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Abstract

The challenge in controlling stochastic systems in which low-probability events can set
the system on catastrophic trajectories is to develop a robust ability to respond to such
events without significantly compromising the optimality of the baseline control policy.
This paper presents CelluDose, a stochastic simulation-trained deep reinforcement learn-
ing adaptive feedback control prototype for automated precision drug dosing targeting
stochastic and heterogeneous cell proliferation. Drug resistance can emerge from random
and variable mutations in targeted cell populations; in the absence of an appropriate dos-
ing policy, emergent resistant subpopulations can proliferate and lead to treatment failure.
Dynamic feedback dosage control holds promise in combatting this phenomenon, but the
application of traditional control approaches to such systems is fraught with challenges due
to the complexity of cell dynamics, uncertainty in model parameters, and the need in med-
ical applications for a robust controller that can be trusted to properly handle unexpected
outcomes. Here, training on a sample biological scenario identified single-drug and com-
bination therapy policies that exhibit a 100% success rate at suppressing cell proliferation
and responding to diverse system perturbations while establishing low-dose no-event base-
lines. These policies were found to be highly robust to variations in a key model parameter
subject to significant uncertainty and unpredictable dynamical changes.

Keywords: reinforcement learning, deep learning, control, adaptive dosing, drug resis-
tance

1. Introduction

Advances in experimental capabilities and high-throughput data analytics in recent years
have contributed to a significant rise in biological and biomedical model complexity. Driven
by the anticipation that higher-complexity models will lead to increased predictive power,
these efforts may ultimately lead to an improved ability to effectively control real biological
systems via successful biomedical interventions. Yet as model complexity rises the problem
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of system control becomes increasingly less tractable, necessitating a tradeoff between the
ability to develop controllers for systems of interest and the predictive accuracy of the system
model (Parker and Doyle III, 2001). Significant and variable stochasticity, nonlinearity in
the dynamics, a potentially high-dimensional space of biological units, e.g. cell types,
and parameter uncertainty all pose significant challenges to the application of traditional
control methods to complex biological systems models. In order to bridge the gap between
advances in biological and pharmacological modeling and the ability to engineer appropriate
biomedical controllers, approaches that can effectively control such systems will likely be
required in the near future.

The application of model-free reinforcement learning methods to continuous control
tasks has seen significant advances in recent years1 and holds promise for the control of sys-
tems for which mathematical optimization and control may be intractable, with potential
applications in diverse fields that include robotics, mathematical finance, and healthcare.
However, for reinforcement learning to become a standard tool in control engineering and
related fields more work is needed in the successful application of reinforcement learning
continuous control methods to highly stochastic and realistic environments. In particu-
lar, many applications require the safe adaptability and robustness of the controller to
unexpected feedback. In learning-based control policies where such theoretical guarantees
may not be available, a verified ability to learn policies capable of efficient generalization
across parameter values not seen during training is crucial for safe implementation. Simi-
larly important is the ability to discover, despite system stochasticity and random events,
high-preference low-cost policies applicable when such perturbations do not occur.

The focus of this work is on the development of a deep reinforcement learning dynamic
feedback control prototype, CelluDose, for precision dosing that adaptively targets harmful
cell populations of variable drug susceptibility and resistance levels based on discrete-time
feedback on the targeted cell population structure. The development of drug resistance in re-
sponse to therapy is a major cause of treatment failure worldwide across a variety of diseases,
patient populations, and administered drugs. The emergence of resistance during treatment
is a complex, multi-dimensional stochastic biological process whose control requires a safe
and effective balance between minimal drug administration and the proper targeting of
high-resistance cell types, which arise randomly and with highly variable rates. Resistance
to a drug can be present prior to treatment or it can emerge during treatment (Holohan
et al., 2013; Brusselaers et al., 2011; Munita and Arias, 2016) through diverse mechanisms.
It evolves dynamically and often non-uniformly: intercellular variability can lead to faster
adaptation to environmental pressures (Bódi et al., 2017) and thus promote the rise of resis-
tant subpopulations in a previously-susceptible population of cells. Tumor heterogeneity is
now understood to be a major contributor to drug resistance in cancer (Dexter and Leith,
1986; Swanton, 2012; Holohan et al., 2013; Dagogo-Jack and Shaw, 2018), and variability
in resistance among bacterial cell populations has been tied to treatment failure (Falagas
et al., 2008; Band et al., 2018). In bacterial evolution experiments, the emergence of multi-
ple antibiotic-resistant cell lines has been observed (Toprak et al., 2012; Suzuki et al., 2014).
Such clonal diversity, even in a majority-susceptible cell population, can be the harbinger of
drug resistance that ultimately leads to treatment failure: improper treatments can exert a

1. See, e.g., Recht (2018); Kiumarsi et al. (2018) for recent surveys.
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selective evolutionary pressure that leads to the elimination of susceptible cell populations
but leaves more resistant cells largely unaffected and able to proliferate due to reduced
competition with susceptible cells (Read and Woods, 2014).

The emergence and potential rise to dominance of resistant strains are stochastic pro-
cesses driven by the dynamic and complex interaction between the influences and interplay
of natural selection, demographic stochasticity, and environmental fluctuations. A predic-
tive understanding of the likely evolutionary trajectories toward drug resistance is key to
developing treatments that can effectively target and suppress resistant cell populations, but
a fully predictive understanding of such processes remains a challenge. Control of evolu-
tion, however, does not in principle require full predictability or determinism in evolution.
In a closed-loop setting, system feedback can mitigate the reliance on precise trajectory
knowledge, so long as this feedback can be obtained at reasonable time intervals, the un-
certainty and stochasticity can be approximated in an informed manner, and the controller
is sufficiently robust to changes in system behavior and parameter fluctuations.

In heterogeneous cell environments prone to resistance evolution, the development of
such a control policy must balance the need for properly and efficiently targeting all cell
types that may either exist at the onset of treatment or that may spontaneously emerge
during therapy, while maintaining sufficiently low dosing for toxicity minimization. Inap-
propriate dosing can lead to the proliferation of resistant cell populations, but this interplay
is subject to significant levels of stochasticity as well as uncertainty in model parameters
that must be accounted for in the design of the control algorithm. The target goal of
CelluDose is to combat the emergence of drug resistance during treatment by sensitively
adjusting dosage and/or switching the administered drug in response to observed feedback
on changes in the cell population structure while employing minimal overall drug dosage for
toxicity reduction. CelluDose combines a model-free deep reinforcement learning algorithm
with model information in developing an adaptive dosing control policy for the elimination
of harmful cell populations with heterogeneous drug responses and undergoing random,
low-probability, yet potentially significant demographic changes.

Beyond presenting this implementation, this work also aims to motivate the use of
model-free reinforcement learning control in the development of next-generation precision
dosing controllers by demonstrating that a robust and highly responsive adaptive control
policy can be obtained for a complex and stochastic biological system that is intractable
with traditional control methods. While the focus of this work is on a particular class of
biological scenarios, it should be noted that the incorporation of certain training elements
described below may facilitate and stabilize the training of robust continuous control policies
in other stochastic environments experiencing low-probability significant events. To that
end, a discussion of practices in this work and subsequent insights that may be usefully
generalized to other stochastic control environments is included.

2. Background

2.1 Reinforcement learning for continuous control

The aim of a therapeutic agent targeting harmful cell populations is to produce an effect
that leads to the elimination of this cell population while minimizing toxicity by avoiding the
use of high doses. Given the possibility of emergence of high-resistance cell populations, this
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task involves a potentially complex tradeoff between acceptably low dosing levels, the need
to effectively eliminate the targeted cell populations, and a preference for shorter treatment
times to reduce patient morbidity and – in infectious diseases – the possibility of further
contagion. As a result, the dosing problem can be cast in somewhat different ways that
depend on the particular disease conditions and prevailing treatment preferences. For the
purposes of this work, a successful treatment is defined as one in which all targeted harmful
cell subpopulations were eliminated by some acceptable maximal treatment time. Within
this measure of success optimality is defined as lowest expected cumulative dosing over
the course of the treatment. A treatment course is designated as a failure if any targeted
cells remain after the maximal treatment time has been reached, with the extent of failure
dependent on the number of remaining cells.

Model-free reinforcement learning (RL) approaches aim to learn an optimal decision-
making policy through an iterative process in which the policy is gradually improved by
sequential tuning of parameters either of the policy itself or of a value (e.g. the action-value
function) indicative of the policy’s optimality. The data on which learning is done is supplied
in the form of transitions from a previous state s of the environment to the next state s′ that
occurs probabilistically (in stochastic environments) when a certain action a is chosen. Each
such transition is assigned a reward r, and reward maximization drives the optimization
of the policy. Learning can be done on a step-by-step basis or episodically, where a single
episode consists of multiple steps of transitions. In the case of the dosing problem considered
here, an episode is a single-patient full course of therapy. It ends when either the maximal
time has been reached or all harmful cells have been eliminated, whichever comes first.
Episodes are thus finite but can be long, with drugs administered at discrete time steps
over a continuous range of dosages. At each time interval, a decision is made on which
drugs at what doses should be administered based on observations of the current state of
the disease, defined as the concentrations of the targeted cell types. However, only at the
end of each episode does it become clear whether or not the sequence of therapeutic actions
was in fact successful. This credit assignment problem (Minsky, 1961) frequently plagues
episodic tasks and will be addressed in Section 3.2.

The optimal policy for this decision-making process needs to provide next-time-step
dosing guidelines under the optimality guidelines described above and based on poten-
tial stochastic evolutionary scenarios described by the model in Section 3.1. This system
is continuous in its state space (cell population composition), involves time-varying and
potentially high stochasticity, can be high-dimensional due to the large number of possibly-
occurring mutant cell types, and involves one or multiple controls (drugs) that if adminis-
tered intravenously (the scenario of interest here) can in principle take a continuous range
of values. For reasons of mechanical operability and medical explainability, a deterministic
dosing policy is needed in this case.

Deep deterministic policy gradient (DDPG) (Lillicrap et al., 2015) is an off-policy actor-
critic deterministic policy deep reinforcement learning algorithm suitable for continuous and
high-dimensional observation and action spaces. Building on the deterministic policy gradi-
ent algorithm (Silver et al., 2014), DDPG employs neural network function approximation
through the incorporation of two improvements used in Deep Q Networks (Mnih et al.,
2013, 2015) for increasing learning stability: the use of target networks and a replay buffer
from which mini-batches of (s, a, s′, r) transitions are sampled during training. In the resis-
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tance evolution scenarios considered here, the observation space (number of cell types) can
be quite large, especially if finer observations are available on cellular heterogeneity (finer
differentiations in dose responses), and it is continuous since cell density is treated here as
a continuous variable in all but the lowest density levels. Although the action space is typi-
cally low-dimensional (only a few drugs are usually considered for treatment of a particular
disease), it is continuous in the intravenous administration case considered here. For these
reasons, the dosing control scheme described here employs the DDPG algorithm.

2.2 Model-informed treatment planning with reinforcement learning

An important benefit of a mechanistic model-informed approach to treatment planning is
the ability to explore therapeutic decisions prior to the start of or as an accompaniment to
clinical trials, which can then be used to inform clinical trials. The simulation-based use of
RL here thus differs from work that employs reinforcement learning for making decisions
based on patient data and clinical outcomes, where exploration of treatment parameter
space is constrained by data available from previously-attempted treatments. When this
data becomes available during and after clinical trials, these approaches and the mechanistic
model-based approach presented here could be used in a complementary manner to inform
and improve individualized treatments.

The use of RL for mechanistic model control in treatment planning is less common than
data-driven approaches. We note below a few applications of interest. Q-learning (Sutton
and Barto, 2018), a discrete state and action space RL algorithm, was employed in Moore
et al. (2014) for closed-loop control of propofol anesthesia and in Padmanabhan et al. (2017)
for control of cancer chemotherapy based on an ordinary differential equations (ODE)-
based deterministic model of tumor growth. In Ahn and Park (2011) a natural actor-critic
algorithm (Peters and Schaal, 2008) was employed for cancer chemotherapy control of a
similar ODE-based model, with a binary action space (drug or no drug). Tumors were
taken to be uniform and resistance to treatment was not considered as part of the models
used in Padmanabhan et al. (2017) and in Ahn and Park (2011). In Petersen et al. (2018)
a DDPG-based algorithm was applied to an agent-based model of sepsis progression for
obtaining an adaptive cytokine therapy policy.

Interest in adaptive control of therapy that takes resistance evolution into account has
been on the rise in recent years (see, e.g., Fischer et al. (2015); Newton and Ma (2019))
but these efforts have been restricted to simple models that are typically low dimensional
and/or deterministic. The approach presented here provides a mechanism for determining
and automating dosing in a responsive and robust way that can be generalized to arbitrarily
heterogeneous cell populations exhibiting complex and realistic dynamics. Both single-drug
and combination therapy control policies are developed in this context, and observations
on population composition are supplied at discrete time intervals, as would be expected in
a laboratory or clinical scenario. By extension, this work seeks to motivate efforts in the
high-resolution tracking of cell-level drug resistance progression within an individual patient.
From a control engineering perspective, the incorporation of model information into model-
free learning presented here may be usefully transported and adapted to the control of other
stochastic systems with an equations-based description for improved RL learning stability
and convergence; this and insights into robustness for learning-based control engineering
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are discussed in Sec. 5. For reinforcement learning insights, a detailed analysis is included
of policy features that were observed in training.

2.3 Implementation and workflow

Training and implementation rely on three key components: model and simulation develop-
ment, selection of the subset of drugs of interest, knowledge of the range of likely resistance
levels that have been recorded in response to these drugs, and access to diagnostics that
can provide temporal data on cell population structure. In this paper, all data supplied in
training was simulated; a description of how such data may be obtained for future proof-
of-concept validation is included below.

For demonstrative purposes and facility of near-future validation, the focus of this work is
on drug resistance in evolving bacterial populations subjected to growth-inhibiting antibiotic
drugs. We note that evolutionary models of cell population dynamics are also used to
understand and model cancer progression and the development of resistance to treatment,
and that another promising application area for a CelluDose-based platform is in cancer
therapy control.

Future clinical implementation of a CelluDose-based controller could be as an integrated
system with the ability to track and supply the trained control model with sensitive mea-
surements of the presence of small populations of cells and equipped with an automated
intravenous infusion mechanism. This implementation would be particularly useful in inten-
sive care units (ICUs), where the development of resistance to therapy is a major concern,
therapy is performed in the controlled environment of the clinic, and substantial genetic
diversity in bacterial strains has been observed (Roach et al., 2015). Alternatively, in longer-
term therapies, it could be implemented as a decision support tool providing informed dosing
recommendations to clinicians. In both cases, observations at the chosen fixed time intervals
for which training was done would be supplied in the form of the respective targeted cell
type concentrations, where a distinct cell type is (phenotypically) defined by non-negligible
differences in the dose response across the possible ranges of dosages that are permitted for
administration.

2.3.1 Modeling and simulation

Although training implements a model-free reinforcement learning algorithm, model knowl-
edge is used in two ways: to provide the training data (as simulation data) and for algorithm
design via feature engineering and reward assignment. This feature engineering is made pos-
sible by trajectory estimation from the equations-based component of the growth-mutation
model implemented here. This model combines (1) a stochastic differential equations-based
system for approximating the growth of existing cell subpopulations perturbed by (2) ran-
dom events – mutations – that create new subpopulations of resistant cells or increase such
pre-existing populations. These events increase the effective dimensionality and alter the
composition of the system at random points in time. The resulting system exhibits variable
and substantial levels of stochasticity that can significantly alter its trajectory and poten-
tially lead to treatment failure (see Fig. 1). Since, as shown in Section 4, the learned policies
are highly robust to changes in the mutation rate, detailed knowledge of this rate (which
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can also dynamically change in the course of the system’s evolution) is not an essential
training parameter.

Stochasticity in population evolutionary dynamics can arise from both demographic
and environmental fluctuations. The focus here is on demographic stochasticity arising
from single-cell variability in birth, death, and mutation processes. For simplicity, spa-
tial homogeneity and a constant environment (other than changes in drug administration)
will be assumed here. To obtain a quantifiable estimate of demographic stochasticity, a
stochastic physics approach was employed here (Appendix A) in deriving the system of
stochastic differential equations describing the heterogeneous cell population time evolu-
tion. This permits an informed estimate of the extent of demographic noise from individual
cells’ probabilistic behavior and a subsequent quantification of an important contribution
to risk in disease progression.

The universal parameters that enter the model are the drugs that may be used with
preference information (e.g. which ones are first-line vs. last-line), the appropriate discrete
time intervals in which observations become available and dosing can be altered, and the
likely spectrum of dose responses. In laboratory evolution experiments (Van den Bergh
et al., 2018) this spectrum (e.g. see Fig. 2) can be obtained by allowing the bacteria to
naturally evolve under different drug levels and identifying subsequent cell lines accompanied
by a characterization of their dose responses through parameter fitting of their growth curves
at different drug concentrations. We note that it is not in general necessary to identify all
possible and potential mutations prior to training. In particular, knowledge of all possible
genetic changes is not in principle necessary: it suffices to characterize the expected relevant
diversity in drug response2. The idea is to provide enough training data for the model so
that new variants are unlikely to exhibit dose responses considerably different from all those
already identified. During an experimental run of the trained RL model, when a newly-
emergent cell type subpopulation is detected it can thus be binned without significant loss
of accuracy into the state-space dimension (Section 3.2) of a previously-identified variant.

2.3.2 Observations and diagnostics

Early, fast, and high-resolution detection of heterogeneity in drug response is crucial for
identifying resistant cell subpopulations before such populations spread (Köser et al., 2014;
El-Halfawy and Valvano, 2015; Falagas et al., 2008). Resistance detection may be done
through phenotype-based drug susceptibility testing or by capitalizing on advances in ge-
nomic sequencing in combination with predictions of resistance from genotype (Suzuki et al.,
2014; Ruppé et al., 2017). A key aspect is the requisite ability to effectively detect low con-
centrations of resistant cells in an otherwise suseptible population. Single-cell analysis is
showing mounting promise in this regard and is being used to resolve heterogeneity in tu-
mors (Lawson et al., 2018) and in bacterial populations (Rosenthal et al., 2017; Kelley,
2017). Direct phenotype-based detection of small resistant bacterial subpopulations in pro-
portions as low as 10−6 of the total population was performed in Lyu et al. (2018). For
genotype detection, single-cell sequencing (Hwang et al., 2018) can be combined with predic-
tions of resistance from genotype for high-resolution detection of a population’s resistance
profile.

2. Such studies, however, are frequently accompanied by genotype analysis.
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These advances could be applied to near-future laboratory validation of an in vitro Cel-
luDose controller via combination with software implementation into an automated liquid
handling system in bacterial evolution experiments. Greater automation, efficiency, and
standardization are nonetheless needed for these technologies to be routinely employed as
part of a clinical controller apparatus, and, in part, the intention of this work is to motivate
efforts in the clinical development and use of single-cell analysis for resistance profiling by
demonstrating its potential utility for automated disease control.

3. Methods

3.1 Stochastic modeling and simulation of cell population evolution

The evolutionary fate of an individual cell during any given time interval depends on the
timing of its cell cycle and its interaction with and response to its environment. The
model of evolutionary dynamics employed here depends on three processes: cell birth, cell
death, and inheritable changes in cell characteristics that lead to observable changes in
growth under inhibition by an antibiotic. We consider here drugs that suppress cell growth
by inhibiting processes essential for cell division by binding to relevant targets and thus
leading to reduced cell birth rates. The dose-response relationship can be described by a
Hill-type relationship (Hill, 1910; Chou, 1976). Here a modified Hill-type equation will be
employed that includes the potential use of multiple drugs with concentrations given by
I = (I1, ..., Im). The growth rate gi of a particular cell type i as a function of the drug
concentrations to which cells are exposed is thus taken to be

gi (I) = βi (I)− δi =
βi,0

1 +
∑

α (Iα/ρi,α)
− δi (1)

where βi is the rate of cell birth, βi,0 is its birth rate in a drug-free environment, δi is
the rate of cell death, and ρi,α describes the extent of resistance of cell type i to drug α.
For simplicity, since drugs are assumed here to affect only birth rates, changes that confer
resistance are assumed to affect only βi (I) rather than δi. Resources for cell growth are
assumed to be limited, with the environmental carrying capacity denoted by K, indicating
the total bacterial cell population size beyond which no further population increases take
place due to resource saturation.

Evolution is an inherently stochastic process that depends on processes, as noted above,
that individual cells undergo. However, individual (agent)-based simulations are generally
very costly for larger numbers of cells and, moreover, obscure insight into any approximate
deterministic information about the system. At very high population levels (that can be
treated as effectively infinite) a deterministic description of system dynamics is appropriate.
In the dynamic growth scenario considered here, large size discrepancies can exist at any
time between the various concurrent cell populations, and a single population can decay
or proliferate as the simulation progresses. The extent of demographic stochasticity in
such systems will thus change in the course of evolution. For efficient modeling at higher
population levels it is imperative to use a simulation model whose runtime does not scale
with population size, but for accurate modeling a proper estimate of stochasticity must be
included. This is done here by applying methods from stochastic physics (Van Kampen,
1992; Gardiner, 1986; McKane et al., 2014) to derive a diffusion approximation of a master
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equation describing the continuous-time evolution of the probability distribution of the
population being in some state (n1, n2, ..., nd), where ni are the (discrete) subpopulation
levels for the different cell types. This approximation relies on the assumption that the
environmental carrying capacity is large compared to individual subpopulation levels ni and
results in the evolution of the system being described by a system of stochastic differential
equations (SDEs) governing the time evolution of the subpopulation levels of the different
cell types given by the continuous variables x = (x1, ..., xd), where d is the number of distinct
phenotypes that may arise. We only consider phenotypes whose growth rate gi (I) at nonzero
drug concentrations is higher than the baseline susceptible phenotype (wildtype) due to the
negative evolutionary selection experienced by phenotypes with lower growth rates. The
system evolves according to (Appendix A)

dxi(t)

dt
= (βi (I)− δi)xi(t)

(
1−

∑d
j=1 xj(t)

K

)
+

√√√√(βi (I) + δi)xi(t)

(
1−

∑d
j=1 xj(t)

K

)
Wi(t),

(2)
where i = 1, .., d and the white noise Wi(t) satisfies{

〈Wi(t)〉 = 0

〈Wi(t)Wi(t
′)〉 = δ(t− t′).

From a control standpoint, the advantage of using SDEs over an agent-based model
is that we can capitalize on the equations-based description for trajectory estimation and
use that information in feature engineering and reward assignment, as described below.
Note that the stochastic noise in these equations is not put in ad hoc but instead emerges
naturally from population demographic randomness that arises from demographic processes
on the level of single cells. For more realistic dynamics at very low cell levels, when the level
of a subpopulation falls below 10 cells, the number of cells is discretized by a random choice
(equal probability) to round up or down to the nearest integer cells after each stochastic
simulation step; when cell numbers fall below 1 the subpopulation level is set to zero.

For clarity, in this paper the term decision time step will be used to refer to the length
of time between each dosing decision and thus defines the RL time step, whereas SDE
simulation step will be used to refer to a stochastic simulation step. A single decision time
step thus contains a large number of SDE simulation steps. The evolution of Eq. (2) was
simulated via the Euler-Maruyama method with a step size of 0.01 over the 4-hour decision
time step (unless all populations drop to zero before the end of the decision time step is
reached).

Mutations are modeled here as random events that perturb the system of Eq. 2 by
injecting new population members into a particular subpopulation xi. At the start of each
SDE simulation step τsim = 0.01, the expected number of baseline-cell type birth events is
computed as Nβ = τsim/βblxbl, where βbl is the baseline cell birth rate at the current drug
concentration and xbl is its population size at the start of the simulation step. Nβ random
numbers ri are then sequentially generated, and where ri ≤ Pstep,mut, such that Pstep,mut is
some chosen probability of mutation, a mutation occurs and an increase of 1 cell is randomly
assigned with uniform probability to any of the possible (potentially-occurring) non-baseline
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cell types. We note that for sufficiently small τsim, where the baseline population does not
experience significant changes within a simulation step, this is equivalent to sequentially
generating births at the appropriate time intervals and allowing mutations with probability
Pstep,mut. In training, Pstep,mut was set to 10−6, in keeping with typical approximate observed
rates of occurrence of resistant mutant cells in bacterial populations (Falagas et al., 2008);
subsequent testing of the policy was done on a large range of Pstep,mut values to ensure
policy robustness to uncertainty in the mutation rate.

Fig. 1 shows several model simulations for a constant low dose case that is above the
susceptibility level of the initially-dominant phenotype but below that of three potential
variants. All dose responses are shown in their respective colors in Fig. 2; the (simulated)
parameters used are not specific to any particular organism or drug but fall within common
concentration and growth rate ranges.

In order to permit training to identify an optimal basline policy (dosing in no-mutation
episodes), during training (Section 3.2) mutations were precluded from occurring during
most episodes by assigning a Pepis,mut = 0.3 probability that any mutations will occur
during an episode (note that even when mutations are permitted to occur in an episode,
they may not occur due to the low probability of mutation assigned). Notably, training with
Pepis,mut = 0.3 and a fixed choice of Φ = Pstep,mut resulted in superior training performance
over training with Pepis,mut = 1 (mutations may occur during any episode) and a reduced
probability of mutation Pstep,mut = 0.3Φ as well as over training with Pepis,mut = 1 and
a higher Pstep,mut for the same set of RL and neural network hyperparameters. This may
be due to the combination of the comparatively higher noise, possibly reducing overfitting,
together with the clear baseline signal provided by the majority of episodes.

3.2 Learning an adaptive dosing policy

As discussed in Section 2.1, DDPG (Lillicrap et al., 2015) was employed for training. The
state and action spaces and reward assignment are described below, and the neural network
architecture and hyperparameter choices for the neural network and RL components are
given in Appendix B.

In training, the maximal time for an episode was set at 7 days, with dosing decision
steps of 4 hours. Although time scales for observations will be technology-dependent and
possibly longer, this time interval was put in place in order to demonstrate the ability of the
algorithm to handle episodes with many decision time steps, and hence a near-continuous
dose adjustment, and produce a robust control policy able to adaptively and responsively
adjust to changes in the cell population composition. To put in clinical context the maximal
treatment time chosen, we note that a study (Singh et al., 2000) of an intensive care unit
(ICU) patient cohort found that typical ICU antibiotic courses lasted for 4-20 days, with
an average length of 10 days; after 7 days of a standard antibiotic course 35% of patients in
the study were found to have developed antibiotic resistance (new resistant patterns in the
original pathogen) or superinfections (newly-detected pathogenic organisms not originally
present). Shorter treatment times (3 days) in that study correlated with a lower rate of
antibiotic resistance (15% at 7 days). Stopping antibiotic treatment prematurely, however,
runs the risk of failing to eliminate the pathogenic bacteria, suggesting that continuous mon-
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Figure 1: Sample evolutionary simulations for four pheno-
types with dose-response curves shown in Fig. 2. The hori-
zontal and vertical axes represent, respectively, time (hours)
and cell concentration. The initial state in any simulation
was a population comprised entirely of the (most suscepti-
ble) baseline phenotype with a population of between 106-
107 cells/mL (random initialization in discrete steps of 106),
but mutations were allowed from the first time step and
could occur at any subsequent time step (4 hour intervals).
The carrying capacity K was set at 1.2× 107 cells/mL. The
dosage was set at a constant 0.5 µg/mL for the duration of
treatment, which is higher than ρ for the black phenotype
but lower than ρ (see Eqn. 1) for the blue, red, green phe-
notypes. Even when a phenotype is sufficiently strong to
survive the administered dosage, random demographic fluc-
tuations may eliminate its nascent population, as shown in
several of the plots. Even when no mutations occur, vari-
ability in the initial size of the population as well as demo-
graphic randomness can lead to significantly different extinc-
tion times for the susceptible phenotype. Populations falling
below 1 cell are set to zero; for plotting purposes, due to the
log scale this is shown as having a population of just below
1 cell (0.98).
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Figure 2: Dose-response curves
for four sample (simulated) phe-
notypes, shown as growth rate as
a function of drug concentration.
The phenotype shown in black has
the highest growth rate at zero
drug inhibition. It is taken to be
the baseline phenotype dominating
the population at the onset of drug
administration in the simulations
(e.g. Fig. 1) that are used as the
RL training data. The death rate
was set at δ = 0.2 h−1 for all phe-
notypes.

itoring and proper dose adjustments – as recommended here – are essential in combatting
treatment failure in severe infections.

All code (simulation and RL) was written in Python, with the use of PyTorch (Paszke
et al., 2017) for the deep learning components.

3.2.1 State space: model-informed feature engineering

At each decision time step an observation of the current composition of the cell population,
i.e. types and respective concentrations x = (x1, .., xd) is made. Cell types that are known
to potentially arise but are presently unobserved are assigned xi = 0. As a result of model
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knowledge in the form of the SDE system (Eq. 2), however, additional feature combinations
of x can be used to supplement and improve learning. In particular, the current growth
rate of the total cell population is highly indicative of drug effectiveness, but it is typically
difficult to measure and necessitates taking multiple observations over some fixed time
interval (e.g. 1 hour) prior to the end of a decision time step. Instead, the instantaneous
growth rate can be calculated as

gall(t) =

∑
i ẋi(t)∑
xi(t)

(3)

and approximated directly from observed features, xt, at time t by noting that in the
deterministic limit the numerator is simply given by

∑
i

ẋi(t) =

(
1−

∑
i xi
K

)
×
∑
i

gi (I)xi(t) (4)

where the gi are fixed and known (Eqn. 1) during any decision time step. Hence gall is a
function exclusively of the action taken (doses chosen) and observations of cell concentra-
tions xt.

Use of this feature combination, which would not be known in a blackbox simulation,
was found to be instrumental in shaping the reward signal at non-terminal time steps and in
leading to optimal policy learning, suggesting that such incorporation of information could
in general assist in driving policy convergence when model knowledge is available but a
model-free approach is preferred due to the complexity of the dynamics.

3.2.2 Action space

Training was performed with both a single drug It and two drugs
(
Iαt , I

β
t

)
. The effect of

the drugs on the cell populations is expressed through the dose-response as in Eq. (1) and
the SDE system of Eq. (2). Drugs were set to take a continuous range of values from zero
up to some maximal value Imax, and this maximal value was used for reward scaling as
shown in Section 3.2.3 rather than for placing a hard limit on the amount of drug allowed
to be administered. It was set for both drugs at 8 times the highest ρ value in the set {ρi,α}
for all drugs α. This very high value was chosen in order to allow enough initial dosing
climb during training; in practice, conservative dosing was implemented through the reward
assignment alone.

3.2.3 Reward assignment

While the state space includes information on separate cell subpopulations, the terminal
(end-of-episode) reward is assigned based on only the total cell population. As noted above,
a successful episode concludes in the elimination of the targeted cell population by the
maximal allowed treatment time Tmax. In training, different drugs are assigned preference
through penalty weights wα, so that use of a last-line drug will incur a higher penalty than
that of a first-line drug, α = 1. To penalize for higher cumulative drug dosages, the reward
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at the end of a successful episode is assigned as

rsuccess = cend,success

1−

∑m
α

(
wα
w1

)∑Tmax/τ
n=1 Iα,n

c1ImaxTmax/τ

 , (5)

where Iα,n is the dosage of drug α administered at the nth decision time step, c1, cend,success >
0 are constants, and τ is the length of each decision time step. If an episode fails (the cell
population is above zero by Tmax) a negative reward is assigned with an additional penalty
that increases with a higher ratio of remaining cell concentrations to the initial cell popu-
lation in order to guide learning:

rfailure = −cend,fail
[
1 + log

(
1 +

∑
i xi (Tmax)∑
i xi (0)

)]
, (6)

where cend,fail > 0. Since the episodes can be long, in order to address the credit assign-
ment problem (Minsky, 1961) a guiding signal was added at each time step in the form
of potential-based reward shaping (Ng et al., 1999). Policy optimality was proved to be
invariant under this type of reward signal, and it can thus provide a crucial learning signal
in episodic tasks. It is given by

rshape(st, a, st+τ ) = γΦ(st+τ )− Φ(st), (7)

where γ is the RL discount factor, Φ : S → R is the potential function, and S is the state
space. Since the drugs are assumed here to affect cell mechanisms responsible for cell birth,
population growth provides a direct indicator of the efficacy of the drug. The potential
function was therefore set here to

Φ = −cΦ
gall
gmax

, (8)

where cΦ > 0, gall is given by Eq. 3, and gmax is the zero-drug full-population deterministic
growth rate at t = 0 (see also Eq. 4):

gmax =

(
1−

∑
i xi(t = 0)

K

) ∑d
i xi(t = 0)gi(Iα = 0, ∀α)∑d

i xi(t = 0)
. (9)

Although incentives for low dosing were built into the terminal reward (Eq. 5), for guiding
training toward low dosing it was necessary to provide some incentive for low dosing at
each decision time step. The step reward was therefore assigned as the sum of the shaping
reward and a dosage penalty:

rstep = rshape −Θ

(∑
i

xi

)
m∑
α

wα (Iα/Imax)2 (10)

where ηα is the specific penalty for each drug, and Θ (
∑

i xi) is a binary-valued function
explained below. For a previous implementation of step-wise action penalties with potential-
based reward shaping see Petersen et al. (2018).
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An issue peculiar to the problem of a population growing under limited resources is that
if insufficient dosing is applied and the population subsequently quickly grows and reaches
its carrying capacity, very little change in growth (or population) will occur yet the state
of infection will be at its maximal worst state. However, the shaping reward (7) – which is
based on changes from one decision time step to the next – will provide insufficient penalty
for this (with the penalty arising solely from the γ weighing). On the other hand, as a
result of the inhibitor penalty in (10), the algorithm may continue to reduce the dosing
even further rather than increasing it to escape this suboptimal policy. The result is that
the targeted cell population proliferates at maximal capacity while dosing fluctuates around
the minimal value of zero drug administration. This zero-dosage convergence problem was
successfully resolved by assigning a significantly lower (20-fold) weight to the mid-episode
dosage penalty if the total cell population exceeded the initial cell population by more than
1 cell for every initially present 104 cells. The incorporation of the binary penalty function
led to significantly improved stability and reduced sensitivity to the exact choice of wα.

4. Training and results

Up to four cell types with different dose responses were permitted to occur in each train-
ing scenario, with the most susceptible type initially dominating the population but with
different cell populations allowed to emerge as early as the first time step. For single-drug
training the dose responses shown in Fig. 2 were assumed. For combination therapy (two-
drug) training, one drug was defined as the “first-line” drug and the second as the “last-line”
drug via respective choices of wα. The responses of the black and blue phenotypes to both
the first-line and last-line drugs were taken to be identical to those shown in Fig. 2. The
more resistant phenotypes (red and green) were assumed to be completely resistant to the
first-line drug (by assigning them a very large value of ρ) and to have the dose response
shown in Fig. 2 to the last-resort drug. Successful single-drug and combination policies
were identified in training, and a discussion of their main features and training progression
is presented below.

In the single-drug case, in the early stages of training the dosages were increased rapidly
and uniformly in all time steps; at that point dosages were too high for any failures to occur.
After about 200 episodes considerable decreases in dosing began to occur (also uniformly).
The rate of decrease slowed down once the dosage reached the approximate level necessary
to eliminate the most resistant cell subpopulations (at about 560 episodes), with dosing
still uniform over the entire course of treatment. At that point increasing specialization in
dosage at different time intervals in response to different mutations began to occur, and the
baseline (no-mutation) dosing continued to undergo further optimization and functional
changes, alternating over the course of many episodes between increasing with time and
decreasing with time as well as non-monotonic dose vs. time curves, before eventually
settling into its final form of a linear monotonic mild increase after the first time step3. In
the early stage of training episode failures would occasionally occur; this ceased to happen
later in training, at which point further improvements in learning were focused on dosing
optimization.

3. A slightly higher dosage is seen in the first time step.
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Figure 3: MSE loss and end-of-episode reward when training with one drug (a and c) and two
drugs (b and d). Training was generally smoother and the MSE loss flattened earlier in the one-drug
case. A low-pass filter was applied to obtain the black curves. Mutation parameters for the training
shown were Pepis,mut = 0.3, Pstep,mut = 10−6, and w1 = 16, w2 = 3w1 for the first-line and last-line
drugs respectively.

In dual-drug training, similar uniform increases were observed in early training for both
drugs, with the first-line drug (lower penalty) initially increasing more, but with this increase
reversed after about 100 episodes (recall that due to the choices of ρ lower dosages of the
first-line drug are needed to suppress those mutations that are not completely resistant to
it compared to the dosages required to suppress mutations only affected by the last-line
drug). By ∼ 240 episodes into training the first-line drug was not administered at all - but
treatments were still successful since the last-line drug is capable of suppressing all cell types,
albeit at a higher penalty. The last-line dosage continued to be uniformly decreased until
treatment failures started occurring and was subsequently increased to the level at which it
could suppress mutant populations without specialization. Decreases again began occurring
at that point, and the policy also started applying the first-line drug again. Training from
that point on involved specialization in response to mutation and experimentation with
various amounts of the first-line and last-line drugs. When no mutations were experienced,
the policy learned to administer no last-line drug at all (Fig. 5).

Training was stopped after no further reduction was observed in the MSE loss, which
flattened at ∼ 3× 10−3 − 2× 10−2 (with minor oscillations) in both cases, the actor policy
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loss had stabilized, and no further gains were observed in the end-of-episode reward signal4.
Single-drug training converged after about 50,000 episodes or ∼ 1 million samples, taking
∼ 10 hours on a 3.5 GhZ Intel Core i7 CPU. Dual-drug training converged after about
130,000 episodes, or ∼ 2.6 million samples, taking a little over a day. The policy parameters
were saved every 100 episodes for later reference and the resulting policies were analyzed
after training. The RL training hyperparameters were identical in the single- and dual-drug
training as was the depth of the neural networks. Somewhat wider hidden layers were found
necessary for dual-drug training, which, as noted, also required a larger number of samples
for convergence. All training hyperparameter choices are detailed in Appendix B.

Responsive adaptation to random events and system perturbations

A hallmark of both the single-drug and combination therapy policies shown in Fig. 4 and
Fig. 5, respectively, is the responsive adaptation to random population composition changes
insofar as both the appearance of new cell types and stochastic fluctuations of already-
present cell types. On a test set of 1000 episodes simulated randomly with training pa-
rameters a 100% success rate was obtained in both the single-drug and dual-drug cases (all
episodes recorded involved the occurrence of mutations). Multiple concurrent subpopula-
tions are handled well by the policies learned. In single-drug therapy, after observing an
emergent resistant subpopulation higher drug pulses are administered, and baseline dosing
is restored following the elimination of this subpopulation (Fig. 4). The dosage admin-
istered in these pulses increases with the resistance and population of the observed cell
type. In combination therapy (Fig. 5), the policy switches to the last-line drug when the
red and green phenotypes are observed and switches back to the first-line drug after these
cells are eliminated. On rare occasions, when low numbers of green and red cells were
present compared to the baseline (black) population, small amounts of the first-line drug
were administered in tandem with the last-line drug. This may have been done in cases
where the dosage of the last-line drug was enough to combat the resistant populations but
not enough to sufficiently (i.e. optimally) suppress the susceptible population given its size,
and compensatory increases in dosage of the first-line drug were thus given preference. In
200 simulations across above-training mutation rate values only one simulation exhibited a
brief and near-negligible increase in last-line dosage when a blue cell population appeared
and no first-line-resistant populations were present. Since the black and blue phenotypes
are susceptible to the same extent to both the first- and last-line drugs, the sharp differ-
ence in drug administration is attributable to the differing incentives supplied in the reward
assignment (w2 = 3w1).

Even in the absence of mutations (the two top left plots in Fig. 4 and the three top
left plots in Fig. 5) an episode can terminate at various points in time due to variations
in the initial cell population size of up to an order of magnitude as well as demographic
fluctuations at low populations toward the end of treatment. The dosing is seen to adjust
in accordance with these variations.

4. Note that due to the information contained in Eq. 5, measuring no further gains in this signal provides
direct indication that improvements in the optimization goal of treatment success with low cumulative
dosing have plateaued.
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Robustness to uncertainty in the mutation rate

In a given episode, the rate and extent of resistant subpopulation emergence were controlled
by Pstep,mut. In reality, mutation rates can vary over time and are often unknown a pri-
ori ; the robustness of the dosing policy to this rate is therefore of critical importance to
experimental and clinical applications.

To assess the robustness of the policy to variations in this parameter the success rates
of the policies shown in Fig. 4 (one drug) and Fig. 5 (two drugs) were tested over Pstep,mut

values that exceeded the training parameter (10−6) by several orders of magnitude (testing
was done with 200 mutation-occurrence simulated episodes per value); at the high end of this
range such values far exceed biologically-expected values. No deterioration in performance
was found for Pstep,mut within and substantially above the expected biological values: 100%
success was recorded for testing of the single-drug policy for up to Pstep,mut = 10−1 (the
highest value tested) and of the dual-drug policy for up to Pstep,mut = 10−3. The dual-
drug policy exhibited degraded performance beyond a 1000-fold increase over the training
value, with 47% success at Pstep,mut = 10−2 and a further increasing rate of failure beyond
that point. We note that this high end of the range is in significant excess of resistant
cell proportions that may be naturally expected (Falagas et al., 2008) and testing on these
ranges was performed purely for the benefit of a general robustness analysis.

While evaluating the specific factors responsible for the high policy robustness found
here is beyond the scope of this work, the randomness in the number and type of cells that
was experienced during training – through both Pstep,mut and the noise terms in Eq. 2 –
may have contributed to the policy’s ability to generalize to extended parameter ranges.
This would suggest that the inclusion of some simulation stochasticity in additional model
parameters, e.g. the resistance levels, could aid in training policies that are required to be
highly robust against substantial parametric uncertainty in these parameters.

Learned preference for short treatment times

All explicit optimization incentives that were given involved the dosage administered rather
than the time of treatment (Section 3.2). As previously explained, the main challenge in
the dosing problem is the balancing of the higher dosages needed to suppress resistant cell
populations with the need to keep toxicity low. Rewards in the setup implemented here
purposely did not incorporate any direct incentives for shorter treatment times, focusing
instead on dosage minimization. Although conservative dosing was a strong feature of
the policies learned, these policies involved a strong preference for shorter treatment times
even at the expense of higher baseline dosing, typically eliminating the cell population well
in advance of the maximal allowed treatment time. This is particularly evident from a
comparison of the single-drug policy response in its dosing vs. its treatment time (Fig. 6)
to increases in the mutation probability (Pstep,mut): the policy compensates for the increased
resistance almost exclusively through dosage increases, while treatment time is kept nearly
constant. This behavior may arise through a combination of learned preferences based on
dosing penalties and mutation parameters, and in training for a real clinical scenario a
“clinician-in-the-loop” approach would permit informed choices in this regard. The direct
benefit of keeping treatment time short is that the number of resistant cells that may emerge
in the course of treatment is thus reduced, avoiding further increases in dosage and/or use
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of last-line drugs and minimizing the chance of treatment failure due to emergent late-stage
resistance.

Relative Itot

Relative Tend

10-6 10-5 10-4 10-3 10-2 10-1
0

1

2

3

4

Pstep,mut

In
cr
ea
se
fa
ct
or

Figure 6: Policy preference for early termination times can be seen by analyzing the single-drug
dosing behavior (Fig. 4) at different Pstep,mut parameter combinations for episodes in which muta-
tions occurred. Data was simulated with 200 mutation-occurrence trials for each Pstep,mut value,
with Pstep,mut values spaced apart by a half order of magnitude. The mean total dosage in an episode
(purple) increases significantly with increases in the mutation rate, but the time of the episode (or-
ange) remains near-constant, exhibiting a strong policy preference for maintaining short treatment
times at the cost of higher baseline dosage.

5. Insights for RL-based control engineering in stochastic environments

As control systems gain in complexity, learning-based methods for control optimization
may provide viable and preferred alternatives to traditional control engineering approaches.
Routine use and acceptance of learning-based continuous control methods, however, will
likely necessitate further improvements in training stability and convergence as well as a
better understanding of how algorithmic choices affect the robustness of the learned policies.
The work described in this paper suggests three particular aspects of training whose imple-
mentation could be productively generalized to other stochastic control problems employing
learning-based approaches in deriving optimal policies: (1) state space augmentation via
future trajectory approximation, (2) inclusion of a shaping reward that depends on the
trajectory-informed dimensions of the augmented state space, and (3) generalization from
model stochasticity for robustness against parameter uncertainty. Each is discussed in turn
below.

In many stochastic control applications a system model in the form of component-wise
equations is known or can be approximated but may have high stochasticity and/or parame-
ter uncertainty. Dynamic control systems have time as one of their dependent variables, and
the set of equations describing the system provides its time evolution, e.g., in the manner
of Eq. 2. For notational ease, we consider here systems of ordinary stochastic differential
equations, given by ẋi(t) = fi (~x, ~η, t), where ~x is a vector of the system’s components (e.g.
different parts of some machinery, data flow, or biological groupings) and ~η parametrize
the stochastic noise. If observations arrive as values of some or all of the components xi,
a natural state space definition consists of ~x or the observed subset thereof. In the case
of the control problem considered in this paper, these are the populations of the different
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cell types at the times at which measurements are performed. In such cases, augmenta-
tion of the state space by feature combinations involving derivatives of observation space
components, given by fi (~x, ~η, t) and/or combinations thereof, essentially serves to indicate
trajectory and time evolution in what would otherwise be static observations. In dynamic
control situations, where the system may undergo significant changes as it evolves tempo-
rally, feeding this additional information into the function approximation mechanism used
to learn the optimal control policy can mitigate the difficulties incurred in learning due to
the system dynamics. Here, this was done by augmenting the observation space by an extra
dimension given by

∑
i ẋi/xi =

∑
i fi (~x) /xi (such that stochasticity is neglected in this

trajectory estimation); the inclusion of this additional state space dimension with a feature
combination arising directly from the equations-based description was found to be a key
driver of training convergence.

A notable feature of the state-space augmentation practiced here is that the extra state
space dimension only played a role in the shaping reward (Eqs. 7-8), which provides a guiding
signal in training but otherwise leaves the optimal policy invariant. This can be thought of
as separating “external” degrees of freedom in learning – observations and incentives that
depend directly on these observations via the control optimization goal – from “internal”
ones that provide a guiding signal to learning through reward shaping based on state space
dimensions that indicate trajectory directionality through their dependence on derivatives
of the observed variables. It should be noted, however, that invariance under reward shaping
involving the augmented state space does not imply that the state space augmentation itself
has no effect on the optimal policy, since the extra dimension is provided as input into the
actor and critic networks along with all other state space dimensions. When implementing
these ideas in other environments, it may therefore be useful to assess which combinations
of observations’ derivatives carry information that is relevant to the optimal control goal.
Here, the instantaneous growth rate,

∑
i ẋi/xi, constitutes a relevant variable.

It is worthwhile noting that including trajectory estimation in training provides an
additional level of transparency in the process of learning an optimal policy. Such added
transparency can help stave off criticisms of the opacity of “black-box” learning and lend
credence to learning-based approaches as viable control approaches that can reliably scale
up to complex systems and infrastructures.

An essential aspect of establishing the reliability of a control policy operating in a
stochastic environment is ensuring and testing its robustness to parameter uncertainty and
noise in the system performance. Policy robustness is directly related to the generalization
performance of the learning algorithm. The injection of noise into training is known to
enhance neural network generalization performance, although how the extent of noise and
the manner of its injection (e.g. into the training inputs, weights, etc.) precisely correlate
with generalization performance is not well established. In the training described in this
paper, all noise was in the training data and arose out of the natural stochasticity of the
model. Interestingly, this noise was sufficient to produce policies that were not only robust
to this type of noise but that were also robust to uncertainty in a key model parameter
that was held fixed during training (the mutation rate). This may indicate that training
on naturally highly stochastic environments could alleviate issues pertaining to parametric
uncertainty and serve to increase policy robustness against this type of uncertainty.
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6. Discussion

This paper presented a method for single-drug and combination therapy feedback control
that was used to obtain policies capable of responsive and robust adaptation to changes
in a stochastic dynamical system of evolving cell populations. Model-free deep reinforce-
ment learning was supplemented with model information on system trajectory estimation
into feature engineering and reward assignment, which was found to significantly improve
learning. Various aspects of the resulting policies were investigated in this study and may
help guide future efforts in training similar systems in which some trajectory estimation is
possible, there is substantial uncertainty in the probability of random perturbing events,
and a tradeoff between conflicting target goals (here: low toxicity with the need to properly
target resistant cell populations) exists.

Given the demonstrated ability of the policies that were identified in training to ro-
bustly adjust to large dynamical variations on which they were not trained, an interesting
question for future exploration is how accurately the underlying structure of the model –
here logistic growth dynamics – needs to be known for policy training. Higher flexibility
in this regard would enable controller development with more limited predictive knowledge
of the dynamics. The resolution of feedback observations and especially their frequency is
likely to play an important role in this flexibility. Here, observations were assumed to be
generated at discrete time points but be reflective of the population composition at these
time points. Practical implementation may necessitate accounting for a certain time de-
lay in obtaining such observations, and future directions for the development of CelluDose
include the incorporation of delayed feedback and lower-resolution observations that could
lead to partial observability of the system.

As higher-resolution diagnostics, more sophisticated modeling techniques, and a recog-
nition of the need for patient-specific care are making increasing gains in healthcare, the
need for appropriate therapeutic control methods is likely to rise. The ultimate goal in
precision dosing – a feedback loop in which drug absorption and response are tightly moni-
tored and used to determine subsequent dosing – remains for now an elusive goal in all but
a few cases (Tucker, 2017). The method presented here is intended for eventual use in this
context under consistent monitoring of the targeted cell population composition in terms
of the heterogeneity in its dose responses.

An important advantage of modeling and simulation in developing drug dosage con-
trollers is the ability to investigate a large range of drug schedules even prior to clinical
trials and to thus potentially inform the development of clinical trials. The focus of the
implementation presented here is on the drug responses and trajectories of an evolving
population of cells; for clinical applications, modeling would need to additionally include
patient-relevant models of drug absorption and immune system response. With appropriate
diagnostics, the setup described here could be implemented for the automated control of
laboratory bacterial evolution experiments and establish the roles and interplay of decision
time intervals, diagnostic resolution, and model uncertainty as part of the controller design.
This would be a crucial step toward future clinical application and a validation of the utility
of artificial intelligence-driven approaches in simulation-based biomedical controller design.
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Appendix A. Master equation to stochastic differential equations

A.1 Master equation for the population dynamics of d phenotypes

Let Ai denote a single cell of phenotype i. We consider d phenotypes with equal resource
utilization evolving subject to a resource capacity given by K. Following a simplified setup
of McKane and Newman (2004), we initially consider a spatial grid permitting up to one
individual of type Ai per site. If empty, individual in site is denoted by E. The rates of
birth and death of cells of type i are denoted by β̃i and δ̃i respectively:

Birth: AiE
β̃i→ AiAi

Death: Ai
δ̃i→ E

At each time step we sample the population. On a fraction η of these events we randomly
choose two individuals and allow them to interact, but since we do not consider direct
competition effects other than through shared limited resources, we ignore combinations
in which both Ai cells were picked and therefore restrict to picking only the combination
Ai and E. In a fraction 1 − η of these events we choose only one individual randomly (if
only E’s are drawn, the drawing is done again). The probabilities of picking the different
combinations are given by

P (AiE) : 2η
ni
K

(
K −

∑
k nk

K − 1

)
P (Ai) : (1− η)

ni
K

where ni is the population of phenotype i. We will denote the transition probabilities from
state n = (n1, ..., nd) to state n′ by T (n′|n). They are thus given byT (n1, ..., ni + 1, ..., nd|n) = 2ηβ̃i

ni
K

(
K−

∑
k nk

K−1

)
≈ 2ηβ̃i

ni(K−
∑
k nk)

K2

T (n1, ..., ni − 1, ..., nd|n) = (1− η)δ̃i
ni
K

where for simplicity we replace K − 1→ K as we will be considering the large-K limit for
the subsequent diffusion approximation. The master equation is given by

dP (n, t)

dt
=
∑

d
i=1 {T (n|n1, ..., ni + 1, .., nd)P (n1, ..., ni + 1, .., nd, t)

+ T (n|n1, ..., ni − 1, .., nd)P (n1, ..., ni − 1, .., nd, t)

− [T (n1, ..., ni − 1, .., nd|n) + T (n1, ..., ni + 1, .., nd|n)]P (n, t)}

(11)
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subject to the initial condition P (n, 0) = δn0,n (Kronecker delta, not to be confused with
the death rates δi). We must also impose boundary conditions,{

T (n1, ..., ni = 0, ..., nd|n1, ..., ni = −1, ..., nd) = 0

T (
∑

i ni = K|
∑

i ni = K + 1) = 0.

A.2 Diffusion approximation: the Fokker-Planck equation and Ito stochastic
differential equations

By assuming that the resource capacity K is large compared to the population levels ni
(see further discussion below), we can approximate ϕi = ni/K � 1 as continuous variables;
we denote P (n1, ..., ni ± 1, ..., nd, t) ≡ Pϕ(ϕi ± 1) and define{

f (ϕi) ≡ δiϕi
g (ϕi) ≡ βiϕi

(
1−

∑d
j ϕj

)
where we have rescaled the death and birth rates as δi ≡ (1− η) δ̃i and βi ≡ ηβ̃i. Eqn. (11)
can then be rewritten as

dPϕ(~ϕ, t)

dt
=

d∑
i=1

{[
f

(
ϕi +

1

K

)
Pϕ

(
ϕ1, ..., ϕi +

1

K
, ..., ϕd, t

)
− f (ϕi)Pϕ(~ϕ, t)

]
+

[
g

(
ϕi −

1

K

)
Pϕ

(
ϕ1, ..., ϕi −

1

K
, ..., ϕd, t

)
− g (ϕi)Pϕ(~ϕ, t)

]}
Taylor expanding around ϕi to second order (McKane et al., 2014) we have that

h

(
ϕi ±

1

K

)
Pϕ

(
ϕ1, ..., ϕi ±

1

K
, ..., ϕd, t

)
= h (ϕi)Pϕ(~ϕ, t)± 1

K

∂ (hP )

∂ϕi

∣∣∣∣
~ϕ

+
1

2K2

∑
j

∂2 (hP )

∂ϕ2
j

∣∣∣∣∣
~ϕ

,

which yields, after rescaling time as τ = t/K, the Fokker-Planck equation

∂Pϕ(~ϕ, t)

∂τ
=

d∑
i=1

 ∂ ((f − g)P )

∂ϕi

∣∣∣∣
~ϕ

+
1

2K

∑
j

∂2 ((f + g)P )

∂ϕ2
j

∣∣∣∣∣
~ϕ

 ,
which corresponds to the system of Ito stochastic differential equations

dϕi = − (f (ϕi)− g (ϕi)) dt+
1√
K

∑
m

δmi
√
f (ϕm) + g (ϕm)dWm(t)

where the white noise Wk(t) satisfies{
〈Wk(t)〉 = 0

〈Wk(t)W`(t
′)〉 = δk`δ(t− t′)

(12)
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and δk` is the Kronecker delta (not to be confused with the death rate δi). We have that

f (ϕi)± g (ϕi) =

1−
d∑
j

ϕj

[δi ϕi

1−
∑d

j ϕj
− δiϕi + δiϕi ± βiϕi

]

= ϕi

1−
d∑
j

ϕj

[δi( ∑d
j ϕj

1−
∑d

j ϕj

)
+ δi ± βi

]
.

If we redfine xi ≡ Kϕi as the levels (concentrations) rather than proportions of the popu-
lations, we observe that the fraction∑d

j ϕj

1−
∑d

j ϕj
=

1
K

∑d
j xj

1− 1
K

∑d
j xj

approaches 1 in the large-K limit, in which case we have

f (ϕi)± g (ϕi)→
1

K
(δi ± βi)xi

(
1−

∑d
j xj

K

)

yielding the system (2)

dxi(t)

dt
= (βi − δi)xi(t)

(
1−

∑d
j=1 xj(t)

K

)
+

√√√√(βi + δi)xi(t)

(
1−

∑d
j=1 xj(t)

K

)
Wi(t)

for i = 1, .., d. To prevent the term in the square root of the noise from occasionally briefly
dipping below zero and resulting in imaginary numbers (due to the cell subpopulations
potentially dipping below zero during a simulation step before being set to zero), this term
is clipped at zero.

A few comments are due on the large-K approximation above in the context of the work
here. In general, as xj → K, this approximation ceases to provide a good description of the
fluctuations in the system. In that regime, the large-K approximation leads to deterministic
dynamics and neglects the effect of population fluctuations near carrying capacity, which
are expected in biological systems. This is not a concern in the scenario considered here:
since K is assumed here to be large, as xj approaches K its dynamics become effectively
deterministic and well-described by the logistic drift term alone; moreover, the treatment
goal is to reduce the cell populations rather than maintain some distribution near carrying
capacity, so that after the onset of treatment populations should spend little time in the
vicinity of the resource capacity. As a result, any fluctuations at that point will have
negligible effect on the progression of treatment. As the population decreases it moves
farther away from the resource capacity and into the regime in which the diffusion term is a
valid approximation of stochasticity, whose contribution to the dynamics also increases at
lower population sizes due to the dependence on xi. The logistic deterministic dependence,
however, is relevant for modeling accuracy at the initial stages of treatment (where it
can affect the growth rate) as well as for training: a finite resource capacity introduces
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into training the issue of low growth despite population proliferation (and hence treatment
failure). This needed to be addressed with a particular reward assignment scheme, discussed
in Section 3.2, and was done for potential future generalization to scenarios where the
population levels may stay for longer closer to the carrying capacity due to treatment
constraints. Lastly, setting a carrying capacity motivated a non-arbitrary scale in the
problem for feature rescaling (Appendix B).

Appendix B. Neural network architecture and hyperparamer choices

The actor and critic network (and respective target network) architecture used is the same
as in the original DDPG paper (Lillicrap et al., 2015), with the notable difference that
significant performance improvement was obtained with the addition of an extra hidden
layer (30 units for single-drug training, 45 units for dual-drug training) in the actor network
and that narrower hidden layers were implemented in both single-drug (40 and 30 units,
respectively) and dual-drug (60 and 45 units, respectively) training to avoid overfitting. All
hidden layers employed rectified linear activation functions; the output layer of the actor
was set to a hard tanh with range between 0 and a chosen maximum dose in order to
allow for the dosage to drop to exactly zero (particularly important when multiple drugs
are considered). Weights were initialized randomly but biases were set to a positive value
informed by the evolution of the deterministic part of (2) (see Appendix C for a detailed
description). This was needed in order to prevent training from becoming trapped early on
in a suboptimal policy in which the minimal control (0) was applied at every time step.

No batch normalization was used at hidden layers, but features were rescaled prior to
being added to the replay buffer in the following manner. Cell concentrations xi were
rescaled as

xi →
log (xi + 1)

log(K)
.

Since cell concentrations can vary by multiple orders of magnitude, this was found to be
necessary for smooth convergence. The growth rate gall was rescaled as

gall →
gall − gmin
gmax − gmin

where gmax was defined in (9) and gmin was set to the negative of the death rate, −δ, which
is the lowest growth rate (δ is the highest rate of decline) possible in the system.

Adam optimization was used with learning rates of 10−5 for the actor network and
10−4 for the critic network as learning was found to be unstable for higher rates. Training
was done with mini-batch size of 128 and a replay buffer of size 106. Soft updates to the
target networks were done with τ = 0.001 and the RL discount factor was set at γ = 0.99.
Exploration was done with an Ornstein-Uhlenbeck process with θ = 0.15, σ = 0.3, and
δt = 10−2. Parameters used in the reward choice that resulted in successful training were
cend,success = 40, w1 = w2 = 1 , c1 = 2, cend,fail = 20, cΦ = 10. Single-drug training
was done with both η1 = 16 and η1 = 4. Combination therapy (two drugs) training was
done with η2 = 3 × η1 under the assumption that the drug able to effectively target the
higher-resistance cells is a last-resort drug that also involves higher toxicity.
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Appendix C. Bias initialization

If we assume the lowest-variance policy – constant uniform dosing – and permit no mutations
to occur, then in deterministic evolution the number of baseline-phenotype cells under
constant dose I starting from a population x0 will be given at time t by the solution of the
noise-free d = 1 system equivalent of (2):

x(t) =
x0e

g(I)t

1 + x0
K

[
eg(I)t − 1

] . (13)

where g(I) = β

1+ I
ρ

− δ. If the population must be reduced to xmin (here, < 1 cell) within a

time Tmax, then the dosage must be no less than

Imin = ρ

 βTmax

δTmax − log
(
x0(K−xmin)
xmin(K−x0)

)


for treatment to be successful. Initial cell populations were allowed to vary by up to an order
of magnitude; by taking the maximum value allowed in this range we compute Imin and set
the bias to five times this value or to 75% of the maximal drug concentration - whichever is
smallest (typically 5Imin). xmin was set to just under 1 cell (0.98) as the population falling
below a single cell marked the conclusion of a successful episode. Initializations for both
actor and critic networks were saved and reused in subsequent experiments.
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