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Graphical models are commonly used to represent conditional dependence relationships
between variables. There are multiple methods available for exploring them from high-
dimensional data, but almost all of them rely on the assumption that the observations
are independent and identically distributed. At the same time, observations connected
by a network are becoming increasingly common, and tend to violate these assumptions.
Here we develop a Gaussian graphical model for observations connected by a network with
potentially different mean vectors, varying smoothly over the network. We propose an
efficient estimation algorithm and demonstrate its effectiveness on both simulated and real
data, obtaining meaningful and interpretable results on a statistics coauthorship network.
We also prove that our method estimates both the inverse covariance matrix and the
corresponding graph structure correctly under the assumption of network “cohesion”, which
refers to the empirically observed phenomenon of network neighbors sharing similar traits.
Keywords: High-dimensional statistics, Gaussian graphical model, network analysis,
network cohesion, statistical learning

1. Introduction

Network data represent information about relationships (edges) between units (nodes), such
as friendships or collaborations, and are often collected together with more “traditional”
covariates that describe one unit. In a social network, edges may represent friendships be-
tween people (nodes), and traditional covariates could be their demographic characteristics
such as gender, race, age, and so on. Incorporating relational information in statistical
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modeling tasks focused on “traditional” node covariates should improve performance, since
it offers additional information, but most traditional multivariate analysis methods are not
designed to use such information. In fact, most such methods for regression, clustering,
density estimation and so on tend to assume the sampled units are homogeneous, typically
independent and identically distributed (i.i.d.), which is unlikely to be the case for units
connected by a network. While there is a fair amount of work on incorporating such in-
formation into specific settings (Manski, 1993; Lee, 2007; Yang et al., 2011; Raducanu and
Dornaika, 2012; Vural and Guillemot, 2016), work on extending standard statistical meth-
ods to network-linked data has only recently started appearing, for example, Li et al. (2019)
for regression, Tang et al. (2013) for classification, and Yang et al. (2013), Binkiewicz et al.
(2017) for clustering. Our goal in this paper is to develop an analog to the widely used
Gaussian graphical models for network-linked data which takes advantage of this additional
information to improve performance when possible.

Graphical models are commonly used to represent independence relationships between
random variables, with each variable corresponding to a node, and edges representing condi-
tional or marginal dependence between two random variables. Note that a graphical model
is a graph connecting variables, as opposed to the networks discussed above, which are
graphs connecting observations. Graphical models have been widely studied in statistics
and machine learning and have applications in bioinformatics, text mining and causal in-
ference, among others. The Gaussian graphical model belongs to the family of undirected
graphical models, or Markov random fields, and assumes the variables are jointly Gaussian.
Specifically, the conventional Gaussian graphical model for a data matrix X € R™*P assumes
that the rows X;., ¢ = 1,...,n, are independently drawn from the same p-variate normal
distribution N (u, X). This vastly simplifies analysis, since for the Gaussian distribution all
marginal dependence information is contained in the covariance matrix, and all conditional
independence information in its inverse. In particular, random variables j and j' are condi-
tionally independent given the rest if and only if the (j, j)-th entry of the inverse covariance
matrix 7! (the precision matrix) is zero. Therefore estimating the graph for a Gaussian
graphical model is equivalent to identifying zeros in the precision matrix, and this problem
has been well studied, in both the low-dimensional and the high-dimensional settings. A
pioneering paper by Meinshausen and Bithlmann (2006) proposed neighborhood selection,
which learns edges by regressing each variable on all the others via lasso, and established
good asymptotic properties in high dimensions. Many penalized likelihood methods have
been proposed as well (Yuan and Lin, 2007; Banerjee et al., 2008; Rothman et al., 2008;
d’Aspremont et al., 2008; Friedman et al., 2008). In particular, the graphical lasso (glasso)
algorithm of Friedman et al. (2008) and its subsequent improvements (Witten et al., 2011;
Hsieh et al., 2013b) are widely used to solve the problem efficiently.

The penalized likelihood approach to Gaussian graphical models assumes the observa-
tions are i.i.d., a restrictive assumption in many real-world situations. This assumption
was relaxed in Zhou et al. (2010); Guo et al. (2011) and Danaher et al. (2014) by allowing
the covariance matrix to vary smoothly over time or across groups, while the mean vector
remains constant. A special case of modeling the mean vector on additional covariates
associated with each observation has also been studied (Rothman et al., 2010; Yin and Li,
2011; Lee and Liu, 2012; Cai et al., 2013; Lin et al., 2016). Neither of these relaxations are
easy to adapt to network data, and their assumptions are hard to verify in practice.
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In this paper, we consider the problem of estimating a graphical model with heteroge-
neous mean vectors when a network connecting the observations is available. For example,
in analyzing word frequencies in research papers, the conditional dependencies between
words may represent certain common phrases used by all authors. However, since different
authors also have different research topics and writing styles, there is individual variation in
word frequencies themselves, and the coauthorship information is clearly directly relevant
to modeling both the universal dependency graph and the individual means. We propose
a generalization of the Gaussian graphical model to such a setting, where each data point
can have its own mean vector but the data points share the same covariance structure. We
further assume that a network connecting the observations is available, and that the mean
vectors exhibit network “cohesion”, a generic term describing the phenomenon of connected
nodes behaving similarly, observed widely in empirical studies and experiments (Fujimoto
and Valente, 2012; Haynie, 2001; Christakis and Fowler, 2007). We develop a computation-
ally efficient algorithm to estimate the proposed Gaussian graphical model with network
cohesion, and show that the method is consistent for estimating both the covariance matrix
and the graph in high-dimensional settings under a network cohesion assumption. Simula-
tion studies show that our method works as well as the standard Gaussian graphical model
in the i.i.d. setting, and is effective in the setting of different means with network cohesion,
while the standard Gaussian graphical model completely fails.

The rest of the paper is organized as follows. Section 2 introduces a Gaussian graphical
model on network-linked observations and the corresponding two-stage model estimation
procedure. An alternative estimation procedure based on joint likelihood is also intro-
duced, although we will argue that the two-stage estimation is preferable from both the
computational and the theoretical perspectives. Section 3 presents a formal definition of
network cohesion and error bounds under the assumption of network cohesion and regu-
larity conditions, showing we can consistently estimate the partial dependence graph and
model parameters. Section 4 presents simulation studies comparing the proposed method
to standard graphical lasso and the two-stage estimation algorithm to the joint likelihood
approach. Section 5 applies the method to analyzing dependencies between terms from a
collection of statistics papers’ titles and the associated coauthorship network. Section 6
concludes with discussion.

2. Gaussian graphical model with network cohesion
2.1. Preliminaries

We start with setting up notation. For a matrix X € R"*P, let X.; be the jth column and X;.
the ith row. By default, we treat all vectors as column vectors. Let || X|[r = (3_; ; X%-)l/2
be the Frobenius norm of X and || X|| the spectral norm, i.e., the largest singular value of
X. Further, let || X|lo = #{(¢,j) : Xi; # 0} be the number of non-zero elements in X,
[ X1l = 2245 1Xi5], and | X |} o = 32,5 [ Xijl. For a square matrix X, let tr(X) and det(X)
be the trace and the determinant of X, respectively, and assuming ¥ is a covariance matrix,
let r(X) = % be its stable rank. Tt is clear that 1 < r(X) < p for any nonzero covariance
matrix 3.

While it is common, and not incorrect, to use the terms “network” and “graph” in-
terchangeably, throughout this paper “network” is used to refer to the observed network
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connecting the n observations, and “graph” refers to the conditional dependence graph of
p variables to be estimated. In a network or graph G of size n, if two nodes 7 and ' of G
are connected, we write i ~g ', or i ~ ¢’ if G is clear from the context. The adjacency
matrix of a graph G is an n X n matrix A defined by A;7 = 1 if i ~g i’ and 0 otherwise. We
focus on undirected networks, which implies the adjacency matrix is symmetric. Given an
adjacency matrix A, we define its Laplacian by L = D — A where D = diag(dy, dz, - ,dp)
and d; = >, A;ir is the degree of node i. A well-known property of the Laplacian matrix
L is that, for any vector u € R,

p L= (i — par)?. (1)

i~vg/

We also define a normalized Laplacian £ = %L where d is the average degree of the network
g, given by d= %Zl d;. We denote the eigenvalues of Ly by 71 > 19 > -+ > 711 > 7, = 0,
and the corresponding eigenvectors by ui, ..., uy.

2.2. Gaussian graphical model with network cohesion (GNC)

We now introduce the heterogeneous Gaussian graphical model, as a generalization of the
standard Gaussian graphical model with i.i.d. observations. Assume the data matrix X
contains n independent observations X;. € RP,1=1,2,--- ,n. Each X;. is a random vector
drawn from an individual multivariate Gaussian distribution

Xi.NN(Mz‘,E),Z'Il,Q,'”,n. (2)

where p; € RP is a p-dimensional vector and . is a p X p symmetric positive definite matrix.
Let © = ¥~ ! be the corresponding precision matrix and M = (1, g, - - , fn)? be the mean
matrix, which will eventually incorporate cohesion. Recall that in the Gaussian graphical
model, ©;; = 0 corresponds to the conditional independence relationship x; L x;\{xk, k #
J,7'} (Lauritzen, 1996). Therefore a typical assumption, especially in high-dimensional
problems, is that © is a sparse matrix; this both allows us to estimate ® when p > n, and
produces a sparse conditional dependence graph.

Model (2) is much more flexible than the i.i.d. graphical model, and it separates co-
variation caused by individual preference (cohesion in the mean) from universal co-occurrence
(covariance). The price we pay for this flexibility is the much larger number of parameters,
and model (2) cannot be fitted without additional assumptions on the mean, since we only
have one observation to estimate each vector u;. The structural assumption we make in this
paper is network cohesion, a phenomenon of connected individuals in a social network tend-
ing to exhibit similar traits. It has been widely observed in many empirical studies such as
health-related behaviors or academic performance (Michell and West, 1996; Haynie, 2001;
Pearson and West, 2003). Specifically, in our Gaussian graphical model (2), we assume that
connected nodes in the observed network have similar mean vectors. This assumption is
reasonable and interpretable in many applications. For instance, in the coauthorship net-
work example, cohesion indicates coauthors tend to have similar word preferences, which is
reasonable since they work on similar topics and share at least some publications.
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2.3. Fitting the GNC model

The log-likelihood of the data under model (2) is, up to a constant,
1
(M, 0) =logdet(O) — Etr(@(X - M)T(X — M)). (3)

A sparse inverse covariance matrix © and a cohesive mean matrix M are naturally incor-
porated into the following two-stage procedure, which we call Gaussian graphical model
estimation with Network Cohesion and lasso penalty (GNC-lasso).

Algorithm 1 (Two-stage GNC-lasso algorithm) Input: a standardized data matriz
X, network adjacency matriz A, tuning parameters A and «.

1. Mean estimation. Let Lg be the standardized Laplacian of A. FEstimated the mean
matriz by

M = arg min || X — M|% + atr(MTLM). (4)

2. Covariance estimation. Let S = 1(x — M)T(X — M) be the sample covariance matriz

of X based on M. Estimate the precision matriz by

6 = arg dnin logdet(6) — tr(05) — N[O, off- (5)
esn ’

+

The first step is a penalized least squares problem, where the penalty can be written as

e (MTLM) = |l — porll. (6)

ir~vi!

This can be viewed as a vector version of the Laplacian penalty used in variable selection
(Li and Li, 2008, 2010; Zhao and Shojaie, 2016) and regression problems (Li et al., 2019)
with network information. It penalizes the difference between mean vectors of connected
nodes, encouraging cohesion in the estimated mean matrix. Both terms in (4) are separable
in the p coordinates and the least squares problem has a closed form solution,

Mj=(I,+aly) 'X,, j=1,2,---,p. (7)

In practice, we usually need to compute the estimate for a sequence of « values, so we first
calculate the eigen-decomposition of £ and then obtain each (I + aLs)~! in linear time.
In most applications, networks are very sparse, and taking advantage of sparsity and the
symmetrically diagonal dominance of L, allows to compute the eigen-decomposition very
efficiently (Cohen et al., 2014). Given M, criterion (5) is a graphical lasso problem that
uses the lasso penalty (Tibshirani, 1996) to encourage sparsity in the estimated precision
matrix, and can be solved by the glasso algorithm (Friedman et al., 2008) efficiently or any
of its variants, later significantly improved further by Witten et al. (2011) and Hsieh et al.
(2014, 2013a).
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2.4. An alternative: penalized joint likelihood

An alternative and seemingly more natural approach is to maximize a penalized log-likelihood
to estimate both M and © jointly as

- 1
(0, M) = argmax log det(6) Etr(@(X — M)(X = M)) = N|O]], off — %tr(MTLSM).
(8)

The objective function is bi-convex and the optimization problem can be solved by alter-
nately optimizing over M with fixed © and then optimizing over © with fixed M until
convergence. We refer to this method as iterative GNC-lasso. Though this strategy seems
more principled in a sense, we implement our method with the two-stage algorithm, for the
following reasons.

First, the computational complexity of the iterative method based on joint likelihood
is significantly higher, and it does not scale well in either n or p. This is because when ©
is fixed and we need to maximize over M, all p coordinates are coupled in the objective
function, so the scale of the problem is np x np. Even for moderate n and p, solving this
problem requires either a large amount of memory or applying Gauss-Seidel type algorithms
that further increase the number of iterations. This problem is exacerbated by the need to
select two tuning parameters A and « jointly, because, as we will discuss later, they are also
coupled.

More importantly, our empirical results show that the iterative estimation method does
not improve on the two-stage method (if it does not slightly hurt it). The same phenomenon
was observed empirically by Yin and Li (2013) and Lin et al. (2016), who used a completely
different approach of applying sparse regression to adjust the Gaussian graphical model,
though those papers did not offer an explanation. We conjecture that this phenomenon
of maximizing penalized joint likelihood failing to improve on a two-stage method may be
general. An intuitive explanation might lie in the fact that the two parameters M and ©
are only connected through the penalty: the Gaussian log-likelihood (3) without a penalty
is maximized over M by M = X, which does not depend on ©. Thus the likelihood itself
does not pool information from different observations to estimate the mean (nor should
it, since we assumed they are different), while the cohesion penalty is separable in the p
variables and does not pool information between them either. An indirect justification of
this conjecture follows from a property of the two-stage estimator stated in Proposition 2
in Appendix B, and the numerical results in Section 4 provide empirical support.

2.5. Model selection

There are two tuning parameters, A and «, in the two-stage GNC-lasso algorithm. The
parameter « controls the amount of cohesion over the network in the estimated mean and
can be easily tuned based on its predictive performance. In subsequent numerical examples,
we always choose « from a sequence of candidate values by 10-fold cross-validation. In each
fold, the sum of squared prediction errors on the validation set ) (X;; — ﬂij)Q is computed
and the « value is chosen to minimize the average prediction error. If the problem is too
large for cross-validation, we can also use the generalized cross-validation (GCV) statistic
as an alternative, which was shown to be effective in theory for ridge-type regularization



HIGH-DIMENSIONAL (GAUSSIAN GRAPHICAL MODELS ON NETWORK-LINKED DATA

(Golub et al., 1979; Li, 1986). The GCV statistic for « is defined by

|1X — M(o)|3

1 1
np[l — n Z?:l m]z

GOV(0) = — |IX = N(@)[}/[1 = 24r((7 + L) ) =

where we write M () to emphasize that the estimate depends on . The parameter « should
be selected to minimize GCV. Empirically, we observe running the true cross-validation is
typically more accurate than using GCV. So the GCV is only recommended for problems
that are too large to run cross-validation.

Given «, we obtain M and use S = %(X—M)T(X—M) as the input of the glasso problem
in (5); therefore A can be selected by standard glasso tuning methods, which may depend
on the application. For example, we can tune A according to some data-driven goodness-of-
fit criterion such as BIC, or via stability selection. Alternatively, if the graphical model is
being fitted as an exploratory tool to obtain an interpretable dependence between variables,
A can be selected to achieve a pre-defined sparsity level of the graph, or chosen subjectively
with the goal of interpretability. Tuning illustrates another important advantage of the
two-stage estimation over the iterative method: when estimating the parameters jointly,
due to the coupling of @ and A the tuning must be done on a grid of their values and using
the same tuning criteria. The de-coupling of tuning parameters in the two-stage estimation
algorithm is both more flexible, since we can use different tuning criteria for each if desired,
and more computationally tractable since we only need to do two line searches instead of a
two-dimensional grid search.

2.6. Related work and alternative penalties

The Laplacian smoothness penalty of the form (1) or (6) was originally used in machine
learning for embedding and kernel learning (Belkin and Niyogi, 2003; Smola and Kondor,
2003; Zhou et al., 2005). More recently, this idea has been employed in graph-constrained
estimation for variable selection in regression (Li and Li, 2008, 2010; Slawski et al., 2010;
Pan et al., 2010; Shen et al., 2012; Zhu et al., 2013; Sun et al., 2014; Liu et al., 2019),
principal component analysis (Shojaie and Michailidis, 2010), and regression inference (Zhao
and Shojaie, 2016). In these problems, a network is assumed to connect a set of random
variables or predictors and is used to achieve more effective variable selection or dimension
reduction in high-dimensional settings. A generalization to potentially unknown network
or group structure was studied by Witten et al. (2014). Though Step 1 of Algorithm 1 has
multiple connections to graph constrained estimation, there are a few key differences. In our
setting, the network is connecting observations, not variables. We only rely on smoothness
across the network for accurate estimation without additional structural assumptions such
as sparsity on M. In graph-constrained estimation literature, in addition to the Laplacian
penalty, other penalties are proposed in special contexts (Slawski et al., 2010; Pan et al.,
2010; Shen et al., 2012). We believe similar extensions can also be made in our problem for
special applications and we will leave such extensions for future investigation.

An alternative penalty we can impose on M instead of Y, . || — par||* is

S i — ol (9)

ing/
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This penalty is called the network lasso penalty (Hallac et al., 2015) and can be viewed
as a generalization of the fused lasso (Tibshirani et al., 2005) and the group lasso (Yuan
and Lin, 2006). The penalty and its variants were studied recently by Wang et al. (2014);
Jung et al. (2018); Tran et al. (2018). This penalty is also associated with convex clustering
(Hocking et al., 2011; Lindsten et al., 2011), because it typically produces piecewise constant
estimates which can be interpreted as clusters. Properties of convex clustering have been
studied by Hallac et al. (2015); Chi and Lange (2015); Tan and Witten (2015). However, in
our setting there are two clear reasons for using the Laplacian penalty and not the network
lasso. First, piecewise constant individual effects within latent clusters of the network
is a special case of the general cohesive individual effects, so our assumption is strictly
weaker, and there is no reason to impose piecewise constant clusters in the mean unless
there is prior knowledge. Second, solving the optimization in the network lasso problem is
computationally challenging and not scalable to the best our knowledge: current state of
art algorithms (Hallac et al., 2015; Chi and Lange, 2015) hardly handle more than about
200 nodes on a single core. In contrast, the Laplacian penalty in (6) admits a closed-
form solution and can be efficiently solved for thousands of observations even with a naive
implementation on a single machine. Moreover, there are many ways to improve the naive
algorithm based on the special properties of the linear system (Spielman, 2010; Koutis et al.,
2010; Cohen et al., 2014; Sadhanala et al., 2016; Li et al., 2019). Therefore, (6) is a better
choice than (9) for this problem, both computationally and conceptually.

3. Theoretical properties

In this section, we investigate the theoretical properties of the two-stage GNC-lasso esti-
mator. Throughout this section, we assume the observation network A is connected which
implies that L£; has exactly one zero eigenvalue. The results can be trivially extended to
a network consisting of several connected components, either by assuming the same condi-
tions for each component or regularizing A to be connected as in Amini et al. (2013). Recall
that m > 1 > --- > 7,1 > 7, = 0 are the eigenvalues of L4 corresponding to eigenvectors
U1, -+ ,Uy. For a connected network, we know 7, is the only zero eigenvalue. Moreover, 7,1
is known as algebraic connectivity that measure the connectivity of the network.

3.1. Cohesion assumptions on the observation network

The first question we have to address is how to formalize the intuitive notion of cohesion.
We will start with the most intuitive definition of network cohesion for a vector, extend it
to a matrix, and then give examples satisfying the cohesion assumptions.

Intuitively, we can think of a vector v € R™ as cohesive on a network A if v7 L,v is small
in some sense, or equivalently, ||£sv||2 is small, since Lgv is the gradient of v Lsv up to a
constant and

|Lsv]]2 = 0 <= vT L — 0.



HIGH-DIMENSIONAL (GAUSSIAN GRAPHICAL MODELS ON NETWORK-LINKED DATA

It will be convenient to define cohesion in terms of L v, which also leads to a nice interpre-
tation. The ith coordinate of Lsv can be written as

Y

which is the difference between the value at node ¢ and the average value of its neighbors,
weighed by the degree of node i. Let £, = UAUT be the eigen-decomposition of £, with
A the diagonal matrix with the eigenvalues 71 > --- > 7, on the diagonal. The vector v can
be expanded in this basis as v = U = Y ; Biv; where 3 € R"™. Under cohesion, we would
expect ||Lsv||3 = 3, 7287 to be much smaller than |[v||3 = ||3]|3. We formalize this in the
following definition.

Definition 1 (A network-cohesive vector) Given a network A and a vector v, let v =
Yoy Biug be the expansion of v in the basis of eigenvectors of Ls. We say v is cohesive on
A with rate 6 > 0 if for alli=1,...,n,

i [c1]  C

, 10
EE (10

which implies

£l ssn

2
[0]l3
Now we can easily define a network-cohesive matrix M.

Definition 2 (A network-cohesive matrix) A matrix M € R"*P is cohesive on a net-
work A if all of its columns are cohesive on A.

An obvious but trivial example of a cohesive vector is a constant vector, which cor-
responds to § = co. More generally, we define the class of trivially cohesive vectors as
follows.

Definition 3 (A trivially cohesive vector) We say vector v is trivially cohesive if
Var(v) = 0(2?)

where v = Y | v;/n is the sample mean of v, and Var(v) = S (v —0)?/(n—1) is the
sample variance of v.

Trivial cohesion does not involve a specific network A, because such vectors are essentially
constant. We say v is nontrivially cohesive if it is cohesive but not trivially cohesive.
Similarly, we will say a matrix is trivially cohesive if all its columns are trivially cohesive,
and nontrivially cohesive if it is cohesive but not trivially cohesive.

For obtaining theoretical guarantees, we will need to make an additional assumption
about the network, which essentially quantifies how much network structure can be used
to control model complexity under nontrivial cohesion. This will be quantified through the
concept of effective dimension of the network defined below.
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Definition 4 Given a connected network adjacency matriz A of size n x n and eigenvalues
of its standardized Laplacian 11 > ...17h—1 > 7, = 0, define the effective dimension of
the network as

ma=inf{m:0<m<n—-1,7_,m > }.

1
~Vm
Note that spectral graph theory (Brouwer and Haemers, 2011) implies 71 > ¢ for some
constant ¢, and thus for sufficiently large n, we always have m4 < n — 1. For many sparse
and/or structured networks the effective dimension is much smaller than n — 1, and then
we can show nontrivially cohesive vectors/matrices exist.

Our first example of a network with a small effective dimension is a lattice network.
Assume +/n is an integer and define the lattice network of n nodes by arranging them on a
V/n X y/n spatial grid and connecting grid neighbors (the four corner nodes have degree 2,
nodes along the edges of the lattice have degree 3, and all internal nodes have degree 4).

Proposition 1 (Cohesion on a lattice network) Assume A is a lattice network on n
nodes, and \/n is an integer. Then for a sufficiently large n,

1. The effective dimension my < n?/3,

2. There ezist nontrivially cohesive vectors on the lattice network with rate 6 = 1/2.

Figure 1 shows the eigenvalues and the function 1/y/m for reference of a 20 x 20 lattice
and of a coauthorship network we analyze in Section 5. For both networks, the effective
dimension is much smaller than the number of nodes: for the lattice, n = 400, while m 4 = 30
and for the coauthorship network with n = 635 nodes, m4 = 66.

o - . ~N -
© ©
=) S~ =)
< S 7]
> 0 | >
Q I @D o
@© @©
? @ T
o
o 5 Th-m o Th-m
o o o 4
= * 1Am = ! * 1Am
T T T T T T T T | T T T
0 100 200 300 400 0 100 200 300 400 500 600
m m
(a) 20 x 20 lattice (b) Coauthorship network

Figure 1: Eigenvalues and effective dimensions of a 20 x 20 lattice and the coauthorship networks
from Section 5. The red vertical line in the left panel is n?/3, the theoretical upper bound from
Proposition 1.

10
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3.2. Mean estimation error bound

Our goal here is to obtain a bound on the difference between M and the estimated M
obtained by Algorithm 1, under the following cohesion assumption.

Assumption 1 The mean matriz M is cohesive over the network A with rate 6 where J is
a positive constant. Moreover, | M ;|3 < b*n for every j € [p] for some positive constant b.

Theorem 1 (Mean error bound) Assume model (2) and Assumption 1 are true. Write
o’ = max; Xj;; and A = n%m_l, where T,_1 s the smallest nonzero eigenvalue of L.

Then M estimated by (4) with a« = n's satisfies

1—-26

)l

N — M2, _ (b% + 202)[1 + mA(m +n
np - n

(11)

po?

with probability at least 1 — exp(—c(n —my)r(X)) — exp(—cmar (X)) — exp(—cm) for
some positive constant ¢, where m 4 is the effective dimension of network A in Definition /
and r(X) is the stable rank of X.

The theorem shows that the average estimation error is vanishing with high probability
as long as the cohesive dimension my4 = o(nw) while m47(X) and p/Pmaz(X) grow with
n. Except for degenerate situations, we would expect r(X) and p/ Pz () to grow with p,
which in turn grows with n. In (11), the term A = n+9/32 | involves both the cohesion
rate of the mean matrix and the algebraic connectivity of the network. In trivially cohesive
settings, § — oo and A — oo so the bound does not depend on the network, and the error
bound becomes the standard mean estimation error bound. General lower bounds for 7,,_1
are available (Fiedler, 1973), but we prefer not to introduce additional algebraic definitions
at this point.

Finally, note that the value of v depends on the cohesive rate § of M. Therefore, the
theorem is not adaptive to the unknown cohesive rate. In practice, as we discussed, one has
to use cross-validation to tune 4.

3.3. Inverse covariance estimation error bounds

Our next step is to show that M is a sufficiently accurate estimate of M to guarantee
good properties of the estimated precision matrix © in step 2 of the two-stage GNC-lasso
algorithm. We will need some additional assumptions, the same ones needed for the glasso
performance guarantees under the standard Gaussian graphical model (Rothman et al.,
2008; Ravikumar et al., 2011).

Let I' = ¥ ® ¥ be the Fisher information matrix of the model, where ® denotes the
Kronecker product. In particular, under the multivariate Gaussian distribution, we have
L k), em) = Cov(X; Xy, Xy Xpm). Define the set of nonzero entries of © as

S(©) = {(j,5') € [n] x [n] : O # O}, (12)

We use S¢(0) to denote the complement of S(0). Let s = [S(0)| be the number of
nonzero elements in ©. Recall that we assume all diagonals of © are nonzero. For any two

11
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sets T1,T» C [n], let I'ry 1, denote the submatrix with rows and columns indexed by T4, T,
respectively. When the context is clear, we may simply write S for S(©). Define

Y = m]aXH@jHo,
ke = [Z]loo,00)
ke = [[(Tss) ™ looeo

where the vector operator ||-||op gives the number of nonzeros in the vector while the matrix
norm ||-||co,0c0 gives the maximum Lo, norm of the rows.

Finally, by analogy to the well-known irrepresentability condition for the lasso, which
is necessary and sufficient for the lasso to recover support (Wainwright, 2009), we need an
edge-level irrepresentability condition.

Assumption 2 There exists some 0 < p <1 such that
max [[Tes(Tss) ™1 < 1—p.
ecsS¢
If we only want to obtain a Frobenius norm error bound, the following much weaker
assumption is sufficient, without conditions on 1, ky, kK and Assumption 2:

Assumption 3 Let nmin(X) and Nmax(X) be the minimum and mazimum eigenvalues of 33,
respectively. There exists a constant k such that

1 _
S nmin(z) S 77ma>((2) S k.

~—

Let S = L(X - M)T"(X - M
expect that if M is an accurate estimate of M, then © can be accurately estimated by glasso.
The following theorem formalizes this intuition, using concentration properties of S around
Y and the proof strategy of Ravikumar et al. (2011). We present the high-dimensional
regime result here, with p > n for some positive constant ¢y, and state the more general
result which includes the lower-dimensional regime in Theorem 3 in the Appendix, because
the general form is more involved.

. We use S as input for the glasso estimator (5). We would

Theorem 2 Under the conditions of Theorem 1 and Assumption 2, suppose there exists
some positive constant ¢y such that p > n®. Iflogp = o(n) and ma = o(n), there exist
some positive constants C,c,c,c” that only depend on cy,b and o, such that if © is the

1+6
3

output of Algorithm 1 with o =n ’ , A= %I/(n,p) where

10 B lO
vin.p) = C\/?mX (1oman™%%, yman 5, \/?mmﬂ 1) (i 4 1)

(13)

and n sufficiently large so that
1
1+ 8/p)y max{rskr, (1 +8/p)r K2}’

then with probability at least 1—exp(—clog(p(n—ma)))—exp(—c'log(pma))—exp(—c”logp),
then the estimate © has the following properties:

v(n,p) < o

12
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1. Error bounds:

1© =0l < 2(1+8/p)rrv(n,p)
© -0l < 2(1+8/p)srv(n,p)vs+p.
l©—-06| < 2(148/p)srv(n,p)min(y/s +p,v).

2. Support recovery:

~

S(©) C S(©),
and if additionally ming jneg@o) |05 > 2(1+ 8/p)krv(n,p), then

5(0) = S(O).

Remark 1 As commonly assumed in literature, such as Ravikumar et al. (2011), we will
treat kr, Ky, and p to be constants or bounded.

Remark 2 The Frobenius norm bound does not need the strong irrepresentability assump-
tion and does mot depend on kp and kx.. Following the proof strategy in Rothman et al.
(2008), this bound can be obtained under the much weaker Assumption 3 instead.

The quantity in (13) involves four terms. The first term is from the inverse covariance
estimation with a known M (a standard glasso problem), and the other three terms come
from having to estimate a cohesive M. These three terms depend on both the cohesion rate
and the effective dimension of the network. As expected, they all increase with m4 and
decrease with §. The last term also involves A, which depends on both § and the algebraic
connectivity 7,—1. To illustrate these trade-offs, we consider the implications of Theorem 2
in a few special settings.

First, consider the setting of trivial cohesion, with 6 = oco. In this case, the last three
terms in (13) vanish.

Corollary 1 Under the assumptions of Theorem 2, if M is trivially cohesive and § = oo,
then all results of Theorem 2 hold with

logp
v(n,p) = C\[ ==

and the estimated © is consistent as long as logp = o(n).

This result coincides with the standard glasso error bound from Ravikumar et al. (2011).
Thus when M does not vary, we do not lose anything in the rate by using GNC-lasso instead
of glasso.

Another illustrative setting is the case of bounded effective dimension m . Then the
third term in (13) dominates.

Corollary 2 Under the assumptions of Theorem 2, if the network has a bounded effective
dimension ma, then all the results of Theorem 2 hold with

max(1—24§,0)
n 6

lo
v(n,p) = Cy|==F

In particular, if 6 > 1/2, © is consistent as long as logp = o(n).

13
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This corollary indicates that if the network structure is favorable to cohesion, the GNC-lasso
does not sacrifice anything in the rate up to a certain level of nontrivial cohesion.

Finally, consider a less favorable example in which logp = o(n) may no longer be
enough for consistency. Recall Proposition 1 indicates m4 = O(n?/3) for lattice networks,
and suppose the cohesive can be highly nontrivial.

Corollary 3 (Consistency on a /n x \/n lattice) Suppose the conditions of Theorem 2
hold and my < n2/3. The GNC-lasso estimate © is consistent if 6 > 3/8 and

Ing _ O(nmin(1,85—3)/3)‘

In particular, if § = 1/2, it is necessary to have logp = o(n'/3) for consistency.

The corollary suggests that consistency under some regimes of nontrivial cohesion requires
strictly stronger conditions than logp = o(n). Moreover, if cohesion is too weak (say,
d < 3/8), consistency cannot be guaranteed by these results.

4. Simulation studies

We evaluate the new GNC-lasso method and compare it to some baseline alternative meth-
ods in simulations based on both synthetic and real networks. The synthetic network we
use is a 20 x 20 lattice network with n = 400 nodes and a vector with dimension p = 500
observed at each node; this setting satisfies the assumptions made in our theoretical anal-
ysis. We also test our method on the coauthorship network shown in Figure 8, which will
be described in Section 5. This network has n = 635 nodes at p = 800 observed features at
each node.

Noise settings: The conditional dependence graph G in the Gaussian graphical model
is generated as an Erdos-Renyi graph on p nodes, with each node pair connecting inde-
pendently with probability 0.01. The Gaussian noise is then drawn from A(0,X) where
O =X7! =a(0.34g +(0.3eg +0.1)I), where Ag is the adjacency matrix of G,eg is the abso-
lute value of the smallest eigenvalue of Ag and the scalar a is set to ensure the resulting 3
has all diagonal elements equal to 1. This procedure is implemented in Zhao et al. (2012).

Mean settings: We set up the mean to allow for varying degrees of cohesion. each row
M]a] = 1727"' , D as

M. = Vtynu) + V1 —11 (14)

where 1) is randomly sampled with replacement from the eigenvectors of the Laplacian
Up—1,NMp—2, " ,Un_k for some integer k and ¢ is the mixing proportion. We then rescale
M so the signal-to-noise ratio becomes 1.6, so that the problem remains solvable to good
accuracy by proper methods but is not too easy to solve by naive methods. In a connected
network, the constant vector is trivially cohesive. The cohesion becomes increasingly non-
trivial as one increases k£ and t. For example, t = 0 gives identical mean vectors for all
observations and as ¢ increases, the means become more different. The integer k is chosen
to give a reasonably eigen-gap in eigenvalues, with details in subsequent paragraphs.

We evaluate performance on recovering the true underlying graph by the receiver op-
erating characteristic (ROC) curve, along a graph estimation path obtained by varying A.

14
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An ROC curve illustrates the tradeoff between the true positive rate (TPR) and the false
positive rate (FPR), defined as

#{(,3") #3505 # 0,0 # 0}
TPR =
#{(4,5) - 5 # 3,055 # 0}
o {(]7]/) j#],,@J]/:O,é]]/#O}
R = G 270 =0F

We also evaluate the methods on the estimation error of M, measured as ||[M — Mo =
max;j | M;;j— M;;]| for the worst-case entry-wise recovery and || M — M |20 = max; || M;. — M; ||
for the worst-case mean vector error for each observation.

As a baseline comparison, we include the standard glasso which does not use the network
information at all. We also compare to a natural approach to incorporating heterogeneity
without using the network; we do this by applying K-means clustering to group observa-
tions into clusters, estimating a common mean for each cluster, and applying glasso after
centering each group with its own mean. This approach requires estimating the number of
clusters. However, the widely used gap method (Tibshirani et al., 2001) always suggests
only one cluster in our experiments, which defaults back to glasso. Instead, we picked the
number of clusters to give the highest area under the ROC curve; we call this result “or-
acle cluster+glasso” to emphasize that it will not be feasible in practice. For GNC-lasso,
we report both the oracle tuning (the highest AUC, not available in practice) and 10-fold
cross-validation based tuning, which we recommend in practice. The oracle methods serve
as benchmarks for the best possible performance available from each method.

4.1. Performance as a function of cohesion

—— GNC-lasso
——- oracle-GNC-lasso
24 R Eh oracle cluster+glasso
-=-= glasso L ——=

True Positive
True Positive
True Positive

0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10
False Positive False Positive False Positive
(a) t =0.1 (b) t=05 () t=1

Figure 2: Graph recovery ROC curves under three different levels of cohesion corresponding to
t =0.1,0.5, 1, for the lattice network (n = 400, p = 500).

First, we vary the level of cohesion in the mean, by setting ¢ to 0.1, 0.5, or 1, corresponding
to strong, moderate, or weak cohesion. Figure 2 shows the ROC curves of the four methods
obtained from 100 independent replications for the lattice network. Glasso fails completely
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even when the model has only a slight amount of heterogeneity (¢ = 0.1). Numerically,
we also observed that heterogeneity slows down convergence for glasso. The oracle clus-
ter+glasso improves on glasso as it can accommodate some heterogeneity, but is not compa-
rable to GNC-lasso. As t increases, the GNC-lasso maintains similar levels of performance
by adapting to varying heterogeneity, while the oracle cluster+glasso degrades quickly, since
for more heterogeneous means the network provides much more reliable information than
K-means clustering on the observations. We also observed that cross-validation is similar
to oracle tuning for GNC-lasso, giving it another advantage. Figure 3 shows the results for
the same setting but on the real coauthorship network instead of the lattice. The results
are very similar to what we obtained on the lattice, giving further support to GNC-lasso
practical relevance.

We also compare estimation errors in M in Table 1. The oracle GNC-lasso is almost
always the best, except for one setting where it is inferior to the CV-tuned GNC-lasso
(note that the “oracle” is defined by the AUC and is thus not guaranteed to produce the
lowest error in estimating M). For the lattice network, cluster + glasso does comparably
to GNC-lasso (sometimes better, and sometimes worse). For the coauthorship network,
a more realistic setting, GNC-lasso is always comparable to the oracle and substantially
better than both alternatives that do not use the network information.

—— GNC-lasso
——- oracle-GNC-lasso
s 24 Bl oracle cluster+glasso

-—-— glasso /

True Positive
True Positive
True Positive

o d e A =

T T T T T T
0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10

False Positive False Positive False Positive
(a) t=0.1 (b)t=0.5 (c)t=1

Figure 3: Graph recovery ROC curves under three different levels of cohesion corresponding to
t =0.1,0.5, 1, for the coauthorship network (n = 635, p = 800).

4.2. Performance as a function of sparsity

A potential challenge for GNC-lasso is a sparse network that does not provide much infor-
mation, and in particular a network with multiple connected components. As a simple test
of what happens when a network has multiple components, we split the 20 x 20 lattice into
either four disconnected 10 x 10 lattice subnetworks, or 16 disconnected 5 x 5 lattice subnet-
works, by removing all edges between these subnetworks. The data size (n = 400, p = 500)
and the data generating mechanism remain the same; we set ¢ = 0.5 for a moderate degree
of cohesion. The only difference here is when there are K connected components in the net-
work, the last K eigenvectors of the Laplacian wy,,--- ,un— k41 are all constant within each
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Table 1: Mean estimation errors for the four methods, averaged over 100 replications, with the
lowest error in each configuration indicated in bold.

M — M|o 1M — M[2,00

network method | ¢t = 0.1 0.5 1|¢t=0.1 0.5 1

glasso | 0.358 0.746  1.037 5.819 12.985 18.357

oracle cluster+glasso 0.493 0.539 0.565 3.293 3.639 4.118
oracle GNC-lasso | 0.328 0.520 0.526 | 2.054 3.247 3.287
GNC-lasso | 0.419 0.669 0.820 2.619 4.105 4.874

lattice

glasso 1.540  3.401 4.795 | 25.072 57.655 78.426

oracle cluster+glasso 0.724 1.077 1.342 7.0561 13.078 16.962
oracle GNC-lasso | 0.710 0.860 0.917 | 6.400 7.404 7.420
GNC-lasso | 0.717 0.878 0.942 | 6.430 7.037 7.436

coauthorship

connected component (and thus trivially cohesive). Therefore, in the case of 4 disconnected
subnetworks, we randomly sample the last k = 12 eigenvectors to generate M in (14) while
in the case of 16 disconnected subnetworks, we set kK = 48. The effective dimensions m 4
are 30, 32, and 48, respectively.

Similarly, we also split the coauthorship network into two or four subnetworks by ap-
plying hierarchical clustering in Li et al. (2018), which is designed to separate high-level
network communities (if they exist). We then remove all edges between the communities
found by clustering to produce a network with either two or four connected components. To
generate M from (14), we use k = 6 for two components and k = 12 for four components,
and again set ¢t = 0.5 for moderate cohesion. The effective dimension m 4 becomes 66, 74,
and 78, respectively.

Figure 4 shows the ROC curves and Table 2 shows the mean estimation errors for the
three versions of the lattice network. Overall, all methods get worse as the network is
split, but the drop in performance is fairly small for the oracle GNC-lasso. Cross-validated
GNC lasso suffers slightly more from splitting (the connected components in the last case
only have 25 nodes each, which can produce isolated nodes and hurt cross-validation per-
formance). Again, both GNS methods are much more accurate than the two benchmarks
(glasso completely fails, and oracle cluster—+glasso performance substantially worse).

Figure 5 and Table 3 give the results for the three versions of the coauthorship network.
The network remains well connected in all configurations and both the oracle and the cross-
validated GNC-lasso perform well in all three cases, without deterioration. The oracle
cluster+glasso performs well in this case as well, but GNC-lasso still does better on both
graph recovery and estimating the mean. Glasso fails completely once again.
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(a) Original 20 x 20 lattice. (b) Four connected components. (c¢) 16 connected components.

Figure 4: Graph recovery ROC curves for the lattice network and two of its sparsified variants. Here
n = 400, p = 500 and we set t = 0.5 in generating M.

Table 2: Mean estimation errors for the four methods, averaged over 100 replications, with the
lowest error in each configuration indicated in bold, for the lattice networks with one, four, and 16
connected components.

M — Moo M — Ml2,00
method | original 4 comp. 16 comp. | original 4 comp. 16 comp.
glasso 0.746 2.801 2.942 5.819 40.25 25.16
oracle cluster+glasso 0.539 1.091 1.099 3.293 12.20 8.22
oracle GNC-lasso 0.520 0.866 0.785 2.054 6.46 5.13
GNC-lasso 0.669 0.983 0.838 2.619 6.73 5.79
o o 1 — GNC-lasso
——- oracle-GNC-lasso
R R Bl oracle cluster+glasso | _ _.—-
-=-= glasso == =
2 = 2 = g 7
. . o] /
R ER E l' ___________________
T erese T erese T erese
(a) Original coauthor-network  (b) 2 connected components. (c) 4 connected components.

Figure 5: Graph recovery ROC curves for the coauthorship network and two of its sparsified variants.
Here n = 635, p = 800 and we set t = 0.5 in generating M.
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Table 3: Mean estimation errors for the four methods, averaged over 100 replications, with the
lowest error in each configuration indicated in bold, for the coauthorship networks with one, two, or
four components.

137 — M 13 =
method | original 2 comp. 4 comp. | original 2 comp. 4 comp.

glasso 0.746 1.949 4.019 5.819 21.214  32.307

oracle cluster+glasso 0.539 0.936 1.676 3.293 6.033 7.208
oracle GNC-lasso | 0.520 0.659 0.958 2.054 3.860 4.843
GNC-lasso 0.669 0.852 1.289 2.619 4.947 5.102

2,00

4.3. Performance as a function of the sample size

Here we compare the methods when the sample size n changes while p remains fixed.
Specifically, we compare 10 x 10, 15 x 15, and 20 x 20 lattices, corresponding to n = 100,
225, and 400, respectively. The dimension p = 500, the data generating mechanism, and
t = 0.5 remain the same as in Section 4.1. When n = 100, the sample size is too small for
10-fold cross-validation to be stable, and thus we use leave-one-out cross-validation instead.
Figure 6 shows the ROC curves while Table 4 shows errors in the mean. Clearly, the problem
is more difficult for smaller sample sizes, but both versions of GNC-lasso still work better
than the other two baseline methods, even though for n = 100, the problem is essentially
too difficult for all the methods. Results on estimating the mean do not favor any one
method clearly, but the differences between the methods are not very large in most cases.

GNC-lasso

——- oracle-GNC-lasso
s oracle cluster+glasso s 3
-—-— glasso

True Positive
True Positive
True Positive

T T T T T T T T T T T T T T T T T T
0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10
False Positive False Positive False Positive

(a) 10 x 10 lattice. (b) 15 x 15 lattice. (c) 20 x 20 lattice.

Figure 6: Graph recovery ROC curves for the three lattice networks with n = 100 (10 x 10),
225 (15 x 15) and 400 (20 x 20). We fix p = 500, t = 0.5.

4.4. Comparing with the iterative GNC-lasso

Finally, we compare the estimator obtained by iteratively optimizing © and M in (8) (iter-
ative GNC-lasso) to the proposed two-stage estimator (GNC-lasso). As mentioned in Sec-
tion 2.4, the iterative method is too computationally intensive to tune by cross-validation,
so we only compare the oracle versions of both methods, on the synthetic data used in Sec-

19



L1, QIAN, LEVINA AND ZHU

Table 4: The estimation errors of M from the four methods on three connected lattice networks
with varying sample size, averaged over 100 independent replications. The network sizes are 100,
225 and 400, corresponding to lattice dimension 10 x 10, 15 x 15 and 20 x 20, respectively.

[ M — M|oo 1M — M2,
method | n = 100 225 400 100 225 400
glasso 1.009 1.030 0.746 | 15.02 15.69 12.985
oracle cluster+glasso 0.991 0.716 0.539| 6.62 4.72 3.639
oracle GNC-lasso 0.911 0.794 0.520 | 5.52 4.83 3.247
GNC-lasso 0.874 0.988 0.669 | 5.36  5.67 4.105

tion 4.1 with moderate cohesion level ¢t = 0.5. The results are shown in Figure 7 and Table 5.
The methods are essentially identically on the lattice network and the two-stage method is
in fact slightly better on the co-author network, indicating that there is no empirical reason
to invest in the computationally intensive iterative method.

" | ——- oracle-GNC-lasso " | ——- oracle-GNC-lasso
oracle—iterative—-GNC-lasso oracle—iterative—-GNC-lasso
S e =TT S e ==
3 -7 a
[e] P [e} P
[a8 27 o Py
g < yd ’ g < /
|: =} Y |: o /
/ /
/ /
/ /
3] / o [}
o 7] ! S |
! |
| T —
I [N
3 N 2 I
T T T T T T T T T T T T
0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10
False Positive False Positive
(a) 20 x 20 lattice (b) Coauthorship network

Figure 7: Graph recovery ROC curves for the proposed two-stage GNC-lasso and the joint GNC-
lasso. The network cohesion corresponding to ¢ = 0.5 for the 20 x 20 lattice and the coauthorship
network.

5. Data analysis: learning associations between statistical terms

Here we apply the proposed method to the dataset of papers from 2003-2012 from four
statistical journals collected by Ji and Jin (2016). The dataset contains full bibliographical
information for each paper and was curated for disambiguation of author names when
necessary. Our goal is to learn a conditional dependence graph between terms in paper
titles, with the aid of the coauthorship network.

20



HIGH-DIMENSIONAL (GAUSSIAN GRAPHICAL MODELS ON NETWORK-LINKED DATA

Table 5: The estimation errors of M from the iterative and two-stage oracle GNC-lasso methods,
averaged over 100 independent replications.

network | method | |M — M|l | [|M — M||2,00
lati two-stage 0.520 3.247
attice . .
iterative 0.587 3.639
.| two-stage 0.860 7.404
coauthorship | . .
iterative 1.21 9.92
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Figure 8: The coauthorship network of 635 statisticians (after pre-processing). The size and the

color_of each node correspond to the degree (larger and darker circles have more connections.
e pre-processed the data by removing authors who have only one paper in the data

set, and filtering out common stop words (“and”, “the”, etc) as well as terms that appear in
fewer than 10 paper titles. We then calculate each author’s average term frequency across
all papers for which he/she is a coauthor. Two authors are connected in the coauthorship
network if they have co-authored at least one paper, and we focus on the largest connected
component of the network. Finally, we sort the terms according to their term frequency-
inverse document frequency score (tf-idf), one of the most commonly used measures in
natural language processing to assess how informative a term is (Leskovec et al., 2014), and
keep 300 terms with the highest tf-idf scores. After all pre-processing, we have n = 635
authors and p = 300 terms. The observations are 300-dimensional vectors recording the
average frequency of term usage for a specific author. The coauthorship network is shown
in Figure 8.

The interpretation in this setting is very natural; taking coauthorship into account makes
sense in estimating the conditional graph, since the terms come from the shared paper title.
We can expect that there will be standard phrases that are fairly universal (e.g., “confidence
intervals”), as well as phrases specific to relatively small groups of authors with multiple
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connections, corresponding to specific research area (e.g., “principal components” ), which
is exactly the scenario where our model should be especially useful relative to the standard
Gaussian graphical model. To ensure comparable scales for both columns and rows, we
standardize the data using the successive normalization procedure introduced by Olshen
and Rajaratnam (2010). If we select o using 10-fold cross-validation, as before, the graphs
from GNC-lasso and glasso recover 4 and 6 edges, respectively, which are very sparse graphs.
To keep the graphs comparable and to allow for more interpretable results, we instead set
the number of edges to 25 for both methods, and compare resulting graphs, shown in =
Figure 9 (glasso) and Figure 10 (GNC-glasso). For visualization purposes, we only plot the
55 terms that have at least one edge in at least one of the graphs.

Overall, most edges recovered by both methods represent common phrases in the statis-
tics literature, including “exponential families”, “confidence intervals”, “measurement er-
ror”, “least absolute” (deviation), “probabilistic forecasting”, and “false discovery”. There
are many more common phrases that are recovered by GNC-lasso but missed by Glasso, for
example, “high dimension(al/s)”, “gene expression”, “covariance matri(x/ces)”, “partially
linear”, “maximum likelihood”, “empirical likelihood”, “estimating equations”, “confidence
bands”, “accelerated failure” (time model),“principal components” and “proportional haz-
ards”. There are also a few that are found by Glasso but missed by GNC-lasso, for example,
“moving average” and “computer experiments”’. Some edges also seem like potential false
positives, for example, the links between “computer experiments” and “orthogonal con-
struction”, or the edge between “moving average” and “least absolute”, both found by
glasso but not GNC-lasso.

Additional insights about the data can be drawn from the M matrix estimated by GNC-
lasso; glasso does not provide any information about the means. Each M.j can be viewed
as the vector of authors’ preferences for the term j, we can visualize the relative distances
between terms as reflected in their popularity. Figure 11 shows the 55 terms from Figure 9,
projected down from M to R? for visualization purposes by multidimensional scaling (MDS)
(Mardia, 1978). The visualization shows a clearly outlying cluster, consisting of the terms
“computer”, “experiments”, “construction”, and “orthogonal”, and to a lesser extent the
cluster “Markov Chain Monte Carlo” is also further away from all the other terms. The
clearly outlying group can be traced back to a single paper, with the title “Optimal and
orthogonal Latin hypercube designs for computer experiments” (Butler, 2001), which is
the only title where the words “orthogonal” and “experiments” appear together. Note
that glasso estimated them as a connected component in the graph, whereas GNC-lasso
did not, since it was able to separate a one-off combination occurring in a single paper
from a common phrase. This illustrates the advantage of GNC-lasso’s ability to distinguish
between individual variation in the mean vector and the overall dependence patterns, which
glasso lacks.

6. Discussion

We have extended the standard graphical lasso problem and the corresponding estimation
algorithm to the more general setting in which each observation can have its own mean
vector. We studied the case of observations connected by a network and leveraged the em-
pirically known phenomenon of network cohesion to share information across observations,
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so that we can still estimate the means in spite of having np mean parameters instead
of just p in the standard setting. The main object of interest is the inverse covariance
matrix, which is shared across observations and represents universal dependencies in the
population. while all observations share the same covariance matrix under the assumption
of network cohesion. The method is computationally efficient with theoretical guarantees
on the estimated inverse covariance matrix and the corresponding graph. Both simulations
and an application to a citation network show that GNC-lasso is more accurate and gives
more insight into the structure of the data than the standard glasso when observations
are connected by a network. One possible avenue for future work is obtaining inference
results for the estimated model. This might be done by incorporating the inference idea of
Zhao and Shojaie (2016) and Ren et al. (2015) with additional structural assumptions on
the mean vectors. The absolute deviation penalty (Hallac et al., 2015) between connected
nodes is a possible alternative, if the computational cost issue can be resolved through some
efficient optimization approach. Another direction is to consider the case where the partial
dependence graphs themselves differ for individuals over the network, but in a cohesive
fashion; the case of jointly estimating several related graphs has been studied by Guo et al.
(2011); Danaher et al. (2014). As always, in making the model more general there will be
a trade-off between goodness of fit and parsimony, which may be elucidated by obtaining
convergence rates in this setting.
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Appendix A. Proofs

First, recall the following matrix norm definitions we’ll need: for any matrix M, ||M e =
maxij [ Mg, [[M||11 = max; [[M]|1, and [| Moo 0o = max; | M. |1,
The following lemma summarizes a few concentration inequalities that we will need.

Lemma 1 (Concentration of norm of a multivariate Gaussian) For a Gaussian ran-
dom vector x ~ N (0,X), with ¥ € RP*P q positive definite matriz and ¢max(X) the largest
eigenvalue of X, we have,

2

P(llzllz = vtr(Z)| > ) < 2exp(—c ) (15)
Pmax(2)

P(|||z|2 — tr(2)| > ¢ < 2exp(—c , 16
(lalf3 = tr(2)| > 1) (e (16)

2 & Vs 2
P(|||x|ly — — Yl >1t) < 2exp(—c——= 17
for some generic constant ¢ > 0. Further, if x1,--- ,x, are i.i.d. observations from N (0,3),

then

IP’(Z 2|3 > 2ntr(2)) < 2exp(—cnr(X)) (18)

where r(X) is the stable rank of .
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Proof [Proof of Lemma 1] The first inequality (15) follows from concentration of a Lipschitz
function of a sub-Gaussian random vector. Inequalities (16) and (17) follow from the defi-
nition of a sub-exponential random variable. Lastly, (18) follows from applying Bernstein’s
inequality to (16) with ¢ = ntr(X). [ |

Proof [Proof of Proposition 1] By Edwards (2013), the eigenvalues of A are given by

%(4811& (2f)+451n (2\F)),i,je (0,1, ,i—1}. (19)

Since the average degree 2 < d < 4 for a lattice network, we ignore this constant. First, we
show m4 < n?/3, which by definition of m 4 is equivalent to Tr—n2/3 = n~1/3. Define the set
of all eigenvalues satisfying this condition as

An:{(i,j):i,jGNﬂ[O,\/ﬁ—l]Asin( )+4sm( ) <n~13),

i 2/

Then it is sufficient to show |A,| < n%3. Applying the inequality sin(z) > %x for r €
[0,7/2], we can see that it is sufficient to show |A,| < n?/3, where

~ 442 4]2

A, ={(i,j) :i,j e NN|0, \/5—1]—+ <n” 13y,

The cardinality of A, can be computed exactly by counting; for simplicity, we give an
approximate calculation for when n is sufficiently large. In this case the proportion of pairs
(i,7) out of the entire set of (NN[0,/n—1]) x (NN[0, y/n —1]) that satisfy the condition to
be included in A, can be upper bounded by twice the ratio betwen the area of the quarter

n

circle with radius ¥ and the area of the \/n x \/n square. This gives

A,| < 2116?22/3 < n?/3,

To prove the second claim, consider the p = U such that all the inequalities in (10)
hold as equalities and 6 = 1/2. Then, by noting that Pju, = u,, we have

= Pul3 =" 82 = uf3n= "5 Z = II/AHzn_ZZ* - (20)

<n <n 1 <n i
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By (19),

<n 72

1
Z 2 Z (4sin?(

0§ <v/m—1,(i,j)#(0,0) Q\f) + 4 sin? (7))2

1
~ Z (4 sin? (

)+ dsin? ()2

2

7; 1 ™
T2 Z (4sin? (57 ) 4 4 sin? (2\7)) %

1<i,j<yn—1 o
n 1 T
> — Z ; - — applyingsin®(z) < z?
2 7202 7242
T 1<i,j<y/n—1 (475 +45)? vny/n
1 1
> g drdy — sum lower bounded by 1/2 of the integral
22 <x,y<7r (:I: +y )
> — /ﬂ/g/ —drdf) — polar coordinates, {r € [2 7],0 € [ ]} Cl— il | x [l ]
272 P Nk 630 “Lm ™ mT

).

- 247r3(4

Substituting this lower bound for 3. L in (20), for a sufficiently large n we have

<n 7—1.2

e = Popll3 = ||pf3n Z — > cllull3.

i<n Z

Therefore, the p we constructed is nontrivially cohesive.

We can represent each column of M by taking the basis expansion in U, obtaining the
basis coefficient matrix B = (B.1, Ba, - -+ , B,) such that M = UB. Let B = UT M, where
M is the estimate (4). We can view B as an estimate of B. We first state the error bound

for B i

in Lemma 2, and the bound for M directly follows.

Lemma 2 Under model (2) and Assumption 1, if a = n%é, we have

1.

2.

In maximum norm,

1B = Bl < Co ((@mn-% v Vioeloma) 1og<p>) 1)

with probability at least 1 — exp(—clog (p(n —ma4))) — exp(—c'log(pma)) for some
constants C, C', ¢, ¢, and .

In Frobenius norm,

N 2(1+5)
IB - B|r < \/(b2+202)p((n—mA)mAn—§ +(1:7-17AA)2 +1) (22)

with probability at least 1 —exp(—c”’(n—ma)r(X)) —exp(—"mar(X)) —exp(—'r(X2)).
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3. iflogp = o(n) and ma = o(n), then

mAa

|B - Blj11 < C'(b+20)(\/mAn% + logp(A+ 1

+1)). (23)
with probability at least 1 — exp(—cn) — exp(—C'm 4 log p) — exp(—C'log p).
Proof [Proof of Lemma 2| Solving (4), we can explicitly write out
B={I+aMN) "B+ I +aAN)'UTE =T +aN)'B+ (I +al)"'E.
In particular, for each column j € [p], the estimate can be written as
Bj={I+aAN) 'Bj+ I +aN)WTE; = (I +alh) "B+ (I +aA)'E,,

where E.j ~ N(0,0%I). Let @ and R7 be two n dimensional vectors such that the ith
element of Q7 is given by %sz while the ith element of R’ is given by %MZEU

B.j—B.j: Qj—i-'R,J

For the element-wise Lo, norm, we have

max |7 Bij| < ————n "5 2Byl <b-an” 5 =b.  (24)

|, <
19 < max < e

T i<n 14 aToi<n

where the second inequality is by Definition 1. The term R’ can be decomposed into two
parts, the first n — m4 elements and the last m 4 elements. For the first n — m4 elements,
we have

. . 1 -
max || R?. < max ma max |F;j|=-————— max max|E;;
je[p)i:H Lin—malloo < max mmax T (Jnax | Ei| T je[p}}(| il
1 - 402log(p(n —ma
= 5y max max | Byl < \/ (e 115 )
1+ Tpom,mn 3 JEPIisn—ma TnemaM 3

_ 1+

¥ i (25)

by Definition 4, with probability at least 1 — exp(—clog(p(n — m4))). For the remaining
m4 elements, with probability at least 1 — exp(—c’log(pm,)), we have

IN

Vo2 log(p(n —ma))n

J — E | )
?é?p)}( HRn—mA-f—l:nHOO = max ]

146

B - -
s 0 By max
n—my<i<n +n 3T J

4021
< VAT LRI | /157 og(y). (26)
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Combining (24)—(26) leads to (21), since

1B~ Bl < max 197l + max IR g o + max IRy gt 1m0

4021
< b+ /Ao logp(n — ma)n~ 5 /4 + 01 igipmA) + /402 log(p)
log(pma)
1+A

< (b+ 20)[(v/logp(n —ma)n V log(p)]

with probability at least 1 — exp(—clog(p(n — m4))) — exp(—c’log(pma)) for sufficiently
large n.

For the column-wise L,, norm, we have

at;|B; ] aT;| Bij|
max||QJ||1—m Z —:—a?' max( Z | Bij| + Z 1—7—042)
7 7

J

i<n—my I>N—ma
n—maq _1+s @ 145 .
< max (b A5 4b Z ——n 3 ) — by Assumption 1 —
J Tn—my P 1+ arm,_ 1

146

n—ma _1+8 an” 3 _ 146
Smaxb( A5+ Z +an 3)

J Tn—ma n—my<i<n 1+A
= b((n — ma)yman~ 5 + ﬁAA +1). (27)

For the second term,

1 1
J ..
max [R) < max 30 g |Byl+max 3 Byl
i<n—my i>Nn—my
1 _ i _
<t max Y (Bgltmex Y Pl bmax| Byl (29)
1+ Tn—maT 3 J i<n—mp J n—mg<i<n J

By Lemma 1, for each j € [p], P> <), , |Eij| > 20(n —ma)) < exp(—2c(n —my)) for
some constant c; therefore

P(max Z |Ei;| > 20(n —ma)) < pexp(—2¢(n —ma)) < exp(—cn),

i<n—my

as long as logp = o(n) and m4 = o(n).
Assume m 4 > 2, again by Lemma 1, for each j € [p],

P( Z |Eij| > 20(ma — 1)y/c'logp) < exp(—2Cmalogp)

n—ma<i<n

for some constant C, ¢ > 0 with C' > 1. Therefore,

P(max Z |Ei;| > 20may/c logp) < pexp(—2Cmalogp) < exp(—C(ma — 1)logp)
J

n—mg<i<n
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and
P(max |E,j| > 20/ logp) < exp(—C'logp).
J

The above result is also trivially true if my = 1. Substituting these two inequalities into
(28) gives

20(n —my)

. ma
max |[R[ly < ————5 +20(5 7 + Dv/c'logp

Tn—mM 3

< 20((n—ma)yman~ 5 + (57 + DV logp) (29)

with probability at least 1 —exp(—cn) —exp(—Cm log p) — exp(—C'log p). Now combining
(27) and (29), we get

1B = Bll1 < max | Qs + max [
< b((n—ma)y/man™ 5+ (g + 1)+ 20((n —ma)yimanT 5 + (g + D)y logp)
g(b—i—20)(\/771;,47123;(S (A+1 1\/W
< (LV V(b +20)(yiman s + (5= +1)v/logp).

with probability at least 1 —exp(—cn) —exp(—Cm log p) — exp(—C'log p) as long as p > 3.
Finally, for the Frobenius norm we have

] BZ 21‘231“2
DIeE-STRERE (it B TR

J i<n—my i>n—my
(1+9) (1+96)
< 622 (n2 mA -2 + Z (L)Qn_2 5 ) — by Assumption 1 —
- To—m.a _ 14+ arp—1
J 1>N—ma
2 _2(1+5) mA
§bp((n—mA)mAn 3 —l—m—i— ) (30)
For the second term,
. 1 - 1 .
RIN2Z = ( 21 12 2E~2>
SIRE=Y( 3 G B+ Y (oo PIE
J J i<n—my I>n—my
1 2049 ~
< 72 n 3 Z Z’Eij‘Q Z Z‘El]’ / +A +Z|En]’2
n—ma i<n—my  j n—ma<i<n j
_2(1+6) ~
<man 50 ST BB B+ A2+ B2 (31)
i<n—my n—m4<i<n

If my > 2, by (18) from Lemma 1, for a proper ¢, we have

P( Y B3> 20 —ma)po®) <P( Y |Eil3 > 2(n —ma)tx(E)) < 2exp(—c(n — ma)r(E)),

i<n—map i<n—mp

P( > B3> 2mape®) <P( D ||Ei]3 > 2matr(E)) < 2exp(—cmar(T)),
n—ma<i<n I>N—my
2
PE.2>202§2ex —CL.
(1B > 2p0) < 2exp(—e 27 )
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Putting everything together,

1B —BlE <> 115+ IRI3
j j

<2 ( B _2(1+6) ma 1)
< b*p((n—ma)man + 7(1 A +
2(146)
+2(n —ma)pman~ 302 4 2((1?:72)2 + 1)po?
= (1* +20%)p((n — SR ma
= (b"+ 20 )p((n ma)man + (T+A)? +1>
with probability at least 1 —2exp(—c(n—ma)r(X)) —2exp(—cmar(X)) —Qexp(—cﬁjz)).

Notice that when m 4 = 1, the above result is trivially true.
|

Proof [Proof of Theorem 1] By definition, we have | M — M||p = |U(B — B)||r = |B — B||r.
Thus the theorem follows directly from Lemma 2 and the fact that n — m4 < n. Note that
the Frobenius norm bound in Lemma 2 does not need logp = o(n) and m4 = o(n). ]

Now we proceed to prove Theorem 2. Let

Lx - inT(x - i)

I
=3

S
S=-(X-MTX~-M)

n

S is the sample covariance matrix used by the glasso algorithm when the mean is assumed
known (and without loss of generality set to 0). The success of glasso is dependent on S

concentrating around the true covariance matrix ». If we can show S concentrates around
Y., we should be able to prove similar properties of GNC-lasso.

Lemma 3 Under the conditions of Theorem 1 and assuming logp = o(n), m4 = o(n), we
have

15 = Blloe < € max (Viog (pr)man™ "5, /log (pn)+/log pm’{*n~ "5,
_ 146 m lo
V1og (pn)y/man~ "3 ,\/log(pn)\/longA, gp)

n

with probability at least 1 — exp(—clog(p(n —ma4))) — exp(—clog(pma)) — exp(—clogp) for
some constant C' and c that only depend on b and o.

Proof [Proof of Lemma 3] We will be using C' and ¢ to denote generic constants whose
value might change across different lines. Using the triangular inequality,

15 = Zlloo < 18 = Slloo + 15 = |-
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we will prove concentration in two steps. Starting with the first term and writing X =
M + E, we have
. 1 A - 1
S—-S=-(UB+E-UBYUB+E-UB)-—-E'E
n n
1 1

EKB - BT (B-B)-E"U(B-B))- ((B-B)'U'E+ETE] — -

_ %(B _ B (B-B) - %ETU(B _B)- %(B _ BYUTE. (32)

By Lemma 2, for some constant C' depending on b and o,

2B =B (B= Bl < -

C 145 log(pma)
< S1(\flogp(n —ma) viog(pma)
< [(Vlogp(n —ma)n™"s"\/ma) v === ==V o/ log(p)]
2-5 my
[Vman's" v y/logp( == +1)]

< Cmax (Viog (m)maan™"5*, Viog (om) oz pn™ ¥ Va3
mrmm% /Iog (pma)VIog p

ma
1
1+ A T axam azity
_1ps logp, my
Viog py/man~ 3, - (A—i-l +1)) (33)

with probability at least 1 — exp(—clog(p(n —ma4))) — exp(—clog(pma)) — exp(—clog(p)).
On the other hand, note that UTE = (U.E )=y and [[Upll2 = 1, so (UTE);; ~
N(0,0?). Therefore
IUTEllse < /202 log(np)

with probability at least 1 — exp(—clog(np)). Hence the second and third terms in (32)
satisfy

1 - 1 A
|- ETU(B = Bl < U7 Bl B~ Bl

< O Vioglmlyan 3" v v/logp( A+ 1)

A+1
= Oy/log (np)ymn 1" + VIBUPIIOED ALy 1)) gy

with probability at least 1 — exp(—clog(p(n —ma4)) — exp(—clog(pma)) — exp(—clog(np)).
Note that both terms in (34) dominate the last two terms in (33). Thus substituting (33)
and (34) into (32) leads to

IS = S|loe < € max (Mmm—% Vlog (pn)\/logpn‘%\/mA(Amfl +1),
\/WW \/log np)+/logp ( ma

n A+1

146 logp ma
V1ogpy/man~ 3 (A+1+1)>

+1),
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with probability at least 1 — exp(—clog(p(n —ma))) — exp(—clog(pma)) — exp(—clog(p)).
In addition, Lemma 1 of Ravikumar et al. (2011) implies that

15— Sl < 4/ 25087
n

with probability at least 1 — exp(—clogp). Therefore, we have

15 = lloe < C'max (\/log (pryman~"5", \/log (pn)vlogpn‘%\/mA(Aer 1
Viog (np) i 5 ORIV 0RD (na

+1),

1
n A—l—l+ ),
_1+s logp, ma log p
i i 1), )
ogpyman s, — (A+1+ ) -

with probability at least 1 — exp(—clog(p(n —m4))) — exp(—clog(pm4)) — 2 exp(—clogp).
|

For conciseness, we present Theorem 2 in the main text by assuming the more interesting
situations p > n. This is not necessary in any sense, so here we prove a trivially more
general version of Theorem 2 without the high-dimensional assumption. For completeness,
we rewrite the theorem here.

Theorem 3 (Trivially generalized version of Theorem 2) Under the conditions of The-
orem 1 and Assumption 2, iflogp = o(n) and my = o(n), there exist some positive constants
C,c,c, " that only depend on b and o, such that if © is the output of Algorithm 1 with

1446
a=n3,\= %V(n,p) where

_ 2426 445 m
v(n.p) = Cmax (/log (pryman™"5", /log (pn)log pn~ 5" yma( {4 + 1),

1 Vi
Vog (np)/man~"5", Og(nf) ng(AmflJrl),

_14s logp, ma logp>
V1og py/mia 1),4/ 35
ogpyman 3, n (A +1 + )a n ( )

and n sufficiently large so that

1
1+ 8/p)d max{wenr, (L + 8/p)RErE}

,p) <
v(n,p) < g (
then with probability at least 1 —exp(—clog(p(n—ma)))—exp(—c log(pma))—exp(—c"logp),
then the estimate © has the following properties:

1. Error bounds:

16— Ol < 201+8/p)srw(n,p)

1©—-0lr < 2(1+8/p)rrv(n,p)Vs+p.
16-6l < 2(1+8/p)srw(n, p) min(y/5 ¥ 5,9
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2. Support recovery:

5(0) c 5(0),
and if additionally ming jneg@o) [9;5:| > 2(1+ 8/p)krv(n,p), then

5(0) = S(O).

We will use the primal-dual witness strategy from Ravikumar et al. (2011) for proof.

We show that even if S has a worse concentration around ¥ than S , we can still achieve
consistency and sparsistency under certain regularity conditions.
Proof [Proof of Theorem 3 and Theorem 2| The argument follows the proof of Theorem 1
in Ravikumar et al. (2011). In particular, for the event where the bound in Lemma 3 holds,
we just have to show that the primal-dual witness construction succeeds. The choice of A =
%y(n, p) ensures ||S — 2o < 2. With the requirement on the sample size, the assumptions
of Lemma 5 and 6 in Ravikumar et al. (2011) hold, implying strict dual feasibility holds for
the primal-dual witness, which shows the procedure succeeds. Then the first claim of the
theorem is a direct result of Lemma 6 in Ravikumar et al. (2011) and the second claim is
true by construction of the primal-dual witness procedure. The remaining bounds can be
proved similarly.

Finally, if p > n, we have log(p) > ¢plog(n), so in (35), the 3rd coincides with the 5th,

and the 4th term coincides with the 6th term, by magnitude, resulting in the form

Cmax(mAn \/log s/ MAN T ﬁ—i- 1)logp,
1 1
\/mAn_lTM\/logp,(Am_i_ . +1) ng,w 0517)

n

gp 1445 5425
=C (1, 6 6
\/ — . max man man (A—{—l

To further simpliﬁed the form, we apply another upper bound for the term by the fact
that /m4g > 1, & At; +1>1and é >0, which gives

log p,

L

ma logp)
1 .
A+11L ) n

1 5 I
C —in max (1,mAn*1+T46,\/mAn +26(A log p, (Am_fl +1) in)
1 1
<C 08P max(l man 1+wa,\/m,am 5%26(Amf1 1) 10gp+(Am—;-41+ 1) o8P /M n 5 )

- 1
<C\/ max 1 ,TAN - \/mAnlﬁgé,\/ ng(Am_:ll 1)(w/m,4n_%+1)).

Appendix B. Oracle mean estimation by GNC-lasso

In our setting, unlike in the classical glasso setting, the mean estimate is also of interest,
and in this section we show that our estimate M enjoys a weak oracle property in a certain
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sense. We use the spectrum of L, as a basis again, writing U for the matrix of eigenvectors
of L5 and expanding a matrix M € R"*P as M = UB. Since U is given and orthonormal,
estimating M is equivalent to estimating B. In an ideal scenario, if the true value O is given
to us by an oracle, we could estimate B by minimizing one of the two objective functions:

,min tr((X —UB)T(X — UB)) + atr(BTAB), (36)
e nxp
Bnﬂgn tr(0(X — UB)T(X — UB)) + atr(BTAB), (37)
cRnXp
where A = diag(r1, 72, ,7,) is the diagonal matrix of eigenvalues of Lg. It is easy to

verify that (36) is equivalent to the mean estimation step (4) in the two-stage procedure
(up to U), while (37) is equivalent to estimating the mean by maximizing the joint penalized
likelihood (8) with © fixed at the true value. We can then treat (37) as an oracle estimate
in the sense that it uses the true value of the covariance matrix. It serves as a benchmark
for the best performance one could expect in estimating B (or equivalently M). Let B and
Bs be the estimates from (36) and (37), respectively, and let W, = B — By, k =1,2 be the
corresponding estimation error matrices. We then have the following result.

Proposition 2 Under model (2), assume Wi and Wa are the errors defined above with

the same tuning parameter . Under the Assumption 3, if © is diagonally dominant with
2519541
©jj

max; < p < 1, then there exist a matrizc W such that
1 _ Wl
1-p)=< < (1+pk
1-r)7 Wl (1+p)

for the constant k in Assumption 3 and
Wi —W =1+ aN)WUTE(I - 0).
where each row E is i.i.d from multivariate Gaussian N(0,Y).

Proposition 2 shows W and W; are stochastically equivalent while W and W5 are roughly the
same in ||-||oc. Therefore, (36) and (37) are essentially equivalent in the sense of entrywise
error bound, implying that M computed by GNC-lasso cannot be non-trivially improved
by the oracle estimator under the true model with known ©.

Proposition 2 makes an additional assumption on diagonal dominance of ©, which is a
relatively mild assumption consistent with others in this context. To see this, consider a

general multivariate Gaussian vector y ~ A (0,%). Then we can write

vi =Y Chyy+§
J'#i

where the vector (7 € RP satisfies CJJ, = —9;1_// for j/ # j and CJ]- =0, and &; is a Gaussian
random variable with zero mean and variance equal to the conditional variance of y; given

{yjr}jr£;. Thus the diagonal dominance assumption of Proposition 2 is essentially assuming

max |7l = max 3 [G] < p < 1.
J'#J
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This has the same form as Assumption 4 of Meinshausen and Biihlmann (2006), who pro-
posed node-wise regression to estimate the Gaussian graphical model. There p < 1 is needed
for node-wise regression to consistently estimate the graph structure (see Proposition 4 of
Meinshausen and Bithlmann (2006)).

Remark 3 (Imphcatlons for iterative estimation) If the iterative algorithm is used
to obtain M and ©, we know M is the solution of (37) with © replaced by O. Since ©
is only an estimate of ©, we would not expect this estimator to work as well as the oracle
estimator (37). Since M cannot be improved by the oracle estimator, intuitively we make
the conjecture that M cannot significantly improve on M either.

To prove Proposition 2, we need a few properties of Kronecker products. Recall that
given two matrices A € R™*" and B € RP*Y, their Kronecker product is defined to be an
(mp) x (ng) matrix such that

AHB AlzB s AlnB

AnB  AyppB .- AQnB
A®B= . . ) :

AmlB AmQB toe AmnB

For a matrix A, define vec(A) to be the column vector stacking all columns of A, vec(A) =
(Aq,A9,---,A,). Some standard properties we’ll need, assuming the matrix dimensions
match appropriately, are stated next.

vec(AB) = (I, ® A)vec(B), A € R™*P, B € RP*4
vec(BT @ A)vec(C) = vec(ACB), A € R™*" B € RP*4, (' € R™*P
(A® B)(C ® D) = (AC) ® (BD)
tr(ABAT) = vec(A)T (B ® I,,)vec(A)
= vec(AT)T(I,, ® B)vec(AT), A € R"™P B € RP*P,

Proposition 3 For the estimates Wy from (36) and Wy from (37), we have

Wil, + aAW; = aAB + E, (38)
W20 + AW, = aAB + E, (39)

where E = (€1.,€2.,-++ ,&n.) and €. ~ N(0,X) are i.i.d., and E = (€1.,€2.,++ ,€n.), and
¢. ~N(0,0) are i.i.d. In particular, E = —UTE and E = ~-UTE®.

Proof [Proof of Proposition 3] We only prove (39); the proof of (38) is exactly the same,
with © replaced by I,. The conclusion follows directly from writing out the quadratic
optimiation solution after vectorizing all matrices. Specifically, the objective function (37)
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can be written as

tr(©(X — UB)T(X —UB)) + atr(BTAB) =
= vec(X —UB)T(© ® I,)vec(X — UB) + avec(B)' (I, ® A)vec(B)
= vec(UB)(© @ I,)vec(UB) — 2vec(UB)" (© ® I,)vec(X) + avec(B)” (I, ® A)vec(B) + const
= vec(B) (I, 2 UT)(© @ I,)(I, ® U)vec(B) — 2vec(X)T (0 ® I,)(I, ® U)vec(B)
+ avec(B)T (I, ® A)vec(B) + const
= vec(B)T[(©@ ® I,) + oI, ® A)]vec(B) — 2vec(X)T (0 @ U)vec(B) + const.

The minimizer of this quadratic function satisfies
[(©® I,) + a(I, ® A)]vec(B) = (© @ UT)vec(X).
Substituting X = UB + E into the estimating equation gives

[(©®I,) + a(l, ® N)]vec(B) = (0 @ UT)vec(UB + E)
(©®UT)(I, ® U)vec(B) + (0 @ UT)vec(E)
(0 @ I,)vec(B) + vec(UT EO),

and therefore
(0 @ I,)vec(W) + a(I, ® A)vec(W) = a(I, ® A)vec(B) — vec(UT EO).

We then get
vec(WO) + avec(AW) = avec(AB) — vec(UT EO).

This is equivalent to (39) by noting that £ = —UTE®©. [ |

Now we show W; and W5y are essentially equivalent estimation errors. Define two addi-
tional estimating equations as below:

Wi, + aAWs = aAB + E (40)

Wydiag(©) + aAWy = aAB + E (41)

The error equation (40) corresponds to the situation when we carry p separate Laplacian
smoothing estimations. The error equation (40) is also from p separate Laplacian smoothing
but it adjusts the weight each variable to be proportional to 1/©;;, which can be seen as W»
approximation after ignoring off-diagonal elements of ©. Intuitively, when the off-diagonal
elements are small, W5 should not be very different from W, and when the diagonal elements
of © are similar, as in Assumption 3, W3 and W, should also be similar. The following
proposition formalizes this intuition under the assumption that © is diagonally dominant.
We can then conclude that using the true © in (37) does not really bring improvement and
Wi, Wo, W3, and Wy are all essentially equivalent.
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Proposition 4 Assume Wy, W3, and Wy are the estimation errors from (39), (40) and

(S
(41), respectively, with the same «. If © is diagonally dominant with max; %
p <1, then
) [Walleo _ )
(1 — p)min(1, min ©;;) < < (14 p)max(1, max©;;). (42)

J ||W2Hoo J

In particular, under Assumption 5,
1 _ [[Wsllso
1—p)=< <(14+pk
Um0 = ) =0

for a constant k.

Proof [Proof of Proposition 4| Directly from the definition, we have
A (ariBij + Eij)
1

=8, Fan (a7iBij + Eij) -

This implies that for any ¢, j and an arbitrary «,
W3 i @jj + aT;

1 C) = < 1 ©..). 43
win(1, min ©;) < g = ST < ma(1, max 0 (43)

We next show that under the assumption of diagonal dominance of ©, even W5 cannot do
much better. For each j =1,2,--- ,p, from (39),

WO + oWy j = (05,1 + ah)Waj + 045 > @” Wa.; = aAB.; + Ej
i#]

Therefore, we have

Wa.j + (0,1 + al) 19”2 ”Wgz—a(@”I—l—aA) "ABj+ (0,1 +aA) " B =Wy

1#]
(44)

in which the last equation comes from (41). By triangle inequality, (44) leads to

IWa,jlloo < Wi jllootl[(©551 +ah) 1055y @” Wailloo < [[Wa, g||oo+z maXlle il oo-

1] i£] ]J
(45)
Taking the maximum over j on both sides, we have
Walloo < [[Walloo + pl[Waloo- (46)

Similarly using triangle inequality in the other direction, we get

< Wil
el

<l+p
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Combining this with (43), we get

. ) W30
(1~ p)min(1,min o) < L1

< < (14 p) max(1, max ©;;).
[Walloo i

Note that (45) holds if we replace ||-||oc by other norms. For example, if we take the L;
norm instead, we get a similar bound in ||-||1 ;. [ ]

Now we are ready to prove Proposition 2.
Proof [Proof of Proposition 2| By taking W = W3 and using the conclusion of Proposition 4,
the first half of Proposition 2 directly follows. Subtracting (38) from (40) leads to

(In +aN)(W = W) = (In + aA) (W3 —W)) = E - E=UTE(I - 0©),

and therefore .
W — Wy = (I, + aA)'UTE(I - 0).
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