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Abstract

Anomaly detection is not an easy problem since distribution of anomalous samples is un-
known a priori. We explore a novel method that gives a trade-off possibility between one-
class and two-class approaches, and leads to a better performance on anomaly detection
problems with small or non-representative anomalous samples. The method is evaluated
using several data sets and compared to a set of conventional one-class and two-class ap-
proaches.
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1. Introduction

Monitoring of complex systems and processes often goes hand in hand with anomaly detec-
tion. Anomaly here means a representation of abnormal system behavior. Information on
normal system behavior is often available in abundance, compared to samples of abnormal
behavior. In some cases the anomalies are rare, or distribution of anomalies is highly skewed.
So, given the high variability of anomalies, it leads to the fact that some types of anomalies
are missing in the training data set. In other cases, when anomalous examples are obtained
by means other than sampling target system, or when the distribution of anomalies evolve
over time, some types of anomalies might even be unknown in principle. A good realistic
data set with anomalous behavior is provided by KDD-99 Cup (KDD, 1999), with certain
families of cyber-attacks present only in the test sample.

Conventional approaches for anomaly detection often involve one-class classification
methods (Chalapathy et al., 2018; Tax and Duin, 2001; Ruff et al., 2018; Liu et al., 2008;
Scholkopf and Smola, 2001), which yield a soft boundary between the normal class region,
and the rest of the feature space. Usually such methods are referred to as unsupervised,
since those do not take into account labels of available data. As this piece of information
might be important, those one-class methods potentially lead to the performance degra-
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dation for the cases with significant overlap between normal and abnormal samples in the
feature space.

There is a rich profusion of two-class supervised classification methods that account for
both class labels, leading to better results in the presence of labeled abnormal samples.
However, those methods lack any guarantees for predictions outside of the regions of the
feature space presented in the training data. It becomes especially problematic for incom-
plete anomalous samples, as a classifier might consistently make false-positive predictions
for unseen anomalies.

Contribution In this study, we develop a method that is aimed at combining the
best of the two, one-class and two-class approaches, which we refer to as (1 + ¢)-class
classification (‘one plus epsilon’ or OPE for short). In order to achieve that, we derive
two one-class objectives and combine them with the binary cross-entropy loss. We compare
these objectives with respect to computational effectiveness, and demonstrate performance
on several data sets that are either collected for anomaly detection tasks (KDD, 1999),
or artificially under-sampled to emulate these conditions (Baldi et al., 2014; LeCun et al.,
1998; Krizhevsky and Hinton, 2009; Lake et al., 2015).

Notation We assume that an N-dimensional feature space X (]RN ), contains samples
of two classes: normal (positive) CT and abnormal (negative) C~. We are interested in
identifying instances of the single class CT. There are two principal approaches: one-
class (unitary classification) and two-class (binary classification). The former might rely
on estimation of the likelihood of the positive class P(x | C*), so then one can apply a
threshold to make a final decision. We will refer to any solution of the form s(P(z | CT)),
where s : R — R is a monotone function, as a unitary classification solution. The latter
relies on estimation of the posterior conditional distribution P(CT | z), that is usually
approximated through minimization of the cross-entropy loss function:

Lo(f) = P(C*) E log f(z) + P(CT) E log(1—f(x)); 1)

where E,.c h(z) denotes conditional expectation E, [h(z) | C], and f : X — [0, 1]—classifier’s
decision function.

Optimal binary decision function f* that minimizes L£o(f), can be expressed with the
help of Bayes’ rule as
Pz |CT)P(CT)
“(z) = P(CT | 2) = ; 2
[@) = PE 1) = prrenpEn) 1 Pl [ 6P @
where P(C) is class prior probability, P(C | x)—posterior conditional distribution and
P(z | C)—likelihood for the given class C.

2. One Plus Epsilon Method

Let’s consider a simple case: C~ is a uniform distribution U[Q2], with the support €2 covering
that of P(xz | CT). If we put this C~ into Equation (1) (assuming equal class priors), we get

1
L) = 5| B loef@)+ Eloa(l— f@)|:

2
. . Pz |C")
1(x) = arg;mnﬁl(f) = m;
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where C—probability density of distribution U[Q2]. Note, that f;(x) is a unitary classifi-
cation solution, therefore, solution to a classification problem between a given class and a
uniformly distributed one, yields a unitary classification solution.

2.1. Adding Known Negative Samples

Let’s take into account known anomalous samples. We propose the following loss function—
linear combination of one-class classification loss £; and cross-entropy loss Ls:

Loelf) = 5 (EF A+ L)+ (=) 1) 3)
L*(f) = - E logf(x);

L7(f) = — E log(l~ J2))

L) = ~ E log(l— f())

where v compensates for the difference in classes prior probabilities. Ideally, it should be
set to P(C™)/P(C*), so that the first two terms match the cross-entropy loss. ¢ is a hyper-
parameter, that allows to choose the trade-off between unitary and binary classification
solutions. We call the loss L14.(f) OPE loss. It leads to the following solution:

] _ Pz |C")
fleel) = Pz|CH)+(1—-e)C+~yP(x|C)

An important observation can be made—for large capacity models, even & close to 1
leads to a significantly different solution in comparison to the two-class classification one
(Equation 2). This effect can be observed in Figure 1, which shows predictions of networks
trained to minimize Lo, £14. and L1 loss functions on a synthetic data set. Intuitively, for
a sufficiently large network, there are multiple solutions that achieve nearly optimal cross-
entropy loss, including the ones that make positive predictions outside supp C*, similar to
the solution in Figure la. Since cross-entropy loss function does not depend on predictions
outside supp C* U supp C~, a randomly initialized network is likely to converge to one of
such solutions. L loss function explicitly penalizes positive predictions everywhere, thus,
making solutions with unitary classification properties more preferable than others.

One might consider the term Lg as a regularization term, that biases solution fi, (z)
towards 0 everywhere, but this effect is especially pronounced in points with P(z | C*) = 0.
One distinguishing feature of the Lo regularization term is that it acts directly on predic-
tions, rather then on parameters!, which makes it applicable to any classifier model.

Estimating L° term in Equation (3) for low-dimensional feature-space is straightforward—
if supp P(z | C*) can be bounded by a simple set €2 (e.g., a box), then Ly can be estimated
by directly sampling from U[Q)]. We refer to this class of OPE algorithms as brute-force
OPE.

1. Technically, regularization in one-class SVM objective (Scholkopf et al., 2000) and similar methods can
also be considered to act directly on predictions since these are linear models.
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(a) two-class classification (b) OPE classification (c) one-class classification.

Figure 1: Demonstration of the main idea behind OPE loss. Samples are uniformly dis-
tributed within areas bounded by the circles: the left one as positive class, the
right one as negative. One-class solution was obtained by setting v = 1, and
€ = 0. Training samples are not shown for visual clarity.

2.2. Energy-Based Regularization

For high-dimensional feature space, however, sampling directly from U[Q] might be prob-
lematic, due to a potentially high variance of the gradients produced by the regularization
term. One possible strategy of reducing variance of LY gradient estimates, is to sample from
another distribution Q:

IY(f) = E log(l - f(z)) = E ——log(l - f(x)); (4)

C
z~Q Q(Z’)
Jin et al. (2017) employs this method and uses distribution () = Py induced by the
model f at the previous training epoch:

1I[z € Q] f(x)
P =—_——""""7
=7 1w
where: 7 = fQ T f Sf&) dz—normalization term, I—indicator function. Hence, L° can be
written as:

0 1-— f (33‘)
LY(f) = Z'miEPfC' Wlog(l — f(®)).

Sampling from P; is computationally expensive, and various methods can be used,
e.g., Hamiltonian Monte-Carlo (Duane et al., 1987). However, this transformation merely
transfers the computationally heavy integration part from uniform sampling to estimation
of the normalization term Z. In order to avoid recomputing Z on each epoch, a two-stage
training procedure is proposed by Jin et al. (2017) and Tu (2007):

1. freeze sampling distribution Py, estimate Z;
2. using this frozen distribution perform a number of stochastic gradient descent steps.

Note, that as long as a regularization term shifts the decision function towards 0 outside
of supp P(z | C*), and has a small impact within, it suffices for the purposes of anomaly
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detection. With that idea in mind, we propose the following approximation of L? regular-
ization term to avoid uniform sampling and integration.
Let’s introduce g(z) = o~ 1(f), where o(x) = 1/ [1 + exp(—x)]—sigmoid function:

il = elala) )

where 7 = /Qexp(g(x))dx.

Py(z)

Note, that g(z) in Equation (5) matches the definition of (negative) energy E(x) used
in energy-based generative models (Bengio et al., 2009): P(z) x exp(—E(x)).

In case of Z > C, using Jensen inequality, we can approximate upper bound of L° as
follows:

0= E log(1 - f(x)) =
E, log(1 + exp(y(e) < log |1+ B exply(a)| -
Z
log <1 + C’) ~ log Z — log C;

which leads to the following one-class loss function:

tH@) = 5| B, tor(1+ exp(-ga) + (1~ L) )

where L¥(g) = logZ:/Qexp(g(x))dx;

then the corresponding energy OPE (EOPE) loss function is

L) = 5 (TF() +AL(H) + (1 )L (0 (1)) 7)

Gradients of LOE can be easily estimated (see, for example, Bengio et al., 2009):

VEF(g) = ViozZ = 7 [ explo(e)Vo(e) = E, Valo) (8)

x~ Py

Note, that Equation (8) essentially describes the negative phase of contrastive divergence
algorithm for energy-based models. Similar relations between the cross-entropy loss and
contrastive divergence have also been mentioned by Kim and Bengio (2016).

As discussed above, the main goal of LY regularization term is to enforce one-class
properties, namely, make the solution to be a monotone transformation of P(x | C*). The
following theorem shows that, despite being just an approximation of L° regularization,
L (g) loss always leads to a one-class solution.

Theorem 1 Let (X,| -||) be a Banach space, P(x)—a continuous probability density
function such that Q@ = supp P is an open set in X. If continuous function g* : Q@ — R
minimizes LY (defined by Equation 6) with P(x | C*) = P(x), then there exists a strictly



Borisyak, RyzHIKOV, USTYUZHANIN, DERKACH, RATNIKOV AND MINEEVA

Algorithm 1: Brute-force OPE

Input: normal data, anomalous data—samples from C*, C™, the latter might be
absent; fy—a classifier with parameters 6.

Hyper-parameters: ~—ratio of class priors; e—controls strength of

regularization.

while not converged do

sample normal data {z;” ~ normal data}™ ;

sample known anomalies {x; ~ anomalous data}/" ,;

sample negative examples {z{ ~ U[Q]}7;

VLt « =Y, Vglog fo(x]);

VL™ + — Zl Vo log(l - f.g(xz_)),

VL« =3, Vglog(l — fo(a));

6 < Adam (VLT 4+ VL™ + (1 —

end

e)VLY)

increasing function s : R — R, such that g*(z) = s(P(z)). Moreover, lim,_,q s(y) = —oo
(if infq P =0).

Intuitively, it is clear, that if the dependency between g(x) and P(zx) is violated in some
regions, energy can be exchanged between these regions with a total reduction in the loss. A
similar argument can be made for the property: lim,_,o s(y) > —oo—energy of low-density
regions can be transferred to a high-density region, leading to an improved solution. A
more formal proof can be found in Appendix B.

3. Implementation Details

While OPE and EOPE losses are independent of any particular choice of model f, we
consider only neural networks. We optimize all neural networks with a stochastic gradient
method (namely, Adam algorithm by Kingma and Ba, 2014). Algorithms 1 and 2 outline
proposed methods.

Estimation of L¥(f) is tightly linked to the negative phase of energy-based generative
models. A traditional approach for sampling from P is to employ Monte-Carlo (MC) meth-
ods, in this work we use Hamiltonian Monte-Carlo (HMC). Additionally, in our experiments
we use persistent MC chains following Tieleman (2008). Nevertheless, usage of MC leads
to a significant slow down of the training procedure, as in general, multiple passes through
the network are required for generating negative samples.

Note, that for values of € close to 1, both L? and L¥ have a significant impact only in
the regions with low probability density P(z | C*). This suggests that solutions of Equa-
tions (3) and (7) are relatively robust to improper sampling procedures, and one might
achieve a faster training without sacrificing much of quality, by employing fast approxi-
mate MC procedures. In our experiments we observed that the following highly degenerate
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Algorithm 2: Energy OPE

Input: normal data, anomalous data—samples from C*, C™, the latter might be
absent; gg—a classifier with parameters 6.

Hyper-parameters: ~—ratio of class priors; e—controls strength of
regularization; MCMC—Monte-Carlo sampling procedure.

while not converged do

sample normal data {z;” ~ normal data}™ ;

sample known anomalies {x; ~ anomalous data}/" ,;

sample negative examples {29 ~ MCMC [z +— exp(g(z))]}7;

VL' Y, Vglog(1 + exp(—go(z;));

VL™ >, Vylog(l+exp(go(z;)));

VLF 3. Vogy(2?);

6 < Adam (VLT 4+ VL™ + (1 — E)VLE)

end

instance of HMC is performing well:

V() _
v Agt} , (9)
mip1 = pmy+ (1 p)(Vy(r) © Vg(z)); (10)

Tiy1 = $t+77|:

where: ©® denotes Hadamard product, & is distributed normally with zero mean and unit
covariance matrix, A > 0 controls the impact of the random noise, n > O—step size,
0 < p < l——coefficient for the moving average m;. We refer to the methods utilizing
such sampling as RMSProp-EOPE, since the procedure resembles RMSProp optimization
algorithm (Tieleman and Hinton, 2012).

A completely different approach to negative phase sampling is described by Kim and
Bengio (2016). The authors suggest using a separate network (generator) to produce sam-
ples from the target distribution. We also implement this sampling procedure and refer to
the methods employing it as Deep EOPE.

In our experiments, we observe that methods based on EOPE loss function, quickly lead
to steep functions which heavily interfere with the sampling procedures. Following Tieleman
and Hinton (2009), we add a small [y regularization term for predictions in pseudo-negative
points:

PP(g) = [ explo@)dr+e B, lo@)’

where c is a small constant (¢ = 1073 in our experiments).
Figures 2 and 3 demonstrate results of proposed methods on a toy data set.

4. Relation to Other Methods

The idea to perform one-class classification (and generative task) as 'one against everything’,
appears in many studies. Tax and Duin (2001) propose constructing a hyper-sphere around
positive samples, effectively separating it from the rest of the space; Ruff et al. (2018) and
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Figure 2: Comparison of different methods on a toy example: positive examples (marked
as 'x’) are sampled from the Moons data set, negative examples (marked by black
circles) are sampled uniformly from a circle of radius % For visual consistency

negative logarithm of Deep SVDD output is displayed.
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Figure 3: Comparison of OPE and EOPE losses with varying e, and, for illustration pur-
poses, v = 1 —e. For € < 1, all losses lead to similar solutions. It appears that
EOPE loss tends to overpenalize large predictions in contrast to OPE loss.

Chalapathy et al. (2018) extend this idea on deep neural networks. Ruff et al. (2018) rely
on weight regularization, which acts in a similar manner to EOPE by limiting the area
with high model output. OPE and EOPE methods depend only on the model’s output,
which allows OPE and EOPE methods to avoid limiting number of layers (for example,
Chalapathy et al., 2018), and does not restrict choice of network architecture (Ruff et al.,
2018).

Tu (2007) and Jin et al. (2017) developed a method similar in its nature to OPE, in fact,
it is easy to see, that Lo term as it appears in Equation (4), corresponds to the loss function
by Jin et al. (2017). In this work we demonstrate that this loss is equivalent to the cross-
entropy loss between a given class and a uniform distribution covering its support. EOPE
loss alleviates computational expenses associated with the estimation of the normalization
term and the RMSProp-like sampling procedure further accelerates training by reducing
computational costs of sampling.

Learning from positive and unlabeled data (PU learning, Bekker and Davis, 2018) is
a closely related field. The problem statement of PU learning is somewhat similar to that
of OPE—binary classification with labeled positive samples and an unlabeled mixture of
negative and positive samples. However, there are substantial differences between OPE and
PU learning settings: in this study, we focus primarily on the case of a non-representative
anomalous sample rather than on incomplete label information; nevertheless, some analogies
might be drawn. Most notably, some PU learning approaches consider unlabeled part of the
data set as negative class, which resembles ‘one against everything’ approach (for example,
Elkan and Noto, 2008; Northcutt et al., 2017).

Li and Liu (2005) consider a PU learning problem when the negative class might be
different at test time, i.e., training negative sample is non-representative. Authors suggest
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enriching unlabeled sample with a large set of ‘irrelevant’ examples which is unlikely to
contain any significant number of positive samples and then introduce a modified EM algo-
rithm for training a classifier. This method can also be viewed as ‘one against everything’
approach employed by brute-force OPE.

Basile et al. (2017) also consider PU learning settings and suggest training a genera-
tive model on positive samples and then labeling samples that fall into low-density regions
as reliably negative. This approach resembles EOPE, however, the most notable differ-
ence is that EOPE employs contrastive divergence, while the former method relies on the
assumption that low-density regions are associated with the negative class.

5. Experiments

We evaluate proposed methods on the following data sets: MNIST (LeCun et al., 1998),
CIFAR (Krizhevsky and Hinton, 2009), KDD-99 (KDD, 1999), Omniglot (Lake et al., 2015),
SUSY and HIGGS (Baldi et al., 2014). In order to reflect the assumptions behind our
approach we derive multiple tasks from each data set by varying size of the anomalous
subset.

As the proposed methods target problems intermediate between one-class and two-class
problems, we compare our approaches against the following algorithms:

e conventional two-class classification with the cross-entropy loss;

e a semi-supervised method: dimensionality reduction by a deep AutoEncoder followed
by a classifier with the cross-entropy loss;

e one-class methods: Deep SVDD (Ruff et al., 2018) and Robust AutoEncoder (Zhou
and Paffenroth, 2017).

Since not all of the evaluated algorithms allow for a probabilistic interpretation, ROC
AUC metric is reported. As performance of certain algorithms (especially, two-class classifi-
cation) varies significantly depending on the choice of negative class, we run each experiment
multiple times, and report average and standard deviation of the metrics. The results are
reported in Tables 4-9. Detailed description of the experimental setup can be found in
Appendix A.

In these tables, columns represent tasks with varying numbers of negative samples pre-
sented in the training set: numbers in the header indicate either number of classes that form
a negative class (in case of MNIST, CIFAR, Omniglot and KDD data sets), or number of
negative samples used (HIGGS and SUSY); ‘one-class’ denotes absence of known anomalous
samples. As one-class algorithms do not take into account negative samples, results of these
are repeated for the tasks with known anomalies.

In our experiments, we make several observations. Firstly, proposed methods generally
outperform baseline methods, especially on the problems with a significant overlap between
classes (SUSY, HIGGS and, possibly, CIFAR), and consistently show comparable perfor-
mance on test problems. Secondly, we observe increasing performance as more negative
samples are included in the training set, while being consistently above or similar to that
of conventional two-class classification. Lastly, to our surprise, brute-force OPE performs

10



(1 + £)-CLASS CLASSIFICATION

one class 100 1000 10000 1000000
Robust AE 0.530 +0.002 | 0.530 £0.002 | 0.530 £0.002 | 0.530 4+ 0.002 | 0.530 % 0.002
Deep SVDD 0.497 £ 0.006 | 0.497£0.006 | 0.497 £0.006 | 0.497 £0.006 | 0.497 £ 0.006
cross-entropy - 0.496 +0.017 | 0.529£0.007 | 0.566 £ 0.006 | 0.858 £ 0.002
semi-supervised - 0.498 £0.003 | 0.522£0.003 | 0.603 £0.002 | 0.745 £ 0.005
brute-force OPE | 0.499 £0.009 | 0.50040.009 | 0.520 £0.003 | 0.572+0.005 | 0.859 £ 0.001
HMC EOPE 0.491 +£0.000 | 0.523£0.005 | 0.567 £ 0.008 | 0.648 +0.005 | 0.848 &+ 0.001
RMSProp EOPE | 0.498 +0.002 | 0.494 £0.008 | 0.531 £0.008 | 0.593 +£0.011 | 0.861 + 0.000
Deep EOPE 0.531 +£0.000 | 0.537 £0.011 | 0.560 £0.008 | 0.628 +0.005 | 0.860 & 0.001

Figure 4: Results on HIGGS data set. The first row indicates numbers of negative samples

used in training.

one class 100 1000 10000 1000000
Robust AE 0.394 +£0.012 | 0.394 +0.012 | 0.394 +0.012 | 0.394 +0.012 | 0.394 4 0.012
Deep SVDD 0.541 +0.022 | 0.541 0.022 | 0.541 +0.022 | 0.541 +0.022 | 0.541 4 0.022
cross-entropy - 0.658 £0.033 | 0.736 £ 0.021 0.757 £0.036 | 0.871 + 0.006
semi-supervised - 0.715+£0.020 | 0.766 £ 0.009 | 0.847 £ 0.002 | 0.876 = 0.000
brute-force OPE | 0.648 +0.035 | 0.678 £0.025 | 0.729 £0.029 | 0.757 £0.036 | 0.871 £ 0.006
HMC EOPE 0.472 +£0.000 | 0.738 £0.019 | 0.770 £0.012 | 0.816 +0.006 | 0.877 4 0.000
RMSProp EOPE | 0.443 +0.038 | 0.714 +0.019 | 0.760 +0.016 | 0.807 +0.004 | 0.877 4 0.000
Deep EOPE 0.468 +£0.118 | 0.670 =0.054 | 0.746 +0.024 | 0.813 +0.003 | 0.878 £ 0.000

Figure 5: Results on SUSY data set. The first row indicates numbers of negative samples

used in training.

one class 1 2 4 8
Robust AE 0.972 +0.006 | 0.972 +0.006 | 0.972 +0.006 | 0.972 + 0.006 | 0.972 + 0.006
Deep SVDD 0.939 +0.014 | 0.939 +0.014 | 0.939+0.014 | 0.939+0.014 | 0.939 +0.014
cross-entropy - 0.571 £0.213 | 0.300 £0.182 | 0.687 £0.268 | 0.619 + 0.257
semi-supervised - 0.315£0.258 | 0.469£0.286 | 0.758 £0.171 | 0.865 £ 0.087
brute-force OPE | 0.398 +0.108 | 0.667 +0.175 | 0.394+0.261 | 0.737 +0.187 | 0.541 + 0.257
HMC EOPE 0.786 +£0.200 | 0.885+0.152 | 0.919+0.055 | 0.863 +0.094 | 0.958 + 0.023
RMSProp EOPE | 0.765 +0.216 | 0.824 +0.237 | 0.770 +£0.213 | 0.941 +0.048 | 0.960 4+ 0.021
Deep EOPE 0.602 +0.279 | 0.767 +0.245 | 0.548 +0.279 | 0.763 +0.217 | 0.786 4+ 0.267

Figure 6: Results on KDD-99 data set. The first row indicates numbers of original classes
selected as negative class, at most 1000 examples are sampled from each original
class.

11
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one class 1 2 4
Robust AE 0.978 £0.017 | 0.978 £0.017 | 0.978 £0.017 | 0.978 £ 0.017
Deep SVDD 0.641 £0.086 | 0.641 £0.086 | 0.641£0.086 | 0.641 + 0.086
cross-entropy - 0.879 +0.108 | 0.957 +0.050 | 0.987 +0.014
semi-supervised - 0.934 £ 0.035 | 0.964 +0.032 | 0.984 +0.012
brute-force OPE | 0.786 +0.112 | 0.915+0.096 | 0.968 +0.041 | 0.986 + 0.015
HMC EOPE 0.694 £0.167 | 0.933 £0.060 | 0.974 £0.023 | 0.989 £ 0.011
RMSProp EOPE | 0.720 £0.186 | 0.933 £0.062 | 0.977 +£0.023 | 0.990 =+ 0.009
Deep EOPE 0.793 £0.129 | 0.942£0.048 | 0.979 £0.016 | 0.991 £ 0.007
Figure 7: Results on MNIST data set. The first row indicates numbers of original classes
selected as negative class, 10 images are sampled from each original class.
one class 1 2 4
Robust AE 0.585 +£0.126 | 0.585 £ 0.126 | 0.585+0.126 | 0.585 + 0.126
Deep SVDD 0.546 £ 0.058 | 0.546 £0.058 | 0.546 £0.058 | 0.546 £ 0.058
cross-entropy - 0.659 £ 0.093 | 0.708 £ 0.086 | 0.748 4+ 0.082
semi-supervised - 0.587£0.109 | 0.634£0.109 | 0.671 £ 0.093
brute-force OPE | 0.549 +0.098 | 0.688 £0.087 | 0.719 £0.079 | 0.757 £0.073
HMC EOPE 0.547 £0.116 | 0.678 £0.091 | 0.709 +0.084 | 0.739 +0.074
RMSProp EOPE | 0.565 +0.111 | 0.678 £0.081 | 0.715+0.083 | 0.746 + 0.069
Deep EOPE 0.564 £0.094 | 0.674 £0.100 | 0.690 £0.092 | 0.719 £ 0.099
Figure 8: Results on CIFAR-10 data set. The first row indicates numbers of original classes

selected as negative class, 10 images are sampled from each original class.

one class 1 2 4
Robust AE 0.771 £0.221 | 0.771 +£0.221 | 0.771+0.221 | 0.771 +0.221
Deep SVDD 0.640 £0.153 | 0.640 £0.153 | 0.640 £0.153 | 0.640 £ 0.153
cross-entropy - 0.799 +£0.162 | 0.862 £ 0.115 | 0.855 +0.125
semi-supervised - 0.737 +£0.134 | 0.821 +0.104 | 0.805 4+ 0.121
brute-force OPE | 0.591 +0.161 | 0.724 +0.222 | 0.765+0.208 | 0.825+0.126
HMC EOPE 0.710£0.178 | 0.801 £0.139 | 0.842+0.112 | 0.842+0.115
RMSProp EOPE | 0.678 +0.274 | 0.821 +0.143 | 0.855+0.112 | 0.863 +0.111
Deep EOPE 0.696 £0.172 | 0.808 £0.140 | 0.851 £0.110 | 0.842+£0.122

Figure 9: Results on Omniglot data set.

The first row indicates numbers of original classes
selected as negative class, 10 images are sampled from each original class. Greek,

Braille and Futurama alphabets are used as normal classes.
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relatively well even on high-dimensional problems, which might indicate that gradients pro-
duced by its regularization term have variance sufficiently low for a proper convergence.

The main drawback of the OPE and EOPE methods is slow training, which is largely
due to the usage of Monte-Carlo methods. It is partially alleviated by fast approximation
of Hamiltonian Monte-Carlo and usage of a generator (Kim and Bengio, 2016), and can
potentially be improved further, by advanced Monte-Carlo techniques (for example, Levy
et al., 2018).

6. Conclusion

We present a new family of anomaly detection algorithms which can be efficiently applied to
the problems intermediate between one-class and two-class settings. Solutions produced by
these methods combine the best features of one-class and two-class approaches. In contrast
to conventional one-class approaches, proposed methods can effectively take into account
any number of known anomalous examples, and, unlike conventional two-class classification,
does not require a representative sample of anomalous data. Our experiments show better or
comparable performance to conventional two-class and one-class algorithms. Our approach
is especially beneficial for anomaly detection problems, in which anomalous data is non-
representative, or might evolve over time.
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Appendix A. Experimental Setup

In order to make a clear comparison between methods, network architectures are made
as close as possible. For image data (MNIST, CIFAR, Omniglot) VGG-like networks (Si-
monyan and Zisserman, 2014) are used, for tabular data 5-layers dense networks are used,
more details can be found in Appendix C2.

We evaluate the following proposed methods:

e brute-force OPE: described by Algorithm 1;
e HMC EOPE: Algorithm 2 with Hamiltonian Monte-Carlo;

e RMProp EOPE: Algorithm 2 equipped with the pseudo-MCMC defined by Equa-
tions (9) and (10);

e Deep EOPE: Algorithm 2 with MCMC sampling procedure replaced by a generator
as described by Kim and Bengio (2016);

against the following methods:

2. Implementation can be found at https://gitlab.com/lambda-hse/ope.
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e Robust AE: a deep AutoEncoder trained as suggested by Chalapathy et al. (2017)
with A = 1;

e Deep SVDD: a classifier trained as suggested by Tax and Duin (2001);

e semi-supervised: a deep AutoEncoder trained to minimize reconstruction error (MSE)
accompanied by a small classifier built on top of the encoder, similar to the first
method suggested by Kingma et al. (2014);

e cross-entropy: a classifier trained to minimize cross-entropy.

All OPE and EOPE models are trained with € = 0.95. All MCMC chains are persistent
(by analogy with Tieleman and Hinton, 2009) and 4 MCMC steps are performed for each
gradient step. All networks are optimized by Adam algorithm (Kingma and Ba, 2014) with
learning rate 5- 1074, 81 = 0.9, B> = 0.999.

In order to reflect the assumptions behind the proposed methods, we derive several tasks
from each original data set considered. For SUSY, HIGGS and KDD-99 data set positive
class is fixed according to data sets’ descriptions; for MNIST and CIFAR-10 data sets each
class is considered as positive; for Omniglot data set we choose ‘Braille’, ‘Futurama’ and
‘Greek’ alphabets are chosen as positive classes.

In order to fully demonstrate advantages of OPE and EOPE methods we vary sample
sizes for negative class: for SUSY and HIGGS data sets only a small number of negative
examples is randomly selected (0, 102, 10%, 10* and 10%); for multi-class data sets several
classes are randomly selected (without replacement) and subsampled, for MNIST, CIFAR
and Omniglot data sets 0, 1, 2 and 4 classes are selected with 10 examples from each, for
KDD-99 maximum number of samples per class is limited by 103.

Original train-test splits are respected when possible (for SUSY and HIGGS data sets
splits are random and fixed for all derived tasks)—test sets are not modified in any way.

Appendix B. Formal Proof of Theorem 1

Here we provide a formal proof of Theorem 1 from the Section 2.2. For the sake of simplicity,
we split the proof into two lemmas.
Lemma 1l Let (X, |-]|) be a Banach space, P(x)—a continuous probability density function
such that = supp P is an open set in X. If continuous function g* : 0 — R minimizes
LE (defined by Equation 6) with P(z | C*) = P(x), then there exists a strictly increasing
function s : R — R, such that g*(z) = s(P(x)).
Proof Consider a continuous function g : 2 — R. We show that if g can not be rep-
resented as s(P(r)), then g does not minimize £¥. This is demonstrated by constructing
another continuous function ¢’ that achieves lower loss than g.

If g can not be represented as s(P(x)) then a pair of points x; and x2 can be found such
that P(z1) < P(z2) and g(z1) > g(x2).

Due to continuity of P and g, it is possible to find such neighborhoods of 1 and x2, that
the difference in probability densities remains large, while differences in values of g become
insignificant or negative. More formally, for every > 0 there exists r > 0 such that open
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balls By = B(x1,7) and By = B(xa,7), B1, Ba C ( satisfy following properties:

infP—supP > A; (11)
B B
supg —infg < §; (12)
B By

where 2A = P(x2) — P(x1).
We define function g;, 5 as g;, 5(z) = g(z) —ah(z —21) + B h(x — x2), where h : X — R,
a, B > 0; the exact form of h is not important, nevertheless, for clarity, let

h(z) = r~' - max(r — ||z||,0). (13)

We restrict our attention to such values of a and 3, that g/, s has the same normalization
constant as g:

AZ(af) = [ esplalple))dn = [ explgla))dz = (14)

Q
Equation (11) implies that By and By do not intersect and, since g(x) = g, 5(x) for
x € Q\ (B1UBz), AZ(«, ) consists of two non-zero terms:

AZ(O[,,B) = AZl(Oé) + AZQ(ﬁ),

where:
AZi(a) = /B exp(g(z) — ah(z — 1)) — exp(g(z))da;
AZo3) = [ explala) + Bhio = ) — explg(a))do.

For every a > 0 there exist a unique $*(«) > 0 such that (a,8*(a)) is a solution for
Equation (14). Notice also, that f*(«) is a continuous, strictly increasing function and

£*(0) =0

Notice, that for small values of « and
AZ(a) = /B —ah(z — 1) exp(g(x)) + O(®h?*(x — x1))dx;
1
AZy(B) = ; Bh(z — x2) exp(g()) + O(B*h*(z — x2))da.
2
therefore, N
i lim oy S 1 (15)

Similarly to AZ(«, 8), AL (a, ) = L™ (g, 5) — L*(g) can be split into two parts:
AL™(a,8) = ALj(a)+ALJ(B); (16)

. P(z) [l(g(z) — ah(z — z1)) — l(g(x))] du;

ALF(5) = /B P() [lg(x) + Bh(x — 22)) — U(g(x))] d:

AL} )
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where {(y) = log(1 + exp(—y)).
Note, that for a positive Ay

Ay Ay
l(y)—1 A —
1+ exp(y + Ay) <Uy) —lly+Ay) < 1+ exp(y)’
therefore,
AL < [ ah(oP@ 0 A0 0
xl|<r
ALEH) < = [ BhO0P(a £ 005 i
xl|<r
where:
1
J1 (e, = ; 17
1 X) 1+ exp(g(z1 + x) — ah(x)) an
1
J2(B, = ; 18
20X = T ap(yaa 0+ B0) 1)
hence,
AL*(a,B) < /” | h(x) [P(z1 + x)aJi(e, x) = P2 + x)BJ2 (e, x))] dx.
x||I<r
Note, that
P(z1 + x)adi(a, x) = P(zz + x)BJ2(8,x) <
aPy BPy
— =J ;
1+exp(Gy) 14 exp(Ge+ 5) (c, B);
where: G1 = infp, g, G2 = supp, g, P\ = supg, P, P> = infp, P.
Now, our aim is to prove that J(«, 5) < 0 has a solution in form (a, 8*(«)):
«
J(a, () <0 & < C(B*(a)); 19
(o, B%()) 5 (o) (8%(a)) (19)

where:
i P2 1+ eXp(Gl)

c(B) = =2 .

W =p1 +exp(Ga + f)
Note, that for each 0 < § < log(P,) — log(Py), and for each 0 < 8 < log(P,) — log(Py) — 6,
C(B) > 1. In combination with Equation (15), this implies that Inequality (19) is satisfied
for some o > 0 and 8 = B*(«), therefore, AZ(,3) = 0 and AL (c, 8) < 0 are simulta-
neously satisfied for some o > 0 and 8 > 0. This implies, that function g/, 0,8* (o) has the

@Q

same normalization constant Z as the original one, and reduces value of L™, hence, g does
not minimize £, which concludes this proof. |

Lemma 2 For every function s that satisfies Lemma 1:

inf P = li = —00.
in O:>y1_>r%s(y) 00
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Proof Suppose that lim,_,os(y) =5 € R.
For every sufficiently small A > 0, we can pick points x1,xo € €2, radius r > 0 and two
open balls Bj(z1,r), Ba(ze,r) such that

supP < A;
By
supP > 8A
Bs

Now we can introduce the same definitions and constructs as in Lemma 1, applied for
By, By and g. Consider o > 0, such that o < 25*(a) (such values always exist due to
Equation 15). Note that since infg g > S, for every 5 > 0, Jo (defined by Equation 18) is
bounded from below

inf Jo(B,X) > ———5——
pnt, P28 2 T T B)
Consider
inf (< J2(B* (), x) 4

Such choice of A guarantees that for every y, such that ||x|| < r,

aP(z1 +x)Ji(e, x) < (@) P(z2 + x)J2 (8 (@), x);
where J; and Jo are defined by Equations (17) and (18). This makes ALT from Equa-
tion (16) negative, which, in turn, implies that g does not minimize E{E , which contradicts
our assumptions. |

Appendix C. Network Architectures

Below we provide exact network architectures used in the experiments. As we aim to match
all methods involved in the experiments as close as possible, we introduce several types of
networks with the following mapping from methods to network types employed:

e Robust AE—encoder — decoder;
e Deep SVDD—classifier with absent bias terms;
e cross-entropy—classifier;

e semi-supervised—encoder — decoder (unsupervised phase) / encoder — small
classifier (supervised phase);

e OPE methods—classifier, Deep EOPE additionally uses generator;

Generator networks are equivalent to decoder ones, with two distinctions:

e former receive samples from a normally distributed random variable as input;

e each layer of a generator network is accompanied by a batch normalization layer (Ioffe

and Szegedy, 2015) used by Kim and Bengio (2016).
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Notation

Below we specify notation for network description:

input (N)—denotes input layer with N features;
random normal (N)—denotes N-dimensional normally distributed random variable;
dense (N)—a fully-connected (dense) layer with N output units;

conv(N, K, 8) and deconv(N, K, S)—a convolution / transposed convolution layer
(LeCun et al., 1989) with N K x K filters (with K = 3 if unspecified), strides S (S =1
if unspecified) and no padding;

max_pool (), upscale()—a max pooling (LeCun et al., 1989) / upscale layer with
2 x 2 window;

global max_pool ()—computes maximum over all spatial dimensions;

For hidden dense, conv and deconv layers we use leaky Rectified Linear Units (Glorot

et al.

, 2011) with leakiness ao = 0.05:

x, ifxz >0,

ax, otherwise;

ReLU(z) = {

Output layers does not use any activation function.

C.2.

Network Specifications

Tables 10, 11, 12 and 13 provide detailed description of the network architectures employed
in the experiments. Note that these architectures are also used for all baseline methods.

classifier input(D) — dense(4 N) — dense(3 N) — dense(2 N) —

dense(N) — dense(1)

encoder input(D) — dense(4 N) — dense(3 N) — dense(2 N) —

dense(N) — dense(M)

decoder input(D) — dense(N) — dense(2 N) — dense(3 N) —

dense(4 N) — dense(D)

small classifier | input (M) — dense(2 N) — dense(N) — dense(1)

Figure 10: Specification of the networks used for HIGGS, SUSY and KDD-99 data sets.

For the networks presented in Table 10, we use the following constants:

N = 96 for HIGGS and SUSY data sets, N = 48 for KDD-99;

M = 14 for HIGGS, M = 9 for SUSY and M = 62 for KDD-99 data sets: set to the
half of the number of input features;

e D = 28 for HIGGS, D = 18 for SUSY and D = 123 for KDD-99 data sets—the

number of input features;
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e K =64 for HIGGS and SUSY data sets, N = 96 for KDD-99—dimensionality of the
generator’s latent space.

classifier input(28x28x1) — conv(32) — conv(48) — max pool() —
conv(64) — conv(96) — maxpool() — conv(128) —
global max_pool() — dense(1)

encoder input(28x28x1) — conv(32) — conv(48) — max pool() —
conv(64) — conv(96) — maxpool() — conv(128) —
global max_pool() — dense(128)

decoder input (1x1x128) — upscale() — deconv(96) — upscale() —
deconv(64) — deconv(48) — wupscale() — deconv(32) —
deconv (1)

small classifier | input(64) — dense(64) — dense(32) — dense(1)

Figure 11: Specification of the networks used for MNIST data set.

classifier input(32x32x3) — conv(32) — conv(48) — max _pool() —
conv(64) — conv(96) — max_pool() — conv(128) — conv(128) —
global max_pool() — dense(1)

encoder input(32x32x3) — conv(32) — conv(48) — max_pool() —
conv(64) — conv(96) — max_pool() — conv(128) — conv(192) —
global max_pool() — dense(192)

decoder input(1x1x192) — upscale() — deconv(128) — deconv(96) —
upscale() — deconv(64) — deconv(48) — upscale() —
deconv(32) — deconv (1)

small classifier | input (192) — dense(64) — dense(32) — dense(1)

Figure 12: Specification of the networks used for CIFAR-10 data set.

classifier input (105x105x1) — conv(32, K=5, S=2) —

conv(32, K=5, S=2) — conv(48) — conv(48) — max_pool() —

conv(96) — conv(96) — max_pool() — conv(128) —

global max_pool() — dense(1)

encoder input (105x105x1) — conv (32, K=5, S=2) —
conv(32, K=5, S=2) — conv(48) — conv(48) — max _pool() —

conv(96) — conv(96) — maxpool() — conv(128) —

global max pool() — dense(128)

decoder input (1x1x128) — deconv(96) — upscale() — deconv(64) —

deconv(64) — upscale() — deconv(48) — deconv(48) —

deconv(32, K=5, S=2) — deconv(1l, K=5, S=2)

small classifier | input(64) — dense(64) — dense(32) — dense(1)

Figure 13: Specification of the networks used for Omnigot data set.
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