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Abstract

Predicting a new response from a covariate is a challenging task in regression, which raises new
question since the era of high-dimensional data. In this paper, we are interested in the inverse
regression method from a theoretical viewpoint. Theoretical results for the well-known Gaussian
linear model are well-known, but the curse of dimensionality has increased the interest of prac-
titioners and theoreticians into generalization of those results for various estimators, calibrated
for the high-dimension context. We propose to focus on inverse regression. It is known to be a
reliable and efficient approach when the number of features exceeds the number of observations.
Indeed, under some conditions, dealing with the inverse regression problem associated to a forward
regression problem drastically reduces the number of parameters to estimate, makes the problem
tractable and allows to consider more general distributions, as elliptical distributions. When both
the responses and the covariates are multivariate, estimators constructed by the inverse regression
are studied in this paper, the main result being explicit asymptotic prediction regions for the
response. The performances of the proposed estimators and prediction regions are also analyzed
through a simulation study and compared with usual estimators.

Keywords: Inverse regression, Prediction regions, Confidence regions, High-dimension, Asymp-
totic distribution

1. Introduction

In a multiple (several response variables) and multivariate (several predictors) regression framework,
one wants to describe a response Y ∈ RL from regressors X ∈ RD. When considering a high number
of predictors, the number of parameters could be quickly larger than the sample size, making the
estimates impossible to compute in practice or/and providing bad performances for estimators such
as lack of stability. This phenomena is generally referred as curse of dimensionality. Several tricks
have been proposed in the literature to cope with this issue.

For Gaussian linear models, one of the most famous method is variable selection based on regu-
larized regression, which reduces the dimension of the regression problem to the subset of the most
relevant features. Methods include the Lasso (Tibshirani, 1994), the Dantzig selector (Candes and
Tao, 2007), or the Ridge estimator (Hoerl and Kennard, 1970) to refer to the most popular. These
widely used methods are designed to account for univariate response and few implementations exist
for multivariate response, considering then independent response terms. Some extensions have been
proposed for generalized linear models, as introduced for example in Bühlmann and van de Geer
(2011).

Another way to deal with high dimensional data consists in dimension reduction techniques
which extract components or latent variables that summarize the information of a large dataset into
a small dimension space. For example, the Principal Component Regression (PCR) selects a subset of
principal components for regression and focuses on hyperplanes; the Partial Least Square regression
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(PLS) projects the predicted variables and looks for latent variables, correlated to both response and
covariates, in order to perform the regression of Y on X in a space of lower dimension than D ; and
the Sliced Inverse Regression (SIR) introduced in Li (1991) restricts the regressors to few projections
by inverting the role of predictors and response. SIR is based on a prior linear dimension reduction
by considering the covariance matrix of the inverse expectation E(X|Y) (hence the name of the
method). The main assumption of SIR relies on Linearity Design Condition, satisfied by elliptical
distributions, among which Gaussian distribution, Student distribution and Laplace distribution
for the most known. The eigenvectors of this covariance matrix are computed in order to find a
subspace that retains the information on Y contained by the predictors. Many extensions have
been proposed, some of them very recently, to data with array (tensor)-valued predictors Ding and
Cook (2015), to non linear regression through score function Babichev and Bach (2018), to a sparse
estimator Lin et al. (2019) to cite just a few. Some theoretical results have been derived for SIR,
as in Hsing and Carroll (1992) where they proved the consistency and asymptotic normality for the
2-slices estimator, and extended for K slices in Saracco (1997). However, the number of axes to
retain must be specified beforehand, which is one of the main drawbacks of those methods. Even if
procedures have been proposed to choose this parameter (e.g., cross validation, elbow rule, or other
heuristics), results are still sensitive to this choice.

More precisely, in the context of regression with random predictors, several authors proposed re-
duction dimension techniques based on the joint distribution of both predictors and response (George
and Oman, 1996; Helland, 1992; Helland and Almøy, 1994) to identify components used to reduce
the dimension of predictors matrix. Interestingly, while the regression of interest (referred as forward
regression in the literature) usually models the conditional distribution of response given predictors
Y|X, some authors explored the properties of inverse models, meaning that the conditional distribu-
tion of predictors is studied given the response X|Y (referred as inverse regression (Oman, 1991)).
It has first been introduced for simple linear regression in the Gaussian setting in Krutchkoff (1967);
Hunter and Lamboy (1981); Williams (1969) in which it is compared to the least square approach.
Its prediction properties have also been studied in Parker et al. (2010) and we found applications of
inverse regression to calibration problem (Kannan et al. (2007)) in industrial sector. See also Cook
(2007) for an interesting overview of these techniques. The goal of inverse regression techniques is to
preserve the information on the regression of interest by studying the inverse conditional distribution
as it is directly related to the forward conditional distribution of interest. It consists in inverting the
role of response and covariates in the regression model to estimate parameters, taking benefit of the
large number of regressors as observations and of the small size of the response. Some works have
also considered this method combined with mixture model to propose a nonlinear estimator, for the
specific case of Gaussian distribution Deleforge et al. (2015) or Student distribution Perthame et al.
(2018).

Whereas variable selection methods are mainly used for high-dimensional data, the inverse re-
gression approach is particularly interesting in three specific frameworks. First, when D >> N ,
if a large number of covariates is known to have an impact on the response (e.g. in planetology
(Deleforge et al., 2015)), selecting variables is not relevant while inverse regression is effective. Sec-
ondly, when dealing with large dimension for both sample size and number of predictors (N and D
large), inverse regression is efficient under few weak assumptions: it avoids the inversion of a large
empirical covariance matrix which is time consuming in practice even if it is invertible in theory.
Thirdly, inverse regression has the advantage to allow multiple response potentially correlated, which
is more and more frequent with real data (e.g. in biology with measurement of multiple phenotypes
(El Behi et al., 2017)). Moreover, a more general paradigm is considered for theoretical results,
by considering data is modelled within elliptically contoured distributions. It encompasses (among
others) the very classical Gaussian as well as Student and contaminated Gaussian distributions,
which own good properties for extreme values or outliers.
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In this paper, we propose to address the multiple linear regression problem under an inverse
regression approach. We study first the theoretical properties of the estimators of the inverse re-
gression model. Then we focus on a prediction purpose by deriving prediction regions. Indeed,
under the linear modelling framework, one can predict a new response from a new covariate using
the estimator of regression coefficient matrix A?. Provided that an estimator of A? is available, it
is relevant to quantify uncertainty around this prediction. This paper focuses on both confidence
region for parameters estimates and prediction regions in high-dimensional settings.

Note that few theoretical confidence intervals have been derived in high dimensional context.
For Lasso based estimators, Javanmard and Montanari (2014); van de Geer et al. (2014); Zhang
and Zhang (2014) derive confidence regions for slope coefficient and statistical testing of sparsity
for linear model using several tools: relaxed projection Zhang and Zhang (2014), desparsifying
Lasso van de Geer et al. (2014) or through the computation of an approximate inverse of the Gram
matrix Javanmard and Montanari (2014). Since those pioneer works, several articles have provided
extensions for more general models or estimators, as generalised linear model (van de Geer et al.
(2014) for convex loss function, Janková and van de Geer (2015) for subdifferential loss). We also
refer to Meinshausen (2015) for groups of variables and Stucky and van de Geer (2017) for linear
regression models with structured sparsity, among others. However, those results rely on strong
assumptions on the design and although some authors consider more practical aspects (Chao et al.,
2015; Lee et al., 2016), those results still remain difficult to be implemented.

In this paper, we propose to address the linear regression problem for elliptical distributions
under an inverse regression approach rather than sparse regression. We assume that the residuals
of the inverse model are not correlated which reduces the number of parameters to estimate and
overcome the dimensionality burden, while allowing both covariates and residuals of the forward
model to be dependent. In this modelling context, assessing confidence in predicted values is one
major goal in the manner of least square estimator. However, when the number of predictors becomes
too large, least square method suffers from the curse of dimensionality, has bad performances and
is computationally intensive while inverse regression approach tackles those problems. Under our
framework, we get asymptotic distribution for parameters estimates, and then derive confidence
regions for slope coefficients. Moreover, we derive a theorem to quantify prediction uncertainty
through asymptotic prediction regions. Then, the properties of parameters estimates are illustrated
in an intensive simulation study through finite distance examples.

The paper is organised as follows. In Section 2, the inverse regression model is introduced, as
well as the estimation and prediction procedure. Asymptotic distribution of parameters estimates
are derived in Section 3. Then, confidence region of slope coefficients and prediction regions are
established in Section 4. The finite-sample performance of the proposed confidence and prediction
regions are investigated in Section 5, which also includes a comparison with existing methods namely
least squares and Lasso. The paper concludes by a discussion in Section 6.

2. Inverse regression model

In this section, the various elements of the modelling framework are introduced.

2.1. Elliptical distributions

Introduced in Li (1991), the inverse regression relies on the Linearity Design Condition (LDC) which
relates the covariates to elliptical distribution. First, recall the definition of elliptical distributions.

Definition 1 Let X be a d-dimensional random vector. X is said to be elliptically distributed if and
only if there exist a vector µ ∈ Rd, a positive semidefinite matrix Σ ∈ Rd×d and a function φ : R+ →
R such that the characteristic function t 7→ ϕX−µ(t) of X − µ corresponds to t 7→ φ(t′Σt), t ∈ Rd.
We write X ∼ Ed(µ,Σ, φ).
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In this article, we focus on the characterisation provided by the following theorem (we refer to
Cambanis et al. (1981) for more details).

Theorem 2 Let X be a d-dimensional random vector. X ∼ Ed(µ,Σ, φ) with rank(Σ) = k if and
only if

X = µ+RΛU(k)

where the equality holds in distribution, and where U(k) is a k-dimensional random vector uniformly
distributed on the unit hypersphere with k−1 dimensions Sk−1, R is a non-negative random variable
with distribution function F related to φ being stochastically independent of U(k), µ ∈ Rd and
Λ ∈ Rd×k with rank(Λ) = k.

Multivariate normal distribution, multivariate t-distribution and multivariate Laplace distribution
are some examples of elliptical distributions. In the following proposition we summarise the main
properties we will use in this paper. We refer to Frahm (2004) for details.

Proposition 3 Let X ∼ Ed(µ,Σ, φ) with rank(Σ) = k. The following hold:

• E(X) = µ,

• V ar(X) = E(R2)
k Σ = −2φ′(0)Σ if φ is differentiable at 0,

• An affine transformation of an elliptic random variable is also elliptic.

• Conditional distribution: let X = (X1,X2), where X1 is a k-dimensional sub-vector of X, and

let Σ =

(
Σ11 Σ12

Σ21 Σ22

)
∈ Rd×d. Provided the conditional random vector X2|X1 = x1 exists, it is

also elliptically distributed: X2|(X1 = x1) ∼ Ed−k(µ∗,Σ∗, φ∗). Moreover, it can be represented
stochastically by

X2|(X1 = x1) = µ∗ +R∗U(r−k)Γ∗

where the equality holds in distribution, and U(r−k) is uniformly distributed on Sr−k−1, and

R∗ = R
√

1− β|(R
√
βU(k) = Σ−111 (x1 − µ1))

µ∗ = µ2 + Σ21Σ−111 (x1 − µ1)

Σ∗= Σ22 − Σ21Σ−111 Σ12

where β ∼ Beta(k/2, (r − k)/2) and R, β,U(k) and U(r−k) are supposed to be mutually inde-
pendent, and Σ∗ = (Γ∗)tΓ∗.

• The sum of independent elliptically distributed random vector with the same dispersion matrix
Σ is elliptical too (Hult and Lindskog, 2002).

2.2. Inverse regression method

For a vector of responses Yi ∈ RL and covariates Xi ∈ RD, let introduce the following generative
model:

[
Xi

Yi

]
∼ ED+L

([
0
0

]
;

[
Σ + AΓA> AΓ

(AΓ)> Γ

]
;φ

)
; (1)

Using Proposition 3, this joint distribution leads to the linear regression problem we aim to address
in this paper, characterized by the following marginal and conditional distributions:

Xi ∼ ED(0,Γ?, φ) with rank(Γ?) = D (2)

Yi|Xi = A?Xi + εi (3)
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where Y = (Y1, . . . ,YN ) ∈ RL×N corresponds to L responses forN subjects and X = (X1, . . . ,XN ) ∈
RD×N contains D elliptical centered predictors with covariance matrix Γ?. The error term ε =
(ε1, . . . , εN ) is an unobserved L × N matrix with independent columns elliptically distributed,
ε1, . . . , εN ∼ EL(0,Σ?, φε) with rank(Σ?) = L, independent from the regressors. The L×D matrix
of slope coefficients is denoted by A?. When D is large or/and when the number of observations
N is smaller than D, the so-called least square estimate of A? is not numerically computable for
the forward regression defined in Equations (2) and (3). Indeed, it requires the inversion of the
possibly large matrix X>X which is not invertible when D > N and computationally intensive for
large D when N > D. An interesting and relatively simple approach to handle this high dimensional
problem is to consider the inverse regression problem, derived as well from the joint distribution in
Equation (1):

Yi ∼ EL(0,Γ, φ) with rank(Γ) = L (4)

Xi|Yi = AYi + ei (5)

where A is a D × L matrix of slope coefficients of the inverse regression and e = (e1, . . . , eN ) is a
D ×N matrix of unobserved centered elliptical random noise with residual covariance matrix Σ, of
type φe, independent from Y. The inverse regression approach consists in inverting the response and
the covariates in the model and performing regression of response on covariates. While least squares
estimate is not computable in high dimension for forward regression, it turns out that dealing with
the inverse regression problem, under some assumptions on the noise e detailed hereafter, drastically
reduces the number of parameters and makes the problem tractable.

Note that no intercept is considered in models (4) and (5), which leads to assume that both
response and covariates are centered.

The key point of the model introduced in Equation (1) is that forward parameters (Γ?,A?,Σ?)
are expressed in function of the inverse parameters (Γ,A,Σ) through the following one-to-one map-
ping :

Ψ : (Γ,A,Σ) 7→(Γ?,A?,Σ?)

=(Σ + AΓA>, (Γ−1 + A>Σ−1A)−1A>Σ−1, (Γ−1 + A>Σ−1A)−1). (6)

Details to prove the involution between forward and inverse regression are given in Appendix,
relying on the joint distribution introduced previously. As the mapping Ψ is an involution, the
forward regression parameters in model (2)-(3) map to the inverse regression parameters in model
(4)-(5). The advantage of the inverse approach appears when structure is assumed on large covariance
matrix Γ?. Indeed, the linear regression problem we address in this paper is not computable when
the number of predictors D becomes large. When D > N , the LSE is not computable as the matrix
XXT is singular and when N > D, even if the problem is analytically tractable, computation of
the LSE involves the inversion of a large D ×D matrix. To handle this issue, a solution would be
to decrease the dimension. Three solutions can be proposed: either using variable selection (such
as model selection or lasso approaches) ; or using projection methods (such as PLS, PCR or SIR
approaches) if all variables are active in the prediction, if the user does not assume that its regression
problem is sparse, or if its purpose is just prediction, with no necessarily variable selection ; or at
last, in the same paradigm, one can decrease the dimension of the problem by reducing the number
of parameters to estimate with respect to structure assumptions on the modelling. A drastic way to
decrease the number of parameters would be to make assumptions on the large covariance matrix
involved in the problem Γ? and assume that it is diagonal. This would result in a strong assumption
on dependence structure of predictors (no correlation allowed) but would drastically reduces the
number of parameters and make the problem computable. Our suggestion is to assume a structured
dependence among predictors which would be flexible enough to allow correlations among predictors,
but constrained enough to efficiently decrease the dimension. For example, a block structure or a
Toeplitz matrix would be convenient. Nevertheless, it turns out that the low rank decomposition,
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also known as factor model we assume for Γ? = Σ + AΓAT provides a good approximation and
is flexible enough to handle various applied problems while being numerically tractable (Leek and
Storey (2007, 2008); Carvalho et al. (2008); Sun and Cai (2009); Blum et al. (2010); Causeur et al.
(2011); Teschendorff et al. (2011); Perthame et al. (2015)). Notice that a direct consequence of this
assumption on Γ? in the forward regression problem is to assume that the residuals of the inverse
regression are not correlated, which is the assumption we make in this paper. Assuming that Σ is
diagonal drastically reduces the number of parameters to estimate: for example, if D = 100 and
L = 5, the number of parameters to estimate goes from LD + L(L+ 1)/2 +D(D + 1)/2 = 5565 in
the full model to LD+L(L+ 1)/2 +D = 615 under our model. The robustness to this assumption
is assessed in the Case 4 of the simulation study in Section 5.

2.3. Estimation

Considering the inverse model defined in Equations (4)-(5), the least squares estimators are:

Γ̂ =
1

N − 1
Y>Y;

ÂT = (Y>Y)−1Y>X; (7)

∀j ∈ {1, . . . , D}, Σ̂j,j =
1

n− 1

n∑
i=1

(Xi,j − [ÂYi]j)
2.

Using mapping Ψ, it is straightforward to deduce estimators for the forward regression:

Γ̂
?

= Σ̂ + ÂΓ̂Â>; (8)

Â? = (Γ̂
−1

+ Â>Σ̂
−1

Â)−1Â>Σ̂
−1

; (9)

Σ̂
?

= (Γ̂
−1

+ Â
>

Σ̂
−1

Â)−1. (10)

The inverse regression trick allows to numerically compute those estimators even when D >> N as
it requires the inversion of the L × L matrix YTY and not the inverse of XTX as in the forward
regression. Assuming Σ is diagonal avoids also to invert a full D ×D matrix. To ensure invertible
estimator of Γ, it only requires the response dimension to be smaller than the sample size.

2.4. Prediction of the response

Considering those estimators (Â?, Γ̂
?
, Σ̂

?
), a new response ŶN+1 is predicted for a new observed

profile xN+1 from Model (3) and defined by:

ŶN+1 = E(Y|X = xN+1) = Â?xN+1.

The purpose of this article is to study the uncertainty around this prediction which can be quantified
by deriving prediction region. Moreover, we deeply study the theoretical properties of the estimators

of this model and establish the exact distribution of Γ̂
?

and Σ̂
?

and the asymptotic distribution of
Â? which is involved into prediction region computation.

3. Theoretical study of the estimators

In this section, we assume that covariance matrices Σ and Γ are both known and that Σ is diagonal
as previously stated. In this section, asymptotic distribution of estimators for the forward regression
are derived.
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3.1. Matrix variate elliptical distribution and Kronecker product

First we recall some properties about the matrix variate elliptical distribution and the tensor product.
These results can be found in Gupta and Nagar (2000) Chapter 2, but some properties are recalled
in this paper as we use them extensively.

Definition 4 (Kronecker product) Let A ∈ Mm,n(R) be a m × n matrix with real elements
denoted by (ai,j) with i ∈ {1, . . . ,m} and j ∈ {1, . . . , n} and B ∈ Mp,q(R). Then, the Kronecker
product A⊗B is the mp× nq block matrix:

A⊗B =

a11B . . . , a1nB
...

. . .
...

am1B . . . AmnB

 .

The vectorization hereafter is used to work with vectors instead of matrices.

Definition 5 (Vectorization) The vectorization vec(A) of a matrix A is a linear transformation
which converts the matrix into a column vector, by stacking the columns of the matrix on top of one
another.

Gupta and Varga (1994) define the matrix variate elliptical distribution through characteristic
function and derive a theorem to characterize this distribution using vec operator which is more
convenient to derive results in this paper (Theorems 2.1 and 2.3 in Gupta and Varga (1994)).

Definition 6 (Matrix variate elliptical distribution) The random variable X ∈ RL×D is dis-
tributed according to a matrix variate elliptical distribution with mean X0 and variances U ∈
ML,L(R) (among-row) and V ∈MD,D(R) (among-column), denoted

X ∼MEL,D(X0, U ⊗ V, φ),

if and only if vec(X) ∼ ELD(vec(X0), V ⊗ U, φ).

For this distribution, some interesting properties are derived.

Proposition 7 The following equivalence holds:

X ∼MEL,D(X0, U ⊗ V, φ) ⇔ XT ∼MED,L(XT
0 , V ⊗ U, φ).

Proposition 8 If X ∼ MELD(X0, U ⊗ V, φ), the following properties hold for A ∈ Mr,L(R) and
B ∈MD,s(R)

AXB ∼MEr,s(AX0B,AUA
T ⊗BTV B, φ);

vec(AXB) = (BT ⊗A)vec(X).

For A ∈ Mr,L(R), B ∈ MD,s(R), C ∈ Mr,L(R), D ∈ MD,s(R) and if X has finite second order
moments, the following holds:

Cov(vec(AXB), vec(CXD)) = −2φ′(0)(BTV D ⊗AUCT );

Cov(vec(AXB), vec(CXTD)) = −2φ′(0)(BT ⊗A)E(vec(X)vec(X)T )T−1LD(DT ⊗ C)

= −2φ′(0)(BTV ⊗AU)T−1LD(DT ⊗ C) for X centered.

where TLD is the commutation matrix, transforming the vectorized form of a matrix of size L ×D
into the vectorized form of its transpose.
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3.2. Asymptotic distribution of Â?

In order to derive the asymptotic distribution of the forward regression coefficients Â?, the distri-
bution of the inverse regression coefficients matrix Â is described at first. We start by describing
the conditional distribution of Â conditionally to Y1, . . . ,Yn.

Proposition 9 (Distribution of Â conditionally to Y) Suppose ((X1,Y1), . . . , (XN ,YN )) is
a sequence of iid random variables satisfying the model defined in Equations (2) and (3), or equiv-
alently in Equations (4) and (5). Then, conditionally to Y,

Â−A ∼MED,L(0,
−1

2φ′(0)
Σ⊗ (YTY)−1, φ).

This result is an extension of the least square estimator in the multivariate linear model to the
multiple multivariate linear model. The proof uses that Â is a linear combination of X and is given
in Appendix 7. However, deriving confidence regions for forward regression based on a distribu-
tion conditioned on the responses would provide conditional confidence regions. To get rid of the
conditioning, we provide the asymptotic distribution of Â.

Proposition 10 (Distribution of Â) Suppose ((X1,Y1), . . . , (XN ,YN )) is a sequence of iid ran-
dom variables satisfying the model defined in Equations (2) and (3), or equivalently in Equations
(4) and (5). Then,

√
N(Â−A) →

n→+∞
MND,L(0,

φ′e(0)

φ′(0)
Σ⊗ Γ−1).

This result is an application of the Central Limit Theorem, and the proof is given in Appendix 7.
From this, we derive the asymptotic distribution of Â?. A matrix version of the ∆-method is

used, which involves the differential of the function g : A 7→ A? and the corresponding asymptotic
variance of Â?. They are first computed in the following lemma.

Lemma 11 Suppose ((X1,Y1), . . . , (XN ,YN )) is a sequence of iid random variables satisfying the
model defined in Equations (2) and (3). Let

g : RD×L → RL×D

A 7→ A? = Σ?ATΣ−1 = (Γ−1 + ATΣ−1A)−1ATΣ−1. (11)

Then the differential of this function at point (Â−A) is,

Dg(A).(Â−A) = Σ?(Â−A)TΣ−1 −Σ?(Â−A)TΣ−1AA? −A?(Â−A)A?. (12)

Moreover, the covariance of this random matrix is given by the following, if φ is differentiable in 0,

φ′(0)

φ′e(0)
Cov(vec(Dg(A).(Â−A))) = (13)(

(Σ−1 + (A?)TATΣ−1AA? − 2Σ−1AA?)⊗Σ?ΓΣ?
)

+ ((A?)TΓA? ⊗A?Σ(A?)T )

− 2
(
(I⊗Σ?Γ) + ((A?)TAT ⊗Σ?Γ)

)
T−1LD((A?)T ⊗A?).

Proof of Lemma 11 is given in Appendix. Those explicit formulae allow to compute confidence
regions in practice using the so-called plug-in estimator of Θ(A). Numeric performances stand in
Section 5.

Finally, the following theorem, which is the key of this paper, details the asymptotic distribution
of Â?.
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Theorem 12 (Asymptotic distribution of Â?) Suppose ((X1,Y1), . . . , (XN ,YN )) is a sequence
of iid random variables satisfying the model defined in Equations (2) and (3). Let

g : RD×L → RL×D

A 7→ A? = Σ?ATΣ−1 = (Γ−1 + ATΣ−1A)−1ATΣ−1. (14)

Then, the following holds for the estimator Â? defined in Equation (9),
√
N(vec(Â?)− vec(A?)) →

N→+∞
NDL(0,Θ(A));

where Θ(A) = Cov(vec(Dg(A).(Â−A))) defined in Equation (13).

Moreover, Θ(Â) is a consistent estimator of Θ(A), and
√
N(vec(Â?)− vec(A?))TΘ(Â)−1(vec(Â?)− vec(A?)) →

N→+∞
χ2
DL. (15)

where χ2
q denotes the χ2-quantile function with q degrees of freedom.

Proof The matrix version of the ∆-method is a second order Taylor expansion of g : A 7→ A?.
Therefore, for A ∈MD,L(R) and g defined by Equation (14), the Taylor expansion leads to

Â? = g(Â) = g(A) +Dg(A).(Â−A) +RN (Â);

with RN (Â) a rest term that vanishes to 0 when N → +∞ and Dg(A).(Â−A) is given in Lemma 11.
Then,

√
N(Â? −A?) =

√
NDg(A).(Â−A) +

√
NRN (Â). (16)

The last term in (16) converges to 0 in probability, and by Proposition 10, the linear combination

with respect to Â defined in (12) is a matrix variate Gaussian distribution, centered. Using (13),

we get the distribution of the vectorized vector vec(Â?).
Asymptotic distribution of the quadratic form Equation (15) is deduced using both Slutsky’s

theorem and Corollary 1 of Cambanis et al. (1981).

This result is the key theorem of this article as it provides closed-form expressions to derive
confidence regions for A? and prediction regions. This theorem is very general: we assume that
(X,Y) follows any matrix elliptical distribution; then, the asymptotic distribution of the regres-
sion coefficients estimated by the inverse method, is Gaussian. Even if we can get the asymptotic
normality from the least square estimator for A?, the goal of this paper is to show that, for large
number of covariates and large number of responses, the inverse regression has better results than
the least square estimators. Numerical experiments in accord with this are available in Section 5.

4. Confidence regions and predictions regions

In this section, we provide confidence regions for vec(A?) and prediction regions for Y through the
inverse regression method.

4.1. Confidence regions for A?

Theorem 13 Suppose ((X1,Y1), . . . , (XN ,YN )) is a sequence of iid random variables satisfying
the model defined in Equations (2) and (3). Then, a confidence region for A? is

P
(

vec(A?) ∈ R̃vec(A?),α

)
→

n→+∞
1− α;

9
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where

R̃vec(A?),α =
{
a? ∈ML,D(R) s.t. (vec(a? − Â?))TΘ(A)−1(vec(a? − Â?)) ≤ χ2

DL(1− α)
}

;

with Θ(A) = Cov(vec(Dg(A).(Â −A))) defined in Equation (13) and χ2
q the χ2-quantile function

with q degrees of freedom.

Those explicit formulae allow to compute confidence regions in practice. Numeric performances
stand in Section 5.

4.2. Prediction regions

Theorem 14 Suppose ((X1,Y1), . . . , (XN ,YN )) is a sequence of iid random variables satisfying
the model defined in Equations (2) and (3). Then,

P
(
YN+1 ∈ P̃RY,α

)
→

N→+∞
1− α;

where

P̃RY,α =
{
y ∈ RL s.t. (17)

(y − Â?XN+1)T (Ω(A?XN+1) + Σ?)−1(y − Â?XN+1) ≤ χ2
L(1− α)

}
;

where Ω(Â?XN+1) is the following L× L covariance matrix;

Ω(A?XN+1) = (IL ⊗XT
N+1)Θ(A)(XT

N+1 ⊗ IL);

where Θ(A) = Cov(vec(Dg(A).(Â−A))) defined in Equation (13).

One can notice that the covariance matrix that is inverted in Equation (17) breaks down into 2
parts. The first one, Ω(A?XN+1), represents the variance of the prediction which depends on the
estimation accuracy of A? while the second part, Σ?, is the variance inherited from the residuals.

5. Simulations

The goal of this section is to compute the prediction regions derived from the theoretical results
presented in Section 4. For several designs regarding the sample size, the dimension, the sparsity and
several covariance patterns, we study the coverage, the volume of the interval and the computation
time. For comparison, we also compute prediction intervals deduced from the least square estimator
or a regularized approach (depending on the dimension we consider)1.

5.1. Simulation design

In order to assess the impact of data dimension and design complexity on different estimation
methods of prediction regions, we perform a simulation study. The Gaussian setting is considered.
The response dimension L is varying in {1, 2, 5}. Indeed, when L = 1 or 2, prediction regions are
easily graphically displayable which is useful to visualize methods. We focus on four distinct designs:
for D = 100, we consider a high-dimensional one with N = 50, an asymptotic one with N = 500
and an intermediate design with N = 100. We also study a design with D = 1000 and N = 100 to
assess our method when D is large. Data are simulated according to an inverse regression model and
forward parameters are deduced from Equation (6). For each combination of dimension, we focus
on the 4 following scenarii:

1. The R code to use the 3 compared methods on simulated data is available at
https://research.pasteur.fr/fr/member/emeline-perthame/.
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Prediction regions through Inverse Regression

(Case 1) Sparse regression coefficients and independent responses: A is a D×L matrix with 3% of its
rows with non zero entries, uniformly drawn into a uniform distribution on (-3, 3) for D = 100
and (-1, 1) for D = 1000. This setting ensures that the sparsity level of A? is 3% regardless to
L, as proposed in van de Geer et al. (2014). Coefficients are drawn from a uniform distribution
on (−2, 2) for D = 100 and (−1, 1) for D = 1000. Matrix Γ of covariances between response
terms is set to IL. The residual covariance matrix of inverse regression Σ is set to ID. Note
that a diagonal Σ and a sparse A under the inverse model lead to a sparse matrix of regression
coefficients for forward regression A?.

(Case 2) Sparse regression coefficients and correlated responses: same as previous scenario except that
Γ is a full covariance matrix generated according to a factor model such as dependence among
response terms is rather strong.

(Case 3) Full matrix of regression coefficients and correlated responses: coefficient matrix A is full
with entries uniformly sampled in [−0.5, 0.5] for D = 100 and [−0.125, 0.125] for D = 1000
(to ensure similar SNRs) and covariance matrix Γ is generated as in Case 2. The residual
covariance matrix Σ is set to ID.

(Case 4) Unconstrained residual covariance matrix Σ: same as previous scenario except that Σ is a full
covariance matrix generated according to a factor model such as dependence among residuals
of inverse regression terms is medium. Note that this scenario violates our assumption that Σ
is diagonal and allows to assess the robustness of our approach to this limitation.

Cases 1 and 2 mimic designs with a low number of active covariates to predict the response.
Therefore, they are favourable for the lasso, which performs variable selection. In Case 2, responses
are correlated, which might affect the lasso. Case 3 falls in our inverse regression paradigm so it
favours IR and LSE (when computable) but not the lasso. At last, Case 4 violates the assumption
we made so only LSE is favoured (when computable), as it does not make any assumption on the
structure of the design. Note that the amplitude of coefficients in A differs from one case to another.
This amplitude is adjusted in order to make scenarii comparable regarding to the signal to noise
ratio (SNR) criterion defined as:

SNR =
1

L
trace(A?Γ?(A?)T (Σ?)−1);

where trace refers to the sum of diagonal entries of a matrix. In this simulation setting, for all
cases and all values of L, the SNR varies between 8 and 10 which is rather (reasonably) high. Note
that we extended the well-known SNR definition of Verzelen and Gassiat (2017) to our multivariate
response framework. However, note that even if SNR values are similar for the different settings,
the evolution of performance with respect to L is difficult to analyze because the difficulty of the
regression problem depends on L.

Datasets are generated under a linear regression model as defined in Equations (2)-(3). For
each simulated design, 1 000 learning datasets with dimension (N,D) are generated as well as
1 000 corresponding testing observations. Note that the computation of prediction regions for
inverse model involves the computation of a commutation matrix. To compute such matrices, we
used the fast routine implemented in the function commutation.matrix available in the R package
matrixcalc.

We compare the prediction regions derived from the 3 following methods: the proposed method
based on inverse regression referred as IR in the following, the so-called least square estimator (LSE)
for designs with N > D and a Lasso prediction interval based on bootstrap. To our knowledge, no
computation of prediction regions for the lasso is implemented into a R package. In our simulation
study, we therefore implemented our own version of prediction regions for the lasso, based on a
bootstrap approach. N observations are sampled with replacement within the training set and

11
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Figure 1: Results of simulations study for Gaussian distribution: prediction regions computed on
datasets simulated under models described in Section 5.1. Coverage, normalised volume
and CPU time are computed for each method to compare performances. IR (in black) is
compared to the bootstrapped Lasso (in dark grey) and to LSE (in light grey) for designs
with N > D. Each method is assessed 1000 times, and mean is computed and reported
on the graph with colour for the method and dot shape for the 4 cases. We added a small
amount of random variation to the horizontal location of each point in order to avoid
overlap.

lasso variable selection is applied using glmnet R package. For each bootstrapped training set, the
response of testing set is predicted. By repeating this procedure B = 100 times, the distribution of
the prediction is estimated. The prediction region is deduced using the α/2 and 1 − α/2 quantiles
of this distribution. For more details, the code is available online on the author’s webpage. The
accuracy of the method is assessed by computing the coverage (proportion of testing observations
falling into the prediction region), the normalised volume of the prediction regions (defined as the
Lth root of the volume) and the computation time (on log scale) required to compute the prediction
region on a MacBook Pro - 2,9 GHz Intel Core i5 processor - RAM 16 Go with programs written in
R. In this simulation study, the level of confidence for prediction regions is set to 95%.
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5.2. Results of the intensive simulation study

The results of this simulation study are presented in Figure 1 (corresponding numerical values are
available in Table 1 in Appendix). This figure presents the results for varying sample and design sizes
in column, and coverage, volume and time computation in row for varying methods and response
dimension. For each scenario, IR (in black) is compared to Lasso (in dark grey) and to LSE (in light
gray) when N > D.

First, Figure 1 demonstrates that the proposed method reached a valid asymptotic coverage and
performs well with respect to LSE and Lasso. Indeed, its performances regarding coverage and
volume are similar or even better than Lasso for multivariate response. As expected, the confidence
level increases with the ratio N/D. Note that multivariate version of the Lasso is not implemented to
our knowledge in R which makes IR a challenging method. Interestingly, IR does not suppose sparsity
in the model but seems to be competitive with the Lasso on sparse design (Cases 1 and 2) regarding
to both coverage and volume. Under Case 3, data are generated under the underlying model of IR,
with Σ diagonal and no sparsity assumption on A, so IR performs particularly well. Case 4 is the
most difficult for our procedure, as it violates our assumption that Σ is diagonal. Performances are
rather good compared with the Lasso, but, when it is computable (N > D), LSE performs better
as no assumption is needed. However, IR has always a smallest volume than Lasso and LSE, so it
seems to have correctly detected the shape of the ellipsoid. Remark that when D > N , especially
for D = 1000, inference seems a challenging problem and coverage is far from 95%. Coverage is
even poorer for Case 4 as none of the methods seems to compute a reasonable prediction region.
Compared to bootstrapped Lasso, IR approach is significantly faster as our method does not rely
on resampling. Computation time is reasonable while achieving challenging coverage and volume
when D is large. Whatever the design, note that the volume of prediction regions increases with L,
meaning the underlying space dimension. It is interesting to notice that, by normalising the volume
by the dimension, the volume stays almost constant across the situations studied.

Figure 2 displays a graphical representation of prediction regions for Case 1 which are ellipses
when L = 2. We consider two sample sizes, N = 50 and N = 500. Dotted line represents ellipses
computed by LSE when N = 500 and Lasso when N = 50, long dashed line represents ellipses
computed by IR and solid line represents true prediction regions computed with true parameters
used for simulation. Grey dots are 500 replications of responses from the same covariate’s profile
representing the residual variance. Three specific profiles of covariates are considered: on the left
panel, prediction ellipse for the median covariate’s profile is computed, which is an easy situation.
When N = 500, both LSE and IR provide similar ellipses, close to the true one. When N = 50,
IR’s ellipse is close to the true one while Lasso correctly predicts the response but the volume of
the ellipse is larger. For the middle panel, a covariate’s profile corresponding to quantile 0.35 is
generated, making the computation of the prediction ellipse more complex. When sample size is
large, LSE and IR are competitive regarding to true ellipse and equivalent. When N = 50, the ellipse
computed with IR is larger than the theoretical one. The bootstrapped Lasso fails in prediction,
which confirms the lower coverages observed in Figure 1. At last, for the right panel, an even more
extreme profile associated to quantile 0.2 is generated, making the computation less reliable. When
N = 500, the volume of ellipses computed by LSE and IR gets even larger as the covariate’s profile
gets far from the mean. Notice that LSE and IR again achieve similar ellipses in this setting. When
N = 50, conclusions of the middle panel apply as well.

To conclude, we would advice to use IR when no variable selection is expected, whereas consid-
ering a high-dimensional dataset. Moreover, IR may consider correlated responses, which is not the
case for usual estimators in high-dimension. Remark also that assumptions are weakest when L is
larger, because it describes the number of factors in the decomposition of the covariance matrix. So
we would also advice to use IR if the response is multivariate. About the robustness to diagonal
residual covariance matrix, we think that, even if it would be very interesting to derive it, a theoret-
ical result is out of the scope of this paper. The robustness is tested in practice, and we denote that
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Figure 2: Prediction regions for L = 2. Dotted line: LSE for N = 500 and Bootstrapped Lasso
for N = 50, long dashed line: IR, solid line: true parameters, grey dots: 500 responses
generated from the same covariate’s profile. On the left panel, median covariate’s profile
are considered. In the middle panel, a covariate’s profile corresponding to quantile 0.35
is generated. On the right panel, a profile associated to quantile 0.2 is generated. Thus,
more on the right, more difficult it is.

for reasonable dimensions (not the largest one), IR performs good. When the number of covariates
is too large, and the assumption is violated, performance is not good as one may expect.

5.3. Study of estimation accuracy

In this section, we focus on the first setting (Case 1) with L = 2, D = 5 and N = 100 in order
to visualise the ability of inverse regression to estimate parameters (A?,Γ?,Σ?) and to predict the
response. Violin plots of Figures 3 to 5 display the distribution of the estimators in black and the
true value of the parameter in red. Regarding the estimation of the D × D matrix Γ?, Figure 3
demonstrates that IR is able to retrieve the diagonal structure of the true matrix. Note that the
estimation is more variable for diagonal terms. Same remarks hold for the estimation of the L× L
matrix Σ?, see Figure 4. Regarding estimation of A?, it is interesting to notice that IR partially
retrieves the sparse structure of the true parameter. Indeed, all values in A? are zero except the
4th coefficient of the first row, and the 3rd value of the second row in Figure 5. The corresponding
violin plots are centred around the true value.

Figure 6 displays the distribution of absolute prediction error |Ŷ −Y|. Note that IR achieves
interesting prediction accuracy as most of prediction errors are close to 0. Prediction error of
the second response seems easier to predict than the first component which is not surprising as the
residual variance in matrix Σ? for the 2nd response is smaller than residual variance of first response
component.
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Figure 3: Violin plots displaying the distribution of Γ? estimator for L = 2, D = 5 and Case 1. Γ?

is diagonal, true values are located by red crosses.
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6. Conclusion and further discussion

In this article, the properties of inverse regression are extensively investigated under the general
framework of elliptical distributions. Inverse regression addresses linear regression issues with ran-
dom multivariate predictors and multiple responses. The characteristic of this model is that it inverts
the role of covariates and response. By making weak assumptions on the residual covariance matrix
of the inverse regression, this model allows to consider settings with both large sample size and
covariates dimension, as an alternative to least square methods or regularized methods. Explicit es-
timators of model parameters are derived, for which asymptotic distributions and confidence regions
are deduced. Last but not least, asymptotic prediction regions are derived, allowing to quantify the
confidence in prediction.

In an intensive simulation study, we present inverse regression as an alternative to variable
selection when the sample size is small regarding to the dimension of covariates. Indeed, inverse
regression achieves interesting coverage for reasonable time computation. Although our results are
asymptotic, performances are challenging for finite sample and illustrates how this model can be
used in practice.

A future work could be the extension of this model to generalized linear model by considering
other distributions of the noise of the inverse model.
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Appendix A: details for the proofs

Relation between forward and inverse regression

The joint distribution defined in (1) leads to the marginal and the conditional distributions of
Equations (2)-(5) and to a mapping between their mean and variance parameters. Indeed, using
conditioning properties of elliptical distributions, we get the following marginal for X and conditional
for Y distributions

X ∼ ED(0,Σ + AΓA>, φ);

Y|X ∼ EL(Γ>A>(Σ + AΓA>)−1X,Γ− Γ>A>(Σ + AΓA>)−1AΓ, φ̃).

where φ̃ is defined in Cambanis et al. (1981) and not detailed here. For more details, we refer to
this key paper, as the explicit expression of the characteristic function is not used in this article.

We therefore define

Γ? = Σ + AΓA>;

Σ? = Γ− Γ>A>(Σ + AΓA>)−1AΓ = (Γ−1 + A>Σ−1A)−1;

using Woodbury matrix identity. Lastly we define A? which gives the relations between forward
and inverse regression

A? = Γ>A>(Σ + AΓA>)−1

= ΓA>Σ−1 − ΓA>Σ−1A(Γ−1 + A>Σ−1A)−1A>Σ−1

=
[
Γ(Γ−1 + A>Σ−1A)− ΓA>Σ−1A

]
(Γ−1 + A>Σ−1A)−1A>Σ−1

= (Γ−1 + A>Σ−1A)−1A>Σ−1;

using Woodbury identity matrix again and the symmetric property of Γ.

Proof of Proposition 9

Regression coefficients A are estimated using the so-called least square estimator in the inverse
regression model

Â> = (Y>Y)−1Y>X.

Conditionally to random vectors (Yi)
N
i=1, Â is a linear combination of the elliptically distributed

random vectors (Xi)
N
i=1. The conditional distribution of Â hence follows:

Â>|Y1, . . . ,YN ∼ME(A,
−1

2φ′(0)
(YTY)−1 ⊗Σ, φ).

The distribution is stable because we consider an affine transformation of matrix elliptical variables
from family defined by φ. The conditional expectation and conditional variance are deduced directly
from the formula.

Proof of Proposition 10

ÂT = AT +

(
YTY

N

)−1
YTe

N
.

As Y is elliptic, YTY
N converges to −2φ′(0)Γ, we get that

ÂT →
N→+∞

AT + (−2φ′(0)Γ)−1 lim
N→+∞

YTe

N
.
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If we denote Wi = YT
i ei a matrix with L rows and D columns, we get that E(W) = 0 and

var(W) = 4φ′(0)φ′e(0)Γ ⊗Σ, by the law of total variance. Using the central limit theorem, we get
that

√
N

(
1

N

N∑
i=1

Wi

)
=

YTe√
N

→
n→+∞

MNL,D(0, 4φ′(0)φ′e(0)Γ⊗Σ).

Thus,

(−2φ′(0)Γ)−1
YTe√
n

→
n→+∞

MNL,D(0,
φ′e(0)

φ′(0)
Γ−1 ⊗Σ).

Finally,

√
N(Â−A) →

n→+∞
MND,L(0,

φ′e(0)

φ′(0)
Σ⊗ Γ−1).

Proof of Lemma 11

We use the following lemma.

Lemma 15 If ‖A‖ ≤ 1, then (I−A)−1 = I + A + A2 + o(||A||2).

Then, we prove Lemma 11:

g(A + hM)− g(A) = h(Γ−1 + A>Σ−1A)−1M>Σ−1

− h(Γ−1 + A>Σ−1A)−1(M>Σ−1A + A>Σ−1M)(Γ−1 + A>Σ−1A)−1AΣ−1 +O(h2);

Dg(A).M = (Γ−1 + A>Σ−1A)−1M>Σ−1

− (Γ−1 + A>Σ−1A)−1(M>Σ−1A + A>Σ−1M)(Γ−1 + A>Σ−1A)−1AΣ−1.

Next, remember that M = (Â−A), we have:

Dg(A).(Â−A) = (Γ−1 + A>Σ−1A)−1[Â−A]>Σ−1 − (Γ−1 + A>Σ−1A)−1

×
(

[Â−A]>Σ−1A + A>Σ−1[Â−A]
)

(Γ−1 + A>Σ−1A)−1AΣ−1.

(18)

Then, we compute the covariance. We decompose it as the following.

Cov(vec(Dg(A).(Â−A))) =var(vec(Σ?(Â−A)>Σ−1)) + var(vec(Σ?(Â−A)>Σ−1AA?))

+ var(vec(A?(Â−A)A?))

− 2cov(vec(Σ?(Â−A)>Σ−1), vec(Σ?(Â−A)>Σ−1AA?))

− 2cov(vec(Σ?(Â−A)>Σ−1), vec(A?(Â−A)A?)).

− 2cov(vec(Σ?(Â−A)>Σ−1AA?), vec(A?(Â−A)A?)).
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Then, we want to compute each term explicitly.

var(vec(Σ?(Â−A)>Σ−1)) =
φ′e(0)

φ′(0)
(Σ−1 ⊗Σ?ΓΣ?);

var(vec(Σ?(Â−A)>Σ−1AA?)) =
φ′e(0)

φ′(0)
((A?)>A>Σ−1AA? ⊗Σ?ΓΣ?);

var(vec(A?(Â−A)A?)) =
φ′e(0)

φ′(0)
((A?)>ΓA? ⊗A?Σ(A?)>);

cov(vec(Σ?(Â−A)>Σ−1), vec(Σ?(Â−A)>Σ−1AA?)) =
φ′e(0)

φ′(0)
(Σ−1AA? ⊗Σ?ΓΣ?);

cov(vec(Σ?(Â−A)>Σ−1), vec(A?(Â−A)A?)) =
φ′e(0)

φ′(0)
(I⊗Σ?Γ)T−1LD((A?)> ⊗A?);

cov(vec(Σ?(Â−A)>Σ−1AA?), vec(A?(Â−A)A?)) =
φ′e(0)

φ′(0)
((A?)>A> ⊗Σ?Γ)T−1LD((A?)> ⊗A?).

Putting everything together, we get the following:

φ′(0)

φ′e(0)
Cov(vec(Dg(A).(Â−A))) =(Σ−1 ⊗Σ?ΓΣ?) + ((A?)>A>Σ−1AA? ⊗Σ?ΓΣ?)

+ ((A?)>ΓA? ⊗A?Σ(A?)>)− 2(Σ−1AA? ⊗Σ?ΓΣ?)

− 2(I⊗Σ?Γ)T−1LD((A?)> ⊗A?)

− 2((A?)>A> ⊗Σ?Γ)T−1LD((A?)> ⊗A?)

=
(
(Σ−1 + (A?)>A>Σ−1AA? − 2Σ−1AA?)⊗Σ?ΓΣ?

)
+ ((A?)>ΓA? ⊗A?Σ(A?)>)

− 2
(
(I⊗Σ?Γ) + ((A?)>A> ⊗Σ?Γ)

)
T−1LD((A?)> ⊗A?).

Appendix B: results of simulation study

The table hereafter details numerical values displayed in Figure 1.
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Table 1: Results of simulation study displayed in Figure 1 (best results for coverage and volume are
in bold).
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