) 0.3350 (0.0681) 0.4678 (0.0498) 0.0575 (0.0048)

(T2(0,Σar), T2(5, 5Ip)) 0.3450 (0.0157) 0.3743 (0.0097) 0.0640 (0.0056) 0.4059 (0.0254) 0.4704 (0.0299) 0.0642 (0.0040)

Table 7: Simulation results with i.i.d. observations generated from (1 − ε)P + εQ, where n =

50, 000, p = 100 and ε = 0.2. We show the average errors ‖Σ̂ − Σ‖op and ‖θ̂ − θ‖ in each cell with

standard deviation in parenthesis from 10 repeated experiments.

6.4 Comparisons of Proper Scoring Rules

As we have shown in Section 2.5, JS-GAN can be understood as a special case of a more

general class Beta-GAN(α, β) with α, β > −1. Our theoretical results are valid for any Beta-

GAN(α, β) as long as |α− β| < 1 (Condition 6). In this section, we study the performance

of this wide class of GANs with various choices of (α, β). Table 8 summarizes the numerical

results under four different settings of contamination models. The comparison includes JS-

GAN and LS-GAN, which correspond to (α, β) = (0, 0) and (α, β) = (1, 1). In addition,

we also consider (α, β) ∈ {(−0.5,−0.5), (0.5, 0.5), (0.5, 1), (1, 0.5), (2, 2), (4, 4)}. We observe

that the GANs with 0 ≤ α, β ≤ 1 all have very similar performances. On the other hand, the

errors increase as the values of α and β grow, which is shown in the last two columns of Table

8 for (α, β) ∈ {(2, 2), (4, 4)}. In fact, our additional experiments show that the performance

of Beta-GAN(α, β) is not acceptable anymore as soon as α, β ≥ 8. This may be caused by

the bad landscape of the objective function for large α and β. In fact, as α = β → ∞,

we recover TV-GAN, which is known to have a bad landscape for robust estimation (Gao

et al., 2019). The boosting score, which corresponds to (α, β) = (−0.5,−0.5), leads to worse

errors than JS-GAN and LS-GAN.
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We also note that some asymmetric GANs (e.g. (α, β) = (1, 0.5)) have better perfor-

mance than JS-GAN and LS-GAN. It is interesting to further explore the properties of

different scores from both theoretical and experimental perspectives in the future work.

(P,Q, p) Beta(-0.5,-0.5) JS-GAN Beta(0.5, 0.5) Beta(0.5,1) Beta(1,0.5) LS-GAN Beta(2,2) Beta(4,4)

(N(0, Ip), N(5, 5Ip), 100) 0.1557 (0.0093) 0.1188 (0.0046) 0.1228 (0.0045) 0.1201 (0.0033) 0.1040 (0.0017) 0.1283 (0.0095) 0.1402 (0.0063) 0.3478 (0.0035)

(N(0, Ip), N(5, 5Ip), 200) 0.3346 (0.0149) 0.1720 (0.0032) 0.1677 (0.0045) 0.1697 (0.0054) 0.1599 (0.0026) 0.1749 (0.0048) 0.1978 (0.0031) 0.3508 (0.0034)

(T2(0,Σar), T2(5, 5Ip), 100) 0.5653 (0.5065) 0.1848 (0.0106) 0.1941 (0.0087) 0.2016 (0.0190) 0.1925 (0.0149) 0.1882 (0.0152) 0.3371 (0.0378) 0.9689 (0.1124)

(T4(0,Σar), T4(5, 5Ip), 100) 0.2726 (0.0083) 0.2009 (0.0079) 0.1923 (0.0125) 0.2133 (0.0105) 0.1758 (0.0122) 0.1999 (0.0130) 0.3334 (0.0213) 0.7740 (0.0432)

Table 8: Simulation results with i.i.d. observations generated from (1 − ε)P + εQ, where n =

50, 000, p ∈ {100, 200} and ε = 0.2. We show the average error ‖Σ̂−Σ‖op in each cell with standard

deviation in parenthesis from 10 repeated experiments.

7. Proofs

7.1 Some Lemmas

Before proving the main results, we introduce some lemmas, whose proofs are given in

Section 7.6.

Lemma 13 Given i.i.d. observations X1, ..., Xn ∼ P, and T ∈ {T1, T3} defined by either

(14) or (19), we have for any δ > 0,

sup
T∈T

∣∣∣∣∣ 1n
n∑
i=1

log T (Xi)− E log T (X)

∣∣∣∣∣ ≤ Cκ
(√

p

n
+

√
log(1/δ)

n

)
,

with probability at least 1− δ for some universal constant C > 0.

Lemma 14 Given i.i.d. observations X1, ..., Xn ∼ N(0,Σ) and the function class T2 de-

fined by (15). Assume ‖Σ‖op ≤M = O(1). We have for any δ > 0,

sup
T∈T2

∣∣∣∣∣ 1n
n∑
i=1

log T (Xi)− E log T (X)

∣∣∣∣∣ ≤ Cκ
(√

p

n
+

√
log(1/δ)

n

)
, (27)

with probability at least 1− δ for some universal constant C > 0.

Lemma 15 Given i.i.d. observations X1, ..., Xn ∼ P and the function class T3 defined by

(19). Assume {S(·, 1), S(·, 0)} is a regular proper scoring rule that satisfies Condition 6 and

κ ≤ c for some sufficiently small constant c > 0. We have for any δ > 0,

sup
T∈T3

∣∣∣∣∣ 1n
n∑
i=1

S(T (Xi), 1)− ES(T (X), 1)

∣∣∣∣∣ ≤ Cκ
(√

p

n
+

√
log(1/δ)

n

)
,

with probability at least 1− δ for some universal constant C > 0.
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Lemma 16 Given i.i.d. observations X1, ..., Xn ∼ N(0,Σ) and the function class T4 de-

fined by (20). Assume {S(·, 1), S(·, 0)} is a regular proper scoring rule that satisfies Con-

dition 6, κ1 ≤ c for some sufficiently small constant c > 0, and ‖Σ‖op ≤ M = O(1). We

have for any δ > 0,

sup
T∈T4

∣∣∣∣∣ 1n
n∑
i=1

S(T (Xi), 1)− ES(T (X), 1)

∣∣∣∣∣ ≤ Cκ1κ2

(√
p

n
+

√
log(1/δ)

n

)
, (28)

with probability at least 1− δ for some universal constant C > 0.

Lemma 17 Given i.i.d. observations X1, ..., Xn ∼ P. Assume {S(·, 1), S(·, 0)} is a regular

proper scoring rule that satisfies Condition 6 and κ ≤ c for some sufficiently small constant

c > 0. We have for any δ > 0,

sup
T∈T

∣∣∣∣∣ 1n
n∑
i=1

S(T (Xi), 1)− ES(T (X), 1)

∣∣∣∣∣ ≤ Cκ(2B)L−1

(√
p

n
+

√
log(1/δ)

n

)
,

for both T = T L(κ,B) and T = T̄ L(κ,B) with probability at least 1− δ for some universal

constant C > 0.

7.2 Proofs of Proposition 3 and Proposition 5

Proof [Proof of Proposition 3] Define

F (w, u; Σ,Γ) = EX∼N(0,Σ) log Tw,u(X) + EX∼N(0,Γ) log(1− Tw,u(X)),

where Tw,u(x) = sigmoid
(∑

j≥1wjsigmoid(uTj x)
)

. Then, we have

F (Σ,Γ) = max
‖w‖1≤κ,uj∈Rp

F (w, u; Σ,Γ).

We calculate the gradient and Hessian of F (w, u; Σ,Γ) with respect to w. To do this, we

define gu(x) to be a vector with the same dimension as w and each of its coordinate takes

sigmoid(uTj x). With this notation, we can write Tw,u(x) = sigmoid(wT gu(x)). By standard

calculation, we get

∇wF (w, u; Σ,Γ) = EX∼N(0,Σ) (1− Tw,u(X)) gu(X)− EX∼N(0,Γ)Tw,u(X)gu(X),

∇2
wF (w, u; Σ,Γ) = −EX∼N(0,Σ)Tw,u(X) (1− Tw,u(X)) gu(X)gu(X)T

−EX∼N(0,Γ)Tw,u(X) (1− Tw,u(X)) gu(X)gu(X)T .

For any uj ∈ Rp,

EX∼N(0,Σ)sigmoid(uTj X) = EX∼N(0,Σ)sigmoid(−uTj X)

= EX∼N(0,Σ)(1− sigmoid(uTj X)),
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which immediately implies EX∼N(0,Σ)sigmoid(uTj X) = 1/2. By the same argument, we also

have EX∼N(0,Γ)sigmoid(uTj X) = 1/2. Therefore,

∇wF (w, u; Σ,Γ)|w=0 =
1

2
EX∼N(0,Σ)gu(X)− 1

2
EX∼N(0,Γ)gu(X) = 0.

Moreover, since −∇2
wF (w, u; Σ,Γ) is positive semi-definite, F (w, u; Σ,Γ) is a concave func-

tion in w. This implies

max
‖w‖1≤κ

F (w, u; Σ,Γ) = F (0, u; Σ,Γ) = − log 4.

Taking maximum over u, we have F (Σ,Γ) = − log 4, regardless of the values of Σ and Γ.

Proof [Proof of Proposition 5] We first introduce some notation. We define

J(γ2) = max
‖w‖1≤κ,uj∈R

F (w, u; γ2),

where

F (w, u; γ2) = EX∼(1−ε)N(0,σ2)+εN(0,τ2) log Tw,u(X) + EX∼N(0,γ2) log(1− Tw,u(X)),

with Tw,u(x) defined by Tw,u(x) = sigmoid
(∑

j≥1wjReLU(ujx)
)

. With these notation, we

need to prove J([(1− ε)σ + ετ ]2) = minγ2 J(γ2).

The gradient and Hessian of F (w, u; γ2) with respect to w are given by

∇wF (w, u; γ2) = EX∼(1−ε)N(0,σ2)+εN(0,τ2) (1− Tw,u(X)) gu(X)

−EX∼N(0,γ2)Tw,u(X)gu(X),

∇2
wF (w, u; γ2) = −EX∼(1−ε)N(0,σ2)+εN(0,τ2)Tw,u(X) (1− Tw,u(X)) gu(X)gu(X)T

−EX∼N(0,γ2)Tw,u(X) (1− Tw,u(X)) gu(X)gu(X)T ,

where we use gu(X) to denote the vector whose jth coordinate is ReLU(ujX). It is not hard

to see that

EX∼N(0,γ2)ReLU(ujX) = |uj |γ
√

2

π
,

and

EX∼(1−ε)N(0,σ2)+εN(0,τ2)ReLU(ujX) = |uj |[(1− ε)σ + ετ ]

√
2

π
.

Therefore, we have the identity

EX∼N(0,[(1−ε)σ+ετ ]2)ReLU(ujX) = EX∼(1−ε)N(0,σ2)+εN(0,τ2)ReLU(ujX),

which is equivalent to∇wF (w, u; [(1−ε)σ+ετ ]2)|w=0 = 0. Moreover, since −∇2
wF (w, u; [(1−

ε)σ+ ετ ]2) is positive semi-definite, F (w, u; [(1− ε)σ+ ετ ]2) is a concave function in w. This

implies

max
‖w‖1≤κ

F (w, u; [(1− ε)σ + ετ ]2) = F (0, u; [(1− ε)σ + ετ ]2) = − log 4.
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Taking maximum over u, we have J([(1 − ε)σ + ετ ]2) = − log 4. For any γ2, J(γ2) ≥
F (0, u; γ2) = − log 4. Hence, we have the desired conclusion that J([(1 − ε)σ + ετ ]2) =

minγ2 J(γ2).

7.3 Proofs of Proposition 2 and Proposition 4

Proof [Proof of Proposition 2] We use the notation Fw,u(P,Q) = EX∼P log Tw,u(X) +

EX∼Q log(1 − Tw,u(X)), with Tw,u(x) = sigmoid
(∑

j≥1wjsigmoid(uTj x)
)

. Thus, we can

write

θ̂ = argmin
η∈Rp

F (Pn, N(η, Ip)), (29)

where F (P,Q) = max‖w‖1≤κ,uj∈Rp Fw,u(P,Q), and Pn = 1
n

∑n
i=1 δXi is the empirical mea-

sure. Let P be the data generating process that satisfies TV(P,N(θ, Ip)) ≤ ε, and then

there exist probability distributions Q1 and Q2, such that

P + εQ1 = N(θ, Ip) + εQ2.

The explicit construction of Q1, Q2 is given in the proof of Theorem 5.1 of Chen et al.

(2018). This implies that

|F (P,N(η, Ip))− F (N(θ, Ip), N(η, Ip))|
≤ sup

‖w‖1≤κ,u
|Fw,u(P,N(η, Ip))− Fw,u(N(θ, Ip), N(η, Ip))|

= ε sup
‖w‖1≤κ,u

|EX∼Q2 log(2Tw,u(X))− EX∼Q1 log(2Tw,u(X))|

≤ 2κε. (30)

Then,

F (N(θ, Ip), N(θ̂, Ip)) ≤ F (P,N(θ̂, Ip)) + 2κε (31)

≤ F (Pn, N(θ̂, Ip)) + Cκ

(√
p

n
+

√
log(1/δ)

n

)
+ 2κε (32)

≤ F (Pn, N(θ, Ip)) + Cκ

(√
p

n
+

√
log(1/δ)

n

)
+ 2κε (33)

≤ F (P,N(θ, Ip)) + 2Cκ

(√
p

n
+

√
log(1/δ)

n

)
+ 2κε (34)

≤ F (N(θ, Ip), N(θ, Ip)) + 2Cκ

(√
p

n
+

√
log(1/δ)

n

)
+ 4κε.(35)

The inequalities (31) and (35) are direct consequences of (30). We have used Lemma 13 for

(32) and (34), and (33) is implied by the definition of the estimator (29). By the definition
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of F (N(θ, Ip), N(θ̂, Ip))− F (N(θ, Ip), N(θ, Ip)), we obtain the following inequality that

Fw,u(N(θ, Ip), N(θ̂, Ip)) + log 4 ≤ 2Cκ

(√
p

n
+

√
log(1/δ)

n

)
+ 4κε,

uniformly over all ‖w‖1 ≤ κ and all u with probability at least 1 − δ. Choose w1 = κ,

wj = 0 for all j ≥ 2 and u1 = v for some unit vector ‖v‖ = 1, and then we have

f(κ; vT θ, vT θ̂) ≤ 2Cκ

(√
p

n
+

√
log(1/δ)

n

)
+ 4κε, (36)

where

f(t; δ1, δ2) = E log
2

1 + e−tsigmoid(Z+δ1)
+ E log

2

1 + etsigmoid(Z+δ2)
,

with Z ∼ N(0, 1). Direct calculations give

∂

∂t
f(t; δ1, δ2) = E

1

1 + etsigmoid(Z+δ1)
sigmoid(Z + δ1)

−E 1

1 + e−tsigmoid(Z+δ2)
sigmoid(Z + δ2),

∂2

∂t2
f(t; δ1, δ2) = −E etsigmoid(Z+δ1)

(1 + etsigmoid(Z+δ1))2
|sigmoid(Z + δ1)|2

−E etsigmoid(Z+δ2)

(1 + etsigmoid(Z+δ2))2
|sigmoid(Z + δ2)|2.

Therefore, we have f(0; δ1, δ2) = 0, ∂
∂tf(t; δ1, δ2)|t=0 = 1

2 (Esigmoid(Z + δ1)− Esigmoid(Z + δ2)),

and ∂2

∂t2
f(t; δ1, δ2) ≥ −1

2 , which then implies

f(κ; δ1, δ2) ≥ f(0; δ1, δ2) + κ
∂

∂t
f(t; δ1, δ2)|t=0 −

1

4
κ2.

or equivalently κ ∂
∂tf(t; δ1, δ2)|t=0 ≤ f(κ; δ1, δ2) + 1

4κ
2. In view of the bound (36), we have

κ

2

∫ (
sigmoid(z + vT θ)− sigmoid(z + vT θ̂)

)
φ(z)dz

≤ 2Cκ

(√
p

n
+

√
log(1/δ)

n

)
+ 4κε+

1

4
κ2,

where φ(z) = 1√
2π
e−z

2/2. A symmetric argument with u1 = −v leads to the same bound

for κ
2

∫ (
sigmoid(z + vT θ̂)− sigmoid(z + vT θ)

)
φ(z)dz, and thus∣∣∣∣∫ (sigmoid(z + vT θ̂)− sigmoid(z + vT θ)

)
φ(z)dz

∣∣∣∣
≤ 2C

(√
p

n
+

√
log(1/δ)

n

)
+ 4ε+

1

4
κ.
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Define the following function h(t) =
∫
sigmoid(z+vT θ+t)φ(z)dz, take κ = O(

√
p/n+ε) and

δ = eC
′(p+nε2), and then the above bound becomes |h(vT (θ̂ − θ)) − h(0)| = O(

√
p/n + ε).

It is easy to see that h′(0) ≥
∫
sigmoid(z + M)(1 − sigmoid(z + M))φ(z)dz, which is a

constant, and the continuity of h′(t) implies that there are small constants c1, c2 > 0,

such that inf |t|≤c1 |h′(t)| ≥ c2. Thus, as long as |h(t) − h(0)| is sufficiently small, we have

|h(t)− h(0)| ≥ c2|t|, which implies that |vT (θ̂ − θ)| = O(
√
p/n+ ε). The proof is complete

by taking supreme over all unit vector v.

Proof [Proof of Proposition 4] We use the same notation Fw,u(P,Q) defined in the proof

of Proposition 2, but Tw,u(x) = sigmoid(
∑

j≥1wjReLU(uTj x)). Then, by the same argument

used in (31)-(35) (with ε = 0 and Lemma 13 replaced by Lemma 14), we have

Fw,u(N(0,Σ), N(0, Σ̂)) + log 4 ≤ 2Cκ

(√
p

n
+

√
log(1/δ)

n

)
,

uniformly over all ‖w‖1 ≤ κ and all ‖uj‖ ≤ 1 with probability at least 1 − δ. Choose

w1 = w2 = κ/2, wj = 0 for all j ≥ 3, u1 = v and u2 = −v for some unit vector ‖v‖ = 1,

and then we have

f
(
κ;
√
vTΣv,

√
vT Σ̂v

)
≤ 2Cκ

(√
p

n
+

√
log(1/δ)

n

)
, (37)

where

f(t; δ1, δ2) = E log
2

1 + e−
t
2
δ1|Z|

+ E log
2

1 + e
t
2
δ2|Z|

,

with Z ∼ N(0, 1). Then,

∂

∂t
f(t; δ1, δ2) =

1

2
E

1

1 + etδ1|Z|/2
δ1|Z| −

1

2
E

1

1 + e−tδ2|Z|/2
δ2|Z|,

∂2

∂t2
f(t; δ1, δ2) = −1

4
E

etδ1|Z|/2

(1 + etδ1|Z|/2)2
|δ1Z|2 −

1

4
E

etδ2|Z|/2

(1 + etδ2|Z|/2)2
|δ2Z|2.

Therefore, we have f(0; δ1, δ2) = 0, ∂
∂tf(t; δ1, δ2)|t=0 = 1

4E|Z|(δ1 − δ2), and

∂2

∂t2
f
(
t;
√
vTΣv,

√
vT Σ̂v

)
≥ −M

8
,

which implies

f(κ; δ1, δ2) ≥ f(0; δ1, δ2) + κ
∂

∂t
f(t; δ1, δ2)|t=0 −

M

16
κ2.

Then, by the bound (37), we have
√
vTΣv −

√
vT Σ̂v .

√
p
n by taking κ = O(

√
p/n) and

δ = eC
′p. A symmetric argument also leads to the same bound for

√
vT Σ̂v−

√
vTΣv, so that∣∣∣√vT Σ̂v −

√
vTΣv

∣∣∣ .√ p
n , which is equivalent to |vT (Σ̂−Σ)v| .

(√
vT Σ̂v +

√
vTΣv

)√
p
n ≤

2
√
M
√

p
n . The proof is complete by taking supreme over all unit vector v.
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7.4 Proofs of Theorem 7 and Theorem 8

Proof [Proof of Theorem 7] We use the notation

Fw,u,b(P,Q) = EX∼PS(Tw,u,b(X), 1) + EX∼QS(Tw,u,b(X), 0),

with Tw,u,b(x) = sigmoid(
∑

j≥1wjsigmoid(uTj x+ bj)). We also write

F (P,Q) = max
‖w‖1≤κ,uj∈Rp,bj∈R

Fw,u,b(P,Q).

For P that satisfies TV(P,N(0,Σ)) ≤ ε, there exist probability distributions Q1 and Q2,

such that P + εQ1 = N(0,Σ) + εQ2. Therefore,

|F (P,N(0,Γ))− F (N(0,Σ), N(0,Γ))|
≤ max

‖w‖1≤κ,uj∈Rp,bj∈R
|Fw,u,b(P,N(0,Γ))− Fw,u,b(N(0,Σ), N(0,Γ))|

= ε max
‖w‖1≤κ,uj∈Rp,bj∈R

|EX∼Q2S(Tw,u,b(X), 1)− EX∼Q1S(Tw,u,b(X), 1)|

≤ 2ε sup
|t−1/2|≤κ

∣∣∣∣S(t, 1)−G
(

1

2

)
− 1

2
G′
(

1

2

)∣∣∣∣
≤ 2εκ sup

|t− 1
2 |≤κ

∣∣(1− t)G′′(t)∣∣ ≤ 2C1εκ,

where we have used sup|t− 1
2 |≤κ |(1− t)G

′′(t)| ≤ C1 because of the smoothness of G(t) at

t = 1/2 by Condition 6. In the second last inequality above, we have used the fact that
∂
∂tS(t, 1) = (1− t)G′′(t) and S(t, 1) = G(t) + (1− t)G′(t).

Then, by the same argument used in (31)-(35) (with Lemma 13 replaced by Lemma 15),

we have

Fw,u,b(N(0,Σ), N(0, Σ̂))− 2G(1/2) ≤ 2Cκ

(√
p

n
+

√
log(1/δ)

n

)
+ 4C1εκ, (38)

uniformly over all ‖w‖1 ≤ κ, all uj and all bj with probability at least 1 − δ. We choose

w1 = κ, wj = 0 for all j ≥ 2, u1 = v/
√
vTΣv for some unit vector v, and b1 = 1. Then, we

have

f

κ;

√
vT Σ̂v

vTΣv

 ≤ 2Cκ

(√
p

n
+

√
log(1/δ)

n

)
+ 4C1εκ, (39)

where

f(t; ∆) = ES
(

1

1 + e−tsigmoid(Z−1)
, 1

)
+ ES

(
1

1 + e−tsigmoid(∆Z−1)
, 0

)
− 2G(1/2),

with Z ∼ N(0, 1). We introduce some polynomials,

p(t) = (1− t)2t, p̄(t) = 2(1− t)2t2 − (1− t)3t, p̃(t) = (1− t)3t2,
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q(t) = (1− t)t2, q̄(t) = 2(1− t)2t2 − (1− t)t3, q̃(t) = (1− t)2t3.

Then, by standard calculations, we get

∂

∂t
f(t; ∆) = Ep (L(t, 1, Z))G′′ (L(t, 1, Z)) sigmoid(Z − 1)

−Eq (L(t,∆, Z))G′′ (L(t,∆, Z)) sigmoid(∆Z − 1),

and

∂2

∂t2
f(t; ∆)

= −E
[
p̄(L(t, 1, Z))G′′(L(t, 1, Z))− p̃(L(t, 1, Z))G′′′(L(t, 1, Z))

]
|sigmoid(Z − 1)|2

−E
[
q̃(L(t,∆, Z))G′′(L(t,∆, Z))− q̃(L(t,∆, Z))G′′′(L(t,∆, Z))

]
|sigmoid(∆Z − 1)|2,

where we use the notation L(t, δ, Z) = sigmoid(tsigmoid(δZ − 1)). Note that f(0; ∆) = 0

and
∂

∂t
f(t; ∆)|t=0 =

1

8
G′′(1/2)E (sigmoid(Z − 1)− sigmoid(∆Z − 1)) .

Since

p̄(1/2)G′′(1/2)− p̃(1/2)G′′′(1/2) =
1

16
G′′(1/2)− 1

32
G′′′(1/2) ≥ 1

32
c0

by Condition 6, for a sufficiently small κ, we have

inf
|t−1/2|≤κ

[
p̄(t)G′′(t)− p̃(t)G′′′(t)

]
> 0.

Moreover, there is some constant C2 > 0, such that

sup
|t−1/2|≤κ

[
p̄(t)G′′(t)− p̃(t)G′′′(t)

]
≤ C2.

For the same reason, we also have

0 < inf
|t−1/2|≤κ

[
q̄(t)G′′(t)− q̃(t)G′′′(t)

]
≤ sup
|t−1/2|≤κ

[
q̄(t)G′′(t)− q̃(t)G′′′(t)

]
≤ C2.

Since |t| ≤ κ implies |L(t, δ, Z)− 1/2| ≤ κ, we have

inf
|t|≤κ

∂2

∂t2
f(t; ∆) ≥ −C2E|sigmoid(Z − 1)|2 − C2E|sigmoid(∆Z − 1)|2 ≥ −2C2.

Therefore,

f(κ; ∆) ≥ f(0; ∆) + κ
∂

∂t
f(t; ∆)|t=0 − C2κ

2.

Together with the bound (39), we have

1

8
G′′(1/2)E (sigmoid(Z − 1)− sigmoid(∆Z − 1))

≤ 2C

(√
p

n
+

√
log(1/δ)

n

)
+ 4C1κ+ C2κ,
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with ∆ =

√
vT Σ̂v
vT Σv

. A symmetric argument with w1 = −κ leads to the same bound for

1

8
G′′(1/2)E (sigmoid(∆Z − 1)− sigmoid(Z − 1)) .

Thus, with the choice κ = O
(√

p
n + ε

)
and δ = e−C

′(p+nε2), we have

|h (∆)− h(1)| ≤ C3

(√
p

n
+ ε

)
,

where h(t) =
∫
sigmoid(tz − 1)(2π)−1/2e−z

2/2dz. Note that

|h′(1)| =
∣∣∣∣∫ sigmoid(z − 1)(1− sigmoid(z − 1))z(2π)−1/2e−z

2/2dz

∣∣∣∣
is a constant. The continuity of h′(t) implies that there are small constants c1, c2 > 0,

such that inf |t−1|≤c1 |h′(t)| ≥ c2. Thus, as long as |h(t)− h(1)| is sufficiently small, we have

|h(t) − h(1)| ≥ c2|t − 1|, which implies that
∣∣∣√vT Σ̂v −

√
vTΣv

∣∣∣ . √vTΣv
(√

p
n + ε

)
.√

p
n + ε. Following the last several lines of the proof of Proposition 4, we obtain the desired

result.

Proof [Proof of Theorem 8] We use the notation Tw,v,u(x) = sigmoid
(∑

j≥1wjsigmoid
(∑H

l=1 vjlReLU(uTl x)
))

,

and then define

Fw,v,u(P,Q) = EX∼PS(Tw,v,u(X), 1) + EX∼QS(Tw,v,u(X), 0).

Using Lemma 16 and following the same argument that leads to (38), we have

Fw,v,u(N(0,Σ), N(0, Σ̂))− 2G(1/2) ≤ 2Cκ1κ2

(√
p

n
+

√
log(1/δ)

n

)
+ 4C1εκ1,

uniformly over all ‖w‖1 ≤ κ1, all ‖vj‖1 ≤ κ2, and all ‖ul‖ ≤ 1. Choose w1 = κ1, wj = 0 for

all j ≥ 2, v11 = v12 = 1
2 , v1l = 0 for all l ≥ 3, and u1 = −u2 = v for a unit vector v. Then,

we have

f
(
κ1;
√
vTΣv,

√
vT Σ̂v

)
≤ 2Cκ1κ2

(√
p

n
+

√
log(1/δ)

n

)
+ 4C1εκ1,

where

f(t; δ1, δ2) = ES
(

1

1 + e−tsigmoid(δ1|Z|/2)
, 1

)
+ ES

(
1

1 + e−tsigmoid(δ2|Z|/2)
, 0

)
− 2G(1/2).

Then, using the same argument in the proof of Theorem 7, we have

|h(δ1)− h(δ2)| .
√
p

n
+ ε,
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with the choice κ1 = O
(√

p
n + ε

)
, κ2 � 1, and δ = e−C

′(p+nε2), where δ1 =
√
vTΣv,

δ2 =
√
vT Σ̂v, and h(t) =

∫
sigmoid(t|z|/2)φ(z)dz. The notation φ(·) is used for the density

function of N(0, 1). Since

h′(t) =

∫
sigmoid(t|z|/2)(1− sigmoid(t|z|/2))|z|φ(z)dz

≥
∫

sigmoid(M1/2|z|/2)(1− sigmoid(M1/2|z|/2))|z|φ(z)dz,

which means h′(t) is lower bounded by a constant uniformly over |t| ≤ M1/2, we have

|h(δ1)−h(δ2)| ≥ c|δ1− δ2|. Following the last several lines of the proof of Proposition 4, we

obtain the desired result.

7.5 Proofs of Theorem 9 and Theorem 12

Proof [Proof of Theorem 9] We use the notation Tw,g(x) = sigmoid
(∑

j≥1wjgj(x)
)

, and

write

Fw,g(P,Q) = EX∼PS(Tw,g(X), 1) + EX∼QS(Tw,g(X), 0).

By Lemma 17 and the same argument that leads to (38), we have

Fw,g(N(θ,Σ), N(θ̂, Σ̂))−2G(1/2) ≤ 2Cκ(2B)L−1

(√
p

n
+

√
log(1/δ)

n

)
+4C1B

L−1κε, (40)

uniformly over ‖w‖1 ≤ κ and gj ∈ GL(B). The second term in the above bound is

4C1B
L−1κε instead of 4C1κε in (38) because T ∈ T L(κ,B) implies that supx |T (x)−1/2| ≤

BL−1κ according to the proof of Lemma 17.

We need to show that the function sigmoid(uTx + b) ∈ GL(B) for any u ∈ Rp and any

b ∈ R. Note that sigmoid(uTx+b) ∈ G1(B) is obvious. This is also true for G2(B) by taking

sigmoid(uTx + b) ∈ Gsigmoid, v1 = 1 and vh = 0 for all h ≥ 2, because ReLU(sigmoid(·)) =

sigmoid(·). Suppose sigmoid(uTx + b) ∈ Gl(B), we also have sigmoid(uTx + b) ∈ Gl+1(B),

because ReLU(ReLU(·)) = ReLU(·), and the claim is proved by an induction argument.

Choose w1 = κ, wj = 0 for all j ≥ 2, and g1(x) = sigmoid(uTx+ b), and then we have

EX∼N(θ,Σ)S

(
1

1 + e−κsigmoid(uTX+b)
, 1

)
+ E

X∼N(θ̂,Σ̂)
S

(
1

1 + e−κsigmoid(uTX+b)
, 0

)
≤ 2G(1/2) + 2Cκ(2B)L−1

(√
p

n
+

√
log(1/δ)

n

)
+ 4C1B

L−1κε, (41)

uniformly over all u ∈ Rp and all b ∈ R, with probability at least 1− δ.
We further specify that u = v for some unit vector v and b = −vT θ. Then, the inequality

(41) becomes

f
(
κ;
√
vTΣv,

√
vT Σ̂v, vT (θ̂ − θ)

)
≤ 2Cκ(2B)L−1

(√
p

n
+

√
log(1/δ)

n

)
+ 4C1B

L−1κε,
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where

f(t; δ1, δ2,∆) = ES
(

1

1 + e−tsigmoid(δ1Z)
, 1

)
+ ES

(
1

1 + e−tsigmoid(δ2Z+∆)
, 0

)
− 2G(1/2),

with Z ∼ N(0, 1). Then, using the same argument in the proof of Theorem 7, we have∣∣∣∣∫ sigmoid(δ1z)φ(z)dz −
∫

sigmoid(δ2z + ∆)φ(z)dz

∣∣∣∣ .√ p

n
+ ε, (42)

with the choice κ = O
(√

p
n + ε

)
, B � 1, L � 1 and δ = e−C

′(p+nε2), where δ1 =
√
vTΣv, δ2 =

√
vT Σ̂v, ∆ = vT (θ̂ − θ), and φ(·) is the density function of N(0, 1). Since∫

sigmoid(δ1z)φ(z)dz = 1/2 =
∫
sigmoid(δ2z)φ(z)dz, this is equivalent to the bound |h(0)−

h(∆)| .
√

p
n + ε with h(t) =

∫
sigmoid(δ2z + t)φ(z)dz. It is easy to see that |h′(0)| ≥

inf |δ2|≤M1/2

∫
sigmoid(δ2z)(1− sigmoid(δ2z))φ(z)dz, which is a constant, and the continuity

of h′(t) implies that there are small constants c1, c2 > 0, such that inf |t|≤c1 |h′(t)| ≥ c2. Thus,

as long as |h(t)−h(0)| is sufficiently small, we have |h(t)−h(0)| ≥ c2|t|, which implies that

|vT (θ̂ − θ)| .
√
p/n+ ε. Taking supreme over all unit vector, we have ‖θ̂ − θ‖ .

√
p/n+ ε

with high probability.

To show the error bound for the covariance matrix estimator, we choose u = v and

b = −vT θ − 1 for some unit vector v in the inequality (41). Then, (42) becomes∣∣∣∣∫ sigmoid(δ1z − 1)φ(z)dz −
∫

sigmoid(δ2z + ∆− 1)φ(z)dz

∣∣∣∣ .√ p

n
+ ε.

Since |sigmoid(δ2z + ∆− 1)− sigmoid(δ2z − 1)| ≤ |∆| .
√

p
n + ε, we have∣∣∣∣∫ sigmoid(δ1z − 1)φ(z)dz −

∫
sigmoid(δ2z − 1)φ(z)dz

∣∣∣∣ .√ p

n
+ ε,

which can be written as |h̄(δ1)−h̄(δ2)| .
√

p
n+ε, with h̄(t) =

∫
sigmoid(tz−1)φ(z)dz. Since

inf0<t≤M1/2 |h̄′(t)| = inf0<t≤M1/2

∣∣∫ sigmoid(tz − 1)(1− sigmoid(tz − 1))zφ(z)dz
∣∣ is lower bounded

by some constant, we have |δ1− δ2| .
√

p
n + ε, and by following the last several lines of the

proof of Proposition 4, we obtain the desired result.

Proof [Proof of Theorem 12] We use the same notation Tw,g(x) and Fw,g(P,Q) defined in

the proof of Theorem 9. The same argument that leads to (40) gives the following inequality,

Fw,g(E(θ,Σ, H), E(θ̂, Σ̂, Ĥ))− 2G(1/2)

≤ 2Cκ(2B)L−1

(√
p

n
+

√
log(1/δ)

n

)
+ 4C1B

L−1κε, (43)

uniformly over ‖w‖1 ≤ κ and gj ∈ GL(B).
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Choose w1 = κ, wj = 0 for all j ≥ 2, and g1(x) = ramp
(
vT x−vT θ̂√

vT Σv

)
, for some unit vector

v, and then we have

f
(
κ;
√
vTΣv,

√
vT Σ̂v, vT (θ − θ̂)

)
≤ 2Cκ(2B)L−1

(√
p

n
+

√
log(1/δ)

n

)
+ 4C1B

L−1κε,

where

f(t; δ1, δ2,∆) =

∫
S

(
1

1 + e−tramp(z+∆/δ1)
, 1

)
dH(t)

+

∫
S

(
1

1 + e−tramp((δ2/δ1)z)
, 0

)
dĤ(t)− 2G(1/2).

Note that sigmoid(uTx + b) ∈ GL(B) for any u ∈ Rp and any b ∈ R has already been

proved in the proof of Theorem 9. The same argument also leads to the same conclusion

for ramp(uTx + b)) for any u ∈ Rp and any b ∈ R. Then, using the same argument in the

proof of Theorem 7 (ramp(·) is bounded between 0 and 1 just as sigmoid(·)), we have∣∣∣∣∫ ramp(z + ∆/δ1)dH(z)−
∫

ramp((δ2/δ1)z)dĤ(z)

∣∣∣∣ .√ p

n
+ ε,

with the choice κ = O
(√

p
n + ε

)
, B � 1, L � 1 and δ = e−C

′(p+nε2), where δ1 =
√
vTΣv,

δ2 =
√
vT Σ̂v, ∆ = vT (θ − θ̂). Since

∫
ramp((δ2/δ1)z)dĤ(z) = 1/2 =

∫
ramp(z)dH(z) by

H(t) +H(−t) ≡ 1, the above inequality is equivalent to |h(∆/δ1)− h(0)| .
√

p
n + ε, where

h(t) =
∫
ramp(z + t)dH(z). Note that h′(t) = PZ∼H(|Z + t| ≤ 1/2). By the condition

H ∈ H(M ′), we have inf |t|≤1/6 |h′(t)| ≥ 1/M ′. By the monotonicity of h(t), as long as

|h(t)− h(0)| is sufficiently small, we have |h(t)− h(0)| ≥ (M ′)−1|t|, which implies

|vT (θ̂ − θ)|√
vTΣv

.

√
p

n
+ ε. (44)

Since δ1 ≤ M1/2, we have |vT (θ̂ − θ)| .
√

p
n + ε. Taking supreme over all unit vector, we

have ‖θ̂ − θ‖ .
√
p/n+ ε with high probability.

To show the error bound for the scatter matrix estimator, we choose w1 = κ/2, w2 =

−κ/2, wj = 0 for all j ≥ 3, g1(x) = ramp
(
vT (x−θ)√
vT Σv

− 1
2

)
, and g2(x) = ramp

(
−vT (x−θ)√

vT Σv
− 1

2

)
for some unit vector v in (43). Since∑

j≥1

wjgj(x) =
κ

2
R

(∣∣∣∣vT (x− θ)√
vTΣv

∣∣∣∣) ,
the inequality (43) becomes

f̄
(
κ;
√
vTΣv,

√
vT Σ̂v, vT (θ − θ̂)

)
≤ 2Cκ(2B)L−1

(√
p

n
+

√
log(1/δ)

n

)
+ 4C1B

L−1κε,
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where

f̄(t; δ1, δ2,∆) =

∫
S

(
1

1 + e−tR(|z|)/2 , 1

)
dH(z)

+

∫
S

(
1

1 + e−tR(|(δ2/δ1)z−∆/δ1|)/2
, 0

)
dĤ(z)− 2G(1/2).

Then, using the same argument in the proof of Theorem 7, we have∣∣∣∣∫ R(|z|)dH(z)−
∫
R(|(δ2/δ1)z −∆/δ1|)dĤ(z)

∣∣∣∣ .√ p

n
+ ε,

with the choice κ = O
(√

p
n + ε

)
, B � 1, L � 1 and δ = e−C

′(p+nε2), where δ1 =
√
vTΣv,

δ2 =
√
vT Σ̂v, ∆ = vT (θ − θ̂). Since |R(|(δ2/δ1)z −∆/δ1|)−R(|(δ2/δ1)z|)| . |∆/δ1|, we

have ∣∣∣∣∫ R(|(δ2/δ1)z|)dĤ(z)−
∫
R(|(δ2/δ1)z −∆/δ1|)dĤ(z)

∣∣∣∣ . |∆/δ1| .
√
p

n
+ ε

by (44). By triangle inequality, we get∣∣∣∣∫ R(|z|)dH(z)−
∫
R(|(δ2/δ1)z|)dĤ(z)

∣∣∣∣ .√ p

n
+ ε,

which can be written as |h̄(1) − h̄(δ2/δ1)| .
√

p
n + ε, with h̄(t) =

∫
R(|tz|)dĤ(z), because∫

R(|z|)dH(z) =
∫
R(|z|)dΦ(z) =

∫
R(|z|)dĤ(z) by the condition that H, Ĥ ∈ H. Since

h̄′(t) = 2

∫ 1/t

0
zdĤ(z)

≥ 2

∫ 1/t

1/(8t)
zdĤ(z)

≥ 1

4t
P
Z∼Ĥ

(
1

8t
≤ Z ≤ 1

t

)
,

we have inf |t−1|≤1/2 |h̄′(t)| ≥ (8M ′)−1. Since h̄(t) is increasing for all t > 0, as long as

|h̄(t) − h̄(1)| is sufficiently small, we have |h̄(t) − h̄(1)| ≥ (8M ′)−1|t − 1|, which implies

|δ2/δ1 − 1| .
√

p
n + ε. Following the last several lines of the proof of Theorem 7, we obtain

the desired result.

7.6 Proofs of Auxiliary Lemmas

Proof [Proof of Lemma 13] The bound for the class T3 was proved by Lemma 7.2 of Gao

et al. (2019). The same bound also holds for the class T1 because T1 ⊂ T3.
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Proof [Proof of Lemma 14] Since Xi ∼ N(0,Σ), we can write Xi = Σ1/2Zi with Zi ∼
N(0, Ip). Define

f(Z1, ..., Zn) = sup
T∈T2

∣∣∣∣∣ 1n
n∑
i=1

log T (Σ1/2Zi)− E log T (Σ1/2Z)

∣∣∣∣∣ .
We show f(Z1, ..., Zn) is a Lipschitz function. We have

|f(Z1, ..., Zn)− f(Y1, ..., Yn)|

≤ 1

n

n∑
i=1

sup
‖w‖1≤κ,‖uj‖≤1

∣∣∣∣∣ log sigmoid

∑
j≥1

wjReLU(uTj Σ1/2Zi)


− log sigmoid

∑
j≥1

wjReLU(uTj Σ1/2Yi)

∣∣∣∣∣
≤ 1

n

n∑
i=1

sup
‖w‖1≤κ,‖uj‖≤1

∣∣∣∣∣∣
∑
j≥1

wjReLU(uTj Σ1/2Zi)−
∑
j≥1

wjReLU(uTj Σ1/2Yi)

∣∣∣∣∣∣ (45)

≤ κ

n

n∑
i=1

max
j≥1

sup
‖uj‖≤1

∣∣∣ReLU(uTj Σ1/2Zi)− ReLU(uTj Σ1/2Yi)
∣∣∣

=
κ

n

n∑
i=1

sup
‖u‖≤1

∣∣∣ReLU(uTΣ1/2Zi)− ReLU(uTΣ1/2Yi)
∣∣∣

≤ κ

n

n∑
i=1

sup
‖u‖≤1

∣∣∣uT (Σ1/2Zi − Σ1/2Yi

)∣∣∣ (46)

≤ M1/2κ

n

n∑
i=1

‖Zi − Yi‖

≤ M1/2κ√
n

√√√√ n∑
i=1

‖Zi − Yi‖2. (47)

The inequalities (45) and (46) are implied by the fact that both the functions log sigmoid(·)
and ReLU(·) have Lipschitz constants bounded by 1. Therefore, f(Z1, ..., Zn) is a Lipschitz

function with Lipschitz constant M1/2κ√
n

= O
(

κ√
n

)
. By Talagrand’s inequality (Talagrand,

1995), we have

f(Z1, ..., Zn) ≤ Ef(Z1, ..., Zn) + Cκ

√
log(2/δ)

n
,

with probability at least 1− δ.
To bound Ef(Z1, ..., Zn), we use a standard symmetrization argument (Pollard, 2012)

and obtain the following bound that involves Rademacher complexity,

Ef(Z1, ..., Zn) ≤ 2E sup
T∈T2

∣∣∣∣∣ 1n
n∑
i=1

εi log T (Σ1/2Zi)

∣∣∣∣∣ , (48)
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where ε1, ..., εn are i.i.d. uniform random variables on {−1, 1}. To bound the Rademacher

complexity, we have

E sup
T∈T2

∣∣∣∣∣ 1n
n∑
i=1

εi log T (Σ1/2Zi)

∣∣∣∣∣
≤ 2E sup

‖w‖1≤κ,‖uj‖≤1

 1

n

n∑
i=1

εi log sigmoid

∑
j≥1

wjReLU(uTj Σ1/2Zi)


≤ 2E sup

‖w‖1≤κ,‖uj‖≤1

 1

n

n∑
i=1

εi

∑
j≥1

wjReLU(uTj Σ1/2Zi)

 (49)

≤ 2κE sup
‖u‖≤1

∣∣∣∣∣ 1n
n∑
i=1

εiReLU(uTΣ1/2Zi)

∣∣∣∣∣
≤ 4κE sup

‖u‖≤1

(
1

n

n∑
i=1

εiReLU(uTΣ1/2Zi)

)

≤ 4κE sup
‖u‖≤1

(
1

n

n∑
i=1

εiu
TΣ1/2Zi

)
(50)

≤ 4κM1/2E

∥∥∥∥∥ 1

n

n∑
i=1

εiZi

∥∥∥∥∥
≤ 4κM1/2

√
p

n
. (51)

The inequalities (49) and (50) are by Theorem 7 of Meir and Zhang (2003). The last inequal-

ity (51) is because E
∥∥ 1
n

∑n
i=1 εiZi

∥∥ ≤√E
∥∥ 1
n

∑n
i=1 εiZi

∥∥2
=
√

p
n . The proof is complete by

combining the bounds above.

Proof [Proof of Lemma 15] Let f(X1, ..., Xn) = supT∈T3
∣∣ 1
n

∑n
i=1 S(T (Xi), 1)− ES(T (X), 1)

∣∣.
Since

sup
T∈T3

sup
x

∣∣∣∣S(T (x), 1)−G
(

1

2

)
− 1

2
G′
(

1

2

)∣∣∣∣
≤ sup
|t− 1

2 |≤κ

∣∣∣∣S(t, 1)−G
(

1

2

)
− 1

2
G′
(

1

2

)∣∣∣∣
≤ κ sup

|t− 1
2 |≤κ

∣∣(1− t)G′′(t)∣∣ ≤ C1κ,

where we have used sup|t− 1
2 |≤κ |(1− t)G

′′(t)| ≤ C1 because of the smoothness of G(t) at

t = 1/2 by Condition 6. In the second last inequality above, we have used the fact that
∂
∂tS(t, 1) = (1− t)G′′(t) and S(t, 1) = G(t) + (1− t)G′(t). This implies that

sup
x1,...,xn,x′i

∣∣f(x1, ..., xn)− f(x1, ..., xi−1, x
′
i, xi+1, ..., xn)

∣∣ ≤ 2C1κ

n
.
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Therefore, by McDiarmid’s inequality (McDiarmid, 1989), we have

f(X1, ..., Xn) ≤ Ef(X1, ..., Xn) + C1κ

√
2 log(1/δ)

n
, (52)

with probability at least 1− δ. By the same argument of (48), it is sufficient to bound the

Rademacher complexity E supT∈T3
∣∣ 1
n

∑n
i=1 εiS(T (Xi), 1)

∣∣. Since T ∈ T3 implies |T (X) −
1/2| ≤ κ, the function S(sigmoid(·), 1) has a Lipschitz constant bounded by C1 on the

domain of interest. By Theorem 7 of Meir and Zhang (2003), we have

E sup
T∈T3

∣∣∣∣∣ 1n
n∑
i=1

εiS(T (Xi), 1)

∣∣∣∣∣
≤ 2C1E sup

‖w‖1≤κ,uj∈Rp,bj∈R

∣∣∣∣∣∣ 1n
n∑
i=1

εi
∑
j≥1

wjsigmoid(uTj Xi + bj)

∣∣∣∣∣∣ . (53)

By Hölder’s inequality, we can further bound the above term by

2C1κE sup
u∈Rp,b∈R

∣∣∣∣∣ 1n
n∑
i=1

εisigmoid(uTXi + b)

∣∣∣∣∣ .
Define D =

{
D(x) = sigmoid(uTx+ b) : u ∈ Rp, b ∈ R

}
, and then the Rademacher complex-

ity can be bounded by Dudley’s integral entropy, which gives

E sup
D∈D

∣∣∣∣ 1nεiD(Xi)

∣∣∣∣ ≤ E
1√
n

∫ 2

0

√
logN (δ,D, ‖ · ‖n)dδ, (54)

where N (δ,D, ‖ ·‖n) is the δ-covering number of D with respect to the empirical `2 distance

‖f − g‖n =
√

1
n

∑n
i=1(f(Xi)− g(Xi))2. Since the VC-dimension of D is O(p), we have

N (δ,D, ‖ · ‖n) . p(16e/δ)O(p) (see Theorem 2.6.7 of van der Vaart and Wellner (1996)).

This leads to the bound 1√
n

∫ 2
0

√
logN (δ,D, ‖ · ‖n)dδ .

√
p
n , which gives the desired result.

Proof [Proof of Lemma 16] Following the proof of Lemma 14, we write Xi = Σ1/2Zi with

Zi ∼ N(0, Ip). Define

f(Z1, ..., Zn) = sup
T∈T4

∣∣∣∣∣ 1n
n∑
i=1

S(T (Σ1/2Zi), 1)− ES(T (Σ1/2Z), 1)

∣∣∣∣∣ .
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Since T ∈ T4 implies |T (X) − 1/2| ≤ κ1, the function S(sigmoid(·), 1) has a Lipschitz

constant bounded by some constant C1 on the domain of interest. Therefore,

|f(Z1, ..., Zn)− f(Y1, ..., Yn)|

≤ C1
1

n

n∑
i=1

sup
‖w‖1≤κ1,‖vj‖1≤κ2,‖ul‖≤1

∣∣∣∣∣∑
j≥1

wjsigmoid

∑
l≥1

vjlReLU(uTl Σ1/2Zi)


−
∑
j≥1

wjsigmoid

∑
l≥1

vjlReLU(uTl Σ1/2Yi)

∣∣∣∣∣.
Then, by a successive argument of Hölder’s inequalities and Lipschitz continuity similar to

(45)-(47), we have

|f(Z1, ..., Zn)− f(Y1, ..., Yn)| ≤ C2
κ1κ2√
n

√√√√ n∑
i=1

‖Zi − Yi‖2.

By Talagrand’s inequality (Talagrand, 1995), we have

f(Z1, ..., Zn) ≤ Ef(Z1, ..., Zn) + Cκ1κ2

√
log(2/δ)

n
,

with probability at least 1− δ.
To bound Ef(Z1, ..., Zn), it is sufficient to analyze the Rademacher complexity according

to (48). Again, this can be done by following the same argument that leads to (51), and

thus we have Ef(Z1, ..., Zn) . κ1κ2

√
p
n , which completes the proof.

Proof [Proof of Lemma 17] We first prove the result for T = T L(κ,B). Let f(X1, ..., Xn) =

supT∈T L(κ,B)

∣∣ 1
n

∑n
i=1 S(T (Xi), 1)− ES(T (X), 1)

∣∣. For any g ∈ Gsigmoid, we have supx |g(x)| ≤
1. Suppose for any g ∈ Gl(B), supx |g(x)| ≤ τ , then we have supx |g(x)| ≤ Bτ for

any g ∈ Gl+1(B) by Hölder’s inequality. A mathematical induction argument then gives

supx |g(x)| ≤ BL−1 for any g ∈ GL(B). Therefore, T ∈ T L(κ,B) implies that supx |T (x)−
1/2| ≤ BL−1κ. By the same argument that derives (52), we then have

f(X1, ..., Xn) ≤ Ef(X1, ..., Xn) + C1B
L−1κ

√
2 log(1/δ)

n
,

with probability at least 1− δ.
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It is sufficient to analyze the Rademacher complexity, and we have

E sup
T∈T L(κ,B)

∣∣∣∣∣ 1n
n∑
i=1

εiS(T (Xi), 1)

∣∣∣∣∣
≤ 2C1E sup

‖w‖1≤κ,gj∈GL(B)

∣∣∣∣∣∣ 1n
n∑
i=1

εi
∑
j≥1

wjgj(Xi)

∣∣∣∣∣∣ (55)

≤ 2C1κE sup
g∈GL(B)

∣∣∣∣∣ 1n
n∑
i=1

εig(Xi)

∣∣∣∣∣ (56)

≤ 4C1κE sup
‖v‖1≤B,gh∈GL−1(B)

∣∣∣∣∣ 1n
n∑
i=1

εi

H∑
h=1

vhgh(Xi)

∣∣∣∣∣ (57)

≤ 4C1BκE sup
g∈GL−1(B)

∣∣∣∣∣ 1n
n∑
i=1

εig(Xi)

∣∣∣∣∣ (58)

≤ 2C1κ(2B)L−1E sup
g∈Gsigmoid

∣∣∣∣∣ 1n
n∑
i=1

εig(Xi)

∣∣∣∣∣ . (59)

We explain each of the inequalities above. The first inequality (55) follows the same argu-

ment that derives (53). The inequalities (56) and (58) are implied by Hölder’s inequality.

We have used Theorem 7 of Meir and Zhang (2003) to derive (57). Finally, (59) is from a

mathematical induction argument. Note that E supg∈Gsigmoid

∣∣ 1
n

∑n
i=1 εig(Xi)

∣∣ . √ p
n can be

derived from Dudley’s integral entropy (54), and then we obtain the desired result.

The class T̄ L(κ,B) only differs from T L(κ,B) in the bottom layer. That is, we use

sigmoid(·) in the bottom layer of T L(κ,B) and ramp(·) in the bottom layer of T̄ L(κ,B).

When we prove the result for T L(κ,B), we use the following properties of sigmoid(·): it is

a function bounded between 0 and 1; it is increasing; it has a bounded Lipschitz constant.

All of the properties hold for ramp(·), and thus the desired conclusion holds for T̄ L(κ,B)

as well.
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