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Abstract
The success of Deep Learning and its potential use in many safety-critical applications
has motivated research on formal verification of Neural Network (NN) models. In this
context, verification involves proving or disproving that an NN model satisfies certain
input-output properties. Despite the reputation of learned NN models as black boxes,
and the theoretical hardness of proving useful properties about them, researchers have
been successful in verifying some classes of models by exploiting their piecewise linear
structure and taking insights from formal methods such as Satisifiability Modulo Theory.
However, these methods are still far from scaling to realistic neural networks. To facilitate
progress on this crucial area, we exploit the Mixed Integer Linear Programming (MIP)
formulation of verification to propose a family of algorithms based on Branch-and-Bound
(BaB). We show that our family contains previous verification methods as special cases.
With the help of the BaB framework, we make three key contributions. Firstly, we identify
new methods that combine the strengths of multiple existing approaches, accomplishing
significant performance improvements over previous state of the art. Secondly, we introduce
an effective branching strategy on ReLU non-linearities. This branching strategy allows us
to efficiently and successfully deal with high input dimensional problems with convolutional
network architecture, on which previous methods fail frequently. Finally, we propose
comprehensive test data sets and benchmarks which includes a collection of previously
released testcases. We use the data sets to conduct a thorough experimental comparison of
existing and new algorithms and to provide an inclusive analysis of the factors impacting
the hardness of verification problems.
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1. Introduction

Despite their success in a wide variety of applications, Deep neural networks have seen limited
adoption in safety-critical settings. The main explanation for this lies in their reputation
for being black-boxes whose behaviour cannot be predicted. Current approaches to evaluate
trained models mostly rely on testing using held-out data sets. However, as Edsger W.
Dijkstra said “testing shows the presence, not the absence of bugs” (Buxton and Randell,
1970). If deep learning models are to be deployed in applications such as autonomous driving
cars, we need to be able to verify safety-critical behaviours.

To this end, some researchers have tried to use formal methods. To the best of our
knowledge, Zakrzewski (2001) was the first to propose a method to verify simple, one hidden
layer neural networks. However, only recently were researchers able to work with non-trivial
models by taking advantage of the structure of ReLU-based networks (Cheng et al., 2017b;
Katz et al., 2017a). Even then, these works are not scalable to the large networks encountered
in most real world problems.

This paper advances the field of NN verification by making the following key contributions:

1. By taking advantage of the Mixed Integer Linear Programming (MIP) formulation of
the problem, we introduce the Branch-and-Bound framework for NN verification. The
framework contains state of the art verification methods as special cases.

2. We identify the weakness and strengths of previous verification methods from the
aspects of the way bounds are computed, the type of branching that are considered
and the strategies guiding the branching. By retaining the strengths and correcting
the identified flaws, we propose new methods that achieve considerable performance
improvements when compared to the previous state of the art. In some cases, a
speed-up of almost two orders of magnitudes is obtained. Specifically, we develop a
new branching strategy that supports branching over ReLU non-linearities. Previous
BaB based verification methods mainly focus on designing heuristics for branching over
input domains. These heuristics, although they perform well on small-scale problems,
are either computationally expensive for high dimensional input problems or ineffective
for problems with convolutional network architecture. Similar issues are faced by the
existing ReLU branching strategies. Our designed branching strategy is computationally
cheap and explores the underlying network architecture to make a decision. Using
on high dimensional input problems with convolutional network architectures, we
demonstrate the benefits of our branching strategy over various verification methods
that employ either input-domain branching or ReLU branching strategies.

3. We introduce comprehensive data sets consisting of trained as well as synthetic networks
with fully connected and/or convolutional layers. Convolutional networks are widely
used in computer vision tasks and should be an indispensable component for fair and
complete evaluations of verification methods. Only recently did convolutional network
data start to be included in the evaluation of verification methods. This takes the
form of verification properties attempting to prove adversarial robustness on a L∞
ball with a fixed perturbed distance ε. The difficulty level of a verification property is
mainly determined by its network size. Our curated convolutional data sets differ from
these data sets and are able to bring new insights by verifying properties on range of ε
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values on the same network. We make two observations to strengthen our statement.
Firstly, the difficulty of a verification property not only relies on the size of the network,
but also the value of ε. Secondly, one bottleneck for BaB based methods is the time
required for solving linear programs (LPs), which could increase significantly with
the size of the network. Our data sets consist of verification properties with various
difficulty levels on relatively small network architecture. This means they allow effective
evaluations of branching heuristics or bounding decisions without suffering from the
LP bottleneck. Additionally, we have introduced the synthetic TwinStream data set
to facilitate the study of the relationship between bounding and branching strategies.
Overall, the extensive test data sets not only allow thorough experimental analyses of
existing methods, but also facilitate the understanding of verification problems and
encourage the development of new methods.

A preliminary version of this work appeared in the proceedings of NeurIPS, 2018. The
article significantly differs from the previous work by (i) improving the clarity of the BaB
framework by providing a running toy example; (ii) designing novel branching strategies for
the important class of NN with convolutional layers; (ii) introducing new data sets with
convolutional networks and synthetic models; and (iv) including new baseline algorithms.

Section 2 and 3 specify the problem of verification and present different formulations
of verification processes respectively. Section 4 presents the BaB framework, showing that
previous methods can be seen as special cases of it. Section 5 builds on the observations
in section 4 to highlight possible improvements within the BaB framework. New methods
are proposed accordingly. The last two sections conduct detailed experimental studies of
verification methods on our comprehensive data sets. Specifically, section 6 discusses the
experimental setup and section 7 analyses the results.

2. Problem Specification

We now specify the problem of formal verification of neural networks. Given a network that
implements a function x̂n = f(x0), a bounded input domain C and a property P , we want
to prove

x0 ∈ C, x̂n = f(x0) =⇒ P (x̂n). (1)

For example, the property of robustness to adversarial examples in L∞ norm around a
training sample a with label ya would be encoded by using C , {x0| ‖x0 − a‖∞ ≤ ε} and
P (x̂n) =

{
∀y, x̂n[ya] > x̂n[y]

}
. From now on, we use xi[j] to denote the jth element of xi.

In this paper, we are going to focus on Piecewise-Linear neural networks (PL-NN), that
is, networks for which we can decompose C into a set of polyhedra Ci such that C = ∪i Ci,
and the restriction of f to Ci is a linear function for each i. While this prevents us from
including networks that use activation functions such as sigmoid or tanh, PL-NNs allow
the use of linear transformations such as fully-connected or convolutional layers, pooling
units such as MaxPooling and activation functions such as ReLUs. In other words, PL-NNs
represent the majority of networks used in practice. Operations such as Batch-Normalization
or Dropout also preserve piecewise linearity at test-time.

The properties that we are going to consider are Boolean formulas over linear inequalities.
In our robustness to adversarial example above, the property is a conjunction of linear
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inequalities, each of which constrains the output of the original label to be greater than the
output of another label.

In general, we divide verification algorithms into three categories: algorithms are unsound
if they can only prove some of the false properties are false; algorithms are incomplete if they
can only prove some of the true properties are true; and algorithms are complete if they are
able to report all correct properties. In this paper, we will only focus on complete algorithms.
For unsound methods, we refer interested readers to Akintunde et al. (2018); Huang et al.
(2017), Carlini and Wagner (2017) and Webb et al. (2019) and for incomplete methods, we
refer interested readers to Xiang et al. (2017); Weng et al. (2018); Singh et al. (2018) and
Dvijotham et al. (2018). In addition, among complete methods, the scope of this paper
does not include approaches relying on additional assumptions such as twice differentiability
of the network (see Hein and Andriushchenko, 2017; Zakrzewski, 2001), limitation of the
activation to binary values (see Cheng et al., 2017b; Narodytska et al., 2017) or restriction
to a single linear domain (see Bastani et al., 2016).

3. Verification Formalism

In this section, we present different formulations of verification process.

3.1. Verification as a Satisfiability Problem

The methods we involve in our comparison all leverage the piecewise-linear structure of
PL-NN to make the problem more tractable. They all follow the same general principle:
given a property to prove, they attempt to discover a counterexample that would make the
property false. This is accomplished by defining a set of variables corresponding to the inputs,
hidden units and output of the network, and the set of constraints that a counterexample
would satisfy.

To help design a unified framework, we reduce all instances of verification problems to a
canonical representation. Specifically, the whole satisfiability problem will be transformed
into a global optimization problem where the decision will be obtained by checking the sign
of the minimum. If the property is a simple inequality P (x̂n) , cT x̂n > b, it is sufficient to
add to the network a final fully connected layer with one output, with weight of c and a bias
of −b. If the global minimum of this network is positive, it indicates that for all x̂n, the
original network output, we have cT x̂n − b > 0 =⇒ cT x̂n > b, and as a consequence the
property is true. On the other hand, if the global minimum is negative, then the minimizer
provides a counter-example. Clauses OR and AND in the property can similarly be expressed as
additional layers, using MaxPooling units. Specifically, clauses specified using OR (denoted by∨
) can be encoded by using a MaxPooling unit. If the property is P (x̂n) ,

∨
i

[
cTi x̂n > bi

]
,

this is equivalent to maxi
(
cTi x̂n − bi

)
> 0. Clauses specified using AND (denoted by∧

) can be encoded similarly: the property P (x̂n) =
∧

i

[
cTi x̂n > bi

]
is equivalent to

mini
(
cTi x̂n − bi

)
> 0 ⇐⇒ −

(
maxi

(
−cTi x̂n + bi

))
> 0. We can formulate any Boolean formula

over linear inequalities on the output of the network as a sequence of additional linear and max-
pooling layers. From now on, we assume that a property is in a canonical form. Specifically, the
output of the network is a scalar, and the property is true if the output is positive for all inputs
in a given domain, and false otherwise. Assuming the network only contains ReLU activations
between each layer, the satisfiability problem to find a counterexample can be expressed as:
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x1[-2, 2]

x2[-2, 2]

a

b

1

1

-1

-1

y
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Prove that y > −5

Figure 1: Example Neural Network. We attempt to prove the property that the network
output is always greater than -5.

l0 ≤ x0 ≤ u0 (2a)
x̂n ≤ 0 (2b)

x̂i+1 =Wi+1xi + bi+1 ∀i ∈ {0, n− 1} (2c)
xi = max (x̂i, 0) ∀i ∈ {1, n− 1}. (2d)

Equation 2a represents the constraints on the input and Equation 2b on the neural
network output. Equation 2c encodes the linear layers of the network and Equation 2d the
ReLU activation functions. If an assignment to all the values can be found, this represents a
counterexample. If this problem is unsatisfiable, no counterexample can exist, implying that
the property is true. We emphasise that we are required to prove that no counter-examples
can exist, and not simply that none could be found.

While for clarity of explanation, we have limited ourselves to the specific case where
only ReLU activation functions are used, this is not restrictive. The appendix contains a
section detailing how each method specifically handles MaxPooling units, as well as how to
convert any MaxPooling operation into a combination of linear layers and ReLU activation
functions. Converting a verification problem into this canonical representation does not make
its resolution simpler since the addition of the ReLU non-linearities Equation 2d transforms
a problem that would have been solvable by simple Linear Programming into an NP-hard
problem (Katz et al., 2017a). However, it does provide a formalism advantage. Specifically, it
allows us to prove complex properties, containing several OR clauses, with a single procedure
rather than having to decompose the desired property into separate queries as was done in
previous work (Katz et al., 2017a). Operationally, a valid strategy for dealing with verification
problems in the canonical form is to impose the constraints Equations 2a-2d and minimise
the value of x̂n. Finding the exact global minimum is not necessary for verification. However,
it provides a measure of satisfiability or unsatisfiability. If the value of the global minimum
is positive, it will correspond to the margin by which the property is satisfied.

Toy Example A toy-example of the Neural Network verification problem is given in
Figure 1. On the domain C = [−2; 2]× [−2; 2], we want to prove that the output y of the one
hidden-layer network always satisfies the property P (y) , [y > −5]. We will use this as a
running example to illustrate different formulations of the problem and introduce methods
that can be reframed in our unified framework.
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For the network of Figure 1, the problem is formulated as follows. The variables would be
{x1, x2, ain, aout, bin, bout, y} and the set of constraints would be:

− 2 ≤ x1 ≤ 2 − 2 ≤ x2 ≤ 2 (3a)

â = x1 + x2 b̂ = −x1 − x2 (3b)

a = max(â, 0) b = max(b̂, 0) (3c)
y = −a− b (3d)
y ≤ −5. (3e)

Here, â, b̂ is the input value to hidden unit, while a, b is the value after the ReLU. Any
point satisfying all the above constraints would be a counterexample to the property, as it
would imply that it is possible to drive the output to -5 or less.

3.2. Mixed Integer Linear Programming Formulation

A possible way to eliminate the non-linearities is to encode them with the help of binary
variables, transforming the PL-NN verification problem Equation 2 into a Mixed Integer
Linear Programming (MIP) problem. This can be done with the use of “big-M” encoding.
The following encoding is from Tjeng and Tedrake (2019). Assuming we have access to lower
and upper bounds on the values that can be taken by the coordinates of x̂i, which we denote
li and ui, we can replace the non-linearities:

xi = max (x̂i, 0) ⇒ δi ∈ {0, 1}hi , xi ≥ 0, xi ≤ ui · δi (4a)
xi ≥ x̂i, xi ≤ x̂i − li · (1− δi). (4b)

It is easy to verify that δi[j] = 0⇔ xi[j] = 0 (replacing δi[j] in Equation 4a) and δi[j] = 1⇔
xi[j] = x̂i[j] (replacing δi[j] in Equation 4b). From now on, we refer to l0 and u0, the lower
and upper bounds for the input domain, as input bounds and li and ui for i ∈ {1, n− 1},
the lower and upper bounds for hidden units x̂i, as intermediate bounds.

Toy Example (MIP formulation) In our example, the non-linearities of Equation 3c
would be replaced by following conditions. Here, we give the detailed description for â. The
same is applied to b̂.

a ≥ 0 a ≥ â
a ≤ â− la(1− δa) a ≤ uaδa (5)
δa ∈ {0, 1}.

where la is a lower bound of the value that â can take (such as -4) and ua is an upper bound
(such as 4). The binary variable δa indicates which phase the ReLU is in: if δa = 0, the ReLU
is blocked and a = 0, else the ReLU is passing and a = â. The problem remains difficult due
to the integer constraint on δa.

By taking advantage of the feed-forward structure of the neural network, lower and upper
bounds li and ui can be obtained by applying interval arithmetic (Hickey et al., 2001) to
propagate the bounds on the inputs, one layer at a time.
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Thanks to this specific feed-forward structure of the problem, the generic, non-linear,
non-convex problem has been rewritten into a MIP. Optimization of MIP is well studied
and highly efficient off-the-shelf solvers exist. As solving them is NP-hard, performance is
going to be dependent on the quality of both the solver used and the encoding. We now ask
the following question: how much efficiency can be gained by using a bespoke solver rather
than a generic one? In order to answer this, we present specialised solvers for the PL-NN
verification task.

4. Branch and Bound for Verification

As described in Section 3.1, the verification problem can be rephrased as a global optimization
problem. For non-convex problems, algorithms such as first order methods like Gradient
Descent are not appropriate as they have no way of guaranteeing whether or not a stationary
point is a global minimum. In this section, we present an approach to estimate the global
minimum, based on the Branch-and-Bound paradigm (Land and Doig, 1960; Morrison et al.,
2016). We also show that several published methods fit this framework. Among these
methods, detailed studies are conducted on the previous state of art methods Reluplex and
Planet, which are introduced as examples of Satisfiability Modulo Theories (SMT).

Algorithm 1 Branch and Bound
1: function BaB(net, problem, ε)
2: global_ub← inf
3: global_lb← − inf
4: probs← [(global_lb, problem)]
5: while global_ub− global_lb > ε do
6: (_ , prob)← pick_out(probs)
7: [subprob_1, . . . , subprob_s]← split(prob)
8: for i = 1 . . . s do
9: prob_ub← compute_UB(net, subprob_i)
10: prob_lb← compute_LB(net, subprob_i)
11: if prob_ub < global_ub then
12: global_ub← prob_ub
13: prune_problems(probs, global_ub)
14: end if
15: if prob_lb < global_ub then
16: problems.append((prob_lb, subprob_i))
17: end if
18: end for
19: global_lb← min{lb | (lb, prob) ∈ probs}
20: end while
21: return global_ub
22: end function

Algorithm 1 describes its generic
form. The original problem is re-
peatedly split into sub-problems (ei-
ther split the input domain into sub-
domains or an unfixed ReLU activa-
tion unit 1 into different phases) (line
7), over which lower and upper bounds
of the minimum are computed (lines
9-10). The best upper-bound found so
far serves as a candidate for the global
minimum. Any sub-problem whose
lower bound is greater than the cur-
rent global upper bound can be pruned
away as it cannot contain the global
minimum (line 13, lines 15-17). By it-
eratively splitting the (sub-)problems,
it is possible to compute tighter lower
bounds. We keep track of the global
lower bound on the minimum by taking
the minimum over the lower bounds
of all sub-problems (line 19). When
the global upper bound and the global

lower bound differ by less than a small scalar ε (line 5), we consider that we have converged.
Algorithm 1 shows how to optimise and obtain the global minimum. If all that we are

interested in is the satisfiability problem, the procedure can be simplified by initialising the

1. We refer to a ReLU activation unit xi[j] = max(x̂i[j], 0) as unfixed if, given the upper and lower bounds
ui[j], li[j] of xi[j], xi[j] can take either the value of x̂i[j] or 0.
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global upper bound with 0 (in line 2). Any sub-problem with a lower bound greater than
0 (and therefore not eligible to contain a counterexample) will be pruned out (by line 15).
The computation of the lower bound can therefore be replaced by the feasibility problem (or
its relaxation) imposing the constraint that the output is below zero without changing the
algorithm. If it is feasible, there might still be a counterexample and further branching is
necessary. If it is infeasible, the sub-problem can be pruned out. In addition, if any upper
bound improving on 0 is found on a sub-problem (line 11), it is possible to stop the algorithm
as this already indicates the presence of a counterexample.

The description of the verification problem as optimization and the pseudo-code of
Algorithm 1 are generic and would apply to verification problems beyond the specific case of
PL-NN. To obtain a practical algorithm, it is necessary to specify several elements.

A search strategy, defined by the pick_out function, which chooses the next problem
to branch on. Several heuristics are possible, for example those based on the results of
previous bound computations. For satisfiable problems or optimization problems, this allows
us to discover good upper bounds, enabling early pruning.

A branching rule, defined by the split function, which takes a problem prob and
returns its partition into subproblems such that

⋃
i subprob_i = prob and that

(subprob_i ∩ subprob_j) = ∅, ∀i 6= j. This will determine the attributes of the (sub-
)problems, which impacts the hardness of computing bounds. In addition, choosing the right
partition can greatly impact the quality of the resulting bounds.

Bounding methods, defined by the compute_{UB, LB} functions. These procedures
estimate respectively upper bounds (prob_ub) and lower bounds (prob_ub) over the mini-
mum output that the network net can reach over a given (sub-)problem. We want the lower
bound to be as high as possible, so that this (sub-)problem can be pruned easily. This is
usually done by introducing convex relaxations of the (sub-)problem and minimising them.
On the other hand, the computed upper bound should be as small as possible, so as to allow
pruning out other (sub-)problems or discovering counterexamples. As any feasible point
corresponds to an upper bound on the minimum, heuristic methods are sufficient.

4.1. BaB Reformulations

We now give a general discussion of published work in the verification literature through
the lens of the Branch-and-Bound framework. We first briefly mention some methods that
do not rely on SMT solvers and then conduct detailed studies on SMT based methods
Reluplex and Planet. ReluVal is a complete method introduced by Wang et al. (2018b).
In ReluVal, an input domain branching rule is used and the split function decides which
domain dimension to split on by computing influence metrics based on input-output gradient.
For the bounding method, it uses a novel technique called symbolic interval propagation,
which replaces lower and upper bounds by linear equations of input variables and propagates
these linear equations in a layer by layer order. By doing so, symbolic intervals can preserve
more dependency information than interval arithmetic, and are thus able to achieve tighter
final bounds. Inspired by the branching rule used by ReluVal, Royo et al. (2019) proposed
a verification procedure via shadow prices. This method also adopts a Branch-and-Bound
framework. In detail, for the branching rule, the method makes an input split decision
through sensitivity studies of the bounds of unfixed ReLU nodes to the change of the input
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domain. The bounding method is not specified but the same logic has been used to check
whether a sub-domain should be stored and further split on or should be pruned. Also based
on ReluVal is a complete method called Neurify (Wang et al., 2018a). Neurify is an improved
version of ReluVal, which also uses gradient metrics to make a split decision but it splits on
unfixed ReLU nodes. Neurify uses a different bounding method than ReluVal by calling an
LP solver instead of computing symbolic interval bounds. For all the methods mentioned
above, no specific search strategy is implemented. All sub-problems are simply enumerated.

4.2. Reluplex

Katz et al. (2017a) present a procedure named Reluplex to verify properties of Neural
Network containing linear functions and ReLU activation units. Reluplex functions as an
SMT solver using the splitting-on-demand framework (Barrett et al., 2006). The principle
of Reluplex is to always maintain an assignment to all of the variables, even if some of the
constraints are violated.

Starting from an initial assignment, it attempts to fix some violated constraints at each
step. It prioritises fixing linear constraints (Equations 2a, 2b, 2c and some relaxation of
Equation 2d) using a simplex algorithm, even if it leads to violated ReLU constraints. If
no solution to this relaxed problem containing only linear constraints exists, the counterex-
ample search is unsatisfiable. Otherwise, either all ReLU are respected, which generates a
counterexample, or Reluplex attempts to fix one of the violated ReLU, potentially leading to
newly violated linear constraints. This process is not guaranteed to converge. Thus, to make
progress, non-linearities that get fixed too often are split into two cases. Two new problems
are generated, each corresponding to one of the phases of the ReLU. In the worst setting,
the problem will be split completely over all possible combinations of activation patterns, at
which point the sub-problems will all be simple LPs.

This algorithm is a special case of Branch-and-Bound for satisfiability. The search
strategy is handled by the SMT core and to the best of our knowledge does not prioritise
any (sub-)problems. The branching rule is implemented by the ReLU-splitting procedure:
when neither the upper bound search, nor the detection of infeasibility are successful, one
non-linear constraint over the j-th neuron of the i-th layer xi[j] = max

(
x̂i[j], 0

)
is split out

into two sub-problems: {xi[j] = 0, x̂i[j] ≤ 0} and {xi[j] = x̂i[j], x̂i[j] ≥ 0}. The prioritisation
of ReLUs that have been frequently fixed is a heuristic to decide among possible partitions.

As Reluplex only deals with satisfiability, the analogue of the lower bound computation
is an over-approximation of the satisfiability problem. The bounding method used is a
convex relaxation, obtained by dropping some of the constraints. The following relaxation is
applied to ReLU units for which the sign of the input is unknown (li[j] ≤ 0 and ui[j] ≥ 0).

xi = max (x̂i, 0) ⇒ xi ≥ x̂i (6a) xi ≥ 0 (6b) xi ≤ ui. (6c)
If this relaxation is unsatisfiable, this indicates that the subdomain cannot contain any

counterexample and can be pruned out. The search for an assignment satisfying all the
ReLU constraints by iteratively attempting to correct the violated ReLUs is a heuristic that
is equivalent to the search for an upper bound lower than 0: success implies the end of the
procedure.
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Step x1 x2 â a b̂ b y

1
0 0 0 0 0 0 0

Fix linear constraints
0 0 0 1 0 4 -5

2
0 0 0 1 0 4 -5

Fix a ReLU
0 0 0 1 4 4 -5

3
0 0 0 1 4 4 -5

Fix linear constraints
-2 -2 -4 1 4 4 -5

. . .

Figure 2: Evolution of the Reluplex algorithm. Red cells corresponds to value violating
linear constraints, and orange cells corresponds to value violating ReLU constraints.
Resolution of violation of linear constraints are prioritised.

Toy Example (Running Reluplex) Figure 2 shows the initial steps of a run of the
Reluplex algorithm on the example of Figure 1. Starting from an initial assignment, it
attempts to fix some violated constraints at each step. It prioritises fixing linear constraints
(Equations 3a, 3b and 3e in our illustrative example) using a simplex algorithm, even if it
leads to violated ReLU constraints Equation 3c. This can be seen in step 1 and 3 of the
process.

If no solution to the problem containing only linear constraints exists, this shows that
the counterexample search is unsatisfiable. Otherwise, all linear constraints are fixed and
Reluplex attempts to fix one violated ReLU at a time, such as in step 2 of Figure 2 (fixing
the ReLU b), potentially leading to newly violated linear constraints. In the case where no
violated ReLU exists, this means that a satisfiable assignment has been found and that the
search can be terminated early.

4.3. Planet

Ehlers (2017a) also proposed an approach based on SMT. Unlike Reluplex, the proposed
tool, named Planet, operates by explicitly attempting to find an assignment to the phase of
the non-linearities. Reusing the notation of Section 3.2, it assigns a value of 0 or 1 to each
δi[j] variable, verifying at each step the feasibility of the partial assignment so as to prune
infeasible partial assignment early.

As in Reluplex, the search strategy is not explicitly encoded and simply iterates over
the (sub-)problems that have not yet been pruned. The branching rule is the same as for
Reluplex, as fixing the decision variable δi[j] = 0 is equivalent to choosing {xi[j] = 0, x̂i[j] ≤ 0}
and fixing δi[j] = 1 is equivalent to {xi[j] = x̂i[j], x̂i[j] ≥ 0}. Note however that Planet does
not include any heuristic to prioritise which decision variables should be split over. As a
result, there is no mechanism that based on a heuristic search of a feasible point to encourage
early termination in Planet.
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For satisfiable problems, only when a full complete assignment is identified is a solution
returned. In order to detect incoherent assignments, Ehlers (2017a) introduces a global
linear approximation to a neural network, which is used as a bounding method to over-
approximate the set of values that each hidden unit can take. In addition to the existing
linear constraints (Equations 2a, 2band 2c), the non-linear constraints are approximated
by sets of linear constraints representing the convex hull of each non-linearity treated inde-
pendently. Specifically, ReLUs with input of unknown sign are replaced by the set of equations:

xi = max (x̂i, 0) ⇒ xi ≥ x̂i (7a) xi ≥ 0 (7b) xi[j] ≤ ui[j]
x̂i[j] − li[j]
ui[j] − li[j]

. (7c)

Recall that xi[j] corresponds to the value of the j-th coordinate of xi. An illustration of the
convex hull is provided in the supplementary material.

Compared with the relaxation of Reluplex Equation 6, the Planet relaxation is tighter.
Specifically, Equations 6a and 6b are identical to Equations 7a and 7b but Equation 7c
implies Equation 6c. Indeed, given that x̂i[j] is smaller than ui[j], the fraction multiplying
ui[j] is necessarily smaller than 1, implying that this provides a tighter bounds on xi[j].

To use this approximation to compute better bounds than the ones given by simple
interval arithmetic, it is possible to leverage the feed-forward structure of the neural networks
and obtain bounds one layer at a time. Having included all the constraints up until the
i-th layer (not including the i-th layer), it is possible to optimize over the resulting linear
programming problem and obtain bounds for all the units of the i-th layer, which in turn
will allow us to create the constraints Equation 7 for the next layer.

In addition to the pruning obtained by the convex relaxation, both Planet and Reluplex
make use of conflict analysis (Marques-Silva and Sakallah, 1999) to discover combinations of
splits that cannot lead to satisfiable assignments, allowing them to perform further pruning
of (sub-)problems.

Toy Example (Running Planet) Planet first computes initial bounds via interval
arithmetic for nodes a, b and y. Then it builds a linear program to approximate the network
by using the linear constraints Equations 7a, 7b and 7c. Upper and lower bounds of a, b and
y are refined by calling an LP solver. In this toy example, after refinement, the lower bound
and upper bound of y are replaced with −3 and 5 respectively. Since it is sufficient to prove
the property with the refined lower bound, the algorithm exits before entering the main loop
where a Satisifiability solver is called.

5. Improved BaB for NN Verification

As can be seen, previous approaches to neural network verification have relied on methodolo-
gies developed in three communities: optimization, for the estimation of upper and lower
bounds; verification, especially SMT; and machine learning, especially the feed-forward
nature of neural networks for the creation of relaxations. A natural question that arises is
“Can other existing literature from these domains be exploited to further improve neural
network verification?” Our Branch-and-Bound framework makes it easy to answer this
question. With its help, we can easily identify and consequently provide a non-exhaustive
list of techniques to speed-up verification algorithms.
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5.1. Better Bounding

While the relaxation proposed by Ehlers (2017a) is tighter than the one used by Reluplex, it
can be improved further still. Specifically, after a splitting operation, on a newly generated
(sub-)problem, we can refine all the li,ui bounds by, for instance, formulating corresponding
linear programming problems with added constraints from the split. Then, we solve for
minimum for li[j] and maximum for ui[j]. With refined upper and lower bounds, we are
able to introduce smaller convex relaxation hulls to obtain tighter relaxations. We show
the importance of this in the experiments section with the reluBaB method that performs
splitting on the activation like Planet but updates its intermediate bounds approximation
completely at each step. However, it should be noted there is a trade-off between the benefits
of tighter relaxation and the overall computational efficiency. Since updating all the li,ui

bounds could be computationally expensive, we also show in the experiments section that,
depending on the problem at hand, it is sometimes sufficient to update bounds for some of
the layers. The overall gain from a tighter relaxation is not in a linear relationship with the
number of intermediate bounds updated.

5.2. Better Branching

In the following, we discuss two possible ways to improve branching strategies.

5.2.1. Branching on Input Domains

In the previous discussions, both Planet and Reluplex adopt the decision to split on the
activation of the ReLU non-linearities. Although the decision is intuitive as it provides
a clear set of decision variables to fix, these methods ignore another natural branching
strategy, namely, splitting on the input domain. There are two main advantages of input
domain splitting strategies. Firstly, it is simple and straightforward to apply. Once an input
dimension to split on is decided, we only need to modify the associated input constraints
for each sub-domain, generated by the split step of the BaB algorithm. There is no need to
deal with potential conflicts (e.g. infeasible sub-problem) that could be introduced by fixing
a ReLU node. Secondly, it can be argued that since the function encoded by the neural
networks are piecewise linear in their input, splitting the input domain could result in the
computation of high quality upper and lower bounds. With tighter input bounds, tighter
intermediate bounds at all layers can be easily re-evaluated, which might not be the case for
splitting on a ReLU node, at least for layers prior to the ReLU node we branch on.

To demonstrate the benefits of input domain splitting, we propose two novel input
split algorithms. We will show in experiments sections that domain splitting strategies
incorporating our proposed heuristics are highly effective for small scale verification problems
with low dimensional input. The first and the most direct algorithm is BaB algorithm.
Based on a domain with input constrained by Equation 2a, the split function would return
two subdomains where bounds would be identical in all dimension except for the dimension
with the largest length, denoted i?. The bounds for each subdomain for dimension i? are
given by l0[i?] ≤ x0[i?] ≤

l0[i?]+u0[i?]

2 and l0[i?]+u0[i?]

2 ≤ x0[i?] ≤ u0[i?].
In order to exploit the benefits of input domain splitting to the fullest, we introduce the

second splitting heuristic by using the highly efficient lower bound computation approach
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of Wong and Kolter (2018). This approach was initially proposed in the context of robust
optimization. However, our unified framework opens the door for its use in verification.
We propose a smart branching method BaBSB to replace the longest edge heuristic of
BaB. We proceed as follows. For each input dimension i, we split on it and generate two
subdomains, denoted by subi0 and subi1 . Then, by using the fast approach in Wong and
Kolter (2018), we are able to compute lower bound estimations fni0 and fni1 of subdomains
subi0 and subi1 respectively 2. Finally, we make the split decision by choosing the dimension
that improves the domain’s lower bound the most after the split, which is the solution
of argmaxi(min(fni0 , f

n
i1
)). Here, we have used the minimum of fni0 , f

n
i1

to represent the
improvement achieved over the split on a input dimension. It is possible to replace it with
other criteria such as the max(fni0 , f

n
i1
) or the product of fni0 and fni1 , as used in Khalil et al.

(2016) in the context of other MIP problems.
In terms of computing a lower bound fn for a sub-domain, we assume the verification

property has been reformulated and added as final layers to the network that we need to verify
on. The modified network has a scalar output. This should be easily doable as discussed in
section 3.1. Then, a rough estimate of a lower bound can be obtained by using the following
formula introduced in Wong and Kolter (2018): assume an arbitrary sub-domain is upper
bounded by the vector u0 and lower bounded by the vector l0,

fn =−
n∑

k=1

νTk+1bk − uT
0 [ν̂1]+ + lT0 [ν̂1]−

+

n∑
k=2

∑
j∈Ii

uk[j]lk[j]

uk[j] − lk[j]
[ν̂k[j]]+

(8)

where

νn+1 = −1
ν̂k =W T

k νk+1, k = n, . . . , 1

νk,j =


0 if uk[j] > 0 ( j ∈ I−k )

ν̂k[j] if lk[j] > 0 ( j ∈ I+k )
uk[j]

uk[j]−lk[j]
[ν̂k[j]]+ −

uk[j]

uk[j]−lk[j]
[ν̂k[j]]− otherwise ( j ∈ Ik)

for k = n, . . . , 2.

Here, [v]−, [v]+ represent negative and positive parts of an element v respectively. The
term I−k denotes the set of activation nodes whose upper bounds are negative while I+k
contains activation nodes whose lower bounds are positive. The rest of activation nodes
belong to Ik. This approach is computationally efficient as one computation of fn is equivalent
to one backward pass due the recursive nature of vk and v̂k. Here, we have directly used
all intermediate bounds uk[j] and lk[j]. These intermediate bounds are actually computed
beforehand in a similar fashion with above formula. Each lk[j] can be treated as a lower
bound to a sub-network consisting of layers prior to it and uk[j] are obtained by negating the
signs of the sub-network. Given the input constraints, we proceed layer by layer to compute
all intermediate bounds uk[j] and lk[j].

2. For clarity, fn
i0 is a lower bound estimation of the minimum output of the network net can reach on subi0
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Once a domain splitting decision is made, two sub-domains are generated. On each
sub-domain, we use an LP solver to refine intermediate bounds, as mentioned in Section 5.1.
Finally, we call the LP solver again to compute the domain lower bound (prob_ub). Perfor-
mance of BaB and BaBSB are included in the experiments section.

5.2.2. Branching on ReLU Activation Nodes

Despite their success in small-scale verification problems, input domain splitting methods are
often found to be inadequate for large scale networks, as there are several limitations of input
domain branching strategies. Firstly, for some methods (e.g. BaBSB), their computation
cost for making a branching decision increases at least linearly with input dimensions. High
computational cost renders these method infeasible for high input dimensional problems.
Secondly and more importantly, potential input branching decisions constitute a fairly small
portion of all potential branching decisions for large-scale network architecture, which contains
a sizable number of unfixed ReLU activation nodes (each is a valid potential branching
point). Focusing on input domain splitting alone significantly limits the power of verification
methods. Given the wide and almost dominant usage of deep convolutional network in
various tasks, developing an effective and computationally cheap heuristic for branching on
ReLU non-linearities is of considerable importance for verification.

In this section, we propose a new smart branching algorithm BaBSR on the activation of
the ReLU non-linearities. So far, to the best of our knowledge, existing ReLU node splitting
methods are Reluplex, Planet andNeurify. We show that BaBSR enjoys various benefits
over the existing methods, although all methods use the same branching rule: for a given
ReLU node (a node xi[j] = max

(
x̂i[j], 0

)
is split out into two subdomains:{xi[j] = 0, x̂i[j] ≤ 0}

and {xi[j] = x̂i[j], x̂i[j] ≥ 0}). To start, unlike Planet which does not have any heuristic to
make splitting decisions, BaBSR uses a simple and fast heuristic to prioritise which unfixed
ReLU node to split on. Reluplex uses the SMT core to handle the splitting order and
Neurify computes gradient scores to prioritise ReLU nodes. We show in experiments that
the prioritising strategy of BaBSR is much more successful than that of Reluplex and
Neurify in selecting an effective ReLU node. Additionally, BaBSR has a convergence
guarantee and encourages early termination, which means verification problems can be solved
completely and efficiently. Once a ReLU node has been selected, BaBSR calls a commercial
solver to obtain a lower bound for each sub-problem with the added constraint x̂i[j] ≤ 0
or x̂i[j] ≥ 0 respectively. The algorithm continues until line 5 in Algorithm 1 is satisfied.
Convergence guarantee is inherently supported by the algorithm while early termination
through finding adversarial examples is assisted by the prioritisation we used in generating
sub-problems.

The heuristic used for prioritising ReLU nodes is based on the similar idea to the one
used in BaBSB. For an arbitrary picked-out domain, we refer to the lower bound of the
network minimum on the domain as fn. In order to decide which unfixed ReLU nodes to split
on, for each potential splitting option (any unfixed ReLU node), we attempt to compute a
rough estimate of the potential improvement to the lower bound. We then make the splitting
decision by choosing the unfixed node with the largest estimated improvement.

In detail, we estimate the improvement on splitting an arbitrary unfixed ReLU node via
a modified application of Equation 8. We first observe that when imposing a constraint on
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an arbitrary unfixed ReLU node xi[j], we will force vi[j] to be either 0 (ReLU is in a blocking
state) or v̂i[j] (ReLU is in a completely passing state). As a direct result, the associated
terms vi[j]bi−1[j] and

ui[j]

ui[j]−li[j]
[ν̂i[j]]+ in Equation 8 will change accordingly. Furthermore, vk,

v̂k for k < i as products of vi will take different values as well and so do their associated
terms in Equation 8 . It is possible to compute lower bounds fn by assuming vi[j] = 0 and
vi[j] = v̂i[j] and then take the minimum (or maximum, product etc.) of the two cases to
represent the improvement made if splitting on xi[j]. However, doing this would require two
full or partial (only vk, v̂k for k < i need to be updated) backward passes for one ReLU
splitting choice, which can be computationally expensive when the number of unfixed ReLU
nodes is large. To deal with this issue, we use a key observation when dealing with different
data sets: when the weights (similar for bias) on each layer are of same magnitudes, the
potential improvement of each xi[j] is generally dominated by the changes of terms vi[j]bi−1[j]
and ui[j]

ui[j]−li[j]
[ν̂i[j]]+. Since a rough estimation is sufficient in this scenario, we thus propose

to evaluate each ReLU split choice xi[j] by computing a ReLU score si[j], defined as

si[j] =

∣∣∣∣max(vi[j]bi−1[j], (vi[j] − 1)bi−1[j])−
ui[j]

ui[j] − li[j]
[ν̂i[j]]+

∣∣∣∣ . (9)

We make a decision by picking the ReLU with the largest score. One major benefit of
this heuristics is that it is highly computationally efficient. As the same vi and v̂i, for
1 < i < n− 1, are used for computing all unfixed ReLUs scores, the recursive formulations of
vi and v̂i enable us to compute all ReLU scores within one single backward pass, regardless
the total number of unfixed ReLU nodes.

To maximize the performance of the heuristic, we have also incorporated into the heuristic
other useful observations. Firstly, we refer to a convolution layer as sparse if it contains
mostly zeros when linearlized. We found that splitting on the sparsest layer is often ineffective
in terms of improving the global lower bound when compared with choices on other layers. In
addition, ReLU scores are likely to fail in giving good indications when all of them are close
to zero. Thus, given a network that contains a large convolution layer with a small kernel, we
do not consider the unfixed ReLU nodes on this layer until all other improvements computed
are relatively small. When this happens, we consider the heuristic used in prioritising ReLU
nodes to be no longer effective. Hence, other selecting strategies should be used, such as,
random selections with a preference over non-sparse layers.

Finally, unlike BaBSB, BaBSR does not call an LP solver to compute tight intermediate
bounds. The main applications of BaBSR should be networks with large convolution layers.
For these networks, computing tight intermediate bounds via an LP solver is computationally
infeasible. Thus, once a ReLU split choice is made, we explicitly replace the upper or lower
bound of the corresponding ReLU node to 0 for each newly generated sub-problem and
then update intermediate bounds by the better of interval arithmetic bounds and bounds
computed using the method of Wong and Kolter (2018). Overall, with rough improvement
estimations of ReLU choices and loose intermediate bounds, BaBSR is significantly cheap
for each branching step. While many more branches might be required to solve a property,
we often find this trade-off is worthwhile as will be seen in the experiments section.
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5.3. Other Potential Improvements

We also list some potential improvements that could be made in future research. One possible
area of improvement lies in the tightness of the bounds used. We note that Equation 7 is
very closely related to the Mixed Integer Formulation of Equation 4. In fact, it corresponds
to level 0 of the Sherali-Adams hierarchy of relaxations (Sherali and Adams, 1994). One
possible improvement is to use stronger relaxations by exploring higher levels of the hierarchy.
This would jointly constrain groups of ReLUs, rather than linearising them independently.
A related work is that of Anderson et al. (2019), in which a MIP formulation for neural
networks using stronger relaxations is proposed.

One advantage of the Branch-and-Bound framework is that it is not restricted to piecewise
linear networks, which is not true for methods such asReluplex, Planet or the MIP encoding.
Any type of networks for which an appropriate bounding function can be found will be
verifiable with a Branch-and-Bound based method. In order for Branch-and-Bound to achieve
good performance on various kinds of networks, developing appropriate bounding functions is
necessary. Recent advances on bounds for activations such as sigmoid or hyperbolic tangent
have been made in Dvijotham et al. (2018). While their focus is on incomplete methods, our
Branch-and-Bound framework makes it readily usable for complete verification as well.

6. Experimental Setup

The problem of PL-NN verification has been shown to be NP-complete (Katz et al., 2017a).
Meaningful comparison between approaches therefore needs to be experimental. We use a
timeout of two hours for each experiment, unless otherwise stated.

6.1. Methods

The simplest baseline we refer to is BlackBox, a direct encoding of Equation 2 into the
Gurobi solver, which will perform its own relaxation, without taking advantage of the
problem’s structure.

For the SMT based methods, Reluplex and Planet, we use the publicly available
versions (Ehlers, 2017b; Katz et al., 2017b). Both tools are implemented in C++. We wrote
software to support conversion between the input formats of both solvers in both directions.
However, it is worth noting that, we do not change the underlying GLPK solver for linear
programming. All the other methods use a potentially faster Gurobi LP solver. The reader
is reminded to take this key difference into account when studying our results.

We also evaluate the potential of using MIP solvers, based on the formulation of Equation 4.
Due to the lack of availability of open-sourced methods at the time of our experiments, we
reimplemented the approach in Python, using the Gurobi MIP solver. We report results for
a variant called MIPplanet, which uses bounds derived from Planet’s convex relaxation
rather than simple interval arithmetic. Both the MIPplanet and BlackBox are not treated
as simple feasibility problem but are encoded to minimize the output x̂n of Equation 2b,
with a callback interrupting the optimization as soon as a negative value is found. Additional
discussions on encodings of the MIP problem can be found in the appendix.

In our benchmark, we include the methods derived from our Branch-and-Bound analysis.
Our implementation follows Algorithm 1 faithfully, is implemented in Python and uses
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Figure 3: Quality of the linear approximation, depending on the size of the input domain.
We plot the value of the lower bound as a function of the area on which it is
computed (higher is better). The domains are centered around the global minimum
and repeatedly shrunk. Rebuilding completely the linear approximation at each
step allows to create tighter lower-bounds thanks to better li and ui, as opposed
to using the same constraints and only changing the bounds on input variables.
This effect is even more significant on deeper networks.

Gurobi to solve LPs. The pick_out strategy consists in prioritising the (sub-)problem
that currently has the smallest lower bound. Upper bounds are generated by randomly
sampling points on the considered (sub-)problem or directly compute the network value at
the lower bound solution provided by Gurobi, for which we use the convex approximation
of Ehlers (2017a) to obtain lower bounds. Motivated by the observation shown in Figure 3,
which demonstrates the significant improvements it brings especially for deeper networks, we
do not always using a single approximation of the network as was done in Ehlers (2017a).
Bearing in mind the trade-off between benefits of tighter relaxation and computational costs,
we rebuild the approximation via calling an LP solver to recompute none or partial or all
intermediate bounds for each sub-problem. This decision should be made on a case by case
basis depending on the size of a network architecture, the number of the input dimensions
and the magnitude and the correlation of layer weights. To better study the trade-off, we
have incorporated different approximation strategies into different algorithms and compared
them on several data sets.

For split, we focus on two types of split: input domain split and ReLU activation split.
In each case, we consider naive split methods and improved versions. Specifically, in terms
of input domain split, the naive methods (e.g. BaB) simply performs branching by splitting
the input domain in half along its longest edge, while the improved methods (e.g. BaBSB)
does it by splitting the input domain along the dimension that gives the estimated best
improvement to the global lower bound. Estimations are made through the fast bounds
formula provided in Wong and Kolter (2018). Regarding the ReLU node split, we study
methods which always split on the first or a random unfixed ReLU node on the first layer
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containing unfixed ReLU nodes. More advanced methods (e.g. BaBSR and BaBSRL)
prioritize ReLU nodes through the criteria introduced in Equation 9. Each specific method is
a combination of the choice of approximation strategies (how to rebuild approximations) and
branching strategies (what branching heuristics to use). We summarize all Branch-and-Bound
methods considered in Table 1.3 We use abbreviations imb for intermediate bounds and
prob_ub and prob_lb are the same as those defined in Algorithm 1.

Method Branching Type Branching Heuristics Approximations

BaBSB
Input

fast bounds
Wong and Kolter (2018)

imb: LP solver
prob_lb LP solver
prob_ub random sampling

BaB longest edge
imb: LP solver
prob_lb LP solver
prob_ub random sampling

reluBaB

ReLU

the first unfixed ReLU node
on the first layer

containing unfixed ReLU nodes

imb: LP solver
prob_lb LP solver
prob_ub random sampling

BaBSR prioritization via the criteria
defined in Equation 9

imb: better of interval bounds
and bounds of
Wong and Kolter (2018)

prob_lb LP solver
prob_ub solution of the LP

BaBSRL prioritization via the criteria
defined in Equation 9

imb: update the bounds of the layer
right before
the ReLU node selected
via an LP solver;
update the rest of the layers via
better of interval bounds
and bounds of
Wong and Kolter (2018)

prob_lb LP solver
prob_ub solution of the LP

Table 1: All Branch-and-Bound methods considered in the experiments section.

6.2. Data Sets

We perform verification on six data sets of properties and report the comparison results.
The CollisionDetection data set (Ehlers, 2017a) attempts to predict whether two

vehicles with parameterized trajectories are going to collide. 500 properties are extracted
from problems arising from a binary search to identify the size of the region around training
examples in which the prediction of the network does not change. The network used is

3. We mention one implementation strategy used to achieve improved performances. For all BaB methods,
an LP solver is called to compute the lower bound of a subdomain. In our case, the LP solver used is
Gurobi. We found that when Gurobi is used to compute all intermediate bounds, it is faster to reintroduce
the LP problem in a layer by layer order to Gurobi for each sub-problem. That is, given a sub-problem,
we first create a new Gurobi model instance and introduce all constraints up to the first non-activation
layer. Then we compute all upper and lower bounds for the layer via Gurobi. After this is done, we add
constraints up to the second non-activation layer and compute all bounds. This procedure continues
until we reach the final layer and obtain a lower bound of the sub-problem by solving the corresponding
LP problem in its complete form. However, for methods that do not require tight intermediate bounds,
obtained via an LP solver, it is cheaper to create a single Gurobi model instance at the start. Then for
each sub-problem, we only update the constraints of the Gurobi model to be consistent with the LP of
the sub-problem and compute a lower bound for it.
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relatively shallow but due to the process used to generate the properties, some lie extremely
close between the decision boundary between satisfiable (SAT) and unsatisfiable (UNSAT).
Recall that satisfiable refers to properties that are false (a counterexample if found) while
unsatisfiable refers to properties that are true (no counterexample exists). Results presented
in Figure 4a therefore highlight the accuracy of methods.

The Airborne Collision Avoidance System (ACAS) data set, as released by Katz
et al. (2017a) is a neural network based advisory system recommending horizontal manoeuvres
for an aircraft in order to avoid collisions, based on sensor measurements. Each of the five
possible manoeuvres is assigned a score by the neural network and the action with the
minimum score is chosen. The 188 properties to verify are based on some specification
describing various scenarios. Due to the deeper network involved, this data set is useful in
highlighting the scalability of the various algorithms.

The Robust MNIST Network is adopted from the network trained with the strategies
proposed in Wong and Kolter (2018). The network contains 2 convolution layers followed by
2 fully connected layers with a total number of 4804 activation nodes. Since on a network
of this size each LP requires more than 2 seconds, the total number of branches that could
be taken within a timeout is low. To better evaluate the performance of the branching
heuristic used in BaBSR, we also introduce a reduced version, reduced Robust MNIST
Network. The reduced network has the same structure as the original one but fewer hidden
nodes on each hidden layer. The total number of ReLU nodes in the reduced network is
1226. On the reduced network, each LP requires only 0.17 seconds, which allows a large
number of branching decisions to be made before timeout. For MNIST networks, the natural
properties to verify are whether the predicted label changes if each input image is allowed
to be perturbed within an ε-infinity norm ball.4 Since each combination of an image in the
MNIST test set and an ε constitute a valid property, we randomly select test images and verify
properties at a set of pre-specified epsilons ranging from 0.14 to 0.175 for Robust MNIST
Network and from 0.11 to 0.14 for reduced Robust MNIST Network. Recall that, on
the same network, epsilon values determine the difficulty level of verification properties. We
use a set of epsilon values for both networks to allow comprehensive evaluations. Higher
value of ε is used for the large network, as the network is more robust. Due to the large
number of properties, we restrict the timeout to be one hour on these two data sets.

Existing data sets do not allow us to explore the impact of various problem/model
parameters such as depth, number of hidden units, input dimensionality and correlation
between hidden nodes on the same layer. Our data sets, PCAMNIST and TwinStream,
remove this deficiency, and can prove helpful in analysing future verification approaches as
well. They are generated in a way to give control over different parameters. Specifically,
PCAMNIST is mainly used for evaluating methods over different network architecture. It
has a much wider range in terms of depth, number of hidden units and input dimensionality
than TwinStream but no particular layer correlation is introduced. On the other hand,

4. For a given image x with the predicted label ytarg and a given ε, the property to be verified ismax(f(x′)y∗−
f(x′)ytarg) < 0 for ∀x′ s.t. ‖x′ − x‖∞ < ε, where y∗ is any label. For MIPplanet, the encoding of the
max function is given in Appendix B.1. For other methods, the max function is encoded as a combination
of linear functions and ReLUs as introduced in Appendix B.2. Although it is conceptually simpler to deal
with max function directly, we saw improved performance when we replace max function with ReLUs
and hence the encoding decisions.
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TwinStream is specially designed such that hidden nodes on the same layer are highly
correlated. It allows us to explore the trade-off between different bounding strategies. Details
of the data set construction are given in the appendix.

Finally, we summarize in Table 2 the characteristics of all of the data sets used for the
experimental comparison.

Data set Count Model Architecture

Collision
Detection 500

6 inputs
40 hidden unit layer, MaxPool

19 hidden unit layer
2 outputs

ACAS 188
5 inputs

6 layers of 50 hidden units
5 outputs

PCAMNIST 27

10 or {5, 10, 25, 100, 500, 784} inputs
4 or {2, 3, 4, 5, 6, 7} layers

of 25 or {10, 15, 25, 50, 100} hidden units,
1 output, with a margin of +1000 or

{-1e4, -1000, -100, -50, -10, -1 ,1, 10, 50, 100, 1000, 1e4}

reduced
ROBUST
MNIST

1200

28 by 28 inputs
Conv2d(1,4,4, stride=2, padding=1)
Conv2d(4,8,4, stride=2, padding=1)

linear layer of 50 hidden units
linear layer of 10 hidden units
L∞ ball radius selected are

{0.11, 0.115, 0.12, 0.125, 0.127, 0.13, 0.14}

ROBUST
MNIST 1000

28 by 28 inputs
Conv2d(1,16,4, stride=2, padding=1)
Conv2d(16,32,4, stride=2, padding=1)

linear layer of 100 hidden units
linear layer of 10 hidden units
L∞ ball radius selected are

{0.14, 0.15, 0.155, 0.16, 0.165, 0.17, 0.175}

TwinStream 81

{5, 10, 25} inputs
{2, 4, 5} layers

of {5, 10, 25} hidden units,
1 output, with a margin of

{1e2, 1, 10}

Table 2: Details of all the data sets. For PCAMNIST, we use a base network with 10
inputs, 4 layers of 25 hidden units and a margin of 1000. We generate new
problems by changing one parameter at a time, using the values inside the
brackets.
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6.3. Evaluation Criteria

For each of the data sets, we compare different methods using the same protocol. We attempt
to verify each property with a timeout of two hours (with an exception of one hour timeout
for the reduced Robust Network experiment and the Robust Network experiment due to the
large number of properties), and a maximum allowed memory usage of 20GB, on a single
core of a machine with an i7-5930K CPU. We measure the time taken by the solvers to either
prove or disprove the property. If the property is false and the search problem is therefore
satisfiable, we expect from the solver to exhibit a counterexample. If the returned input is
not a valid counterexample, we don’t count the property as successfully proven, even if the
property is indeed satisfiable. All code and data necessary to replicate our analysis have
been released.

7. Analysis

We perform an ablation study to evaluate the performance of different methods on various
data sets.

7.1. Small Networks

We first consider small networks with low dimensional input. These are networks of Colli-
sionDetection and ACAS. When networks are small, computing all intermediate bounds via
an LP solver is computationally affordable. In these cases, gains from tighter relaxations are
often significant and the tightest intermediate bounds should be used to achieve an ideal
performance. As a result, methods like BaBSR and BaBSRL that employ rough estimated
intermediate bounds are not included in this section. In Figure 4a, on the shallow networks
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(a) CollisionDetection data set.
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(b) ACAS data set.

Figure 4: Proportion of properties verifiable for varying time budgets depending on the
methods employed. A higher curve means that for the same time budget, more
properties will be solvable. All methods solve CollisionDetection quite quickly
except reluBaB, which is much slower and BlackBox which produces several
incorrect counterexamples.
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of CollisionDetection, most solvers succeed against all properties in about 10 seconds. In
particular, the SMT inspired solvers Planet, Reluplex and the MIP solver are extremely
fast. On the deeper networks of ACAS, in Figure 4b, no errors are observed but most
methods timeout on the most challenging testcases. The best baseline is Reluplex, which
reaches 79.26% success rate at the two hour timeout, while our best method, BaBSB, already
achieves 98.40% with a budget of one hour. To reach Reluplex’s success rate, the required
runtime is two orders of magnitude smaller.

We are also able to identify the factors that allow our methods to perform well. We
point out that the only difference between BaBSB and BaB is the smart branching, which
represents a significant part of the performance gap. Furthermore, on networks with low
dimensional inputs, branching over the ReLU activation nodes rather than over the inputs
does not contribute much, as shown by the small difference between BaB and reluBaB. The
rest of the performance gap can be attributed to using better bounds: reluBaB significantly
outperforms planet while using the same branching strategy and the same convex relaxations.
The improvement comes from the benefits of rebuilding the approximation at each step
shown in Figure 3.

Figure 5 presents additional analysis on a 20-property subset of the ACAS data set,
showing how the methods used impact the need for branching. Smart branching and the use
of better lower bounds reduce heavily the number of subdomains to explore.

Method
Average
time

per Node

BaBSB 1.81s
BaB 2.11s
reluBaB 1.69s

reluplex 0.30s

MIPplanet 0.017s

planet 1.5e-3s

Table 3: Average time to ex-
plore a node for each
method.
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(a) Properties solved for a given number of nodes to explore
(log scale).

Figure 5: Trade-off between bounding cost and total number of branches required. Figure 5a
shows how many subdomains needs to be explored before verifying properties while
Table 3 shows the average time cost of exploring each subdomain. Our methods
have a higher cost per node but they require significantly less branching, thanks to
better bounding. Note also that between BaBSB and BaB, the smart branching
reduces by an order of magnitude the number of nodes to visit.
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7.2. Large Networks

We then study the performance of various methods on the reduced Robust MNIST Network
and the Robust MNIST Network. Due to the large number of properties (1200 and 1000
respectively in order to cover a wide range of difficulties), we treat MIPplanet5 as the
benchmark and rule out methods which could not perform at least at similar level to
MIPplanet over simple properties, that is, those that could be solved within 100 seconds
by MIPplanet. For a comprehensive study of available complete methods, we have also
included ERAN, ETH Robustness Analyser for neural networks. It is developed on a series
of work (Singh et al., 2018, 2019a,b) that apply abstract interpretation for neural network
verification. ERAN6 mainly focuses on incomplete verification of MNIST, CIFAR10 and
a subset of ACAS properties but also supports a complete mode, rendering itself a fair
candidate for comparison studies. We observe from Figure 6 that most methods fail even
on simple properties. BaBSB becomes incompetent when the input dimension is high.
Although planet, reluplex and BaBSR use the same branching rule and loose bounds of
different extent for approximation, the significantly improved performance of BaBSR is
attributed to its effective ReLU prioritization heuristic and early termination feature. The
reluBaB method is the only ReLU split method that uses the tightest bounds available
throughout the procedure. However, the fact it could not solve a single property reemphasizes
the issue of finding a balance between the computational cost and the quality of the relaxation
introduced. With limited computing resources, more gains might be achieved via a good
branching strategy than a tighter relaxation.
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Figure 6: On simple properties, all planet,
reluBaB, reluplex and Neurify
timed out on every single prop-
erty for 100s time limit. BaBSB
managed to solve some properties
but its performance is significantly
worse than that of MIPplanet.
Only BaBSR and ERAN per-
form better than and similarly to
MIPplanet and are thus ran on
all properties of the reduced Ro-
bust MNIST Network and Robust
MNIST Network.

We thus only compare among BaBSR, ERAN and MIPplanet on all properties of
reduced Robust MNIST Network and the Robust MNIST Network. Overall, BaBSR achieved
the best performance on both data sets. In detail, when the reduced Robust MNIST network

5. For large networks, calling an LP solver to compute all intermediate bounds in computationally expensive.
To ensure a fair comparison between BaBSR and MIPplanet, the same intermediate bounds as that of
BaBSR are used for building the LP model.

6. For our experiments, we have used the complete version of ERAN with refinepoly domain and 10 seconds
MILP timeout, as suggested in Singh et al. (2019b). All the rest of hyper-parameters are set as default
values. Each process is restricted to a single cpu core.
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is considered, BaBSR outperforms MIPplanet significantly on easy properties, but the
performance gap decreases when properties become more and more difficult. On the most
challenging ones, MIPplanet slightly wins over BaBSR. A likely cause for the declined
performance of BaBSR could be the split heuristic used. After a certain number of branches,
the rough estimations used by the split heuristic are no longer fair representations of potential
improvements that could be made by available branching decisions. This conjecture is
consistent with what we observe on the Robust MNIST Network, where BaBSR significantly
outperforms MIPplanet on all properties. Since each LP is expensive (requires more than
5 seconds) on the large network, the total number of branches that could be taken within
the time limit is at least 10 times smaller than that on the reduced network, which means
the heuristic of BaBSR probably remains effective throughout the verification procedure.
ERAN is not as competent as the other two methods on the reduced Robust data set but
it beats MIPplanet on the Robust data set. Compared to MIPplanet, ERAN, in its
complete mode, adopts a similar idea of solving a MIP instance. However, different convex
relaxations and intermediate bounds are used. Specifically, in these experiments, ERAN
uses intermediate bounds collected by running RefinePoly analysis. Those computationally
more expensive but potentially tighter intermediate bounds used by ERAN might explain
its varying performance to that of MIPplanet on these data sets. In addition, when the
network size increases, the time required by the LP solver increased exponentially, which
becomes the main bottleneck in verifying properties on large networks in the Branch-and-
Bound framework. Thus, in order to tackle real life verification problems, which often involve
networks considerably larger than the Robust MNIST Network, it is important to develop
an efficient LP solver that, by exploiting the special structure of neural networks, scales well
with their size. At the same time, developing a better split strategy that is computationally
cheap yet capable of giving high quality decisions throughout the whole Branch-and-Bound
process is also key to the success of Branch-and-Bound methods on dealing with large network
verification problems. One recent work (Lu and Kumar, 2020), which employs graph neural
networks to imitate strong branching decisions, has demonstrate some success in achieving
desired branching strategies.

7.3. Varying Parameters

Finally, we study how the performance of each method is impacted by various parameters.
Firstly, consider the case of various network architectures of the PCAMNIST data set.
In the graphs of Figure 8, the trend for almost all methods are similar, which seems to
indicate that hard properties are intrinsically hard and not just hard for a specific solver.
Figure 8a shows an expected trend: the larger the number of inputs, the harder the problem
is. Similarly, Figure 8b shows unsurprisingly that wider networks require more time to
solve, which can be explained by the fact that they have more non-linearities. The impact
of the margin, as shown in Figure 8c is also clear. Properties that are true or false with
large satisfiability margin are easy to prove, while properties that have small satisfiability
margins are significantly harder. It is interesting to see the inconsistent performance of
MIPplanet, which could be due to the different strategies used by Gurobi for different
sized problems. In addition, consistent results of BaBSR outperforming MIPplanet on
easy problems can be observed. We point out that the PCAMNIST data set is a small data
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Figure 7: Cactus plots of properties solved by MIPplanet, BaBSR and ERAN on the
reduced Robust MNIST Network (left) and the Robust MNIST Network (right).
BaBSR outperforms MIPplanet except on the difficult properties of the reduced
Robust MNIST Network. The declined performance of BaBSR might be caused
by the ineffectiveness of the branching heuristics at later stage. The better
performance of ERAN than that of MIPplanet on the Robust MNIST Network
could be explained by the possible tighter intermediate bounds used by ERAN.

set with only 27 networks. Observations should be made with care in terms of generalisability.

The TwinStream data set introduces a possible standpoint to take when selecting splitting
methods and bounding methods for BaB algortihms or other non-BaB methods to best solve
the properties at hand. In Figure 9, we see that MIPplanet performed the best over all
properties and input split methods BaBSB and BaB performed the worst. Despite the
fact that all twinladder networks are small, ReLU split strategy should be preferred when
highly correlated layers are present. In terms of ReLU split based methods, the method
with the tightest relaxation reluBaB and the method with the supposedly effective ReLU
prioritizing heuristics BaBSR performed the worst. This is expected, as when the correlation
among the hidden nodes of the same layer is high (by which we mean if we write each node
as a linear combination of hidden nodes on the previous layer, the coefficient vectors are
highly correlated), the ReLU score used in BaBSR will become way too loose to be of
any use. For example, if several ReLU nodes xi[p] are highly correlated with the node xi[j],
forcing x̂i[j] ≤ 0 or x̂i[j] ≥ 0 will lead to notable changes to the upper or lower bound of
xi[p] respectively. In extreme cases, it means x̂i[p] ≤ 0 or x̂i[p] ≥ 0 if the weights associate
with xi[j] and xi[k] have a correlation of one. Estimating improvements by keeping all other
terms the same is thus unreasonable in this case. The reluBaB method mainly suffers from
its computational cost. The method BaBSRL lies between BaBSR and reluBaB. Since
only one layer is updated via the LP, BaBSRL has tighter relaxations than BaBSR so the
ReLU prioritising heuristic of BaBSR can make better branching decisions in the following
steps. Yet, the computational cost of BaBSRL is much lower than that of reluBaB. An
improved performance of BaBSRL over BaBSR and reluBaB can be observed. Overall,
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Figure 8: Impact of the various parameters over the runtimes of the different solvers. The
base network has 10 inputs and 4 layers of 25 hidden units, and the property to
prove is true with a margin of 1000. Each of the plots corresponds to a variation
of one of this parameters.
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Figure 9: By design, the TwinStream
data set consists of UNSAT
properties only. All methods re-
turned correct results for prop-
erties verified apart from Relu-
plex, which return SAT for sev-
eral properties. These proper-
ties are treated as unsolved for
these methods. MIPplanet
outperforms all other methods
on the TwinStream data set.

26



Branch and Bound for PL-NN Verification

on the small networks with highly correlated layers like networks of Twinstream, MIPplanet
is a definite winner. However, as we have observed previously, MIPplanet is likely to suffer
from scalability issues. We expect BaBSRL might be a better option on large networks
with highly correlated layers.

8. Conclusion

Through the lens of a unified Branch-and-Bound framework, we have identified the weakness of
existing methods and proposed new methods to correct and improve on it. These new methods
are effective by achieving considerate performance enhancements on our comprehensive data
sets. However, there is still much room for improvements. We illustrate a few based on the
BaB framework. In terms of bounding strategies, we observe tighter intermediate bounds
could lead to faster convergence but they are expensive to obtain. Given the layer-wise
structure of neural networks, exploiting the GPU computing power might be a potential way
to compute tighter intermediate bounds cheaply. For branching strategies, methods discussed
mainly rely on heuristics, which are likely to fail when problem changes. Recent studies have
shown learning heuristics through graph neural networks might overcome the issue but they
have high offline cost. Cheaper while effective strategies should be possible. Finally, BaB
based methods require solving LPs, the main bottleneck hindering their development. Since
LPs are mostly solved to decide whether a branching should be conducted on a (sub-)problem,
learning to imitate LP decision could be a potential way to speed up the whole process by
orders of magnitudes.

We encourage the development of new methods to address these issues and hope our
inclusive and various data sets could facilitate the process by allowing comprehensive
evaluations and comparison studies.
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Appendix A. Planet Approximation

The feasible set of the Mixed Integer Programming formulation is given by the following set
of equations. We assume that all li are negative and ui are positive. In case this isn’t true,
it is possible to just update the bounds such that they are.
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l0 ≤ x0 ≤ u0 (10a)
x̂i+1 =Wi+ixi + bi+i ∀i ∈ {0, n− 1} (10b)
xi ≥ 0 ∀i ∈ {1, n− 1} (10c)
xi ≥ x̂i ∀i ∈ {1, n− 1} (10d)
xi ≤ x̂i − li · (1− δi) ∀i ∈ {1, n− 1} (10e)
xi ≤ ui · δi ∀i ∈ {1, n− 1} (10f)

δi ∈ {0, 1}hi ∀i ∈ {1, n− 1} (10g)
x̂n ≤ 0. (10h)

The level 0 of the Sherali-Adams hierarchy of relaxation Sherali and Adams (1994) doesn’t
include any additional constraints. Indeed, polynomials of degree 0 are simply constants and
their multiplication with existing constraints followed by linearization therefore does not add
any new constraints. As a result, the feasible domain given by the level 0 of the relaxation
corresponds simply to the removal of the integrality constraints:

l0 ≤ x0 ≤ u0 (11a)
x̂i+1 =Wi+ixi + bi+i ∀i ∈ {0, n− 1} (11b)
xi ≥ 0 ∀i ∈ {1, n− 1} (11c)
xi ≥ x̂i ∀i ∈ {1, n− 1} (11d)
xi ≤ x̂i − li · (1− di) ∀i ∈ {1, n− 1} (11e)
xi ≤ ui · di ∀i ∈ {1, n− 1} (11f)
0 ≤ di ≤ 1 ∀i ∈ {1, n− 1} (11g)
x̂n ≤ 0. (11h)

Combining the Equations 11e and 11f, looking at a single unit j in layer i, we obtain:

xi[j] ≤ min
(
x̂i[j] − li(1− di[j]), ui[j]di[j]

)
. (12)

The function mapping di[j] to an upperbound of xi[j] is a minimum of linear functions, which
means that it is a concave function. As one of them is increasing and the other is decreasing,
the maximum will be reached when they are both equals.

x̂i[j] − li[j](1− d?i[j]) = ui[j]d
?
i[j]

⇔ d?i[j] =
x̂i[j] − li[j]
ui[j] − li[j]

.
(13)

Plugging this equation for d? into Equation 12 gives that:

xi[j] ≤ ui[j]
x̂i[j] − li[j]
ui[j] − li[j]

, (14)

which corresponds to the upper bound of xi[j] introduced for Planet (Ehlers, 2017a).
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Figure 10: Feasible domain corresponding to the Planet relaxation for a single ReLU.

Appendix B. MaxPooling

For space reason, we only described the case of ReLU activation function in the main paper.
We now present how to handle MaxPooling activation, either by converting them to the
already handled case of ReLU activations or by introducing an explicit encoding of them
when appropriate.

B.1 Mixed Integer Programming

Similarly to the encoding of ReLU constraints using binary variables and bounds on the
inputs, it is possible to similarly encode MaxPooling constraints. The constraint

y = max (x1, . . . , xk) (15)

can be replaced by

y ≥ xi ∀i ∈ {1 . . . k} (16a)
y ≤ xi + (ux1:k

− lxi)(1− δi) ∀i ∈ {1 . . . k} (16b)∑
i∈{1...k}

δi = 1 (16c)

δi ∈ {0, 1} ∀i ∈ {1 . . . k}. (16d)

where ux1:k
is an upper-bound on all xi for i ∈ {1 . . . k} and lxi is a lower bound on xi.

B.2 Reluplex

In the version introduced by (Katz et al., 2017a), there is no support for MaxPooling units.
As the canonical representation we evaluate needs them, we provide a way of encoding a
MaxPooling unit as a combination of Linear function and ReLUs.

To do so, we decompose the element-wise maximum into a series of pairwise maximum

max (xj , x2, x3, x4) = max( max (x1, x2) ,

max (x3, x4))
(17)

and decompose the pairwise maximums as sum of ReLUs:

max (x1, x2) = max (x1 − x2, 0) + max (x2 − lx2 , 0) + lx2 , (18)

where lx2 is a pre-computed lower bound of the value that x2 can take.
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As a result, we have seen that an elementwise maximum such as a MaxPooling unit can
be decomposed as a series of pairwise maximum, which can themselves be decomposed into
a sum of ReLUs units. The only requirement is to be able to compute a lower bound on the
input to the ReLU, for which the methods discussed in the paper can help.

B.3 Planet

As opposed to Reluplex, Planet Ehlers (2017a) directly supports MaxPooling units. The
SMT solver driving the search can split either on ReLUs, by considering separately the case
of the ReLU being passing or blocking. It also has the possibility on splitting on MaxPooling
units, by treating separately each possible choice of units being the largest one.

For the computation of lower bounds, the constraint

y = max (x1, x2, x3, x4) (19)

is replaced by the set of constraints:

y ≥ xi ∀i ∈ {1 . . . 4} (20a)

y ≤
∑
i

(xi − lxi) + max
i
lxi , (20b)

where xi are the inputs to the MaxPooling unit and lxi their lower bounds.

Appendix C. Mixed Integers Variants

C.1 Encoding

Several variants of encoding are available to use Mixed Integer Programming as a solver for
Neural Network Verification. As a reminder, in the main paper we used the formulation of
Tjeng and Tedrake (2019):

xi = max (x̂i, 0) ⇒ δi ∈ {0, 1}hi , xi ≥ 0, xi ≤ ui · δi (21a)
xi ≥ x̂i, xi ≤ x̂i − li · (1− δi). (21b)

An alternative formulation is the one of Lomuscio and Maganti (2017) and Cheng et al.
(2017a):

xi = max (x̂i, 0) ⇒ δi ∈ {0, 1}hi , xi ≥ 0, xi ≤Mi · δi (22a)
xi ≥ x̂i, xi ≤ x̂i −Mi · (1− δi). (22b)

where Mi = max (−li,ui). This is fundamentally the same encoding but with a sligthly
worse bounds that is used, as one of the side of the bounds isn’t as tight as it could be.

C.2 Obtaining Bounds

The formulation described in Equations 21 and 22 are dependant on obtaining lower and
upper bounds for the value of the activation of the network.
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C.2.1 Interval Analysis

One way to obtain them, mentionned in the paper, is the use of interval arithmetic (Hickey
et al., 2001). If we have bounds li,ui for a vector xi, we can derive the bounds l̂i+1, ûi+1 for
a vector x̂i+1 =Wi+1xi + bi+1

l̂i+1[j] =
∑
k

(
W+

i+1[j,k]l
+
i[k] +W−i+1[j,k]u

+
i[k]

)
+ bi+1[j] (23a)

ûi+1[j] =
∑
k

(
W+

i+1[j,k]u
+
i[k] +W−i+1[j,k]l

+
i[k]

)
+ bi+1[j] (23b)

with the notation a+ = max(a, 0) and a− = min(a, 0). Propagating the bounds through a
ReLU activation is simply equivalent to applying the ReLU to the bounds.

C.2.2 Planet Linear approximation

An alternative way to obtain bounds is to use the relaxation of Planet. This is the methods
that was employed in the paper: we build incrementally the network approximation, layer
by layer. To obtain the bounds over an activation, we optimize its value subject to the
constraints of the relaxation.

Given that this is a convex problem, we will achieve the optimum. Given that it is a
relaxation, the optimum will be a valid bound for the activation (given that the feasible
domain of the relaxation includes the feasible domains subject to the original constraints).

Once this value is obtained, we can use it to build the relaxation for the following layers.
We can build the linear approximation for the whole network and extract the bounds for each
activation to use in the encoding of the MIP. While obtaining the bounds in this manner is
more expensive than simply doing interval analysis, the obtained bounds are better.

C.2 Objective Function

In the paper, we have formalised the verification problem as a satisfiability problem, equating
the existence of a counterexample with the feasibility of the output of a (potentially modified)
network being negative.

In practice, it is beneficial to not simply formulate it as a feasibility problem but as an
optimization problem where the output of the network is explicitly minimized.

C.3 Comparison

We present here a comparison on CollisionDetection and ACAS of the different variants.

1. Planet-feasible uses the encoding of Equation 21, with bounds obtained based on
the planet relaxation, and solve the problem simply as a satisfiability problem.

2. Interval is the same as Planet-feasible, except that the bounds used are obtained
by interval analysis rather than with the Planet relaxation.

3. Planet-symfeasible is the same as Planet-feasible, except that the encoding is the
one of Equation 22.
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Figure 11: Comparison between the different variants of MIP formulation for Neural Network
verification.

4. Planet-opt is the same as Planet-feasible, except that the problem is solved as an
optimization problem. The MIP solver attempt to find the global minimum of the
output of the network. Using Gurobi’s callback, if a feasible solution is found with a
negative value, the optimization is interrupted and the current solution is returned.
This corresponds to the version that is reported in the main paper.

The comparison also includes two variants of BlackBox: BlackBox and BlackBoxNoOpt.
Similarly to Planet-opt, BlackBox attempts to do global optimization and interrupt the
search when a feasible solution with negative value is found. BlackBoxNoOpt works like
the other MIP encoding by simply encoding the problem as satisfiability.

The first observation that can be made is that when we look at the CollisionDetection
data set in Figure 11a, only Planet-opt and BlackBox solves the data set to 100% accuracy.
The reason why the other methods don’t reach it is not because of timeout but because they
return spurious counterexamples. As they encode only satisfiability problem, they terminate
as soon as they identify a solution with a value of zero. Due to the large constants involved
in the big-M, those solutions are sometimes not actually valid counterexamples. This is a
significant advantage to encoding the problem as optimization problems versus simply as
satisfiability problems.

The other results that we can observe is the impact of the quality of the bounds when
the networks get deeper, and the problem becomes therefore more complex, such as in the
ACAS data set. Interval has the worst bounds and is much slower than the other methods.
Planetsym-feasible, with its slightly worse bounds, performs worse than Planet-feasible
and Planet-opt.
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Figure 12: Proportion of properties verifiable for varying time budgets depending on the
methods employed. Overall, BaBSR performed the best on easy properties but
worse than MIPplanet on difficult properties, which is consistent to what is
observed on properties of the reduced Robust network.

Appendix D. PCAMNIST Details

PCAMNIST is a novel data set that we introduce to get a better understanding of what
factors influence the performance of various methods. It is generated in a way to give control
over different architecture parameters. The networks takes k features as input, corresponding
to the first k eigenvectors of a Principal Component Analysis decomposition of the digits
from the MNIST data set. We also vary the depth (number of layers), width (number of
hidden unit in each layer) of the networks. We train a different network for each combination
of parameters on the task of predicting the parity of the presented digit. This results in the
accuracies reported in Table 4.

The properties that we attempt to verify are whether there exists an input for which
the score assigned to the odd class is greater than the score of the even class plus a large
confidence. By tweaking the value of the confidence in the properties, we can make the
property either true or false, and we can choose by how much is it true. This gives us
the possibility of tweaking the “margin”, which represent a good measure of difficulty of a
network.

In addition to the impact of each factors separately as was shown in the main paper, we
can also look at it as a generic data set and plot the cactus plots like for the other data sets.
This can be found in Figure 12.

Appendix E. TwinStream Details

The networks contain two separate streams, where each of the streams has the same archi-
tecture, weights, and inputs. The final layer of the network computes the difference between
the outputs of the two streams, and adds a positive bias term, which we will refer to as the
margin, denoted as m. As a result, the output is always equal to the value of the final bias.
We give explicit formulations of weights and biases of the TwinStream networks. Given a
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Network Parameter Accuracy
Nb inputs Width Depth Train Test

5 25 4 88.18% 87.3%
10 25 4 97.42% 96.09%
25 25 4 99.87% 98.69%
100 25 4 100% 98.77%
500 25 4 100% 98.84%
784 25 4 100% 98.64%

10 10 4 96.34% 95.75%
10 15 4 96.31% 95.81%
10 25 4 97.42% 96.09%
10 50 4 97.35% 96.0%
10 100 4 97.72% 95.75%

10 25 2 96.45% 95.71%
10 25 3 96.98% 96.05%
10 25 4 97.42% 96.09%
10 25 5 96.78% 95.9%
10 25 6 95.48% 95.2%
10 25 7 96.81% 96.07%

Table 4: Accuracies of the network trained for the PCAMNIST data set.

N-layer stream with weights W s
1 , . . . ,W

s
N and biases bs1, . . . , bsN−1, the corresponding N-layer

TwinStream network consists of following weights W1, . . . ,WN and biases b1, . . . , bN :

W1 =

[
W s

1

W s
1

]
, Wi =

[
W s

i 0
0 W s

i

]
for i ∈ {2, . . . , N − 1}, WN =

[
W s

N

−W s
N

]
.

bi =

[
bsi
bsi

]
for i ∈ {2, . . . , N − 1}, bN = m.

On each of those networks, we attempt to prove the true property that the output of the
network is positive. We generate streams with random weights using Glorot initialisation
Glorot and Bengio (2010). Various TwinStream Networks are constructed by varying the
depth, number of hidden units in each of the stream, number of inputs, and the value of the
margin. Note that as opposed to the other two data sets, the weights aren’t the result of an
optimization process and therefore may not be representative of real use-cases.

Appendix F. Additional Performance Details

Given that there is a difference in the way verification works for SAT problems vs. UNSAT
problems, we report also comparison results on the subset of data sorted by decision type.
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(a) On SAT properties
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Figure 13: Proportion of properties verifiable by different methods under varying time budgets
on the CollisionDetection data set. We can identify that all the errors that
BlackBox makes are on SAT properties, as it returns incorrect counterexamples.
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Figure 14: Proportion of properties verifiable by different methods under varying time
budgets on the ACAS data set. We observe that planet doesn’t succeed in
solving any of the SAT properties, while our proposed methods are extremely
efficient at it, even if there remains some properties that they can’t solve.
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(b) On UNSAT properties

Figure 15: Proportion of properties verifiable by different methods under varying time
budgets on the reduced Robust network data set. Similar performances can
be observed on both SAT and UNSAT properties. In terms of the total number
of properties solved, MIPplanet slightly outperforms BaBSR on challenging
UNSAT problems. However, on simple problems, BaBSR are much more time
efficient than MIPplanet.
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Figure 16: Proportion of properties verifiable by different methods under varying time
budgets on the Robust Network data set. BaBSR outperforms MIPplanet
significantly in both cases. The huge performance gap on SAT properties indicates
that Branch-and-Bound is an effective algorithm for finding counterexamples on
large networks.
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