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Abstract

Feature screening is a powerful tool in processing high-dimensional data. When the sample
size N and the number of features p are both large, the implementation of classic screening
methods can be numerically challenging. In this paper, we propose a distributed screening
framework for big data setup. In the spirit of “divide-and-conquer”, the proposed frame-
work expresses a correlation measure as a function of several component parameters, each
of which can be distributively estimated using a natural U-statistic from data segments.
With the component estimates aggregated, we obtain a final correlation estimate that can
be readily used for screening features. This framework enables distributed storage and
parallel computing and thus is computationally attractive. Due to the unbiased distribu-
tive estimation of the component parameters, the final aggregated estimate achieves a high
accuracy that is insensitive to the number of data segments m. Under mild conditions,
we show that the aggregated correlation estimator is as efficient as the centralized esti-
mator in terms of the probability convergence bound and the mean squared error rate;
the corresponding screening procedure enjoys sure screening property for a wide range of
correlation measures. The promising performances of the new method are supported by
extensive numerical examples.

Keywords: Feature screening, Big data, Divide-and-conquer, Aggregated correlation,
Sure screening property

1. Introduction

With rapid development of data generation and acquisition, massive data with a huge num-
ber of features are frequently encountered in many scientific fields. High dimensionality
poses simultaneous challenges of computational cost, statistical accuracy, and algorithmic
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stability for classic statistical methods (Fan et al., 2009). To facilitate the computing pro-
cess, one natural strategy is to screen most irrelevant features out before an elaborative
analysis. This procedure is referred to as feature screening. With dimensionality reduced
from high to low, analytical difficulties are reduced drastically. In the literature, plenty of
works have been done in this area; in particular, the correlation-based screening methods
have attracted a great deal of attention. These methods conduct screening based on a
certain correlation measure between features and the response. Features with weak cor-
relations are treated as irrelevant ones and are to be removed. This type of methods can
be conveniently implemented without strong model assumptions (even model-free). Thus,
they are commonly used for analyzing high-dimensional data with complex structures. For
example, Fan and Lv (2008) proposed a sure independence screening (SIS) based on Pearson
correlation. Zhu et al. (2011) proposed a sure independent ranking and screening (SIRS)
based on a utility measure that is concerned with the entire conditional distribution of the
response given the predictors. Li et al. (2012a) proposed a robust rank correlation screening
(RRCS) based on the Kendall τ rank correlation. Li et al. (2012b) developed a model-free
sure independence screening procedure based on the distance correlation (DC-SIS). Wu
and Yin (2015) proposed a distribution function sure independence screening (DF-SIS) ap-
proach, which uses a measure to test the independence of two variables. Zhou et al. (2019)
proposed a robust correlation measure to screen features containing extreme values.

Feature screening has been demonstrated to be an attractive strategy in many appli-
cations. Most existing methods are developed under the situation, where the number of
features p is large but the sample size N is moderate. However, in modern scientific re-
search, it is increasingly common that data analysts have to deal with big data sets, where
p and N are both huge. For example, in modern genome wide genetic studies, millions of
SNPs are genotyped on hundreds of thousands participants. In Internet studies, an antivirus
software may scan tens of thousands keywords in millions of URLs per minute. When faced
with large-p-large-N data, the direct implementation of classic screening methods can be
numerically inefficient due to storage bottleneck and algorithmic feasibility. For example,
for a data set with N = p = 10, 000, the well-known DC-SIS needs about 60 hours to
conduct a full screening on a computer with 3.2 GHz CPU and 32 GB memory. Developing
computationally convenient methods for big data screening is therefore desirable in practice.

When a data set is too huge to be processed on a single computer, it is natural to consider
using a “divide-and-conquer” strategy. In such a strategy, a large problem is first divided
into smaller manageable subproblems and the final output is obtained by combining the
corresponding sub-outputs. In this spirit, many machine learning and statistical methods
have been rebuilt for processing big data (e.g., Chen and Xie, 2014; Xu et al., 2016; Jordan
et al., 2019; Shi et al., 2018; Banerjee et al., 2019). These inspiring works motivate us to
explore the feasibility of using this promising strategy for feature screening with big data.

In this paper, we propose a distributed feature screening framework based on aggregated
correlation measures, and refer to it as aggregated correlation screening (ACS). In ACS,
we express a correlation measure as a function of several component parameters, each of
which can be distributively estimated using a natural U-statistic from data segments. With
the unbiased component estimates combined together, we obtain an aggregated correlation
estimate, which can be readily used for feature screening. In the proposed ACS framework,
a massive data set is split into and processed in m manageable segments, which can be
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stored in multiple computers and the corresponding local estimations can be done by par-
allel computing. It thus provides a computationally attractive route for feature screening
with large-p-large-N data. This framework is also suitable for the setup, where data are
naturally stored in different locations (e.g., medical data at hospital level). The U-statistic
estimation of the component parameters serves as an effective and convenient debasing
technique, which ensures the high accuracy of the aggregated correlation estimator and the
reliability of the corresponding screening procedure. Under mild conditions, we show that
the aggregated correlation estimator is as efficient as the classic centralized estimator in
terms of the probability convergence bound and the mean squared error (MSE) rate. Such
a full efficiency is insensitive to the choice of m, which may be specified by the problem itself
or to be determined by the users. For a wide range of correlation measures, we further show
that ACS enjoys the sure screening property without the need of specifying a parametric
model (model-free).

The proposed ACS has its roots in component-wise estimation. In the literature, this
idea has been used to distributively recover a centralized estimator defined by smooth
estimating equations that are separatable in data segments (e.g., Chen et al., 2006; Lin and
Xi, 2011). Unfortunately, these works are not directly applicable to the correlation-based
screening, as the centralized estimators of many commonly-used correlation measures are
not typically defined by estimating equations and are non-separatable in data segments (e.g.,
SIRS and DC). The proposed ACS follows from the natural composition of a centralized
correlation estimator; it does not seek to fully recover the centralized estimator but leads
to an effective and computationally affordable alternative of it. Our results in this paper
provide a theoretical support of using this natural strategy for distributed feature screening.
We demonstrate the computational advantages and promising screening accuracy of ACS
in a series of numerical examples.

The rest of this paper is organized as follows. In Section 2, we formulate the research
problem and introduce the ACS framework. In Section 3, we investigate the theoretical
properties of ACS. In Section 4, we demonstrate the promising performance of ACS by
Monte Carlo simulations and a real data example. Concluding remarks are given in Section
5 and the proofs of theorems are provided in the Appendix.

2. Methodology

2.1. Feature screening with big data

Let D = {(Yi,Xi)}Ni=1 be N independently and identically distributed (i.i.d) copies of
{Y,X}, where Y is a response variable with support Φy and X = (X1, ..., Xp)

T is a p-
dimensional covariate vector. We are interested in the situation, where p and N are both
large. When a data set is massive and high-dimensional, it is often reasonable to assume
that only a handful of covariates (features) are relevant to the response. Let F (y|X) be the
conditional distribution function of Y given X. A feature Xj is considered to be relevant
if F (y|X) functionally depends on Xj for some y ∈ Φy. We use M to denote the index set
of the relevant features and define Mc = {1, ..., p} \M. The goal of feature screening is to
remove most irrelevant features Xjs with j ∈Mc before an elaborative analysis.

One commonly used strategy is to first estimate a marginal correlation measure be-
tween the response and each feature, and then remove the features with weak correlations.
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Specifically, let ωj ≥ 0 be a measure of correlation strength between Y and Xj . Let ω̂j be
a centralized estimate of ωj based on D. With a pre-specified threshold γ > 0, one may
retain the features in

M̂ = {j : ω̂j ≥ γ, j = 1, ..., p},

and remove the others. This classic approach is effective when sample size N is moderate.
However, when N and p are both huge, computing {ω̂j}pj=1 based on the full data set D
can be numerically costly.

2.2. Aggregated correlation screening

Motivated by the recent works in distributed learning, we consider adopting the idea of
“divide-and-conquer” to tackle big data feature screening. Without loss of generality, sup-
pose that the original full data set D is equally partitioned into m manageable segments
{Dl}ml=1, each of which contains n = N/m observations. Depending on the computational
environment, these segments can be distributively stored on and processed by multiple
computers or can be sequentially processed by a single computer. Let ω̂l,j be the local
correlation estimate between Xj and Y based on data segment Dl. One simple screening
strategy is to compute an averaged correlation estimate

ω̄j =
1

m

m∑
l=1

ω̂l,j (1)

for 1 ≤ j ≤ p and remove the features with small ω̄j values. This approach is referred
to as simple average screening (SAS), which perhaps is the most straightforward way for
distributed screening. To facilitate the computing process, using a relatively large number
of small segments is often preferred in the analysis. However, when m is large, ω̄j may
substantially differ from the centralized estimator ω̂j due to the cumulated bias inherited
from the local estimators. As a result, its screening performance is often unstable in practice,
as to be revealed in our numerical studies.

One way to improve SAS is to conduct debiasing on ω̂l,js before averaging them over.
Unfortunately, this is not straightforward for many commonly-used correlation measures
that are nonlinear. Our idea is to express a correlation measure ωj as a function of several
component parameters, and conduct the distributed unbiased estimation of the component
parameters. By doing so, we carry out componentwise debasing on original ω̂l,js in an
effective but much easier way. With the unbiased component estimates naturally combined
together, we obtain an aggregated correlation estimate that can be readily used for feature
screening.

To be more specific, suppose that a correlation measure between Y and Xj can be
expressed as

ωj = g(θj,1, ..., θj,s), (2)

where g is a pre-specified function and θj,1, ..., θj,s are s component parameters from a
compact space. For a given correlation measure, expression (2) may not be unique. We
choose the form of g such that the corresponding component parameters can be conveniently
estimated with no bias. For the ease of presentation, let θ̂j,h(Zi1j , . . . , Zikhj) denote a basis
unbiased estimator (kernel) of θj,h with the minimal kh i.i.d copies of Zj = {Y,Xj} for
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h = 1, . . . , s. Without loss of generality, we assume that θ̂j,h is symmetric such that its
value is invariant to the permutation of {Zi1j , . . . , Zikhj}.

Suppose that D is too big to be processed on a single computer and is equally partitioned
into m segments {Dl}ml=1. We use Sl to denote the index set of {Y,X} copies on Dl. With
a pre-specified correlation measure ωj , we propose to distributively screen features in the
following framework.

1. Express ωj in the form of (2) with an appropriate g.

2. On each data segment, we estimate θj,h by a local U-statistic

U lj,h =

(
n

kh

)−1 ∑
{i1,...,ikh}∈Sl

θ̂j,h(Zi1j , ..., Zikhj), (3)

where the summation is over all {Zi1j , ..., Zikhj} combinations chosen from Dl.

3. We compute an aggregated correlation estimate between Y and Xj by

ω̃j = g(Ūj,1, ..., Ūj,s), (4)

where Ūj,h = 1
m

∑m
l=1 U

l
j,h for h = 1, . . . , s.

4. With a user-specified threshold γ > 0, we retain the features in

M̃ = {j : ω̃j ≥ γ, j = 1, ..., p},

and remove the others.

We name the proposed screening framework as the aggregated correlation screening (ACS).
It is seen that step 2 only requires information stored on the data segments, and thus it
can be carried out by parallel or sequential processing. This makes ACS computationally
suitable for the large-p-large-N situation. The use of U-statistics in step 2 helps to further
reduce the variances of the local unbiased estimators on θj,hs and helps to enhance the
stability of the method. The computational complexity of (3) is O(nkh), which can be
conveniently handled with an appropriate m such that the local sample size n = N/m is
moderate. Compared with SAS, ACS screens features based on a non-linear aggregation of
unbiased component estimates. This way enables us to substantially reduce the bias of the
final correlation estimate with a little sacrifice on the variance. The overall accuracy of the
ωj estimate is therefore improved; this in turn leads to a more reliable screening result in
the distritbuted setup.

2.3. Examples and extension

2.3.1. Examples

The proposed ACS framework is suitable for many commonly used correlation measures. In
this subsection, we provide a few concrete examples of using ACS. As a reference, we also
list the corresponding expressions of ω̂l,j used in SAS in the Appendix for the interested
readers. For the convenience of presentation, let Xij denote the jth entry of Xi defined in
Section 2.1 for j = 1, . . . , p.
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1. Pearson correlation

Pearson correlation measures the strength of linear relationship between Y and Xj .
Fan and Lv (2008) used it as a feature screening index for the linear model. When
Pearson correlation is used in ACS, ωj can be expressed in the form of (2) by

ωj = g(θj,1, ..., θj,5) =

∣∣∣∣∣∣ E(XjY )− E(Xj)E(Y )√
(EX2

j − E2(Xj))(EY 2 − E2(Y ))

∣∣∣∣∣∣ ,
where θj,1 = E(XjY ), θj,2 = E(Xj), θj,3 = E(Y ), θj,4 = EX2

j , and θj,5 = EY 2. In

step 2 of ACS, U lj,h can be computed by (3) with kh = 1 and

θ̂j,1 = Xi1jYi1 , θ̂j,2 = Xi1j , θ̂j,3 = Yi1 , θ̂j,4 = X2
i1j , θ̂j,5 = Y 2

i1 ,

for i1 ∈ Sl. It is seen that Ūj,h in (4) coincides with classic moment estimates. When
the data set is properly standardized, the expression of ωj can be further simplified.

2. Kendall τ rank correlation

Kendall τ rank correlation measures the ordinal association between Y and Xj . It
was used in Li et al. (2012a) for feature screening in linear and transformation models.
When this correlation measure is used in ACS, ωj can be expressed by

ωj = g(θj,1) =
∣∣E(I(Xj < X ′j)I(Y < Y ′))− 1/4

∣∣ ,
where {X ′j , Y ′} is an independent copy of {Xj , Y } and θj,1 = E(I(Xj < X ′j)I(Y <

Y ′)). In step 2 of ACS, U lj,1 can be computed by (3) with k1 = 2 and

θ̂j,1 =
1

2

∑
(i1,i2)

I(Xi1j < Xi2j)I(Yi1 < Yi2),

where {i1, i2} ∈ Sl and the summation is over all permutations of (i1, i2).

3. SIRS correlation

SIRS correlation can be used to detect nonlinear relationship between Y and Xj . It
was proposed by Zhu et al. (2011) for feature screening in parametric and semipara-
metric models. When this correlation is used in ACS, ωj can be expressed by

ωj = θj,1 = EY ′{E2(XjI(Y < Y ′))},

where Y ′ is an independent copy of Y and feature Xj is assumed to have zero mean
and unit variance. In step 2 of ACS, U lj,1 can be computed by (3) with k1 = 3 and

θ̂j,1 =
1

6

∑
(i1,i2,i3)

Xi1jXi2jI(Yi1 < Yi3)I(Yi2 < Yi3),

where {i1, i2, i3} ∈ Sl and the summation is over all permutations of (i1, i2, i3).
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4. Distance correlation

Distance correlation (DC) can be used to measure the dependence between Y and Xj .
Li et al. (2012b) used it as a model-free screening index. When DC is used in ACS,
ωj can be expressed by

ωj = g(θj,1, ..., θj,8) =
θj,1 + θj,2 · θj,3 − 2θj,4√

(θj,5 + θ2
j,2 − 2θj,6)(θj,7 + θ2

j,3 − 2θj,8)

with

θj,1 = E{|Y − Y ′| · |Xj −X ′j |},
θj,2 = E{|Y − Y ′|}, θj,3 = E{|Xj −X ′j |},
θj,4 = E{E(|Y − Y ′| | Y )E(|Xj −X ′j | | Xj)},
θj,5 = E{|Y − Y ′|2}, θj,6 = E{E2(|Y − Y ′| | Y )},
θj,7 = E{|Xj −X ′j |2}, θj,8 = E{E2(|Xj −X ′j | | Xj)},

where (Y ′, X ′j) is an independent copy of (Y,Xj). In step 2 of ACS, U lj,1, U lj,4 can be
computed by (3) with k1 = 2, k4 = 3, and

θ̂j,1 =
1

2

∑
(i1,i2)

|Yi1 − Yi2 | · |Xi1j −Xi2j |, (5)

θ̂j,4 =
1

6

∑
(i1,i2,i3)

|Yi1 − Yi3 | · |Xi2j −Xi3j |. (6)

The expression of θ̂j,h for h = 2, 3, 5, 7 is similar to (5); the expression of θ̂j,h for
h = 6, 8 is similar to (6).

Remark: When Pearson correlation is used, the aggregated estimator ω̃j in (4) coincides
with the centralized estimator ω̂j ; the proposed ACS leads to the same screening result
of the classic SIS. For the correlations in Examples 2-4, the computational cost of ω̃j is
substantially lower than that of ω̂j . For DC, when the data segments are parallel processed,
ACS drastically reduces the cost of centralized screening from O(pN3) down to O(pN3/m3);
this is also numerically cheaper than the feature-splitting-based screening, whose cost is
O(pN3/m) with each local computer evaluating p/m features based on ω̂js.

The idea of componentwise debiasing in ACS provides a viable and effective route to
estimate ωj in a distributed manner. For commonly-used correlation measures, form (2) can
be naturally constructed. The simplicity and compatibility of ACS make it a user-friendly
approach in practice.

2.3.2. Extension

When data partition is manually done, one may further improve the stability of ACS with
multiple partitions. Specifically, suppose that we repeat the random data partition R times.
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For each partition, we conduct unbiased estimation of component parameters based on (3).
We then carry out (4) with Ūj,h replaced by

ŬRj,h =
1

R

R∑
r=1

Ū rj,h,

where Ū rj,h denotes the mean U-statistic for the rth partition. By averaging over R parti-
tions, the variability of ω̃j is further reduced; this leads to a reinforced ACS that is more
reliable for feature screening.

When a correlation measure with large khs is used and m is constricted to be small, one
may further split a data segment Dl into smaller and manageable sub-segments. One can
then conduct U-statistic estimation for the component parameters sequentially based on
the sub-segments and use an averaged quantity to replace U lj,h in Step 2 of ACS. If needed,
a reinforced version of this strategy can also be used with multiple sub-partitions.

3. Theoretical Analysis

We now provide some theoretical justification of using ACS. Apparently, the screening per-
formance of ACS relies on the accuracy of the aggregated correlation estimator ω̃j (4).
We show that ω̃j is an effective and efficient tool to estimate ωj ; this serves as a theoret-
ical foundation of ACS. Our theoretical investigation is based on the following technical
conditions.

C1 There exist two constants κ0 and D0 such that, for any 0 ≤ κ ≤ κ0, E{exp(κ|θ̂j,h|)} <
D0 for all h = 1, ..., s, j = 1, ..., p.

C2 In (2), g(·) is formed by finite operations of addition, subtraction, multiplication,
division, absolutization, and square root, where the division and square root are taken
over a quantity uniformly bounded away from zero.

C3 There exist two constants c > 0 and 0 < τ < 1/2 such that min
j∈M

ωj ≥ 2cN−τ .

Condition C1 requires that |θ̂j,h| has a regular distribution, such that its moment generating
function exists on [0, κ0]. This is a mild condition for many correlation measures. For
example, when Kendall τ correlation is used with ACS, θ̂j,h is bounded and thus C1 is
naturally satisfied; when SIRS is used with ACS, C1 is implied if E{exp(ξX2

j )} < D′0 for
some ξ > 0, D′0 > 0 and 1 ≤ j ≤ p. Condition C2 is applicable to a variety of commonly
used correlation measures, including the ones discussed in Section 2.3.1. We conjecture
that ACS would still be effective with a more complicated g(·). However, the corresponding
theoretical justification is likely to be lengthy. Here, we aim to provide some theoretical
understanding of the proposed screening framework and do not intend to make this condition
weakest possible. Condition C3 requires that the marginal correlation between any relevant
feature and the response should not be too small. This is a natural feature identifiability
requirement, which has been widely used in the literature; see, for example, Condition 3 of
Fan and Lv (2008), Condition 2 of Li et al. (2012b), and Condition 6 of Wu and Yin (2015).
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With the conditions above, we first show that the averaged local U -statistics Ūj,hs enjoy
the properties stated in the following proposition.

Proposition 1 Under Condition C1, we have

max
1≤j≤p,1≤h≤s

Var(Ūj,h) = O(
1

N
) +O(

m

N2
) + ...+O(

mkh−1

Nkh
), (7)

which is increasing in m.

By (7), we see that the largest Var(Ūj,h) is in the order of O(N−1) for both fixed m and
diverging m. While a larger m leads to an increased variance of Ūj,h, such an information
loss is insignificant in the sense that the asymptotic order of (7) remains unchanged. Since
Ūj,hs are unbiased, the high precision implies the uniform second moment consistency,
which echoes Theorem 2 of Lin and Xi (2010). Proposition 1 indicates that the component
parameters can be effectively estimated by summarizing the corresponding local U-statistics
from data segments. With the properties of Ūj,h, we show the effectiveness of ω̃j in the
following two theorems.

Theorem 2 Suppose that Conditions C1-C3 are satisfied and k = max{kh, h = 1, . . . , s} ≤
n. There exists a constant η > 0 such that

P

(
max

1≤j≤p
|ω̃j − ωj | ≥ cN−τ

)
≤ ηp(1−N−2τ/η)mbn/kc,

where bn/kc denotes the largest integer no larger than n/k.

Note that k is a constant depending on the choice of ωj and g(·); thus, mbn/kc is in
the same order of N . Theorem 2 implies that the aggregated correlation estimators are
uniformly consistent even when p grows exponentially with Nα for some 0 < α < 1. In
the literature, it has been shown that the centralized estimator achieves convergence bound
|ω̂j − ωj | = Op(N

−τ ) for 0 < τ < 1/2 (Li et al., 2012a,b; Cui et al., 2015; Wu and Yin,
2015). Theorem 2 indicates that ω̃j works as efficiently as the centralized estimator ω̂j in
terms of the probability convergence bound.

For the correlation measures admitting a Lipschitz continuous g(·), we further justify
the corresponding ω̃j in terms of MSE. To be specific, recall that we express a correlation
measure ωj = g(θj) with θj = (θj,1, ..., θj,s) from a compact space Θ ⊂ Rs. We say g(·) is
Lipschitz continuous in θj , if the following condition is satisfied.

C2′ There exists a positive constant L such that |g(θj) − g(θ′j)| ≤ L‖θj − θ′j‖ for any
θj ,θ

′
j ∈ Θ, where ‖ · ‖ denotes the Euclidean norm.

Condition C2′ can be naturally satisfied by many correlation measures. For example, as
shown in Section 2.3.1, we have g(θj,1) = |θj,1− 1/4| for Kendall τ correlation and g(θj,1) =
θj,1 for SIRS, where both g(·)s are Lipschitz continuous. When component parameters
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appear in the denominator in g(·), Condition C2′ is often satisfied with mild requirements on
(Y,X) such that the denominator is uniformly bounded away from zero. For example, when
Pearson correlation is used, Condition C2′ is satisfied when Var(Y ) > 0 and Var(Xj) > c for
j = 1, . . . , p with some c > 0; when DC is used, Condition C2′ is satisfied when the distance
variances of Xj and Y defined in Li et al. (2012b) are all bounded away from zero. In fact,
when the parameter space Θ is compact, Condition C2′ can be implied by Condition C2,
the proof of which is similar to Lemma 6 in the Appendix. Based on this condition, we
derive a uniform MSE bound for ω̃js in the following theorem.

Theorem 3 Under Conditions C1 and C2’, if k ≤ n and Ūj,h ∈ Θ, we have

max
1≤j≤p

MSE(ω̃j) = E(ω̃j − ωj)2 = O(1/N).

Theorem 3 shows that, when g(·) is smooth enough, the aggregated correlation estimator
ω̃j matches the optimal MSE rate achievable by a centralized estimator having access to
the entire data of size N . This result also indicates that using the aggregation of U-
statistic component estimates is an effective way in reducing the bias of the final correlation
estimator. Different from the existing debiasing techniques developed for the distributed M-
estimation (e.g., Zhang et al., 2012; Battey et al., 2018), the idea of componentwise debiasing
is built upon the natural composition of a centralized correlation estimator; instead of
estimating the bias of each ω̂l,j in (1) based on Dl, it addresses the debiasing task via
improving the component estimators, where the distributed U-statistic can be conveniently
used. Benefited from the high precision of Ūj,h, ω̃j enjoys a full estimation efficiency that
is insensitive to the choice of m; this further leads to a reliable feature screening.

Admittedly, ω̃j can be still biased due to the non-linear aggregation in (4). For the
commonly-used correlation measures, function g is smooth and the number of component
parameters s is finite. Consequently, aggregating those ω̂l,js via g is unlikely to bring a
significant bias to ω̃j . In fact, Theorem 3 immediately implies that Bias(ω̃j) = O(1/

√
N)

regardless of the choice of m. In comparison, when SAS is used in our setup, we have
Bias(ω̄j) = Bias(ω̂l,j), the scale of which is mainly determined by the amount of data n =
N/m stored in segment Dl. For example, when SIRS is used without local standardization,
it can be shown that Bias(ω̂l,j) = O(1/n) = O(m/N) (Zhu et al., 2011). When m is large,
this bias can severely affect its accuracy. In particular, when m/

√
N →∞, MSE(ω̄j) has a

rate slower than O(1/N).
Next, we justify the proposed ACS framework using the following theorem.

Theorem 4 Under Conditions C1-C3, if k ≤ n and γ = cN−τ , then there exists a constant
η > 0 such that

P{M ⊆ M̃} ≥ 1− ηd(1−N−2τ/η)mbn/kc,

where d is the cardinality of M.

We show in the Appendix that, when d = O(N), the probability bound in Theorem 4 goes
to one as N → ∞. Thus, the proposed ACS enjoys sure screening property in the sense
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of Fan and Lv (2008), even when the number of relevant features d is diverging. That is,
when N is large, ACS removes most irrelevant features and retains all relevant features with
an overwhelming probability. It is a desired property for a good feature screening method.
Note that the requirement n = N/m ≥ k is very mild in general; for many correlation
measures, it can be naturally satisfied with a liberal choice of m = O(N), which makes
ACS a flexible and reliable approach. Although the asymptotic error bound of ω̃j is less
affected by m, our empirical experience does show that a small m may help to improve
the practical screening accuracy of ACS. However, an overly small m often leads to a high
computational cost. In applications, one good strategy is to choose the smallest m for ACS
within the computational budget.

4. Numerical Studies

We assess the finite sample performance of ACS via simulations and a real data example.
In particular, we compare ACS with the naive SAS in terms of the screening accuracy and
stability. All numerical experiments are conducted using software MATLAB on Windows
computers with 3.2 GHz CPUs and 32 GB memory.

4.1. Simulations

4.1.1. Example 1

Apparently, an effective screening relies on the accurate estimates of the correlation strength
ωj . Our first experiment is to check whether the proposed aggregated correlation (AC)
measure ω̃j in (4) is an effective estimator of ωj . To this end, we generate N = 2700
independent copies from (Y,X), where Y and X are two independent random variables
following N(0, 1). Due to independence, the Kendall τ correlation, SIRS, and DC between
Y and X are all zero. We randomly split the data into m = 45, 90, 180 equal-sized segments
and use ω̃j specified in Section 2.3.1 (with j = 1) to estimate the three aforementioned
correlations between Y and X. We repeat the procedure T = 500 times and measure the
accuracy of ω̃j by root-mean-squared error (RMSE). Specifically, let ω̃j(t) denote the value
of ω̃j for the tth repetition. RMSE is computed by

RMSE(ω̃j) =

[
1

T

T∑
t=1

(ω̃j(t))
2

]1/2

.

For comparison, we report the corresponding RMSEs of the simple averaging (SA) estima-
tors ω̄j defined in (1) under the same m setup. Moreover, we check the performance of
the reinforced ω̃j (rAC) using the multiple partition strategy with R = 3 as discussed in
Section 2.3.2. As a benchmark, we also report the RMSEs of the centralized estimators
with m = 1. The results are summarized in Figure 1 with the corresponding computational
time (in seconds) given in Table 1.

For all the three tested correlations, we see that both ω̃j and ω̄j work well when m is
small. As m increases, ω̄j becomes less accurate. As discussed, this is mainly due to the non-
negligible biases of the segmental estimates. In comparison, ω̃j conducts componentwise
debiasing and leads to a high estimation accuracy over a wide range of m. Compared
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Figure 1: The RMSE of distributed correlation estimators with m = (1, 45, 90, 180), where
SA, AC, and rAC stand for ω̄j , ω̃j , and reinforced ω̃j respectively.

with the centralized estimators (m = 1 case), the distributed estimators ω̃j and ω̄j are
computationally more attractive, in particular when m is large. As expected, the reinforced
aggregated estimators help to further improve the estimation accuracy of ω̃j at a higher
computational cost.

4.1.2. Example 2

The promising performance of ω̃j encourages us to further check whether the associated
screening procedure ACS also works well. To this end, we generate N independent copies
of X = (X1, . . . , Xp) from a multivariate normal distribution with zero mean. The corre-
sponding response Y is generated based on the following models.

(a) Y = β1X1 + β2X2 + ...+ β8X8 + ε,

(b) Y = β1X1 + β2X4 + β3X7 + β4X10 + ε,

(c) Y = exp(β1X1 + β2X4 + β3X7 + β4X10 + ε),

(d) Y = β1X1 + β2X4 + exp(|β3|X7 + |β4|X10) + ε,

(e) Y = β1X1 + β2X
2
4 + β3I(X7 > 0) + β4|X10|+ ε,

(f) Y = 2β1X1X2 + 2β2I(X12 > 0) + 3β3X22 + ε,

12
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Table 1: Mean computational time of distributed correlation estimators (in seconds) with
fixed sample size N = 2700 and varied number of data segments; m = 1 case corre-
sponds to the centralized estimates and m > 1 cases correspond to the distributed
estimates.

Correlation Estimator m = 1 m = 45 m = 90 m = 180

SA 3.4 · 10−1 1.4 · 10−4 4.3 · 10−5 2.2 · 10−5

Kendall τ AC 3.4 · 10−1 1.5 · 10−4 4.7 · 10−5 2.6 · 10−5

rAC −− 3.7 · 10−4 1.2 · 10−4 5.5 · 10−5

SA 1.7 · 10−1 1.1 · 10−4 5.0 · 10−5 4.0 · 10−5

SIRS AC 1.7 · 10−1 7.5 · 10−5 2.5 · 10−5 1.4 · 10−5

rAC −− 2.0 · 10−4 7.0 · 10−5 3.9 · 10−5

SA 8.2 · 10−1 1.4 · 10−4 4.7 · 10−5 3.3 · 10−5

DC AC 7.8 · 10−1 1.3 · 10−4 4.0 · 10−5 2.7 · 10−5

rAC −− 3.6 · 10−4 1.2 · 10−4 9.3 · 10−5

where ε ∼ N(0, 1) is a noise term. Models (a) and (b) are two linear cases with different
model sparsity and covariance structures. Models (c) and (d) are transformation model
and multiple-index model, which are adopted from Li et al. (2012a) and Zhu et al. (2011)
respectively. Models (e) and (f) are addictive model and interactive model, both of which
were discussed in Li et al. (2012b). In Model (a), cov(X) is set to be an identity matrix, while
in Models (b)-(f) we set cov(Xj , Xr) = 0.5|j−r| for j, r ∈ {1, . . . , p} such that the features
have an autoregressive correlation. In Models (a)-(f), the values of model coefficients are
generated by (−1)W (2 + |V |), where W ∼ Bernoulli(0.6) and V ∼ N(0, 1).

We apply the proposed ACS on these simulated data sets for feature screening. In
each case, we split the data into m segments and assess the performance of ACS based
on Pearson, Kendall τ , SIRS, and DC correlations as discussed in Section 2.3.1. For each
correlation scenario, we set the corresponding screening threshold by

γ = ρ · min
j∈M

ω̂j , (8)

where ω̂j is the centralized estimator of that correlation and ρ = 0.8, 0.6 is a scale parameter.
The choice of γ in (8) guarantees that all relevant features will be retained by the classic
screening method based on ω̂j ; it purely serves for evaluating the proposed distributed
method under the setup, in which the classic method is likely to work well. In practice, a
proper γ is usually determined by users based on their research goals as well as the prior
information about their data. We will test ACS in our next example with a data-driven
choice of γ.

We evaluate the performance of ACS in terms of successful screening rate (SSR), screened
model size (MS), positive selection rate (PSR), false discovery rate (FDR), Specifically, let
M̂(t) denote the index set of the features retained after screening based on the t-th repeti-
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Table 2: Simulation results for Model (a) with N = 2400, p = 10000, ‖M‖0 = 8, m =
(40, 60). The two values a, b in the same column correspond to ρ = 0.8, 0.6 cases.

m Correlation Method SSR MS Std(MS) PSR FDR Timen TimeN

40 Pearson SAS 1.0, 1.0 8, 9 5, 531 1.0, 1.0 0.0, .11 0.012 0.176

SVS .97, 1.0 8, 13 6, 256 1.0, 1.0 0.0, .36 0.012

ACS 1.0, 1.0 8, 8 0, 0 1.0, 1.0 0.0, 0.0 0.012

Kendall τ SAS 1.0, 1.0 8, 18 64, 935 1.0, 1.0 0.0, .56 0.678 1504

SVS .97, 1.0 8, 28 34, 507 1.0, 1.0 0.0, .71 0.678

ACS 1.0, 1.0 8, 8 0, 0 1.0, 1.0 0.0, 0.0 0.678

rACS 1.0, 1.0 8, 8 0, 0 1.0, 1.0 0.0, 0.0 2.030

SIRS SAS 1.0, 1.0 10, 1042 1536, 3388 1.0, 1.0 .20, .99 0.013 1.672

SVS .99, 1.0 8, 34 781, 1540 1.0, 1.0 0.0, .76 0.013

ACS .69, .93 45, 176 122, 229 1.0, 1.0 .83, .95 0.013

rACS .86, .99 8, 10 13, 46 1.0, 1.0 0.0, .20 0.033

DC SAS 1.0, 1.0 9996, 10000 2807, 715 1.0, 1.0 .99, .99 0.742 6625

SVS 1.0, 1.0 9491, 10000 3712, 1076 1.0, 1.0 .99, .99 0.742

ACS .96, 1.0 8, 8 3, 20 1.0, 1.0 0.0, 0.0 0.742

rACS .99, 1.0 8, 8 0, 0 1.0, 1.0 0.0, 0.0 2.223

60 Pearson SAS 1.0, 1.0 8, 156 192, 1753 1.0, 1.0 0.0, .95 0.011 0.176

SVS 1.0, 1.0 8, 80 60, 840 1.0, 1.0 0.0, .90 0.011

ACS 1.0, 1.0 8, 8 0, 0 1.0, 1.0 0.0, 0.0 0.011

Kendall τ SAS 1.0, 1.0 8, 1293 675, 2772 1.0, 1.0 0.0, .99 0.329 1504

SVS .98, 1.0 8, 313 265, 1429 1.0, 1.0 0.0, .97 0.329

ACS 1.0, 1.0 8, 8 0, 0 1.0, 1.0 0.0, 0.0 0.329

rACS 1.0, 1.0 8, 8 0, 0 1.0, 1.0 0.0, 0.0 0.982

SIRS SAS 1.0, 1.0 4096, 9916 3927, 2392 1.0, 1.0 .99, .99 0.010 1.672

SVS 1.0, 1.0 85, 4036 2479, 3752 1.0, 1.0 .90, .99 0.010

ACS .61, .85 124, 378 200, 327 1.0, 1.0 .94, .98 0.010

rACS .88, .98 8, 22 36, 94 1.0, 1.0 0.0, .63 0.025

DC SAS 1.0, 1.0 10000, 10000 158, 0 1.0, 1.0 .99, .99 0.479 6625

SVS 1.0, 1.0 10000, 10000 785, 0 1.0, 1.0 .99, .99 0.479

ACS .93, 1.0 8, 8 9, 37 1.0, 1.0 0.0, 0.0 0.479

rACS .98, 1.0 8, 8 0, 2 1.0, 1.0 0.0, 0.0 1.434

tion. The aforementioned four indices are calculated as follows.

SSR =
1

T

T∑
t=1

I{M⊂M̂(t)}, MS =
⌊
‖M̂(t)‖0

⌋
med

,

PSR =

⌊
‖M∩ M̂(t)‖0
‖M‖0

⌋
med

, FDR =

⌊
‖M̂(t)−M‖0
‖M̂(t)‖0

⌋
med

,

where I{·} is an indicator function, b·cmed denotes the median of a series of values, and ‖ ·‖0
denotes the number of elements in a set. For comparison, we report as well the screening
outcomes of SAS, which is based on the simple averaging estimators (1). Also, we compare
ACS with a subsampling-voting screening (SVS) method. In SVS, parallel screening is first

14



Distributed Feature Screening via Componentwise Debiasing

Table 3: Simulation results for Model (b) with N = 1200, p = 1500, ‖M‖0 = 4, m =
(20, 40).

m Correlation Method SSR MS Std(MS) PSR FDR Timen TimeN

20 Pearson SAS 1.0, 1.0 6, 9 19, 109 1.0, 1.0 .33, .53 0.001 0.022

SVS .96, 1.0 6, 9 16, 66 1.0, 1.0 .33, .53 0.001

ACS 1.0, 1.0 6, 9 2, 2 1.0, 1.0 .33, .53 0.001

Kendall τ SAS 1.0, 1.0 6, 9 37, 132 1.0, 1.0 .33, .53 0.105 51.20

SVS .95, .98 6, 9 26, 85 1.0, 1.0 .33, .56 0.105

ACS 1.0, 1.0 6, 8 2, 2 1.0, 1.0 .33, .50 0.105

SIRS SAS 1.0, 1.0 6, 8 203, 217 1.0, 1.0 .33, .50 0.001 0.111

SVS .97, .99 6, 7 149, 200 1.0, 1.0 .33, .43 0.001

ACS .89, .98 6, 9 38, 50 1.0, 1.0 .33, .56 0.001

DC SAS 1.0, 1.0 8, 10 310, 510 1.0, 1.0 .50, .60 0.122 105.3

SVS 1.0, 1.0 7, 9 281, 419 1.0, 1.0 .43, .56 0.122

ACS .98, .99 5, 7 6, 15 1.0, 1.0 .20, .43 0.122

40 Pearson SAS 1.0, 1.0 6, 9 140, 219 1.0, 1.0 .33, .56 0.001 0.022

SVS .97, .99 7, 9 89, 181 1.0, 1.0 .43, .56 0.001

ACS 1.0, 1.0 6, 9 2, 2 1.0, 1.0 .33, .53 0.001

Kendall τ SAS 1.0, 1.0 7, 9 171, 263 1.0, 1.0 .43, .56 0.035 51.20

SVS 0.99, 1.0 7, 10 123, 210 1.0, 1.0 .43, .60 0.035

ACS 1.0, 1.0 6, 9 2, 2 1.0, 1.0 .33, .53 0.035

SIRS SAS 1.0, 1.0 8, 11 359, 509 1.0, 1.0 .50, .64 0.001 0.111

SVS 1.0, 1.0 7, 9 248, 361 1.0, 1.0 .43, .56 0.001

ACS .81, .92 8, 21 59, 75 1.0, 1.0 .56, .80 0.001

DC SAS 1.0, 1.0 89, 1466 668, 646 1.0, 1.0 .95, .99 0.038 105.3

SVS 1.0, 1.0 19, 1116 606, 667 1.0, 1.0 .78, .99 0.038

ACS .93, .99 6, 7 19, 31 1.0, 1.0 .29, .43 0.038

conducted on m random subsamples of D, each of which is of size n = N/m; a feature is
then retained if it is selected by more than 50% of the subsamples. To check the improving
strategy in Section 2.3.2, we further run the reinforced ACS (rACS) with R = 3 for the data
generated from Model (a). In our setup, the classic screening method based on ω̂j would
have SSR = 1, PSR = 1 in all cases and is likely to have small MS and FDR as N is large.
Yet, as to be revealed, its computational cost can be unaffordable in many cases. For the
computational convenience, we choose to exclude the classic screening from the comparison
and use directly the optimal values of the aforementioned indices as a benchmark.

We summarize the simulation results in Tables 2-4 based on T = 100 repetitions. For
Models (c)-(f), we only exhibit the selected results due to the page limit. In the tables,
Timen and TimeN report the averaged computational time (in seconds) respectively for a
distributed screening and the corresponding classic screening based on a few pilot runs. The
two values in the same column correspond to the two setups of ρ in (8). Std(MS) reports
the sample standard deviation of ‖M̂(t)‖0s, which measures the screening precision.

With the oracle choice of γ, we see that all methods perform well in terms of keeping
relevant features; this is indicated by their high SSRs in most cases. Regarding the screening
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Table 4: Simulation results for Models (c)-(f) with case-specific (N, p,m) setup listed in the
table.

m Correlation Method SSR MS Std(MS) PSR FDR Timen TimeN

Model (c), N = 2400, p = 10000, ‖M‖0 = 4

40 Pearson SAS 1.0, 1.0 10000,10000 0, 0 1.0, 1.0 .99, .99 0.007 0.166

ACS 1.0, 1.0 1825, 3207 2333, 2350 1.0, 1.0 .99, .99 0.007

Kendall τ SAS 1.0, 1.0 6, 9 2, 141 1.0, 1.0 .33, .56 0.666 1429.2

ACS 1.0, 1.0 6, 8 2, 2 1.0, 1.0 .33, .50 0.666

80 Pearson SAS 1.0, 1.0 10000, 10000 0, 0 1.0, 1.0 .99, .99 0.005 0.166

ACS 1.0, 1.0 1825, 3207 2333, 2350 1.0, 1.0 .99, .99 0.005

Kendall τ SAS 1.0, 1.0 7, 10 343, 2439 1.0, 1.0 .43, .60 0.220 1429.2

ACS 1.0, 1.0 6, 8 2, 2 1.0, 1.0 .33, .50 0.220

Model (d), N = 3600, p = 10000, ‖M‖0 = 4

50 Pearson SAS 1.0, 1.0 10000, 10000 0, 0 1.0, 1.0 .99, .99 0.009 0.259

ACS 1.0, 1.0 7478, 8128 2473, 2049 1.0, 1.0 .99, .99 0.009

SIRS SAS 1.0, 1.0 8, 10 270, 1377 1.0, 1.0 .50, .60 0.015 3.393

ACS .95, 1.0 7, 9 22, 66 1.0, 1.0 .43, .56 0.015

100 Pearson SAS 1.0, 1.0 10000, 10000 0, 0 1.0, 1.0 .99, .99 0.006 0.259

ACS 1.0, 1.0 7478, 8128 2473, 2049 1.0, 1.0 .99, .99 0.006

SIRS SAS 1.0, 1.0 11, 99 3167, 4192 1.0, 1.0 .64, .96 0.009 3.393

ACS .83, .92 8, 13 79, 177 1.0, 1.0 .50, .69 0.009

Model (e), N = 4800, p = 10000, ‖M‖0 = 4

60 Pearson SAS 1.0, 1.0 10000, 10000 0, 0 1.0, 1.0 .99, .99 0.010 0.334

ACS 1.0, 1.0 1508, 2807 2596, 2578 1.0, 1.0 .99, .99 0.010

DC SAS 1.0, 1.0 10000, 10000 1813, 1188 1.0, 1.0 .99, .99 1.147 26221

ACS .89, .95 6, 9 72, 162 1.0, 1.0 .33, .53 1.147

120 Pearson SAS 1.0, 1.0 10000, 10000 0, 0 1.0, 1.0 .99, .99 0.006 0.334

ACS 1.0, 1.0 1508, 2807 2596, 2578 1.0, 1.0 .99, .99 0.006

DC SAS 1.0, 1.0 10000, 10000 0, 0 1.0, 1.0 .99, .99 0.489 26221

ACS .86, .94 11, 73 175, 317 1.0, 1.0 .65, .95 0.489

Model (f), N = 10000, p = 10000, ‖M‖0 = 4

100 Pearson SAS 1.0, 1.0 10000, 10000 0, 0 1.0, 1.0 .99, .99 0.016 0.729

ACS 1.0, 1.0 8600, 8950 3365, 2946 1.0, 1.0 .99, .99 0.016

DC SAS 1.0, 1.0 10000, 10000 1809, 0 1.0, 1.0 .99, .99 1.923 213998

ACS .98, 1.0 8, 8 1, 2 1.0, 1.0 .50, .50 1.923

250 Pearson SAS 1.0, 1.0 10000, 10000 0, 0 1.0, 1.0 .99, .99 0.017 0.729

ACS 1.0, 1.0 8600, 8950 3365, 2946 1.0, 1.0 .99, .99 0.017

DC SAS 1.0, 1.0 10000, 10000 0, 0 1.0, 1.0 .99, .99 0.441 213998

ACS .85, 1.0 8, 10 9, 50 1.0, 1.0 .50, .60 0.441

accuracy, SAS seems to be inferior, as it tends to keep too many irrelevant features after
screening. This phenomenon is particularly severe for non-linear correlation measures SIRS
and DC under the large-m-small-γ setup. As an extreme case, when DC is used in Models
(e) and (f), SAS suggests keeping all the 10000 features; this completely fails in the mission
of screening. The over-selection of SAS here is a direct result from the inaccuracy of the
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corresponding simple averaging estimators ω̄js. When Pearson and Kendall τ correlations
are used, this issue is less severe, as the corresponding ω̄js are less biased due to their
nature. The proposed ACS, in comparison, is built upon the stable ω̃js, and thus achieves a
reasonably high screening accuracy in most setups. For all the four correlation choices, it is
able to screen most irrelevant features out, while keep relevant ones with a high probability.
Such a performance is very promising.

Moreover, the SAS-based screening tends to have a high variability in most cases; this
makes it less trustable in practice. In Models (a) and (b), SVS seems to help reducing the
variability of SAS, but the improvement is less significant as compared with ACS or rACS.
This is somewhat expected, as both SAS and SVS are based on the local estimators ω̂l,j ,
the bias of which can be substantial when m is large.

We observe that, when SIRS is used in Model (a) with m = 60, none of SAS, SVS
and ACS works very well, if SSR and Std(MS) are considered jointly. This might be due
to the relatively low sensitivity of SIRS in detecting linear correlations when n is small.
When m = 40, all methods get improved due to the increased accuracy in both ω̄j and
ω̃j . Apparently, the multiple data partition strategy in rACS helps a lot in this case, as
indicated by its high SSR and low Std(MS) in both m setups.

We also observe that, with Pearson correlation, neither ACS nor SAS performs satis-
factorily in Models (c)-(f). This is because relevant features in those models mainly have
non-linear correlations with the response. The superior screening accuracy of ACS is ob-
served when advanced correlation measures are used in those models.

Benefited from its distributed framework, the proposed ACS enables parallel computing
and enjoys a great numerical advantage over the classic screening procedures (i.e., m = 1
case). As shown in Tables 2-4, the computational cost of ACS can be even less than 1% of
the traditional cost with a large m setup, while it still maintains relatively high screening
accuracy. This merit together with its broad compatibility makes ACS an attractive ap-
proach for screening with large-N -large-p data.

4.1.3. Example 3

We further test ACS when the screening threshold γ is chosen by a data-driven method.
Similar to Zhu et al. (2011), after the training data are generated, we additionally generate
N independent copies of a q-dimensional auxiliary variable (X ′1, . . . , X

′
q)
T from a standard

multivariate normal distribution. Note that X ′js are independent of the response Y and
thus are all irrelevant. A reasonable screening threshold is therefore set to be

γ = max
j=1,...,q

ω̃′j ,

where ω̃′j is the aggregated correlation estimator between Y and X ′j .
We repeat our simulation in Model (b) of Example 2 with the new choice of γ and report

the results in Table 5, where N = 2400, p = 5000, m = (80, 100), and q = (1000, 500). It is
seen that the performances of ACS and rACS with R = 5 are still sharp with the non-oracle
γ. In fact, the significance of the proposed method is even better observed in this example,
as SAS seems to be more sensitive to γ.
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Table 5: Simulation results of Example 3: data are generated from Model (b) with N =
2400, p = 5000, ‖M‖0 = 4; distributed screening is conducted based on a data-
driven γ with m = (80, 100). The two values a, b in the same column correspond
to q = (1000, 500) cases.

m Correlation Method SSR MS Std(MS) PSR FDR Timen TimeN

80 Pearson SAS 1.0, 1.0 5000, 5000 0, 0 1.0, 1.0 .99, .99 0.003 0.086
ACS 1.0, 1.0 15, 20 6, 12 1.0, 1.0 .73, .80 0.003

Kendall τ SAS 1.0, 1.0 5000, 5000 0, 0 1.0, 1.0 .99, .99 0.112 738.0
ACS 1.0, 1.0 15, 21 5, 10 1.0, 1.0 .73, .81 0.112
rACS 1.0, 1.0 14, 17 4, 7 1.0, 1.0 .71, .76 0.559

SIRS SAS 1.0, 1.0 17, 74 368, 769 1.0, 1.0 .76, .95 0.005 0.850
ACS .84, .84 11, 13 6, 9 1.0, 1.0 .64, .71 0.005
rACS .86, .88 7, 8 2, 2 1.0, 1.0 .43, .50 0.024

DC SAS 1.0, 1.0 5000, 5000 0, 0 1.0, 1.0 .99, .99 0.146 3240.6
ACS .99, 1.0 12, 15 7, 12 1.0, 1.0 .67, .73 0.146
rACS 1.0, 1.0 9, 9 2, 2 1.0, 1.0 .56, .56 0.728

100 Pearson SAS 1.0, 1.0 5000, 5000 0, 0 1.0, 1.0 .99, .99 0.002 0.086
ACS 1.0, 1.0 15, 19 5, 11 1.0, 1.0 .73, .79 0.002

Kendall τ SAS 1.0, 1.0 5000, 5000 0, 0 1.0, 1.0 .99, .99 0.086 738.0
ACS 1.0, 1.0 15, 18 5, 9 1.0, 1.0 .73, .78 0.086
rACS 1.0, 1.0 13, 15 4, 6 1.0, 1.0 .69, .73 0.428

SIRS SAS 1.0, 1.0 448, 1404 1183, 1738 1.0, 1.0 .99, .99 0.004 0.850
ACS .80, .82 11, 15 6, 9 1.0, 1.0 .64, .75 0.004
rACS .83, .85 7, 7 2, 2 1.0, 1.0 .43, .43 0.020

DC SAS 1.0, 1.0 5000, 5000 0, 0 1.0, 1.0 .99, .99 0.128 3240.6
ACS .98, .98 12, 15 8, 13 1.0, 1.0 .67, .75 0.128
rACS 1.0, 1.0 9, 9 2, 2 1.0, 1.0 .56, .56 0.640

4.1.4. Example 4

In the previous examples, we have observed the promising performance of ACS on a few
parametric models. We now extend our numerical assessment on ACS to a model-free
learning framework, where the true model is unknown or may not even exist.

To be specific, with a given data set D = {(Yi,Xi)}Ni=1, we consider a kernel ridge
regression (KRR), where the goal is to find a predictive function f̂ by minimizing

f̂ = arg min
f

{
1

N

N∑
i=1

(Yi − f(Xi))
2 + λ‖f‖2K

}
, (9)

where f has the form

f(X) =
N∑
j=1

βjK(X,Xj), (10)

‖f‖2K =
∑N

i,j=1 βiβjK(Xi,Xj) is the norm of f induced by a semi-positive definite kernel
function K, and λ > 0 is a tuning parameter. Let K = {K(Xi,Xj), i, j = 1, . . . , N} be the

working kernel matrix associated with K. The coefficient vector β = (β1, . . . , βN )T of f̂ in
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form of (10) is estimated by
β̂ = (K +NλIN )−1Y,

where Y = (Y1, . . . , YN )T and IN is a N × N identity matrix. With a new input Xnew,
KRR predicts the corresponding response by Ŷnew = f̂(Xnew) =

∑N
j=1 β̂jK(Xnew,Xj).

When N is huge, it is often reasonable to assume that not all kernel atoms (features)
Kj = K(·,Xj) are relevant for prediction; this amounts to assume that some βjs in (10) are

zero. When a Kj is irrelevant, one may also consider Xj to be less important in learning f̂
and thus it can be eliminated from (9). This suggests that one may remove the jth column
and the jth row from K to reduce the computational cost in KRR. Thus, the goal of feature
screening here is to screen out most irrelevant kernel atoms Kjs before carrying out KRR.
In KRR, the number of features equals to the sample size N and K has a natural dependent
structure in both rows and columns. It is thus of interest to see how well ACS could do for
feature screening in this challenging setup.

To this end, we generate D from model (b) in Example 2 with N = 6000 and p = 30,
from which N = 4800 entries are randomly selected as a training set and the remaining 1200
ones are treated as a testing set. We then generate the N×N working kernel matrix K based
on the training set using a Gaussian kernel K(Xi,Xj) = exp(−‖Xi −Xj‖22/100). We treat
K as an input design matrix and randomly partition it by rows into m = 10, 40, 120, 160
sub-kernel matrices Kl for l = 1, . . .m, each of which is of dimension n×N with n = N/m.
Those sub-kernel matrices Kls together with the corresponding n×1 sub-responses Yls are
then treated as m data segments Dl = {(Yl,Kl)}ml=1, on which we apply ACS with SIRS
to screen the irrelevant kernel atoms (i.e. screen irrelevant columns of K). For comparison,
we also run SAS and rACS with R = 3 for each choice of m. Since rACS shows its superior
accuracy in our previous examples, we set the screening threshold γ such that 500 important
features will be retained by rACS with m = 10; the same γ is then used for all screening
methods in all m setups.

In this example, the true model in form of (10) is unknown. We thus evaluate the
screening performance in terms of prediction. Specifically, after screening, we obtain a
refined kernel matrix by removing the irrelevant columns and the corresponding rows from
K. We then carry out KKR to obtain a fitted f̂ based on this refined kernel matrix with λ
determined by a 10-fold cross validation. We assess the predictive power of f̂ based on the
testing set in terms of the prediction RMSE

RMSE(f̂) =

[
1

ntest

∑
i∈Stest

(Yi − f̂(Xi))
2

]1/2

,

where Stest and ntest denote the observation index set and the sample size of the testing set
respectively.

In Figure 2, we report the mean prediction RMSE as well as the averaged model size
(AMS) based on 100 repetitions. We also report the performance of f̂ based on a full KRR
without screening. It is seen that all screening methods under consideration lead to a similar
predictive accuracy comparable to the full KRR. When m is small, SAS and ACS tend to
keep the same amount of relevant features. As m increases, SAS becomes more liberal by
retaining more features after screening, while ACS remains restrictive. When m = 160,
SAS suggests 1308 “relevant” features, which is about 2.6 times the number of features
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Figure 2: Simulation results for Example 4. (a) The averaged model size (AMS) selected
by SAS, ACS, and rACS with different choices of m. (b) The predictive root-
mean-squared error of KRR based on the features retained by SAS, ACS, and
rACS. The dashed line corresponds to the full KRR without feature screening.

suggested by ACS. Yet, as indicated by their prediction RMSEs, including a large number
of features in f̂ does not help to significantly improve the predictive power. This implies
that a large portion of the SAS-suggested features are actually redundant. In comparison,
ACS is stable among all m setups and leads to a more accurate screening in general.

Admittedly, the current theoretical support for ACS does not directly apply to the
non-i.i.d KRR learning. Yet, we observe that ACS still performs relatively well in this
challenging case. This further indicates that ACS can be a reliable method in practice.

4.2. A real data analysis

We apply the proposed ACS to a real data set1, which contains 81 covariates extracted from
21,263 superconductors along with the associated critical temperature (response). Readers
may refer to Hamidieh (2018) for a detailed description of this data set. It is of interest to
predict the unknown response given a set of new values of the covariates. It is likely that
the covariates are linked to the response with a non-linear relationship. To avoid potential
model mis-specification, we analyze this data set using the gaussian KRR as discussed in
Example 4 of the previous subsection.

We remove data entries with missing values in Xi and get 20,877 available data entries,
from which we randomly select 20, 000 entries as a training set and treat the remaining 877
ones as a testing set. This leads to a working kernel matrix K with N = 20, 000 observations
and 20, 000 kernel atoms K(·,Xj). Apparently, it is numerically costly to conduct the full
KRR on K, which is likely to contain many redundant kernel atoms (features). It is therefore
beneficial to conduct distributed feature screening before KRR. To this end, we randomly
partition the training set into m = 10, 100, 200, 500 segments and run ACS, rACS, and SAS

1. The data set is available at http://archive.ics.uci.edu/ml/datasets/Superconductivty+Data.
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Figure 3: Analysis of superconductor data. (a) The averaged model size (AMS) selected
by SAS, ACS, and rACS with different choices of m. (b) The predictive root-
mean-squared error of KRR based on the features retained by SAS, ACS, and
rACS.

under the same setup as in Example 4, except that the screening threshold γ here is set by
the 800th largest ω̃j in rACS with m = 10.

The results are summarized in Figure 3 with 100 repetitions. The pattern in the plots
is similar to Figure 2. The screening accuracy and high stability are again observed for the
proposed method.

5. Concluding Remarks

Technological innovations have made a profound impact on knowledge discovery. Extracting
useful features from massive amount of high dimensional data is essential in many mod-
ern scientific areas. In this paper, we proposed a distributed framework (ACS) for feature
screening with large-N -large-p data sets. In the spirit of “divide-and-conquer”, ACS enables
distributed storage and paralleling computing, and thus enjoys a great numerical advantage
over the classic screening methods. The key of success for ACS is that we express a cor-
relation measure as a function of several component parameters and conduct distributive
unbiased estimation for each of them. With the unbiased component estimates combined
together, we then obtained an aggregated correlation estimate ω̃j , which is accurate and
insensitive to the number of data segments used in the analysis. This further leads to a com-
putationally efficient and performance reliable screening procedure. Under mild conditions,
we showed that ω̃j is as efficient as the classic centralized estimator, while it drastically
reduces the computational cost. The corresponding screening procedure is compatible with
a broad range of correlation measures and enjoys the desirable sure screening property.

It should be noted that our current discussion is based on the i.i.d assumption of (Yi,Xi),
which can be impractical when data segments are naturally stored at different locations. In
such a scenario, it is likely that data segments are of different sizes and qualities. To make
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the proposed ACS more adaptive, one may replace Ūj,h in (4) by a weighted average, where
the weight is proportional to the inverse-variance of the local component estimator U lj,h.

The proposed ACS focuses on model-free feature screening, where most screening mea-
sures have a natural expression in (2). It would be promising to extend the distributive idea
to other model-based screening methods, where a screening measure may not have a closed-
form expression. One possible way is to conduct distributed optimization for estimating a
model-based screening measure. We leave this interesting topic for future research.
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Appendix A. Expressions of ω̂l,j for the examples in Section 2.3.1

For comparison with the proposed ACS, we list the corresponding expressions of ω̂l,j used
in SAS for the examples in Section 2.3.1.

1. Pearson correlation

ω̂l,j =

∣∣∣∣∣∣
1
n

∑
i∈Dl XijYi − 1

n

∑
i∈Dl Xij · 1

n

∑
i∈Dl Yi√

( 1
n

∑
i∈Dl X

2
ij − [ 1

n

∑
i∈Dl Xij ]2)( 1

n

∑
i∈Dl Y

2
i − [ 1

n

∑
i∈Dl Yi]

2)

∣∣∣∣∣∣ .
2. Kendall τ rank correlation

ω̂l,j =

∣∣∣∣∣∣ 1

n(n− 1)

∑
i1,i2∈Dl

I(Xi1j < Xi2j)I(Yi1 < Yi2)− 1/4

∣∣∣∣∣∣ .
3. SIRS correlation

ω̂l,j =
1

n(n− 1)(n− 2)

∑
i1∈Dl

∑
i2∈Dl

Xi2jI(Yi2 < Yi1)


2

,

where Xij ∈ Dl are standardized for each feature j.

4. Distance correlation

ω̂l,j =
θ̂l,j,1 + θ̂l,j,2 · θ̂l,j,3 − 2θ̂l,j,4√

(θ̂l,j,5 + θ̂2
l,j,2 − 2θ̂l,j,6)(θ̂l,j,7 + θ̂2

l,j,3 − 2θ̂l,j,8)
,
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where

θ̂l,j,1 =
1

n2

∑
i1,i2∈Dl

|Yi1 − Yi2 | · |Xi1j −Xi2j |, (11)

θ̂l,j,4 =
1

n3

∑
i1,i2,i3∈Dl

|Yi1 − Yi3 | · |Xi2j −Xi3j |. (12)

The expression of θ̂l,j,h for h = 2, 3, 5, 7 is similar to (11); the expression of θ̂l,j,h for
h = 6, 8 is similar to (12).

In the above examples, ω̂l,js are biased with the scale of bias heavily depending on the
local sample size n = N/m. Whenm is small, the simple average estimator ω̄j = 1

m

∑m
l=1 ω̂l,j

can be severely biased, as the bias can not be eliminated by simple averaging. In comparison,
the aggregated correlation estimator ω̃j conducts distributed unbiased estimation for the
components within ωj and thus leads to a more accurate estimation that is insensitive to
m.

Appendix B. Proof of Proposition 1

Let Ψj,h,q = Eq[θ̂j,h(Zi1j , . . . , Ziqj , Ziq+1j , . . . , Zikhj)] be the expectation of θ̂j,h with respect
to (Ziq+1j , . . . , Zikhj) for 0 ≤ q ≤ kh − 1 and ζj,h,q = Var(Ψj,h,q).

By equation (5.13) of Hoeffding (1992), we have

Var(U lj,h) =

(
n

kh

)−1 kh∑
q=1

(
kh
q

)(
n− kh
kh − q

)
ζj,h,q.

The variance of Ūj,h is therefore given by

Var(Ūj,h) =
1

m
Var(U lj,h) =

1

m

(
n

kh

)−1 kh∑
q=1

(
kh
q

)(
n− kh
kh − q

)
ζj,h,q. (13)

By Theorem 5.1 of Hoeffding (1992), we have

ζj,h,q
q
≤
ζj,h,q+1

q + 1

for q = 1, ..., kh − 1. This together with Condition C1 implies that ζj,h,1 ≤ ... ≤ ζj,h,kh =

Var(θ̂j,h) ≤ E(θ̂2
j,h) < 2D0/κ

2
0 for all j and h. Since kh is a constant, the qth summand in

(13) can be expressed by

1

m

(
n

kh

)−1(kh
q

)(
n− kh
kh − q

)
ζj,h,q = O(

1

mnq
) = O(

mq−1

N q
), for q = 1, ..., kh.

Expression (7) is hence implied.
To show Var(Ūj,h) is increasing in m, let Ūj,h[m,n] denote Ūj,h based on m data

segments, each of which is with size n. By Theorem 5.2 of Hoeffding (1992), we have
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N ·Var(Ūj,h[1, N ]) is a decreasing function of N . Suppose N = n1m1 = n2m2 with n1 > n2.
Then, we have

n1Var(Ūj,h[1, n1]) ≤ n2Var(Ūj,h[1, n2]),

n1

N
Var(Ūj,h[1, n1]) ≤ n2

N
Var(Ūj,h[1, n2]),

1

m1
Var(Ūj,h[1, n1]) ≤ 1

m2
Var(Ūj,h[1, n2]),

Var(Ūj,h[m1, n1]) ≤ Var(Ūj,h[m2, n2]).

The incremental property is therefore proved. �

Appendix C. Proof of Theorem 2

To prove Theorem 2, we first derive a probability convergence bound of the component
estimator Ūj,h in the following Lemma.

Lemma 5 Suppose Condition C1 is satisfied and ε ∈ (0, δ0] with an arbitrarily large δ0 > 0.
There exists a sufficiently small c0 > 0 such that

P (|Ūj,h − θj,h)| ≥ ε) ≤ 2(1− c0ε
2/2)mbn/khc,

for j = 1, . . . , p and h = 1, . . . , s, where bn/khc denotes the largest integer no larger than
n/kh.

Proof of Lemma 5. Let θ̂j,h be a basis unbiased estimator of θj,h with degree kh. By
Markov’s inequality, we have

P (Ūj,h − θj,h ≥ ε) = P (exp{ν(Ūj,h − θj,h)} ≥ exp{νε})
≤ exp{−νε} exp{−νθj,h}E[exp{νŪj,h}], (14)

for any ε > 0 and 0 < ν ≤ κ0mrh with rh = bn/khc.
Let Sl = {l1, ..., ln} denote the index set of {Y,X} copies based on Dl, on which we can

construct rh independent θ̂j,hs. We define an averaged estimator based on those θ̂j,hs by

Vj,h(Zl1j , ..., Zlnj) =
1

rh

rh∑
u=1

θ̂j,h(Zl(u−1)kh+1j , ..., Zlukhj).

Then, the local U-statistic in (3) can be expressed by

U lj,h =
1

n!

∑
{i1,...,in}∈Ω

Vj,h(Zli1j , ..., Zlinj),

where Ω = {1, ..., n} and the summation is over all {Zli1j , ..., Zlinj} permutations from Dl.
Consequently,

Ūj,h =
1

m

m∑
l=1

U lj,h =
1

n!

∑
{i1,...,in}∈Ω

1

m

m∑
l=1

Vj,h(Zli1j , ..., Zlinj).
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Since exponential function is convex, Jensen’s inequality implies that

E[exp{νŪj,h}] = E

exp

 ν

n!

∑
{i1,...,in}∈Ω

(
1

m

m∑
l=1

Vj,h(Zli1j , ..., Zlinj)

)


≤ 1

n!

∑
{i1,...,in}∈Ω

E

[
exp

{
ν

m

m∑
l=1

Vj,h(Zli1j , ..., Zlinj)

}]
= ψmrhj,h (κ) , (15)

where κ = ν/(mrh) and ψj,h(κ) = E[exp{κθ̂j,h}].
Combining (14) and (15), we have

P (Ūj,h − θj,h ≥ ε) ≤ [exp{−κε} exp{−κθj,h}ψj,h(κ)]mrh . (16)

Let V be a generic variable. By Taylor expansion, we have exp{κV } = 1+κV +κ2V ′/2,
where 0 < V ′ < V 2 exp{κ1V } for some κ1 ∈ (0, κ). Thus, factor exp{−κθj,h}ψj,h(κ) in (16)
can be bounded by

exp{−κθj,h}ψj,h(κ) = E[exp{κ(θ̂j,h − θj,h)}]

= E
[
1 + κ(θ̂j,h − θj,h) + κ2 exp{κ1(θ̂j,h − θj,h)}(θ̂j,h − θj,h)2/2

]
= 1 + κ2E

[
(θ̂j,h − θj,h)2 exp{κ1(θ̂j,h − θj,h)}

]
/2

≤ 1 + κ2[Eθ̂4
j,h · E exp{2κ1(θ̂j,h − θj,h)}]1/2/2, (17)

where (17) is implied by Hölder’s inequality.

By Condition C1 and the compactness of Θ, we know (17) can be bounded by 1 +D1κ
2

with some D1 > 0 for all j = 1, ..., p, h = 1, ..., s. Also, when κε < 1, we have exp(−κε) ≤
1− εκ+D2ε

2κ2 with some D2 > 0. Thus, we have the base term in (16) bounded by

exp{−κε} exp{−κθj,h}ψj,h(κ) ≤ (1 +D1κ
2)(1− εκ+D2ε

2κ2)

= 1− εκ+D2κ
2ε2 +D1κ

2 −D1κ
3ε+D1D2κ

4ε2

≤ 1− εκ+D2κ
2ε2 +D1κ

2 +D1D2κ
4ε2

= 1− εκ+ E1,

where E1 = D2κ
2ε2 +D1κ

2 +D1D2κ
4ε2. By setting κ = c0ε, we have

E1

κε
= D2c0ε

2 +D1c0 +D1D2c
3
0ε

4

≤ D2c0δ
2
0 +D1c0 +D1D2c

3
0δ

4
0 . (18)

Note that, when c0 > 0 is small enough, we have κ ∈ (0, κ0), κε < 1, and (18) is bounded
by 1/2. Thus, the base term in (16) is further bounded by

exp{−κε} exp{−κθj,h}ψj,h(κ) ≤ 1− εκ/2. (19)
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Combining (16) and (19), we have

P (Ūj,h − θj,h ≥ ε) ≤ (1− c0ε
2/2)mrh .

Similarly, we can show that P (Ūj,h−θj,h ≤ −ε) ≤ (1−c0ε
2/2)mrh . Therefore, we obtain

P (|Ūj,h − θj,h| ≥ ε) ≤ 2(1− c0ε
2/2)mbn/khc

under the conditions specified in the proposition. The proof is complete. �

With Lemma 5, we prove Theorem 2 based on the following fact.

Lemma 6 Suppose that θh, h = 1, ..., s are bounded, that is, there exists a positive constant
a > 0 such that |θh| < a. Let θ̃h be an estimator of θh. Suppose for any ε ∈ (0, c], there
exists a constant c1 > 0 such that, for any h ∈ {1, ..., s},

P (|θ̃h − θh| ≥ ε) ≤ c1(1− ε2/c1)mbn/kc, (20)

where k is a positive integer. Then, there exists a positive constant c′ such that

P
(∣∣∣|θ̃h| − |θh|∣∣∣ ≥ ε) ≤ c′(1− ε2/c′)mbn/kc, (21)

P (|(θ̃h1 + θ̃h2)− (θh1 + θh2)| ≥ ε) ≤ c′(1− ε2/c′)mbn/kc, (22)

P (|(θ̃h1 − θ̃h2)− (θh1 − θh2)| ≥ ε) ≤ c′(1− ε2/c′)mbn/kc, (23)

P (|θ̃h1 θ̃h2 − θh1θh2 | ≥ ε) ≤ c′(1− ε2/c′)mbn/kc, (24)

P (|θ̃2
h − θ2

h| ≥ ε) ≤ c′(1− ε2/c′)mbn/kc. (25)

Moreover, suppose there exists a constant b > 0 such that |θh2 | > b. Then, we have

P (|θ̃h1/θ̃h2 − θh1/θh2 | ≥ ε) ≤ c′(1− ε2/c′)mbn/kc. (26)

If we further assume θh > 0, then

P

(∣∣∣∣√θ̃h −√θh∣∣∣∣ ≥ ε) ≤ c′(1− ε2/c′)mbn/kc. (27)

Proof of Lemma 6. We prove the lemma by justifying (21)-(27) sequentially.
The proof of (21) is straightforward. By (20), for any ε ∈ (0, c], we have

P
(∣∣∣|θ̃h| − |θh|∣∣∣ ≥ ε) ≤ P

(∣∣∣θ̃h − θh∣∣∣ ≥ ε)
≤ c1(1− ε2/c1)mbn/kc.

We now work on (22). For any ε ∈ (0, c], we have

P (|(θ̃h1 + θ̃h2)− (θh1 + θh2)| ≥ ε)
≤ P (|θ̃h1 − θh1 | ≥ ε/2) + P (|θ̃h2 − θh2 | ≥ ε/2)

≤ 2c1(1− ε2/(4c1))mbn/kc ≤ c2(1− ε2/c2)mbn/kc,
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where c2 = 4c1. Similarly, we can also show (23).

To show (24), we first prove that θ̃hs are bounded in probability. Specifically, since
|θh| ≤ a, we have, for any ε ∈ (0, c],

P
(
|θ̃h| ≥ a+ ε

)
≤ P

(
|θ̃h − θh|+ |θh| ≥ a+ ε

)
≤ P

(
|θ̃h − θh| ≥ ε

)
≤ c1(1− ε2/c1)mbn/kc. (28)

Therefore,

P (|θ̃h1 θ̃h2 − θh1θh2 | ≥ ε)
≤ P (|θ̃h1 θ̃h2 − θ̃h1θh2 + θ̃h1θh2 − θh1θh2 | ≥ ε)
≤ P (|θ̃h1 | · |θ̃h2 − θh2 |+ |θh2 | · |θ̃h1 − θh1 | ≥ ε)
≤ P (|θ̃h1 | · |θ̃h2 − θh2 | ≥ ε/2) + P (|θh2 | · |θ̃h1 − θh1 | ≥ ε/2). (29)

By (20) and (28), the first term of (29) can be bounded by

P (|θ̃h1 | · |θ̃h2 − θh2 | ≥ ε/2)

= P (|θ̃h1 | · |θ̃h2 − θh2 | ≥ ε/2, |θ̃h1 | ≥ a+ ε)

+P (|θ̃h1 | · |θ̃h2 − θh2 | ≥ ε/2, |θ̃h1 | < a+ ε)

≤ P (|θ̃h1 | ≥ a+ ε) + P ((a+ ε) · |θ̃h2 − θh2 | ≥ ε/2)

≤ c1(1− ε2/c1)mbn/kc + c1(1− ε2/c3)mbn/kc,

where c3 = max{4(a+ c)2c1, c1}. The second term of (29) can be bounded by

P (|θh2 | · |θ̃h1 − θh1 | ≥ ε/2) ≤ P (|θ̃h1 − θh1 | ≥ ε/(2a))

≤ c1(1− ε2/c4)mbn/kc

with c4 = max{4a2c1, c1}. Then, by setting c5 = max{3c1, c3}, we have

P (|θ̃h1 θ̃h2 − θh1θh2 | ≥ ε) ≤ 3c1(1− ε2/c3)mbn/kc ≤ c5(1− ε2/c5)mbn/kc,

which proves (24). By setting θ̃h2 = θ̃h1 = θ̃h in (24), we immediately have result (25).

To prove (26), let us first show that θ̃h2 is bounded away from 0 in probability. Since
|θh2 | > b > 0, there exists a constant δ1 ∈ (0, c) such that for some b′ = b− δ1 > 0,

P (|θ̃h2 | ≤ b′) ≤ P (|θh2 | − |θ̃h2 − θh2 | ≤ b− δ1)

≤ P (|θ̃h2 − θh2 | ≥ δ1)

≤ c1(1− δ2
1/c1)mbn/kc.

Let c6 = c1c
2/δ2

1 . Then, for ε ∈ (0, c), we have

P (|θ̃h2 | ≤ b′) ≤ c1(1− ε2/c6)mbn/kc. (30)
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Based on (30), we have

P (|θ̃h1/θ̃h2 − θh1/θh2 | ≥ ε)
= P (|θ̃h1/θ̃h2 − θh1/θh2 | ≥ ε, |θ̃h2 | ≤ b′) + P (|θ̃h1/θ̃h2 − θh1/θh2 | ≥ ε, |θ̃h2 | > b′)

≤ P (|θ̃h2 | ≤ b′) + P (|θ̃h1/θ̃h2 − θh1/θh2 | ≥ ε, |θ̃h2 | > b′)

≤ c1(1− ε2/c6)mbn/kc + P (|θ̃h1/θ̃h2 − θh1/θh2 | ≥ ε, |θ̃h2 | > b′). (31)

In (31), the second term can be bounded by

P (|θ̃h1/θ̃h2 − θh1/θh2 | ≥ ε, |θ̃h2 | > b′)

≤ P (|θ̃h1/θ̃h2 − θh1/θ̃h2 |+ |θh1/θ̃h2 − θh1/θh2 | ≥ ε, |θ̃h2 | > b′)

≤ P

(
1

b′
|θ̃h1 − θh1 | ≥ ε/2

)
+ P

(
|θh1 |

|θ̃h2 | · |θh2 |
|θ̃h2 − θh2 | ≥ ε/2

)
≤ c1(1− ε2/c7)mbn/kc + c1(1− ε2/c8)mbn/kc, (32)

where c7 = max{4c1/(b
′)2, c1} and c8 = max{4a2c1/(b

′b)2, c1}. Let c9 = max{3c1, c6, c7, c8},
then we have

P (|θ̃h1/θ̃h2 − θh1/θh2 | ≥ ε) ≤ c9(1− ε2/c9)mbn/kc.

Let us work on (27). Since θh > 0, there exists a b̃ > 0 such that θh > b̃. Similar to
(30)-(32), there exist two positive constants b̃′ and c10 such that

P

(∣∣∣∣√θ̃h −√θh∣∣∣∣ ≥ ε)

≤ P (|θ̃h| ≤ b̃′) + P

 θ̃h − θh√
θ̃h +

√
θh

≥ ε, |θ̃h| > b̃′


≤ c1(1− ε2/c10)mbn/kc + P

(
|θ̃h − θh| ≥ (

√
b̃′ +

√
b̃)ε
)

≤ c1(1− ε2/c10)mbn/kc + c1(1− ε2/c11)mbn/kc,

where c11 = max{c1/(
√
b̃′ +

√
b̃)2, c1}. By setting c12 = max{2c1, c10, c11}, we obtain that

P

(∣∣∣∣√θ̃h −√θh∣∣∣∣ ≥ ε) ≤ c12(1− ε2/c12)mbn/kc.

Result (27) is therefore proved.

Combining the results in (21)-(27), we prove Lemma 5 by setting c′ = max{c1, c2, c5,
c9, c12}. �

Proof of Theorem 2. By Lemma 5, for any ε ∈ (0, δ0], there exists a c0 > 0 such that

P (|Ūj,h − θj,h| ≥ ε) ≤ 2(1− c0ε
2)mbn/khc ≤ 2(1− c0ε

2)mbn/kc,
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where k = max{kh, h = 1, . . . , s} ≤ n. Since δ0 can be arbitrarily large, the inequality holds
with ε = cN−τ ∈ (0, c] for some 0 < τ < 1/2. Thus, we have

P (|Ūj,h − θj,h| ≥ cN−τ ) ≤ 2(1− c13N
−2τ/2)mbn/kc

≤ c14(1−N−2τ/c14)mbn/kc, h = 1, ..., s, (33)

where c14 = max{2, 2/c13}. This implies that the results of Lemma 5 are applicable by
setting θ̃h = Ūj,h.

By Condition C2, we require that ω̃j = g(Ūj,1, . . . , Ūj,s) is constructed by a finite number
of simple numerical operations, which serve as basic building blocks of g(·). For each
building block, Lemma 6 can be used immediately to establish the convergence bound for
the corresponding ω̃j . With finite combination of those building blocks, (33) further implies
that

P (|ω̃j − ωj | ≥ cN−τ ) ≤ η(1−N−2τ/η)mbn/kc (34)

for some generic positive constant η.

Consequently, we have

P

(
max

1≤j≤p
|ω̃j − ωj | ≥ cN−τ

)
≤

p∑
j=1

P
(
|ω̃j − ωj | ≥ cN−τ

)
≤ ηp(1−N−2τ/η)mbn/kc.

The theorem is proved. �

Appendix D. Proof of Theorem 3

When ωj = g(θj) is Lipschitz continuous in θj , we have

MSE(ω̃j) = MSE(g(Ūj,1, ..., Ūj,s))

= E(g(Ūj,1, ..., Ūj,s)− g(θj))
2

≤ E

(
L2

s∑
h=1

(Ūj,h − θj,h)2

)

= L2
s∑

h=1

E(Ūj,h − θj,h)2

≤ sL2 max
j,h
{Var(Ūj,h)},

where L is defined in C2′. Thus, the theorem is implied directly by Proposition 1. �

Appendix E. Proof of Theorem 4

Note that γ = cN−τ . IfM * M̃, there must exist some j ∈M such that ω̃j < cN−τ . Also,

by Condition C3, we assume min
j∈M

ωj ≥ 2cN−τ . Thus, M * M̃ implies |ω̃j − ωj | > cN−τ
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for some j ∈M. Therefore, by (34), we have

P{M ⊆ M̃} ≥ P (max
j∈M
|ω̃j − ωj | ≤ cN−τ )

≥ 1− P (max
j∈M
|ω̃j − ωj | > cN−τ )

≥ 1− d · P (|ω̃j − ωj | > cN−τ )

≥ 1− dη(1−N−2τ/η)mbn/kc,

where d is the cardinality of M. The theorem is proved.
To see that the above probability bound goes to 1 as N →∞, it suffice to show that

d(1−N−2τ/η)mbn/kc = o(1).

Note that

(1−N−2τ/η)mbn/kc =
{

(1− 1/(ηN2τ ))ηN
2τ
}mbn/kc/(ηN2τ )

.

Since
lim
N→∞

(1− 1/(ηN2τ ))ηN
2τ

= 1/e,

there exists a positive integer N1 such that whenever N > N1, we have (1−1/(ηN2τ ))ηN
2τ
<

2/e < 1.
Also note that 0 < τ < 1/2 and mbn/kc is in the same order of N ; there exists a

positive integer N2 and a constant υ ∈ (0, 1 − 2τ) such that whenever N > N2, we have
mbn/kc/(ηN2τ ) > Nυ.

Therefore, when N > max{N1, N2}, we have{
(1− 1/(ηN2τ ))ηN

2τ
}mbn/kc/ηN2τ

< (2/e)N
υ
.

It follows that, when d = O(N) and N is large enough,

d(1−N−2τ/η)mbn/kc ≤ d(2/e)N
υ

= o(1).

The probability bound in Theorem 4 thus goes to 1 as N →∞. �
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