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Abstract

We study the identity testing problem in the context of spin systems or undirected graphical
models, where it takes the following form: given the parameter specification of the model M
and a sampling oracle for the distribution µM∗ of an unknown model M∗, can we efficiently
determine if the two models M and M∗ are the same? We consider identity testing for
both soft-constraint and hard-constraint systems. In particular, we prove hardness results
in two prototypical cases, the Ising model and proper colorings, and explore whether identity
testing is any easier than structure learning.

For the ferromagnetic (attractive) Ising model, Daskalakis et al. (2018) presented a
polynomial time algorithm for identity testing. We prove hardness results in the antiferro-
magnetic (repulsive) setting in the same regime of parameters where structure learning is
known to require a super-polynomial number of samples. Specifically, for n-vertex graphs
of maximum degree d, we prove that if |β|d = ω(log n) (where β is the inverse temperature
parameter), then there is no polynomial running time identity testing algorithm unless
RP = NP . In the hard-constraint setting, we present hardness results for identity test-
ing for proper colorings. Our results are based on the presumed hardness of #BIS, the
problem of (approximately) counting independent sets in bipartite graphs.
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1. Introduction

We study the identity testing problem in the context of spin systems. Spin systems, also
known as Markov random fields or undirected graphical models, are a general framework
in statistical physics, theoretical computer science and machine learning for modeling in-
teracting systems of simple elements. In this type of model, the identity testing problem,
sometimes also called goodness-of-fit testing, takes the following form: given the parameter
specification of the model M and a sampling oracle for the distribution µM∗ of an unknown
model M∗, can we efficiently determine if the two models M and M∗ are the same?

A spin system consists of a finite graph G = (V,E) and a set S of spins; a configuration
σ ∈ SV assigns a spin value to each vertex v ∈ V . The probability of finding the system in
a given configuration σ is given by the Gibbs (or Boltzmann) distribution

µG,H(σ) =
e−H(σ)

Z
,

where Z is the normalizing factor known as the partition function and the Hamiltonian H
contains terms that depend on the spin values at each vertex (a “vertex potential”) and at
each pair of adjacent vertices (an “edge potential”).

When µG,H(σ) > 0 for every configuration σ ∈ SV (i.e., the Gibbs distribution has full
support), the spin system is known as a soft-constraint model ; otherwise, it is called a hard-
constraint model. This is a fundamental distinction among spin systems, as it determines
their application domains and the computational complexity of several inherent problems.
We provide here hardness results for identity testing for both soft-constraint and hard-
constraint models by considering two prototypical systems: the Ising model and proper
colorings.

A naive approach to the identity testing problem is to learn first the unknown model
(G∗,H∗) and then check whether (G,H) = (G∗,H∗). The problem of learning G∗ from
samples is known as structure learning and has received tremendous attention (see, e.g.,
Chow and Liu, 1968; Dasgupta, 1999; Lee et al., 2007; Anandkumar et al., 2012; Ravikumar
et al., 2010; Bresler et al., 2013, 2014b; Bresler, 2015; Vuffray et al., 2016; Hamilton et al.,
2017; Klivans and Meka, 2017). Once the graph G∗ is known, it is often a simpler task to
estimate H∗ (Bresler, 2015); this is known as the parameter estimation problem. Hence,
one may be inclined to conjecture that identity testing is in fact easier than structure
learning, and we investigate whether or not this is the case. The main takeaway from our
results is evidence that identity testing is as hard as structure learning for antiferromagnetic
(repulsive) systems, as we show that the settings where these two problems are hard in
both the Ising model and proper colorings coincide.

1.1. Lower Bounds for the Ising Model

The Ising model is the quintessential example of a soft-constraint system and is studied in a
variety of fields, including phylogeny (Felsenstein, 2004; Daskalakis et al., 2011), computer
vision (Geman and Graffigne, 1986; Roth and Black, 2005), statistical mechanics (Georgii,
2011; Friedli and Velenik, 2017) and deep learning, where it appears under the guise of
Boltzmann machines (Ackley et al., 1985; Salakhutdinov and Larochelle, 2010; Salakhut-
dinov and Hinton, 2012). The Ising model on a graph G = (V,E) is parameterized by
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the inverse temperature β which controls the strength of the nearest-neighbor interactions.
Configurations of the model are the assignments of spins S = {+,−} to the vertices of G.
The probability of a configuration σ ∈ SV is given by the Gibbs distribution:

µG,β(σ) =
eβ·A(σ)

ZG,β
, (1)

where A(σ) is the number of edges of G connecting vertices with the same spin and ZG,β =∑
σ∈SV exp(β · A(σ)) is the partition function; the associated Hamiltonian is H(σ) = −β ·

A(σ).

In the ferromagnetic case (β > 0) neighboring vertices prefer to align to the same spin,
whereas the opposite happens in the antiferromagnetic setting (β < 0). In more general
variants of the model, one can allow different inverse temperatures βe for each edge e ∈ E,
as well as a vertex potential or external magnetic field. However, in this work, our emphasis
will be on lower bounds for the identity testing problem, and hence we focus on the above
mentioned simpler homogeneous setting (all βe = β) with no external field.

The identity testing problem in the context of the Ising model is the following: given a
graph G = (V,E), a real number β and oracle access to independent random samples from
an unknown Ising distribution µG∗,β∗ , can we determine if (G, β) = (G∗, β∗)? If the models
are distinct but their associated Gibbs distributions µG,β and µG∗,β∗ are exponentially close
to each other (measured by some notion of statistical distance between distributions as a
function of |V |), an exponential (in |V |) number of samples may be required to determine
that (G, β) 6= (G∗, β∗). Hence, following a large body of work on identity testing (see,
e.g., Batu et al., 2001; Diakonikolas et al., 2015; Diakonikolas and Kane, 2016; Valiant and
Valiant, 2017; Diakonikolas et al., 2018; Daskalakis et al., 2018; Canonne et al., 2018), we
study this problem in the property testing framework (Rubinfeld and Sudan, 1996; Goldreich
et al., 1998). That is, we are guaranteed that either (G, β) = (G∗, β∗) or ‖µG,β−µG∗,β∗‖ > ε,
for some standard distance ‖ · ‖ between distributions and ε > 0 fixed.

The most common distances for identity testing are total variation distance and Kullback-
Leibler (KL) divergence, and it is known that a testing algorithm for the latter immediately
provides one for the former (Daskalakis et al., 2018). Therefore, since our focus is on lower
bounds, we work with total variation distance, which we denote by ‖ · ‖tv.

Identity testing for the Ising model is then formally defined as follows. For positive
integers n and d let M(n, d) denote the family of all n-vertex graphs of maximum degree
at most d.

Given a graph G ∈M(n, d), β ∈ R and sample access to a distribution µG∗,β∗ for
an unknown Ising model (G∗, β∗), where G∗ ∈ M(n, d) and β∗ ∈ R, distinguish
with probability at least 3/4 between the cases:

1. µG,β = µG∗,β∗ ;

2. ‖µG,β − µG∗,β∗‖tv >
1
3 .

As usual in the property testing setting, the choice of 3/4 for the probability of success is
arbitrary, and it can be replaced by any constant in the interval (1

2 , 1) at the expense of a
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constant factor in the running time of the algorithm. The choice of 1/3 for the accuracy
parameter is also arbitrary: we shall see in our proofs that our lower bounds hold for any
constant ε ∈ (0, 1), provided n is sufficiently large; see also Remark 16.

Identity testing for the Ising model was studied by Daskalakis, Dikkala and Kamath (2018)
who provided a polynomial time algorithm for the ferromagnetic Ising model (the β > 0
case). (We will discuss their results in more detail after further discussion.) In contrast,
we present lower bounds for the antiferromagnetic Ising model (β < 0). Our lower bounds
will be for the case when β∗ = β, which means that they hold even under the additional
promise that the hidden parameter β∗ is equal to β. (For a discussion of the case β∗ 6= β,
as well as for some related open problems, see Section 8.) We mention that the hardness
of identity testing for general spin systems was previously considered by Bogdanov, Mossel
and Vadhan (2008), but in the harder setup where there are hidden variables (some of the
spins are not observed).

The structure learning and parameter estimation problems, which, as discussed earlier,
can be used to solve the identity testing problem, have been particularly well-studied in
the context of the Ising model. Bresler (2015) presented a structure learning algorithm
for the Ising model that can learn G∗ ∈ M(n, d) in time eexp(O(|β∗|d2)) × O(n2 log n) and
sample complexity eexp(O(|β∗|d2)) × O(log n). The dependency on the parameters β∗ and
d was improved by Vuffray et al. (2016), who provide an algorithm to learn both G∗ and
β∗ with running time eO(|β∗|d) × O(n4 log n) and sample complexity eO(|β∗|d) × O(log n).
More recently, Klivans and Meka (2017) provided a nearly optimal algorithm that learns
G∗ and β∗ in time eO(|β∗|d)×O(n2 log n) using eO(|β∗|d)×O(log n) samples; for other recent
related work on the structure learning and parameter estimation problems for the Ising
model see (Hamilton et al., 2017; Vuffray et al., 2019; Wu et al., 2019).

Consequently, when |β∗|d = O(log n), or when β = β∗ and |β|d = O(log n), structure
learning algorithms provide an identity testing algorithm with polynomial (in n) running
time and sample complexity. In contrast, when |β∗|d = ω(log n) (i.e., |β∗|d/ log n→∞), it is
known that the structure learning problem cannot be solved in polynomial time (Santhanam
and Wainwright, 2012), and this approach to identity testing fails.

Our first result is that the identity testing problem for the antiferromagnetic Ising model
is computationally hard in the same range of parameters. Specifically, we show that when
|β|d = ω(log n)—or equivalently when β = β∗ and |β∗|d = O(log n)—there is no polynomial
running time identity testing algorithm for M(n, d) unless RP = NP ; RP is the class of
problems that can be solved in polynomial time by a randomized algorithm.

Theorem 1 Suppose n, d are positive integers such that 3 ≤ d ≤ nθ for constant θ ∈ (0, 1).
If RP 6= NP , then for all real β < 0 satisfying |β|d = ω(log n) and all n sufficiently large,
there is no polynomial running time algorithm to solve the identity testing problem for the
antiferromagnetic Ising model in M(n, d).

In contrast to the above result, Daskalakis, Dikkala and Kamath (2018) designed an iden-
tity testing algorithm for the Ising model with polynomial running time and sample complex-
ity that works for arbitrary values of β (positive, negative or even non-homogeneous). This
appears to contradict our lower bound in Theorem 1. However, the model in (Daskalakis
et al., 2018) assumes not only sampling access to the unknown distribution µG∗,β∗ , but
also that the covariances between the spins at every pair of vertices in the visible graph
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G = (V,E) are given. More precisely, they assume that for every u, v ∈ V the quantity
EµG,β [XuXv] is known, where Xu, Xv ∈ {+1,−1} are the random variables corresponding
to the spins at u and v, respectively.

This is a reasonable assumption when these quantities can be computed (or approxi-
mated up to an additive error) efficiently. However, an immediate consequence of our results
is that in the antiferromagnetic setting when |β|d = ω(log n) there is no FPRAS1 for esti-
mating EµG,β [XuXv] unless RP = NP . In a related result, Goldberg and Jerrum (Goldberg
and Jerrum, 2019) showed recently that there is no FPRAS for (multiplicatively) approx-
imating the pairwise covariances for the antiferromagnetic Ising model unless RP = #P .
Further evidence for the hardness of this problem comes from the fact that sampling is
hard in the antiferromagnetic setting (Sly and Sun, 2012; Galanis et al., 2016b) and in the
ferromagnetic model in the presence of inconsistent magnetic fields (Goldberg and Jerrum,
2007) (i.e., the vertex potential of distinct vertices may have different signs). In summary,
the algorithmic results of (Daskalakis et al., 2018) are most interesting for the ferromagnetic
Ising model (with consistent fields), where there are known polynomial running time algo-
rithms for estimating the pairwise covariances (see, e.g., Jerrum and Sinclair, 1993; Randall
and Wilson, 1999; Guo and Jerrum, 2017; Collevecchio et al., 2016).

In Theorem 1 we assume that |β|d = ω(log n), but our main technical result (Theorem 4)
is actually more general. We show that when |β|d ≥ c lnn, where c > 0 is a sufficiently large
constant, if there is an identity testing algorithm with running time T = T (n) and sample
complexity L = L(n) then there is also a randomized algorithm with running time O(T+Ln)
for computing the maximum cut of any graph with N = nΘ(1) vertices. Theorem 1 then
follows immediately from the fact that either T or L ought to be super-polynomial in n, as
otherwise we obtain a randomized algorithm for the maximum cut problem with polynomial
running time; this would imply that RP = NP .

Under a stronger (but also standard) computational theoretic assumption, namely that
there is no randomized algorithm with sub-exponential running time for the 3-SAT problem,
i.e., the (randomized) exponential time hypothesis or rETH (Impagliazzo and Paturi, 2001;
Calabro et al., 2008), our main theorem also implies a general lower bound for identity
testing that holds for all β and d satisfying |β|d ≥ c lnn.

Theorem 2 Suppose n, d are positive integers such that 3 ≤ d ≤ nθ for constant θ ∈
(0, 1). Then, there exist constants c = c(θ) > 0 and α = α(θ) ∈ (0, 1) such that when
|β|d ≥ c lnn, rETH implies that the running time T (n) of any algorithm that solves the
identity testing problem for the antiferromagnetic Ising model in M(n, d) satisfies T (n) ≥
min

{
exp(Ω(nα)), exp(Ω(|β|d))

n

}
.

We remark that the bound in this theorem is comparable to the exp(Ω(|β|d)) lower
bound for the sample complexity of structure learning (Santhanam and Wainwright, 2012),
albeit requiring that rETH is true. We also mention that the lower bounds in Theorems 1
and 2 are both much stronger than the Ω(

√
n) lower bound in (Daskalakis et al., 2018).

1. A fully polynomial-time randomized approximation scheme (FPRAS) for an optimization problem with
optimal solution Z produces an approximate solution Ẑ such that, with probability at least 1 − δ,
(1− ε)Ẑ ≤ Z ≤ (1 + ε)Ẑ with running time polynomial in the instance size, ε−1 and log(δ−1).
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Bezáková et al.

The very high level idea of the proof of our main theorem for the Ising model (Theo-
rem 4), from which Theorems 1 and 2 are derived as corollaries, is as follows: given a graph
H and an integer k, we construct an identity testing instance Λ so that the output of the
identity testing algorithm on Λ can be used to determine whether there is a cut in H of size
at least k. A crucial component in our construction is a “degree reducing” gadget, which
consists of a random bipartite graph and is inspired by similar random gadgets in seminal
works on the hardness of approximate counting (Sly, 2010). One of the main technical chal-
lenges in the paper is to establish precise bounds on the edge expansion of these random
gadgets. A detailed overview of our proof is given in Section 2.1.

1.2. Lower Bounds for Proper q-colorings

The proper q-colorings of a graph G = (V,E) constitute a canonical hard-constraint spin
system, with multiple applications in statistical physics and theoretical computer science.
In this model, the vertices of graph G are assigned spins (or colors) from {1, . . . , q}, and
the Gibbs distribution µG becomes the uniform distribution over the proper q-colorings
of the graph G. The identity testing problem for this model in M(n, d) is defined as
follows: given q, a graph G ∈ M(n, d) and sample access to random q-colorings of an
unknown graph G∗ ∈M(n, d), distinguish with probability at least 3/4 whether µG = µG∗

or ‖µG − µG∗‖ > 1/3.

We establish lower bounds for this problem, thus initiating the study of identity testing in
the context of hard-constraint spin systems. While identity testing does not seem to have
been studied in this context before, the related structure learning problem has received
some attention (Bresler et al., 2014a; Blanca et al., 2018). For proper colorings, it is
known that when q ≥ d+ 1 the hidden graph G can be learned from poly(n, d, q) samples,
whereas when q ≤ d then the problem is non-identifiable, i.e., there are distinct graphs
with the same collection of q-colorings (Blanca et al., 2018). Moreover, for d ≥ dc(q) =
q +

⌈√
q
⌉
− 1, or equivalently q ≤ d−

√
d+ Θ(1), it was also established in (Blanca et al.,

2018) that the easier equivalent structure learning problem (learning any graph with the
same collection of q-colorings as the unknown graph) is computationally hard in the sense
that the sample complexity is exponential in n. The threshold dc(q) coincides exactly with
the one for polynomial time/NP-completeness for the problem of determining if G is q-
colorable (Emden-Weinert et al., 1998; Molloy and Reed, 2001); see (22) for the precise
definition of dc(q).

We prove here that the identity testing problem is also hard when d ≥ dc(q), thus estab-
lishing another connection between the hardness of identity testing and structure learning.
For this we utilize the complexity of #BIS, which is the problem of counting the inde-
pendent sets in a bipartite graph. #BIS is believed not to have an FPRAS, and it has
achieved considerable interest in approximate counting as a tool for proving relative com-
plexity hardness (see, e.g., Dyer et al., 2004; Goldberg and Jerrum, 2012; Dyer et al., 2010;
Bulatov et al., 2013; Chen et al., 2015; Cai et al., 2016; Galanis et al., 2016a).

Theorem 3 Suppose n, d and q are positive integers such that q ≥ 3 and d ≥ dc(q). If
#BIS does not admit an FPRAS, then there is no polynomial running time algorithm that
solves the identity testing problem for proper q-colorings in M(n, d).
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In the proof of this theorem we reduce the #BIS-hard problem of counting 3-colorings
in bipartite graphs to identity testing for q-colorings. The high level idea of our proof is as
follows: given a bipartite graph H and an approximation Ẑ for the number of 3-colorings
Z3(H) of H, we construct an identity testing instance that depends on both H and the
value of Ẑ. We then show how to use an identity testing algorithm on this instance to check
whether Ẑ is an upper or lower bound for Z3(H). By adjusting Ẑ and repeating this process
we converge to a good approximation for Z3(H). A crucial element in our construction is
again the design of a degree reducing gadget; in this case, our gadget is inspired by similar
constructions in (Emden-Weinert et al., 1998; Molloy and Reed, 2001; Blanca et al., 2018) for
establishing the computational hardness of the decision and (equivalent) structure learning
problems for d ≥ dc(q). Finally, we mention that for 3-colorings, dc(3) = 4 and thus our
hardness result holds for all graphs with maximum degree at least 4.

1.3. An Algorithm for the Ferromagnetic Ising Model

We provide an improved algorithm for the ferromagnetic Ising model. As mentioned, by
combining the algorithm in (Daskalakis et al., 2018) with previous results for sampling (see
Jerrum and Sinclair, 1993; Randall and Wilson, 1999; Guo and Jerrum, 2017; Collevecchio
et al., 2016), one obtains a polynomial running time algorithm for identity testing in the
ferromagnetic setting. The algorithm in (Daskalakis et al., 2018) works for symmetric-KL
divergence which is a stronger notion of distance. We show that if one considers instead
total variation distance, then there is a polynomial running time algorithm that solves the
identity testing problem with sample complexity Õ(n2d2ε−2). This is an improvement over
the Õ(n2d2β2ε−2) bound in (Daskalakis et al., 2018), as there is no dependence on the
inverse temperature β. See Theorem 30 in Section 6 for a precise statement of this result.

The rest of the paper is organized as follows. In Section 2 we state our main technical
theorem (Theorem 4), and we derive Theorems 1 and 2 as corollaries. In Section 2.1, we
sketch the key ideas in the proof our main result. The actual proof of Theorem 4 is fleshed
out in Section 4. Before that, we introduce a useful variant of the maximum cut problem and
study its complexity in Section 3. In Section 5 we provide bounds for the edge expansion of
random bipartite graphs which are crucially used in our proofs and could be of independent
interest. Our algorithm for the ferromagnetic Ising model is analyzed in Section 6, and our
results for proper q-colorings (Theorem 3) are derived in Section 7; specifically, the reduction
for the q ≥ 4 case is presented in Section 7.4, and the more elaborate construction for q = 3
is given in Section 7.5.

2. Lower Bounds for the Ising Model

To establish our lower bounds in Theorems 1 and 2 we use the computational hardness of
the maximum cut (MaxCut) problem. Recall that in the search variant of this problem,
given a graph H and an integer k > 0, the goal is to determine whether there is a cut of
size at least k in H. Our main technical result, from which Theorems 1 and 2 are derived,
is the following.

Theorem 4 Suppose n and d are positive integers such 3 ≤ d ≤ n1−ρ for some constant
ρ ∈ (0, 1). Then, for all n sufficiently large, there exist c = c(ρ) > 0 and an integer
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N = Θ(nmin{ ρ
4
, 1
14
}) such that when |β|d ≥ c lnn, any identity testing algorithm for M(n, d)

for the antiferromagnetic Ising model with running time T (n) and sample complexity L(n) ≤
exp(|β|d/c)

30n provides a randomized algorithm for MaxCut on any graph with N vertices. This
algorithm outputs the correct answer with probability at least 11/20 and has running time
O(T (n) + n · L(n)).

In words, this theorem says that under some mild assumptions, when |β|d ≥ c lnn, any
identity testing algorithm with running time T (n) and sample complexity L(n) provides a
randomized algorithm for MaxCut on graphs of poly(n) size with running time O(T (n) +
n ·L(n)). The high level ideas in the proof of this theorem are described next in Section 2.1;
its actual proof is fleshed out in Section 4. Several important consequences of this result,
including Theorems 1 and 2 from the introduction, are derived in Section 2.2.

2.1. Main Result for the Ising Model: Proof Overview

To establish Theorem 4 we construct a class N of n-vertex graphs of maximum degree at
most d and show how an algorithm that solves identity testing for N ⊂ M(n, d) can be
used to solve the MaxCut problem on graphs with N = Θ(nα) vertices, where α ∈ (0, 1) is
a constant. (The exact value for α depends on d: if d = O(1), then we can take α = 1/14;
otherwise, we set α = ρ/4.)

Suppose we want to solve the MaxCut problem for a graph H = (V,E) and k ∈ N.
At a high level, we use H and k to construct an identity testing instance consisting of an
antiferromagnetic Ising model M , which plays the role of the visible model, and samples
from a simpler model M∗. Our construction of these two models ensures that sampling
from M∗ is easy, and that the output of the testing algorithm reveals information about the
maximum cuts of H. To implement this approach, we consider a variant of the MaxCut
problem which we call the TwoLargeCuts problem. We shall see that this problem is
also NP-hard (by a reduction from MaxCut).

An instance of the TwoLargeCuts problem is constructed as follows. Given H =
(V,E) and k ∈ N, we add two vertices s and t to H and connect both s and t to every
vertex in V with N = |V | edges (adding a total of 2N2 edges); we also add w edges between
s and t. Let Ĥw be the resulting multigraph. (In our proofs we will convert Ĥw into a
simple graph, but it is conceptually simpler to consider the multigraph for now.) The cut
({s, t}, V ) in Ĥw is of size 2N2.

In the TwoLargeCuts problem the goal is to determine whether there are at least
two cuts in Ĥw of size at least 2N2 (see Definition 8). MaxCut can be reduced to
TwoLargeCuts by treating w, the number of edges between s and t, as a parameter.
Specifically, if (S, V \S) is a cut of size k in the original graph H, then (S∪{s}, (V \S)∪{t})
is a cut of size

w + k +N |S|+N |V \ S| = w + k +N2

in Ĥw. Hence, ({s, t}, V ) is the unique large cut (i.e., cut of size ≥ 2N2) if and only if

w + MaxCut(H) +N2 < 2N2,

where MaxCut(H) denotes the size of the maximum cut of H. Therefore, to solve
MaxCut for H and k, it is sufficient to solve the TwoLargeCuts problem for Ĥw with
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w = N2 − k; see Section 3 for the proof of this fact. This yields that the TwoLargeCuts
problem is NP-complete and the following useful lemma.

Lemma 5 Let H = (V,E) be an N -vertex graph and let δ ∈ (0, 1/2]. Suppose there exists
a randomized algorithm that solves the TwoLargeCuts problem on inputs H and w ≤ N2

with probability at least 1/2 + δ and running time R. Then, there exists a randomized
algorithm to solve MaxCut for H and k ∈ N with running time R + O(N2) and success
probability at least 1/2 + δ.

To solve the TwoLargeCuts problem, we can use the antiferromagnetic Ising model
on Ĥw to determine if ({s, t}, V ) is the maximum cut of Ĥw as follows. Every Ising config-
uration of Ĥw determines a cut: all the “+” vertices belong to one side of the cut and the
“−” vertices to the other (or vice versa). Observe that for every cut of Ĥw there are exactly
two corresponding Ising configurations. The intuition is that the maximum cuts of Ĥw

correspond to the configurations of maximum likelihood in the Gibbs distribution. Indeed,
when |β| is sufficiently large, the distribution will be well-concentrated on the configurations
that correspond to the maximum cuts. Therefore, a sample from the Gibbs distribution
would reveal with high probability whether or not ({s, t}, V ) is the maximum cut of Ĥw

and thus solve the TwoLargeCuts problem.

To simulate large magnitudes of β, we strengthen the interactions between neighboring
vertices of Ĥw by replacing every edge by 2` edges. However, sampling from the antifer-
romagnetic Ising distribution on the resulting multigraph Ĥw,` is a hard problem, and we
would need to provide a sampling procedure. Instead, we use the identity testing algorithm
as follows. We construct a simpler Ising model M∗ with two key properties: (i) we can easily
generate samples from M∗ and (ii) M∗ is close in total variation distance to the Ising model
M = (Ĥw,`, β) if and only if ({s, t}, V ) is the unique large cut of Ĥw. Our construction of

M∗ is facilitated by our construction of the TwoLargeCuts instance Ĥw where there is a
trivial (easy to find) large cut; i.e., the cut ({s, t}, V ). (The precise construction of M and
M∗ is described in Section 4, and their desired properties are established in Sections 4.2
and 4.3.) Then, we give Ĥw,`, the parameter β and samples from M∗ as input to the tester.
If the tester outputs Yes, it means that it regarded the samples from M∗ as samples from
M and so ({s, t}, V ) must be the unique large cut of Ĥw. Conversely, if the tester outputs
No, then the total variation distance between µM and µM∗ must be large, in which case
({s, t}, V ) is not the unique large cut of Ĥw.

In summary, this argument implies that an identity testing algorithm for n-vertex multi-
graphs gives a polynomial time randomized algorithm for MaxCut on graphs with n − 2
vertices. However, the maximum degree of Ĥw,` depends on `, N and w and could be
much larger than d. Hence, this argument does not apply for small values of d, even if we
overlook the fact that we would be using identity testers for multigraphs instead of graphs.
To extend the argument to simple graphs in M(n, d) for all 3 ≤ d ≤ n1−ρ, we introduce
a “degree reducing” gadget, which is reminiscent of gadgets used in works concerning the
hardness of approximate counting (Sly, 2010; Sly and Sun, 2012).

Every vertex of Ĥw,` is replaced by a random bipartite graph G = (L ∪ R,EG); see
Section 4 for the precise random graph model. The graph G has maximum degree at most
d, and some of its vertices, which we call ports, will have degree strictly less than d, so

9
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that they can be used for connecting the gadgets as indicated by the edges of Ĥw,`. The

resulting simple graph, which we denote by ĤΓ
w, will have maximum degree d. (Γ is the set

of parameters of our random graph model; see Section 4 for the details.) In similar manner
as described above for Ĥw,`, an identity testing algorithm for the antiferromagnetic Ising

model on ĤΓ
w can be used to determine whether ({s, t}, V ) is the unique large cut of Ĥw;

see Lemma 12. Since ĤΓ
w has maximum degree at most d, Theorem 4 follows.

Finally, we mention that the main technical challenge in our approach is to establish
that in every gadget, with high probability, either every vertex of L is assigned “+” and
every vertex of R is assigned “−” or vice versa; see Theorems 10 and 11. To show this, we
require very precise bounds on the edge expansion of the random bipartite graph G. When
d → ∞, these bounds can be derived in a fairly straightforward manner from the results
in (Brito et al., 2018). However, the case of d = O(1) is more difficult, and it requires
for us to define the notion of edge expansion with respect to the ports of the gadget and
extending some of the ideas in (Hoory et al., 2006) (see Theorem 19). Our bounds for the
edge expansion of random bipartite graphs may be of independent interest; see Section 5.

2.2. Consequences of Main Result for the Ising Model: Proofs of Theorems 1
and 2

In this section we show how to derive Theorems 1 and 2 from Theorem 4. For Theorem 1
we also use the fact that there is no randomized algorithm for MaxCut with polynomial
running time unless RP = NP . (We recall that RP is the class of problems that can be
solved in polynomial time by a randomized algorithm.) For Theorem 2 we use a stronger
assumption, namely the (randomized) exponential time hypothesis (or rETH) (Impagliazzo
and Paturi, 2001; Calabro et al., 2008).

Proof of Theorem 1 Suppose there is an identity testing algorithm for M(n, d) with
poly(n) running time and sample complexity; that is, L ≤ T = poly(n). Since |β|d =
ω(lnn),

L ≤ exp (|β|d/c)
30n

.

Hence, Theorem 4 implies there is a randomized algorithm for MaxCut on graphs of size
N = Θ(nmin{ ρ

4
, 1
14
}) that succeeds with probability at least 11/20 and has running time

O(T + Ln) = poly(n). This implies that MaxCut is in BPP . (BPP is the class of all
decision problems solvable in polynomial time with success probability greater than 1/2 on
both “yes” and “no” instances; in contrast, RP only allows errors on “no” instances.) Since
MaxCut is NP -complete, then NP ⊆ BPP , and the result follows from the standard fact
that if NP ⊆ BPP , then RP = NP ; see, e.g., (Ko, 1982). �

Proof of Theorem 2 Suppose there exists an identity testing algorithm with running
time T and sample complexity L. If L > exp(|β|d/c)

30n , then

T ≥ L > exp (|β|d/c)
30n

and the result follows. Otherwise, when |β|d ≥ c lnn for a suitable constant c = c(ρ) > 0,
Theorem 4 implies that there exists a randomized algorithm for MaxCut on graphs with

10
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N = Θ(nmin{ ρ
4
, 1
14
}) vertices with running time at most O(T + Ln) and success probability

at least 11/20. However, under the assumption that rETH is true, there is no randomized
algorithm for MaxCut in such graphs with running time eo(n

α), where α = min{ρ4 ,
1
14}.

Thus, there exist constants δ, γ > 0 such that

δ(T + Ln) ≥ eγn
α
.

Consequently, if L ≤ eγn
α

2δn , then T ≥ eγn
α

2δ ; otherwise T ≥ L ≥ eγn
α

2δn . Putting these bounds
together we get

T ≥ min

{
exp(|β|d/c)

30n
,
exp(γnα)

2δn

}
,

and the result follows. �

Finally, we note that Theorem 4 also implies a polynomial (in n) lower bound for the
running time of any identity testing algorithm when |β|d = Θ(log n). This regime is not
covered by Theorem 1, where the assumption is that |β|d = ω(log n), and Theorem 2 applies
to this setting, but under the stronger rETH assumption. Our next theorem shows that
the weaker complexity theoretic assumption RP 6= NP suffices.

Theorem 6 Suppose n, d are positive integers such 3 ≤ d ≤ n1−ρ for some constant
ρ ∈ (0, 1) and β < 0 is such that |β|d > c lnn, where c = c(ρ) is the constant from
Theorem 4. If RP 6= NP , then, for all n sufficiently large, any algorithm that solves the
identity testing problem forM(n, d) for the antiferromagnetic Ising model has running time

T = Ω(n∆), where ∆ = |β|d
c lnn − 1.

Proof Suppose there is an identity testing algorithm forM(n, d) with running time T and

sample complexity L. We consider two cases. First, if L ≤ exp(|β|d/c)
30n , then Theorem 4 im-

plies that there is a randomized algorithm for MaxCut on graphs with N = Θ(nmin{ ρ
4
, 1
14
})

vertices that has running time O(T + Ln) and success probability 11/20. Therefore,
T + Ln = nω(1) since otherwise NP ⊆ BPP and thus RP = NP (Ko, 1982). Hence,
if Ln = O(poly(n)), then T = Ω(nω(1)); otherwise T ≥ L = Ω(nω(1)). For the second case,

when L > exp(|β|d/c)
30n , we have

T ≥ L > exp (|β|d/c)
30n

=
n∆

30
,

and the result follows.

3. Hardness of the TwoLargeCuts Problem

In this section we prove Lemma 5, where the hardness of the TwoLargeCuts problem
is established. Recall that the TwoLargeCuts problem is a variant of the MaxCut
problem which we will reduce to the identity testing problem. We formally define the
TwoLargeCuts problem next.

11
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Definition 7 Let H = (V,E) be a graph and let w ∈ N. Let Ĥw = (V̂ , Ê) be the multigraph
defined as follows:

1. V̂ contains all vertices in V and two new vertices s and t; i.e., V̂ = V ∪ {s, t};

2. Ê contains all edges in E, N copies of edges {s, v} and {t, v} for each v ∈ V , and w
copies of the edge {s, t}.

Observe that the cut ({s, t}, V ) contains exactly 2N2 edges.

Definition 8 In the TwoLargeCuts problem, given a graph H and w ∈ N, the goal is to
determine whether there are at least two cuts in Ĥw of size at least 2N2.

Lemma 5 is a direct corollary of the following lemma, which implies that MaxCut can be
reduced to TwoLargeCuts.

Lemma 9 Let H = (V,E) be an N -vertex graph and let w ∈ N. The cut ({s, t}, V ) is the
unique maximum cut of Ĥw if and only if MaxCut(H) < N2 − w.

Consequently, to solve MaxCut on inputsH and k, it is sufficient to solve the TwoLargeCuts
problem for Ĥw with w = N2−k. Hence, Lemma 5 is a direct corollary of Lemma 9. (Note
that Lemma 9 also implies that the TwoLargeCuts problem is NP-complete.)

Proof of Lemma 9 Let (S, T ) be a cut of Ĥw (i.e., S ∪ T = V̂ and S ∩ T = ∅) and let
EĤw(S, T ) ⊆ Ê be the set of edges between S and T in Ĥw. Similarly, for S′, T ′ ⊆ V , let
EH(S′, T ′) ⊆ E be the set of edges between S′ and T ′ in H.

Let us consider first the cuts (S, T ) where s and t belong to the same set. Without loss
of generality assume s, t ∈ S, and let S0 = S \ {s, t}. Then, (S0, T ) is a cut of H and so∣∣∣EĤw(S, T )

∣∣∣ =
∣∣∣EĤw(S0, T )

∣∣∣+
∣∣∣EĤw({s, t}, T )

∣∣∣ = |EH(S0, T )|+ 2N |T | ≤ (N − |T |)|T |+ 2N |T |.

The quadratic function f(x) = (N − x)x + 2Nx is maximized at x = N for 0 ≤ x ≤ N

and f(N) = 2N2. Thus,
∣∣∣EĤw(S, T )

∣∣∣ ≤ 2N2, and the maximum value 2N2 can be attained

only when |T | = N ; i.e., S0 = ∅ and (S, T ) = ({s, t}, V ).
Now, for the cuts where s and t belong to distinct sets of the cut, let us assume without

loss of generality that s ∈ S and t ∈ T . Let S0 = S\{s} and T0 = T \ {t}. Then, (S0, T0) is
a cut of H, and∣∣∣EĤw(S, T )

∣∣∣ =
∣∣∣EĤw(S0, T0)

∣∣∣+
∣∣∣EĤw(S0, {t})

∣∣∣+
∣∣∣EĤw({s}, T0)

∣∣∣+
∣∣∣EĤw({s}, {t})

∣∣∣
= |EH(S0, T0)|+N2 + w.

Hence, the maximum cut of this class corresponds to the case when (S0, T0) is a maximum
cut of H, and ∣∣∣EĤw(S, T )

∣∣∣ = MaxCut(H) +N2 + w.

Combining the above two cases, we conclude that ({s, t}, V ) is the unique maximum cut
of Ĥw if and only if 2N2 > MaxCut(H) +N2 + w, and the result follows. �
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4. Proof of Main Result for the Ising Model: Theorem 4

We describe our gadget for the Ising model first. Suppose m, p, d, din, dout ∈ N+ are positive
integers such that m ≥ p, d ≥ 3 and din + dout = d. Let G = (VG, EG) be the random
bipartite graph defined as follows:

1. Set VG = L ∪R, where |L| = |R| = m and L ∩R = ∅;

2. Let P be subset of VG chosen uniformly at random among all the subsets such that
|P ∩ L| = |P ∩R| = p;

3. Let M1, . . . ,Mdin be din random perfect matchings between L and R;

4. Let M ′1, . . . ,M
′
dout

be dout random perfect matchings between L\P and R\P ;

5. Set EG =
(⋃din

i=1Mi

)
∪
(⋃dout

i=1 M
′
i

)
;

6. Make the graph G simple by replacing multiple edges with single edges.

We use G(m, p, din, dout) to denote the resulting distribution; that is, G ∼ G(m, p, din, dout).
Vertices in P are called ports. Every port has degree at most din while every non-port vertex
has degree at most d.

In our proofs, we use instances of this random graph model with two different choices
of parameters. For the case when d is such that 3 ≤ d = O(1), we choose p =

⌊
m1/4

⌋
,

din = d− 1 and dout = 1; otherwise we take p = m (i.e., every vertex is a port), din = bθdc
and dout = d − bθdc for a suitable constant θ ∈ (0, 1). For both parameter choices we
establish that the random graph G is a good expander with high probability; see Section 5.
Using this, we can show that there are only two “typical” configurations for the Ising model
on G, even in the presence of an external configuration (i.e., a boundary condition) exerting
influence on the configuration of G via its ports.

We present some notation next that will allow us to formally state these facts. Let
σ+(G) be the configuration of G = (L∪R,EG) where every vertex in L is assigned “+” and
every vertex in R is assigned “−”; similarly, define σ−(G) by interchanging “+” and “−”.
To capture the notion of an external configuration for the bipartite graph G, we assume that
G is an induced subgraph of a larger graph G′ = (VG′ , EG′). Let ∂P = VG′ \ VG. Assume
that every vertex in P ⊆ VG is connected to up to dout vertices in ∂P and that there are no
edges between VG \P and ∂P in G′. We use {∂P = τ} for the event that the configuration
in G′ of ∂P is τ ∈ {+,−}∂P . We can show that for any τ , with high probability over the
choice of the random graph G, the Ising configuration of VG on G′ conditioned on {∂P = τ}
will likely be σ+(G) or σ−(G).

Theorem 10 Suppose β < 0, 3 ≤ d = O(1), din = d − 1, dout = 1 and p = bmαc, where
α ∈ (0, 1

4 ] is a constant independent of m. Then, there exists a constant δ > 0 such that
with probability 1−o(1) over the choice of the random graph G the following holds for every
configuration τ on ∂P :

µG′,β({σ+(G), σ−(G)} | ∂P = τ) ≥ 1− 2m

eδ|β|d
.
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Theorem 11 Suppose β < 0, p = m and 4 + 1200
ρ ≤ d ≤ m

1−ρ for some constant ρ ∈ (0, 1)
independent of m. Then, there exist constants δ = δ(ρ) > 0 and θ = θ(ρ) ∈ (0, 1) such that
when din = bθdc and dout = d − bθdc the following holds for every configuration τ on ∂P
with probability 1− o(1) over the choice of the random graph G:

µG′,β({σ+(G), σ−(G)} | ∂P = τ) ≥ 1− 2m

eδ|β|d
.

The proofs of these theorems are given in Section 5.

4.1. Testing Instance Construction

Let H = (V,E) be a simple N -vertex graph and for w ≤ N2 let Ĥw be the multigraph
from Definition 7. We use an instance of the random bipartite graph G(m, p, din, dout) as a
gadget to define a simple graph ĤΓ

w, where Γ denotes the set parameters {m, p, din, dout, `};
` > 0 is assumed to be an integer divisible by dout. The graph ĤΓ

w is constructed as follows:

1. Generate an instance G = (L ∪R,EG) of the random graph model G(m, p, din, dout);

2. Replace every vertex of Ĥw by a copy Gv = (Lv ∪Rv, EGv) of the generated instance
G;

3. For every edge {v, u} ∈ Ĥw, choose `/dout unused ports in Lv and `/dout unused
ports in Lu and connect them with a simple bipartite dout-regular graph;

4. Similarly, for every edge {v, u} ∈ Ĥw, choose `/dout unused ports in Rv and `/dout

unused ports in Ru and connect them with a simple bipartite dout-regular graph.

Observe that our construction requires:

din + dout = d ≤ m, (2)

dout | `, (3)

`(N2 + w) ≤ p · dout, (4)

d2
out ≤ `. (5)

To see that (4) is necessary, note that the maximum degree of Ĥw is N2 + w (this is the
degree of vertices s and t), and so the total out-degree of the ports should be large enough
to accommodate `(N2 + w) edges. Observe also that when condition (5) holds, there is
always a simple bipartite dout-regular graph with `/dout vertices on each side for steps 3
and 4.

The number of vertices in ĤΓ
w is 2m(N + 2) and its maximum degree is d = din + dout;

thus, ĤΓ
w ∈M(2m(N+2), d). Let I be an independent set with N vertices. By setting H =

I and w = 0, we can analogously define the graphs Î0 and ÎΓ
0 so that ÎΓ

0 ∈M(2m(N+2), d).
Let M and M∗ denote the Ising models (ĤΓ

w, β) and (ÎΓ
0 , β), respectively. Our testing

instance will consist of the model M and (approximate) samples from M∗. We show next
that the models M and M∗ are statistically close if and only if ({s, t}, V ) is the unique large
cut of Ĥw.
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4.2. Relating the Ising Models M and M∗

To formally study the relationship between the models M and M∗ we require some addi-
tional notation. For a configuration σ on ĤΓ

w, we say that the gadget Gv=(Lv ∪Rv, EGv) is
in the plus (resp., minus) phase if all the vertices in Lv (resp., Rv) are assigned “+” in σ and
all the vertices in Rv (resp., Lv) are assigned “−”. Let Ωgood be the set of configurations

of ĤΓ
w where the gadget of every vertex is either in the plus or the minus phase. The set

of Ising configurations of ĤΓ
w and ÎΓ

0 is the same and is denoted by Ω. We use ZM , ZM∗

for the partition functions of M , M∗, and ZM (Λ), ZM∗(Λ) for their restrictions to a subset
of configurations Λ ⊆ Ω. That is, ZM =

∑
σ∈ΩwM (σ) and ZM (Λ) =

∑
σ∈ΛwM (σ) where

wM (σ) := eβA(σ) is called the weight of the configuration σ in M ; see (1). When β < 0,
wM (σ) = e−|β|A(σ).

The Ising models M and M∗ are related as follows.

Lemma 12 Let N ≥ 1, w ≥ 0 be integers and let β < 0. Let Γ = (m, p, din, dout, `) be such
that |β|(`−d) ≥ N and conditions (2)—(5) are satisfied. If for the Ising model M = (ĤΓ

w, β)
we have ZM (Ωgood) ≥ (1− ε)ZM for some ε ∈ (0, 1), then with probability 1− o(1) over the
choice of the random graph G the following holds:

1. If ({s, t}, V ) is the unique maximum cut of Ĥw, then

‖µM − µM∗‖tv ≤ 2(ε+ e−2|β|d).

2. If ({s, t}, V ) is not the unique maximum cut of Ĥw, then

‖µM − µM∗‖tv >
1

2
− ε− e−2|β|d.

3. If there is a cut in Ĥw with strictly more edges than ({s, t}, V ), then

‖µM − µM∗‖tv ≥ 1− ε− 2e−2|β|d.

Let σ+ = σ+(ĤΓ
w) be the configuration of ĤΓ

w such that the gadgets for s and t are in
the plus phase and every other gadget is in the minus phase; define σ− = σ−(ĤΓ

w) in similar
manner but interchanging “+” and “−” everywhere. Let Ω0 = Ω0(ĤΓ

w) = {σ+, σ−}. We
will use the following fact to prove Lemma 12.

Fact 13 Let N ≥ 1 be an integer and let β < 0. Let Γ = (m, p, din, dout, `) be such that
|β|(`N − d) ≥ N and conditions (2)—(5) are satisfied. If for the Ising model M∗ = (ÎΓ

0 , β)
we have ZM∗(Ωgood) ≥ (1− ε)ZM∗ for some ε ∈ (0, 1), then µM∗(Ω

0) ≥ 1− ε− e−2|β|d.

Proof The weight of the configurations σ+, σ− satisfy: wM∗(σ
+) = wM∗(σ

−) = 1. If
σ ∈ Ωgood \ Ω0, then the gadget for either s or t is connected to the gadget of at least one
other vertex in the same phase by 2`N edges. Hence, wM∗(σ) ≤ e2β`N = e−2|β|`N and

ZM∗(Ωgood \ Ω0) =
∑

σ∈Ωgood\Ω0

wM∗(σ) ≤ |Ωgood| · e−2|β|`N = 2N+2 · e−2|β|`N ≤ e−2|β|d,
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where in the last inequality we used the fact that |β|(`N − d) ≥ N by assumption. Then,

ZM∗(Ωgood) ≤ 2 + e−2|β|d

and so

µM∗(Ω
0) =

2

ZM∗(Ωgood)
·
ZM∗(Ωgood)

ZM∗
≥
(

1− e−2|β|d
) ZM∗(Ωgood)

ZM∗
≥ 1− e−2|β|d − ε,

as claimed.

We are now ready to prove Lemma 12.

Proof of Lemma 12 We show that when ({s, t}, V ) is the unique maximum cut of Ĥw,
then

µM (Ω0) ≥ 1− ε− e−2|β|d. (6)

Since by symmetry µM (σ+) = µM (σ−) and µM∗(σ
+) = µM∗(σ

−), Fact 13 implies

‖µM − µM∗‖tv ≤
∣∣µM (σ+)− µM∗(σ+)

∣∣+
µM (Ω \ Ω0) + µM∗(Ω \ Ω0)

2
≤ 2(ε+ e−2|β|d)

and part 1 follows. (Recall that Ω is the set of Ising configurations of the graphs ĤΓ
w and

ÎΓ
0 .)

To establish (6), observe that

µM (Ω0) =
ZM (Ω0)

ZM (Ωgood)
·
ZM (Ωgood)

ZM
≥ (1− ε)ZM (Ω0)

ZM (Ωgood)
, (7)

where the last inequality follows from the assumption that ZM (Ωgood) ≥ (1− ε)ZM .

For σ ∈ Ωgood, let I(σ) be the number of edges {u, v} of Ĥw such that the gadgets

corresponding to vertices u and v in ĤΓ
w are in the same phase in σ. Since every edge of Ĥw

correspond to exactly 2` edges in ĤΓ
w, we have wM (σ) = e2β`I(σ) = e−2|β|`I(σ). Moreover,

I(σ+) = I(σ−) = w + |E|, where E is the set of edges of the graph H. When ({s, t}, V )
is the unique maximum cut of Ĥw, I(σ) ≥ w + |E| + 1 for all σ ∈ Ωgood \ Ω0. Therefore,
ZM (Ω0) = 2e−2|β|`(w+|E|) and for σ ∈ Ωgood \ Ω0

wM (σ) ≤ e−2|β|`(w+|E|+1) =
ZM (Ω0)

2e2|β|` .

Then,

ZM (Ωgood) = ZM (Ω0) +
∑

σ∈Ωgood\Ω0

wM (σ) ≤ ZM (Ω0) + |Ωgood| ·
ZM (Ω0)

2e2|β|` = ZM (Ω0)

(
1 +

2N+1

e2|β|`

)
.

By assumption |β|(` − d) ≥ N , so ZM (Ωgood) ≤ ZM (Ω0)
(
1 + e−2|β|d) . Thus, we deduce

that
ZM (Ω0)

ZM (Ωgood)
≥ 1

1 + e−2|β|d ≥ 1− e−2|β|d.

16



Lower Bounds for Testing Graphical Models

Plugging this bound into (7) gives (6) and the proof of part 1 of the lemma is complete.
For the second part we show that when ({s, t}, V ) is not the unique maximum cut of

Ĥw, then

µM (Ω0) ≤ 1

2
. (8)

By Fact 13, µM∗(Ω
0) ≥ 1− ε− e−2|β|d; hence,

‖µM − µM∗‖tv ≥
∣∣µM∗(Ω0)− µM (Ω0)

∣∣ ≥ 1

2
− ε− e−2|β|d

and part 2 follows.
To establish (8), let (S, V̂ \ S) 6= ({s, t}, V ) be a maximum cut of the graph Ĥw. Let

σ+
∗ (resp., σ−∗ ) be the Ising configuration of the graph ĤΓ

w where the gadgets corresponding
to vertices in S are in the plus phase (resp., minus phase), and the remaining gadgets
are in the minus phase (resp., plus phase). Since (S, V̂ \ S) is a maximum cut of Ĥw,
I(σ+

∗ ) = I(σ−∗ ) ≤ I(σ+) = I(σ−) and so wM ({σ+
∗ , σ

−
∗ }) ≥ wM (Ω0). It follows that

ZM ≥ wM (Ω0) + wM (σ+
∗ , σ

−
∗ ) ≥ 2wM (Ω0)

and µM (Ω0) = wM (Ω0)/ZM ≤ 1/2; this gives (8) and part 2 follows.
Part 3 follows in similar fashion. Let (S, V̂ \ S) be a cut of Ĥw with strictly more

edges than the cut ({s, t}, V ). Let σ+
∗ (resp., σ−∗ ) be Ising configuration of ĤΓ

w determined
by (S, V̂ \ S) as in the proof of part 2. Then, I(σ+

∗ ) = I(σ−∗ ) < I(σ+) = I(σ−) and
wM ({σ+

∗ , σ
−
∗ }) ≥ e2|β|`wM (Ω0). It follows that

ZM ≥ wM (Ω0) + wM (σ+
∗ , σ

−
∗ ) ≥ (1 + e2|β|`)wM (Ω0)

and

µM (Ω0) =
wM (Ω0)

ZM
≤ 1

1 + e2|β|` ≤ e−2|β|` ≤ e−2|β|d,

where in the last inequality we use the assumption that |β|(`− d) ≥ N and so ` ≥ d. This
bound and Fact 13 imply

‖µM − µM∗‖tv ≥
∣∣µM∗(Ω0)− µM (Ω0)

∣∣ ≥ 1− ε− 2e−2|β|d,

as claimed. �

4.3. Proof of Theorem 4

In Theorem 4 we show that, under some mild assumptions, any identity testing algorithm
with running time T (n) and sample complexity L(n) provides a randomized algorithm for
MaxCut on graphs of poly(n) size with running time O(T (n)+n ·L(n)) when |β|d ≥ c lnn.
For convenience, we restate Theorem 4 here.

Theorem 4 Suppose n and d are positive integers such 3 ≤ d ≤ n1−ρ for some constant
ρ ∈ (0, 1). Then, for all n sufficiently large, there exist c = c(ρ) > 0 and an integer

N = Θ(nmin{ ρ
4
, 1
14
}) such that when |β|d ≥ c lnn, any identity testing algorithm for M(n, d)

17
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for the antiferromagnetic Ising model with running time T (n) and sample complexity L(n) ≤
exp(|β|d/c)

30n provides a randomized algorithm for MaxCut on any graph with N vertices. This
algorithm outputs the correct answer with probability at least 11/20 and has running time
O(T (n) + n · L(n)).

The testing instance in our reduction will consist of the model M and (approximate)
samples from M∗. Hence, in our proof of Theorem 4, it will be crucial that we can easily
generate samples from the simpler model M∗. This is established next.

Lemma 14 Let N ≥ 1 be an integer and let β < 0. Let Γ = (m, p, din, dout, `) be such that
|β|(`N − d) ≥ N and conditions (2)—(5) are satisfied. If for the Ising model M∗ = (ÎΓ

0 , β)
we have ZM∗(Ωgood) ≥ (1−ε)ZM∗ for some ε ∈ (0, 1), then there exists a sampling algorithm
with running time O(mN) such that with probability 1− o(1) over the choice of the random
graph G, the distribution µalg of its output satisfies:

‖µM∗ − µalg‖tv ≤ ε+ e−2|β|d.

Proof By Fact 13, µM∗(Ω
0) ≥ 1 − ε − e−2|β|d. Also, µM∗(σ

+) = µM∗(σ
−) = µM∗(Ω

0)/2.
Hence, if µalg is the uniform distribution over {σ+, σ−}, we have

‖µM∗ − µalg‖tv =

∣∣∣∣µM∗(σ+)− 1

2

∣∣∣∣+
1− µM∗(Ω0)

2
≤ ε+ e−2|β|d.

The results follows from the fact that a sample from µalg can be generated in O(mN) time.

We are now ready to prove Theorem 4.

Proof of Theorem 4 Let us assume first that 3 ≤ d = O(1). In this case, we take

N =
⌊
n1/14

⌋
− 2, and m =

⌊
n13/14

2

⌋
.

If n1/4 and n13/14

2 are both integers, then n = 2m(N + 2). For simplicity and without
much loss of generality, we assume that this is indeed the case. See Remark 15 for a brief

explanation on how to extend the current proof to the case when n1/4 or n13/14

2 are not
integers.

Let H = (V,E) be a graph such that |V | = N . We show that an identity testing algo-

rithm for M(n, d) with running time T and sample complexity L ≤ exp(|β|d/c)
30n , henceforth

called the Tester, can be used to solve the TwoLargeCuts problem on inputs H and
w ∈ N in O(T + Ln) time.

We recall that in the TwoLargeCuts problem the goal is to determine whether
({s, t}, V ) is the unique maximum cut of the graph Ĥw; see Definitions 7 and 8. For
this, we construct the two Ising models M = (ĤΓ

w, β) and M∗ = (ÎΓ
0 , β), as described at the

beginning of this section. When 3 ≤ d = O(1), we choose p = bm1/4c, din = d− 1, dout = 1
and ` = Θ(n9/112). That is,

Γ = {m, bm1/4c, d− 1, 1,Θ(n9/112)}.
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Lower Bounds for Testing Graphical Models

Recall that ` is an integer divisible by dout by assumption. Moreover, din + dout = d and
ĤΓ
w, ÎΓ

0 have exactly n vertices; hence, ĤΓ
w, Î

Γ
0 ∈M(n, d).

Suppose σ is sampled according from µM . Theorem 10 implies that with probability
1− o(1) over the choice of the random gadget G, if the configuration in the gadget Gv for
vertex v ∈ V̂ is re-sampled in σ, conditional on the configuration of σ outside of Gv, then the
new configuration in Gv will be in either the plus or minus phase with probability at least
1 − 2m

eδ|β|d
, for suitable constant δ > 0. A union bound then implies that after re-sampling

the configuration in every gadget one by one, the resulting configuration σ′ is in the set
Ωgood with probability 1− 2m(N+2)

eδ|β|d
. The same is true if σ were sampled from µM∗ instead.

Thus,

µM (Ωgood) =
ZM (Ωgood)

ZM
≥ 1− 2m(N + 2)

eδ|β|d
, and (9)

µM∗(Ωgood) =
ZM∗(Ωgood)

ZM∗
≥ 1− 2m(N + 2)

eδ|β|d
. (10)

Our choices for N and Γ satisfy conditions (2)—(5). It can also be checked that |β|(`N−
d) ≥ N when |β|d ≥ c lnn. Then, (10) and Lemma 14 imply that we can generate L samples
S = {σ1, . . . , σL} from a distribution µalg in O(nL) time such that

‖µM∗ − µalg‖tv ≤
2m(N + 2)

eδ|β|d
+

1

e2|β|d ≤
2n

eγ|β|d
, (11)

where γ = min{2, δ}.
Our algorithm for TwoLargeCuts inputs the Ising model M and the L samples S to

the Tester and outputs the negation of the Tester’s output. Recall that the Tester
returns Yes if it regards the samples in S as samples from µM ; it returns No if it regards
them to be from some other distribution ν such that ‖µM − ν‖tv > 1/3.

If ({s, t}, V ) is the unique maximum cut of Ĥw, then (9) and part 2 of Lemma 12 imply:

‖µM − µM∗‖tv ≤ 2

(
2m(N + 2)

eδ|β|d
+

1

e2|β|d

)
≤ 4n

eγ|β|d
.

The triangle inequality and (11) imply:

‖µM − µalg‖tv ≤ ‖µM − µM∗‖tv + ‖µM∗ − µalg‖tv ≤
6n

eγ|β|d
.

Let µ⊗LM , µ⊗LM∗ and µ⊗Lalg be the product distributions corresponding to L independent
samples from µM , µM∗ and µalg respectively. When c > 1/γ, we have

∥∥∥µ⊗LM − µ⊗Lalg

∥∥∥
tv
≤ L ‖µM − µalg‖tv ≤

e|β|d/c

30n
· 6n

eγ|β|d
≤ 1

5
.

Note that if π⊗L is the optimal coupling of the distributions µ⊗Lalg and µ⊗LM , and (S,S ′) is
sampled from π⊗L, then S ′ = S with probability at least 4/5, S ∼ µ⊗Lalg and S ′ ∼ µ⊗LM .
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Bezáková et al.

Therefore,

Pr[Tester outputs No when given samples S where S ∼ µ⊗Lalg]

= Pr[Tester outputs No when given samples S where (S,S ′) ∼ π⊗L]

≤ Pr[Tester outputs No when given samples S ′ where (S,S ′) ∼ π⊗L] + π⊗L(S 6= S′)

= Pr[Tester outputs No when given samples S ′ where S ′ ∼ µ⊗LM ] + π⊗L(S 6= S′)

≤ 1

4
+

1

5
=

9

20
. (12)

Hence, the Tester returns Yes with probability at least 11/20 in this case.
When ({s, t}, V ) is not the unique maximum cut of Ĥw, (9) and the second part of

Lemma 12 imply

‖µM − µM∗‖tv >
1

2
− n

eδ|β|d
− 1

e2|β|d >
1

3
, (13)

where the last inequality holds for n large enough, since by assumption that |β|d ≥ c lnn
and we chose c > 1/γ. Moreover, from (11) we get∥∥∥µ⊗LM∗ − µ⊗Lalg

∥∥∥
tv
≤ L ‖µM∗ − µalg‖tv ≤

1

15
.

Thus, analogously to (12) (i.e., using the optimal coupling between µ⊗Lalg and µ⊗LM∗), we
deduce that

Pr
[
Tester outputs Yes when given samples S where S ∼ µ⊗Lalg

]
≤ 1

4
+

14

15
≤ 19

60
.

Hence, the Tester returns No with probability at least 2/3.
Therefore, our algorithm can solve the TwoLargeCuts problem on Ĥw in O(T +Ln)

time with probability at least 11/20. The results for the case when 3 ≤ d = O(1) then

follows from Corollary 5 and the fact that |V | = N = bn1/14c − 2 ≥ bnmin{ ρ
4
, 1
14
}c − 2.

Now, for d such that d ≤ n1−ρ but d→∞, we take

N =
⌊
nρ/4

⌋
− 2, m =

⌊
n1−ρ/4

2

⌋
, and Γ = {m,m, bθdc , d− bθdc ,Θ(n1− 3ρ

4 )},

where θ = θ(ρ) is a suitable constant. That is, p = m, din = bθdc, dout = d − bθdc and

` = Θ(n1− 3ρ
4 ). These choices for N , m and Γ satisfy conditions (2)—(5). Hence, (9) and

(10) can be deduced in similar fashion using Theorem 11 instead. The rest of the proof
remains unchanged for this case. Note that for this choice of parameters, |V | = N =

bnρ/4c − 2 ≥ bnmin{ ρ
4
, 1
14
}c − 2. �

Remark 15 When either n1/4 or n13/14

2 is not an integer, then 2(m + 1)(N + 3) ≥ n >
2m(N + 2), and an identity testing algorithm for M(n, d) with running time T and sample
complexity L can be used to solve the same problem forM(2m(N+2), d) by simply “padding”
the graph fromM(2m(N+2), d) with n−2m(N+2) isolated vertices. The samples from the
hidden distribution can be extended by adding isolated vertices and independently assigning
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“+” or “−” with probability 1/2 to each of them. Hence, the resulting algorithm for identity
testing inM(2m(N+2), d) has running time T ′ = T (n)+O(n) and sample complexity L(n).
In this case, the proof of Theorem 4 gives that there is an algorithm for the TwoLargeCuts
problem on graphs with N vertices with running time O(T ′+Nm·L(n)) = O(T (n)+n·L(n)).
Hence, Theorem 4 holds for all sufficiently large n.

Remark 16 From (13) we see that our proof works when ‖µG,β − µG∗,β∗‖tv > ε for any
constant ε ∈ (0, 1/2). With a minor modification to the proof, we can extend our result to all
constant values of ε ∈ (0, 1), provided n is sufficiently large. Specifically, if we assume that
the starting graph H has a maximum cut of odd size, then it is straightforward to verify
that either ({s, t}, V ) is the unique maximum cut of Ĥw or there is some other cut with
strictly more edges. If this is the case, then we can use part 3 of Lemma 12 (instead of part
2) and deduce that the bound in (13) becomes ‖µM−µM∗‖tv > 1−ε for any desired constant
ε ∈ (0, 1). It can be easily checked that the TwoLargeCuts problem restricted to graphs
with odd maximum cuts is still hard; in particular, any algorithm for TwoLargeCuts that
works for this type of input can be used to solve the MaxCut problem efficiently.

5. Properties of the Ising Gadget

In this section we prove the key properties of the random bipartite graph G(m, p, din, dout)
that were used in Section 4 to establish our main result. In particular, we establish Theo-
rems 10 and 11. Throughout this section we let G = (VG = L ∪ R,EG) be an instance of
G(m, p, din, dout) as defined in Section 4. Recall that |L| = |R| = m and that there is a set
P of ports such that |P ∩ L| = |P ∩R| = p. For S, T ⊂ VG define

E(S, T ) = {{u, v} ∈ EG : u ∈ S, v ∈ T} .

In the proof of Theorems 10 and 11 we crucially use the following facts about the edge
expansion of the random graph G.

Theorem 17 Suppose p = m and 3 ≤ din ≤ d ≤ m1−ρ where ρ ∈ (0, 1) is a constant
independent of m. Then, with probability 1− o(1) over the choice of the random graph G:

min
S⊂VG:

0<|S|≤m

|E(S, VG\S)|
|S|

≥ ρdin

300
.

Theorem 18 Suppose 3 ≤ d = O(1), p = bmαc with α ∈ (0, 1
4 ], din = d− 1 and dout = 1.

Then, there exists a constant γ > 0 independent of m such that with probability 1 − o(1)
over the choice of the random graph G:

min
S⊂VG:

0<|S|≤m

|E(S, VG\S)|
|S|

≥ γd.

Theorem 19 Suppose 3 ≤ d = O(1), p = bmαc with α ∈ (0, 1
4 ], din = d− 1 and dout = 1.

Then, there exists a constant γ > 0 independent of m such that with probability 1 − o(1)
over the choice of the random graph G:

min
S⊂VG:

0<|P∩S|≤|S|≤m

|E(S, VG\S)|
|P ∩ S|

> 1 + γ.
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Theorem 17 is proved in Section 5.1 and Theorems 18 and 19 in Section 5.2. Before
that, we prove Theorems 10 and 11 which are restated below for sake of clarity.

Theorem 10 Suppose β < 0, 3 ≤ d = O(1), din = d − 1, dout = 1 and p = bmαc, where
α ∈ (0, 1

4 ] is a constant independent of m. Then, there exists a constant δ > 0 such that
with probability 1−o(1) over the choice of the random graph G the following holds for every
configuration τ on ∂P :

µG′,β({σ+(G), σ−(G)} | ∂P = τ) ≥ 1− 2m

eδ|β|d
.

Theorem 11 Suppose β < 0, p = m and 4 + 1200
ρ ≤ d ≤ m

1−ρ for some constant ρ ∈ (0, 1)
independent of m. Then, there exist constants δ = δ(ρ) > 0 and θ = θ(ρ) ∈ (0, 1) such that
when din = bθdc and dout = d − bθdc the following holds for every configuration τ on ∂P
with probability 1− o(1) over the choice of the random graph G:

µG′,β({σ+(G), σ−(G)} | ∂P = τ) ≥ 1− 2m

eδ|β|d
.

Proof of Theorems 10 and 11 Let σ and τ be Ising configurations on VG and ∂P
respectively. Let P+ ⊆ ∂P be the set of vertices of ∂P that are assigned “+” by τ and let
P− be those that are assigned “−”. Let L+

σ ⊆ L and L−σ ⊆ L be the set of vertices of L
that are assigned “+” and “−”, respectively, in σ and define R+

σ , R
−
σ ⊆ R similarly. Let

Sσ denote the set of smaller cardinality between L+
σ ∪ R−σ and L−σ ∪ R+

σ ; hence Sσ ≤ m.
Suppose |Sσ| > 0; i.e., σ 6= σ+(G) and σ 6= σ−(G), where σ+(G) (resp., σ−(G)) is the
configuration of G in which every vertex in L is assigned “+” (resp., “−”) and every vertex
in R is assigned “−” (resp., “+”).

For S, T ⊆ VG ∪ ∂P , we use [S, T ] for the number of edges between S and T in the
graph G′ = (VG ∪ ∂P,EG ∪ E(P, ∂P )). Observe that the weights of σ+(G) and σ−(G) in
G′ conditional on τ are:

w+ := wτG′,β(σ+(G)) = e−|β|([L,P
+]+[R,P−]), and

w− := wτG′,β(σ−(G)) = e−|β|([L,P
−]+[R,P+]).

Henceforth we use wτ (·) for wτG′,β(·).
We consider first the case when Sσ = L+

σ ∪R−σ . Then,

wτ (σ) = exp
[
−|β|(|E(Sσ, VG \ Sσ)|+ [L+

σ , P
+] + [L−σ , P

−] + [R+
σ , P

+] + [R−σ , P
−])
]

= w− · exp
[
−|β|(|E(Sσ, VG \ Sσ)|+ [L+

σ , P
+] + [R−σ , P

−]− [L+
σ , P

−]− [R−σ , P
+])
]

≤ w− · exp
[
−|β|(|E(Sσ, VG \ Sσ)| − [L+

σ , ∂P ]− [R−σ , ∂P ])
]

≤ w− · exp [−|β|(|E(Sσ, VG \ Sσ)| − [Sσ, ∂P ])] . (14)

where the first inequality follows from [L+
σ , P

−] − [L+
σ , P

+] ≤ [L+
σ , ∂P ] and [R−σ , P

+] −
[R−σ , P

−] ≤ [R−σ , ∂P ].

In Theorem 10 we assume that 3 ≤ d = O(1), p = bmαc with α ∈ (0, 1
4 ], din = d − 1

and dout = 1. Hence, [Sσ, ∂P ] = |Sσ ∩ P | and since 0 < |Sσ| ≤ m, Theorems 18 and 19
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imply that exists a constant γ > 0 such that with probability 1 − o(1) over the choice of
the random graph G we have

|E(Sσ, VG \ Sσ)|
|Sσ|

≥ γd, and

|E(Sσ, VG\Sσ)|
|Sσ ∩ P |

≥ 1 + γ.

Combining these two inequalities we get for δ = γ2

1+γ that

|E(Sσ, VG \ Sσ)| ≥ |Sσ ∩ P |+ δd|Sσ| = [Sσ, ∂P ] + δd|Sσ|.

Plugging this bound into (14),

wτ (σ) ≤ w− · exp [−δ|β|d|Sσ|] . (15)

Under the assumptions in Theorem 11, we can also establish (15) as follows. When m1−ρ ≥
d ≥ din = bθdc ≥ 3, Theorem 17 implies that

|E(Sσ, VG \ Sσ)| ≥ ρdin

300
|Sσ| =

ρ bθdc
300

|Sσ|.

Moreover,
[Sσ, ∂P ] ≤ dout|Sσ| = (d− bθdc)|Sσ|.

Hence, taking

θ =
300 + 0.75ρ

300 + ρ

we get that when d ≥ 4 + 1200
ρ :

ρ bθdc
300

− (d− bθdc) ≥ ρd

600
.

Together with (14) this implies

wτ (σ) ≤ w− · exp

[
−ρ|β|d|Sσ|

600

]
,

which gives (15) for δ ≤ ρ/600. Observe that our choice of θ guarantees d − 1 ≥ din =
bθdc ≥ 3 for all d ≥ 4.

For the case when Sσ = L−σ ∪R+
σ we deduce analogously that for a suitable δ > 0

wτ (σ) ≤ w+ · exp [−δ|β|d|Sσ|] . (16)

Let ΩG be the set of Ising configurations of the graph G. By definition, the partition
function ZG′,β,τ for the conditional distribution µG′,β(· | ∂P = τ) satisfies:

ZG′,β,τ =
∑
σ∈ΩG

wτ (σ) ≤
∑

σ: 0≤|L+
σ ∪R−σ |≤m

wτ (σ) +
∑

σ: 0≤|L−σ ∪R+
σ |≤m

wτ (σ).
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From (15) we get∑
σ: 0≤|L+

σ ∪R−σ |≤m

wτ (σ) ≤
∑

σ: 0≤|L+
σ ∪R−σ |≤m

w− ·e−δ|β|d|L
+
σ ∪R−σ |

= w−
m∑
k=0

(
2m

k

)
e−δ|β|dk ≤ w−

(
1 + e−δ|β|d

)2m
.

Similarly, we deduce from (16)∑
σ: 0≤|L−σ ∪R+

σ |≤m

wτ (σ) ≤ w+
(

1 + e−δ|β|d
)2m

.

Hence,

ZG′,β,τ ≤
(
w− + w+

) (
1 + e−δ|β|d

)2m
,

and

µG′,β({σ+(G), σ−(G)} | ∂P = τ) =
w+ + w−

ZG,β,τ
≥ 1(

1 + e−δ|β|d
)2m ≥ 1− 2m

eδ|β|d
,

where in the last inequality we use ( 1
1+x)2m ≥ (1− x)2m ≥ 1− 2mx for all x ∈ [0, 1). �

5.1. Gadget Expansion when d ≤ m1−ρ: Proof of Theorem 17

We derive Theorem 17 as a consequence of the following two properties of the random
bipartite multigraphs obtained as the union of perfect matchings.

Lemma 20 (Brito et al., 2018, Theorem 4). Let Ĝ = (LĜ∪RĜ, EĜ) be a random bipartite

graph obtained as the union of d random perfect matchings between LĜ and RĜ. Let λ2(Ĝ)
denote the second largest eigenvalue of its adjacency matrix. Then, for 3 ≤ d = O(1) and
any constant δ > 0 (independent of m), with probability 1− o(1), the following holds:

λ2(Ĝ) < 2
√
d− 1 + δ.

Lemma 21 Let Ĝ = (LĜ ∪ RĜ, EĜ) be a random bipartite graph obtained as the union
of d random perfect matchings between LĜ and RĜ. Suppose |LĜ| = |RĜ| = m and that
d ≤ m1−ρ for some constant ρ ∈ (0, 1) independent of m. Then, the probability that an edge
between LĜ and RĜ is chosen by more than d3/ρe random perfect matchings is O(m−1).

Proof Let LĜ = {v1, . . . , vm} and RĜ = {u1, . . . , um}. Let Xij be the random variable
corresponding to the number of perfect matchings that use the edge {vi, uj} and let κ =
d3/ρe. Then,

Pr[Xij ≥ κ] =

d∑
a=κ

(
d

a

)
1

ma

(
1− 1

m

)d−a
≤

d∑
a=κ

(
ed

am

)a
≤
( e

κmρ

)κ d−κ∑
a=0

( e

κmρ

)a
≤ O(m−3).

The result follows by a union bound over the pairs {vi, uj}.

We are now ready to prove Theorem 17, which for convenience we restate first.
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Theorem 17 Suppose p = m and 3 ≤ din ≤ d ≤ m1−ρ where ρ ∈ (0, 1) is a constant
independent of m. Then, with probability 1− o(1) over the choice of the random graph G:

min
S⊂VG:

0<|S|≤m

|E(S, VG\S)|
|S|

≥ ρdin

300
.

Proof LetG = (VG = L∪R,EG) be a random bipartite graph sampled from G(m, p, din, dout).
For k ≥ 3 let Fk = (L ∪R,E(Fk)) be a random bipartite graph obtained as the union of k
random perfect matchings between L and R. For S ⊆ VG let EFk(S, VG \S) ⊆ E(Fk) be set
edges between S and VG \ S in Fk. Lemma 21 implies that for κ = d3/ρe, with probability
1− o(1), we have

min
S⊂VG:

0<|S|≤m

|E(S, VG\S)|
|S|

≥ min
S⊂VG:

0<|S|≤m

|EFdin
(S, VG \ S)|
κ|S|

. (17)

Let d′ ≥ 3 be the unique integer divisible by 3 such that din ≥ d′ ≥ din − 2. Then,

min
S⊂VG:

0<|S|≤m

|EFdin
(S, VG \ S)|
κ|S|

≥ min
S⊂VG:

0<|S|≤m

|EFd′ (S, VG \ S)|
κ|S|

. (18)

The random graph Fd′ can also be obtained as the union of d′/3 independent instances of

the random graph F3; let F
(1)
3 , . . . , F

(d′/3)
3 be these instances. For each i ∈ {1, . . . , d′/3},

Cheeger’s inequality and Lemma 20 (with δ = 0.01) imply that with probability r = 1−o(1):

min
S⊂VG:

0<|S|≤m

∣∣∣E
F

(i)
3

(S, VG \ S)
∣∣∣

|S|
≥ 3− λ2(F

(i)
3 )

2
≥ 0.08.

Let Z be number of F
(i)
3 ’s that satisfy this property. We have E[Z] = rd′/3, Var(Z) =

r(1− r)d′/3 and by Chebyshev’s inequality for sufficiently large m

Pr

[
Z ≤ 3d′

10

]
≤ Pr

[∣∣Z − E[Z]
∣∣ ≥ (r

3
− 3

10

)
d′
]
≤ r(1− r)

3
(
r
3 −

3
10

)2
d′

= o(1).

Therefore, with probability 1− o(1) we have

min
S⊂VG:

0<|S|≤m

|EFd′ (S, VG \ S)|
|S|

= min
S⊂VG:

0<|S|≤m

d′
3∑
i=1

∣∣∣E
F

(i)
3

(S, VG \ S)
∣∣∣

|S|
≥ 0.08Z ≥ 0.024d′.

This bound, combined with (17) and (18), implies that with probability 1− o(1):

min
S⊂VG:

0<|S|≤m

|E(S, VG\S)|
|S|

≥ 0.024d′

κ
≥ ρdin

300
,

where in the last inequality we use κ ≤ 3/ρ+ 1 ≤ 4/ρ and d′ ≥ 3
5din for din ≥ 3.
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5.2. Gadget Expansion when d = O(1): Proof of Theorems 18 and 19

Let m, p and d be positive integers such that 3 ≤ d = O(1) and p = bmαc for some constant
α ∈ (0, 1). Throughout this section we let G = (VG = L ∪ R,EG) be a random bipartite
graph distributed according to G(m, p, d − 1, 1); that is, din = d − 1 and dout = 1. The
random graph G can be equivalently generated in the following two ways.

Lemma 22 Let m, p, d ∈ N+ be positive integers such that m ≥ p and d ≥ 3. Let G′ =
(VG = L ∪R,EG′) be the random bipartite graph generated as follows:

1. Let M1,M2, . . . ,Md be d random perfect matchings between L and R;

2. Let P1 be a subset of L chosen uniformly at random among all the subsets of L such
that |P1| = p;

3. Let P2 ⊂ R be the set of vertices in R that are matched to P1 in Md, and let A ⊂Md

be the set of edges between P1 and P2;

4. Let P = P1 ∪ P2 and EG′ =
⋃d
i=1Mi \A.

Then G′ has distribution G(m, p, d− 1, 1).

Lemma 23 Let m, p, d ∈ N+ be positive integers such that m ≥ p and d ≥ 3. Let G′′ =
(VG = L ∪R,EG) be the random bipartite graph generated as follows:

1. Let M1,M2, . . . ,Md−1 be d− 1 random perfect matchings between L and R;

2. Let P1 be a subset of L chosen uniformly at random among all the subsets of L such
that |P1| = p;

3. Let M ′1 be a random complete matching between L\P1 and R, and let P2 ⊂ R be the
set of unmatched vertices in R; hence |P2| = p.

4. Let P = P1 ∪ P2 and EG′′ =
(⋃d−1

i=1 Mi

)⋃
M ′1.

Then G′′ has distribution G(m, p, d− 1, 1).

Lemmas 22 and 23 are both proved in Section 5.4.
The edge expansion of the random graph G satisfies the following two bounds, which

we will crucially use in our proofs of Theorems 18 and 19.

Lemma 24 For 3 ≤ d = O(1), α ∈ (0, 1) and δ > 0, there exists ε > 0 such that with
probability 1− o(1):

min
S⊂VG:

0<|S|≤εm

|E(S, VG\S)|
|S|

> d− 2− α− δ.

Lemma 25 For 3 ≤ d = O(1), α ∈ (0, 1
4 ], δ > 0 and ξ ∈ (0, 1), it holds with probability

1− o(1):

min
S⊂VG:

0<ξ|S|≤|P∩S|

|E(S, VG\S)|
|S|

> ξ(d− α− δ)− 1.
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We are now ready to prove Theorems 18 and 19; in both cases, we restate the corresponding
theorem first.

Theorem 18 Suppose 3 ≤ d = O(1), p = bmαc with α ∈ (0, 1
4 ], din = d− 1 and dout = 1.

Then, there exists a constant γ > 0 independent of m such that with probability 1 − o(1)
over the choice of the random graph G:

min
S⊂VG:

0<|S|≤m

|E(S, VG\S)|
|S|

≥ γd.

Proof By Lemma 24, for α ∈ (0, 1
4 ] and δ ≤ 1

4 there exists ε > 0 such that with probability
1− o(1):

min
S⊂VG:

0<|S|≤εm

|E(S, VG\S)|
|S|

> d− 5

2
≥ d

6
.

For S ⊂ VG with εm < |S| ≤ m, we consider the random bipartite graph Ĝ obtained as
the union of d random perfect matchings M1, . . . ,Md between L and R. Let λ2(Ĝ) denote
the second largest eigenvalue of the adjacency matrix of Ĝ. Lemma 20 implies that for any
constant δ > 0 (independent of m), with probability 1− o(1), the following holds:

λ2(Ĝ) < 2
√
d− 1 + δ.

Now, let Ĝ = (VG, EĜ) and let Ê(S, VG \S) be the set of edges between S and VG \S in Ĝ.
Cheeger’s inequality implies

min
S⊂VG:

0<|S|≤m

|Ê(S, VG\S)|
|S|

≥ d− λ2(Ĝ)

2
>
d

2
−
√
d− 1− δ

2
≥ d

40
,

where the last inequality holds for δ ≤ 0.01.
We use this bound on the edge expansion of Ĝ to deduce a bound for the edge expansion

of G. First note that by Lemma 22, G can be obtained from Ĝ as follows:

1. Choose P1 ⊂ L uniformly at random among all the subsets of L of size p;

2. Let P2 ⊂ R be the set of vertices matched to P1 in Md, and let A ⊂Md be the set of
edges between P1 and P2;

3. Set P = P1 ∪ P2 and EG =
⋃d
i=1Mi \A;

4. Replace all the multiedges in EG by single edges.

Moreover, since 3 ≤ d = O(1), Lemma 21 implies there exists a constant κ such that with
probability 1−O(m−1) the multiplicity of every edge in Ĝ is at most κ. Hence, in order to
obtain G from Ĝ, p edges are removed and the multiplicity of every edge may decrease by
a factor of at most κ. Therefore, for every S ⊂ VG

E(S, VG \ S) ≥ Ê(S, VG \ S)− p
κ

,
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and

min
S⊂VG:

εm<|S|≤m

|E(S, VG\S)|
|S|

≥ min
S⊂VG:

εm<|S|≤m

|Ê(S, VG \ S)| − p
κ|S|

≥ d

40κ
− 1

εκm3/4
,

and the result is established.

Theorem 19 Suppose 3 ≤ d = O(1), p = bmαc with α ∈ (0, 1
4 ], din = d− 1 and dout = 1.

Then, there exists a constant γ > 0 independent of m such that with probability 1 − o(1)
over the choice of the random graph G:

min
S⊂VG:

0<|P∩S|≤|S|≤m

|E(S, VG\S)|
|P ∩ S|

> 1 + γ.

Proof Let S ⊂ VG such that 0 < |S| ≤ m. Let d̂ = d−α− δ, δ = 0.01 and let ε > 0 be the
constant from Lemma 24. We consider three cases, depending on the sizes of S and S ∩ P .
Suppose first that |S| > εm. Then, Theorem 18 implies that with probability 1−o(1), there
exists γ′ > 0 such that

|E(S, V \S)| > γ′|S| > γ′εm ≥ (1 + γ)mα > (1 + γ)|P ∩ S|,

where the second to last inequality holds for sufficiently large m and a suitable constant
γ > 0.

For the second case, suppose that |S| ≤ εm and |P ∩ S| < ξ|S|, where

ξ =

√
4d̂(d̂− 2) + 1 + 1

2d̂
.

Then, by Lemma 24, with probability 1− o(1):

|E(S, V \S)| > (d̂− 2)|S| > d̂− 2

ξ
|P ∩ S| =

√
4d̂(d̂− 2) + 1− 1

2
|P ∩ S| ≥ (1 + γ)|P ∩ S|,

where the last inequality holds for sufficiently small γ since d̂ ≥ 2.74.

Finally, suppose |S| ≤ εm and |P ∩ S| ≥ ξ|S|. In this case, Lemma 25 also implies that
with probability 1− o(1):

|E(S, V \S)| >
(
ξd̂− 1

)
|S| =

√
4d̂(d̂− 2) + 1− 1

2
|P ∩ S| ≥ (1 + γ)|P ∩ S|,

and the result follows.
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5.3. Gadget Expansion when d = O(1): Proof of Auxiliary Lemmas 24 and 25

In this section, we give the proof of our two key bounds on the edge expansion of the random
graph G(m, p, d− 1, 1). In particular, we prove Lemmas 24 and 25. Suppose 3 ≤ d = O(1),
p = bmαc for some constant α ∈ (0, 1), and let G = (VG = L∪R,EG) be a random bipartite
graph distributed according to G(m, p, d − 1, 1). Our proofs of Lemmas 24 and 25 will be
based on the following bound for the vertex expansion of small subsets of L (or R). Its
proof has similar flavor to that of Theorem 4.16 in (Hoory et al., 2006) for random regular
bipartite graphs. Recall that the vertex expansion is defined as:

∂S = {v ∈ VG\S : ∃u ∈ S, {u, v} ∈ EG}.

Lemma 26 For 3 ≤ d = O(1), α ∈ (0, 1) and δ > 0, there exists ε > 0 such that with
probability 1− o(1) the following holds:

min
S⊂L:

0<|S|≤εm

|∂S|
|S|

> d− 1− α− δ.

Proof Let
η = d− 1− α− δ.

For S ⊂ L and T ⊂ R, let XS,T be an indicator random variable for the event ∂S ⊆ T . For
some ε ∈ (0, 1/η) to be chosen later, let

X =
∑
S⊂L:

0<|S|≤εm

∑
T⊂R:

|T |=bη|S|c

XS,T .

Since every set T ⊂ R of size less than bη|S|c is included in some subset of R of size exactly
bη|S|c, it suffices to show that

Pr[X > 0] ≤ O
(

(lnm)δ

mδ

)
.

Write |S| = s, |T | = t and |P ∩ S| = r. Then, Lemma 23 implies

Pr [XS,T = 1] =

(
t(t− 1) . . . (t− s+ 1)

m(m− 1) . . . (m− s+ 1)

)d−1( t(t− 1) . . . (t− (s− r) + 1)

m(m− 1) . . . (m− (s− r) + 1)

)
≤
(
t

m

)ds−r
.

Using Markov’s inequality, we get

Pr [X > 0] = Pr [X ≥ 1] ≤ E[X],

and so

Pr [X > 0] ≤
∑
S⊂L:

0<|S|≤εm

∑
T⊂R:

|T |=bη|S|c

E[XS,T ]

≤
bεmc∑
s=1

s∑
r=0

(
p

r

)(
m− p
s− r

)(
m

t

)(
t

m

)ds−r
.
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From the inequality
(
m
k

)
≤
(

em
k

)k
, we get

Pr [X > 0] ≤
bεmc∑
s=1

s∑
r=0

(ep

r

)r (e(m− p)
s− r

)s−r (em

t

)t( t

m

)ds−r

=

bεmc∑
s=1

s∑
r=0

[
(ep)r(e(m− p))s−r

]
·

[(
1

r

)r ( 1

s− r

)s−r]
·

[(em

t

)t( t

m

)ds−r]
.

Since p ≤ mα, the first term is be bounded by

(ep)r(e(m− p))s−r ≤ esprms−r =
(

em1− (1−α)r
s

)s
. (19)

Also, the AM-GM inequality yields(
1

r

)r ( 1

s− r

)s−r
≤

(
r · 1

r + (s− r) · 1
s−r

s

)s
=

(
2

s

)s
. (20)

Finally, since for ε ∈ (0, 1/η), t ≤ ηs ≤ ηεm < m we have

(em

t

)t( t

m

)ds−r
≤
(em

t

)ηs( t

m

)ds−r
=

[
eη
(
t

m

)d− r
s
−η
]s
≤
[
eη
(ηs
m

)d− r
s
−η
]s
. (21)

Combining the inequalities (19), (20) and (21) we deduce

Pr [X > 0] ≤
bεmc∑
s=1

s∑
r=0

[
em1−(1−α) r

s · 2

s
· eη
(ηs
m

)d− r
s
−η
]s

=

bεmc∑
s=1

s∑
r=0

[
2eη+1ηd−

r
s
−η ·

( s
m

)d−1−α r
s
−η
· s−(1−α) r

s

]s
.

We recall that η = d− 1− α− δ, so for 0 ≤ r ≤ s we have

ηd−
r
s
−η ≤ (d− 1)d−η,

( s
m

)d−1−α r
s
−η
≤
( s
m

)δ
and s−(1−α) r

s ≤ 1.

Thus, taking c = c(d, α, δ) = 2eη+2(d− 1)d−η we obtain

Pr [X > 0] ≤
bεmc∑
s=1

s∑
r=0

[
2eη+1(d− 1)d−η ·

( s
m

)δ]s

≤
bεmc∑
s=1

(s+ 1)

[
c

e
·
( s
m

)δ]s

≤
bεmc∑
s=1

[
c
( s
m

)δ]s
,
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where in the last inequality we use the fact that (s+ 1)1/s ≤ e for all s > 0.

Now given δ > 0, since c ≤ 2d2+δed+1, we can choose ε ∈ (0, 1/η) such that cεδ < e−1.
For this choice of ε we have

bεmc∑
s=bδ lnmc+1

[
c
( s
m

)δ]s
≤

bεmc∑
s=bδ lnmc+1

[
cεδ
]s
≤

bεmc∑
s=bδ lnmc+1

1

es
= O

(
1

mδ

)

and
bδ lnmc∑
s=1

[
c
( s
m

)δ]s
≤
bδ lnmc∑
s=1

[
c

(
δ lnm

m

)δ]s
= O

(
(lnm)δ

mδ

)
.

Hence,

Pr [X > 0] ≤ O
(

(lnm)δ

mδ

)
and the lemma follows.

We are now ready to prove Lemma 24, which as usual we restate first.

Lemma 24 For 3 ≤ d = O(1), α ∈ (0, 1) and δ > 0, there exists ε > 0 such that with
probability 1− o(1):

min
S⊂VG:

0<|S|≤εm

|E(S, VG\S)|
|S|

> d− 2− α− δ.

Proof By Lemma 26, for 3 ≤ d = O(1), α ∈ (0, 1) and δ > 0 there exists ε > 0 such that
for all T ⊂ VG with 0 < |T | ≤ εm and either T ⊂ L or T ⊂ R, with probability 1− o(1) we
have

|∂T | > (d− 1− α− δ)|T |.

Suppose this holds for every such T . Let S ⊂ VG such that 0 < |S| ≤ εm and let SL = S∩L
and SR = S ∩R. Then, SL ⊂ L, SR ⊂ R and max{|SL|, |SR|} ≤ |S| ≤ εm. Hence,

|E(S, V \S)| ≥ |∂S|
= |∂SL\SR|+ |∂SR\SL|
≥ |∂SL| − |SR|+ |∂SR| − |SL|
> (d− 1− α− δ)|SL| − |SR|+ (d− 1− α− δ)|SR| − |SL|
= (d− 2− α− δ)|S|.

Therefore, this holds for all such S with probability 1− o(1) and the result follows.

To prove Lemma 25 we also need the following fact.

Fact 27 For 3 ≤ d = O(1) and α ∈ (0, 1
4 ], the event E(L ∩ P,R ∩ P ) = ∅ occurs with

probability 1−O(m−1/2).
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Proof By definition, no edges are added between L ∩ P and R ∩ P in M ′1. Thus, it is
sufficient to show that E(L∩P,R∩P ) = ∅ after adding the d−1 random perfect matchings
M1, . . . ,Md−1. We may generate a random matching by choosing for each vertex of L, in
any order, a uniformly random unmatched vertex in R. Say M1, . . . ,Md−1 are generated in
this manner always matching the vertices in L∩P first. Then, the probability of the event
E(L ∩ P,R ∩ P ) = ∅ is:[

p−1∏
i=0

(
1− p

m− i

)]d−1

≥
(

1− p

m− p+ 1

)p(d−1)

≥ 1−O(m−1/2). �

We now have all the ingredients for the proof of Lemma 25.

Lemma 25 For 3 ≤ d = O(1), α ∈ (0, 1
4 ], δ > 0 and ξ ∈ (0, 1), it holds with probability

1− o(1):

min
S⊂VG:

0<ξ|S|≤|P∩S|

|E(S, VG\S)|
|S|

> ξ(d− α− δ)− 1.

Proof By Lemma 26, for 3 ≤ d = O(1) and δ > 0 there exists ε > 0 such that, with
probability 1− o(1), for all S ⊂ V with 0 < |S| ≤ εm and either S ⊂ L or S ⊂ R,

|∂S| > (d− 1− α− δ) |S|.

Also, by Fact 27, P is an independent set with probability 1−O(m−1/2). Hence, by a union
bound, both of these events occur with probability 1− o(1). Suppose this is the case.

For ξ ∈ (0, 1), let S ⊂ V such that 0 < ξ|S| ≤ |P ∩ S|. Then, for sufficiently large m

|S| ≤ |P ∩ S|
ξ

≤ 2p

ξ
≤ εm.

Let SL = S ∩ L and SR = S ∩R. Since there is no edge between any pair of vertices in P ,
we have

∂SL\SR ⊃ ∂(P ∩ SL)\SR = ∂(P ∩ SL)\(SR\P ),

and similarly ∂SR\SL ⊃ ∂(P∩SR)\(SL\P ). Moreover, SL ⊂ L, SR ⊂ R and max{|SL|, |SR|} ≤
|S| ≤ εm. It follows that

|E(S, V \S)| ≥ |∂S|
= |∂SL\SR|+ |∂SR\SL|
≥ |∂(P ∩ SL)\(SR\P )|+ |∂(P ∩ SR)\(SL\P )|
≥ |∂(P ∩ SL)| − |SR\P |+ |∂(P ∩ SR)| − |SL\P |
> (d− 1− α− δ)|P ∩ SL|+ (d− 1− α− δ)|P ∩ SR| − |S\P |
= (d− α− δ)|P ∩ S| − |S|
≥ (ξ(d− α− δ)− 1) |S|.

Thus, this holds for all S ⊂ V such that 0 < ξ|S| ≤ |P ∩ S| with probability 1 − o(1) as
claimed.
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5.4. Ising Gadget: Equivalent Generation

We previously stated, in Lemmas 22 and 23, two alternative procedures to generate a
random graph G with distribution G(m, p, d− 1, 1). We conclude this section with a proof
of these facts.

Proof of Lemmas 22 and 23 Denote the random bipartite graph defined in Lemma 22
by G′ and the one in Lemma 23 by G′′. We need to show that both G′ and G′′ have
distribution G(m, p, d − 1, 1). Recall that P1 = P ∩ L, P2 = P ∩ R and M ′1 is the perfect
matching between L\P1 and R\P2. By the definitions of G(m, p, d − 1, 1), G′ and G′′, it
suffices to show that the joint distributions of (P2,M

′
1) in these three models are the same.

We recall that:

• In G(m, p, d− 1, 1), the joint distribution ρ of (P2,M
′
1) is:

1. P2 is a subset of R chosen uniformly at random among all the subsets of R such
that |P2| = p;

2. M ′1 is a random perfect matching between L\P1 and R\P2.

• In G′, the joint distribution ρ′ of (P2,M
′
1) is:

1. Md is a random perfect matching between L and R;

2. P2 ⊂ R is the set of vertices in R that are matched to P1;

3. A ⊂Md is the set of edges between P1 and P2, and let M ′1 = Md\A.

• In G′′, the joint distribution ρ′′ of (P2,M
′
1) is:

1. M ′1 is a random complete matching between L\P1 and R;

2. P2 ⊂ R is the set of unmatched vertices in R.

We first show that ρ′′ = ρ. In ρ′′, the set P2 of unmatched vertices in R is a uniformly
random subset of R over all subsets such that |P2| = p. Also, given P2 ⊂ R, a random
complete matching between L\P1 and R conditioned on that vertices in P2 are unmatched
is a random perfect matching between L\P1 and R\P2. This gives ρ′′ = ρ. To see that
ρ′ = ρ′′, we observe that a random complete matching between L\P1 and R can be obtained
by first drawing a random perfect matching between L and R and then removing all edges
incident to P1. �

6. Identity Testing Algorithm for the Ferromagnetic Ising Model

Let G = (V,E) ∈ M(n, d) be an n-vertex graph of maximum degree at most d. In this
section, we focus on the ferromagnetic (attractive) setting. We will allow each edge to
have distinct but positive interaction parameter which may depend on n. In setting, β =
{β(v, w)}{v,w}∈E with β(v, w) > 0, and the Gibbs distribution becomes

µG,β(σ) =
1

ZG,β
exp

 ∑
{v,w}∈E

β(v, w)1{σ(v) = σ(w)}

 ,
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for every σ ∈ {+,−}V ; cf., (1). With slight abuse of notation, we also use β for the largest
β(v, w); i.e., β = max{v,w}∈E β(v, w). We remark that the Ising model is also well-defined
when G is a multigraph. Indeed, an Ising model on a multigraph can be transformed into an
equivalent model on a simple graph by collapsing all parallel edges and setting β(v, w) to be
the sum of the weights of all the edges between v, w ∈ V . We restrict attention again in this
section to the simpler case where there is no external magnetic field. This simplification is
not actually necessary and is done only for the sake of clarity in our proofs; for a discussion
about how our algorithmic results extend to models with external field see Remark 31.

In (Daskalakis et al., 2018), the authors give an algorithm for identity testing forM(n, d)
(see Algorithm 2 in (Daskalakis et al., 2018)). We call this algorithm the DDK algorithm. As
discussed in the introduction, the running time and sample complexity of this algorithm for
the ferromagnetic Ising model, where we can sample in polynomial time, is poly(n, d, β, ε−1).
We provide here an algorithm whose running time and sample complexity is polynomial in
n, d and ε−1 but independent of β.

Our algorithm will use as a subroutine the DDK algorithm for multigraphs, which
extends straightforwardly to this more general setting. We will also use the fact that we
can generate samples from the ferromagnetic Ising distribution in polynomial time (see
Jerrum and Sinclair, 1993; Randall and Wilson, 1999; Guo and Jerrum, 2017; Collevecchio
et al., 2016) for various methods. These two facts are rigorously stated in the following
theorems. For positive integers n and m, letMmulti(n,m) denote the family of all n-vertex
multigraphs with at most m edges.

Theorem 28 Let H ∈Mmulti(n,m) where n, m are positive integers. Then, for all β, δ >
0, there exists an algorithm that generates a sample from a distribution µalg satisfying:

‖µH,β − µalg‖tv ≤ δ,

with running time poly(m, log(1/δ)).

Theorem 29 (Daskalakis et al., 2018). The DDK algorithm for the identity testing prob-
lem inMmulti(n,m) has sample complexity O(m2β2ε−2 log n), running time poly(m,β, ε−1)
and success probability at least 4/5.

Before presenting our algorithm, we first introduce some necessary notations and defi-
nitions. For a set of vertices A ⊂ V , let

(
A
2

)
denote the collection of all pairs of vertices in

A; i.e., (
A

2

)
= {{v, w} : v, w ∈ A, v 6= w}.

Suppose P = {C1, . . . , Ck} is a partition of V ; that is, ∪ki=1Ci = V and Ci ∩ Cj = ∅ for
1 ≤ i < j ≤ k. Let

E(P ) =

k⋃
i=1

(
Ci
2

)
.

The quotient graph Gp = (V (Gp), E(Gp)) is a multigraph defined as follows:

1. Every vertex of Gp is a partition class Ci from P where 1 ≤ i ≤ k; i.e., V (Gp) = P .
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2. Every edge between Ci and Cj of Gp corresponds to an edge {v, w} of G where v ∈ Ci
and w ∈ Cj , allowing parallel edges. The number of edges between Ci and Cj in Gp

is equal to the size of the set {{v, w} ∈ E : v ∈ Ci, w ∈ Cj}.

Observe also that there is a one-to-one correspondence between the edge sets E(Gp) and
E \E(P ), which we represent by the bijective map ϕ : E(Gp)→ E\E(P ). Using ϕ, we can
define an Ising model (Gp, βp) on the quotient graph Gp; the parameter βp is given by

βp(e) = β(ϕ(e))

for every e ∈ E(Gp). We call (Gp, βp) the quotient model.
Suppose τ ∈ {+,−}V is an Ising configuration of the original model (G, β) satisfying

τ(v) = τ(w) for all {v, w} ∈ E(P ); that is, every vertex in the same partition class Ci
shares the same spin. Then, we can define a corresponding configuration τp ∈ {+,−}P of
the quotient model (Gp, βp) as follows. For each Ci ∈ P and v ∈ Ci

τp(Ci) = τ(v);

our assumption on τ guarantees that the configuration τp is well-defined.
Recall that in the identity testing problem for M(n, d), we are given a graph G =

(V,E) ∈ M(n, d), the parameter β and sample access to an unknown Ising distribution on
a graph G∗ ∈M(n, d). We will reduce this problem to identity testing for the corresponding
quotient models.

For ease of notation, we set µ = µG,β, µp = µGp,βp , µ∗ = µG∗,β∗ and µ∗p = µG∗p ,β∗p . For a
partition P of V , define P to be the event that vertices from the same partition class of P
receive the same spin; i.e.,

P = {Xv = Xw, ∀{v, w} ∈ E(P )},

where recall that Xv, Xw{+1,−1} are the random variables for the spins at vertices v and
w respectively. Interchangeably, we also use P for the set

P =
{
σ ∈ {+,−}V : σ(v) = σ(w), ∀{v, w} ∈ E(P )

}
.

We remark that the conditional distributions µ(·|P) and µ∗(·|P) are equivalent to the Gibbs
distributions µp and µ∗p, respectively, for the quotient models.

Given L samples {σ1, . . . , σL} from µ, we define µemp to be the empirical distribution of
these samples; in particular,

µemp(P) =
1

L

L∑
i=1

1 {σi ∈ P}

Observe that µemp(P) = 1 if and only if in all the L samples every vertex from the same
partition class of P has the same spin. Similarly, given L samples {τ1, . . . , τL} from µ∗, we
also define the empirical distribution µ∗emp and the empirical probability µ∗emp(P).

Suppose we are given a known Ising model (G, β), L samples {τ1, . . . , τL} from an
unknown Ising model (G∗, β∗) and a parameter ε > 0, where G,G∗ ∈M(n, d) and β, β∗ > 0.
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Algorithm 1: Identity testing for ferromagnetic Ising models

input : An Ising model (G, β), L samples {τi}Li=1 from an unknown Ising model
(G∗, β∗) and a parameter ε > 0.

output: Yes if it regards{τi}Li=1 as samples from µG,β;
No if it regards {τi}Li=1 as samples from µG∗,β∗ such

that ‖µG,β − µG∗,β∗‖tv > ε.

1 P = {V };
2 for i← 1 to L do
3 foreach C ∈ P do
4 C+ = {v ∈ C : τi(v) = +};
5 C− = {v ∈ C : τi(v) = −};
6 P ← P\{C} ∪ {C+, C−};

7 Generate L independent (ε/16)-approximate samples {σi}Li=1 from µG,β;
8 if µemp(P ) ≤ 1− ε/4 then
9 return No;

10 foreach {v, w} ∈ E\E(P ) do
11 if β(v, w) ≥ ln(20n2L) then
12 return No;

13 Run the DDK algorithm on the quotient model (Gp, βp), with samples {(τi)p}Li=1

and parameter ε′ = ε/2.
14 Return the output of the DDK algorithm.

Our algorithm (see Algorithm 1) tests whether (G, β) = (G∗, β∗) or ‖µG,β − µG∗,β∗‖tv > ε.
For this, it first identifies “heavy” edges. These are the edges {v, w} whose interaction
parameter β(v, w) is very large, and thus its endpoints v and w are likely to have the same
spin. To identify the heavy edges, the algorithm looks for the coarsest partition P of V
such that for every partition class C of P , all vertices from C have the same spin in each of
the L samples {τ1, . . . , τL}; i.e., µ∗emp(P) = 1. The algorithm will regard the edges in E(P )
as the heavy ones.

The algorithm then generates L samples from the given Ising model (G, β) and computes
µemp(P ) from these samples. If µemp(P ) is small, then it means that there is substantial
disagreement between the sets of heavy edges in the known and hidden models, so the
algorithm will output No. Otherwise, the algorithm has found a partition P such that
vertices from the same partition class are very likely to receive the same spin in both (G, β)
and (G∗, β∗). The algorithm outputs No if any heavy edge of G is not included in E(P ).

As a result, after Steps 10-12, the weights of the edges in E(Gp) are guaranteed to be
O(log n) and those in E(G∗p) are also O(log n) with high probability. Consequently, the
original identity testing problem for (G, β) and (G∗, β∗) reduces to the same problem for
the quotient models (Gp, βp) and (G∗p, β

∗
p) where βp, β

∗
p = O(log n). Hence, when we run

the DDK algorithm on the quotient models, the dependence on β can be replaced by a
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poly(log n) term. The precise sample complexity of Algorithm 1 is given in the following
theorem.

Theorem 30 Suppose G,G∗ ∈ M(n, d) and β, β∗ > 0. For all sufficiently large n, Al-
gorithm 1 outputs the correct answer for the identity testing problem with probability at
least 3/4 and has sample complexity L = O(n2d2ε−2 log3 n). Moreover, the running time of
Algorithm 1 is poly(n, d, ε−1).

Remark 31 Our guarantees for Algorithm 1 in Theorem 30 extend without significant mod-
ification to the case where the Gibbs distribution µG,β includes a consistent magnetic field
or vertex potential. (Recall that a magnetic field is consistent if it has the same sign in
every vertex.) We believe that identity testing for the ferromagnetic Ising model with in-
consistent fields is actually hard since sampling is already known to be #BIS-hard in this
setting (Goldberg and Jerrum, 2007). Observe that the DDK algorithm is not guaranteed
to run in polynomial time with inconsistent fields since in this case we do not know how to
compute the pairwise covariances efficiently.

Before proving Theorem 30, we first show that, with high probability, the empirical
distributions µemp, µ∗emp are close to the corresponding Gibbs distributions µ, µ∗. Define F
to be the event that the following two events occur:

1. For every partition P of V , |µemp(P)− µ(P)| < ε
8 and |µ∗emp(P)− µ∗(P)| < ε

8 ;

2. For every v, w ∈ V , if µ∗(Xv = Xw) ≥ 1− 1
20n2L

, then τi(v) = τi(w) for all 1 ≤ i ≤ L.

The probability space associated with the event F is determined by the random samples
{σ1, . . . , σL} and {τ1, . . . , τL}. If F occurs, then the empirical and true distributions are
close to each other. We can prove that the event F occurs with probability at least 19/20.

Lemma 32 Suppose L ≥ 800n2ε−2. Then for n sufficiently large we have Pr[F ] ≥ 19
20 .

We justify next Steps 8-12 of Algorithm 1. Let P be the partition of V we get after
Step 6 of the algorithm. Let E be the event that the following two events occur:

1. µemp(P) > 1− ε
4 ;

2. For every edge {v, w} ∈ E\E(P ), β(v, w) < ln(20n2L).

Like F , the probability space associated with E is determined by the random samples
{σ1, . . . , σL} and {τ1, . . . , τL}. Observe that if the event E does not occur, then Algorithm 1
will output No. The following lemma justifies this.

Lemma 33 Assume the event F occurs. If (G, β) = (G∗, β∗), then the event E always
occurs.

Now, suppose F and E occur; then, the algorithm outputs the answer by running the
DDK algorithm on the quotient models. The next two lemmas, in which we establish several
useful properties of the quotient models (Gp, βp) and (G∗p, β

∗
p), will be used to guarantee

the correctness of Algorithm 1 in this case.
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Lemma 34 Assume both of the events F and E occur. Let P be the partition of V we get
after Step 6 of Algorithm 1. Then the following events always occur:

1. The original Gibbs distribution µ and the conditional Gibbs distribution µ(·|P) are
close:

‖µ− µ(·|P)‖tv <
3ε

8
;

2. The original Gibbs distribution µ∗ and the conditional Gibbs distribution µ∗(·|P) are
close:

‖µ∗ − µ∗(·|P)‖tv <
ε

8
.

Lemma 35 Assume both of the events F and E occur. Let P be the partition of V we get
after Step 6 of Algorithm 1. Then the following events always occur:

1. For every edge {v, w} ∈ E\E(P ), β(v, w) < ln(20n2L);

2. For every edge {v, w} ∈ E∗\E(P ), β∗(v, w) < ln(20n2L).

The proof of Lemmas 32, 33, 34 and 35 are provided in Section 6.1. We are now ready
to prove Theorem 30.

Proof of Theorem 30 Assume the event F occurs. If the event E does not occur,
then by Lemma 33 we have (G, β) 6= (G∗, β∗), and Algorithm 1 will accordingly return
No. Let us assume that the event E occurs. Recall that we denote the Gibbs distributions
of the quotient models (Gp, βp) and (G∗p, β

∗
p) by µp and µ∗p respectively. If µ = µ∗, then

µ(·|P) = µ∗(·|P) and therefore µp = µ∗p. Otherwise, if ‖µ− µ∗‖tv > ε, then we deduce from
Lemma 34 that

‖µp − µ∗p‖tv = ‖µ(·|P)− µ∗(·|P)‖tv

≥ ‖µ− µ∗‖tv − ‖µ− µ(·|P)‖tv − ‖µ
∗ − µ∗(·|P)‖tv

> ε− 3ε

8
− ε

8
=
ε

2
.

Since in every sample τi, vertices from the same partition class of P always receive the
same spin, we can regard {τi}Li=1 as independent samples from the conditional distribution
µ∗(·|P). Therefore, {(τi)p}Li=1 are independent samples from the Gibbs distribution µ∗p of
the quotient model (G∗p, β

∗
p). Thus, we can run the DDK algorithm on inputs (Gp, βp),

{(τi)p}Li=1 and ε/2. By Theorem 29 and Lemma 35, the number of samples needed is
L = O(n2d2ε−2 log3 n).

Consequently, Algorithm 1 fails only if the event F does not occur or the DDK algorithm
makes a mistake. By Theorem 29, the DDK algorithm has success probability 4/5. Thus,
Lemma 32 implies that the failure probability of Algorithm 1 is at most 1/20 + 1/5 = 1/4,
provided L ≥ 800n2ε−2. Finally, Theorems 28 and 29 imply that the overall running time
of Algorithm 1 is poly(n, d, ε−1) as claimed. �

6.1. Proofs of Auxiliary Lemmas

In this section we provide the missing proofs of Lemmas 32, 33, 34 and 35.
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Proof of Lemma 32 Let P be a partition of V . Since the samples {σ1, . . . , σL} from
(G, β) are (ε/16)-approximate, we have

|µalg(P)− µ(P)| ≤ ‖µalg − µ‖tv ≤
ε

16
.

Then, by the triangle inequality

|µemp(P)− µ(P)| ≤ |µemp(P)− µalg(P)|+ |µalg(P)− µ(P)| ≤ |µemp(P)− µalg(P)|+ ε

16

A Chernoff bound then implies

Pr
[
|µemp(P)− µ(P)| ≥ ε

8

]
≤ Pr

[
|µemp(P)− µalg(P)| ≥ ε

16

]
= Pr

[∣∣∣∣∣
L∑
i=1

1{σi ∈ P} − Lµalg(P)

∣∣∣∣∣ ≥ εL

16

]

≤ 2 exp

(
− ε2L

768µalg(P)

)
≤ 2 exp

(
−ε

2L

768

)
≤ 2e−n

2
,

where the last inequality holds when ε2L ≥ 800n2. The total number of partitions of V is
at most nn. It then follows from the union bound that

Pr
[
∃ a partition P of V : |µemp(P)− µ(P)| ≥ ε

8

]
≤ nn · 2e−n

2
= 2en lnn−n2 ≤ 1

80
,

for large enough n.
In similar fashion, we deduce that the same holds for |µ∗emp(P)− µ∗(P)|. Namely,

Pr
[
∃ a partition P of V : |µ∗emp(P)− µ∗(P)| ≥ ε

8

]
≤ 1

80
.

Finally, for each v, w ∈ V such that µ∗(Xv = Xw) ≥ 1 − (20n2L)−1, we obtain from a
union bound over the samples that

Pr [∃i, 1 ≤ i ≤ L : τi(v) 6= τi(w)] ≤ L · µ∗(Xv 6= Xw) ≤ 1

20n2
.

Another union bound, this time over the pairs of vertices, implies

Pr
[
∃v, w ∈ V, µ̂(Xv = Xw) ≥ 1− (20n2L)−1, ∃i, 1 ≤ i ≤ L : τi(v) 6= τi(w)

]
≤ n2

2
· 1

20n2
=

1

40
.

Combining all bounds above, we obtain from another union bound that

Pr[¬F ] ≤ 1

80
+

1

80
+

1

40
=

1

20
,

as desired. �
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Proof of Lemma 33 Assume (G, β) = (G∗, β∗). Since F occurs, we have

µemp(P) > µ(P)− ε

8
= µ∗(P)− ε

8
> µ∗emp(P)− ε

4
= 1− ε

4
.

Suppose next that there exists some {v, w} ∈ E\E(P ) such that β(v, w) ≥ ln(20n2L).
Then, β∗(v, w) = β(v, w) ≥ ln(20n2L). We deduce from Lemma 11 in (Daskalakis et al.,
2018) that

µ∗(Xv 6= Xw) ≤ 1

eβ∗(v,w) + 1
≤ e−β

∗(v,w) ≤ 1

20n2L
.

The event F implies that τi(v) = τi(w) for all 1 ≤ i ≤ L. It follows that v and w must
belong to the same partition class of P ; i.e., {u, v} ∈ E(P ), which leads to a contradiction.
Hence, the event E always occurs when F occurs. �

Proof of Lemma 34 Since both of the events F and E occur, we have

µ(P) > µemp(P)− ε

8
> 1− 3ε

8
.

It follows immediately that ‖µ− µ(·|P)‖tv = 1−µ(P) < 3ε/8. Similarly, since the event F
occurs, we have

µ∗(P) > µ∗emp(P)− ε

8
= 1− ε

8
,

and ‖µ∗ − µ∗(·|P)‖tv = 1− µ∗(P) < 3ε/8. �

Proof of Lemma 35 When E occurs, for all {v, w} ∈ E\E(P ), we have β(v, w) <
ln(20n2L). Suppose {v, w} ∈ E∗\E(P ) and β∗(v, w) ≥ ln(20n2L). By Lemma 11 in
(Daskalakis et al., 2018) we have

µ∗(Xv 6= Xw) ≤ 1

eβ∗(v,w) + 1
≤ e−β

∗(v,w) ≤ 1

20n2L
.

When F occurs, τi(v) = τi(w) for all 1 ≤ i ≤ L and thus v and w belong to the same
partition class of P . It follows that {v, w} ∈ E(P ) which is a contradiction. �

7. Lower Bounds for Proper q-colorings

Let d and q be positive integers and let G = (V,E) ∈ M(n, d), where, as in the previous
sections, M(n, d) denotes the family of all n-vertex graphs of maximum degree at most d.
We use ΩG for the set of all proper q-colorings of G and µG for the uniform distribution
on ΩG. We recall that a coloring of the vertices of G using colors {1, . . . , q} is proper if the
endpoints of every edge in G are assigned different colors. The proper q-colorings model is
one of the easiest combinatorial examples of a hard-constraint model.

The identity testing problem for proper q-colorings in M(n, d) is described as follows:
given q, a graph G ∈M(n, d) and sample access to random q-colorings of an unknown graph
G∗ ∈M(n, d), distinguish with probability at least 3/4 whether µG = µG∗ or ‖µG − µG∗‖ >

40



Lower Bounds for Testing Graphical Models

1/3. We establish lower bounds for this problem, thus initiating the study of identity testing
in the context of hard-constraint spin systems.

Our lower bounds will crucially use the presumed hardness of the #BIS problem. This
is the problem of counting independent sets in bipartite graphs. #BIS is believed not
to have an FPRAS, and it is widely used in the study of the complexity of approximate
counting problems (see, e.g. Dyer et al., 2004; Goldberg and Jerrum, 2012; Dyer et al., 2010;
Bulatov et al., 2013; Chen et al., 2015; Cai et al., 2016; Galanis et al., 2016a). Specifically,
we utilize the hardness of the problem of counting proper 3-colorings in bipartite graphs,
which we denote by #BIP-3-COL and is known to be no easier than #BIS.

Theorem 36 (Dyer et al., 2004). If #BIP-3-COL admits an FPRAS, then #BIS admits
an FPRAS.

We show that when d ≥ q+
⌈√

q
⌉
−1, any identity testing algorithm for proper q-colorings

for M(n, d) with running time T (n) and sample complexity L(n) provides a randomized
algorithm for #BIP-3-COL on graphs of poly(n) size with running time poly(T (n), L(n)).
This will allow us to establish Theorem 3 from the introduction, since if T (n) and L(n)
were polynomials in n, then one would obtain an FPRAS for #BIP-3-COL and for #BIS
by Theorem 36. For q ∈ N+, let

dc(q) = q + d√qe − 1. (22)

Theorem 37 Let d and q be positive integers such that q ≥ 3 and d ≥ dc(q). Suppose that,
for all sufficiently large n, there is an identity testing algorithm for proper q-colorings in
M(n, d) with running time T (n) and sample complexity L(n). Then, for every integer N
sufficiently large, δ ∈ (0, 1) and ε ∈ (0, 1), there exists an integer n = Θ(ε−2N4) such that
if L(n) ≤ 2N−4, then there is an algorithm that with probability at least 1− δ computes an
ε-approximation for #BIP-3-COL on bipartite graphs with N vertices. The running time
of this algorithm is

O
(
[nL(n) + T (n)]N ln(N/δ) + ε−8

)
.

Theorem 3 is a direct corollary of this result.

Proof of Theorem 3 Suppose there is an identity testing algorithm for q-colorings in
M(n, d) with poly(n) running time and sample complexity; i.e., L(n) ≤ T (n) = poly(n).
Then, by Theorem 37, for any ε, δ ∈ (0, 1) there is an algorithm for #BIP-3-COL on an
N -vertex bipartite graph that outputs an ε-approximation solution with probability at least
1−δ in time poly(N, ε−1, ln(δ−1)). That is, there is an FPRAS for #BIP-3-COL and thus
also one for #BIS by Theorem 36. This leads to a contradiction and the result follows. �

The proof of Theorem 37 is divide into two cases: q ≥ 4 and q = 3. Conceptually,
these two cases are proved in the same manner but in the q = 3 case the construction of
the testing instance requires some additional ideas. The proof for q ≥ 4 is provided in
Section 7.4. The q = 3 case is considered in in Section 7.5. Before that, we provide a
proof sketch containing the high level ideas of our proof in Section 7.1, we introduce our
gadget G(m, q, t) in Section 7.2, and we describe the construction of the coloring instance
in Section 7.3.
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7.1. Lower Bounds for Proper Colorings: Proof Overview

As mentioned, we crucially use in our proof the hardness of #BIP-3-COL, the problem of
counting proper 3-colorings in bipartite graphs. We show that when d ≥ dc(q), an identity
testing algorithm for proper q-colorings in M(n, d), with running time T (n) and sample
complexity L(n), can be turned into a randomized algorithm for #BIP-3-COL on graphs
of poly(n) size with running time poly(T (n), L(n)); see Theorem 36. Theorem 37 follows
from the fact that if T (n) and L(n) were both polynomials in n, then we would obtain an
algorithm that computes an ε-approximation for #BIP-3-COL in polynomial time.

To derive an algorithm for #BIP-3-COL we proceed as follows. Let H be an N -vertex
connected bipartite graph, and suppose we want to compute an ε-approximation for the
number of 3-colorings Z3(H) of H. Let B be the complete N -vertex bipartite graph with
the same bipartition as H, and let Z3(B) denote the number of 3-colorings of B. Then,
Z3(H) ∈ [Z3(B), 3N ]. We converge to an ε-approximation of Z3(H) via binary search in
the interval [Z3(B), 3N ]. Specifically, for Ẑ ∈ [Z3(B), 3N ] we construct a suitable identity
testing instance and run the identity testing algorithm to determine whether we should
consider larger or smaller values than Ẑ.

The testing instance is constructed as follows. For integers k, ` ≥ 1, we define the graph
Ĥk,` that consists of k copies H1, . . . ,Hk of the original graph H and a complete (q − 3)-
partite graph J in which each cluster has ` vertices. In addition to the edges in J and in the
k copies of H, Ĥk,` also contains edges between every vertex in J and every vertex in Hi for

i = 1, . . . , k. (Our definition of Ĥk,` requires q ≥ 4; the case when q= 3 requires a slightly

more complicated construction which is provided in Section 7.5.) For any Ẑ ∈ [Z3(B), 3N ],
we choose k and ` in a way so that the output of the identity testing algorithm on Ĥk,` can

be interpreted as feedback on whether or not Ẑ > Z3(H).

We set k = dN/εe where ε is the accuracy parameter. The choice of ` is more subtle.
There are only two types of colorings for Ĥk,`: (i) those where J uses q − 3 colors and (ii)
those where J uses q − 2 colors. It can be easily checked that there are |Ω1| = Θ(Z3(H)k)
colorings of the first type and |Ω2| = Θ(2`+k) of the second type. Hence, the choice of ` will
determine which of these two types of colorings dominates in the uniform distribution µk,`
over the proper colorings of Ĥk,`.

To compare Ẑ and Z3(H), we could set ` so that Ẑk= |Ω2|=Θ(2`+k) and draw a sample
from µk,`. If we get a coloring of the first kind, we may presume that |Ω1| � |Ω2|, or

equivalently that Z3(H)> Ẑ. Conversely, if the coloring is of the second kind, then it is
likely that |Ω1| � |Ω2| and Z3(H)< Ẑ. Sampling from µk,` is hard, but we can emulate
this approach with a testing algorithm.

Specifically, we construct a simpler graph B̂k,` such that: (i) we can easily generate

samples from µ̂k,`, the uniform distribution over the proper q-colorings B̂k,`; and (ii) µk,`
and µ̂k,` are close in total variation distance if and only if the dominant colorings in the

Gibbs distributions are those of the second type. Then, we pass q, Ĥk,` and samples from
µ̂k,` as input to the tester. Its output then reveals the dominant color class and hence

whether Ẑ is larger or smaller than Z3(H).

Our final obstacle is that the maximum degree of the graph Ĥk,` depends on N , k

and `, and could be much larger than d. To reduce the degree of Ĥk,` so that it belongs
to M(n, d), we design a degree reducing gadget, which is inspired by the gadgets used
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to establish the hardness of the decision and structure learning problems (Emden-Weinert
et al., 1998; Molloy and Reed, 2001; Blanca et al., 2018).

7.2. The Colorings Gadget

In this section, we present our construction of the coloring gadget, which is inspired by
similar constructions in (Emden-Weinert et al., 1998; Molloy and Reed, 2001; Blanca et al.,
2018) for establishing the computational hardness of the decision and (equivalent) structure
learning problems for proper q-colorings.

For m, q, t ∈ N+ with t < q, the graph G(m, q, t) = (V (m, q, t), E(m, q, t)) is defined as
follows. Let C1, . . . , Cm be cliques of size q − 1 and let I1, . . . , Im be independent sets of
size t. Then, set

V (m, q, t) =

m⋃
i=1

(
V (Ci) ∪ V (Ii)

)
where V (Ci) and V (Ii) are the vertex sets of Ci and Ii respectively for 1 ≤ i ≤ m. The
cliques Ci’s and the independent sets Ii’s are connected in the following way:

1. For 1 ≤ i ≤ m, there is a complete bipartite graph between Ci and Ii. That is, for
u ∈ Ci and v ∈ Ii, {u, v} ∈ E(m, q, t).

2. For 2 ≤ i ≤ m, each Ci is partitioned into t almost-equally-sized disjoint subsets
Ci,1, . . . , Ci,t of size either b(q − 1)/tc or d(q − 1)/te. Then, the j-th vertex of Ii−1 is
connected to every vertex in Ci,j .

Together with the edges in the cliques Ci for 1 ≤ i ≤ m, these edges constitute the edge set
E(m, q, t). Furthermore, a vertex is said to be a port of the graph G(m, q, t) if it is either
in Im or in some Ii−1 for 2 ≤ i ≤ m and adjacent to some Ci,j of size exactly b(q − 1)/tc.
Note that every independent set Ii contains at least one port, and thus there are at least
m ports in the graph G(m, q, t). See Figure 1 for an illustration of the graph G(m, q, t) and
Figure 2 for G(3, 3, 2) as an example.

The following key fact of the gadget G(m, q, t) follows from its definition.

Lemma 38 Let m, q, t ∈ N+ with t < q. Then in every proper q-coloring of G(m, q, t), all
vertices in the independent sets I1, . . . , Im have the same color and all vertices in the cliques
C1, . . . , Cm are assigned the remaining q − 1 colors.

Proof Consider a proper q-coloring σ of G(m, q, t). Since each Ci is a clique of size q − 1
for 1 ≤ i ≤ m, it receives q − 1 colors in σ. For 1 ≤ i ≤ m, for each v ∈ Ii, v is adjacent
to all vertices in Ci; hence, v receives the only color that is not used by Ci in σ. That
means, for each i all vertices in Ii have the same color which does not appear in Ci. Next,
for 2 ≤ i ≤ m, each vertex in Ci is adjacent to some vertex in Ii−1. Since all vertices in
Ii−1 have the same color, we deduce that Ii−1 receives the color which does not appear in
Ci. It follows immediately that all independent sets I1, . . . , In have the same color and the
cliques C1, . . . , Cm use the remaining q − 1 colors.

The following lemma shows that when d ≥ dc(q) the maximum degree of the gadget
G(m, q, t) is at most d for a certain choice of t; moreover, every port has degree at most
d− 1. See Figure 2 for an example.

43
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C1 I1 C2 I2 Im−1 Cm Im· · · · · ·

Figure 1: The graph G(m, q, t). Each of C1, . . . , Cm is a clique of size q − 1 and each of
I1, . . . , Im is an independent set of size t < q. Solid lines between Ci and Ii mean
that every vertex in Ci is adjacent to every vertex in Ii. Dashed lines between
Ii−1 and Ci mean that every vertex in Ii−1 is adjacent to roughly (q−1)/t vertices
in Ci with no two vertices in Ii−1 sharing a common neighbor in Ci.

C1 I1 C2 I2 C3 I3

Figure 2: The graph G(3, 3, 2) for m = 3, q = 3 and t =
⌈√

q
⌉

= 2. All vertices in I1∪I2∪I3

are ports. Every port has degree at most 3. Every non-port has degree at most
4. Recall that dc(3) = 3 +

⌈√
3
⌉
− 1 = 4.

Lemma 39 Suppose q ≥ 3 and d ≥ dc(q). If t =
⌈√

q
⌉
, then every port of the graph

G(m, q, t) has degree at most d− 1 and every non-port of G(m, q, t) has degree at most d.

Proof The degree of a port in G(m, q, t) is bounded by

(q − 1) +

⌊
q − 1

t

⌋
(i)
= (q − 1) +

⌈q
t

⌉
− 1

(ii)

≤ (q − 1) + d√qe − 1 ≤ d− 1,

where (i) follows from the fact that b(a− 1)/bc+ 1 = da/be for all a, b ∈ N+ and (ii) follows
from t ≥ √q. Meanwhile, the degree of a non-port in an independent set Ii is at most

(q − 1) +

⌈
q − 1

t

⌉
≤ (q − 1) +

⌈q
t

⌉
≤ (q − 1) + d√qe ≤ d,

and the degree of a non-port in a clique Ci is at most

(q − 2) + t+ 1 = (q − 1) + d√qe ≤ d. �

We define the phase of a proper q-coloring of G(m, q, t) to be the color of its ports. In
the following lemma we bound the number of q-colorings with a given phase, which is used
later in the proof of Theorem 37.

Lemma 40 Let m, q, t ∈ N+ with t < q. Then, the number of proper q-colorings of
G(m, q, t) with a given phase is [(q − 1)!]m.
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Proof By Lemma 38, in every proper q-colorings the vertices in the independent sets
I1, . . . , Im are assigned the same color, which is given by its phase. With the coloring of
these vertices fixed, the number of q-colorings of each clique Ci is (q− 1)!. Since the cliques
are disjoint the total number of q-colorings is [(q − 1)!]m.

7.3. Testing Instance Construction: the q ≥ 4 Case

Let H = (V,E) be a bipartite connected graph on N vertices and suppose we want to
approximately count the number of 3-colorings of H. In this section we show how to
construct the testing instance from H when q ≥ 4. Our construction uses the gadget from
Section 7.2.

For integers k, ` ≥ 1, define the simple graph Ĥk,` = (V̂ , Ê) as follows:

1. Let H1 = (V (H1), E(H1)), . . . ,Hk = (V (Hk), E(Hk)) be k copies of the graph H;

2. Let J be a complete (q − 3)-partite graph in which each cluster has ` vertices;

3. Set V̂ =
(⋃k

i=1 V (Hi)
)
∪ V (J);

4. In addition to the edges in J and those in Hi for 1 ≤ i ≤ k, Ê also contains edges
between every vertex in Hi for 1 ≤ i ≤ k and every vertex in J ; i.e., for u ∈ Hi and
v ∈ J , we have {u, v} ∈ Ê.

We remark that our definition of Ĥk,` requires q ≥ 4; when q = 4, J is simply an independent
set with ` vertices. Next, we use the graph G(m, q, t) from Section 7.2 as a gadget to
construct a simple graph ĤΓ

k,` based on Ĥk,` where Γ = {m, q, t}. We proceed as follows:

1. Replace every vertex v of Ĥk,` by a copy Gv of G(m, q, t);

2. For every edge {u, v} ∈ Ê, pick an unused port in Gu and an unused port in Gv and
connect them; in this way, every port is connected with at most one port from another
gadget.

The number of ports in a gadget G(m, q, t) is at least m, and the total number of vertices
in Ĥk,` is kN + `(q − 3). The graph ĤΓ

k,` is well-defined only if we have enough ports in
every gadget Gv to connect them with ports from other gadgets. For this, it suffices that

m ≥ kN + `(q − 3),

and so we set
m = kN + `(q − 3) and t = d√qe ≥ 1. (23)

Let B be a complete bipartite graph with the same vertex bipartition as H. By setting
H = B, we can define the graphs B̂k,` and B̂Γ

k,`. Given k, ` ∈ N+, we write G = ĤΓ
k,` and

G∗ = B̂Γ
k,` for our choice of m and t. Suppose q ≥ 3 and d ≥ dc(q). Then, Lemma 39 implies

that G,G∗ ∈M(n, d) for

n = [kN + `(q − 3)] · [m(q − 1 + t)] = m2(q − 1 + t). (24)
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Let Z3(H) and Z3(B) denote the number of 3-colorings of H and B, respectively. The
two uniform distributions µG and µG∗ over the q-colorings of G and G∗ are related as follows.

Lemma 41 Let k, ` ∈ N+ with ` ≥ 2. Define ψ(k, `) = (q−3)1/k 21+`/k. Then the following
holds:

1. If Z3(H) < ψ(k, `), then

‖µG − µG∗‖tv ≤
4

3

(
Z3(H)

ψ(k, `)

)k
.

2. If Z3(H) ≥ ψ(k, `), then

‖µG − µG∗‖tv ≥
2

5

(
1−

(
Z3(B)

Z3(H)

)k)
.

Finally, we note that we can generate random q-colorings of G∗ in polynomial time.

Lemma 42 There exists an algorithm with running time O(n) that generates a sample
from the distribution µG∗.

The proof of both of these lemmas are provided in Section 7.4.1.

7.4. Proof of Theorem 37: the q ≥ 4 Case

In this section, we prove Theorem 37 for the case when q ≥ 4. Our proof relies on Lemmas 41
and 42. We converge to a good approximation for the number of 3-colorings Z3(H) of a
bipartite graph H using the presumed algorithm for the identity testing problem. In each
round, we choose k, ` and generate the graph G = ĤΓ

k,` as described in Section 7.3; the size
of the graph G depends on k, ` and thus it varies in each round. We then generate samples
from µG∗ in polynomial time by Lemma 42 where G∗ = B̂Γ

k,`. These samples and the graph
G are passed as input to the identity testing algorithm. If Z3(H) < ψ(k, `), then µG and
µG∗ are close in total variation distance (see Lemma 41), and the tester would return Yes.
Otherwise, if Z3(H) ≥ ψ(k, `), then µG and µG∗ are statistically far from each other, and
the tester would return No. Thus, using binary search over k, ` we can obtain a good
approximation for Z3(H).

Proof of Theorem 37 for q ≥ 4 Let H = (V (H), E(H)) be an N -vertex connected
bipartite graph with N ≥ 5. Suppose we want to approximately count the number of
3-colorings of H. Recall that B is the complete bipartite graph with the same vertex
bipartition as H. Then, Z3(B) ≤ Z3(H) ≤ 3N where the upper bound corresponds to the
independent set on N vertices.

Fix ε, δ ∈ (0, 1). Our goal is to find an integer Ẑ ∈ [Z3(B), 3N ] such that with probability
at least 1− δ

(1− ε)Ẑ ≤ Z3(H) ≤ (1 + ε)Ẑ. (25)

We assume first that ε ≥ 2−N/4. The case when ε < 2−N/4 is much simpler and will be
considered at the end of the proof. We give an algorithm that with probability at least 1−δ
outputs an integer Ẑ ∈ [Z3(B), 3N ] such that

2−ε(Ẑ − 1) ≤ Z3(H) ≤ 2εẐ. (26)
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Then, (25) follows from the following fact.

Fact 43 For all ε ∈ [2−N/4, 1), if Ẑ is such that 2−ε(Ẑ−1) ≤ Z3(H) ≤ 2εẐ, then (1−ε)Ẑ ≤
Z3(H) ≤ (1 + ε)Ẑ.

Let k = dN/εe. Recall that ψ(k, `) = (q − 3)1/k 21+`/k. For any Ẑ ∈ N+ for which we
would like to test if (26) hold, we choose an integer ` satisfying

2−εψ(k, `) ≤ Ẑ ≤ ψ(k, `).

Such an ` would exist if and only if it satisfies

k log2 Ẑ − log2(q − 3)− k ≤ ` ≤ k log2 Ẑ − log2(q − 3)− k + kε.

Since the difference between the upper and lower bounds is kε ≥ N ≥ 1, there is always at
least one possible value for `. Note also that ` ≤ k log2(3N ) ≤ 2kN as Ẑ ≤ 3N .

After choosing k and `, which depend on N , q, ε and Ẑ, we construct the graphs
G = ĤΓ

k,` and G∗ = B̂Γ
k,` as defined in Section 7.3. Then, the graphs G and G∗ belong to

M(nk,`, d), where given our choices for m, t, k and `, we have:

m = kN + `(q − 3) ≤ 4qN2

ε
and nk,` = m2(q − 1 + t) ≤ 32q3N4

ε2
;

see (23) and (24). Given Ẑ, our input to the identity testing algorithm (henceforth called
the Tester) is the graph G and L = L(nk,`) random q-colorings of G∗. By Lemma 42,
we can generate one sample from µG∗ in O(nk,`) time. Thus, the total running time for
one call of the Tester (including the generation of the samples) is O(nL(n) + T (n)) for
n =

⌈
32q3ε−2N4

⌉
. The following claim which is proved later follows from Lemma 41.

Claim 44 Suppose Z3(B) ≤ Ẑ ≤ 3N and L ≤ 2N−4.

1. If Z3(H) < 2−εẐ, then the Tester outputs Yes with probability at least 2/3;

2. If Z3(H) > 2εẐ, then the Tester outputs No with probability at least 2/3.

We test whether Ẑ provides a bound for Z3(H) using the following algorithm. For R ≥ 1
odd, we construct the corresponding graph G = ĤΓ

k,`, generate L · R random colorings of

G∗ = B̂Γ
k,`, and run the Tester R times using L samples each time (every sample is used

only once). The output of this algorithm would be the majority answer in the R rounds. We
call this algorithm the R-round-Tester for Ẑ. The following claim, which follows directly
from a Chernoff bound and is provided later, establishes the guarantee for the accuracy of
the R-round-Tester.

Claim 45 Let R = 48 dln(2N/δ)e+ 1.

1. If Z3(H) < 2−εẐ, then R-round-Tester for Ẑ outputs Yes with probability at least
1− δ

2N ;

2. If Z3(H) > 2εẐ, then R-round-Tester for Ẑ outputs No with probability at least
1− δ

2N .
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The algorithm for counting 3-colorings in H is based on binary search over the interval
[Z3(B), 3N ]; in each iteration it uses the R-round-Tester to determine the interval for the
next iteration. We proceed as follows.

1. Run the R-round-Tester for Ẑ = Z3(B). If the R-round-Tester outputs Yes, then
return Ẑ = Z3(B);

2. Run the R-round-Tester for Ẑ = 3N . If the R-round-Tester outputs No, then
return Ẑ = 3N ;

3. Let (L0, U0) = (Z3(B), 3N ). For i ≥ 1 :

(a) Let Ci = b(Li−1 + Ui−1)/2c;
(b) Run the R-round-Tester for Ẑ = Ci;

(c) If the R-round-Tester outputs Yes, then set (Li, Ui) = (Li−1, Ci);

(d) If the R-round-Tester outputs No, then set (Li, Ui) = (Ci, Ui−1);

(e) If Ui − Li = 1, return Ẑ = Ui; otherwise, set i := i+ 1 and repeat.

Observe that Ui − Li − 1 decreases by a factor 2 in each iteration. Thus, the R-round-
Tester is called at most 2 + log2(3N ) ≤ 2N times for N ≥ 5.

Now, let F be the event that in a single run of the binary search algorithm the following
two conditions are maintained:

(i) If Z3(H) < 2−εẐ, then the R-round-Tester outputs Yes for Ẑ;

(ii) If Z3(H) > 2εẐ, then the R-round-Tester outputs No for Ẑ.

Claim 45 and a union bound imply that

Pr[¬F ] ≤ δ

2N
· 2N = δ. (27)

We claim that when F occurs, the output of the binary search algorithm satisfies (26). For
this we consider three cases. First, if the algorithm stops in step 1, then Ẑ = Z3(B); that
is, the R-round-Tester outputs Yes for Ẑ = Z3(B). Therefore,

2−ε(Ẑ − 1) ≤ Z3(B) ≤ Z3(H) ≤ 2εẐ,

where the last inequality follows from condition (ii) in the definition of the event F . Simi-
larly, if the algorithm stops in step 2, then Ẑ = 3N . Namely, the R-round-Tester outputs
No for Ẑ = 3N , and so

2−ε(Ẑ − 1) ≤ 2−εẐ ≤ Z3(H) ≤ 3N ≤ 2εẐ,

where the second inequality follows from condition (i) in the definition of F .

Finally, suppose that the binary search algorithm stops in step 3 and Ẑ = Ui for some
i ≥ 1. Observe that Li < Ui for all i ≥ 1. Moreover, for each i ≥ 1 the R-round-Tester
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outputs No for Ẑ = Li and Yes for Ẑ = Ui. The algorithm stops when Ui − Li = 1 for
some i. It follows from the definition of F that

2−ε(Ẑ − 1) = 2−εLi ≤ Z3(H) ≤ 2εUi = 2εẐ.

Therefore, the output of the binary search algorithm satisfies (26) whenever F occurs.
From (27), it follows that we obtain an ε-approximation for Z3(H) with probability at least
1− δ as desired.

It remains for us to consider the overall running time of the binary search procedure.
As mentioned, the R-round-Tester algorithm is called at most 2N times, and the running
time of each call is O(nL(n) + T (n)) where n =

⌈
32q3ε−2N4

⌉
. Hence, the overall running

time of the algorithm is O ((nL(n) + T (n))N ln(N/δ)).
Finally, we mention that for the trivial case when ε < 2−N/4, we can simply enumerate

every 3-labeling σ : V (H) → {1, 2, 3} of H and count the number of proper 3-colorings.
The running time of this process is O(3N ) ≤ O(ε−8). �

We finalize the proof of Theorem 37 for q ≥ 4 by providing the missing proofs of Fact 43
and Claims 44 and 45 .

Proof of Fact 43 For ε ∈ (0, 1), we have 2εẐ ≤ (1 + ε)Ẑ. Moreover, for ε ∈ [2−N/4, 1)
we have

1

1− 2ε(1− ε)
≤ 1

1− (1 + ε)(1− ε)
=

1

ε2
≤ 2N/2 ≤ Z3(B) ≤ Ẑ.

This implies that 2−ε(Ẑ − 1) ≥ (1− ε)Ẑ and the theorem follows. �

Proof of Claim 44 Recall that we choose ` such that 2−εψ(k, `) ≤ Ẑ ≤ ψ(k, `), where
ψ(k, `) = (q − 3)1/k 21+`/k. Hence, when Z3(H) < 2−εẐ we have

Z3(H) < 2−εẐ ≤ 2−εψ(k, `) < ψ(k, `).

Part 1 of Lemma 41 implies

‖µG − µG∗‖tv ≤
4

3

(
Z3(H)

ψ(k, `)

)k
≤ 4

3
· 2−kε ≤ 4

3
· 2−N ,

where the last inequality follows from the fact that k = dN/εe. Let µ⊗LG (resp., µ⊗LG∗ ) be the
product distribution corresponding to L independent samples from µG (resp., µG∗). Recall
that L ≤ 2N−4 by assumption. Then we get∥∥∥µ⊗LG − µ⊗LG∗

∥∥∥
tv
≤ L ‖µG − µG∗‖tv ≤ L ·

4

3
· 2−N ≤ 2N−4 · 4

3
· 2−N =

1

12
.

Consider the optimal coupling π⊗L of the distributions µ⊗LG and µ⊗LG∗ . In a sample (S,S ′)
from π⊗L, the colorings from G and G∗ are equal with probability at least 11/12. Hence,
following (12), we obtain

Pr[Tester outputs No when given samples S ∼ µ⊗LG∗ ] ≤ 1

4
+

1

12
=

1

3
,

49
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which establishes part 1 of the claim.

If Z3(H) > 2εẐ, then Z3(H) > 2εẐ ≥ ψ(k, `) and Z3(B) ≤ Ẑ < 2−εZ3(H). Part 2 of
Lemma 41 implies that for N ≥ 5

‖µG − µG∗‖tv ≥
2

5

(
1−

(
Z3(B)

Z3(H)

)k)
≥ 2

5

(
1− 2−kε

)
≥ 2

5

(
1− 2−N

)
>

1

3
.

It follows that

Pr[Tester outputs Yes] = Pr[Tester makes a mistake] ≤ 1

4
<

1

3
. �

Proof of Claim 45 For i = 1, . . . , R, let Xi be the indicator of the event that in the
i-th round the Tester outputs Yes. Let X =

∑R
i=1Xi. If Z3(H) < 2−εẐ, then Claim 44

implies that E[X] ≥ 2
3R. The Chernoff bound then implies that the probability that the

R-round-Tester outputs No is

Pr

[
X ≤ R

2

]
≤ Pr

[
X ≤ 3

4
E[X]

]
≤ exp

(
−E[X]

32

)
≤ exp

(
−R

48

)
≤ δ

2N
.

The case when Z3(H) > 2εẐ (part 2) can be derived analogously. �

7.4.1. Colorings of G and G∗: Proof of Lemmas 41 and 42

In this section we establish first several facts about the q-colorings of G = ĤΓ
k,` and

G∗ = B̂Γ
k,`. We then use these facts to bound ‖µG − µG∗‖tv (Lemma 41) and to design

an algorithm for sampling the q-colorings of G∗ (Lemma 42).

For r ∈ {2, 3}, let Zr(H) denote the number of r-colorings of H. Since H is a connected
bipartite graph, we have Z2(H) = 2. The following lemma establishes a useful partition of
the q-colorings of Ĥk,`.

Lemma 46 Let k, ` ∈ N+. Let Ωa and Ωb be the set of q-colorings of Ĥk,` in which J is
colored by exactly q − 3 and q − 2 colors respectively. Then {Ωa,Ωb} is a partition for the
set of q-colorings of Ĥk,`; moreover,

|Ωa| = 1

6
q!Z3(H)k and |Ωb| = 1

4
(q − 3) q! (2` − 2)2k.

Observe that in the colorings from Ωa, the Hi’s are assigned the remaining 3 colors, and
in those from Ωb they are colored with 2 colors. We provide the proof of this lemma next.

Proof of Lemma 46 Observe that J is a complete (q−3)-partite graph, so it requires at
least q− 3 colors in every proper q-coloring of Ĥk,`. Moreover, since each Hi is a connected
bipartite graph, it requires at least 2 colors in every q-coloring. Also, every vertex in Hi for
1 ≤ i ≤ k is adjacent to every vertex in J . Thus, the Hi’s do not receive the colors that
are used to color J . It then follows that {Ωa,Ωb} is a partition for the set of q-colorings of
Ĥk,`.
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We count next the number of q-colorings of each type. For colorings in Ωa, there are
q!/3! ways to color J , and given the colors of J , there are Z3(H) colorings of each Hi that
use the remaining 3 colors. This gives

|Ωa| = q!

3!
· Z3(H)k =

1

6
q!Z3(H)k.

For colorings in Ωb, the complete (q−3)-partite graph J receives exactly q−2 colors. Hence,
there is one cluster of J that is assigned 2 colors, and every other cluster of J is colored
by one color of its own. There are q − 3 ways of selecting the bichromatic cluster, q!/4!
choices for the colors of the q − 4 monochromatic clusters and

(
4
2

)
choices for the colors of

the bichromatic cluster. Also, there are 2` − 2 colorings of the bichromatic cluster using
exactly 2 colors. Finally, given the colors of J , we have Z2(H) = 2 colorings for each Hi

using the remaining 2 colors. Combining these, we get

|Ωb| = (q − 3) · q!
4!
·
(

4

2

)
· (2` − 2) · Z2(H)k =

1

4
(q − 3) q! (2` − 2)2k. �

Recall that the phase of a q-coloring of a gadget G(m, q, t) is the color of its ports. Let σ
be a q-coloring of ĤΓ

k,`. The phase vector of σ is a mapping τ : V (Ĥk,`)→ {1, . . . , q} defined

as follows: for every vertex v of Ĥk,`, τ(v) is the phase of the coloring σ in the gadget Gv
for the vertex v. We show next that the phase vector of a q-coloring of ĤΓ

k,` determines a

q-coloring of Ĥk,`.

Lemma 47 Let σ be a q-coloring of ĤΓ
k,` and τ be the phase vector of σ. Then, τ is a q-

coloring of Ĥk,`. Moreover, if τ is a q-coloring of Ĥk,`, then there are ((q−1)!)m
2
q-colorings

of ĤΓ
k,` whose phase vector is τ .

Proof In our construction, for every edge {u, v} of Ĥk,` we connect one port of the gadget
Gu with one port of Gv. Thus, the phase of Gu and the phase of Gv are distinct. This gives
τ(u) 6= τ(v) for every edge {u, v} of Ĥk,`. Hence, τ is a q-coloring of Ĥk,`.

Given the phase vector τ of a q-coloring of ĤΓ
k,`, the number of ways to color each

gadget is ((q−1)!)m by Lemma 40. Since gadgets are connected to each other only by edges
between ports, we deduce that given the phase vector τ (namely, the colors of all the ports
in all the gadgets) the number of q-colorings of ĤΓ

k,` is

[((q − 1)!)m]kN+`(q−3) = ((q − 1)!)m
2

where we recall that the number of vertices of Ĥk,` is kN + `(q − 3) and we set m =
kN + `(q − 3).

Combining Lemmas 46 and 47, we can also partition the q-colorings of ĤΓ
k,` into two

types.

Lemma 48 Let k, ` ∈ N+. Let ΩA and ΩB be the set of q-colorings of ĤΓ
k,` whose phase

vector is a q-coloring of Ĥk,` that belongs to Ωa and Ωb respectively. Then {ΩA,ΩB} is a
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partition for the set of q-colorings of ĤΓ
k,`; moreover,

|ΩA| = |Ωa| · [(q − 1)!]m
2

=
1

6
q!Z3(H)k((q − 1)!)m

2
, and

|ΩB| = |Ωb| · [(q − 1)!]m
2

=
1

4
(q − 3) q! (2` − 2)2k((q − 1)!)m

2
.

Proof Follows immediately from Lemmas 46 and 47.

We are now ready to prove Lemmas 41 and 42.

Proof of Lemma 41 Let ΩG, ΩA
G and ΩB

G denote the set of all q-colorings, q-colorings

from ΩA and q-colorings from ΩB of the graph G = ĤΓ
k,` respectively. Define ΩG∗ , ΩA

G∗

and ΩB
G∗ similarly for G∗ = B̂Γ

k,`. By Lemma 48, we have |ΩG| = |ΩA
G| + |ΩB

G|, |ΩG∗ | =

|ΩA
G∗ | + |ΩB

G∗ | and |ΩB
G| = |ΩB

G∗ |. Since H is a subgraph of B, we deduce that Ĥk,` is

a subgraph of B̂k,` and also G is a subgraph of G∗ (by selecting the same ports when
constructing G and G∗). Therefore, ΩG ⊃ ΩG∗ . It follows that

‖µG − µG∗‖tv =
∑

σ: µG(σ)>µG∗ (σ)

µG(σ)− µG∗(σ) =
∑

σ∈ΩG\ΩG∗

1

|ΩG|

= 1− |ΩG∗ |
|ΩG|

= 1−
|ΩA
G∗ |+ |ΩB

G∗ |
|ΩA
G|+ |ΩB

G|
=
|ΩA
G| − |ΩA

G∗ |
|ΩA
G|+ |ΩB

G|
. (28)

If Z3(H) < ψ(k, `) = (q − 3)1/k 21+`/k, then we deduce from Lemma 48 that

‖µG − µG∗‖tv ≤
|ΩA
G|

|ΩB
G|

=
1
6 q!Z3(H)k((q − 1)!)m

2

1
4(q − 3) q! (2` − 2)2k((q − 1)!)m2 ≤

2Z3(H)k

3(q − 3)2`−1+k
=

4

3

(
Z3(H)

ψ(k, `)

)k
,

where the second inequality uses the fact that 2`− 2 ≥ 2`−1 for ` ≥ 2. This establishes part
1 of the lemma.

For part 2, if Z3(H) ≥ ψ(k, `), then by Lemma 48

|ΩA
G| =

1

6
q!Z3(H)k((q − 1)!)m

2 ≥ 1

6
(q − 3) q! 2`+k((q − 1)!)m

2 ≥ 2

3
|ΩB
G|.

We deduce that

‖µG − µG∗‖tv ≥
|ΩA
G| − |ΩA

G∗ |
|ΩA
G|+

3
2 |Ω

A
G|

=
2

5

(
1−
|ΩA
G∗ |
|ΩA
G|

)
=

2

5

(
1−

(
Z3(B)

Z3(H)

)k)
. �

Proof of Lemma 42 By Lemma 47, the number of q-colorings of G∗ = B̂Γ
k,` given a

phase vector τ is ((q − 1)!)m
2
, which is independent of τ . Thus, the phase vector τ of a

uniformly random q-coloring of G∗ is a uniformly random q-coloring of B̂k,`. Our algorithm
for sampling from the distribution µG∗ then works as follows:

1. Generate a random q-coloring τ of B̂k,`;
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2. For each v ∈ V̂ = V (B̂k,`), color all ports of the gadget Gv in B̂Γ
k,` with τ(v), and

then color all non-ports of Gv, which are disjoint cliques of size q − 1, with a random
(q − 1)-coloring using all colors but τ(v).

To generate a q-coloring of B̂k,` uniformly at random, we can proceed as follows:

1. Compute |Ωa|, |Ωb| and |Ω| = |Ωa|+ |Ωb|;

2. With probability |Ωa|/|Ω| generate a random q-coloring from Ωa;

3. With probability |Ωb|/|Ω| generate a random q-coloring from Ωb.

To compute |Ωa| and |Ωb|, assume (U,W ) is the bipartition of the vertex set of the
complete bipartite graph B. Suppose |U | = N1 and |W | = N2. Then we have

Z3(B) = 3 · 2 + 3 · (2N1 − 2) + 3 · (2N2 − 2) = 3
(
2N1 + 2N2 − 2

)
.

Lemma 46 implies that

|Ωa| = 1

6
q! 3k

(
2N1 + 2N2 − 2

)k
and |Ωb| = 1

4
(q − 3) q! (2` − 2)2k.

To generate a coloring from Ωa, first choose q−3 random colors for the complete (q−3)-
partite graph J and randomly assign one of these colors to each cluster of J . The k copies
of B are colored with the remaining 3 colors. Since B is a complete bipartite graph, it is
straightforward to generate a random 3-coloring in linear time.

In similar manner, to generate a coloring from Ωb, first choose q − 2 colors and color
J with these q − 2 colors. This can be done by first picking a random cluster of J and
coloring it with 2 different random colors, and then coloring the other q − 4 clusters with
the remaining q − 4 colors. Finally color the k copies of B with the 2 colors not used in J .

Since each step of the sampling procedure for B̂k,` takes at most linear time, the running

time of generating a random q-coloring of B̂k,` is O(kN + `(q− 3)). Therefore, the running
time of sampling from µG∗ is O(n). �

7.5. Proof of Theorem 37: the q = 3 case

In this section we provide the proof of Theorem 37 for q = 3. The proof of this case is
very similar to that of q ≥ 4, but we are required to modify the construction of the testing
instance slightly and rederive the results in Lemmas 41 and 42.

Let H = (V,E) be a connected bipartite graph on N vertices for which we want to
count the number of 3-colorings. Recall that for k, ` ∈ N+, we define Ĥk,` to be the graph
that contains k copies of H, a complete (q − 3)-partite graph J with (q − 3)` vertices, and
a complete bipartite graph connecting J and all copies of H. If J is colored by q− 2 colors,
then every copy of H is assigned the remaining 2 colors; on the other hand, if J is colored
by q − 3 colors, then the copies of H are colored with the remaining 3 colors. By checking
which of the two types of q-colorings dominates using the Tester, we can obtain a bound
on Z3(H). This approach works only for q ≥ 4 as the construction of Ĥk,` (in particular,
the complete (q − 3)-partite graph J) requires q ≥ 4.
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Figure 3: The graph H̃.

For q = 3, we need one additional idea. We construct first a graph H̃ which consists
of the original graph H, two additional vertices {s, t}, and several intermediate vertices
connecting H and {s, t} (see Figure 3). The graph H̃ is constructed in a way such that
in every 3-coloring: if s and t receive the same color, then H is colored by exactly two
colors; and, if s and t receive two distinct colors, then H can be colored by any proper
3-coloring with equal probability. The problem then reduces to counting the 3-colorings
of H̃. We can define a graph H̃k,` using the similar construction as Ĥk,` for q ≥ 4, but
with two modifications: Firstly, we define J to be an independent set instead of a complete
(q− 3)-partite graph; Secondly, we connect every vertex of J with only the vertices s’s and
t’s in all copies of H̃ instead of all vertices. After constructing the testing instance H̃k,` and
H̃Γ
k,`, the proof of Theorem 37 for q = 3 follows in the same manner as for q ≥ 4.

We define next the graph H̃ = (Ṽ , Ẽ), which unlike H is not a bipartite graph.

1. Let s, t be two vertices called interfaces;

2. For each v ∈ V , let Tv be a triangle on {av, bv, cv} (clique on 3 vertices);

3. Set Ṽ = V ∪
(⋃

v∈V V (Tv)
)
∪ {s, t};

4. Set Ẽ = E ∪
(⋃

v∈V E(Tv)
)
∪
{
{v, av}, {s, bv}, {t, cv} : v ∈ V

}
;

see Figure 3 for an illustration of the graph H̃. Observe that H̃ has Ñ = 4N + 2 vertices.
Let I(H̃) = {s, t}. For k, ` ∈ N+, we also define the graph H̃k,` = (V (H̃k,`), E(H̃k,`)) as

follows:

1. Let H̃1, . . . , H̃k be k copies of the graph H̃;

2. Let J be an independent set on ` vertices;

3. Set V (H̃k,`) =
(⋃k

i=1 V (H̃i)
)
∪ V (J);
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4. In addition to the edges in H̃i for 1 ≤ i ≤ k, E(H̃k,`) also contains edges between
the interfaces of H̃i for 1 ≤ i ≤ k and every vertex in J ; i.e., for I(H̃i) = {si, ti} and
v ∈ J , we have {si, v}, {ti, v} ∈ E(H̃k,`).

Finally, we define the graph H̃Γ
k,` where Γ = {m, 3, t} in the same way as for q ≥ 4;

namely, we replace every vertex of H̃k,` by a copy of the graph G(m, 3, t) and every edge
by an edge between two (unused) ports of the corresponding two gadgets. Furthermore, to
make the graph H̃Γ

k,` well-defined, we set

m = kÑ + ` = k(4N + 2) + ` and t = d√qe = 2.

Let B be a complete bipartite graph with the same vertex bipartition as H. By setting
H = B, we also define the graphs B̃k,` and B̃Γ

k,`. Given k, ` ∈ N+, let G = H̃Γ
k,` and

G∗ = B̃Γ
k,`. Suppose d ≥ dc(3) = 4. Then, Lemma 39 implies that G,G∗ ∈M(n, d) for

n = (kÑ + `) · 4m = 4m2.

The next two lemmas will play the role of Lemmas 41 and 42 in the proof of Theorem 37
for the case q = 3.

Lemma 49 Let k, ` ∈ N+ with ` ≥ 2. Then the following holds:

1. If Z3(H) < 2`/k − 2, then

‖µG − µG∗‖tv ≤ 2

(
Z3(H) + 2

2`/k

)k
.

2. If Z3(H) ≥ 2`/k − 2, then

‖µG − µG∗‖tv ≥
1

2

(
1−

(
Z3(B) + 2

Z3(H) + 2

)k)
.

Lemma 50 There exists an algorithm with running time O(n) that generates a sample
from the distribution µG∗.

With these two lemmas in hand, the proof of Theorem 37 for q = 3 is then identical to
that for the q ≥ 4 case and is thus omitted.

7.5.1. Colorings of G and G∗: Proof of Lemmas 49 and 50

It remains for us to prove Lemmas 49 and 50. First, we establish several facts about
the 3-colorings of G = H̃Γ

k,` and G∗ = B̃Γ
k,`. We then use these facts as basis to bound

‖µG − µG∗‖tv (Lemma 49) and give a sampling algorithm for µG∗ (Lemma 50). Some of
these facts are counterparts of those established in Section 7.4.1 for q ≥ 4.

Let Z3(H) denote the number of 3-colorings of H. For i, j ∈ {1, 2, 3}, let Zi,j3 (H̃) be the
number of 3-colorings of H̃ such that s receives color i and t receives color j.
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Lemma 51 For i, j ∈ {1, 2, 3}, Zi,i3 (H̃) = 2N+1 and Zi,j3 (H̃) = 2NZ3(H) when i 6= j.

Proof We first compute Z1,1
3 (H̃). Suppose that both s and t are colored with color 1.

Then, for each v ∈ V , colors 2 and 3 are both required to color bv and cv. As a result, av
receives color 1 and v can not be colored by 1 for all v ∈ V . Hence, the vertices of H in H̃
can only be assigned colors 2 or 3. There are only two ways to color the connected bipartite
graph H with two colors. This gives

Z1,1
3 (H̃) = 2 · 2N = 2N+1,

and by symmetry Z2,2
3 (H̃) = Z3,3

3 (H̃) = 2N+1.

We compute next Z1,2
3 (H̃). Let σ be any 3-coloring of H. We claim that there are 2N

colorings of H̃ in which s is assigned color 1, t is assigned color 2, and σ is the coloring in
H. From this, it follows immediately that

Z1,2
3 (H̃) = 2NZ3(H).

Let v ∈ V and consider 3-colorings of the triangle Tv. If σ(v) = 1, then the only 3-colorings
of the triangle (av, bv, cv) are (2, 3, 1) and (3, 2, 1) since {v, av}, {s, bv} and {t, cv} are all
edges of H̃. Similarly, when σ(v) = 2 or σ(v) = 3, there are also two possible colorings for
(av, bv, cv) in each case. Therefore, if s and t are assigned colors 1 and 2 respectively, and σ
is the coloring in H, there are exactly two proper 3-colorings of Tv for each v ∈ V . As the
triangles Tv are disjoint for v ∈ V , once the colors of s, t and H are assigned, there are 2N

proper 3-colorings of H̃. This proves our claim, and by symmetry, for any i, j ∈ {1, 2, 3}
with i 6= j, we obtain Zi,j3 (H̃) = 2NZ3(H).

As in Lemma 46, we can partition the 3-colorings of H̃k,` into two categories.

Lemma 52 Let k, ` ∈ N+. Let Ωa and Ωb be the set of 3-colorings of H̃k,` in which J is
colored by exactly 1 and 2 colors respectively. Then {Ωa,Ωb} is a partition for the set of
3-colorings of H̃k,`; moreover,

|Ωa| = 3 · 2k(N+1)(Z3(H) + 2)k and |Ωb| = 3 · (2` − 2)2k(N+1).

Proof Observe that in every 3-coloring of H̃k,` the number of colors we can assign to the
independent set J is at least one and at most two, since all the vertices of J have at least
one common neighbor. It follows immediately that {Ωa,Ωb} is a partition for the set of
3-colorings of H̃k,`. For the 3-colorings in Ωa, we first assign a color to J , say color 1. Then,
we count the number of 3-colorings of each H̃i whose interfaces {si, ti} cannot be assigned
color 1. Lemma 51 and symmetry imply

|Ωa| = 3
(
Z2,2

3 (H̃) + Z2,3
3 (H̃) + Z3,2

3 (H̃) + Z3,3
3 (H̃)

)k
= 3 · 2k(N+1)(Z3(H) + 2)k.

For 3-colorings in Ωb, we pick the two colors that color J , say color 1 and 2. Then, the
interfaces of H̃i have to be assigned color 3 for each i. The number of ways to color J with
both colors 1 and 2 is 2` − 2. Then, by Lemma 51 and symmetry, we get

|Ωb| = 3 · (2` − 2)Z3,3
3 (H̃)k = 3 · (2` − 2)2k(N+1). �
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Lemma 53 Let σ be a 3-coloring of H̃Γ
k,` and τ be the phase vector of σ. Then, τ is a

3-coloring of H̃k,`. Moreover, if τ is a 3-coloring of H̃k,`, then there are 2m
2

3-colorings of
H̃Γ
k,` whose phase vector is τ .

Proof The proof is analogous to that of Lemma 47.

Lemma 54 Let k, ` ∈ N+. Let ΩA and ΩB be the set of 3-colorings of H̃Γ
k,` whose phase

vector is a 3-coloring of H̃k,` that belongs to Ωa and Ωb respectively. Then {ΩA,ΩB} is a
partition for the set of 3-colorings of H̃Γ

k,`; moreover,

|ΩA| = |Ωa| · 2m2
= 3 · 2k(N+1)(Z3(H) + 2)k · 2m2

, and

|ΩB| = |Ωb| · 2m2
= 3 · (2` − 2)2k(N+1) · 2m2

.

Proof Follows immediately from Lemmas 52 and 53.

Proof of Lemma 49 We use the notation from the proof of Lemma 41. Following the
derivation of (28), we get

‖µG − µG∗‖tv =
|ΩA
G| − |ΩA

G∗ |
|ΩA
G|+ |ΩB

G|
.

If Z3(H) < 2`/k − 2, then we deduce from Lemma 54 that

‖µG − µG∗‖tv ≤
|ΩA
G|

|ΩB
G|

=
3 · 2k(N+1)(Z3(H) + 2)k · 2m2

3 · (2` − 2)2k(N+1) · 2m2

≤ (Z3(H) + 2)k

2`−1
= 2

(
Z3(H) + 2

2`/k

)k
.

If Z3(H) ≥ 2`/k − 2, then by Lemma 54

|ΩA
G| = 3 · 2k(N+1)(Z3(H) + 2)k · 2m2 ≥ 3 · 2k(N+1)2` · 2m2 ≥ |ΩB

G|.

Thus, we get

‖µG − µG∗‖tv ≥
|ΩA
G| − |ΩA

G∗ |
2|ΩA

G|
=

1

2

(
1−
|ΩA
G∗ |
|ΩA
G|

)
=

1

2

(
1−

(
Z3(B) + 2

Z3(H) + 2

)k)
. �

Proof of Lemma 50 This can be done in the same way as the proof of Lemma 42. It
suffices to first generate a random 3-coloring τ of B̃k,` and then sample from µG∗ given τ
as the phase vector where G∗ = B̃Γ

k,`. To sample a random 3-coloring of B̃k,`, we do the
following:

1. Compute |Ωa|, |Ωb| and |Ω| = |Ωa|+ |Ωb|;

2. With probability |Ωa|/|Ω| generate a random 3-coloring from Ωa;
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3. With probability |Ωb|/|Ω| generate a random 3-coloring from Ωb.

We can compute |Ωa| and |Ωb| by Lemma 52. To sample from Ωa, we first pick one color
for J and then color each copy of B̃. Notice that since B is a complete bipartite graph, we
can sample a random 3-coloring of B, and consequently B̃, in linear time. To sample from
Ωb, we pick two colors to color J ; then in every copy of B̃, the complete bipartite graph B
will receive only two colors. The total running time for sampling a random 3-coloring of
B̃k,` is O(kÑ + `) and the running time for sampling from µG∗ is O(n). �

8. Discussion

Our hardness results for identity testing for the Ising model require |β|d ≥ c log n for a
suitable constant c > 0. We further assume that β∗ = β; namely, our lower bounds hold
even under this additional promise. Our proof extends without any significant modification
to the case where max{|β|, |β∗|} · d ≥ c log n. As mentioned, there are polynomial running
time algorithms for identity testing when either |β∗|d = O(log n), in which case we can use
structure learning methods, or when |β| = O(d−1) is in the tree uniqueness region, and
known sampling methods can be combined with the testing algorithm in (Daskalakis et al.,
2018). Therefore, when β is the non-uniqueness region (|β|d < c log n) and |β∗|d = ω(log n),
the computational complexity of identity testing is open, as there is no known polynomial
running time algorithm, and our lower bound does not apply to this regime of parameters.
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