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Abstract

Mapper is an unsupervised machine learning algorithm generalising the notion of clustering
to obtain a geometric description of a dataset. The procedure splits the data into possibly
overlapping bins which are then clustered. The output of the algorithm is a graph where
nodes represent clusters and edges represent the sharing of data points between two clusters.
However, several parameters must be selected before applying Mapper and the resulting
graph may vary dramatically with the choice of parameters.

We define an intrinsic notion of Mapper instability that measures the variability of the
output as a function of the choice of parameters required to construct a Mapper output.
Our results and discussion are general and apply to all Mapper-type algorithms. We derive
theoretical results that provide estimates for the instability and suggest practical ways
to control it. We provide also experiments to illustrate our results and in particular we
demonstrate that a reliable candidate Mapper output can be identified as a local minimum
of instability regarded as a function of Mapper input parameters.

Keywords: topological data analysis, Mapper, clustering stability, parameter selection,
sub-sampling

1. Introduction

The success of topological data analysis rests on the discovery, demonstrated in many
groundbreaking results, that methods from algebraic topology can provide insight into the
structure and meaning of complex, multidimensional data (Carlsson, 2009). Mapper is a
very important tool in any practical implementation of the central philosophy of topological
data analysis and has been used with great success in many contexts. The list is very
long and diverse, and includes breakthrough results in medical applications such as cancer
research (Cecco et al., 2015; Monica et al., 2011; Romano et al., 2014), the study of asthma
(Hinks et al., 2016; Torres et al., 2016; Schofield et al., 2019; Hinks et al., 2015), diabetes
(Sarikonda et al., 2014; Li et al., 2015) and others (Carlsson, 2017; Nielson et al., 2015;
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Rucco et al., 2015). Mapper was also applied to a variety of other disciplines, including
genomic data analysis (Camara, 2017; Rizvi et al., 2017; Chang et al., 2013; Chan et al.,
2013; Bowman et al., 2008), chemistry (Duponchel, 2018a; Lee et al., 2017), the study of
aqueous solubility (Pirashvili et al., 2018), remote sensing (Duponchel, 2018b), soil science
(Savir et al., 2017), agriculture (Kamruzzaman et al., 2017), sport (Alagappan, 2012) and
voting pattern analysis (Lum et al., 2013).

Broadly speaking, the Mapper algorithm provides an approximate representation of the
structure of the data, typically given as a point cloud, through a simplicial complex. This
complex provides a synthesis of the main topological features of the data in the sense that
similar data points are grouped into clusters, and clusters are connected forming loops,
flares, etc. An important step in any Mapper implementation is a choice of a clustering
procedure that will implement the required notion of similarity of data points. Given that
all known clustering procedures display various levels of instability (von Luxburg, 2010),
it is to be expected that Mapper will suffer from a similar problem, and indeed, Mapper
instability has been well demonstrated (Carrière et al., 2018).

Our main contribution in this paper is a numerical measure of the instability of Mapper
as a function of its input parameters. We demonstrate that our notion of instability can be
used to select parameter ranges which make the corresponding Mapper output reliable.

To elucidate the problem, it is important to bear in mind that any practical use of Map-
per on a dataset X requires a number of choices. In the classical Mapper implementation,
we need to choose a real valued function h : X −→ R (known as a filter or a lens) and a
collection of intervals {Ii}ti=1 covering h(X), as can be seen in Figure 1. The latter choice in-
volves at least two further parameters, as we need to choose both the length of the intervals
and the amount of overlap between successive intervals. We also must choose a clustering
method to apply on the bins h−1(Ii) to implement the required notion of similarity.

Because of the choices involved, the creators of Mapper remarked in their foundational
paper (Singh et al., 2007) that the method is rather ad hoc, and posed the question of how
to create a formal framework that would control the necessary choices and would provide
a measure of reliability of a particular Mapper output. In this paper we provide an answer
to this problem.

1.1 Contributions and Related Work

Following its many successful applications, several attempts have been made to reduce the
number of choices required to create a Mapper output.

Dey, Mémoli, and Wang (2016, 2017) study the structure and stability of a stable sig-
nature for what they called multiscale Mapper, which uses a hierarchy of covers instead of
a single one. However, it is not clear how to translate their findings to the context of the
original Mapper.

Jeitziner, Carriére, Rougemont, Oudot, Hess, and Brisken (2017) develop a two-tier
version of Mapper applied to clustering gene-expression data in order to identify subgroups.
Their version of Mapper is tailored specifically to the type of data for which it was intended
and does not require any user choices. Within its intended regime, this version of Mapper
is stable. It is not clear at this stage, however, how to extend it to other contexts.
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Figure 1: In the picture, X is represented by the black dots on the left, h assigns to each
data point (x, y) ∈ X its y coordinate and the intervals Ii are plotted as rectangles
adjacent to the real line. Mapper first clusters each group of data points h−1(Ii) ⊆
X and views each cluster as a node. If two clusters ci ⊆ h−1(Ii), cj ⊆ h−1(Ij)
(i 6= j) share a point x ∈ ci∩cj , the algorithm connects the nodes of ci and cj with
an edge. The resulting graph is the output of the classical Mapper algorithm.
Note that the resulting graph on the right looks like a simplified version of the
point cloud X, exhibiting a hole on top and two flares at the bottom.

D lotko (2019) sets out a procedure to generate Mapper covers by balls centred around
selected points in the data. Once a cover is chosen a sequence of multiscale covers are
obtained by expanding the ball sizes.

The work of Carrière, Michel, and Oudot (2018) represents ideas most similar to the
present paper. Carrière and Oudot (2016) provide bounds on the stability of Mapper in
a deterministic setting on manifolds by comparing it to the Reeb graph. This is achieved
through a feature set obtained from an extended persistence diagram of the Mapper graph
with respect to the filter function. In particular, the features correspond to loops and flairs
in the Mapper graph. Through further statistical analysis (Carrière et al., 2018), bounds
are determined on the expectation of the bottleneck distance between the features of the
Mapper and Reeb graphs, assuming points are sampled from an underlying manifold. This
provides a way to obtain confidence regions for specific features on the persistence diagram
that may be used to identify reliable Mapper outputs.

By not restricting to data sampled from a manifold, our approach provides a more
general setting than that of (Carrière et al., 2018). Points are only assumed to be sampled
from an underlying probability distribution rather than a distribution on a smooth manifold.
Furthermore the required covers may be chosen arbitrarily rather than being restricted to
arising from an interval cover and a filter function.

By comparing Mapper outputs using a matching distance rather than the bottleneck
distance, our approach will account for the size of features in terms of cluster size, not just
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their presence. Though our instability measure is less precise, only applying to the whole
Mapper output and not individual features, which in our case is only achieved by manually
comparing outputs from a sample of outputs in the parameter space. However, these new
idea allow us to study the effects of the choice of a clustering algorithm, which can even
be picked to be different on different parts of the cover. This possible variability as well as
any inherent instability of the chosen clustering procedure have not been investigated so far
and we fill that gap here.

Despite the ubiquity of clustering techniques within unsupervised learning, it has proved
difficult to establish a good theoretical foundation for this methodology. A lot of effort has
been devoted to the study of quality and stability of clustering. Highlights include the
famous impossibility theorem of Kleinberg (2003), who proved that there is no clustering
procedure satisfying all of his natural axioms. This was taken up by Carlsson and Mémoli
(2010), who proposed an axiomatic approach allowing them to provide an existence and
uniqueness result for single-linkage clustering. More recently, Strazzeri and Sánchez-Garćıa
(2018) provided a clustering procedure that satisfies Kleinberg’s axioms after an alteration
of the consistency axiom.

The work of Ben-David and Ackerman (2009) studied clustering quality measures rather
than the clustering functions, which provides a richer setting in which an alternative to
Kleinberg’s axioms can be consistently stated.

In a similar vein, instability provides a measure of reliability of a particular output for
the choice of input parameters. In particular, it will identify regions in the parameter space
where the output is very sensitive to the changes of parameter values and so is typically
less reliable. Much effort has been invested in studying clustering stability and while the
theoretical principles are agreed upon, at present there is no standard implementation to
determine its value. For an overview see (von Luxburg, 2010). In particular, methods
of data perturbation and resampling have been successful in practice, for instance in the
biomedical setting (Bittner et al., 2000; Ben-Hur et al., 2002; Levine and Domany, 2001).
Resampling methods such as bagging (Breiman, 1996, 1998) have also long been successfully
applied within supervised leaning. A procedure using resampling methods and statistics
derived form the Mapper algorithm (Riihimaki et al., 2019) has also been used to obtain
very accurate classification results on tree species data.

The most comprehensive theoretical study of clustering stability by Ben-David and von
Luxburg (2008) defined a notion of clustering stability and related it to properties of the
decision boundaries of the algorithm. This is the starting point of the theoretical part of
this work. We extend these notions to account for the considerably more complex Mapper
construction.

This paper is organised as follows. In §1.1, we discuss some related work and its con-
nections to the current paper. In §2, we give background on clustering stability required for
the remainder of the paper. This allows us in §3 to set out how the ideas of Ben-David and
von Luxburg Ben-David and von Luxburg (2008) can be generalised to the Mapper setting.
In particular, we introduce Mapper functions in Definition 8, which provide a new way of
expressing Mapper outputs. Crucially, this is used to define a similarity metric between
Mapper functions, DM in Definition 9. The Distance DM captures the structure of the
whole Mapper output and leads to the definition of our notion of instability of Mapper
(Definition 11) with respect to a large class of clustering procedures.
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In the remainder of the paper, we develop theoretical tools to provide bounds on the
instability of Mapper and to understand the main contributing factors. To do this, in §4
we introduce another similarity measure D∂ , Definition 19. The pseudo distance D∂ can be
seen as a kind of interleaving distance, and it relates the instability to the Mapper cover,
enabling us to obtain useful bounds in §5, Theorems 24 and 30. These theoretical results
unravel the main reasons for the instability, which are summarised in Remarks 25 and 31. In
§6, we study how to sharpen the bounds on instability obtained in §5 and prove in Theorem
36 that for a large enough sample size and under reasonably constrained conditions these
bounds can be arbitrarily small. Implying that the Mapper instability under such conditions
is also small. This means that Theorem 36 might be seen as a kind of stability theorem for
Mapper and justifies the central experimental observations of §8.

In §7 we present an algorithm allowing us to experimentally obtain values of instability.
This leads in section in §8 to experiments demonstrating our theoretically derived reasons
for instability and explain how the reasons for instability. Our following more geometrically
complex experimental results suggest that regions of relatively high instability correspond
to structural changes in the Mapper output. Hence local minima of the instability function
with respect to parameter choices are good candidates for parameter selection allowing us
to study Mapper through variations of all the parameters. In particular our theoretically
derived reasons for instability can also be used to intemperate these observations.

2. Clustering Stability

The question of assessing the quality and stability of clustering procedures has attracted a
lot of attention in recent years. In our discussion of Mapper stability, we will build on the
foundational work on clustering stability by Ben-David and von Luxburg (2008). Therefore,
we begin by introducing our setting in similar terms to theirs.

By a clustering of a metric space (U,D) we will mean a partition of U into s disjoint
subsets or clusters. Equivalently, we may think of a clustering as a function from U to a
finite set of labels. In assessing the performance of a particular clustering procedure, the
choice of labels to denote the clusters will typically be unimportant, which motivates the
following definition.

Definition 1 Let (U,D) be a metric space and let F denote the set of all functions f :
U −→ {1, 2, . . . , s}. Then a clustering of (U,D) is an element of

F := F/∼,

where f ∼ g if there is a permutation π of the set {1, 2, . . . , s} such that f = πg.

To assess the efficiency of a particular clustering procedure we need a clustering quality
function, which assigns a notional cost or error to a clustering procedure. The objective
of a clustering procedure is then to minimise the cost. Let M1(U) denote the space of all
probability measures on U (with respect to the Borel σ-algebra). For the purposes of this
paper, a clustering quality function is a function which assigns a real number (the cost) to a
choice of clustering and a choice of a probability measure on U . In other words, a clustering
quality function is a map

Q : F ×M1(U) −→ R.
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Clustering is usually presented as an algorithmic procedure, though implicitly most of these
constructions have an objective criterion around which the data is to be partitioned. Clus-
tering with respect to a quality function, therefore covers a large variety of clustering pro-
cesses including most common cluttering procedures. For example, any center-based clus-
tering and spectral clustering fit this description. During the theoretical part of this work
it is assumed that clustering algorithms are a method for obtaining a minimum of some
objective function, through this function may not be formally stated as part of a given
procedure.

Example 1 To make the previous statement more transparent, consider the K-means clus-
tering. In this case, Q(g, P ) measures the expected distance between any point drawn ac-
cording to the probability distribution P and the cluster centre assigned to that point by the
clustering function g. We give the explicit formula for this quality function in Equation 3.

In the following definition we make the assumption that the clustering quality function
has a unique minimizer, and we provide a discussion of the validity of this assumption in
what follows.

Definition 2 Given a probability measure P ∈ M1 (U), the optimal clustering of U is
defined as the function f ∈ F which minimizes Q(−, P ):

f = argmin
g∈F

Q(g, P ).

The optimal clustering gives rise to a clustering map

C : M1(U)→ F , P 7→ argmin
g∈F

Q(g, P ). (1)

The clustering f in Definition 2 is only well defined if Q(·, P ) has a unique global
minimum, which is a commonly made assumption in the literature (Caponnetto et al.,
2006; Ben-David et al., 2006, 2007; Ben-David and von Luxburg, 2008; Ribeiro et al., 2016)
and will be also be our starting point in this paper. A main reason for this restriction is
that in this work we want to understand the relation between the user-selected parameters
of the input and the stability of the outcome. In the presence of more local minima of the
quality function Q(·, P ), clustering instability may be dominated by other phenomena, for
example, the symmetry of the data. This case will be discussed in the follow-on work. In
fact, as demonstrated by (Ben-David et al., 2007, Theorem 4), k-means is stable if and only
if there is a unique global minimiser, so this assumption is quite reasonable. More generally,
in (Ben-David et al., 2006, Theorem 15), it is proved that multiple global minimisers with
symmetry imply instability. While the presence of underlying symmetries is a main reason
for a unique minimizer not to occur, this is very unusual in real data sets. In addition since
underlying symmetries are known to cause instability we are interested in situations where
this does not occur.

When working on a finite sample of X = (X1, . . . , Xn) ∈ Un, we use another clustering
quality function

Qn : Fn × Un −→ R,
which we call the empirical quality function. Unless stated otherwise, we assume that the
quality function does not depend on the order of X1, . . . , Xn.
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Example 2 The empirical K-means quality function for K = s clusters on a finite sample
X = (X1, . . . , Xn) ∈ Un computes the average distance between points in the sample and
their corresponding cluster centroid

Qn(f,X) =
1

n

n∑
j=1

K∑
k=1

1f(Xj)=kD(Xj , ck), (2)

where D(Xj , ck) denotes the distance between the point Xj ∈ U and the cluster centre ck
and 1f(Xj)=k is an indicator function,

1f(Xj)=k =

{
1, f(Xj) = k

0, f(Xj) 6= k.

The continuous counterpart of Qn for K-means clustering is given by:

Q(f, P ) =

K∑
k=1

∫
x∈U

1f(x)=kD(x, ck) dP (x). (3)

Definition 3 Let FXn denote the space of clusterings of X. Given a point sample X =
(X1, . . . , Xn) ∈ Un, define the optimal empirical clustering fn ∈ FXn of U as

fn = argmin
g∈Fn

Qn(g,X), (4)

if n ≥ 1 and set fn to be constant for n = 0. The optimal empirical clustering gives rise to
a clustering map

Cn : Un → FUn , X 7→ argmin
g∈Fn

Qn(g,X)

where FUn is the union of all FXn for X ∈ Un.

Similarly to Definition 2, the clustering f of Definition 3 may not exist. In addition, even
if such a global minimum exists, it may not be computable by the clustering algorithm. For
example, the empirical clustering quality function for the K-means clustering in Equation
2 need not have a global minimum. However, nearest neighbour clusterings (von Luxburg
et al., 2008) or approximation schemes (Ostrovsky et al., 2006) have empirical quality
function with a unique global minimum and algorithms to compute them. For the theoretical
part of this work, we will assume that Qn(−, X) has a unique global minimum.

Remark 4 In practice, the clustering quality function and empirical quality function are
related. Intuitively, Qn is a discretised version of Q, and we will make the additional
assumption that Qn is uniformly consistent with Q in the following sense. The func-
tions Qn(fn, X) −−−→

n→∞
Q(f, P ) in probability, uniformly over probability distributions P ∈

M1(U). More precisely, ∀ε > 0,∀δ > 0, ∃N ∈ N such that ∀n ≥ N, ∀P ∈M1(U),

Pn (|Qn(fn, X)−Q(f, P )| > ε) ≤ δ.
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We will need to be able to compare clusterings and for that we now recall the minimal
matching distance. This is one of many measures of similarity developed for clusterings,
and a good survey on this subject can be found in (Meilǎ, 2005).

Definition 5 The minimal matching distance is a map Dm : Fn ×Fn −→ R that, for any
two clusterings f, g ∈ Fn of a set of points X = (X1, . . . , Xn), is defined by

Dm(f, g) = min
π

1

n

n∑
j=1

1f(Xj)6=πg(Xj),

where π runs over all permutations of the set {1, 2, . . . , s} and 1f(Xj)6=πg(Xj) is an indicator
function.

It is well known that Dm is a metric, and that it can be computed efficiently using
a minimal bipartite matching algorithm. Given a distance between clusterings of finite
samples, we may define the instability with respect to an empirical quality function and a
distance. Here we consider the instability with respect to the minimal matching distance.

Any clustering g ∈ FXn on a finite point sample X = (X1, . . . , Xn) ∈ Un can be extended
to a clustering g ∈ F on all of U in the following fashion. Consider the order X1 ≤ X2 ≤
. . . ≤ Xn, and denote by Vi the Voronoi cell of Xi, defined by

Vi := {y ∈ U |D(y,Xi) ≤ D(y,Xj) ∀ j > i and D(y,Xi) < D(y,Xk)∀ k < i } . (5)

Note that {Vi}i forms a partition of U . In order to extend the clustering g ∈ FXn to U ,
we can simply assign the label g(Xi) to all points of U in the Voronoi cell of the point Xi.
Which is, we extend g ∈ FXn so that it is constant on each Voronoi cell. For technical reason
that will become clear in the context of Mapper, we also assume that the Voronoi extension
of an empty sample labels all of U as a single cluster.

Given an empirical quality function Qn, using the clustering function Cn of Definition
3 and the minimal matching distance, we obtain the composition

I(Qn) : Un × Un Cn×Cn−−−−−→ FUn ×FUn
i
↪−→ F2n ×F2n

Dm−−→ R, (6)

where FUn is the union of all clustering functions FXn on X for every X ∈ Un. To define the
inclusion i, we extend a clustering of n points to a clustering of all of U via Voronoi cells
as just explained and focus only on the labels assigned to subsets of 2n points.

We would like the function I(Qn) to be a random variable with respect to the probability
measure on Un, induced by a probability measure on U . From now on we restrict to quality
functions such that I(Qn) is a random variable, which we justify in the appendix.

Definition 6 Let (U,D) be a metric space equipped with an n-point clustering quality func-
tion Qn : Fn × Un −→ R and a probability measure P ∈ M1(U). Then the clustering
instability is given by

InStabClustering(Qn, P ) = E (I(Qn)) ,

where the expectation is taken over probability product measures of P on pairs of n-samples
in Un × Un.
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3. Comparing Mapper Functions

We now pass to the main part of this work. Our first goal is to provide a description of
Mapper functions analogous to the representation of clusterings as functions introduced in
Definition 1. A key part of our construction is a generalization of the minimal matching
distance given in Definition 5 to a form suitable for comparing Mapper outputs. The
extension works by taking into account the clustering information contained in the resulting
complexes. Our new notion of distance between Mapper functions is then used to define
instability of the Mapper procedure and to derive upper bounds for this instability in §5.

Let (X , D) be a metric space and let U = {Ui}ti=1 be a cover of X , that is X =
⋃t
i=1 Ui.

Following standard Mapper terminology, we refer to the sets Ui as bins. In the classical
Mapper algorithm, these bins are obtained by fixing a real valued function h : X −→ R
(known as a filter function or a lens), fixing a collection of intervals {Ii}ti=1 covering h(X ),
and setting Ui := h−1(Ii), as in Figure 1. Here, however, we do not assume, as we do not
need to, that the cover {Ui}ti=1 of X is of this particular form.

In this paper, we will deal with a discrete and finite sample X drawn from a metric
space X . The cover {Ui}ti=1 of X restricts to a cover {Ui ∩X}ti=1 of the space X, and we
will simply write Ui rather than Ui ∩X to lighten the notation. We now use a clustering
procedure to cluster each of the sets Ui, so that we have

Ui = V i
1 ∪ · · · ∪ V i

s .

A Mapper output is a simplicial complex where an n-simplex σ is an (n+1)-tuple of clusters

σ = (V i1
j1
, . . . , V

in+1

jn+1
)

with a nonempty intersection.
To avoid the labels of clusters in Ui being mixed up with those of Uj for i 6= j, we cluster

each Ui separately, that is, a clustering of Ui is of the form

fi : Ui −→
{
ci1, c

i
2, . . . , c

i
s

}
, (7)

where the cij are cluster labels. Similarly to §2, denote by F i the collection of all functions

of the form of Equation 7 and F i = F i/ ∼, where

fi ∼ gi ⇐⇒ ∃π : fi = πgi,

with π denoting some permutation of the set
{
ci1, c

i
2, . . . , c

i
s

}
. To simplify the notation, we

assume that every Ui is partitioned into the same number s of clusters. However, all results
hold when choosing a different s for each bin.

Given a probability measure on X , P ∈ M1(X ), we consider the probability measure
induced on Ui by restricting P to Ui and setting

Pi =
1

P (Ui)
· P ∈M1 (Ui) , (8)

and setting Pi as the zero measure if P (Ui) = 0. Denote by Qi : F i ×M1(Ui) −→ R the
clustering quality function used in Ui, and denote by

Qin : F i × Uni −→ R

9
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its empirical counterpart on size-n samples of Ui. As in Definition 2, the clustering quality
function Qi determines a unique optimal clustering for each set Ui, and taken together, these
optimal solutions create an optimal Mapper output and a clustering function Ci : M1(Ui)→
F i, for every i = 1, . . . , t. In a similar way, Definition 3 and an empirical quality function
Qin determines a unique optimal empirical clustering for each Ui from which we obtain an
optimal Mapper output and a clustering function Cin : Uni → FUin .

Remark 7 As is now apparent, a Mapper output (as well as a Mapper function which we
will discuss shortly) depends on the choice of a cover, a quality function as well as the
particular sample drawn from the ambient metric space. Moreover, implicit in the choice of
a quality function is a choice of a clustering procedure (see Defintion 3). We will refer to
these choices collectively as Mapper parameters. In practice, these various choices usually
come down to a list of real parameters. For example, in the standard Mapper algorithm, the
cover Ui is the pullback of an interval cover of R, which is specified through a choice of two
parameters, resolution and gain. In this case, resolution is the number and size of intervals
in the cover, while gain controls the size of the overlap of these intervals.

Definition 8 Let X be a metric space equipped with a cover Ui. Given a clustering fi ∈ F i
for each member Ui of the cover we define the corresponding Mapper function as the function
which assigns to each x ∈ X , the set of clustering labels given to x by the clustering functions
fi, for i = 1, . . . , t. In other words, we have

f(x) = {fi(x) | i = 1, . . . , t, x ∈ Ui} ,

for each x ∈ X . We denote the set of all Mapper functions on (X , {Ui}ti=1) by N and Nn
on a finite n-point sample X ∈ X n.

Note that for each x ∈ X , the size of f(x) depends only on the cover, since it is equal
to the number of sets Ui that contain x.

Notice as well that a Mapper function contains more information than a Mapper output,
which is an abstract simplicial complex constructed on the set of clusters. A Mapper
function contains the information about the number of points in each cluster, and also in
every nonempty intersection of those clusters. A Mapper output will be equivalent to a
Mapper function if we label every simplex σ = (V0, V1, . . . , Vk) of the Mapper output by the
number of points of X contained in the intersection

V0 ∩ · · · ∩ Vk

of the clusters that are the vertices of σ.

Let X = (X1, . . . , Xn) ∈ X n be a point sample of X . Then, for each 1 ≤ i ≤ t, denote

Xi = {X1, . . . , Xn} ∩ Ui

and let ni = ni(X) be the number of elements in Xi. We now introduce a Mapper version
of definition (5).
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Definition 9 Given a point sample X = (X1, . . . , Xn) ∈ X n of X , we define a distance
function DM : Nn ×Nn −→ R which, for any two Mapper functions f, g ∈ Nn, is given by

DM (f, g) = min
π

1

n

n∑
j=1

1f(Xj)6=πg(Xj),

where π =
⊕t

i=1 π
i, each πi runs over all permutations of

{
ci1, . . . , c

i
s

}
, and 1f(Xj)6=πg(Xj)

is an indicator function.

Remark 10 For two Mapper functions f, g on X covered by {Ui}ti=1, the matching distance
Dm(fi, gi) of definition 5 counts the proportion of points of Xi for which fi and gi disagree.
Since the clustering of each Ui corresponds to the vertices of the Mapper output, considering
Dm on each Ui would give no information about the higher dimensional simplicies of the
Mapper output. However, Definition 9 takes into account not only the points that fall into
different vertices of f and g, but also all the edges and the higher dimensional simplices to
which the Mapper functions f and g assign different values.

A drawback of DM it that it can see certain intuitively larger changes of vertex labeling
as equally distant. Consider the following example. Assume that X is covered by three sets
U1, U2, U3 and that each of these sets is clustered into two clusters labeled ci1, c

i
2 for i = 1, 2, 3.

Let f(x) = {c1
1, c

2
1, c

3
1}, g(x) = {c1

1, c
2
1, c

3
2}, h(x) = {c1

1, c
2
2, c

3
2}, and f(y) = g(y) = h(y) for

all other points y 6= x. Provided the clustering labels remain unchanged, then DM (f, g) =
DM (f, h), despite the fact that h differs from f on two clusters, and it differs from g on only
one cluster. However DM does has the advantages of taking into account edge information
and being simple to work with from both a theoretical and a practical perspective.

Since DM generalizes Dm, we use DM to generalize Definition (6) to a notion of insta-
bility of Mapper. As before, we assume that the metric space X is equipped with a cover
{Ui}ti=1. We choose an empirical quality function Qini for each Ui. Denote by NX

n the set
of all Mapper functions on X ∈ X n with cover {Xi}ti=1 and NXn the union of NX

n for all
choices of X. Each Qini determines a corresponding clustering function Cini which we use
to define an instability function I({Qini}

t
i=1) as the composite

I({Qini}
t
i=1) = X n ×X n

∐t
i=1 C

i
−×Ci−−−−−−−−−−→ NXn ×NXn

i
↪−→ N2n ×N2n

DM−−→ R. (9)

The function I({Qini}
t
i=1) will be measurable if and only if each I(Qini) is measurable. This

is because it follows from the definitions of DM and Dm that the pre-image of a measurable
set under I({Qini}

t
i=1) is a union of the the pre-images of measurable sets for functions

I(Qini).

Definition 11 Fix Mapper parameters on X by choosing quality functions {Qini}
t
i=1 defined

on a cover {Ui}ti=1 of X , and a probability measure P ∈ M1(X ). These choices are made
so that I = I({Qini}

t
i=1) is a random variable, as discussed at the end of §2.

The instability of the Mapper algorithm on size-n samples is defined as

InStabMapper({Qini}
t
i=1, n, P ) = E

(
I({Qini}

t
i=1)

)
,

where the expectation is taken over the probability product measures of P on pairs of n-
samples in X n ×X n.

11
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4. Mapper Boundary Distance

To compare clustering functions on a metric space (U,D), Ben-David and von Luxburg
(2008) introduced a distance function that captures the size of the regions of U on which two
clustering functions disagree. We now expand upon and generalise this boundary distance
to the Mapper setting and use it to provide upper bounds of the Mapper instability in the
following section.

Definition 12 Let (X , D) be a metric space with cover {Ui}ti=1. Then given a Mapper
function f ∈ N , define the boundary of each fi to be

∂(fi) = ∂(f−1
i (ci1)) ∪ · · · ∪ ∂(f−1

i (cis)) (10)

where each ∂(f−1
i (cij)) is the usual topological boundary of the subset f−1

i (cij) taken over Ui.
Following the established conventions, we will refer to ∂(fi) as the decision boundary of fi.

Intuitively, ∂(fi) consists of the points of discontinuity of fi, that is, the points lying in
the boundary of some cluster, and an illustration of ∂(fi) is provided in Figure 2a. As Ui is
a metric space, ∂(fi) can be described using an equivalent metric condition, which defines
the boundary ∂A of any subset A ⊆ Ui by

∂A = {x ∈ Ui | D(x,A) = D(x,Ac) = 0}, (11)

where Ac = X \A is the complement of A in the metric space X and the distance of a point
x ∈ Ui from a set A ⊆ Ui is defined as usual by

D(x,A) = inf {D(x, y) | y ∈ A} .

Remark 13 If t = 1 and U1 = X , then we recover the notion of boundary for clustering
seen in (Ben-David and von Luxburg, 2008). In the case when any fi is the constant function
on each connected component of Ui, that is there is a single cluster in each component, then

∂fi = ∅

and this is the only way to achieve this. For clustering a connected Ui it is not of particular
interest to study data with a single cluster and so this does not cause many problems.
Mapper constructions however, would commonly consider Ui with a single cluster, so it will
be impotent to incorporate this into our work.

To avoid unnecessary technicalities, two clusterings will be considered different if and
only if their values differ outside the intersection of their boundaries. Hence, we work on
the set of all clusterings fi ∈ F i that represent elements in the space of equivalence classes

F i∂ = F i/ ∼,

where fi ∼ gi if and only if

∃π : fi(x) = πgi(x), ∀x ∈ Ui − ∂(gi), and (12)

∃π′ : gi(x) = π′fi(x),∀x ∈ Ui − ∂(fi),

where π, π′ ∈ Σs are permutations of the set of labels.

12
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Definition 14 Let f be a Mapper function constructed using clustering functions fi of the
sets Ui. Then the decision boundary ∂(f) of the Mapper function f can be defined using the
decision boundaries of the functions fi by

∂(f) =
t⋃
i=1

∂(fi).

We denote by N∂ the set of Mapper functions f ∈ N such that each fi is an element of F i∂.

For any γ > 0, we may define the γ-tube of fi to be

Tγ(fi) = {x ∈ Ui | D (x, ∂(fi)) ≤ γ} ,

as is the case in (Ben-David and von Luxburg, 2008) and Figure 2 illustrates the construction
Tγ(fi). However as discussed in Remark 13, in the case of Mapper covers, it becomes more
relevant to consider Ui for which a clustering has no boundary or where the bounder can
intuitively be seen as fully or partially lying outside Ui. Therefore, following the suggestion
in (Ben-David and von Luxburg, 2008) to avoid reference to the boundary, we define for
any γ > 0, the γ-tube of fi to be the closed set

Tγ(fi) = {x ∈ Ui | ∃y ∈ Ui : d(x, y) ≤ γ and fi(x) 6= fi(y)}.

The next proposition expresses the relationship between Tγ(fi), Tγ(fi) and ∂(fi).

Proposition 15 For all γ > 0,

∂(fi) ⊆ Tγ(fi) ⊆ Tγ(fi).

When Ui is a complete and convex metric space, then Tγ(fi) = Tγ(fi).

Proof Let fi be a clustering of Ui, x ∈ Tγ(fi) and γ > 0. Then there is a b ∈ ∂(fi) such
that D(x, b) ≤ γ. By definition of the metric condition on the boundary in Equation 11,
for any ε > 0 the open ball B(b, ε) in Ui contains a points y such that fi(y) 6= fi(x). By the
triangle inequality we have that D(x, y) ≤ D(x, b) +D(b, y) = γ+ ε. As a closed set, it con-
tain its limit points and ε can be arbitrarily small, so x ∈ Tγ(fi) and hence Tγ(fi) ⊆ Tγ(fi).
In addition we have that ∂(fi) ⊆ Tγ(fi) by definition of Tγ(fi). Assuming now that Ui is
convex and complete, then for any points x, y ∈ Ui such that d(x, y) ≤ γ there is metric
line segment between them containing a boundary point b. As this boundary point lies on
the metric line segment D(x, b) ≤ γ. Any point in Tγ(fi) is a limit point of such a pair of
points, therefore Tγ(fi) ⊆ Tγ(fi) in this case.

Definition 16 We define the γ-tube around a Mapper function f ∈ N to be

Tγ(f) =

t⋃
i=1

Tγ(fi). (13)

13



Belch́ı, Brodzki, Burfitt and Niranjan

∂(f)∂(g)

D∂(f, g)

1

2

(a)

Tγ(g)

γ

(b)

Tγ(f)

γ

(c)

Figure 2: Assume that t = 1, so that a Mapper function f coincides with the clustering
function f1. In (a), everything left from the solid vertical blue line is labelled by
f as cluster 1 and everything right from that line is labelled by f as cluster 2.
Hence, ∂(f) coincides with the solid line. Analogously, the left and right side of
the dashed tilted line correspond to clusters 1 and 2 of g, respectively. Hence,
∂(g) is precisely the dashed line. D∂(f, g) is also illustrated in (a). In particular,
∀γ > D∂(f, g), f and g agree both outside the γ-tube of g (i.e., f / Tγ(g); see
(b)) and outside the γ-tube of f (i.e., g / Tγ(f); see (c)).

Figure 2 illustrates the construction Tγ(fi). If two clusterings fi, gi ∈ F i∂ agree outside
the γ-tube of fi, we will write gi / Tγ(fi). Thus the condition gi / Tγ(fi) holds if and only
if for all x, y in the complement Ui − Tγ(fi) of the γ-tube of fi we have that

fi(x) = fi(y)⇔ gi(x) = gi(y).

Definition 17 Given Mapper functions f, g ∈ N∂, we say that g is contained in the γ-tube
of f , written g / Tγ(f), if for all x, y in the complement of Tγ(f)

f(x) = f(y)⇔ g(x) = g(y).

It is clear that this statement is equivalent to saying that,

g / Tγ(f)⇐⇒ gi / Tγ(fi) for all i = 1, . . . , t.

The mass P (Tγ(f)) of the γ-tube Tγ(f) with respect to the probability measure P depends
on the overlap between the bins Ui. We have the following natural estimate.

Proposition 18 The mass P (Tγ(f)) of the tube Tγ(f) is bounded by the mass of the γ
tubes Tγ(fi) as follows:

max
i=1,...,t

P (Tγ(fi)) ≤ P (Tγ(f)) ≤
t∑
i=1

P (Tγ(fi)) .

14
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The inequality on the left becomes an equality when all the elements Ui are contained
in a single Uj. The inequality on the right becomes an equality when the bins Ui are all
disjoint.

Proof Since Tγ(f) =
⋃t
i=1 Tγ(fi), we have P (Tγ(fi)) ≤ P (Tγ(f)) for all i = 1, . . . , t and

hence, max1≤i≤m P (Tγ(fi)) ≤ P (Tγ(f)), proving the inequality on the left. The other
inequality follows in a similar way.

Turning to the second part of the Proposition, if there is some 1 ≤ i0 ≤ t such that
Tγ(fj) ⊆ Tγ(fi0) for all 1 ≤ j ≤ t, then Tγ(f) = Tγ(fi0). Hence P (Tγ(f)) = P (Tγ(fi0)) =
max1≤i≤t P (Tγ(fi)), realizing the lower bound.

Similarly, if Tγ(fi)∩Tγ(fj) = ∅ for all i 6= j, then P (Tγ(f)) =
∑t

i=1 P (Tγ(fi)), realizing
the upper bound.

Definition 19 Let f and g be Mapper functions in N∂. The boundary distance D∂ is
defined by

D∂(f, g) = inf {γ > 0 | f / Tγ(g) and g / Tγ(f)} .

The metric D∂ is therefore an interleaving distance between the γ-tubes of the functions
f and g.

Example 3 Once the distance parameter ε > 0 and sample X are fixed, the Voronoi ex-
tension (see Equation 5) of neighbourhood clustering provides a unique clustering fε(X).
Any quality function with a unique minimum at this clustering function will be a quality
function corresponding to ε-neighbourhood clustering. Therefore as clustering is equivalent
to Mapper with a single bin, an empirical quality function would be

Qn(f,X) = D∂(f, fε(X)).

Similarly given the probability measure P from which X is sampled, define ε-neighbourhood
clusterings on P as the function fε(P ) whose clusters are the equivalence classes of connected
components of P with distance less than ε form each over. This extends to the whole space
by assigning labels outside the support to be the same label as that of their nearest labelled
point (the boundary assignment in F∂ making no difference). Then set:

Q(f, P ) = D∂(f, fε(P )).

For a large enough sample size the point sample X will be a dense enough representative of
the support of P in probability. So, these functions will be uniformly consistent in the sense
of Remark 4.

Remark 20 If some Ui is unbounded then D∂ may be infinite. In practice the support of
P will always be bounded, hence if Ui is unbounded, then we may restrict X and Ui to some
bounded subset containing the support of P . Therefore unless stated otherwise, we assume
from now on that each Ui is bounded. In this case we note (and leave it to the reader to
check) that the condition in Equation 12 makes D∂ a metric. Without this restriction, D∂

is only a pseudo-metric, as is also the case for clusterings.
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Furthermore as observed in Remark 29, the boundary ∂(f) may be empty, however as
Tγ(f) does not depend on the boundary and D∂(f, g) is well defined for any pair of Mapper
function f, g ∈ N∂.

To get more information regarding the boundary metric, we need to examine in a bit
more detail the relationship between the space N of all Mapper functions and the spaces
Fi of clusterings of the individual sets Ui in the cover of X . We have the following.

Lemma 21 There exists a bijection

φ : N −→
t∏
i=1

F i.

Proof Let φ be a map
ϕ : N −−−−→

∏t
i=1F i

f 7−−−→ (f1, . . . , ft) ,

where each fi : Ui −→
{
ci1, . . . , c

i
s

}
is a function defined as follows: for every x ∈ Ui, fi(x)

is the only value in the singleton set f(x) ∩ {ci1, . . . , cis}.
The inverse map to ϕ is given by the construction of a Mapper function f from cluster-

ing functions f1, . . . , ft as described in Definition 8.

It follows that we can view N∂ as the product
∏t
i=1F i∂ and so the space N∂ is naturally

a product metric space in the following way. If f and g are represented as f = (f1, . . . , ft)
and g = (g1, . . . , gt), then by the bijection of Lemma 21, it is straightforward to check that

D∂(f, g) = max
i=1,...,t

D∂(fi, gi), (14)

where D∂(fi, gi) is the Mapper distance D∂ restricted to clustering functions on a single Ui.
From now on, we will think of N∂ as the product metric spaces

(
F i∂ , D∂

)
. The metric D∂

has several nice properties exhibited in the next Proposition, which provides a crucial step
in the proof of Theorem 24 that provides an upper bound for the instability of Mapper.

Proposition 22 Denote by {Ui}ti=1 a cover of the metric space X . Then, with the notation
above, the following properties hold:

1. Let f, g ∈ N∂ and γ > 0. Then, g / Tγ(f) implies that ∂(g) ⊆ Tγ(f).

2. Let f, g ∈ N∂ and γ > 0 be such that D∂(f, g) ≤ γ. Then for any choice of clustering
labels, there exists a permutation π such that for all x ∈ X ,

f(x) 6= π(g(x)) =⇒ x ∈ Tγ(g),

where π =
⊕t

i=1 π
i, and πi denotes a permutation of the set

{
ci1, . . . , c

i
s

}
.

3. If X is a subset of Ra, the metric on X is induced by a norm on Ra and each Ui ⊆ X
is compact, then (N∂ , D∂) is relatively compact.
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Proof Let f, g ∈ N∂ and γ > 0 be such that g / Tγ(f). By definition, this means that for
each i, gi / Tγ(fi). By definition of the clustering boundary using the metric condition in
Equation 11, for every x ∈ ∂(gi)− ∂Ui and every ε > 0, the open ball B(x, ε) in Ui contains
two points y and z such that gi(y) 6= gi(z). Hence by definition of gi / Tγ(fi), for every
ε > 0, we have that B(x, ε) ∩ Tγ(f) is nonempty. Since Tγ(fi) is a closed set, we have that
x ∈ Tγ(fi), which implies that ∂(gi) ⊆ Tγ(fi) for all i. Therefore, using Definition 14 and
equality in Equation 13, we have that

∂(g) =
t⋃
i=1

∂(gi) ⊆
t⋃
i=1

Tγ(fi) = Tγ(f),

which proves (1).
Let f, g ∈ N∂ and γ > 0 be such that D∂(f, g) ≤ γ. This means that fi / Tγ(gi) for all

i. Suppose that for some i = 1, . . . , t and j, a, b = 1, . . . , s we set

A =
(
f−1
i (cij)− Tγ(gi)

)
∩
(
g−1
i (cia)− Tγ(gi)

)
and B =

(
f−1
i (cij)− Tγ(gi)

)
∩
(
g−1
i (cib)− Tγ(gi)

)
.

Since fi takes the same value on A, B and fi / Tγ(gi), so gi takes the same value on A
and B. Therefore a = b or A = B = φ. Hence for every i and any choice of cluster
labels on fi, gi ∈ Fi, we may construct a permutation πi of the set

{
ci1, c

i
2 . . . , c

i
s

}
such that

fi(x) = πi(gi)(x) for x ∈ Ui−Tγ(gi). Setting π =
⊕t

i=1 π
i, the following holds for all x ∈ X ,

f(x) 6= π(g(x)) =⇒ ∃i : fi(x) 6= πi(gi(x)) =⇒ ∃i : x ∈ Tγ(gi) =⇒ x ∈ Tγ(g),

where the last implication follows from Equation 13, proving (2).
It is stated in part 6 of (Ben-David and von Luxburg, 2008, Proposition 1) that provided

U is a compact subset of Ra, clusterings F∂ on U are relatively compact in D∂ . Therefore,
as we assume each F i∂ is relatively compact. Since N∂ is endowed with a product metric
D∂ , it follows that is N∂ is relatively compact too, which proves (3).

Remark 23 In Proposition 22, point (3), we assumed each bin Ui to be compact. Consider
the classical Mapper algorithm, where a real-valued function h : X −→ R and a collection
of intervals {Ii}ti=1 covering h(X ) are used to define each bin Ui as h−1(Ii). Basic topology
shows that a sufficient condition for each Ui to be compact consists of each interval Ii being
of the form [ai, bi] for some ai, bi ∈ R and the function h being a proper map, that is
a function such that inverse images of compact subsets are compact. Furthermore, it is
enough to assume X to be compact and h to be continuous to guarantee h to be a proper
map. Notice also that if all bins are compact, so is X , as a finite union of compact sets.

5. Mapper Stability as a Function of Mapper Parameters

In this section, in Theorems 24 and 30 we prove two results that provide estimates of the
instability of Mapper. Moreover, as we shall see, these results provide practical insights
into how the stability of the Mapper algorithm can be affected by the specific choice of the
Mapper parameters, including the filter function, the cover, the clustering algorithm, the
metric and the sample size.
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Throughout this section and the remainder of the paper, we assume that X is a metric
space equipped with a probability measure P ∈ M1(X ) and that X is given a cover X =⋃t
i=1 Ui such that each Ui is bounded. As before, we assume given quality functions Qi on

each Ui, together with the empirical quality functions Qin. Furthermore, we will use the
following additional notation.

• Denote by f the unique optimal Mapper function of X , given by

f =
t∏
i=1

Ci(Pi).

where Ci is an optimal clustering function defined in Equation 1

• Denote by fn the unique optimal empirical Mapper function, that is the function

fn =

t∏
i=1

Cini(X)

obtained from size-n samples X ∈ X n using the empirical clustering functions Cini .

Following Proposition 22 (2), we will also assume that all clusterings on Ui have connected
clusters, however this automatically is the case for all common clustering procedures. We
begin by generalizing the estimates obtained in (Ben-David and von Luxburg, 2008, Propo-
sition 2).

Theorem 24 Using the above assumption and notation, the instability of the Mapper al-
gorithm satisfies

InStabMapper(
{
Qini

}t
i=1

, n, P ) ≤ 2

(
P (Tγ(f)) + P (D∂(fn, f) > γ)

)
,

where γ ≥ 0 and

• P (Tγ(f)) denotes the mass of the γ-tube of f ,

• P (D∂(fn, f) > γ) denotes the probability that the optimal empirical Mapper function
fn satisfies D∂(fn, f) > γ when each fni is extended in Ui using Voronoi cells as given
in Equation 5

Proof

Define the following three collections of size-n samples X ′ = (X1, . . . , Xn) ∈ X n:

• Let M≤γ be the set of X ′ ∈ X n for which D∂(fn, f) ≤ γ.

• Let M>γ be the set of X ′ ∈ X n for which D∂(fn, f) > γ.
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In particular following Remark 23, we have that X n = M≤γ∪M>γ as even when a sample is
empty fni is assumed to extend to the constant clustering and D∂ is well defined all of N∂ .
Without loss of generality, let us assume that the permutation π for which the minimum
value of DM is attained (see Definition 9) is the identity. By Definition 11,

InStabMapper(
{
Qini

}t
i=1

, n, P ) = E
(
I({Qini}

t
i=1)

)
.

To simplify notation, we will write InStab for the left hand side of the above equation. Let
fn =

∏t
i=1C

i
ni(X′)

(X ′) and gn =
∏t
i=1C

i
ni(X′′)

(X ′′) denote the optimal empirical Mapper

functions for samples X ′, X ′′ ∈ X n, respectively. Recall that, using the Voronoi cell con-
struction in Equation 5, Mapper functions fn and gn can be extended to the 2n-point sample
X = (X ′, X ′′) ∈ X 2n. Then by Equation 9, taking DM over all point in X = (X1, . . . , X2n)
and using the triangle inequality,

InStab =

∫
X∈X 2n

DM (fn(X), gn(X))dP 2n(X)

≤
∫
X∈X 2n

(DM (fn(X), f(X)) +DM (f(X), gn(X))) dP 2n(X)

where we note that each of the two terms now depends only on the variables either fn or
gn, respectively. Therefore, we can now write

InStab = 2

∫
X∈X 2n

DM (fn(X), f(X))dP 2n(X)

= 2

(∫
X′∈M≤γ ,
X′′∈Xn

DM (fn(X), f(X))dP 2n(X) +

∫
X′∈M>γ ,
X′′∈Xn

DM (fn(X), f(X))dP 2n(X)

)
.

Since DM (fn(X), f(X)) ∈ [0, 1] and using Defintion 9 for DM , we obtain

InStab ≤ 2

 1

2n

∫
X′∈M≤γ ,
X′′∈Xn

2n∑
i=1

1fn(Xi) 6=f(Xi)dP
2n(X) + P

(
X ′ ∈M>γ

) .

If fn is obtained from a sample in M≤γ , then Proposition 22 (3) gives that for all x ∈ X ,

fn(x) 6= f(x) =⇒ x ∈ Tγ(f).

On the other hand, by definition, we have P (M>γ) = P (D∂(fn, f) > γ). Therefore, we
conclude

InStab ≤ 2

 1

2n

∫
X′∈M≤γ ,
X′′∈Xn

2n∑
i=1

1Xi∈Tγ(f)dP
2n(X) + P (D∂(fn, f) > γ)


= 2

(
1

2n
· 2n

∫
x∈M≤γ

1x∈Tγ(f)dP + P (D∂(fn, f) > γ)

)

= 2

(
P (Tγ(f)) + P (D∂(fn, f) > γ)

)
.
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Remark 25 (Reasons for instability - Part I) Theorem 24 can be used to identify the
effect of particular parameter choices on the instability of the Mapper output as follows. The
bound becomes large if P (Tγ(f)) is large, when the mass is concentrated around the decision
boundary ∂(f) of the optimal clustering f . This may happen when any of the following
conditions hold (but note that these conditions are not sufficient for Mapper instability).

(a) The decision boundaries ∂(fi) lie in a highly dense area.

(b) The decision boundaries ∂(fi) are ‘long’ in the sense of a suitably defined path distance
along ∂(fi).

(c) There is low overlap between bins.

Moreover, Proposition 18 suggests P (Tγ(f)) can also be large if this holds:

(d) The decision boundaries of different members of the cover are relatively far apart.

Indeed, small changes to decision boundaries that are far apart necessarily increase the
distance between the Mapper functions. This is not always true for decision boundaries that
are close since they are more likely to mismatch on the same points, see Figure 3 for an
illustration.

Even if P (Tγ(f)) is small, P (D∂(fn, f) > γ) can still increase the bound, which happens
if:

(e) The decision boundaries ∂(fni ) vary a lot with the choice of the sample.

While points (a), (b) and (e) above are generalizations of those stated in (Ben-David and
von Luxburg, 2008, §3), the phenomena described in (c) and (d) are unique to Mapper,
since they involve interactions within the cover.

We now explore in more detail the instability of the Mapper output that result from
parameter choices. High instability suggests that the Mapper output varies significantly
with small variations of the input data. In particular, it is not surprising that Mapper
instability increases if the decision boundaries ∂(fi) vary a lot with slight changes in the
input sample. However, it is hard to identify explicitly the situations that make the term
P (D∂(fn, f) > γ) large. To deal with this, in Theorem 30 we provide an upper bound for
P (D∂(fn, f) > γ) in terms that more clearly depend on the choice of Mapper parameters.
While in general this leads to a less sharp bound, we gain a greater insight into how these
variables affect the instability of Mapper.

Remark 26 To state Theorem 30, we make the following assumptions on the quality func-
tions Qin : Fn × Uni −→ R and Qi : F i ×M1(Ui) −→ R.

1. The functions Qin and Qi have a unique global minimizer fi ∈ Fn, as we are assuming
throughout the paper.

2. The functions Qin are continuous, with respect to the topology on Fn × Uni given by
the metric D∂.
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f1 6= g1

f ′1 6= g′1

f2 6= g2

f ′2 6= g′2

U1

U2

U1

U2

Figure 3: The images show two overlapping bins U1 and U2 (green and blue respectively)
as well as the regions (red) where clustering functions assigned to each bin do not
agree. On the left, the region in U1 where f1, g1 do not agree, does not intersect
the region where f2, g2 disagree in U2. On the right, the mismatch regions between
f ′1, g′1 in U1 and f ′2, g′2 in U2 have the same size as their counterparts on the left
diagram. However, the ones on the right have a large intersection. Therefore
assuming that point samples in the regions are similar, DM (f, g) > DM (f ′, g′)
while Dm(f1, g1) and Dm(f2, g2) have similar values to Dm(f ′1, g

′
1) and Dm(f ′2, g

′
2),

respectively.

3. The functions Qin are uniformly consistent with the functions Qi in the sense that for
every i and every γ > 0, Qin(fni , X) −−−→

n→∞
Qi(fi, Pi) in probability, uniformly over

all probability distributions Pi ∈ M1(Ui). That is ∀ε > 0, ∀δ > 0, ∃N ∈ N such that
∀n ≥ N, ∀Pi ∈M1(Ui),

Pi
(
|Qini(f

n
i , X)−Qi(fi, Pi)| > ε

)
≤ δ. (15)

Note that N does not depend on Pi. For future reference, we denote by N i(ε, δ) the
minimum of the set of the numbers N for which the condition of Equation 15 is
satisfied.

Ben-David showed that uniform consistency holds for the algorithm constructing the
global minimum of the k-means objective function (Ben-David, 2007). Similar results
occur with the normalized cut used in spectral clustering (von Luxburg et al., 2008).
For more on consistency of clustering algorithms, see (von Luxburg et al., 2008).

The next proposition shows that for a large enough sample size, Equation 15 guarantees
that the minimal quality function and empirical minimal quality functions will be close in
the boundary metric.

Proposition 27 In addition to the assumptions above, let us also assume that

• each Ui is compact; and
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• for every 0 < η < 1 and ζ > 0 there is N ∈ N such that for all n ≥ N ,

Pi(|Qi(fni , Pi)−Qini(f
n
i , X)| ≤ ζ) ≥ η,

for each i = 1, . . . , t. Note that is property differs form Equation 15 as it depends on
the minimal empirical function fni within both quality functions.

Then for each ε > 0,
P (D∂(fni , fi) ≤ ε) −−−→n→∞

1.

The second assumption in the proposition is similar to the uniform consistency assump-
tion of Equation 15, in that it states that for a large enough n the functions Qi and Qini
give similar values at a specified point, in particular that the functions take similar values
at fni .
Proof If Ui has zero mass that the second condition on the proposition implies that fni
is the unique minimise of Qi, hence fni = fi and D∂(fni , fi) = 0 satisfying the conclusion
of the proposition. So assume form now on that Ui has nonzero mass. By (Ben-David and
von Luxburg, 2008, Proposition 3) (whose proof is the same under our conditions) for all
ε ≥ 0 there is an ξ ≥ 0, such that for each g ∈ F i∂ ,

|Qi(g, Pi)−Qi(fi, Pi)| ≤ ξ =⇒ D∂(fni , fi) ≤ ε.

Hence by the triangle inequality

Pi(D∂(fni , fi) ≤ ε) ≥ Pi
(
|Qi(fni , Pi)−Qi(fi, Pi)| ≤ ξ

)
≥ Pi

(
|Qini(f

n
i , X)−Qi(fi, Pi)|+ |Qi(fni , Pi)−Qini(f

n
i , X)| ≤ ξ

)
≥ Pi

(
|Qini(f

n
i , X)−Qi(fi, Pi)| ≤

ξ

2
and |Qi(fni , Pi)−Qini(f

n
i , X)| ≤ ξ

2

)
.

(16)

On the other hand from Equation 15, since for any 0 ≤ δ < 1 there is an N ∈ N such that
for n ≥ N ,

Pi
(
|Qini(f

n
i , X)−Qi(fi, Pi)| > ζ

)
≤ 1− δ

which implies that
Pi
(
|Qini(f

n
i , X)−Qi(fi, Pi)| ≤ ζ

)
≥ δ.

Therefore picking ζ = ξ
2 , combining with the second assumption in the proposition and

Equation 16, since Ui have nonzero mass we obtain that

Pi(D∂(fni , fi) ≤ ε) −−−→n→∞
1.

The statement of the proposition now follows.

To state Theorem 30, we now introduce the term ι(n), which describes in probabilistic
terms the dependence of the behaviour of the Mapper function on the properties of the
clusterings for each Ui.
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Definition 28 If P (D∂(fni , fi) ≤ γ) 6= 0 for all i = 1, . . . , t, denote by ι(n) the real number
ι(n) ≥ 0 such that

P (D∂(fn, f) ≤ γ) = ι(n)

t∏
i=1

P (D∂(fni , fi) ≤ γ) . (17)

If P (D∂(fni , fi) ≤ γ) = 0 for some i = 1, . . . , t, then define ι(n) = 1.

The relationship between ι(n) and n is not necessarily monotone. To see this, recall
that, as stated in Equation 14, for any g, h ∈ N∂ , we have that

D∂(g, h) = max
i=1,...,t

D∂(gi, hi).

For example, if for some i = 1, . . . , t, P (D∂(fni , fi) ≤ γ) decreases at a slower rate than
the others with respect to n, then the value of ι(n) will rise. Under the assumptions of
Proposition 27, we have that P (D∂(fni , fi) ≤ ε) −−−→n→∞

1, implying that

ι(n) −−−→
n→∞

1, (18)

so the behaviour of ι(n) for a large enough n is determined.

Remark 29 It is however not clear what range of values ι(n) may take. Intuitively given
a large enough point sample X ∈ X n, if D∂(fni , fi) ≤ γ for some i = 1, . . . , t, this would
indicate that the sample well represented the underlying probability distribution Pi on Ui.
So the subset of the point sample contained in another bin Uj intersecting Ui would be more
likely to well represent Pj. This in turn should result in a lower value of P (D∂(fnj , fj) ≤ γ).
More precisely for each i = 1, . . . , t, we would expect that

P (D∂(fnj , fj) ≤ γ | D∂(fni , fi) ≤ γ) ≥ P (D∂(fnj , fj) ≤ γ).

In this case, since the event D∂(fn, f) ≤ γ is the intersection of events D∂(fni , fi) ≤ γ,
using conditional probability we obtain that

P (D∂(fn, f) ≤ γ) ≥
t∏
i=1

P (D∂(fni , fi) ≤ γ) .

In particular by Defintion 28, this implies that

ι(n) ≥ 1.

It then follows from Equation 18, that ι(n) is minimised as n grows. To make these points
more precise we would require more information, especially regarding the properties of the
clustering functions.

To find an upper bound on the term P (D∂(fn, f) > γ) of Theorem 24, we use properties
of the cluster quality function Qi(−, Pi) in a neighbourhood of the global minimum fi.
Assuming that each Ui is compact, by (Ben-David and von Luxburg, 2008, Proposition 3)
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(whose proof is the same under our conditions) for every γ > 0 and every i = 1, . . . , t, there
exists ε > 0 such that for all g ∈ N , written as g =

∏t
i=1 gi, the condition that

|Qi(gi, Pi)−Qi(fi, Pi)| ≤ ε

for all i = 1, . . . , t implies that
D∂(g, f) ≤ γ.

Let us denote by SQ
i

Pi
(γ) the supremum of the set of all such ε. See Figure 4 for an

illustration of what SQ
i

Pi
(γ) represents.

γ F i

Qi(−, Pi)

γ F i

Qi(−, Pi)

γ F i

Qi(−, Pi)

SQ
i

Pi
(γ)

SQ
i

Pi
(γ)

SQ
i

Pi
(γ)

Figure 4: SQ
i

Pi
(γ) measures how distinctly unique the global minimum of Qi(−, Pi) is, by

looking at a ball of radius γ around the minimum of Qi(−, Pi). In the illustration,
we identify (F i, D∂) with a subset of the reals (R, dEuclidean). The quality function

on the left has a very distinct global minimum, and hence a large SQ
i

Pi
(γ). The

other two functions exhibit different ways in which points can have values close

to the global minimum and hence have a small SQ
i

Pi
(γ).

We can now express an upper bound on instability which involves, among others, the
mass of the bins that form the cover of X .

Theorem 30 Fix a sample size n, given the assumptions and notations presented at the
beginning of the section, Remark 26 and that each Ui is compact. Then, for all γ > 0, δ > 0,
the instability of the Mapper algorithm satisfies

InStabMapper(
{
Qini

}t
i=1

, n, P ) ≤ 2P (Tγ(f)) + 2φ, (19)

where φ ∈ [0, 1] has the form

φ = 1− ι(n) (1− δ)t
t∏
i=1

P (Ui) · P
(
ni ≥ N i(SQ

i

Pi
(γ), δ)

)
and the function N i is defined in part (3) of Remark 26.

Proof Fix γ > 0 and some δ > 0. We first find a lower bound for P (D∂(fn, f) ≤ γ). This
yields the upper bound φ for the term P (D∂(fn, f) > γ) of Theorem 24, from which we
will conclude that

InStabMapper(
{
Qini

}t
i=1

, n, P ) ≤ 2P (Tγ(f)) + 2φ.
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We denote by ni ≥ N i(SQ
i

Pi
(γ), δ) the event consisting of picking X ∈ X n according to Pn

such that N i(SQ
i

Pi
(γ), δ) is greater than ni. Since for any events A and B, P (A) ≥ P (A∩B),

for each i = 1, . . . , t:

P (D∂(fni , fi) ≤ γ) ≥ P
(
{D∂(fni , fi) ≤ γ} ∩

{
ni ≥ N i(SQ

i

Pi
(γ), δ)

})
. (20)

By conditional probability, P (A ∩B) = P (A | B)P (B) for any events A and B. In partic-
ular, the expression on the right hand side of Equation 20 is equal to

P
(
D∂(fni , fi) ≤ γ

∣∣∣ ni ≥ N i(SQ
i

Pi
(γ), δ)

)
· P
(
ni ≥ N i(SQ

i

Pi
(γ), δ)

)
. (21)

We now find a lower bound for the left multiplicand in Equation 21. By definition of SQ
i

Pi
(γ),

|Qi(fni , Pi)−Qi(fi, Pi)| ≤ S
Qi

Pi
(γ) =⇒ D∂(fni , fi) ≤ γ.

Hence, Pi

(
D∂(fni , fi) ≤ γ

∣∣∣ ni ≥ N i(SQ
i

Pi
(γ), δ)

)
is bounded from below by

Pi

(
|Qini(f

n
i , X)−Qi(fi, Pi)| ≤ SQ

i

Pi
(γ)

∣∣∣ ni ≥ N i(SQ
i

Pi
(γ), δ)

)
, (22)

Additionally, by definition of N i(SQ
i

Pi
(γ), δ), if ni ≥ N i(SQ

i

Pi
(γ), δ) then

Pi

(
|Qi(fni , Pi)−Qi(fi, Pi)| ≤ S

Qi

Pi
(γ)
)
≥ 1− δ,

and therefore, the expression in Equation 22 is bounded below by 1−δ. Hence by Equation
8 the left factor in Equation 21 is bounded below by

(1− δ) · P (Ui).

This provides the following lower bound for the full expression in Equation 21:

(1− δ) · P (Ui) · P
(
ni ≥ N i(SQ

i

Pi
(γ), δ)

)
,

and hence, using Equation 17, the following lower bound for P (D∂(fni , fi) ≤ γ):

ι(n) (1− δ)t
t∏
i=1

P (Ui) · P
(
ni ≥ N i(SQ

i

Pi
(γ), δ)

)
. (23)

If we define φ so that 1− φ is the expression in Equation 23, then,

P (D∂(fn, f) > γ) ≤ φ,

which combined with Theorem 24, provides us with Equation 19.
Finally we show that φ ∈ [0, 1]. First note that φ ≥ P (D∂(fn, f) > γ) ≥ 0. On the

other hand, the terms ι(n), (1− δ) , P (Ui) and P
(
ni ≥ N i(SQ

i

Pi
(γ), δ)

)
are non-negative.

Therefore Equation 23 is non-negative. Subtracting this expression from 1 yields a result
no larger than 1 and this is φ by definition.

We now discuss the consequences of Theorem 30 on the instability of Mapper.
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Remark 31 (Reasons for instability - Part II) Theorem 24 revealed that a large mass
P (Tγ(f)) around the minimizer f of a Mapper quality function corresponded to an unstable
Mapper output. Assuming the mass P (Tγ(f)) to be small, a closer look at the term φ
introduced in Theorem 30 reveals the following additional reasons for the instability of a
Mapper algorithm (but note that these conditions are not sufficient for Mapper instability).

(A) A small sample size n makes φ large. The term P
(
ni ≥ N i(SQ

i

Pi
(γ), δ)

)
decreases as

n increases. While ι(n) need not decrease monotonically with n, we know by Equation
18 it does tend to 1 when n tends to infinity, under the assumptions of Proposition 27.
So the term ι(n) can be ignored for a large sample, possibly even minimal using the
reasoning of Remark 29. Therefore for a large enough sample size, φ becomes small.

(B) A small value of P (Ui) for some i = 1, . . . , t, makes φ large, i.e., close to 1.

(C) If a clustering quality function Qi has many points with values very near the global
minimum then φ is close to 1. Indeed, if there are many local minima of Qi(−, Pi),
gi ∈ F i such that |Qi(gi, Pi)−Qi(fi, Pi)| is small, for the given global minimizer fi of

Qi(−, Pi), then SQ
i

Pi
(γ) is small (see Figure 4 for an illustration), making N i(SQ

i

Pi
(γ), δ)

large, and in consequence, making φ large too.

The above points add to the reasons for instability presented in Remark 25. The con-
ditions given in (A) and (B) can be seen as the global and local versions, respectively, of a
similar phenomenon, since a small P (Ui) means that the proportion of sampled points from
X that fall into a Ui is likely to be small.

The chosen clustering method and metric play a crucial role in the causes for instability
of Remark 25 and in cause (C) in Remark 31. Among all the parameters selected for the
classical Mapper algorithm given by a filter function and interval cover of R, the weight
P (Ui) in (B) depends only on the cover {Ii}ti=1 of R and the filter function h : X −→ R.
Hence, by choosing suitable {Ii}ti=1 and h, we would be able to control the value of P (Ui),
providing we have sufficient information of the distribution P .

Finally, notice that if (C) applies, this may produce not only instability but also inac-
curacy. This would arise in situations when the global minimum is not distinct enough,
which leads to a possible error in finding the minimizer. This is often a sign of a mismatch
between the model and the data (Shamir and Tishby, 2010).

6. On the Sharpness of Bounds on Instability

In the previous section, we proved two theorems describing upper bounds on the instability
of Mapper in terms of the behaviour of the Mapper parameters necessary to produce an
output from some given data. In this Section, we discuss the efficiency of these estimates.
To get a feel for the problem, let us first address the obvious question of the possible range
of values for instability and its upper bounds. Let

BoundD∂ = 2P (Tγ(f)) + 2P (D∂(fn, f) > γ) ,

denote the bound from Theorem 24. Let us also denote by

Boundφ = 2P (Tγ(f)) + 2φ,
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the bound from Theorem 30. Fix all parameters except γ > 0 and δ ∈ (0, 1). Since
P (Tγ(f)), P (D∂(fn, f) > γ) , φ ∈ [0, 1], we have that

BoundD∂ , Boundφ ∈ [0, 4].

In contrast, the instability is by definition an expectation over the image of DM and
DM (f, g) ∈ [0, 1] for any f, g ∈ Nn (see Definition 9), so

InStabMapper(
{
Qini

}t
i=1

, n, P ) ∈ [0, 1].

This shows that the choice of specific values of the parameters γ and δ is crucial if we want
to be able to control the value of instability, it particularly important to be able to obtain

inf
γ>0

BoundD∂ , and inf
γ>0,δ∈(0,1)

Boundφ.

In the remainder of the section, we discuss choices of parameters γ and δ for which tight
bounds are attained.

Remark 32 We can make the following simple observation about varying γ and δ.

1. As γ increases, P (Tγ(f)) increases and P (D∂(fn, f) > γ) decreases.

2. Analogously, as γ increases, each SQ
i

Pi
(γ) increases, forcing N i(SQ

i

Pi
(γ), δ) to increase,

with the overall effect of making φ smaller. However, increasing γ also increases
P (Tγ(f)).

3. Similarly, as δ grows, each N i(SQ
i

Pi
(γ), δ) decreases, which diminishes the value of φ.

However, when δ grows, the value of (1− δ) gets smaller, which increases the value
of φ.

From Remark 32, we see that in general there is no straightforward way to identify
optimal values of γ and δ. However, the following Corollary of Theorems 24 and 30 shows
that to obtain useful boundaries we need to consider small values of γ.

Corollary 33 If X is bounded then there exists some Γ > 0 such that for γ ≥ Γ, we have

1 ≤ BoundD∂ (γ) ≤ Boundφ(γ, δ),

for all δ ∈ (0, 1).

Proof If X is bounded, then there is some γ > 0 such that P (Tγ(f)) ≥ 1
2 , hence the

corollary follows from Theorem 24 and 30.

Since InStabMapper(
{
Qini

}t
i=1

, n, P ) ≤ 1, an upper bound above 1 gives no information.
A consequence of Corollary 33 is that large values of γ produce such large bounds. In the
next theorem we show that under reasonable conditions selecting suitable γ > 0, φ > 0 with
a large enough n, make BoundD∂ arbitrarily close to 0 and therefore to the instability.
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Definition 34 We call the pair (P,Q) consisting of a probability measure on metric space
(X , D) and a clustering quality function Q on point samples X ∈ X n, a proper pair if all
decision boundaries of the clustering function in the image of C (the associated clustering
function of Q, see (2)) are of zero mass with respect to P .

In most applications a proper pair would be expected. For example following Proposition
15 if Ui are convex and complete the we may take the boundary definition

Tγ(fi) = {x ∈ Ui | D (x, ∂(fi)) ≤ γ} ,

In this case if Ui are also Ra and if the probability measure is obtained form a continuous
probability distribution and the boundaries of fi are possibly empty finite unions of Jordan
arcs.

Remark 35 In particular a proper pair implies that for γ > 0 and optimal clustering
function f , tube Tγ(f) may be of arbitrarily small mass. The clustering boundary ∂f is by
definition a finite union of boundaries, hence nowhere dense. Therefore if a nonzero lower
bound existed on P (Tγ(f)), then for any sequence γj such that γj → 0 as j →∞, we would
have that ∂f =

⋂
j∈N Tγj (f) is of nonzero mass.

Theorem 36 Given the assumptions of Remark 26, Proposition 27, that each Ui is a
bounded, convex , compact, complete subset of Ra and that each (Pi, Q

i) is a proper pair on
(X , D). Then for each 1 > ε > 0, there is a γ > 0 and N ∈ N, such that for n ≥ N the
instability of the Mapper algorithm satisfies

0 ≤ InStabMapper(
{
Qini

}t
i=1

, n, P ) ≤ BoundD∂ (γ) ≤ ε. (24)

Weakening boundedness of Ui to bounded support of P and on subset of Ra removing the
compactness assumption, we obtain that

InStabMapper(
{
Qini

}t
i=1

, n, P ) −−−→
n→∞

0.

Proof Pick 1 > ε > 0 and recall that

BoundD∂ (γ) = 2P (Tγ(f)) + 2P (D∂(fn, f) > γ) .

Following Remark 35 and Proposition 15, since Ui is convex complete and (Pi, Q
i) is a

proper probability measure, Pi(Tγ(fi)) becomes arbitrarily small as γ goes to zero. By
Equation 13, we have Tγ(f) =

⋃t
i=1 Tγ(fi), so we may choose γ > 0 so that

2P (Tγ(f)) ≤ ε

3
.

By Proposition 27, we have P (D∂(fni , fi) ≤ γ) −−−→
n→∞

1 and, in addition by Equation 14, we

also have D∂(f, g) = maxi=1,...,tD∂(fi, gi). Therefore, we may choose N ∈ N, with N ≥ N ′
such that for all n ≥ N

2P (D∂(fn, f) > γ) ≤ ε

3
,
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which proves Equation 24. By construction, 0 ≤ InStabMapper ≤ BoundD∂ (γ), so

InStabMapper(
{
Qini

}t
i=1

, n, P ) −−−→
n→∞

0.

As pointed out in Remark 20, if the support of P is bounded and Ui is unbounded, then
we may restrict X and Ui to some bounded subset containing the support of P . If Ui is
a subset of Ra then we may take its closure, so this bounded subset may also be assumed
to be closed, hence compact. These alterations of the cover do not change the value of the
instability while allowing BoundD∂ (γ) to be well defined.

Considering the Mapper output over the space of possible Mapper parameters, we would
expect most choices of parameters to satisfy the conditioned of Theorem 36. Setting aside
conditions on the underlying probability distribution, most other conditions can be satisfied
by choosing a reasonable Mapper setup, such as the classical Mapper algorithm and a
sensible clustering procedure. The exception to this is the assumption that the quality
functions Qi has a unique global minimizer. However as discussed below Definition 2, this
is most likely caused by a symmetry of Pi in Ui, which we might interpret as a transition
in the structure of the Mapper output at a particular choice of parameters. Therefore
following Theorem 36 and as observed experimentally in Table 3 and Figure 5, for a large
enough sample size, we would expect the values of instability over the parameter space to
form regions of low instability separated by ridges of instability. In this sense, as Theorem
36 justifies the existence of regions of stability, it could be considered a stability theorem
for Mapper.

In the case of clustering, Theorem 36 recovers partially the stability theorem (Ben-David
et al., 2006, Theroem 10), hence may be seen as generalisation to the Mapper setting. In
particular this suggests that the assumptions of Theorem 36, when considering the limit of
Mapper instability may be further weakened.

Remark 37 Equation 24 will not hold if BoundD∂ (γ) is replace with Boundφ(γ, δ). Recall
that

Boundφ(γ, δ) = 2

(
P (Tγ(f)) + 1− ι(n) (1− δ)t

t∏
i=1

P (Ui) · P
(
ni ≥ N i(SQ

i

Pi
(γ), δ)

))
.

As shown in the proof of Theorem 36, the term P (Tγ(f)) can be made arbitrarily small for

large n. By equation 18, we have ι(n) −−−→
n→∞

1. Also by construction P
(
ni ≥ N i(SQ

i

Pi
(γ), δ)

)
may be arbitrarily close to 1 if n is large enough. Therefore under the conditions of Theorem
36, it follows that

inf
γ>0, δ∈(0,1)

Boundφ(γ, δ) −−−→
n→∞

2

(
1−

t∏
i=1

P (Ui)

)

and
∏t
i=1 P (Ui) is fixed by the choice of cover.
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7. Computing Mapper Instability

In this section, we present a procedure for experimentally estimating the Mapper instability
given in Definition 11. It is important to note that there is no standard procedure to deter-
mine clustering instability, and a discussion of the subject can be found in (von Luxburg,
2010). Our approach is to generalise to the Mapper setting a method for computing clus-
tering instability detailed in (Ben-Hur et al., 2002), which is based on sub-sampling of the
data. A similar approach applicable to points sampled from a manifold is taken by (Carrière
et al., 2018), where the clustering procedure is chosen to be the neighbourhood clustering.
On the other hand, in that work the authors are able to compute confidence measures for
specific Mapper features, while here we need to consider the whole Mapper output. To
interpret the stability of Mapper features from our perspective we make observations of
variations over sampled outputs form the parameter space.

To begin with, we assume that all necessary Mapper parameters, as explained in Re-
mark 7, have been selected and that we have a sample of n points taken independently
and identically distributed (i.i.d) from an underlying probability distribution. Then we
may computationally estimate the Mapper instability based on the method of k-fold cross
validation as follows.

1. Split the data into k ≥ 2 sub-samples. That is, choose m, k ∈ N such that n = km
and remove for each 1 ≤ i ≤ k the m points m(i− 1) + 1 to mi, leaving k sub-samples
of (k − 1)m points.

2. Compute the Mapper distance between the Mapper functions of each pair of sub-
samples, on the (k − 2)m points of their intersection.

3. Average the distances between Mapper functions restricted to the sub-samples by
summing the distances and dividing by (k−1)k

2 .

The outcome of this procedure is an approximation of the instability of the Mapper
function.

Choosing a small k leads to inaccurate results since there are too few samples and the
intersection between the samples is small. However too large a choice of k may result in
samples that are too similar which in turn decreases the speed of computation as many more
distances need to be calculated. Hence the best results are achieved with values of k and
m in the middle of their range, such that m is not too large. Greater accuracy can still be
gained by averaging the results of the procedure applied to several randomly shuffled copies
of the dataset. We now explain the details of the procedure for computing the Mapper
distance between the Mapper functions on two sub-samples.

Given a dataset X, we describe in Algorithm 1 a procedure to compute n times the
Mapper distance DM (f, g) between two Mapper functions f, g ∈ NX on a cover {Ui}ti=1 of
X. We denote by

{c1
i , . . . , c

ki
i } and {s1

i , . . . , s
ki
i }

the clusters of f and g in each Ui respectively, where ki is the maximum number of clusters
of either f or g in each Ui. If ki is larger than the number of clusters, then the additional
clusters are assumed to be empty. Additionally, with l =

∑t
i=1 ki let,

(cη1ζ1 , . . . , c
ηl
ζl

) (25)
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be a size-ordered list of clusters of f , that is |cη1ζ1 | ≥ |c
η2
ζ2
| ≥ · · · ≥ |cηlζl |.

Algorithm 1 is a recursive backtracking procedure, which is initialized with an upper
bound, and a possible choice here is the total number of points in the sample. However, we
will indicate shortly how to significantly improve this choice which will greatly shorten the
computation time.

The mismatch between two clusters cai and sbi is the symmetric difference cai4sbi of
the sets, consisting of the points that are elements of one of the sets but not the other.
Algorithm 1 takes in order each cluster of (cη1ζ1 , . . . , c

ηl
ζl

), and looks for the first cluster of g
that has not yet been matched. We compute any additional mismatch that arises from any
new matching. If the total mismatch exceeds the upper bound the algorithm backtracks
and looks for a better matching. We replace the upper bound if a better one is obtained.
Ordering the clusters in Equation 25 is therefore a good idea because obtaining a large
mismatch is only possible if at least one of the clutters is large. If we obtain a large
mismatch quickly, this reduces the execution time of the algorithm by reducing the number
of possibilities that need to be checked.

Algorithm 1 Obtains n times Mapper distance DM (f, g) of Mapper functions f and g

Input
(cη1ζ1 , . . . , c

ηl
ζl

) Size ordered list of cluster from f
Bound Upper bound on the Mapper distance
p ← 1 Cluster position p in (cη1ζ1 , . . . , c

ηl
ζl

)
Mismatch ← ∅ Set of mismatched points
Ui-matches ← {s1

i , . . . , s
ki
i } Clusters of gi not yet matched with fi clusters

Output
nDM (f, g) n times Mapper distance between f and g

procedure Distance
for each member S of Uζp-matches do

NewMismatch ← Mismatch ∪ (c
ηp
ζp
4S)

if |NewMismatch| < Bound then
if p = l then

Bound ← |NewMismatch|
else

Matches ← U1-matches,. . . ,Up-matches − S,. . . ,Ul-matches
Bound ← Distance((cη1ζ1 , . . . , c

ηl
ζl

), Bound, p+ 1, NewMismatch, Matches)
return Bound

A drawback of Algorithm 1 is that despite executing significantly faster than a procedure
that considers all cluster permutations, computation time can still be slow. The main reason
for this is that if the initial upper bound is large, improved bounds may only be obtained
in small increments, requiring most permutations to be checked.

A very good upper estimate for the Mapper distance can be obtained by finding the
permutations corresponding to the minimal matching distances Dm(fi, gi) within each clus-
tering of Ui. Then finding the size of the set of mismatched points across the Mapper
functions corresponds to the permutation obtained by combining the optimal permutations
in each Ui.

31



Belch́ı, Brodzki, Burfitt and Niranjan

In practice, this upper bound can be obtained by performing Algorithm 1 restricted to
each clustering on Ui and returning the minimal Mismatch in addition to the corresponding
Bound. An upper bound is then given by the size of the union of the mismatches from
each Ui. Alternatively the optimal permutation within each Ui could be obtained using the
Hungarian algorithm.

8. Experimental Tests for the Instability of Mapper

In this section we demonstrate how the procedure detailed in the previous section might
be used to determine good Mapper outputs over varying parameter selections. Mapper is a
standard tool from topological data analysis and there are several available implementations
(Müllner and Babu, 2013; Müllner et al., 2010; Hendrik and Nathaniel, 2017). Our results
were obtained using the Kepler Mapper (Hendrik and Nathaniel, 2017). The code for the
experiment on resolution and gain used to produce Figure 5 can be obtained at (Burfitt,
2019).

We begging by presenting numerical experiments to investigate and demonstrate the
causes of instability given in Remarks 25 and 31. In particular we focus on causes of
instability unique to the Mapper algorithm.

200 points 400 points 800 points

1600 points 3200 points 6400 points

12800 points 25600 points 51200 points

Table 1: On the left are nine samples from a bivariant Gaussian distribution centred at the
origin. The first sample has 200 points doubled each time up to 51200 points.
The dashed red lines denote the boundaries of the overlapping bins and the solid
lines show the centre of the overlap. On the right we give a plot of the corre-
sponding Mapper instability for each of the datasets on the left. The clustering
procedure used was K-means with K = 2 cluster on 15 percent overlap between
bins, the instabilities were averaged over 30 different samples and each instability
was computed using 40 sub-samples. See §7 for details of the procedure.
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Table 1 demonstrates a relationship between increasing numbers of points and lower
values of instability as discussed in part (A) of Remark 31 and Theorem 36. While it is
intuitively clear that larger samples should lower the instability, experiments of this kind
allow one to quantify the sample size necessary to ensure that is is not, by itself, a source
of instability.

1 cube 4 cubes 9 cubes

16 cubes 25 cubes 36 cubes

Average instability over number of bins

Table 2: On the left 6 uniform samples of 3600 points from a unit square centred at the
origin, alongside Mapper graphs obtained by increasing the number of bins per
axis from 1 to 6. The dashed red lines denote the boundaries of the overlapping
bins and the solid lines the centre of the overlap. On the right is a plot of the
corresponding Mapper instabilities for each dataset to the left. The clustering
procedure used was K-means with 2 clusters, there was 40 percent overlap between
bins, the instabilities were averaged over 30 different samples and the instability
for each sample was computed using 40 sub-samples. See §7 for details of the
procedure.

Table 2 demonstrates the relationship between increasing numbers of bins and higher
values of instability. In each case, we draw the same number of points from a uniform
distribution in a unit square. As the sample size is constant, by increasing the number of
bins, the number of points in each bin decreases, hence P (Ui) decreases as explained by
part (B) of Remark 31.

Observe also that the instability values in Table 1 are lower than all but the first value
appearing in Table 2. This is a consequence of parts (b), (d) (e) of Remark 25 and part
(C) of Remark 31, clustering decision boundaries in Table 2 become longer as the number
of boxes increase, since the boxes are square depending on the sample the boundary many
possible lines intersecting the square, this also increases the chance of boundaries lying far
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apart when they are of opposite orientations in neighbouring boxes and the rectangle point
samples in Table 2 do not give a clear place for a k-means decision boundary increasing the
number of distinct clustering boundaries with a low quality value. On the other hand, in
Table 1, the decision boundaries converge to a vertical line in all the boxes.

Epsilon 0.06 Epsilon 0.07 Epsilon 0.09 Epsilon 0.1

Epsilon 0.15 Epsilon 0.2 Epsilon 0.3 Epsilon 0.35

Epsilon 0.4 Epsilon 0.45 Epsilon 0.5 Epsilon 0.6

Table 3: The panel in the top left shows a dataset of 5000 points sampled with noise from
two concentric circles. The dashed red lines denote the boundaries of the over-
lapping bins and the solid lines are the centres of the overlap. Displayed below
are the Mapper graphs corresponding to the increasing values of ε, the parameter
guiding the ε-neigbourhood clustering used to construct the Mapper outputs. The
plot in the top right shows the instability as a function of ε. The bin overlap
was 35 percent, with 17 bins and the instabilities were averaged over 30 different
sub-samples, with 10 sub-samples in each case. See §7 for details of the procedure.
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Table 3 considers a dataset with two noisy concentric circles. We produce a family of
Mapper graphs using the ε-neighbourhood clustering with varying values of epsilon. The
construction of quality functions for ε-neighbourhood cluster in the context of our theory
is given in Example 3. The specific clustering procedure used was DBSCAN from the
sklearn python package with the minimum sample size set to 0 so that it coincides with ε-
neighbourhood clustering. For the values of epsilon of 0.06 and 0.09, the instability decreases
due to the disappearance of noise represented by spurious small connected components in
the Mapper graph. The major part of the structure of the Mapper graph remains the same,
revealing both the inner and outer circle. Above the epsilon values of 0.1, there is a spike in
the instability value corresponding to a loss of detail in the inner circle within the Mapper
graph. A similar spike occurs around the 0.32 value of epsilon, corresponding to the loss of
the inner circle from the Mapper graph. The final large increase in instability occurs around
the 0.45 value of epsilon, and it corresponds to the gradual merging of the two circles in
the Mapper graph, eventually stabilising with two connected cycles between 0.53 and 0.58
ending with a last rise in instability corresponding to the shrinking of one of the cycles.

We now pass to experiments that explore the dependence of the Mapper graph on the
values of resolution and gain. Figure 5 presents a contour plot of the instability of Mapper
on another dataset consisting of noisy concentric circles created by varying the percentage
overlap between bins (gain) and the number of bins (resolution).

Similarly to the discussion on Table 3, it is possible to identify a number of global
features within the plot with structural changes in the Mapper graph.

Running between bin numbers of 7 and 13, there is a diagonal of high peaks in insta-
bility. Restricting to odd number of bins, this range of peaks appears to correspond to the
emergence of the inner circle within the Mapper graph. All graphs below the first distinct
diagonal show the inner circle as a cluster without a cycle. Mapper graphs for odd bin
numbers above the diagonal contain the structure of the inner circle.

Along the horizontal value of 14 bins, there is a relative rise in instability. This appears
to correspond to the fact that if we use an even number of bins the correct structure of the
inner circle is revealed.

The region determined by bin numbers from 8 to 12 and percentage overlaps from 25 to
50 is a negatively sloped diagonal of relatively high instability. This appears to correspond
to the emergence in the Mapper graph of a new relatively large cluster attached to the
structure of the outer circle forming a flare corresponding to either a number of points at
the top or at the bottom of the outer circle.

Running between bin numbers 14 and 20 is another diagonal range in peaks of instability.
These peaks seem to appear when restricted to even numbers of bins and correspond to the
emergence of a better defined structure of the inner circle within the Mapper graphs.

Finally, the high instability in the top left hand corner of the contour plot appears to
capture the moment when the part of the Mapper graph corresponding to outer circle breaks
up.

The spikes and ridges in instability that occur around changes in the structure of the
Mapper graph in Table 3 and Figure 5 are inaction to Theorem 36, explained by part
(e) of Remark 25 and part (b) of Remark 31. This is because at the boundary values
of epsilon between structural changes in the graph, the clustering function in some bins
changes dramatically with the choices of sample.
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0.00778

0.0226

0.00706

0.0171

0.00289

0.00883 0.00578

0.0068

0.0149

0.00228

0.024

0.00333

0.00761

0.0186

0.0204

0.0182

0.0233

0.0166
0.0202

0.00289 0.0065

0.0142

0.008

0.00756

0.00733

Figure 5: We consider 1000 points sampled with noise from two concentric circles. The
centre of the figure shows a contour plot of instability values varying over the
percentage overlap (gain) of the bins and the number of bins (resolution). The
red crosses correspond to the local minima. The numbers next to the vertical
bar on the right are values of instability. Surrounding the plot are the Mapper
graphs corresponding the various local minima. Below each Mapper graph is the
corresponding instability value. The bin overlap was between 2.5% and 50% at
2.5% interval steps. The number of bins varied between 2 to 22. The instabilities
were averaged over 10 runs where we selected 10 random sub-samples in each
case. See §7 for details of the procedure.
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Table 4: An example of the diabetes study by Reaven and Miller (1979). The contour plot
in the centre shows instability as a function of the number of the bins (resolution)
and the percentage of their overlap (gain). We give Mapper graphs corresponding
to the various local minima. The three Mapper graphs at the bottom correspond
to the local maxima (crosses) differ significantly from the target configuation. We
used the epsilon neighbourhood clustering ε = 0.3. The bin overlap was between
10% and 50% at 2.5% interval steps; the number of bins varied between 2 and 12.
The instabilities were averaged over 10 runs with 5 random sub-samples selected
in each case. See §7 for more details.
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High instability in the top left hand corner of the contour plot in Figure 5 and to a lesser
extent most of the left hand side of the plot, appears to correspond to Mapper graphs with
a fragmented outer circle. This feature can be explained by (c) of Remark 25, since the
low percentage overlap between the bins is causing fragments of the outer circle to partially
join together in an inconsistent fashion over varying subsamples.

Table 4 considers the diabetes data set first analysed in (Reaven and Miller, 1979)
(available form the locfit R-package) and later studied using Mapper (Singh et al., 2007), in
which the data is observed to form three distinct subgroups corresponding to distinct flares
in the Mapper analysis.

The Mapper images in Table 4 at local minima usually give a good description of the
underlying data particularly when the percentage overlap is high. In particular Mapper
instability detects well the transitions between structure in this direction.

In contrast the ridges of high Mapper instability are most visible horizontally along
particular bin values. On these ridges, the Mapper graphs corresponding to higher values
of instability more often have missing flares and greater amounts of erroneous structure
within the outliers when compared to the more stable Mapper graphs in a similar region of
the parameter space.

We conclude that to infer the reliability of the Mapper graph, the Mapper instability
should be considered over the whole parameter space. While it is intuitively clear that a
more complicated Mapper output often gives a more unstable result we show that jumps
in instability appear to correspond well with the structural changes in the Mapper output.
A jump in complexity accompanied by a relatively low jump in instability, suggests that
the additional structure is indeed present in the data, providing a method to determine the
reliability of features present within relatively stable regions in the parameter space.

9. Conclusion

In this paper we have demonstrated that changes in the choice of particular parameters to
create Mapper outputs can lead to very unstable results. To help alleviate this shortcoming,
we have created a framework that can be used to select regions in the parameter space
which are likely to create reliable Mapper outputs. We have introduced Mapper instability
to provide a numerical measure of reliability of a particular Mapper output, especially
when considered over a range of parameters. In particular our construction makes very few
assumption on the specifics of the chosen Mapper construction, which makes it applicable
to any Mapper-type algorithm.

We provide theoretical results to describe and explain the behaviour of the Mapper
instability and in our discussion we make very few assumptions about the specifics of the
structure of the data or the particular cover used to create Mapper outputs and show that
in most circumstances the instability converges to zero as the sample size is increased. We
construct explicit bounds which lead to practical criteria for Mapper instability. We provide
a number of experimental results to further support the practical use our findings.

An important outcome of our discussion is that we are now able to verify when a change
in the Mapper output is indeed supported by the structure of the data. Specifically, while
more complicated Mapper outputs often suffer from a greater instability, we show that when
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the increase in instability is accompanied by low instability, the resulting structure is indeed
present in the data.
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Appendix A: Justification of Measurability for Neighbourhood Clustering

In this Appendix we justify the assumption that I(Qn) of Equation 6 is a random variable.
In other words, I(Qn) needs to be a measurable function with respect to the Borel σ-algebra
on R and the product probability measure on Un×Un. The measurability of I(Qn) can be
guaranteed provided the empirical quality function satisfies the condition of the following
lemma.

Lemma 38 Let i : FUn ×FUn → F2n×F2n be the inclusion map given by the Voronoi cells in
Equation 5. Then for each pair (f, g) of clustering functions on 2n points, if the pre-image
of

Un × Un → F2n ×F2n, (X,X ′) 7→ i(Cn(X), Cn(X ′)) (26)

at (f, g) across F2n ×F2n is measurable, then I(Qn) is a random variable.

Proof Given that there are only finitely many clustering functions on 2n points, the map

Dm : F2n ×F2n −→ R

determined by the matching metric is measurable. In consequence, by Equation 6, the map
I(Qn) is a random variable when the assumption of the Lemma holds.

The condition of the Lemma 38 is easily verified for common quality functions. For
example in the case of nearest neighbour clusterings, given ε > 0 and clusterings f, g on 2n
points, we can describe the preimage in Equation 26 by a set of simple conditions. More
precisely, the preimage is given by the set of points ((X1, . . . , Xn), (X ′1, . . . , X

′
n)) ∈ Un×Un

that satisfy the following. First, we define an ε-path in a metric space to be a sequence of
points (X1, . . . , Xk) such that D(Xi, Xi+1) ≤ ε for i = 1, . . . , k − 1.

1. For every two points Xiα and Xiβ chosen from (X1, . . . , Xn), we have that f(Xiα) =
f(Xiβ ) if and only there is an ε-path consisting of points from the list (X1, . . . , Xn)
connecting Xiα and Xiβ .

2. The function g satisfies an analogous condition on the sequence of points (X ′1, . . . , X
′
n).

3. For every i = 1, . . . , n, let j be the smallest index so that the element Xj from the list
(X1, . . . , Xn) minimises the distance D(X ′i, Xk), for k = 1, . . . , n. Then if f(Xj) = C
then also f(X ′i) = C.

4. An analogous condition holds for the clustering g.

Lemma 39 For each (f, g) ∈ F2n × F2n, the subsets of (Ra)n × (Ra)n described above are
measurable.
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Proof Given (f, g) ∈ F2n × F2n, consider in turn the restrictions imposed by each of the
conditions (1), (2), (3) and (4) given above the lemma.

For (1), since all points sharing a label are connected by ε-paths and any two such points
are connected by a path, we may consider adding these points inductively in the following
way. When n = 1 there is a single point which can take any value in Ra. In particular,
Ra is a measurable set. Now assume inductively that for some k = 1, . . . , n, the possible
values of the points X1, . . . , Xk under condition (1) form a measurable set Sk ⊆ (Ra)k.
The corresponding set Sk+1 on points X1, . . . , Xk, Xk+1 is a subspace of Sk × Ra, under
the condition that the final point Xk+1 is at most a distance of ε from any of the points
of X1, . . . , Xk with the same label and at least a distance greater than ε form any with a
different label. More precisely Xk+1 satisfies that, for each j = 1, . . . , k,

D(Xj , Xk+1) ≤ ε if f(Xj) = f(Xk+1) and D(Xj , Xk+1) ≤ ε if f(Xj) 6= f(Xk+1).

Note that the possible values of Xk+1 are nonempty. If Xk+1 shares a label with one of
X1, . . . , Xk, then it may for example take the same value and if not the union of the epsilon
neighbourhoods of points X1, . . . , Xk cannot cover all of Ra. So the possible values of Xk+1

are the nonempty intersection of a closed set determined by the first set of strict bounds and
an open set determined by the second set of non-strict bounds. Since Sk is measurable, the
above inequalities on Xk+1 extend it to a measurable set Sk+1. Hence the possible values
of X1, . . . , Xn under condition (1) lie in a measurable set A = Sn. Analogously we see that
the set B of the possible values of X ′1, . . . , X

′
n under condition (2) is measurable.

For each i = 1, . . . , n, consider the subsets

Xi
α = {Xα1 , . . . Xαk} ⊆ {X1, . . . , Xn},

such that f(Xαj ) = f(X ′i) for each j = 1, . . . , k. The Voronoi cells of X1, . . . , Xn are defined
in equation 5. For each Xαj its corresponding cell is obtained by a finite set of inequalities.
Each inequality is strict if it arises from a pair of points Xi

αj and Xp such that p < αj and
non-strict if p > αj . Condition (3) is equivalent to requiring X ′i is contained in the Voronoi
cell of one of the elements of Xi

α. We may split the conditions on the Voronoi cells of Xα

onto those with a strict inequality and those with an non-strict inequality. Using a similar
inductive augment used when considering condition (1) in the previous part of the proof, we
may now describe the possible values of X ′1, . . . , X

′
n under condition (3) as the intersection

of an open and closed set, built from the strict and non-strict inequalities respectively to
obtain a measurable set C. Similarly (4) gives us a measurable subset D of (Ra)n.

Putting this all together, the subset of points in (Ra)n × (Ra)n we wish to describe, is
the intersection of the sets A× (Ra)n, (Ra)n ×B, C × (Ra)n and (Ra)n ×D. Since each of
A, B, C and D are measurable sets, the intersection is a measurable set.
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