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Abstract

This paper focuses on generalization performance analysis for distributed algorithms in
the framework of learning theory. Taking distributed kernel ridge regression (DKRR) for
example, we succeed in deriving its optimal learning rates in expectation and providing
theoretically optimal ranges of the number of local processors. Due to the gap between
theory and experiments, we also deduce optimal learning rates for DKRR in probability to
essentially reflect the generalization performance and limitations of DKRR. Furthermore,
we propose a communication strategy to improve the learning performance of DKRR and
demonstrate the power of communications in DKRR via both theoretical assessments and
numerical experiments.
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1. Introduction

Commonly in this era, data of huge size are stored in numerous machines and cannot be
shared for protecting data privacy. Typical examples include clinical data in medicine
where medical data are collected in different hospitals and financial data in business where
commercial data are generated in different companies. These distributively stored data
bring a new challenge for machine learning in the sense that every one would like to use
the other’s data but is unwilling to share his own data. Nonparametric distributed learning
(NDL) (Zhang et al., 2015; Lin et al., 2017) presents a preferable approach to conquer this
challenge by means of combining the prediction results from many local processors without
sharing individual data each other.
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(b) Flow of testing

Figure 1: Training and testing flows of the divide-and-conquer learning.

There are three ingredients of NDL: local processing, communication, and synthesiza-
tion. The local processing issue refers to applying a particular learning algorithm such as the
kernel ridgel regression (Zhang et al., 2015), local average regression (Chang et al., 2017),
multi-penalty regularization (Guo et al., 2019), coefficient-based regularization (Pang and
Sun, 2018; Shi, 2019), and spectral algorithms (Guo et al., 2017; Mücke and Blanchard,
2018; Lin et al., 2020) to tackle the data subset in a local machine and produce a local
estimator. The communication issue focuses on exchanging exclusive information such as
the data (Bellet et al., 2015), gradients (Zeng and Yin, 2018) and local estimator (Huang
and Huo, 2019) between different local machines. The synthesization issue devotes to pro-
ducing a global estimator by combining local estimators and communicated information on
the global machine, typical strategies of which are the majority voting (Mann et al., 2009),
weighted average (Chang et al., 2017) and gradient-based algorithms (Bellet et al., 2015).

One of the most popular NDL approaches is the divide-and-conquer learning, in which
the communication is not required and the weighted average is used in the synthesization
issue. Figure 1 presents the training and testing flows of the divide-and-conquer learning.
As shown in Figure 1, to give a prediction of a query point xt, only a real number fDj ,λ(xt)
is communicated to the global machine, which succeeds in protecting the data privacy of
each local machine. Generalization performances of the divide-and-conquer learning have
been proved to be similar to running the corresponding algorithm processing the whole data
on a single but large enough machine (Zhang et al., 2015; Chang et al., 2017; Lin et al.,
2017; Guo et al., 2017; Mücke and Blanchard, 2018; Pang and Sun, 2018; Shi, 2019; Lin
et al., 2020). The theoretical problem is, however, that there is a strict restriction on the
number of local machines to guarantee the optimal generalization performance, which is
difficult to be satisfied in real applications.

In this paper, taking the DKRR to be the specific algorithm, we aim at enlarging the
number of local machines by considering communications among different local machines.
There are three purposes in our study. At first, we improve the existing results for DKRR
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in expectation in the sense of removing the eigen-function assumption in (Zhang et al.,
2015) and relaxing the regularity assumption in (Lin et al., 2017). Our main tool to achieve
this goal is a tight operator product estimate based on a recently developed concentration
inequality for self-adjoint operators (Minsker, 2017). These estimates improve the results
in (Lin et al., 2017; Guo et al., 2017), where the second order decomposition of operator
differences and a classical concentration inequality in (Pinelis, 1994) are used.

Since generalization error estimates in probability quantify the generalization perfor-
mance of DKRR in a single trial while estimates in expectation describe the average error,
it is highly desired to deduce optimal learning rates for DKRR in probability. However,
almost all existing results for DKRR are established in expectation (Zhang et al., 2015; Lin
et al., 2017; Chang et al., 2017). The main reason is that the power of averaging in DKRR
can be directly reflected by expectation, provided the samples are assumed to be drawn in-
dependently and identically according to some distribution. Our second purpose is to derive
optimal learning rates for DKRR in probability, by means of a novel error decomposition
technique motivated by Lin and Zhou (2018). Since the advantage of averaging cannot be
directly used, the restriction on the number of local machines is a bit strict. Our estimates
in probability support numerical observations that cannot be seen from the estimates in
expectation.

Our last purpose is to develop a communication strategy to improve the performance of
DKRR. Combining the recently developed integral approach (Lin et al., 2017; Guo et al.,
2017) with a Newton-Raphson iteration, we design a communication strategy to enlarge the
number of local machines to guarantee optimal learning rates for DKRR. Our basic idea
is to communicate gradients of each local machine and use the Newton-Raphson iteration
in the global machine to synthesize the global machine. Both theoretical analysis and
numerical results are conducted to verify the power of communications. Theoretically, we
prove that, in the sense of probability, DKRR with communications can reach the optimal
learning rates, while the restriction to the number of local machines is the same as that
in expectation. Numerically, we exhibit that communications enlarge the number of local
machines of DKRR and thus essentially improve its learning performance.

The rest of the paper is organized as follows. In the next section, we present the commu-
nication strategy as well as its motivation. In Section 3, theoretical results including optimal
learning rates for DKRR in expectation, optimal learning rates for DKRR in probability
and optimal learning rates for DKRR with communications in probability are given. Section
4 makes some comparisons between our results and related work. In Section 5, we provide
the main tool in our analysis, where a novel concentration inequality is used to bound the
difference between integral operators and their empirical counterparts and some novel error
decomposition strategies are adopted to quantify the generalization error. In Section 6, we
prove our theoretical results presented in Section 3. In the last section, we conduct a series
of numerical studies to verify the outperformance of DKRR with communications.

2. DKRR with Communications

In this section, we propose a novel communication strategy for DKRR to improve the
learning performance.
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Figure 2: The kernel is K(t, t′) = 1 + min{t, t′} for t, t′ ∈ [0, 1]. Data {(ti, yi)}10000i=1 are
generated with {ti}10000i=1 being drawn i.i.d. according to the uniform distribution
on [0, 1] and y = f(t) + ε, where f(t) = min{t, 1 − t} and ε ∼ N (0, 0.2). The
green line (local approximation) denotes the performance of running KRR on a
local machine with a noiseless data subset (of size 10000/m), {(ti, f(ti))}.

2.1. Limitations of DKRR without Communications

Let m be the number of local machines, Dj = {(xi,j , yi,j)}
|Dj |
i=1 be the data subset stored

in the j-th local machine with 1 ≤ j ≤ m and D =
⋃m
j=1Dj be the disjoint union of

{Dj}mj=1, where |Dj | denotes the cardinality of Dj . Write Dj(x) := {x : (x, y) ∈ Dj}. Let
(HK , ‖ · ‖K) be the reproduced kernel Hilbert space (RKHS) induced by a Mercer kernel
K on a compact metric (input) space X . DKRR is defined (Zhang et al., 2015) with a
regularization parameter λ > 0 by

f
0
D,λ =

m∑
j=1

|Dj |
|D|

fDj ,λ, (1)

where

fD,λ = arg min
f∈HK

 1

|D|
∑

(x,y)∈D

(f(x)− y)2 + λ‖f‖2K

 . (2)

The limitations of DKRR were studied in (Shang and Cheng, 2017) and (Liu et al.,
2018) by presenting a sharp upper bound of m to guarantee the comparable performances
for DKRR and kernel ridge regression (KRR). Their core idea is that the weighted average in
(1) cannot improve the approximation ability of KRR in each local machine. The representer
theorem shows

fDj ,λ ∈ HK,Dj :=

 ∑
x∈Dj(x)

axKx : ax ∈ R

 ,
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where Kx := K(x, ·). Since HK,Dj is a |Dj |-dimensional linear space, its approximation
ability becomes worse when m increases, just as the trend of green line in Figure 2 shows.
Therefore, it is impossible to derive comparable generalization errors of DKRR (blue line in
Figure 2) and KRR with whole data (black line in Figure 2) when m is larger than m1. An
ideal range of m to guarantee the optimal generalization performance of DKRR is [1,m1].
However, as shown in Figure 2, the practical range [1,m2] is much narrower than [1,m1].
This phenomenon says that the main bottleneck for DKRR is not due to the approximation
ability but the fact that the weighted averaging is not good enough to compensate the loss of
samples. Thus, efficient communication strategies and synthesization methods are required
to enlarge the range of m to guarantee the best generalization performance of distributed
learning.

2.2. Motivations from Operator Representations

Before presenting our communication strategy, we give the motivation first. Let SD : HK →
R|D| be the sampling operator (Smale and Zhou, 2007) defined by

SDf := (f(x))(x,y)∈D.

Its scaled adjoint STD : R|D| → HK is given by

STDc :=
1

|D|

|D|∑
i=1

ciKxi , c := (c1, c2, . . . , c|D|)
T ∈ R|D|.

Define

LK,Df := STDSDf =
1

|D|
∑

(x,y)∈D

f(x)Kx.

Then, it can be found in (Smale and Zhou, 2007) and (Lin et al., 2017) respectively that

fD,λ = (LK,D + λI)−1 STDyD (3)

and

f
0
D,λ =

m∑
j=1

|Dj |
|D|

(
LK,Dj + λI

)−1
STDjyDj ,

where yD := (y1, . . . , y|D|)
T . For an arbitrary f ∈ HK , we have

fD,λ = f − (LK,D + λI)−1 [(LK,D + λI) f − STDyD], (4)

and

f
0
D,λ = f −

m∑
j=1

|Dj |
|D|

(
LK,Dj + λI

)−1
[
(
LK,Dj + λI

)
f − STDjyDj ]. (5)

Since the (half) gradient of the empirical risk in (2) over HK on f is

GD,λ,f =
1

|D|
∑

(x,y)∈D

(f(x)− y)Kx + λf = (LK,D + λI)f − STDyD
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and the Hessian is

HD,λ =
1

|D|
∑

(x,y)∈D

〈·,Kx〉KKx + λI = LK,D + λI,

(4) and (5) can be regarded as the well known Newton-Raphson iteration. Comparing (4)
with (5) and noting that the global gradients can be achieved via communications, i.e.,

GD,λ,f =
∑m

j=1
|Dj |
|D| GDj ,λ,f , we aim at designing a communication strategy via the Newton-

Raphson iteration formed as

f
`
D,λ = f

`−1
D,λ −

m∑
j=1

|Dj |
|D|

(
LK,Dj + λI

)−1
[(LK,D + λI) f

`−1
D,λ − STDyD], ` ∈ N. (6)

2.3. DKRR with Communications

In order to derive an estimator with the operator representation (6), we propose a commu-
nication strategy for DKRR(`) by iterating the following procedure for ` = 1, . . . , L.

Step 1. Communicate the global estimator f
`−1
D,λ to local machines and get the local

gradient function GDj ,λ,` := G
Dj ,λ,f

`−1
D,λ

.

Step 2. Communicate back {GDj ,λ,` : j = 1, . . . ,m} to the global machine and synthesize

the global gradient by GD,λ,` :=
∑m

j=1
|Dj |
|D| GDj ,λ,`.

Step 3. Communicate the gradient function GD,λ,` to each local machine and generate
the gradient data Gj,` = {(x,GD,λ,`(x)) : x ∈ Dj(x)}. Then run KRR on the data Gj,` to
obtain a function

gDj ,λ,` := arg min
f∈HK

 1

|Dj |
∑

(x,y)∈Gj,`

(f(x)− y)2 + λ‖f‖2K

 , j = 1, . . . ,m. (7)

Step 4. Communicate back gDj ,λ,` to the global machine and get

f
`
D,λ = f

`−1
D,λ −

1

λ

GD,λ,` − m∑
j=1

|Dj |
|D|

gDj ,λ,`

 . (8)

Due to (3) and (7), we have

gDj ,λ,` = (LK,Dj + λI)−1LK,DjGD,λ,`.

This together with the identity

1

λ
[I − (LK,Dj + λI)−1LK,Dj ]GD,λ,` = (LK,Dj + λI)−1GD,λ,`

and (8) yields (6). The training and testing flows of DKRR(`) are exhibited in Figure
3. Comparing Figure 1 with Figure 3, communications are required in both training and
testing stages of DKRR(`). Noticing that communicating functions are infeasible in practice,
Appendix B presents a simple realization for DKRR(`) by communicating input data. We
believe that there are other efficient implementations of DKRR(`) and leave it as future
studies.
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Figure 3: Training and testing flows of distributed learning with communications.

3. Main Results

In this section, we analyze the generalization performances of the proposed algorithm as
well as DKRR in a standard regression setting (Cucker and Zhou, 2007). Let a sample
D = {(xi, yi)}Ni=1 be independently drawn according to ρ, a Borel probability measure on
Z := X × Y with Y = R. The primary objective is the regression function defined by

fρ(x) =

∫
Y
ydρ(y|x), x ∈ X ,

where ρ(y|x) denotes the conditional distribution at x induced by ρ. Throughout the
paper, we assume that K is a Mercer kernel and X is compact, which implies κ :=√

supx∈X K(x, x) <∞.

3.1. Optimal Learning Rates for DKRR in Expectation

To derive optimal learning rates for DKRR, we need some assumptions on the decay of the
outputs, regularity of the regression function and capacity of HK .

Assumption 1 We assume
∫
Y y

2dρ <∞ and∫
Y

(
e
|y−fρ(x)|

M − |y − fρ(x)|
M

− 1

)
dρ(y|x) ≤ γ2

2M2
, ∀x ∈ X , (9)

where M and γ are positive constants.

Condition (9) is satisfied if the noise is uniformly bounded, Gaussian or sub-Gaussian
(Caponnetto and De Vito, 2007). Let ρX be the marginal distribution of ρ and L2

ρ
X

be the

Hilbert space of ρX square integrable functions on X , with norm denoted by ‖ · ‖ρ. The
Mercer kernel K : X × X → R defines an integral operator LK on HK (or L2

ρX
) by

LKf =

∫
X
Kxf(x)dρX , f ∈ HK (or f ∈ L2

ρX
).
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Our second assumption is the capacity assumption measured by the effective dimension
(Guo et al., 2017; Lin et al., 2017),

N (λ) = Tr((λI + LK)−1LK), λ > 0.

Assumption 2 There exists some s ∈ (0, 1] such that

N (λ) ≤ C0λ
−s, (10)

where C0 ≥ 1 is a constant independent of λ.

Condition (10) with s = 1 is always satisfied by taking the constant C0 = Tr(LK) ≤ κ2.
For 0 < s < 1, it was shown in (Guo et al., 2017, Page 7) that (10) is slightly more
general than the eigenvalue decaying assumption in (Caponnetto and De Vito, 2007) and
has been employed in (Blanchard and Krämer, 2016; Guo et al., 2017; Lin et al., 2017; Chang
et al., 2017; Mücke and Blanchard, 2018) to derive optimal learning rates for kernel-based
algorithms.

Assumption 3 For r > 0, assume

fρ = LrKhρ, for some hρ ∈ L2
ρX
, (11)

where LrK denotes the r-th power of LK : L2
ρX
→ L2

ρX
as a compact and positive operator.

The regularity condition (11) describes the regularity of fρ and has been adopted in
a large literature to quantify learning rates for some algorithms (Smale and Zhou, 2007;
Caponnetto and De Vito, 2007; Blanchard and Krämer, 2016; Guo et al., 2017; Lin et al.,
2017). Based on the above three assumptions, we can derive the following optimal learning
rates for DKRR in expectation.

Theorem 1 Under Assumptions 1-3 with 1
2 ≤ r ≤ 1 and 0 < s ≤ 1, if λ = |D|−

1
2r+s ,

|D1| = · · · = |Dm| and

m ≤ C1|D|
2r+s−1
2r+s (log |D|)−3, (12)

then
E[‖f0D,λ − fρ‖2ρ] ≤ C2|D|−

2r
2r+s ,

where C1, C2 are constants independent of |D| or m, whose values will be given explicitly
in the proof.

Theorem 1 exhibits optimal learning rates for DKRR in expectation under the restriction
(12). In previous studies (Lin et al., 2017; Guo et al., 2017; Mücke and Blanchard, 2018),
optimal learning rates for DKRR are built upon the restriction

m ≤ |D|
2r−1
2r+s . (13)

A direct consequence is that if r = 1/2, then DKRR with m = |D|θ for an arbitrarily small
θ > 0 may not achieve the optimal learning, according to the existing work. In particular,
it was shown in (Lin et al., 2017) that a parameter value for λ larger than |D|−1/(2r+s) is

8



Distributed Kernel Ridge Regression with Communications

required under this circumstance, which leads to a sub-optimal learning rate. Comparing
(13) with (12), we relax the restriction on m so that optimal learning rates for DKRR also
hold for r = 1/2. The restriction (12) with r = 1/2 is similar to that in (Zhang et al., 2015).
However, we remove the eigenfunction assumption in (Zhang et al., 2015) and derive optimal
learning rates for DKRR under Assumption 3 with 1

2 ≤ r ≤ 1. It should be mentioned that
removing the eigenfunction assumption in (Zhang et al., 2015) was already made in a series
of previous papers (Lin et al., 2017; Guo et al., 2017; Mücke and Blanchard, 2018; Lin et al.,
2020). However, an additional level of regularity, r > 1/2 is imposed due to (13), excluding
r = 1/2 for Zhang et al. (2015). Our study in Theorem 1 successfully fills this gap.

3.2. Optimal Learning Rates for DKRR in Probability

Theorem 1 presented optimal learning rates for DKRR in expectation. However, the expec-
tation describes the average information for multiple trails and fails to capture the learning
performance of DKRR for a single trail. This explains the inconsistency between the theo-
retical result in Theorem 1 and numerical observation in Figure 2, where m2 is much smaller
than m1. In the following theorem, we deduce learning rates for DKRR in probability.

Theorem 2 Let 0 < δ < 1. Under Assumptions 1-3 with 1
2 ≤ r ≤ 1 and 0 < s ≤ 1, if

λ = |D|−
1

2r+s , |D1| = · · · = |Dm|,

m ≤ |D|
2r+s−1
4r+2s

C3 log3 |D|
, (14)

and

16|D|
2r+s−1
4r+2s exp

{
−C4|D|

2r+s−1
8r+4s log |D|

}
≤ δ, (15)

then with confidence at least 1− δ, there holds

‖f0D,λ − fρ‖ρ ≤ C5|D|
−r

2r+s log2
8

δ
, (16)

where C3, C4, C5 are constants independent of |D|, m or δ, whose values will be given
explicitly in the proof.

It has been a difficult task to derive optimal learning rates for DKRR in probability
as shown in (16). Compared with the classical error decomposition in expectation (Chang
et al., 2017), where the generalization error is decomposed into approximation error, sample
error and distributed error, the error decomposition in probability is totally different. In
particular, it is not easy to separate a distributed error in probability to control the number
of local machines. As a consequence, the upper bound of (14) is tighter than that of (12),
showing a stricter restriction on m to guarantee the optimal learning rate in probability.

Neglecting the logarithmic fact, we have |D|
2r+s−1
4r+2s =

√
|D|

2r+s−1
2r+s . Noting that m2 ∼

√
m1 in

Figure 2, the error estimate in probability coincides with the numerical results, showing the
power of estimate in probability. Based on the confidence-based error estimate in Theorem
2, we can derive almost sure convergence of DKRR.

9
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Corollary 3 Under Assumption 1, Assumption 3 with 1
2 ≤ r ≤ 1 and Assumption 2 with

0 < s ≤ 1, if λ = |D|−
1

2r+s , |D1| = · · · = |Dm| and (14) holds, then for any ε > 0, there
holds

lim
|D|→∞

|D|
r

2r+s
(1−ε)‖f0D,λ − fρ‖ρ = 0.

3.3. Optimal Learning Rates for DKRR with Communications

In the previous subsection, we presented theoretical limitations of DKRR in terms of a
small range of m to guarantee the optimal learning rate in probability. In the following
theorem, we show that our proposed communication strategy can improve the performance
of DKRR.

Theorem 4 Let 0 < δ < 1. Under Assumptions 1-3 with 1
2 ≤ r ≤ 1 and 0 < s ≤ 1, if

λ = |D|−
1

2r+s , |D1| = · · · = |Dm|,

m ≤ |D|
(2r+s−1)(`+1)
(2r+s)(`+2)

C6 log3 |D|
, (17)

and

|D|
(2r+s−1)(`+1)
(2r+s)(`+2)

C7 log3 |D|
exp{−|D|

2r+s−1
2(2r+s)(`+2) log |D|} ≤ δ < 1,

then with confidence at least 1− δ, there holds

‖f `D,λ − fρ‖ρ ≤ C8|D|
−r

2r+s log`+2 4

δ
,

where C6, C7, C8 are constants independent of m, δ or |D|, whose value will be given
explicitly in the proof.

Comparing (17) with (14), the proposed communication strategy relaxes the restric-

tion on m from order |D|
2r+s−1
4r+2s to |D|

(2r+s−1)(`+1)
(2r+s)(`+2) . Furthermore, the upper bound of m is

monotonically increasing with the number of communications, showing the power of com-
munications in DKRR. As ` → ∞, up to a logarithmic factor, the restriction tends to
the best one in (12). At the first glance, the restriction (17) is always worse than (12),
contradicting our assertions on the outperformance of communications. However, it should
be highlighted that (12) only guarantees the error bound in expectation. This means that
if m satisfies (12), we cannot conduct feasibility analysis of DKRR via a single (or finite
many) trial. Figure 2 numerically shows the drawback of analysis in expectation. Theo-
rem 4 conducts the error analysis in probability, a totally different theoretical framework
from Theorem 1. In this framework, Theorem 4 shows that communications improve the
performance of DKRR since (17) is better than (14). It will be shown in Proposition 12
below that under (17), the error of DKRR(`) converges exponentially fast with respect to
the number of communications, meaning that only a small ` in DKRR(`) is required to
get a satisfactory error bound in probability. Based on Theorem 4, we present almost sure
convergence of DKRR with communications.
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Corollary 5 Under Assumptions 1-3 with 1
2 ≤ r ≤ 1 and 0 < s ≤ 1, if λ = |D|−

1
2r+s ,

|D1| = · · · = |Dm| and (17) holds, then for any ε > 0, there holds

lim
|D|→∞

|D|
r

2r+s
(1−ε)‖f `D,λ − fρ‖ρ = 0.

4. Related Work and Discussions

KRR is a classical learning algorithm for regression and has been extensively studied in
statistics and learning theory. Optimal learning rates for KRR were established in (Capon-
netto and De Vito, 2007; Steinwart et al., 2009; Lin et al., 2017, 2019). For DKRR, optimal
learning rates were deduced in (Zhang et al., 2015) under Assumption 1, Assumption 3
with r = 1/2, some eigenvalue decaying assumption that is similar to Assumption 2, and
an additional boundedness assumption for the eigenfunctions. Lin et al. (2017) removed
the eigenfunction assumption by introducing a novel integral operator approach as well as
a second-order decomposition for operator difference. However, optimal learning rates for
DKRR (Lin et al., 2017) were derived under Assumption 3 with 1

2 < r ≤ 1, excluding the
most popular case r = 1/2, i.e., fρ ∈ HK . Although several recent work (Guo et al., 2017;
Chang et al., 2017; Mücke and Blanchard, 2018; Shi, 2019; Lin et al., 2020) focused on con-
quering this theoretical drawback, there is no essential improvement in presenting a good
bound for the number of local machines according to the theory in (Shang and Cheng, 2017;
Liu et al., 2018). In this paper, we succeed in deriving a tight bound for the number of local
machines as (12) by applying the concentration inequality established in (Minsker, 2017)
to describe the similarity of different operators (see the next section for detailed descrip-
tions). Different from Lin et al. (2017), Theorem 1 in this paper removes the eigenfunction
assumption of Zhang et al. (2015) without presenting additional regularity assumption.

Previous optimal learning rates for DKRR (Zhang et al., 2015; Lin et al., 2017; Guo
et al., 2017; Chang et al., 2017; Mücke and Blanchard, 2018; Shi, 2019; Lin et al., 2020) were
built in expectation. Technically, the generalization error in expectation can be divided into
the approximation error, sample error and distributed error (Chang et al., 2017) by using
the unbiasedness property E[y|x] = fρ(x). The approximation error, independent of the
sample, describes the approximation capability of the hypothesis space. The sample error

connects the synthesized estimator (1) with the estimator (2) by showing an additional
|Dj |
|D|

in the sample error for local estimators. The distributed error measures the limitation of the
distributed learning algorithm (1) and presents the upper bound of m to guarantee optimal
learning rates for DKRR. Our error estimate in expectation also follows from this classical
error decomposition (see Lemma 8 below). However, this widely used error decomposition is
not applicable to DKRR in probability since there lacks an expectation operator to realize
the unbiasedness E[y|x] = fρ(x). Thus, it requires novel approaches to deduce optimal
learning rates for DKRR in probability. According to an explicit operator representation
for the kernel-based gradient descent algorithm, optimal learning rates as well as a novel
error decomposition based on its operator representation for distributed gradient descent
algorithms were established in probability (Lin and Zhou, 2018). Using the similar error
decomposition as Lin and Zhou (2018), a minimum error entropy algorithm with distributed
gradient descents was proposed in (Hu et al., 2019) and a tight learning rate was derived.
However, DKRR requires the computation of the inverse matrix (or operator), the error

11
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decomposition of gradient descent algorithm in (Lin and Zhou, 2018; Hu et al., 2019) is not
suitable for DKRR. In this paper, as shown in Proposition 10 below, we succeed in deriving
a novel error decomposition for DKRR by introducing some measurements to quantify the
difference between integral operators and their empirical counterparts. Then, applying
the recently developed concentration inequalities for positive operators (Minsker, 2017), we
derive optimal learning rates for DKRR in probability under much looser restriction on m
than (Lin and Zhou, 2018; Hu et al., 2019).

Numerous communication strategies (Li et al., 2014; Shamir et al., 2014; Bellet et al.,
2015; Huang and Huo, 2019) were proposed to improve the learning performance of dis-
tributed learning algorithms in the framework of parametric regression (linear regression).
To the best of our knowledge, our proposed communication strategy is the first work fo-
cusing on improving the performance of learning algorithms in nonparametric regression.
As shown in Figure 1, nonparametric regression transmits function values and protects the
privacy of local machines, while parametric regression (Zhang et al., 2013) transmits coef-
ficients that may disclose the detailed information for local estimators. The most related
work is Huang and Huo (2019), where a communication strategy based on Newton-Raphson
iterations is proposed to equip ridge regression in linear regression. Our work differs from
Huang and Huo (2019) in the following three aspects. Firstly, our analysis is carried out
in nonparametric regression rather than linear regression. Secondly, the communication
strategy is based on the operator representation, which is exclusive for kernel approaches.
Thirdly, our theory focuses on enlarging the range of number of local machines rather than
improving the learning rate of distributed learning algorithms, since DKRR without com-
munications is already optimal for not so large m based on previous studies (Lin et al.,
2017). It would be interesting to extend our communication strategy to other distributed
learning schemes such as distributed learning with convolutional neural networks in deep
learning (Zhou, 2018a,b, 2020).

5. Operator Similarities and Error Decomposition

We analyze the learning performance of DKRR(`) by using the integral operator approach
(Smale and Zhou, 2007; Lin et al., 2017; Guo et al., 2017; Guo and Shi, 2019). Our novelty
in analysis is tight bounds on quantifying the similarity between different operator. These
bounds together with the exclusive error decomposition yield optimal learning rates for
DKRR and show the advantage of communications in distributed learning.

5.1. Similarities of Operators

The similarity between f
`
D,λ and fD,λ depends heavily on that between the operator LK

and LK,D. The classical method for analyzing similarity between LK and LK,D is to bound
the norm of operator difference LK −LK,D. By using a concentration inequality in Hilbert
spaces from Pinelis (1994), it can be found (Caponnetto and De Vito, 2007; Blanchard and
Krämer, 2016) that for any δ ∈ (0, 1), with confidence at least 1− δ, there holds

SD,λ := ‖(LK + λI)−1/2(LK − LK,D)‖ ≤ 2κ(κ+ 1)AD,λ log
2

δ
, (18)

12
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where

AD,λ :=
1√
|D|

(
1√
|D|λ

+
√
N (λ)

)
. (19)

The bound in (18) is tight. However, in estimating the difference between fD,λ and

f
`
D,λ, one also needs to estimate

RD,λ := ‖(LK + λI)−1/2(LK − LK,D)(LK + λI)−1/2‖.

A classical approach (Lin et al., 2017; Guo et al., 2017) is to use RD,λ ≤ 1√
λ
SD,λ and get

that

RD,λ ≤ 2κ(κ+ 1)λ−1/2AD,λ log
2

δ
(20)

holds with confidence 1−δ. The leading term in (20) is

√
N (λ)√
|D|λ

for λ ≥ |D|−1. In the following

lemma, which will be proved in Appendix A, we reduce the leading term for bounding RD,λ
from

√
N (λ)√
|D|λ

to

√
logN (λ)√
|D|λ

by using a new concentration inequality for self-adjoint operators

(Minsker, 2017).

Lemma 6 Let 0 < δ ≤ 1. If 0 < λ ≤ 1 and N (λ) ≥ 1, then with confidence 1 − δ, there
holds

RD,λ ≤ C∗1BD,λ log
4

δ
, (21)

where C∗1 := max{(κ2 + 1)/3, 2
√
κ2 + 1} and

BD,λ :=
1 + logN (λ)

λ|D|
+

√
1 + logN (λ)

λ|D|
. (22)

Besides the differences between RD,λ and SD,λ, another quantity to measure the sim-
ilarity between LK,D and LK is the operator product ‖(LK + λI)1/2(LK,D + λI)−1/2‖. A
recently developed second order decomposition for positive operators (Lin et al., 2017; Guo
et al., 2017) asserts that if A and B are invertible operators on a Banach space, then

A−1 −B−1 = B−1(B −A)B−1(B −A)A−1 +B−1(B −A)B−1.

This implies the following decomposition of the operator product

BA−1 = (B −A)B−1(B −A)A−1 + (B −A)B−1 + I. (23)

Inserting A = LK,D + λI and B = LK + λI to (23) and noting (18), it is easy to derive
the following upper bound for ‖(LK + λI)(LK,D + λI)−1‖ (e.g., Guo et al., 2017): for any
0 < δ < 1, with confidence at least 1− δ, there holds

‖(LK + λI)(LK,D + λI)−1‖ ≤ 2

( 2κ√
|D|λ

(
κ√
|D|λ

+
√
N (λ)

)
log

2

δ

)2

+ 1

 .
13
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Hence, according to the Cordes inequality (Bhatia, 1997)

‖AτBτ‖ ≤ ‖AB‖τ , 0 < τ ≤ 1,

we have

QD,λ := ‖(LK + λI)1/2(LK,D + λI)−1/2‖

≤

√√√√√2

( 2κ√
|D|λ

(
κ√
|D|λ

+
√
N (λ)

)
log

2

δ

)2

+ 1

. (24)

The leading term of the right-hand side of (24) is

√
N (λ)√
|D|λ

. In the following lemma, whose

proof is postponed to Appendix A, we improve (24) by using Lemma 6.

Lemma 7 Assume 0 < λ ≤ 1 and N (λ) ≥ 1. For δ ≥ 4 exp{−1/(2C∗1BD,λ)}, with confi-
dence 1− δ, there holds

QD,λ ≤
√

2.

In (24), to guarantee the boundedness of QD,λ, it requires

√
N (λ)√
|D|λ

log 2
δ ≤ C∗2 for some

C∗2 > 0 depending only on κ. However, in Lemma 7, recalling (22), it is sufficient that
log(N (λ))√
|D|λ

log 2
δ ≤ C

∗
3 for some C∗3 > 0 depending only on κ.

5.2. Error Decomposition for DKRR in Expectation

We use the error decomposition for DKRR in (Chang et al., 2017), where the data-free limit
and noise-free version of fDj ,λ,

fλ = arg min
f∈HK

{∫
X

(f(x)− fρ(x))2dρX + λ‖f‖2K
}

= (LK + λI)−1LKfρ, (25)

and

f�Dj ,λ := E[fDj ,λ|Dj(x)] = (LK,Dj + λI)−1LK,Djfρ (26)

are used. The following lemma can be found in (Chang et al., 2017).

Lemma 8 Let f
0
D,λ be defined by (1). We have

1

2
E
[
‖f0D,λ − fρ‖2ρ

]
≤ ‖fλ−fρ‖2ρ+

m∑
j=1

|Dj |2

|D|2
E
[
‖fDj ,λ − fλ‖

2
ρ

]
+

m∑
j=1

|Dj |
|D|

E

[∥∥∥f�Dj ,λ − fλ∥∥∥2ρ
]
.

(27)

The three terms on the right-hand side of (27) are respectively the approximation error,
sample error and distributed error. Based on Lemma 8, we can derive the following error
decomposition for DKRR in expectation.

14
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Proposition 9 Let f
0
D,λ be defined by (1). If fρ ∈ HK , then

1

2
E
[
‖f0D,λ − fρ‖2ρ

]
≤ ‖fλ − fρ‖2ρ +

m∑
j=1

|Dj |2

|D|2
E
[
Q4
Dj ,λ

(PDj ,λ + SDj ,λ‖fλ‖K)2
]

+
m∑
j=1

|Dj |
|D|

E
[
Q4
Dj ,λ
R2
Dj ,λ
‖(LK + λI)1/2(fλ − fρ)‖2K

]
, (28)

where

PD,λ :=
∥∥∥(LK + λI)−1/2(LKfρ − STDyD)

∥∥∥
K
.

Proof. We first bound the sample error. It follows from (3) and (25) that

fD,λ − fλ = (LK,D + λI)−1STDyD − (LK + λI)−1LKfρ

= (LK,D + λI)−1(STDyD − LKfρ) + [(LK,D + λI)−1 − (LK + λI)−1]LKfρ

= (LK,D + λI)−1/2(LK,D + λI)−1/2(LK + λI)1/2(LK + λI)−1/2(STDyD − LKfρ)
+ (LK,D + λI)−1/2(LK,D + λI)−1/2(LK + λI)1/2(LK + λI)−1/2(LK − LK,D)fλ.

So

‖(LK + λI)1/2(fDj ,λ − fλ)‖K ≤ Q2
Dj ,λ

(PDj ,λ + SDj ,λ‖fλ‖K). (29)

Then, we bound the distributed error. Due to (3) and (26), we get

f�D,λ − fλ = (LK,D + λI)−1LK,Dfρ − (LK + λI)−1LKfρ

= (LK,D + λI)−1(LK,D − LK)fρ + [(LK,D + λI)−1 − (LK + λI)−1]LKfρ

= (LK,D + λI)−1(LK,D − LK)fρ + (LK,D + λI)−1(LK − LK,D)fλ

= (LK,D + λI)−1(LK,D − LK)(fρ − fλ)

= (LK,D + λI)−1(LK + λI)1/2(LK + λI)−1/2(LK,D − LK)(LK + λI)−1/2

(LK + λI)1/2(fρ − fλ).

Combining this with fρ ∈ HK yields

‖(LK + λI)1/2(f�Dj ,λ − fλ)‖K ≤ Q2
Dj ,λ
RDj ,λ‖(LK + λI)1/2(fλ − fρ)‖K . (30)

Plugging (29) and (30) into (27), we have

1

2
E
[
‖f0D,λ − fρ‖2ρ

]
≤ ‖fλ − fρ‖2ρ +

m∑
j=1

|Dj |2

|D|2
E
[
Q4
Dj ,λ

(PDj ,λ + SDj ,λ‖fλ‖K)2
]

+

m∑
j=1

|Dj |
|D|

E
[
Q4
Dj ,λ
R2
Dj ,λ
‖(LK + λI)1/2(fλ − fρ)‖2K

]
.

This completes the proof of Proposition 9. �
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5.3. Error Decomposition for DKRR in Probability

To deduce learning rates for DKRR in probability, we need the following error decomposi-

tion. It holds for ‖f0D,λ − fD,λ‖ρ, which is totally different from Proposition 9 focusing on
the expectation.

Proposition 10 Let f
0
D,λ be defined by (1). Then

‖f0D,λ − fD,λ‖ρ ≤ ‖(LK + λI)1/2(f
0
D,λ − fD,λ)‖K

≤ Q2
D,λ

m∑
j=1

|Dj |
|D|

(RDj ,λ +RD,λ)Q2
Dj ,λ

(PDj ,λ + SDj ,λ‖fλ‖K). (31)

Proof. From the definition of f
0
D,λ, we see

f
0
D,λ − fD,λ =

m∑
j=1

|Dj |
|D|

(LK,Dj + λI)−1STDjyDj − (LK,D + λI)−1STDyD

=

m∑
j=1

|Dj |
|D|

[
(LK,Dj + λI)−1 − (LK,D + λI)−1

]
STDjyDj

=

m∑
j=1

|Dj |
|D|

(LK,D + λI)−1(LK,D − LK,Dj )fDj ,λ

=
m∑
j=1

|Dj |
|D|

(LK,D + λI)−1(LK,D − LK)(fDj ,λ − fλ)

+
m∑
j=1

|Dj |
|D|

(LK,D + λI)−1(LK − LK,Dj )(fDj ,λ − fλ)

= (LK,D + λI)−1(LK + λI)1/2(LK + λI)−1/2(LK,D − LK)(LK + λI)−1/2

m∑
j=1

|Dj |
|D|

(LK + λI)1/2(fDj ,λ − fλ)

+ (LK,D + λI)−1(LK + λI)1/2

m∑
j=1

|Dj |
|D|

(LK + λI)−1/2(LK,Dj − LK)(LK + λI)−1/2(LK + λI)1/2(fDj ,λ − fλ).

Then,

‖(LK + λI)1/2(f
0
D,λ − fD,λ)‖K ≤ Q2

D,λRD,λ
m∑
j=1

|Dj |
|D|
‖(LK + λI)1/2(fDj ,λ − fλ)‖K

+ Q2
D,λ

m∑
j=1

|Dj |
|D|
RDj ,λ‖(LK + λI)1/2(fDj ,λ − fλ)‖K .
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This together with (29) gives

‖f0D,λ − fD,λ‖ρ ≤ Q2
D,λRD,λ

m∑
j=1

|Dj |
|D|
Q2
Dj ,λ

(PDj ,λ + SDj ,λ‖fλ‖K)

+ Q2
D,λ

m∑
j=1

|Dj |
|D|
RDj ,λQ

2
Dj ,λ

(PDj ,λ + SDj ,λ‖fλ‖K).

This completes the proof of Proposition 10. �

5.4. Error Decomposition for DKRR(`)

In this subsection, we derive an error decomposition for DKRR(`). At first, we show in the
following proposition the power of communications.

Proposition 11 Let ` ≥ 0. We have

‖(LK + λI)1/2(f
`
D,λ − fD,λ)‖K

≤

 m∑
j=1

|Dj |
|D|
Q2
Dj ,λ

(RDj ,λ +RD,λ)

`

‖(LK + λI)1/2(f
0
D,λ − fD,λ)‖K .

Proof. Since

fD,λ = f
`−1
D,λ − (LK,D + λI)−1[(LK,D + λI)f

`−1
D,λ − STDyD],

we have

fD,λ − f
`
D,λ = f

`−1
D,λ −

m∑
j=1

|Dj |
|D|

(LK,Dj + λI)−1[(LK,D + λI)f
`−1
D,λ − STDyD]

− f
`−1
D,λ + (LK,D + λI)−1[(LK,D + λI)f

`−1
D,λ − STDyD]

=
m∑
j=1

|Dj |
|D|

[(LK,Dj + λI)−1 − (LK,D + λI)−1][(LK,D + λI)f
`−1
D,λ − STDyD]

=
m∑
j=1

|Dj |
|D|

(LK,Dj + λI)−1(LK,D − LK,Dj )(LK,D + λI)−1[(LK,D + λI)f
`−1
D,λ − STDyD]

=

m∑
j=1

|Dj |
|D|

(LK,Dj + λI)−1(LK,D − LK,Dj )(f
`−1
D,λ − fD,λ)

=

m∑
j=1

|Dj |
|D|

(LK,Dj + λI)−1(LK,D − LK)(f
`−1
D,λ − fD,λ)

+
m∑
j=1

|Dj |
|D|

(LK,Dj + λI)−1(LK − LK,Dj )(f
`−1
D,λ − fD,λ)

=: UD,λ,1 + UD,λ,2.
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Since

(LK + λI)1/2UD,λ,1

=
m∑
j=1

|Dj |
|D|

(LK + λI)1/2(LK,Dj + λI)−1(LK + λI)1/2(LK + λI)−1/2(LK,D − LK)

× (LK + λI)−1/2(LK + λI)1/2(f
`−1
D,λ − fD,λ),

we have

‖(LK + λI)1/2UD,λ,1‖K ≤
m∑
j=1

|Dj |
|D|
Q2
Dj ,λ
RD,λ‖(LK + λI)1/2(f

`−1
D,λ − fD,λ)‖K .

Similarly, we find

‖(LK + λI)1/2UD,λ,2‖K ≤
m∑
j=1

|Dj |
|D|
Q2
Dj ,λ
RDj ,λ‖(LK + λI)1/2(f

`−1
D,λ − fD,λ)‖K .

Then,

‖(LK + λI)1/2(f
`
D,λ − fD,λ)‖K

≤

 m∑
j=1

|Dj |
|D|
Q2
Dj ,λ
RDj ,λ +

m∑
j=1

|Dj |
|D|
Q2
Dj ,λ
RD,λ

 ‖(LK + λI)1/2(f
`−1
D,λ − fD,λ)‖K

≤

 m∑
j=1

|Dj |
|D|
Q2
Dj ,λ
RDj ,λ +

m∑
j=1

|Dj |
|D|
Q2
Dj ,λ
RD,λ

`

‖(LK + λI)1/2(f
0
D,λ − fD,λ)‖K .

This completes the proof of Proposition 11. �
Combining Proposition 11 with Proposition 10, we can derive the following error de-

composition for DKRR(`).

Proposition 12 Let ` ≥ 0. We have

‖(LK + λI)1/2(f
`
D,λ − fD,λ)‖K ≤

 m∑
j=1

|Dj |
|D|
Q2
Dj ,λ

(RDj ,λ +RD,λ)

`

× Q2
D,λ

m∑
j=1

|Dj |
|D|

(RD,λ +RDj ,λ)Q2
Dj ,λ

(PDj ,λ + SDj ,λ‖fλ‖K).

6. Proofs

In this section, we present proofs of our main results.
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6.1. Optimal Learning Rates for DKRR in Expectation

In this subsection, we prove optimal learning rates for DKRR in expectation. We need the
following general theorem based on Assumption 1 and Assumption 3.

Theorem 13 Under Assumption 3 with 1
2 ≤ r ≤ 1 and Assumption 1, if 0 < λ ≤ 1 and

N (λ) ≥ 1, then

E
[
‖f0D,λ − fρ‖2ρ

]
≤ 2λ2r + 24

m∑
j=1

|Dj |2

|D|2
(

exp{−1/(2C∗1BDj ,λ)}+ C̃2
1A2

Dj ,λ

)
+

m∑
j=1

|Dj |
|D|

(
16 exp{−1/(2C∗1BDj ,λ)}+ 32C̃2

2B2Dj ,λλ
2r
)
, (32)

where C̃1 := 4((κM + γ)(κ+ 1) + κ2r(2κ+ 1)‖hρ‖ρ) and C̃2 := 4κ(κ+ 1)‖hρ‖ρ.

Proof. Due to Assumption 3 with r ≥ 1/2, we obtain

‖fλ‖K = ‖(LK + λI)−1LKL
r
Khρ‖ ≤ κ2r−1‖L

1/2
K hρ‖K = κ2r−1‖hρ‖ρ. (33)

Moreover, (9) implies (Blanchard and Krämer, 2016; Lin and Zhou, 2018) that with confi-
dence at least 1− δ, there holds

PDj ,λ ≤ 2(κM + γ)(κ+ 1)ADj ,λ log
2

δ
. (34)

Thus, for δ ≥ 12 exp{−1/(2C∗1BDj ,λ)}, it follows from Lemma 7, (18), (33) and (34) that
with confidence 1− δ, there holds

Q2
Dj ,λ

(
PDj ,λ + SDj ,λ‖fλ‖K

)
≤ C̃1ADj ,λ log

6

δ
, ∀ j = 1, . . . ,m. (35)

Using the probability to expectation formula

E[ξ] =

∫ ∞
0

P [ξ > t] dt (36)

to the positive random variable ξ1,j = Q4
Dj ,λ

(PDj ,λ + SDj ,λ‖fλ‖K)2 for any j = 1, . . . ,m,
we have

E[ξ1,j ] =

∫ ∞
0

P [ξ1,j > t] dt

=

∫ 12 exp{−1/(2C∗1BDj,λ)}

0
P [ξ1,j > t] dt+

∫ ∞
12 exp{−1/(2C∗1BDj,λ)}

P [ξ1,j > t] dt

≤ 12 exp{−1/(2C∗1BDj ,λ)}+

∫ ∞
12 exp{−1/(2C∗1BDj,λ)}

P [ξ1,j > t]dt.

When t ≥ 12 exp{−1/(2C∗1BDj ,λ)}, it follows from (35) that

P [ξ1,j > t] ≤ 6 exp{−C̃−11 A
−1
Dj ,λ

t1/2}, ∀ j = 1, . . . ,m,
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and ∫ ∞
12 exp{−1/(2C∗1BDj,λ)}

P [ξ1,j > t]dt ≤ 6

∫ ∞
0

exp{−C̃−11 A
−1
Dj ,λ

t1/2}dt

≤ 12C̃2
1A2

Dj ,λ

∫ ∞
0

ue−udu = 12C̃2
1A2

Dj ,λ
.

Thus,

E
[
Q4
Dj ,λ

(PDj ,λ + SDj ,λ‖fλ‖K)2
]
≤ 12 exp{−1/(2C∗1BDj ,λ)}+ 12C̃2

1A2
Dj ,λ

. (37)

Due to Assumption 3 with r ≥ 1/2, we have

‖(LK + λI)1/2(fλ − fρ)‖K ≤ λ‖(LK + λI)−1/2L
r+1/2
K ‖‖hρ‖ρ ≤ λr‖hρ‖ρ. (38)

Then, Lemma 6 and Lemma 7 with δ ≥ 8 exp{−1/(2C∗1BDj ,λ)} yield that with confidence
1− δ, there holds

Q2
Dj ,λ
RDj ,λ‖(LK + λI)1/2(fλ − fρ)‖K ≤ C̃2BDj ,λλ

r log
8

δ
, ∀ j = 1, . . . ,m. (39)

Then, applying (36) to ξ2,j = Q4
Dj ,λ
R2
Dj ,λ
‖(LK + λI)1/2(fλ − fρ)‖2K and using the same

approach as above, we can derive for any j = 1, . . . ,m,

E[Q4
Dj ,λ
R2
Dj ,λ
‖(LK + λI)1/2(fλ − fρ)‖2K ] ≤ 8 exp{−1/(2C∗1BDj ,λ)}+ 16C̃2

2B2Dj ,λλ
2r. (40)

Plugging (37), (38) and (40) into (28), we get (32) directly. This completes the proof of
Theorem 13. �

Based on Theorem 13, we can prove Theorem 1 as follows.

Proof of Theorem 1. For C1 := min
{

2r+s
2s , (2r+s)3

2rsmax{(κ2+1)/3,2
√
κ2+1}

}
, due to (22),

|D1| = · · · = |Dm|, λ = |D|−
1

2r+s and (10), we have for any j = 1, . . . ,m,

BDj ,λ ≤
2s

2r + s
m|D|−

2r+s−1
2r+s log |D|+

√
2s

2r + s
m|D|−

2r+s−1
2r+s log |D|. (41)

Noting C∗1 = max{(κ2 + 1)/3, 2
√
κ2 + 1}, we see that (12) implies

BDj ,λ ≤
2r + s

4rC∗1 log |D|
(42)

and
exp{−1/(2C∗1BDj ,λ)} ≤ |D|−

2r
2r+s , ∀j = 1, . . . ,m. (43)

According to (19), |D1| = · · · = |Dm|, λ = |D|−
1

2r+s and (10), we also get

ADj ,λ ≤ m|D|
− 4r+2s−1

4r+2s +
√
m|D|−

r
2r+s , ∀j = 1, . . . ,m. (44)

Inserting (42), (43) and (44) into (32) and noting λ = |D|−
1

2r+s and (12), we have

E[‖f0D,λ − fρ‖2ρ] ≤ C1|D|−
2r

2r+s ,

where C2 := 42 + 48C̃2
1 + 32C̃2

2

(
2r+s
4rC∗1

)2
. This completes the proof of Theorem 1. �
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6.2. Optimal Learning Rates for DKRR in Probability

In this subsection, we prove Theorem 2. To this end, we need the following theorem for
DKRR in probability.

Theorem 14 Under Assumption 1 and Assumption 3 with 1
2 ≤ r ≤ 1, if 0 < λ ≤ 1,

N (λ) ≥ 1, and
16m exp{−1/(2C∗1BDj ,λ)} < 1, ∀j = 1, . . . ,m, (45)

then for
16m exp{−1/(2C∗1BDj ,λ)} ≤ δ < 1, ∀j = 1, . . . ,m, (46)

with confidence 1− δ there holds

‖f0D,λ − fD,λ‖ρ ≤ C̃3 log2(4m)
m∑
j=1

|Dj |
|D|
ADj ,λBDj ,λ log2

4

δ
, (47)

where C̃3 = 16C∗1 C̃1.

Proof. Let j ∈ {1, . . . ,m} be fixed. It follows from Lemma 6 and BD,λ ≤ BDj ,λ that

with confidence 1− δ
4 , there holds

RD,λ +RDj ,λ ≤ 2C∗1BDj ,λ log
16

δ
. (48)

Since δ ≥ 16 exp{−1/(2C∗1BDj ,λ)}, Lemma 7 together with (35) shows that with confidence
1− 3δ/4, there holds

Q2
D,λQ2

Dj ,λ

(
PDj ,λ + SDj ,λ‖fλ‖K

)
≤ 2C̃1ADj ,λ log

16

δ
. (49)

Plugging (48) and (49) into (31), for fixed j ∈ {1, . . . ,m}, we see with confidence 1 − δ,
there holds

Q2
D,λ(RDj ,λ +RD,λ)Q2

Dj ,λ
(PDj ,λ + SDj ,λ‖fλ‖K) ≤ C̃3 log2

16

δ
ADj ,λBDj ,λ. (50)

Thus, for δ ≥ 16 exp{−1/(2C∗1BDj ,λ)}, the above estimate implies that with confidence at
least 1−mδ, there holds

max
1≤j≤m

Q2
D,λ(RDj ,λ +RD,λ)Q2

Dj ,λ
(PDj ,λ + SDj ,λ‖fλ‖K) ≤ C̃3 log2

16

δ
ADj ,λBDj ,λ.

Scaling mδ to δ, for δ ≥ 16m exp{−1/(2C∗1BDj ,λ)}, with confidence 1− δ, there holds

‖f0D,λ − fD,λ‖ρ ≤ 4C∗1 C̃1 log2
16m

δ

m∑
j=1

|Dj |
|D|
ADj ,λBDj ,λ.

Note that

log
16m

δ
= log

4

δ
+ log(4m) ≤ (log(4m) + 1) log

4

δ
≤ 2 log(4m) log

4

δ
,
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which follows from (47). Then the proof of Theorem 14 is complete. �
Proof of Theorem 2. Due to the triangle inequality, we have

‖f0D,λ − fρ‖ρ ≤ ‖fD,λ − f
0
D,λ‖ρ + ‖fD,λ − fρ‖ρ. (51)

To bound ‖fD,λ − fρ‖ρ, under (11) with 1
2 ≤ r ≤ 1, we obtain from (29) and (38) that

‖fD,λ − fρ‖ρ ≤ λr +Q2
D,λ(PD,λ + SD,λ‖fλ‖K).

Then, (14) with C3 := max{4C∗1 (4 log 2 + 1), 16 log2 2} and (15) with C4 := 4C∗1 imply
δ ≥ exp{2C∗1BD,λ}, and then (39) with Dj replaced by D shows that with confidence
1− δ/2, there holds

‖fD,λ − fρ‖ρ ≤ λr + C̃1AD,λ log
16

δ
. (52)

Noting (14) and (15) imply (45) and (46), and plugging (47) and (52) into (51), with
confidence 1− δ, there holds

‖f0D,λ − fρ‖ρ ≤ λr + C̃1AD,λ log
16

δ
+ C̃3 log2(4m) log2

8

δ

m∑
j=1

|Dj |
|D|
ADj ,λBDj ,λ. (53)

Since |D1| = · · · = |Dm|, λ = |D|−
1

2r+s and 2s/(2r + s) ≤ 1, we have from (41) and (44)
that

ADj ,λBDj ,λ ≤
(
m|D|−

4r+2s−1
4r+2s +

√
m|D|−

r
2r+s

)
×

(
m|D|−

2r+s−1
2r+s log |D|+

√
m|D|−

2r+s−1
2r+s log |D|

)
. (54)

This together with (14) shows

log2(4m)ADj ,λBDj ,λ ≤ 4|D|−
r

2r+s .

Inserting the above inequality into (53) and noting

AD,λ ≤ |D|−
4r+2s−1
4r+2s + |D|−

r
2r+s ≤ 2|D|−

r
2r+s , (55)

we see with confidence 1− δ, there holds

‖f0D,λ − fρ‖ρ ≤ C5|D|−
r

2r+s log2
8

δ
,

where we use log 16
δ ≤ log2 8

δ and

C5 = 1 + 2C̃1 + 4C̃3.

This completes the proof of Theorem 2. �
To prove Corollary 3, we need the following Borel-Cantelli Lemma (Dudley, 2002, page

262). The Borel-Cantelli Lemma asserts for a sequence {ηn}n of events that if the sum of
the probabilities is finite, i.e.,

∑∞
n=1 P [ηn] < ∞, then the probability that infinitely many

of them occur is 0.
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Lemma 15 Let {ηn} be a sequence of events in some probability space and {εn} be a se-
quence of positive numbers satisfying limn→∞ εn = 0. If

∞∑
n=1

Prob[|ηn − η| > εn] <∞,

then ηn converges to η almost surely.

Proof of Corollary 3. Let N := |D|, it is easy to check that δ = δN = C̃4N
−2 satisfies

(15) for some C̃4 > 0 independent of N . Set ΨN = N−
r

2r+s . By Theorem 2, if λ = |D|−
1

2r+s ,
|D1| = · · · = |Dm| and (14) holds, then for any N and ε > 0,

P

[
Ψ−1+εN ‖f0D,λ − fρ‖ρ > C5Ψ

ε
N

(
log

8

δN

)2
]
≤ δN .

Denote µN = C5Ψ
ε
N

(
log 8

δN

)2
. Obviously,

∞∑
N=2

P
[
Ψ−1+εN ‖f t,D − fρ‖ρ > µN

]
≤
∞∑
N=2

δN <∞

and µN → 0 when N → 0. Then our conclusion follows from Lemma 15. This completes
the proof of Corollary 3. �

6.3. Optimal Learning Rates for DKRR(`)

In this subsection, we present the proof of Theorem 4. To this end, we prove the following
theorem.

Theorem 16 Under Assumption 1 and Assumption 3 with 1
2 ≤ r ≤ 1, if 0 < λ ≤ 1,

N (λ) ≥ 1, and (45) holds, then for δ satisfying (46), with confidence 1− δ there holds

‖f `D,λ − fD,λ‖ρ ≤ 2C̃3(4C
∗
1 )`
(

log(4m) log
4

δ

)`+2
 m∑
j=1

|Dj |
|D|
BDj ,λ

`
m∑
j=1

|Dj |
|D|
ADj ,λBDj ,λ.

Proof. Under (45) and (46), we obtain from Lemma 7, (48) and (50) that with confi-
dence 1−mδ, there holds

max
1≤j≤m

Q2
Dj ,λ

(RDj ,λ +RD,λ) ≤ 4C∗1BDj ,λ log
16

δ
,

and

max
1≤j≤m

Q2
D,λ(RD,λ +RDj ,λ)Q2

Dj ,λ
(PDj ,λ + SDj ,λ‖fλ‖K) ≤ C̃3 log2

16

δ
ADj ,λBDj ,λ.
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Scaling mδ to δ, we obtain from (32) that

‖f `D,λ − fD,λ‖ρ ≤ ‖(LK + λI)1/2(f
`
D,λ − fD,λ)‖K

≤
(

4C∗1 log
16m

δ

)` m∑
j=1

|Dj |
|D|
BDj ,λ

`

C̃3 log2
16m

δ

m∑
j=1

|Dj |
|D|
ADj ,λBDj ,λ.

Noting further log 16
δ ≤ 2 log 4m, we have with confidence 1− δ, there holds

‖f `D,λ − fD,λ‖ρ ≤ 2C̃3(4C
∗
1 )` log`+2(4m) log`+2 4

δ

 m∑
j=1

|Dj |
|D|
BDj ,λ

`
m∑
j=1

|Dj |
|D|
ADj ,λBDj ,λ.

This completes the proof of Theorem 16. �

Proof of Theorem 4. Since |D1| = · · · = |Dm| and λ = |D|−
1

2r+s , it follows from (41)
and 2s/(2r + s) ≤ 1 that m∑

j=1

|Dj |
|D|
BDj ,λ

`

≤
(
m|D|−

2r+s−1
2r+s log |D|+

√
m log |D||D|−

2r+s−1
4r+2s

)`
.

This together with (54) shows that with confidence 1− δ, there holds m∑
j=1

|Dj |
|D|
BDj ,λ

`
m∑
j=1

|Dj |
|D|
BDj ,λADj ,λ

≤
(
m|D|−

2r+s−1
2r+s log |D|+

√
m log |D||D|−

2r+s−1
4r+2s

)`+1 (
m|D|−

4r+2s−1
4r+2s +

√
m|D|−

r
2r+s

)
.

Since (17) with C6 := (4C∗1 (2+4 log 2))2 and (15) with C7 = C6/4, we obtain (45) and (46).
Then, it follows from Theorem 16 that with confidence 1− δ, there holds

‖f `D,λ − fD,λ‖ρ ≤ 2C̃3|D|
−r

2r+s log`+2 4

δ
.

Hence, we obtain from (52) and (55) that with confidence 1− δ, there holds

‖f `D,λ − fρ‖ρ ≤ ‖f
`
D,λ − fD,λ‖ρ + ‖fD,λ − fρ‖ρ ≤ C8|D|

−r
2r+s log`+2 4

δ
,

where C8 = 1 + C̃1 + 2C̃3, which completes the proof of Theorem 4. �
Proof of Corollary 5. The proof of Corollary 5 is the same as that of Corollary 3

with (14) replaced by (17). �

7. Experiments

In this section, we report numerical results to verify our theoretical statements. We employ
three criteria for comparisons. The first criterion is the global mean squared error (GMSE)
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which is the mean square error (MSE) of KRR with training all samples in a batch mode.
GMSE provides a baseline to assess the performances of DKRR and DKRR(`). The second
criterion is the average error (AE) which is the MSE of DKRR. The third criterion is the
average error with communications (AEC), which is the MSE of DKRR (`). Regularization
parameters in all experiments are selected by grid search.

We carry out three simulations to verify our theoretical statements. The first simulation
is devoted to illustrating the power of communications in DKRR. The second simulation is
performed to demonstrate the relation between the generalization ability of DKRR(`) and
the number of training samples for fixed numbers of local machines and communications.
The third simulation focuses on comparisons on the training complexities of DKRR and
DKRR(`).

Before carrying out simulations, we describe how the synthetic data is generated. The
inputs {xi}Ni=1 of training samples are independently drawn according to the uniform distri-
bution on the (hyper-)cube [0, 1]d with d = 1 or d = 3. The corresponding outputs {yi}Ni=1

are generated from the regression models yi = gj(xi) + εi for i = 1, 2, · · · , N and j = 1, 2,
where εi is the independent Gaussian noise N (0, 0.2),

g1(x) =

{
x if 0 < x ≤ 0.5,
1− x if 0.5 < 0 ≤ 1

for 1-dimensional data, and

g2(x) =

{
(1− ‖x‖2)6(35‖x‖22 + 18‖x‖2 + 3) if 0 < ‖x‖2 ≤ 1,
0 if ‖x‖2 > 1

for 3-dimensional data. The inputs {x′i}N
′

i=1 of testing samples are also drawn independently
according to the uniform distribution on the (hyper-)cube [0, 1]d but the corresponding
outputs {y′i}N

′
i=1 are generated by y′i = gj(x

′
i). It can be found in (Wu, 1995; Schaback and

Wendland, 2006) that g1 ∈ W 1
1 and g2 ∈ W 4

3 , where Wα
d represents the α-order Sobolev

space on [0, 1]d. If we define K1(x, x
′) = 1 + min(x, x′) and K2(x, x

′) = h(‖x− x′‖2) with

h(r) =

{
(1− r)4(4r + 1) if 0 < r ≤ 1,
0 if r > 1,

then we know (Wu, 1995; Schaback and Wendland, 2006) that K1 and K2 are reproducing
kernels for W 1

1 and W 2
3 , respectively. Obviously, g1 ∈ HK1 and g2 ∈ HK2 . In the training

process of DKRR and DKRR(`), we uniformly distribute N training samples to m local
machines.

Simulation 1: We generate 10000 samples for training and 1000 samples for testing.
The number m of local machines varies from {20, 40, 60, · · · , 480} for 1-dimensional data,
and varies from {2, 4, 6, · · · , 60} for 3-dimensional data. The testing results are shown
in Figure 4 and Figure 5. Figure 4 shows the relation between MSE and the number of
local machines by different numbers of communications. From Figure 4, we can conclude
the following four assertions. 1) When m is not too large, AEs are always comparable to
GMSEs. There exists an upper bound of m, denoted by mB (e.g., mB ≈ 40 for d = 1
and mB ≈ 6 for d = 3), larger than which AE curves increase dramatically and far from
the GMSE curves. This verifies the theoretical statement in Theorem 2. 2) AECs also
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Figure 4: The relation between MSE and the number of local machines for fixed numbers
of communications. The left figure and right figure are respectively the results
on the 1-dimensional data and the 3-dimensional data. ‘Com. #’ represents the
number of communications.
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Figure 5: The relation between MSE and the number of communications for fixed numbers
of local machines. The left figure and right figure are respectively the results on
the 1-dimensional data and the 3-dimensional data.

have the upper bound, such as mB ≈ 200 for d = 1 and ` = 2, which is much larger than
that of AEs. This result confirms Theorem 4 by showing the power of communications in
the sense that communications in DKRR can help to relax the restriction on m. 3) The
upper bound mB of AECs increases with the number of communication increasing, which
implies the necessity of communications and verifies Theorem 4 by showing that the upper
bound in (17) is monotonically increasing with respect to the number of communications.
4) Different from DKRR which cannot sufficiently embody the best approximation ability
of local estimator, DKRR(`) succeeds in presenting an upper bound of m which is close to
m1 in Figure 2.
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Figure 6: The relation between the number of training samples and MSE on the 1-
dimensional data.

The relation between MSE and the number of communications by different numbers of
local machines is illustrated in Figure 5. We can see that there exists an upper bound of m
(e.g., about 280 for 1-dimensional data and 30 for 3-dimensional data), less than which AECs
are guaranteed to converge to GMSEs with a fast rate, and larger than which AECs diverge

dramatically. This verifies Proposition 12 by comparing
∑m

j=1
|Dj |
|D| Q

2
Dj ,λ

(RDj ,λ + RD,λ)
with 1.

Simulation 2: This simulation investigates the generalization performance of DKRR
and DKRR(`) with varying the number of training samplesN ∈ {3000, 3500, 4000, · · · , 20000}
and fixing the number of testing samples N ′ = 1000. The regression results are shown in
Figure 6 and Figure 7, from which it can be drawn the following conclusions. 1) For fixed
numbers of local machines and communications, AE curves are getting closer and closer to
GMSE curves, and AEC curves are converging to GMSE curves with the number of training
samples increasing. This verifies our theoretical assertions of Theorem 2 and Theorem 4.
2) For each fixed number of local machines, there exists a lower bound for the number of
training samples, denoted by NB (e.g., NB ≈ 6000 for d = 1 and m = 180, and NB ≈ 13500
for d = 3 and m = 40), larger than which, the generalization performance of DKRR(`) is
significantly superior than that of DKRR, and AECs converge to GMSEs with the number
of communications increasing. Obviously, the bound NB increases as the number of local
machines increases. This also confirms the conclusion in Theorem 4.

Simulation 3: In this simulation, we compare the training complexities of DKRR and
DKRR(`). The computational complexity analysis for the training flow in Appendix B
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Figure 7: The relation between the number of training samples and MSE on the 3-
dimensional data.

is given in Table 1, in which the computational complexities of Step 1, Step 4 and Step
6 refer to those on each local machine, provided that parallelization is implemented. It
should be noted that the time of data transmission in DKRR(`) is not considered, and the
computational complexity of Step 1 is also that of DKRR. Thus, the training complexities
of DKRR and DKRR(`) are O(N2τ/m+N3/m3) and O(N2τ/m+N3/m3+N2`/m+mN`),
respectively. We define

ΩDKRR = N2τ/m+N3/m3, ΩDKRR(`) = N2τ/m+N3/m3 +N2`/m+mN`.

It can be seen that ΩDKRR monotonously decreases with m increasing; ΩDKRR(`) first de-
creases and then increases with m increasing, and the number m with minimum ΩDKRR(`)

is given by

m? =

√√
(τ + `)2 + 12`+ (τ + `)

2`

√
N.

Once data and the kernel function are given, the complexity τ of calculating a kernel value
can be considered as a constant. Provided ` is large enough, we have m? ≈

√
N , from which

a rough conclusion can be drawn as follows: The training complexity of DKRR(`) mainly
focuses on the local process (i.e., Step 1 of the training flow in Appendix B) when m <

√
N ,

while it mainly focuses on the communications (i.e., from Step 4 to Step 7 of the training
flow in Appendix B) when m >

√
N . In the following, some numerical results are reported

to verify the above analysis of training complexity.
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Item
Step 1 Step2 Step4 Step5 Step6 Step7

KDk,Dj
MDj ,λ ~αDj

KDk,Dj
~αDj

~f0D,λ,Dk

~GDj ,λ,k,`
~GD,λ,k,` ~βj,` ~HDj ,λ,k,`

~f `D,λ,Dk

INDV N2τ
m2

N3

m3
N2

m2
N2

m2 N N2

m2 N N2

m2
N2

m2 N

TOT O
(
N2τ
m + N3

m3

)
O(mN) O

(
mN`+ N2`

m

)
Table 1: Computational complexity of the training flow in Appendix B. ‘INDV’ represents

the complexity of calculating each individual item, and ‘TOT’ represents the total
complexities of Step 1, Step 2 and the loop from Step 4 to Step 7. τ represents
the complexity of calculating a value of a kernel function K(·, ·).

We start by introducing some notations that are used below. AEN,m represents the
MSE of DKRR with m local machines for N training samples. AECN,m,` represents the
MSE of DKRR(`) with m local machines and ` communications for N training samples.
GMSEN represents the MSE of KRR with training N samples in a batch mode. The

relative errors for DKRR and DKRR(`) are defined by REN,m =
|AEN,m−GMSEN |

GMSEN
and

RECN,m,` =
|AECN,m,`−GMSEN |

GMSEN
, respectively. For DKRR with N training samples, we

denote the maximum number m of local machines that satisfies REN,m < ε as m̄N
B , i.e.,

m̄N
B = max{m|REN,m < ε}. For DKRR(`) with N training samples and ` communications,

we denote the maximum number m of local machines that satisfies RECN,m,` < ε as m̂N,`
B ,

i.e., m̂N,`
B = max{m|RECN,m,` < ε}. In the experiments, ε is set as 0.05, and the computing

capability of each local machine is assumed to be the same for simplicity.

We generate 20000 training samples and 1000 testing samples. The number m varies
from {20, 40, 60, · · · , 600} for the 1-dimensional data, and varies from {2, 4, 6, · · · , 60} for
the 3-dimensional data. The training time of DKRR with the number m changing from
the minimum number (i.e., 20 for 1-dimensional data and 2 for 3-dimensional data) to m̄N

B

and the training time of DKRR(`) with the number m changing from the minimum number

to m̂N,`
B by different numbers ` ∈ {2, 4, 8, 16, 32} are shown in Figure 8. The following

observations can be made from these results. 1) Because there are no calculations for
communication steps, DKRR naturally consumes the least time when m < m̄N

B . 2) For the

two simulation datasets, we have m̄N
B � m̂N,`

B , resulting that DKRR(`) can further reduce
the least training time of DKRR with the maximum number m̄N

B when the number m

approaches to m̂N,`
B . However, the improvement is very limited for the 1-dimensional data,

because the number m̄N
B of DKRR is sufficiently large (m̄N

B = 120), and thus the marginal
utility for the reduction of training time is very small when DKRR(`) further enlarges
the maximum number of local machines. 3) With the number m increasing, the training
time curves of DKRR(`) (` = 4, 8, 16, 32) first decrease quickly and then increase slowly
for the 1-dimensional data, and monotonously decrease for the 3-dimensional data. This
phenomenon coincides with the aforementioned theoretical analysis of training complexity,
because m̂N,`

B ≈ 450 >
√
N for the 1-dimensional data, and m̂N,`

B ≈ 50 <
√
N for the

3-dimensional data. In practical applications, we estimate the optimal number of local
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Figure 8: The relation between the number of local machines and the training time for fixed
numbers of communications. The left figure and right figure are respectively the
results on the 1-dimensional data and the 3-dimensional data with N = 20000
training samples.

machines by the formula

m̂?
N,` =

{
m?, if m̂N,`

B > m?,

m̂N,`
B , otherwise

(56)

to expect it to have the lowest time consumption. The estimated m? and the corresponding
training time for DKRR(`) with ` ∈ {2, 4, 8, 16, 32} on the 1-dimensional data are marked
by red pentagrams in the left figure of Figure 8. It can be seen that the training time with
the estimated number m? is very close to the minimum of training time, which validates
the correctness and reliability of equation (56).

We also record the results with varying the number of training samples N ∈ {3000, 3500,
4000, · · · , 20000} and fixing the number of testing samples N ′ = 1000. Figure 9 shows

the maximum numbers m̄N
B of DKRR and the maximum numbers m̂N,`

B of DKRR(`) with
varying the numbers of training samples and communications, and Figure 10 shows the
training time of DKRR with m̄N

B local machines and the training time of DKRR(`) with
m̂?
N,` local machines. From these results, we have the following observations. 1) The

maximum number of local machines increases as the number of training samples increases
for both DKRR and DKRR(`), but the growth of DKRR(`) is faster than that of DKRR.

2) The maximum number m̂N,`
B of DKRR(`) is robust to the number ` of communications

when ` > 4. This verifies the fast convergence as shown in Figure 5, and also implies
that DKRR(`) can achieve a satisfactory generalization performance in a small number of
communications. 3) For the 1-dimensional data, DKRR(`) does not have much advantage
on the training time, and is even worse than DKRR when the number of training samples
N ≥ 10000 and the number of communications ` ≥ 4. Furthermore, the training time
increases significantly as the number of communications increases. The main reason has
two folds. On one hand, the marginal utility of enlarging the number of local machines
diminishes when m̄N

B of DKRR is large enough to efficiently deal with large-scale data. On
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Figure 9: The relation between the number of training samples and the maximum number
of local machines. The left figure and right figure are respectively the results on
the 1-dimensional data and the 3-dimensional data.
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Figure 10: The relation between the number of training samples and the training time
with the optimal number of local machines. The left figure and right figure are
respectively the results on the 1-dimensional data and the 3-dimensional data.

the other hand, the training complexity of DKRR(`) mainly focuses on the communications
when the number m is sufficiently large. 4) For the 3-dimensional data, the number m̄N

B of
DKRR is relatively small (e.g., m̄N

B = 12 for N = 20000 training samples). DKRR(`) shows
the significantly superior performance on the training time when compared to DKRR, even
for the large number ` = 32. This is the main focus of this paper, on an enlargement of the
maximum number of local machines guaranteeing optimal learning rates when DKRR has
a small number m̄N

B of local machines.

All these simulations verify our theoretical statements and show the power of commu-
nications in distributed learning.
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Appendix A. Proofs of Lemmas in Section 5

We use a new concentration inequality for positive operators (Minsker, 2017), which was
a refined estimate for the well known Bernstein inequality for matrix (Tropp, 2015). This
lemma has been adopted in (Dicker et al., 2017) and (Guo and Shi, 2019) to derive optimal
learning rates for kernel-based spectral algorithms and coefficient-regularization algorithms.

Lemma 17 Let R > 0 be a positive real constant and consider a finite sequence of self-
adjoint Hilbert-Schmidt operators {ξi}ni=1 satisfying E[ξi] = 0 and ‖ξi‖ ≤ R almost surely.
Suppose there are constants V,W > 0 such that ‖E[(

∑n
i=1 ξi)

2]‖ ≤ V and Tr(E[(
∑n

i=1 ξi)
2]) ≤

VW . For all t ≥ V 1/2 +R/3, there holds

P

(∥∥∥∥∥
n∑
i=1

ξi

∥∥∥∥∥ ≥ t
)
≤ 4W exp

(
− t2

2(V +Rt/3)

)
.

Proof of Lemma 6. Define the random variable

η(x) = (LK + λI)−1/2Kx ⊗Kx(LK + λI)−1/2, x ∈ X .

It is easy to see that η(x) is a self-adjoint operator for x ∈ X . Furthermore,

E[η] = (LK + λI)−1/2LK(LK + λI)−1/2,

and
1

|D|
∑

(x,y)∈D

η(x) = (LK + λI)−1/2LK,D(LK + λI)−1/2.

Set
ξ(x) = η(x)− E[η], x ∈ X .

Then, we have E[ξ] = 0. If {σ`, ψ`}`≥1 are normalized eigenparis of the integral operator LK
on L2

ρX
, then ‖√σ`ψ`‖K = 1 when σ` > 0. Thus, {√σ`ψ` : σ` > 0} forms an orthonormal

basis of HK . This implies that

‖η(x)‖2 = sup
‖f‖K=1

‖η(x)f‖2K ≤
∑
`

‖(LK + λI)−1/2Kx ⊗Kx(LK + λI)−1/2
√
σ`ψ`‖2K

=
∑
`

σ`ψ
2
` (x)

λ+ σ`
‖(LK + λI)−1/2Kx‖2K =

[∑
`

σ`ψ
2
` (x)

λ+ σ`

]2
.
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Then,

‖ξ(x)‖ = ‖η(x)− E[η]‖ ≤ max
x∈X
‖η(x)‖+ 1 ≤ max

x∈X

∑
`

σ`ψ
2
` (x)

λ+ σ`
+ 1 ≤ (κ2 + 1)λ−1,

where we use ‖E[η]‖ = ‖(LK + λI)−1LK‖ ≤ 1 and 0 < λ ≤ 1. For an arbitrary f ∈ HK , it
follows from [η(x)]2f = η(x)[η(x)f ] that

[η(x)]2 = 〈Kx, (LK + λI)−1Kx〉Kη(x) =
∑
`

σ`ψ
2
` (x)

λ+ σ`
η(x).

Then, we get from ξ(x) = η(x)− E[η] that∥∥∥∥∥∥E
 ∑

(x,y)∈D

ξ(x)

2∥∥∥∥∥∥ ≤ |D|(‖E[(η)2]‖+ ‖(E[η])2‖)

≤ |D|(κ2λ−1‖E[η]‖+ ‖E[η]‖2) ≤ |D|λ−1(κ2 + 1).

Moreover,

Tr

E
 ∑

(x,y)∈D

ξ(x)

2 ≤ |D|Tr (E[(η)2]− (E[η])2
)

≤ |D|(κ2λ−1Tr(E[η]) + Tr(E[η])2) ≤ |D|λ−1N (λ)(κ2 + 1).

Plugging R = λ−1(κ2 + 1), V = |D|λ−1(κ2 + 1) and W = N (λ), we have that for all

t ≥
√

(κ2+1)√
λ|D|

+ κ2+1
3λ|D| , there holds

P [RD,λ ≥ t] = P

∥∥∥∥∥∥
∑

(x,y)∈D

ξ(x)

∥∥∥∥∥∥ ≥ |D|t
 ≤ 4N (λ) exp

(
− λ|D|t2

2(κ2 + 1) + (κ2 + 1)t/3

)
.

Set 4N (λ) exp
{
− λ|D|ε2

(κ2+1)(2+ε/3)

}
= δ. With confidence 1− δ,

ε ≤
(κ2 + 1) log 4N (λ)

δ

3λ|D|
+

√
2(κ2 + 1) log 4N (λ)

δ

λ|D|
.

Setting

t =
(κ2 + 1) log 4N (λ)

δ

3λ|D|
+

√
2(κ2 + 1) log 4N (λ)

δ

λ|D|
≥
√

(κ2 + 1)√
λ|D|

+
κ2 + 1

3λ|D|
,

we then get that (21) holds with confidence 1− δ. This completes the proof of Lemma 6. �
We then prove Lemma 7 by using Lemma 6.
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Proof of Lemma 7. Since δ ≥ 4 exp{2C∗1BD,λ}, it follows from Lemma 6 thatRD,λ < 1
2

holds with confidence 1− δ. Then,

(LK + λI)1/2(LK,D + λI)−1(LK + λI)1/2

= (LK + λI)1/2[(LK,D + λI)−1 − (LK + λI)−1](LK + λI)1/2 + I = I

+ (LK + λI)−1/2(LK − LK,D)(LK + λI)−1/2(LK + λI)1/2(LK,D + λI)−1(LK + λI)1/2.

Thus,

‖(LK + λI)1/2(LK,D + λI)−1(LK + λI)1/2‖

≤ 1 +
1

2
‖(LK + λI)1/2(LK,D + λI)−1(LK + λI)1/2‖.

This implies
‖(LK + λI)1/2(LK,D + λI)−1(LK + λI)1/2‖ ≤ 2.

Since t1/2 is operator monotone (Bhatia, 1997, Chap.4), we have

QD,λ ≤ ‖[(LK + λI)1/2(LK,D + λI)−1(LK + λI)1/2]1/2‖ ≤
√

2.

This completes the proof of Lemma 7. �

Appendix B. Training and Testing Flows for DKRR(`)

Generally speaking, it is difficult to communicate functions in practice. Thus, the imple-
mentation of DKRR(`) requires communications of additional information. In this part, we
numerically realize DKRR(`) by communicating the inputs of data for the sake of simplicity,
though there are numerous state-of-the-art approaches to approximate the gradient matrix
via much less of communication loss.

Training Flow:
Step 1 (local process). Run KRR (2) on the j-th local machine with data Dj and

communicate Dj(x) = {x : (x, y) ∈ D} to the k-th local machine for k = 1, . . . ,m. Store
m matrices of size |Dj | × |Dk|, KDk,Dj := {K(x, x′)}x∈Dk(x),x′∈Dj(x) with k = 1, . . . ,m, the

matrix MDj ,λ = (KDj ,Dj +λ|Dj |IDj )−1, and the vector ~αDj = MDj ,λyDj , where I is the unit

matrix of size |Dj | × |Dj |.
Step 2 (synthesization) On the j-th local machine, communicate m vectors of size |Dk|,

KDk,Dj~αDj for k = 1, . . . ,m to the global machine. Synthesize m global vectors ~f0D,λ,Dk =∑m
j=1

|Dj |
|D| KDk,Dj~αDj for k = 1, . . . ,m.

Step 3 (distributing) For ` = 1, 2, . . . , distribute ~f `−1D,λ,Dj
to the j-th local machine.

Step 4 (local gradients) On the j-th local machine, computem gradient vectors ~GDj ,λ,k,` =
KDk,Dj
|Dj | (f

`−1
D,λ,Dj − yDj ) +λ~f `−1D,λ,Dk

for k = 1, . . . ,m and communicate these m vectors to the

global machine.

Step 5 (synthesizing gradients) Synthesizem global gradient vectors, ~GD,λ,k,` :=
∑m

j=1
|Dj |
|D|

~GDj ,λ,k,` for k = 1, . . . ,m. Distribute m vectors ~GD,λ,k,` with k = 1, . . . ,m to each local
machine.
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Step 6 (KRR on gradient data) On the j-th local machine, compute the vector ~βj,` =

MDj ,λ
~GD,λ,j,` and m vectors ~HDj ,λ,k,` := ~GD,λ,k,`−KDk,Dj

~βj,` for k = 1, . . . ,m. Communi-

cate m vectors ~HDj ,λ,k,` with k = 1, . . . ,m to the global machine.
Step 7 (final estimator) Generate m vectors

~f `D,λ,Dk = ~f `−1D,λ,Dk
− 1

λ

m∑
j=1

|Dj |
|D|

~HDj ,λ,k,`, k = 1, . . . ,m

and transmit ~f `D,λ,Dj to the j-th local machine with j = 1, . . . ,m.

Testing Flow: given vector D′(x) := (x′1, . . . , x|D′|) which consists of |D′| query points.
Step 1 (local estimates) Transmit D′(x) to m local machines. On the j-th local machine,

store vectors of size |D′|, ~KD′,Dj~αDj .

Step 2 (global estimates) Compute test vector of size |D′|,

f
0
D,λ(D′) :=

m∑
j=1

|Dj |
|D|

~KD′,Dj~αDj .

Step 3 (local gradients) For ` = 1, 2, . . . , distribute f
`−1
D,λ(D′) to m local machines, and

compute

GDj ,λ,`(D
′) :=

~KD′,Dj

|Dj |
(~f `−1D,λ,Dj

− yDj ) + λf
`−1
D,λ(D′),

where ~f `−1D,λ,Dj
is obtained from the training flow.

Step 4 (global gradients) Transmit GDj ,λ,`(D
′) with j = 1, . . . ,m to the global machine

and get the global gradient vector

GD,λ,`(D
′) =

m∑
j=1

|Dj |
|D|

GDj ,λ,`(D
′).

Step 5 (final estimator) Generate the vector of estimators

f
`
D,λ(D′) = f

`−1
D,λ(D′)− 1

λ

m∑
j=1

|Dj |
|D|

[
GD,λ,`(D

′)− ~KD′,Dj
~βj,`

]
.
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