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Abstract

We prove the convergence to minima and estimates on the rate of convergence for the
stochastic gradient descent method in the case of not necessarily locally convex nor con-
tracting objective functions. In particular, the analysis relies on a quantitative use of
mini-batches to control the loss of iterates to non-attracted regions. The applicability of
the results to simple objective functions arising in machine learning is shown.
Keywords: stochastic gradient descent, mini-batch algorithm, machine learning, non-
convex optimization

1. Introduction

Stochastic gradient descent algorithms (SGD), going back to Robbins and Monro (1951),
are the most common way to train neural networks. However, despite their relevance to
machine learning and much recent interest, estimates on their rate of convergence have
only been obtained under assumptions that are often not satisfied or not known to be
satisfied by objective functions arising in machine learning.1 Indeed, citing from Vidal
et al. (2017), “While SGD has been rigorously analyzed only for convex loss functions
[...], in deep learning the loss is a non-convex function of the network parameters, hence
there are no guarantees that SGD finds the global minimizer.” In the present work, we
prove the local convergence of SGD with rates to minima of the objective function, while
avoiding convexity or contractivity assumptions. By randomly sampling the initialization,
convergence to global minima with rates is deduced. We demonstrate the relevance of these
results through their application to the training of (simple) neural networks.

Stochastic gradient descent methods are used to numerically minimize functions
f : Rd → R of the form

f(θ) = E [F (θ,X)] , (1)

1For comments on recent progress on the landscape of objective functions in overparametrized settings
see Section 1.1 below.
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for some product measurable function F : Rd×Rm → R and some random variable X : Ω→
Rm on some probability space (Ω,F ,P). The analysis of SGD has attracted considerable
attention in the literature (see, for example, Bach (2014); Bach and Moulines (2013); Bottou
et al. (2018); Dereich and Mueller-Gronbach (2015); Jentzen et al. (2020); Moulines and
Bach (2011); Tang and Monteleoni (2015) and the references therein). The convergence of
SGD with rates was shown, for example, in Dereich and Mueller-Gronbach (2015); Jentzen
et al. (2020) under the assumption that the objective function f satisfies the following
contraction property: There is an L > 0 and a zero θ∗ of ∇θf such that, for every θ ∈ Rd,

(−∇θf(θ), θ − θ∗) ≤ −L‖θ − θ∗‖2. (2)

Property (2) implies the uniqueness of the zero θ∗ of ∇θf and thus the uniqueness of lo-
cal minima of f . This is in stark contrast to the actual objective functions that arise in
the training of neural networks, which are expected to show rich sets of local minima and
saddle points/plateaus. Consequently, it is vital for the application to machine learning
that we avoid such global contraction assumptions. In addition, for example due to the
positive homogeneity of the ReLU function, the objective functions typically satisfy certain
symmetries, implying that global (and local) minima are not isolated points nor unique,
but form (possibly non-compact) manifolds. Indeed, this is demonstrated for simple neural
networks in Section 7 below. We are therefore led to the task of analyzing the convergence
properties of SGD in local neighborhoods of the manifolds of minima.2 Indeed, under As-
sumptions 1 and 2 below, we prove that there exist local basins of attraction for SGD in the
sense that SGD beginning in these sets converges with high probability to a minima of the
objective function (cf. Theorem 3 below). Then, by random sampling of the initialization,
the convergence of SGD beginning in such local neighborhoods can be upgraded to global
convergence (cf. Corollary 4 below).

Our results apply to objective functions which are neither locally contracting nor locally
convex and, in particular, we avoid assumptions like the contraction property (2). Precisely,
we will consider objective functions f : Rd → R whose set of global minima is somewhere
locally smooth and whose Hessian is somewhere maximally nondegenerate on this smooth
subset:

Assumption 1 Let d ∈ N, let d ∈ {0, 1, . . . , d− 1}, let f : Rd → R, and let M⊆ Rd be defined by

M =
{
θ ∈ Rd : [f(θ) = infϑ∈Rd f(ϑ)]

}
.

We assume that there exists an open subset U ⊆ Rd such that M∩U is a non-empty d-dimensional
C2-submanifold of Rd, such that the restriction f |U : U → R is three times continuously differentiable,
and such that rank((Hess f)(θ)) = d− d for every θ ∈ (M∩ U).

We are interested in objective functions of the form (1), which are defined by a jointly
measurable function F : Rd × S → R, defined on a measurable space (S,S), and a random
variable X : Ω → S, defined on a probability space (Ω,F ,P). The random variable X
will play the role of the noise driving the SGD algorithm. We assume that this collection
satisfies the following assumption.

2We emphasize that this is disjoint from the recent works Bottou et al. (2018); Li and Orabona (2019);
Ward et al. (2018) where the global convergence of the gradient of the objective function to zero has been
shown for SGD and AdaGrad. This does not imply the local convergence to minima, since the gradient also
vanishes in saddles/plateaus.
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Assumption 2 Let d ∈ N, let (S,S) be a measurable space, let (Ω,F ,P) be a probability space, let
F : Rd × S → R be measurable, and let X : Ω → S be measurable. We assume that for every x ∈ S
the map θ ∈ Rd 7→ F (θ, x) is locally Lipschitz continuous and that, for every compact set C ⊆ Rd,

sup
θ∈C

E
[
|F (θ,X)|2 + |∇θF (θ,X)|2

]
<∞.

In the following theorem, under Assumptions 1 and 2, we identify a basin of attraction
to the local manifold of minima for SGD, and prove that SGD beginning in this basin of
attraction converges with high probability to the local manifold of minima with an explicit
estimate on the rate of convergence.

Theorem 3 (cf. Theorem 25, Remark 26, Corollary 28 below) Let d ∈ N, let (S,S) be a measurable
space, let (Ω,F ,P) be a probability space, let F : Rd×S → R be measurable, let {Xn,m : Ω→ R}n,m∈N
be i.i.d. random variables, and let f : Rd → R be defined by f(θ) = E [F (θ,X1,1)]. Assume that f
satisfies Assumption 1 and assume that F and X1,1 satisfy Assumption 2. Let ρ ∈ (2/3, 1) and, for
every r ∈ (0,∞), M ∈ N, and x ∈ Rd, let {Θn = Θn(ρ, r,M, x)}n∈N0 be defined by Θ0 = x and

Θn = Θn−1 −
r

nρM

[
M∑
m=1

(∇θF )(Θn−1, Xn,m)

]
.

Then, for every x0 ∈ (M∩ U), there exists an open set V ⊆ Rd containing x0, r ∈ (0,∞), and
c ∈ (0,∞) such that, for every x ∈ V , r ∈ (0, r), ε ∈ (0, 1), and n,M ∈ N,

P
[(
f(Θn)− inf

θ∈Rd
f(θ)

)
≥ ε
]
≤ c

(
1

ε2nρ
+
n1−ρ

M
1
2

+ r

)
. (3)

The terms on the righthand side of (3) should be interpreted in the following sense.
The first term estimates the convergence of SGD toM∩U on the event that the trajectory
remains in the basin of attraction V up to time n. The second term estimates the probability
that SGD leaves the basin of attraction. In particular, since the exponent 1 − ρ > 0, for
large running times n this term is controlled quantitatively by the choice of the mini-batch
size M . The final term accounts for the fact that if r is large then SGD can overshoot the
local manifold of minima and thereby land outside the basin of attraction. The role of r is
controlled more precisely in Theorem 25 and Remark 26 below, where it is shown that r
can roughly be chosen on the order of the diameter of the basin of attraction V .

The following corollary generalizes Theorem 3 to the case of multiple independent copies
of SGD with initial data sampled uniformly at random from a non-empty, bounded open
set A. We emphasize that the sampling of the initial data is assumed to be independent of
the noise driving the independent copies of SGD.

Corollary 4 (cf. Corollary 28 below) Let d ∈ N, let A ⊆ Rd be a bounded non-empty open set,
let (S,S) be a measurable space, let (Ω,F ,P) be a probability space, let F : Rd × S → R be mea-
surable, let {Xn,m,k : Ω → R}n,m,k∈N be i.i.d. random variables, and let f : Rd → R be defined by
f(θ) = E [F (θ,X1,1,1)]. Assume that f satisfies Assumption 1, assume that F and X1,1,1 satisfy
Assumption 2, and assume that (M∩ U ∩ A) is non-empty. Let ρ ∈ (2/3, 1), let {Θ0,k}k∈N be i.i.d
random variables that are independent of {Xn,m,k}n,m,k∈N and that are uniformly distributed on A,
and for every r ∈ (0,∞) and M ∈ N let {Θn,k = Θn,k(ρ, r,M,A)}n,k∈N be defined by

Θn,k = Θn−1,k −
r

nρM

[
M∑
m=1

(∇θF )(Θn−1,k, Xn,m,k)

]
.
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Then there exists an open set V ⊆ Rd containing (M∩U ∩A), r ∈ (0,∞), and c ∈ (0,∞) such that,
for every r ∈ (0, r), ε ∈ (0, 1), and n,M,K ∈ N,

P
[(

min
k∈{1,2,...,K}

f(Θn,k)− inf
θ∈Rd

f(θ)

)
≥ ε
]
≤
(
|A \ V |
|A|

+ c

(
1

ε2nρ
+
n1−ρ

M
1
2

+ r

))K
. (4)

We emphasize that Corollary 4 is only nontrivial due to the assumption thatM∩U∩A is
non-empty. Indeed, if the initialization is chosen outside of a basin of attraction forM∩U ,
then the algorithm cannot in general converge. The simple networks presented in Section 7
demonstrate this fact, where in their case the lack of convergence is due to the vanishing
gradient of the rectifier function. This observation corresponds to the pronounced relevance
of initialization in practice, see, for example, (Li et al., 2018, p. 8). The large, flat, nearly
convex basins of attraction observed therein correspond to large sets V in our context, that

is, to small ratios |A\V ||A| in (4).

It remains to identify the optimal choice of parameter {Θn,k}k∈{1,2,...,K} that attains
the minimum appearing on the lefthand side of (4). For this, we introduce a second mini-
batch approximation due to the fact that, in practice, the objective function cannot be
computed or cannot be efficiently computed. Theorem 5 below introduces this mini-batch
approximation, and Corollary 6 below estimates computational efficiency of the algorithm.

Theorem 5 (cf. Theorem 30 below) In the setting of Corollary 4, for every M ∈ N there exists a
random variable Θn : Ω→ Rd which satisfies

1

M

M∑
k=1

F (Θn, Xn+1,1,k) = min
k∈{1,2...,K}

[
1

M

M∑
k=1

F (Θn,k, Xn+1,1,k)

]
,

(cf. Lemma 29 below) and there exists an open set V ⊆ Rd containing (M∩U ∩A), r ∈ (0,∞), and
c ∈ (0,∞) such that, for every r ∈ (0, r), ε ∈ (0, 1), and n,M,M,K ∈ N,

P
[(
f(Θn)− inf

θ∈Rd
f(θ)

)
≥ ε
]
≤ cK

ε2M
+

(
|A \ V |
|A|

+ c

(
1

ε2nρ
+
n1−ρ

M 1/2
+ r

))K
.

Corollary 6 (cf. Corollary 31 below) In the setting of Theorem 5, there exist c1, c2 ∈ (0,∞) depend-

ing on |A\V ||A| and c3, c4 ∈ (0,∞) such that, for every ε, η ∈ (0, 1), for n(ε),M(ε),K(η),M(ε, η) ∈ N
defined by

n(ε) = c1ε
−2/ρ, M(ε) = c2ε

−4/ρ+4, M(ε, η) = c3ε
−2η−1 |log(η)| , and K = c4 |log(η)| ,

we have that
P
([
f(Θn(ε) − infθ∈Rd f(θ)

]
≥ ε
)
≤ η. (5)

The conclusion of Corollary 6 proves that, for every ε, η ∈ (0, 1), to guarantee the
conclusion of (5) it is sufficient to make a number of computations on the order of

ε−
6/ρ+4 |log(η)|+ ε−2η−1 |log(η)| . (6)

The first term of (6) estimates the cost of simulating K-independent copies of mini-batch
SGD and the final term estimates the cost of the mini-batch approximation introduced in
Theorem 5. In particular, we observe that as ρ → 1 the sufficient mini-batch size for the
SGD algorithm M ' ε−4/ρ+4 is effectively an order one quantity.

We next comment on some of the difficulties arising in the proofs of the statements
above. In a non-globally stable setting, i.e. when (2) is not satisfied, several obstacles in
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the proof of local convergence to minima and the estimation of the rate for SGD appear.
In particular, even pretending a local minimum to be isolated and such that (2) holds in a
neighborhood V of the minimum, the global analysis put forward in Jentzen et al. (2020)
is not immediately localizable, since deterministic bounded sets are not invariant under
the dynamics of SGD. On the contrary, with probability one each realization of SGD will
eventually leave the local basin of attraction V , outside of which no control on the dynamics
can be expected. Furthermore, as pointed out above, (local) minima are not expected to
appear in an isolated manner, but as (local) manifolds. This needs to be accounted for
in the mathematical analysis, giving rise to a quantitative analysis inspired by the center
manifold theorem.

The probability that SGD leaves a basin of attraction is estimated by effectively split-
ting the dynamics of SGD in directions normal and directions tangential to the local man-
ifold of minima. In Proposition 20, we quantify the convergence in normal directions by
proving an optimal rate of convergence for SGD conditioned on the event that it remains
in the basin of attraction. In Proposition 21 below, we estimate the tangential movement
of SGD by estimating the maximal excursions of SGD on the event that it remains in the
basin of attraction. In Proposition 24 below, we argue inductively that the normal conver-
gence and maximal excursion estimate imply with high probability that SGD remains in
the basin of attraction for large times. Theorem 25 then proves that SGD beginning in the
basin of attraction converges to the global minimum with high probability.

1.1. Literature

The SGD algorithm has attained considerable interest in the literature, and a complete
account on the existing results would go beyond the scope of this article. Therefore, we
restrict to works that seem most relevant to the current results and we refer to Bercu and
Fort (2013); Bottou et al. (2018); Ruder (2016) and the references therein for overview
articles on SGD type optimization algorithms.

The case of a convex loss function is well-understood under mild further assumptions.
For example, rates of convergence of the order O(1/

√
n) for SGD have been established in

Bottou et al. (2018); Zhang (2004). In the case of a strongly convex objective function these
can be improved to O(1/n), see Hazan et al. (2007); Nemirovski et al. (2009); Nesterov
(2013), Tang and Monteleoni (2015) and Rakhlin et al. (2012).

The case of a non-convex objective function is considerably less well understood. In
this case we have to distinguish two classes of results: The first class proves the convergence
to zero (with or without rates) for the gradient of the objective function, thus implying
the convergence to a critical point. The second class of results proves the (local or global)
convergence of the values of the loss function to their global minimum. Obviously, the
second class of results are stronger and not implied by the first class, since the latter do
not exclude the convergence to saddle points or local minima. The results of this work
fall into the second class of results.

Rather complete results are known concerning the minimization of the gradient of a
non-convex loss function. For an introduction and overview we refer to Bottou et al. (2018).
The convergence of the gradient to zero with rates was shown in Lei et al. (2019) assuming
a Hölder-regularity condition on the gradient. This generalizes previous work Ghadimi
et al. (2016) which required a second moment boundedness condition, which in turn was
generalized by the works Ghadimi and Lan (2013) and Reddi et al. (2016).

In the convex case, the convergence of SGD to the global minimum with rates was
obtained in Ghadimi et al. (2016). However, in the non-convex case, only partial results
are known. For example, Ge et al. (2015) introduced the strict saddle property, which
effectively excludes the occurrence of plateaus. Under this assumption rates of convergence
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to local minima could be shown, later improved by Jin et al. (2017) to dimension-free
estimates. In contrast, in the present work, the local convergence to a global minimum
is shown without excluding the presence of plateaus. Several other assumptions replacing
(strong) convexity have been considered, for example, the error bounds condition in Luo
and Tseng (1993), essential strong convexity in Liu et al. (2015), weak strong convexity in
Necoara et al. (2019), the restricted secant inequality in Zhang and Yin (2013), and the
quadratic growth condition in Anitescu (2000). In these works, linear convergence rates to
a global minimum are shown. In the notable contribution Karimi et al. (2016) it is shown
that all of these conditions imply the Polyak-Lojasiewicz (PL) inequality, introduced in
Lojasiewicz (1963) and Polyak (1963), under which linear convergence of the SGD to a
global minimum is proven in Karimi et al. (2016), thus generalizing these previous works.
Recently, further progress was made in Lei et al. (2019) where a boundedness assumption
on the gradient of the objective function, required in Karimi et al. (2016), was relaxed.
We note that, while the PL condition does not require convexity, nor the uniqueness of
global minimizers, it does exclude the existence of local minima. That is, assuming the PL
condition, every local minimum is a global minimum. Therefore, it is not implied by the
assumptions made in the current work.

In a line of recent developments structural properties of objective functions arising in
machine learning have been better understood in the overparametrized setting, that is,
in the regime of number of degrees of freedom d being much larger than the size of the
training set. More precisely, in this overparametrized regime, the approximate convexity of
the mean-field limit (cf. Chizat and Bach (2018)) has been used to prove the convergence of
gradient descent to a global minimum (cf. Du et al. (2019b); Rotskoff and Vanden-Eijnden
(2018)) for shallow networks. Taking the related viewpoint of gradient kernel methods,
similar effects have been unveiled in Jacot et al. (2018), applying also to deep networks.
Subsequently, extensions to deep networks have been recently given in Du et al. (2019a),
Allen-Zhu et al. (2019), and Zou et al. (2020).

In the literature a large number of variants and modifications of the SGD algorithm
have been introduced. For example, Bach (2014) and Bach and Moulines (2013, 2011)
analyze the averaged stochastic gradient descent algorithm in convex but non-strictly con-
vex situations. A discussion of the respective choice of the learning rate can be found in
Xu (2011). For an analysis of the choice of the learning rate in SGD we refer to Darken
et al. (1992). The SGD with a constant learning rate has been considered in Dieuleveut
et al. (2017) and Bottou et al. (2018), and adaptive learning rates in Schaul et al. (2012).
Second order stochastic gradient descent and a discussion of its efficiency are available in
Bottou (2010), Bottou and Bousquet (2011). A principle comparison of online versus batch
learning algorithms can be found in Bottou and LeCun (2004). Natural gradient descent
has been introduced in Amari (1998) and analyzed in Rattray et al. (1998) and Inoue et al.
(2003). Relations to Hessian-Free Optimization, Krylov Subspace Descent, and TONGA
have been pointed out in Pascanu and Bengio (2014). The relevance of the initialization
for SGD with momentum has been numerically analyzed in Sutskever et al. (2013). See
also Qian (1999) and Zhang (2004) for further details on gradient descent with momentum.
The convergence of adaptive gradient methods to first-order stationary points with rates
has been shown in Zhou et al. (2018). SGD algorithms based on nested variance reduction
have been introduced and studied in Zhou et al. (2020).

We further point out that in the non-convex setting modifications of the SGD algorithm
have been explored in order to avoid the un-favorable behavior of SGD in case of local
minima and plateaus. For example, Raginsky et al. (2017), Xu et al. (2018) and Zhang et al.
(2017) consider stochastic gradient Langevin dynamics and prove rates of convergence to the
corresponding stationary distribution. This modification is based on the introduction of an
additional random perturbation to SGD, which may cause SGD to leave unfavorable regions
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like plateaus. Instead, in the present work—as it is often done in practice—resampling of
the initial datum is used to avoid such unfavorable regions (see Corollary 4).

Details on the implementation of the SGD and its variants, with focus on particular
applications can be found in the following contributions: A general software framework
allowing parallelization of SGD has been presented in Dean et al. (2012). Details on the
implementation of the SGD in speech recognition can be found in Deng et al. (2013). The
use of SGD in text generation by means of recurrent neural networks has been considered
in Graves (2013). Deep recurrent neural networks in speech recognition have been trained
via SGD in Graves et al. (2013) and in Hinton et al. (2012) also variants of the SGD
like momentum SGD have been used. The efficiency of gradient descent in the context
of dimension reduction via autoencoders has been discussed in Hinton and Salakhutdi-
nov (2006). Application of the SGD to image classification can be found in Krizhevsky
et al. (2012). A comparison of several types of gradient descent algorithms in handwritten
character recognition has been presented in LeCun et al. (1998).

1.2. Structure of the Work

The paper is organized as follows. In Section 2, we present some geometric preliminaries
that are used to identify a basin of attraction for SGD. In Section 3, for objective func-
tions which satisfy Assumption 1, we prove a local exponential rate of convergence for a
deterministic gradient descent algorithm in continuous time. In Section 4, for objective
functions that satisfy Assumption 1, we establish a local exponential rate of convergence
for a deterministic gradient descent algorithm in discrete time. These results are meant
to explain the role of our assumptions in a simplified setting. In Section 5, in the setting
of Theorem 3, we analyze the convergence of SGD to the local manifold of minima. In
Section 6, we prove that the estimates of Section 5 can be improved under the additional
assumption that M∩ U is compact. And in Section 7, we prove that Assumptions 1 and
2 are satisfied by simple loss functions arising in machine learning applications.

2. Geometric Preliminaries

In this section, for an objective function f : Rd → R that satisfies Assumption 1, we will
characterize the local geometry of the local manifold of minima M∩ U . The analysis will
rely on the notion of a local projection to M∩ U .

Proposition 7 Let d ∈ N, let d ∈ {1, . . . , d−1}, and letM∩U ⊆ Rd be a non-empty d-dimensional
C2-submanifold of Rd. Then for every x0 ∈ (M∩U) there exists an open neighborhood V = V (x0) ⊆
Rd that satisfies the following three properties.

(i) V is a neighborhood of x0: we have x0 ∈ V
(ii) Projections exist in V : there exists a unique function p : V → (M∩ U) such that, for every

x ∈ V ,
|x− p(x)| = inf {|x− y| : y ∈ (M∩ U)} .

(iii) The projection map is locally C1-smooth: the map p : V → (M ∩ U) is once continuously
differentiable

Proof [Proof of Proposition 7] The proof is an immediate consequence of (Foote, 1984,
Lemma) and the C2-regularity of M∩ U .

In the following definition, we define the projection map on a global neighborhood of
M∩U . The existence of the projection map is an immediate consequence of Proposition 7.
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Definition 8 Let d ∈ N, let d ∈ {1, . . . , d− 1}, and let M∩U ⊆ Rd be a non-empty d-dimensional
C2-submanifold of Rd.

(i) For every x ∈ (M∩ U) let Proj(x) ⊆ B(Rd) be defined by

Proj(x) = {V ⊆ Rd : V satisfies the conclusion of Proposition 7 with x0 = x}.

(ii) Let p : ∪x∈(M∩U)

(
∪V ∈Proj(x)V

)
→ (M∩ U) be the unique function which satisfies for every

x ∈ ∪x∈(M∩U)

(
∪V ∈Proj(x)V

)
that

|x− p(x)| = inf {|x− y| : y ∈ (M∩ U)} .

The following proposition characterizes the tangent and normal spaces of M∩ U in
terms of the Hessian matrix of the objective function. The tangent space Tx(M∩ U) of
M ∩U at x ∈M∩U is the null space of the Hessian, and the normal space (Tx(M∩U))⊥

of M∩ U at x ∈M∩ U is the space on which the Hessian is positive definite.

Proposition 9 Let f : Rd → R satisfy Assumption 1. Then for every x ∈ (M ∩ U) there exist
a (d − d)-dimensional subvectorspace Px ⊆ Rd and a d-dimensional subvectorspace Nx ⊆ Rd that
satisfy the following properties.

(i) We have that (
Hess f

)
(x)(Px) = Px.

(ii) For every v ∈ Px\{0}, ([(
Hess f

)
(x)
]
v
)
· v > 0.

(iii) We have (
Hess f

)
(x)|Nx = 0.

(iv) We have that
Nx = Tx(M∩ U).

(v) We have that

Px =
(
Tx(M∩ U)

)⊥
.

Proof [Proof of Proposition 9] Let x ∈ (M∩ U). Since rank((Hess f)(θ)) = d − d, the
symmetry of the Hessian implies that there exist subspaces Nx, Px ⊆ Rd such that Rd =
Px ⊕Nx, that dim(Px) = d− d, that(

Hess f
)
(x)(Px) ⊆ Px with

(
Hess f

)
(x)|Px strictly positive definite on Px,

that dim(Nx) = d, and that (
Hess f

)
(x)|Nx = 0.

Let ε ∈ (0, 1) and suppose that γ : (−ε, ε) → M ∩ U is a smooth curve which satisfies
γ(0) = x. Since ∇f |M∩U = 0, it follows from the chain rule that

d

dt
∇f(γ(t))

∣∣∣∣
t=0

=
(

Hess f
)
(x) · γ̇(0) = 0.

It follows that Tx(M∩ U) ⊆ Nx and therefore, since dim(Tx(M∩ U)) = d, it holds that

Tx(M∩U) = Nx. Since Rd = Tx(M∩U)⊕
(
Tx(M∩U)

)⊥
, it holds that Px =

(
Tx(M∩U)

)⊥
,

which completes the proof of Proposition 9.

In the following lemma, for a point x ∈ Rd such that the projection p(x) ∈ (M∩U) is
well-defined, we prove that the difference x− p(x) ∈ Rd lies in the space normal toM∩U
at p(x).
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Lemma 10 Let f : Rd → R satisfy Assumption 1. Then for every x0 ∈ (M ∩ U), for every
V ∈ Proj(x0) (cf. Definition 8), we have for every x ∈ V that

x− p(x) ∈ Tp(x) (M∩ U)
⊥
.

Proof [Proof of Lemma 10] Let x0 ∈ (M∩U), let V ∈ Proj(x0), and let p : V → (M∩U)
denote the projection map. Let x ∈ V . If x ∈ (M∩ U), the claim is immediate since then
x − p(x) = 0. If x /∈ M ∩ U , for some ε ∈ (0, 1) suppose that γ : (−ε, ε) → M∩ U is a
smooth path which satisfies γ(0) = p(x). It holds that

d

dt
|x− γ(t)|2

∣∣∣∣
t=0

= −2γ̇(0) · (x− p(x)) = 0.

Therefore, since the curve γ was arbitrary, it holds that x− p(x) ∈ Tp(x) (M∩ U)
⊥

, which
completes the proof of Lemma 10.

In the following lemma, we derive a formula for the derivative of the distance function
to the manifold in a neighborhood of M∩ U .

Lemma 11 Let f : Rd → R satisfy Assumption 1 and let d(·,M∩ U) : Rd → R be defined by

d(x,M∩ U) = inf {|x− y| : y ∈ (M∩ U)} .

Then for every x0 ∈ (M ∩ U), for every V ∈ Proj(x0) (cf. Definitition 8), we have for every
x ∈ (V \ (M∩ U)) that

(∇d)(x,M∩ U) =
x− p(x)

|x− p(x)|
.

Proof [Proof of Lemma 11] Let x0 ∈ (M ∩ U) and let V ∈ Proj(x0). It follows from
Proposition 7 that

x ∈ V 7→ |x− p(x)|2 = d(x,M∩ U)2 is C1.

The chain rule implies for every i ∈ {1, . . . , d} that

∂

∂xi
d(x,M∩ U)2 =

∂

∂xi
|x− p(x)|2 = 2(x− p(x)) · ei − 2(x− p(x)) · ∂

∂xi
p(x).

Since ∂
∂xi

p(x) ∈ Np(x) and since x− p(x) ∈ Pp(x) it follows from Lemma 10 that

(x− p(x)) · ∂

∂xi
p(x) = 0.

Since, for every x ∈ V \M∩ U ,

∇d(x,M∩ U)2 = 2d(x,M∩ U)∇d(x,M∩ U) = 2(x− p(x)),

we have for every x ∈ V \M∩ U that

∇d(x,M∩ U) =
x− p(x)

|x− p(x)|
,

which completes the proof of Lemma 11.

We will now quantify what are essentially local tubular neighborhoods of the local
manifold M ∩ U . The following definition will play an important role throughout the
paper.

9
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Definition 12 Let d ∈ N, let d ∈ {1, . . . , d−1}, and let M∩U ⊆ Rd be a non-empty d-dimensional
C2-submanifold of Rd. For every x ∈ (M∩ U) and R, δ ∈ (0,∞) let VR,δ(x) ⊆ Rd be defined by

VR,δ(x) = {y + v : y ∈ (BR(x) ∩M∩ U) and v ∈
(
Ty(M∩ U)

)⊥
with |v| < δ}.

A useful feature of the sets defined in Definition 12 is that the parameter R ∈ (0,∞)
can be used to quantify distance in directions tangential to the manifold M∩ U , and the
parameter δ ∈ (0,∞) can be used to quantify distance in directions normal to the manifold.
The following proposition is essentially the tubular neighborhood theorem, and it gives a
useful characterization of the sets VR,δ(x).

Proposition 13 Let d ∈ N, let d ∈ {1, . . . , d−1}, and letM∩U ⊆ Rd be a non-empty d-dimensional
C2-submanifold of Rd. Then for every x0 ∈ (M∩ U), for every V ∈ Proj(x0) (cf. Definition 8),
there exist R0, δ0 ∈ (0,∞) such that, for every R ∈ (0, R0], δ ∈ (0, δ0],

(i) V R,δ(x0) ⊆ V (cf. Definition 12),

(ii) we have that

VR,δ(x0) = {x ∈ Rd : d(x,M∩ U) = d(x,BR(x0) ∩M∩ U) < δ},

(iii) and, for every x ∈ (BR(x0) ∩M∩ U) and v ∈
(
Tx(M∩ U)

)⊥
with |v| < δ,

p(x+ v) = x.

Proof [Proof of Proposition 13] Let x0 ∈ (M∩U). For every R, δ ∈ (0,∞) let ṼR,δ(x0) ⊆
Rd be defined by

ṼR,δ(x0) = {x ∈ Rd : d(x,M∩ U) = d(x,BR(x0) ∩M∩ U) < δ}.

Let V ∈ Proj(x0). Since U, V ⊆ Rd are open, there exist R0, δ0 ∈ (0,∞) such that for
every R ∈ (0, R0] it holds that

BR(x0) ∩M ⊆M∩ U,

and for every R ∈ (0, R0], δ ∈ (0, δ0] that

VR,δ(x0) ⊆ V and ṼR,δ(x0) ⊆ V.

Following (Foote, 1984, Lemma), the normal bundle T (M∩ U)
⊥ ⊆ R2d satisfies that

T (M∩ U)
⊥

=
{

(x, v) ∈ Rd × Rd : x ∈ (M∩ U) and v ∈ Tx (M∩ U)
⊥
}
.

Since M∩ U is a d-dimensional C2-submanifold, it follows that T (M∩ U)⊥ ⊆ R2d is a
d-dimensional C2-submanifold. Furthermore, the map Ψ: T (M∩U)⊥ → Rd which satisfies

for every (x, v) ∈ T (M∩ U)
⊥

that Ψ(x, v) = x+ v satisfies for every x ∈ (M∩ U) that

D(x,0)Ψ: T(x,0)

(
T (M∩ U)

⊥ )→ TxRd is nonsingular.

It follows from the inverse function theorem that there exists δ1 ∈ (0, (δ0∧R0/4)) such that,
for every R ∈ (0,R0/2], δ ∈ (0, δ1],

Ψ: {(x, v) ∈ (TM)
⊥

: x ∈ BR+2δ1(x0) and |v| < δ} → VR+2δ1,δ(x0) is injective. (7)

10
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Let R ∈ (0,R0/2], δ ∈ (0, δ1]. We will first prove that ṼR,δ(x0) ⊆ VR,δ(x0). Let x ∈ ṼR,δ(x0).
If x ∈ BR(x0)∩M∩U then it holds by definition that x ∈ VR,δ(x0). If x /∈ BR(x0)∩M∩U ,

since x ∈ ṼR,δ(x0) implies that d(x,M∩U) = d(x,BR(x0)∩M∩U) and since the choice
of R0 ∈ (0,∞) implies that

BR(x0) ∩M∩ U = BR(x0) ∩M is a closed subset of Rd,

we have p(x) ∈ BR(x0)∩M∩U . Since d(x,M∩U) = d(x,BR(x0)∩M∩U) = |x− p(x)| < δ
and since

x = p(x) + |x− p(x)| x− p(x)

|x− p(x)|
,

for x−p(x)
|x−p(x)| ∈ Tx (M∩ U)

⊥
by Lemma 10, we have that x ∈ VR,δ(x0). This completes

the proof that ṼR,δ(x0) ⊆ VR,δ(x0). It remains to prove that VR,δ(x0) ⊆ ṼR,δ(x0). Let
x ∈ VR,δ(x0). It is necessary to show that d(x,M∩U) = d(x,BR(x0)∩M∩U) < δ. The

definition of VR,δ(x0) implies that there exist x̃ ∈ (BR(x0)∩M∩U) and ṽ ∈ Tx̃ (M∩ U)
⊥

with |ṽ| < δ which satisfy that x = x̃+ ṽ. We will prove that p(x) = x̃. By contradiction,
suppose that p(x) 6= x̃. This implies that

|x− p(x)| < |x− x̃| = |ṽ| < δ.

It follows from the triangle inequality that

|p(x)− x̃| ≤ |p(x)− x|+ |x− x̃| < 2δ ≤ 2δ1, (8)

which proves that
x = x̃+ ṽ = p(x) + (x− p(x)), (9)

for x−p(x) ∈ Tp(x) (M∩ U)
⊥

by Lemma 10 with |x− p(x)| < δ. Since x̃ ∈ (BR(x0)∩M∩
U), it follows from (8) that p(x) ∈ (BR+2δ1(x0) ∩M ∩ U). Since R ∈ (0,R0/2] and since
δ ∈ (0, δ1], equation (9) contradicts (7), which states that Ψ is injective on the set

{(x, v) ∈ (TM)
⊥

: x ∈ BR+2δ1(x0) and |v| < δ}.

We conclude that p(x) = x̃, which implies that

d(x,M∩ U) = d(x,BR(x0) ∩M∩ U) = |x− p(x)| = |ṽ| < δ.

We conclude that VR,δ(x0) ⊆ ṼR,δ(x0), which completes the proof that ṼR,δ(x0) = VR,δ(x0).
The final claim follows from a repetition of the arguments leading to (8) and (9). This com-
pletes the proof of of Proposition 13.

The following two lemmas contain the primary use of the nondegeneracy assumption,
which states for every θ ∈ (M∩ U) that

rank((Hess f)(θ)) = d− d = codim(M∩ U).

The first of these proves that ∇f can be split into a component that is approximately
normal to the local manifold of minimaM∩U , and into a component that is approximately
tangential to M∩ U .

Lemma 14 Let f : Rd → R satisfy Assumption 1. Then for every x0 ∈ (M ∩ U) there exist
R0, δ0, c ∈ (0,∞) and V ∈ Proj(x0) (cf. Definition 8) such that for every R ∈ (0, R0], δ ∈ (0, δ0] we
have that (cf. Definition 12)

V R,δ(x0) ⊆ V,
and for every x ∈ VR,δ(x0) there exists εx ∈ Rd which satisfies |εx| ≤ cd(x,M∩ U)2 such that

∇f(x) =
(

Hess f
)
(p(x)) · (x− p(x)) + εx.

11
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Proof [Proof of Lemma 14] Let x0 ∈ (M∩U) and R ∈ (0,∞). Since U ⊆ Rd is an open set,
there exists V ∈ Proj(x0) which satisfies that V ⊆ U . Since V is open, fix R0, δ0 ∈ (0,∞)
such that, for every R ∈ (0, R0] and δ ∈ (0, δ0],

V R,δ(x0) ⊆ V.

Due to the compactness of V R,δ(x0) and the regularity of f , there exists c ∈ (0,∞) such
that, for every R ∈ (0, R0], δ ∈ (0, δ0],

‖f‖C3(VR,δ(x0)) = sup
0≤k≤3

∥∥∇kf∥∥
L∞(VR,δ0 (x0);R(dk))

≤ c. (10)

Let x ∈ VR,δ(x0). By integration, since ∇f |M∩U = 0,

∇f(x) =

∫ 1

0

(
Hess f

)
(p(x) + s(x− p(x))) · (x− p(x)) ds

=
(

Hess f
)
(p(x)) · (x− p(x))

+

∫ 1

0

((
Hess f

)
(p(x) + s(x− p(x)))−

(
Hess f

)
(p(x))

)
· (x− p(x)) ds.

(11)

It follows from (10), the local regularity of f , and the definition of the projection that there
exists c ∈ (0,∞) which satisfies∣∣∣∣∫ 1

0

((
Hess f

)
(p(x) + s(x− p(x)))−

(
Hess f

)
(p(x))

)
· (x− p(x)) ds

∣∣∣∣ ≤ cd(x,M∩ U)2

∫ 1

0

sds

≤ cd(x,M∩ U)2.
(12)

Let εx ∈ Rd be defined by

εx =

∫ 1

0

((
Hess f

)
(p(x) + s(x− p(x)))−

(
Hess f

)
(p(x))

)
· (x− p(x)) ds.

Equation (11) and estimate (12) complete the proof of Lemma 14.

Lemma 15 Let f : Rd → R satisfy Assumption 1. Then for every x0 ∈ (M ∩ U) there exist
R0, δ0, r,∈ (0,∞), λ ∈ (0,∞), and V ∈ Proj(x0) (cf. Definition 8) satisfying the following four
properties.

(i) We have that
λ ≤ max

x∈M∩U∩BR(x0)

∣∣(Hess f
)
(x)
∣∣ .

(ii) For every R ∈ (0, R0], δ ∈ (0, δ0], r ∈ (0, r], x ∈ VR,δ(x0),

V R,δ(x0) ⊆ V.

(iii) For every R ∈ (0, R0], δ ∈ (0, δ0], r ∈ (0, r], x ∈ VR,δ(x0),

d
(
x− r

(
Hess f

)
(p(x)) · (x− p(x)),M∩ U

)
≤
∣∣(x− p(x))− r

(
Hess f

)
(p(x)) · (x− p(x))

∣∣
≤ (1− λr) d(x,M∩ U).

(iv) For every R ∈ (0, R0], δ ∈ (0, δ0], r ∈ (0, r], x ∈ VR,δ(x0),((
Hess f

)
(p(x)) · (x− p(x))

)
· (x− p(x)) ≥ λd(x,M∩ U)2.

12
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Proof [Proof of Lemma 15] Let x0 ∈ (M∩U). Since U ⊆ Rd is an open subset, there exists
V ∈ Proj(x0) which satisfies that V ⊆ U . Fix R0, δ0 ∈ (0,∞) such that every R ∈ (0, R0],
δ ∈ (0, δ0] we have that (cf. Definition 12)

V R,δ(x0) ⊆ V.

Due to the compactness of V R0,δ0(x0) and the regularity of f , there exists c ∈ (0,∞) which
satisfies for every R ∈ (0, R0], δ ∈ (0, δ0] that

‖f‖C3(VR,δ(x0)) ≤ c. (13)

Let x ∈ VR,δ(x0). For the first claim, using (13), fix r ∈ (0,∞) which satisfies that

r

(
max

x∈VR0,δ0
(x0)

∣∣(Hess f
)
(p(x))

∣∣) ≤ 1.

Let r ∈ (0, r]. The definition of the distance to M∩ U implies that

d
(
x− r

(
Hess f

)
(p(x)) · (x− p(x)),M∩ U

)
≤
∣∣(x− p(x))− r

(
Hess f

)
(p(x)) · (x− p(x))

∣∣ . (14)

Since the nondegeneracy assumption states that

rank((Hess f)(p(x))) = d− d = codim(M∩ U),

Lemma 10 below and (13) prove that there exists for λ ∈ (0,∞) which satisfies that

λ ≤ max
x∈M∩U∩BR(x0)

∣∣(Hess f
)
(p(x))

∣∣ , (15)

for which we have that∣∣(x− p(x))− r
(

Hess f
)
(p(x)) · (x− p(x))

∣∣ ≤ (1− rλ) |x− p(x)| = (1− rλ)d(x,M∩ U), (16)

where the choice of r and (15) guarantee that (1 − rλ) ≥ 0. In combination, estimates
(14), (15), and (16) complete the proof of the first claim. The proof of the second claim is
similar. For every x ∈ VR,δ(x0), the nondegeneracy assumption, Lemma 10, and (13) prove
that there exists λ ∈ (0,∞) which satisfies (15) such that((

Hess f
)
(p(x)) · (x− p(x))

)
· (x− p(x)) ≥ λ |x− p(x)|2 = λd(x,M∩ U)2,

which completes the proof of Lemma 15.

3. Continuous Deterministic Gradient Descent

In this section, for an objective function f : Rd → R which satisfies Assumption 1, we will
analyze the local convergence to the local manifold of minima M∩ U of the deterministic
gradient descent algorithm in continuous time

d

dt
θt = −∇f(θt). (17)

In Proposition 16 below, we prove the existence of a basin of attraction for (17) to the local
manifold of minima M∩ U . Provided the initial data is taken in this basin of attraction,
the solution (17) converges with an exponential rate.

13
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Proposition 16 Let f : Rd → R satisfy Assumption 1. Then for every x0 ∈ (M∩ U) there exist
R0, δ0, λ ∈ (0,∞) such that, for every R ∈ (0, R0], δ ∈ (0, δ0], and θ0 ∈ VR/2,δ(x0) (cf. Definition 12),
for {θt}t∈[0,∞) the solution of

d

dt
θt = −∇f(θt),

we have, for every t ∈ [0,∞),

d(θt,M∩ U) ≤ exp(−λt)d(θ0,M∩ U).

Proof [Proof of Proposition 16] Let x0 ∈ (M ∩ U). Since U ⊆ Rd is an open set, fix
V ∈ Proj(x0) (cf. Definition 8) which satisfies that V ⊆ U . In view or Proposition 13, fix
R0, δ0 ∈ (0,∞) such that for every R ∈ (0, R0], δ ∈ (0, δ0] the set VR,δ(x0) (cf. Definition 12)
satisfies that V R,δ(x0) ⊆ V and that

VR,δ(x0) = {x ∈ Rd : d(x,M∩ U) = d(x,BR(x0) ∩M∩ U) < δ}.

In particular, the compactness of V R0,δ0(x0) and the regularity of f imply that there exists
c ∈ (0,∞) which satisfies that

‖f‖C3(VR0,δ0
(x0)) ≤ c. (18)

Let R ∈ (0, R0], δ ∈ (0, δ0]. Let θ0 ∈ VR/2,δ(x0), let θt ∈ Rd, t ∈ [0,∞), satisfy for every
t ∈ (0,∞) that

d

dt
θt = −∇f(θt),

and let τ ∈ (0,∞) denote the exit time

τ = inf{ t ≥ 0 | θt /∈ VR,δ(x0) }.

Lemma 11 and the chain rule prove that
d

dt
d(θt,M∩ U) = −∇f(θt) · ∇d(θt,M∩ U) = −∇f(θt) ·

θt − p(θt)
|θt − p(θt)|

in (0, τ),

d

dt
p(θt) = −Dp(θt) · ∇f(θt) in (0, τ),

(19)

where the local regularity of f and the stopping time τ guarantee the well-posedness of
this equation. Let t ∈ (0, τ). It follows from Lemma 14 and Lemma 15 that there exist
λ, c1 ∈ (0,∞) which satisfy that

∇f(θt) ·
θt − p(θt)
|θt − p(θt)|

≥ λd(θt,M∩ U)− c1d(θt,M∩ U)2. (20)

Proposition 7, (18), and ∇f |M∩U = 0 prove that there exists c2 ∈ (0,∞) which satisfies
that

|Dp(θt) · ∇f(θt)| ≤ c2d(θt,M∩ U). (21)

Returning to (19), it follows from (20) and (21) that
d

dt
d(θt,M∩ U) ≤ −λd(θt,M∩ U) + c1d(θt,M∩ U)2 in (0, τ),∣∣∣∣ ddtp(θt)

∣∣∣∣ ≤ c2d(θt,M∩ U) in (0, τ).
(22)

14
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Let δ1 ∈ (0, δ0] satisfy that

c1δ1 ≤ λ/2. (23)

Let δ ∈ (0, δ1]. For every t ∈ (0, τ) it follows from (22) and (23) that

d

dt
d(θt,M∩ U) ≤ −λ

2
d(θt,M∩ U).

Therefore, for every δ ∈ (0, δ1], t ∈ [0, τ) it holds that

d(θt,M∩ U) ≤ d(θ0,M∩ U) exp(−λt/2) ≤ δ1 exp(−λt/2). (24)

For every t ∈ [0, τ), it follows from (22) and (24) that

max
0≤t≤τ

|p(θt)− p(θ0)| ≤ c2
∫ τ

0

δ1 exp

(
−λt

2

)
dt =

2c2δ1
λ

(
1− exp

(
−λτ

2

))
≤ 2c2δ1

λ
. (25)

Fix δ2 ∈ (0, δ1] which satisfies that

2c2δ2
λ

<
R

2
.

Let δ ∈ (0, δ2]. In combination (24), (25), θ0 ∈ VR/2,δ(x0), and the triangle inequality prove
that θt ∈ VR,δ(x0) for every t ∈ (0,∞). This is to say that τ = ∞. Since θ0 ∈ VR/2,δ(x0)
was arbitrary, this completes the proof of Proposition 16.

4. Discrete Deterministic Gradient Descent

In this section, for an objective function f : Rd → R which satisfies Assumption 1, we will
analyze the convergence of the deterministic gradient descent algorithm {θn}n∈N0

defined
for every n ∈ N by

θn = θn−1 −
r

nρ
∇f(θn−1),

for some learning rate ρ ∈ (0, 1) and r ∈ (0,∞). The proof is similar to the case of
the deterministic gradient descent algorithm in continuous time. However, in the discrete
setting, care must be taken to choose r ∈ (0,∞) sufficiently small. Since, if r is too large,
for small values of n the jump − r

nρ∇f may be an overcorrection that causes the solution
to overshoot the local manifold of minima and to leave the basin of attraction.

Proposition 17 Let f : Rd → R satisfy Assumption 1. Then for every x0 ∈ (M∩ U) there exists
R0, δ0, r, c ∈ (0,∞) such that for every R ∈ (0, R0], δ ∈ (0, δ0], r ∈ (0, r], ρ ∈ (0, 1), and θ0 ∈
VR/2,δ(x0) (cf. Definition 12), for {θn}n∈N0

defined by

θn = θn−1 −
r

nρ
∇f(θn−1),

we have, for every n ∈ N0,

d(θn,M∩ U) ≤ exp(−cn1−ρ)d(x0,M∩ U).

Proof [Proof of Proposition 17] Let x0 ∈ (M∩U) and ρ ∈ (0, 1). Since U ⊆ Rd is open, fix
V ∈ Proj(x0) (cf. Definition 8) which satisfies that V ⊆ U . In view or Proposition 13, fix
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R0, δ0 ∈ (0,∞) such that for every R ∈ (0, R0], δ ∈ (0, δ0] the set VR,δ(x0) (cf. Definition 12)
satisfies that V R,δ(x0) ⊆ V and that

VR,δ(x0) = {x ∈ Rd : d(x,M∩ U) = d(x,BR(x0) ∩M∩ U) < δ}.

The regularity of f and the compactness of V R0,δ0(x0) prove that there exists c ∈ (0,∞)
which satisfies that

‖f‖C3(VR0,δ0
(x0)) ≤ c. (26)

Fix r ∈ (0,∞) which satisfies the conclusion of Lemma 15 for the set VR0,δ0(x0). Let
R ∈ (0, R0], δ ∈ (0, δ0], r ∈ (0, r]. Let θ0 ∈ VR/2,δ(x0), let θn ∈ Rd, n ∈ N, satisfy that

θn = θn−1 −
r

nρ
∇f(θn−1),

and let τ ∈ N be the exit time which satisfies that

τ = inf{ n ∈ N | θn /∈ VR,δ(x0) }.

Since for every n ∈ {1, . . . , τ} the projection of θn−1 is well-defined, we have that

d(θn,M∩ U) ≤ |θn − p(θn−1)| =
∣∣∣θn−1 − p(θn−1)− r

nρ
∇f(θn−1)

∣∣∣ . (27)

Lemma 14 proves that there exists c ∈ (0,∞) such that for every n ∈ {1, . . . , τ} there exists
εn ∈ Rd which satisfies that

|εn| ≤ cd(θn−1,M∩ U)2, (28)

such that
∇f(θn−1) =

(
Hess f

)
(p(θn−1)) · (x− p(x)) + εn. (29)

The triangle inequality, (27), (28), and (29) prove that there exists c1 ∈ (0,∞) such that
for every n ∈ {1, . . . , τ} it holds that

d(θn,M∩ U) ≤
∣∣∣θn−1 − p(θn−1)− r

nρ
(

Hess f
)
(p(θn−1)) · (θn−1 − p(θn−1))

∣∣∣
+
c1r

nρ
d(θn−1,M∩ U)2.

(30)

Finally, the choice of r ∈ (0,∞), Lemma 15, and (30) prove that there exists λ ∈ (0,∞)
such that for every n ∈ {1, . . . , τ} it holds that

d(θn,M∩ U) ≤
(

1− rλ

nρ

)
d(θn−1,M∩ U) +

c1r

nρ
d(θn−1,M∩ U)2, (31)

where the choice of r ∈ (0,∞) guarantees that (1− rλ) ≥ 0. Fix δ1 ∈ (0, δ0] which satisfies
that

c1δ1 ≤
λ

2
. (32)

Let δ ∈ (0, δ1]. It follows from (31) and (32) that for every n ∈ {1, . . . , τ} it holds that

d(θn,M∩ U) ≤
(

1− rλ

2nρ

)
d(θn−1,M∩ U).

After iterating this inequality, we have for every n ∈ {1, . . . , τ} that

d(θn,M∩ U) ≤
n∏
k=1

(
1− rλ

2kρ

)
d(θ0,M∩ U). (33)
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Since there exists c ∈ (0,∞) which satisfies for every n ∈ N that

log

(
n∏
k=1

(
1− rλ

2kρ

))
=

n∑
k=1

log

(
1− rλ

2kρ

)
≤ −c

n∑
k=1

rλ

2kρ
≤ −crλ

2
n1−ρ, (34)

it follows from (33) that there exists c2 ∈ (0,∞) which satisfies for every n ∈ {1, . . . , τ}
that

d(θn,M∩ U) ≤ exp
(
−c2n1−ρ)d(θ0,M∩ U). (35)

It remains only to show that, provided δ ∈ (0, δ1] is chosen sufficiently small, we have that
τ = ∞. It follows from (26), (35), and ∇f |M∩U = 0 that there exists c ∈ (0,∞) which
satisfies that

|θn − θn−1| =
r

nρ
|∇f(θn−1)| ≤ c

nρ
d(θn−1,M∩ U) ≤ cn−ρ exp

(
−c2n1−ρ)d(θ0,M∩ U).

The triangle inequality therefore implies that there exists c3 ∈ (0,∞) such that for every
n ∈ {1, . . . , τ} it holds that

|θn − θ0| ≤ cd(θ0,M∩ U)

∞∑
k=1

ck−ρ exp
(
−c2k1−ρ) = c3d(θ0,M∩ U) <∞. (36)

Fix δ2 ∈ (0, δ1] which satisfies that

c3δ2 <
R

2
− 2δ2.

Let δ ∈ (0, δ2]. The choice of δ2 ∈ (0, δ1], (36), and the triangle inequality prove for every
n ∈ {1, . . . , τ} that

|θn − x0| ≤ |θn − θ0|+ |θ0 − x0| < c3δ2 +
R

2
+ δ2 < R− δ2. (37)

In combination (35) and (37) prove for every n ∈ {1, . . . , τ} that

d(θn,M∩ U) < δ2 and |θn − x0| ≤ R− δ2.

The triangle inequality therefore implies for every n ∈ {1, . . . , τ} that

d(θn,M∩ U) = d(θn, BR(x0) ∩M∩ U).

It follows from Proposition 13, the choice of R0, δ0 ∈ (0,∞), and θ0 ∈ VR/2,δ(x0) that for
every n ∈ N it holds that θn ∈ VR,δ(x0). This is to say that τ = ∞, which completes the
proof of Proposition 17.

Remark 18 The conclusion of Proposition 17 can be extended to the case of ρ = 1 using the same
techniques. In this case, in the setting of Proposition 17, we would obtain that

d(θn,M∩ U) ≤ exp(−c log(n))d(x0,M∩ U).

The logarithm appears in estimate (34), and the remainder of the proof is identical.
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5. Stochastic Gradient Descent

In this section, for a jointly measurable function F and for noise X1,1 that satisfy As-
sumption 2, for i.i.d. random variables {Xn,m}n,m∈N, and for the objective function f(·) =
E[F (·, X1,1)] that satisfies Assumption 1, we prove the convergence to the manifold of
minima of the stochastic gradient descent algorithm

Θn = Θn−1 −
r

Mnρ

M∑
m=1

∇θF (Θn−1, Xn,m), (38)

for mini-batch size M ∈ N, learning rate ρ ∈ (2/3, 1), and r ∈ (0,∞). The role of the
mini-batch size M ∈ N is to reduce the variance of the random gradient

1

M

M∑
m=1

∇θF (Θn−1, Xn,m).

The variance reduction is quantified by the following well-known lemma, where the function
G plays the role of ∇θF .

Lemma 19 Let d1, d2 ∈ N, let U ⊆ Rd1 be a non-empty open set, let (Ω,F ,P) be a probability
space, let (S,S) be a measurable space, let G : Rd1 × S → Rd2 be a measurable function, and let
{Xm : Ω → S}m∈N be i.i.d. random variables. Assume that G and X1 satisfy Assumption 2. Then
for every non-empty compact set C ⊆ U there exists c ∈ (0,∞) such that, for every M ∈ N,

sup
θ∈C

E

∣∣∣∣∣
[

1

M

M∑
m=1

G(θ,Xm)

]
− E

[
G(θ,X1)

]∣∣∣∣∣
2
 ≤ c

M
.

Proof [Proof of Lemma 19] Let C ⊆ U be a compact set. For every θ ∈ C, M ∈ N,

E
[∣∣∣ 1

M

M∑
m=1

G(θ,Xm)− E
[
G(θ,X1)

]∣∣∣2]
=

1

M2

M∑
i,j=1

E
[(
G(θ,Xi)− E

[
G(θ,X1)

])(
G(θ,Xj)− E

[
G(θ,X1)

])]
.

Since the {Xm}m∈N are i.i.d. and since {G(θ,X1,1)}θ∈Rd1 is locally bounded in L2(Ω;Rd2),
there exists c ∈ (0,∞) such that, for every M ∈ N,

sup
θ∈C

(
E
[∣∣∣ 1

M

M∑
m=1

G(θ,Xm)− E
[
G(θ,X1)

]∣∣∣2])
= sup

θ∈C

( 1

M2

M∑
m=1

E
[∣∣∣G(θ,Xm)− E

[
G(θ,X1)

]∣∣∣2])
=

1

M
sup
θ∈C

(
E
[∣∣∣G(θ,X1)− E

[
G(θ,X1)

]∣∣∣2])
≤ c

M
.

This completes the proof of Lemma 19.

In the following proposition, we establish the convergence of SGD in directions normal
to the local manifold of minima on the event that SGD begins in and remains in a basin
of attraction.
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Proposition 20 Let d ∈ N, let (S,S) be a measurable space, let (Ω,F ,P) be a probability space,
let F : Rd × S → R be measurable, let {Xn,m : Ω → R}n,m∈N be i.i.d. random variables. Assume
that F and X1,1 satisfy Assumption 2. Let f : Rd → R be defined by f(θ) = E[F (θ,X1,1)] and
assume that f satisfies Assumption 1. For every M ∈ N, ρ ∈ (2/3, 1), r ∈ (0,∞), θ ∈ Rd let
{Θn,θ = Θn,θ(M,ρ, r)}n∈N0

be defined by Θ0,θ = θ and, for every n ∈ N,

Θn,θ = Θn−1,θ −
r

nρM

[
M∑
m=1

(∇θF )(Θn−1,θ, Xn,m)

]
,

and for every R, δ ∈ (0,∞), x0 ∈ (M ∩ U), and n ∈ N let An = An(M, r, ρ, θ, R, δ, x0) ∈ F be
defined by

An =
{
∀ m ∈ {0, . . . , n} Θm,θ ∈ VR,δ(x0) (cf. Definition 12)

}
.

Then for every x0 ∈ (M∩ U) and ρ ∈ (2/3, 1) there exist R0, δ0, r, c ∈ (0,∞) such that, for every
R ∈ (0, R0], δ ∈ (0, δ0], r ∈ (0, r], n,M ∈ N, and θ ∈ VR,δ(x0) (cf. Definition 12),(

E
[
(d(Θn,θ,M∩ U) ∧ 1)

2
1An−1

]) 1
2 ≤ cn−

ρ
2 .

Proof [Proof of Proposition 20] Let x0 ∈ (M ∩ U). Since U ⊆ Rd is open, fix V ∈
Proj(x0) (cf. Definition 8) which satisfies that V ⊆ U . Fix R0, δ0 ∈ (0,∞) which satisfy
the conclusion of Proposition 13 for this set V . Finally, fix r ∈ (0,∞) which satisfies the
conclusion of Lemma 15. Let R ∈ (0, R0], δ ∈ (0, δ0], r ∈ (0, r], n,M ∈ N. To simplify
the notation, and by a small abuse of notation, let ∇θFM,n : Rd × Ω→ Rd, n ∈ N, be the
functions which satisfy for every (θ, ω) ∈ Rd × Ω that

∇θFM,n(θ) = ∇θFM,n(θ, ω) =
1

M

M∑
m=1

(∇θF )(θ,Xn,m(ω)).

Let θ ∈ VR,δ(x0), let Θ0,θ : Ω→ Rd satisfy for every ω ∈ Ω that Θ0,θ(ω) = θ, and for every
n ∈ N let Θn,θ : Ω→ Rd satisfy that

Θn,θ = Θn−1,θ −
r

nρ
∇θFM,n(Θn−1,θ). (39)

We will analyze the solution Θn,θ of (39) on the event An−1. We observe that

Θn,θ = Θn−1,θ −
r

nρ
∇f(Θn−1,θ) +

r

nρ
(
∇f(Θn−1,θ)−∇θFM,n(Θn−1,θ)

)
.

Since the event An−1 implies that Θn−1,θ ∈ VR,δ(x0) ⊆ V , the projection of Θn−1,θ is
well-defined and it holds by definition of the distance to M∩ U that

d(Θn,θ,M∩ U)2

≤ |Θn,θ − p(Θn−1,θ)|2

≤
∣∣∣Θn−1,θ − p(Θn−1,θ)−

r

nρ
∇f(Θn−1,θ)

∣∣∣2
+ 2

(
Θn−1,θ − p(Θn−1,θ)−

r

nρ
∇f(Θn−1,θ)

)
· r
nρ
(
∇f(Θn−1,θ)−∇θFM,n(Θn−1,θ)

)
+
∣∣∣ r
nρ
(
∇f(Θn−1,θ)−∇θFM,n(Θn−1,θ)

)∣∣∣2 .
(40)

The three terms on the righthand side of (40) will be treated separately. For the first term
on the righthand side of (40), the choice of r ∈ (0,∞), Lemma 14, and Lemma 15 prove,
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following identically the proof leading from (27) to (31), that there exist λ, c ∈ (0,∞) such
that ∣∣∣Θn−1,θ − p(Θn−1,θ)−

r

nρ
∇f(Θn−1,θ)

∣∣∣
≤
(

1− rλ

nρ

)
d(Θn−1,θ,M∩ U) + c

r

nρ
d(Θn−1,θ,M∩ U)2.

Therefore, there exist λ, c ∈ (0,∞) which satisfy that∣∣∣Θn−1,θ − p(Θn−1,θ)−
r

nρ
∇f(Θn−1,θ)

∣∣∣2 ≤ (1− rλ

nρ

)2

d(Θn−1,θ,M∩ U)2

+ c

(
1− rλ

nρ

)
r

nρ
d(Θn−1,θ,M∩ U)3

+ c
r2

n2ρ
d(Θn−1,θ,M∩ U)4.

(41)

The remaining two terms of (40) and the righthand side of (41) will be handled after taking
the expectation on the event An−1 ⊆ Ω which satisfies that

An−1 =
{
ω ∈ Ω: Θm,θ ∈ VR,δ(x0) ∀ m ∈ {0, . . . , n− 1}

}
.

After returning to (40), it follows from (41) that there exists c ∈ (0,∞) which satisfies that

E
[
d(Θn,θ,M∩ U)21An−1

]
≤
(

1− rλ

nρ

)2

E
[
d(Θn−1,θ,M∩ U)21An−1

]
+ c

(
1− rλ

nρ

)
r

nρ
E
[
d(Θn−1,θ,M∩ U)31An−1

]
+ c

r2

n2ρ
E
[
d(Θn−1,θ,M∩ U)41An−1

]
+ 2E

[(
Θn−1,θ −

r

nρ
∇f(Θn−1,θ)− p(Θn−1,θ)

)
· r
nρ
(
∇f(Θn−1,θ)−∇θFM,n(Θn−1,θ)

)
1An−1

]
+ E

[∣∣∣ r
nρ
(
∇f(Θn−1,θ)−∇θFM,n(Θn−1,θ)

)∣∣∣2 1An−1

]
.

(42)
For every m ∈ R let Fm ⊆ F be the sigma algebra defined by

Fm = σ
(
{X1,k}Mk=1, . . . , {Xm,k}Mk=1

)
. (43)

For the penultimate term of (42), since 1An−1
is Fn−1-measurable, properties of the con-

ditional expectation imply that

E
[(

Θn−1,θ −
r

nρ
∇f(Θn−1,θ)− p(Θn−1,θ)

) r
nρ

(
∇f(Θn−1,θ)−∇θFM,n(Θn−1,θ)

)
1An−1

]
=

E
[
E
[(

Θn−1,θ −
r

nρ
∇f(Θn−1,θ)− p(Θn−1,θ)

) r
nρ

(
∇f(Θn−1,θ)−∇θFM,n(Θn−1,θ)

)
1An−1

|Fn−1

]]
.

Therefore,

E
[(

Θn−1,θ −
r

nρ
∇f(Θn−1,θ)− p(Θn−1,θ)

) r
nρ

(
∇f(Θn−1,θ)−∇θFM,n(Θn−1,θ)

)
1An−1

]
=

E
[(

Θn−1,θ −
r

nρ
∇f(Θn−1,θ)− p(Θn−1,θ)

)
1An−1

E
[ r
nρ

(
∇f(Θn−1,θ)−∇θFM,n(Θn−1,θ)

)
|Fn−1

]]
= 0,

(44)
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where the final equality follows from the fact that the Xm,k, m, k ∈ N, are independent
and therefore satisfy for every x ∈ Rd that

E
[ r
nρ
(
∇f(x)−∇θFM,n(x)

)
|Fn−1

]
=

r

Nnρ

M∑
m=1

E [∇f(x)−∇θF (x,Xn,m)] = 0. (45)

The final term of (42) is handled using Lemma 19. Since V R,δ(x0) is compact, the inde-
pendence of the Xm,k, m, k ∈ N, and Lemma 19 prove that there exists c ∈ (0,∞) such
that

E
[∣∣∣ r
nρ
(
∇f(Θn−1,θ)−∇θFM,n(Θn−1,θ)

)
1An−1

∣∣∣2] ≤ cr2

Mn2ρ
. (46)

Returning to (42), it follows from (44) and (46) that there exists c1 ∈ (0,∞) such that

E
[
d(Θn,θ,M∩ U)21An−1

]
≤(

1− rλ

nρ

)2

E
[
d(Θn−1,θ,M∩ U)21An−1

]
+ c1

(
1− rλ

nρ

)
r

nρ
[
d(Θn−1,θ,M∩ U)31An−1

]
+ c1

r2

n2ρ
E
[
d(Θn−1,θ,M∩ U)41An−1

]
+ c1

r2

Mn2ρ
.

(47)

Fix δ1 ∈ (0, δ0] which satisfies that

δ1 ≤
λ

2c1
and δ2

1 ≤
λ

2c1r
.

Let δ ∈ (0, δ1]. We claim that inequality (47) implies that there exists some c ∈ (0,∞)
which satisfies for every n ∈ N that

E
[
(d(Θn,θ,M∩ U) ∧ 1)

2
1An−1

] 1
2 ≤ cn−

ρ
2 . (48)

The proof of (48) will proceed by induction. Since ρ ∈ (2/3, 1), there exists n0 ≥ 1 such
that for every n ≥ n0 it holds that(

nρ − (n− 1)ρ − rλ+
r2λ2

nρ

)
≤
(
ρ(n− 1)ρ−1 − rλ+

r2λ2

nρ

)
≤ −rλ

2
, (49)

where the first inequality follows from the mean value theorem and ρ ∈ (2/3, 1) and the
second inequality is obtained by choosing n ∈ N sufficiently large. Fix n0 ≥ 1 which satisfies
(49) and define c ∈ (0,∞) which satisfies that

c = max

{
(n0 − 1)

ρ
,

2c1r

Mλ

}
.

For the base case, the definition of c guarantees for every n ∈ {1, . . . , n0 − 1} that

E
[
(d(Θn,θ,M∩ U) ∧ 1)

2
1An−1

]
≤ cn−ρ. (50)

For the induction step, suppose that for n ≥ n0 we have that

E
[
(d(Θn−1,θ,M∩ U) ∧ 1)

2
1An−2

]
≤ c(n− 1)−ρ.

Since the event An−1 implies that

d(Θn−1,θ,M∩ U) ≤ δ ≤ 1,
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it follows from an L∞-estimate, the inclusion An−1 ⊆ An−2, and the induction hypothesis
that for every m ∈ {2, 3, 4} it holds that

E
[
d(Θn−1,θ,M∩ U)m1An−1

]
≤ δm−2E

[
d(Θn−1,θ,M∩ U)21An−2

]
≤ δm−2c(n− 1)−ρ.

Returning to (47), it holds that

E
[
d(Θn,θ,M∩ U)21An−1

]
≤ c

(
1− rλ

nρ

)2

(n− 1)−ρ + cc1δ

(
1− rλ

nρ

)
r

nρ
(n− 1)−ρ

+ cc1δ
2 r

2

n2ρ
(n− 1)−ρ + c1

r2

Mn2ρ
.

After adding and subtracting cn−ρ, it holds that

E
[
d(Θn,θ,M∩ U)21An−1

]
≤ cn−ρ

+ n−ρ
(
c(n− 1)−ρ

(
nρ − (n− 1)ρ − 2rλ+

r2λ2

nρ
+ c1δr

(
1− rλ

nρ

)
+ c1δ

2 r
2

nρ

)
+ c1

r2

Mnρ

)
.

(51)

Since δ ∈ (0, δ1], it follows from (51) that

E
[
d(Θn,θ,M∩ U)21An−1

]
≤ cn−ρ + n−ρ

(
c(n− 1)−ρ

(
nρ − (n− 1)ρ − rλ+

r2λ2

nρ

)
+ c1

r2

Mnρ

)
.

(52)
Since n ≥ n0, the choice c ≥ 2c1r

Mλ , (49), and (52) prove that

E
[
d(Θn,θ,M∩ U)21An−1

]
≤ cn−ρ + n−ρ

(
−rλ

2
c(n− 1)−ρ + c1

r2

Mnρ

)
≤ cn−ρ.

Therefore, we have that

E
[
(d(Θn,θ,M∩ U) ∧ 1)

2
1An−1

]
≤
[
d(Θn,θ,M∩ U)21An−1

]
≤ cn−ρ,

which completes the induction step. Since the base case is (50), this completes the proof
of Proposition 20.

Proposition 20 proves the convergence of SGD to the local manifold of minima on the
event that SGD remains in a basin of attraction. It remains to prove that SGD remains
in the basin of attraction for large times with high probability. The first step is contained
in the following proposition, which estimates the maximal excursion of SGD on the event
that the dynamics do not leave a basin of attraction.

Proposition 21 Let d ∈ N, let (S,S) be a measurable space, let (Ω,F ,P) be a probability space,
let F : Rd × S → R be measurable, let {Xn,m : Ω → R}n,m∈N be i.i.d. random variables. Assume
that F and X1,1 satisfy Assumption 2. Let f : Rd → R be defined by f(θ) = E[F (θ,X1,1)] and
assume that f satisfies Assumption 1. For every M ∈ N, ρ ∈ (2/3, 1), r ∈ (0,∞), θ ∈ Rd let
{Θn,θ = Θn,θ(M,ρ, r)}n∈N0 be defined by Θ0,θ = θ and, for every n ∈ N,

Θn,θ = Θn−1,θ −
r

nρM

[
M∑
m=1

(∇θF )(Θn−1,θ, Xn,m)

]
,

and for every R, δ ∈ (0,∞), x0 ∈ (M ∩ U), and n ∈ N let An = An(M, r, ρ, θ, R, δ, x0) ∈ F be
defined by

An =
{
∀ m ∈ {0, . . . , n} Θm,θ ∈ VR,δ(x0) (cf. Definition 12)

}
.
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Then for every x0 ∈ (M∩ U) and ρ ∈ (2/3, 1) there exist R0, δ0, r, c ∈ (0,∞) such that, for every
R ∈ (0, R0], δ ∈ (0, δ0], r ∈ (0, r], n,M ∈ N, θ ∈ VR/2,δ(x0) (cf. Definition 12),

E
[

max
1≤k≤n

|Θk,θ −Θ0,θ|1Ak−1

]
≤

n∑
k=1

(
E
[
|Θk,θ −Θk−1,θ|2 1Ak−1

]) 1
2 ≤ cr

(
1 +M−

1
2n1−ρ

)
.

Proof [Proof of Proposition 21] Let d(·,M∩ U) : Rd → R be the function which satisfies
for every x ∈ Rd that

d(x,M∩ U) = inf {|x− y| : y ∈ (M∩ U)} .

Let x0 ∈ (M∩U). Since U ⊆ Rd is open, fix V ∈ Proj(x0) (cf. Definition 8) which satisfies
that V ⊆ U . Fix R0, δ0 ∈ (0,∞) which satisfies the conclusion of Proposition 13 for this
set V . We observe that the regularity of f and the compactness of V R0,δ0(x0) imply that

‖f‖C3(VR0,δ0
(x0)) ≤ c. (53)

Finally, fix r ∈ (0,∞) which satisfies the conclusion of Lemma 15. Let R ∈ (0, R0],
δ ∈ (0, δ0], r ∈ (0, r], n,M ∈ N. As in Proposition 20, let ∇θFM,n : Rd × Ω → Rd, n ∈ N,
be the functions which satisfy for every (θ, ω) ∈ Rd × Ω that

∇θFM,n(θ) = ∇θFM,n(θ, ω) =
1

M

M∑
m=1

(∇θF )(θ,Xn,m(ω)).

Let θ ∈ VR/2,δ(x0), let Θ0,θ : Ω → Rd satisfy for every ω ∈ Ω that Θ0,θ(ω) = θ, and for

every n ∈ N let Θn,θ : Ω→ Rd satisfy that

Θn,θ = Θn−1,θ −
r

nρ
∇θFM,n(Θn−1,θ).

We will first prove that there exists c ∈ (0,∞) which satisfies that

E
[
|Θn,θ −Θn−1,θ|2 1An−1

] 1
2 ≤ c

(
r

n
3
2ρ

+
r

nρM
1
2

)
, (54)

where we observe that the constant c ∈ (0,∞) can be absorbed by fixing r ∈ (0, r] suffi-
ciently small. It holds that

Θn,θ = Θn−1,θ −
r

nρ
∇f(Θn−1,θ) +

r

nρ
(
∇f(Θn−1,θ)−∇FM,n(Θn−1,θ)

)
.

Lemma 14 proves that there exists c1 ∈ (0,∞) and εn : An−1 → Rd which satisfy that

|εn| ≤ c1d(Θn−1,M∩ U)2, (55)

such that on the event An−1 it holds that

∇f(Θn−1,θ) =
(

Hess f
)
(p(Θn−1,θ)) · (Θn−1,θ − p(Θn−1,θ)) + εn.

Therefore, on the event An−1 it holds that

Θn,θ = Θn−1,θ −
r

nρ
(

Hess f
)
(p(Θn−1,θ)) ·

(
Θn−1,θ − p(Θn−1,θ)

)
− r

nρ
εn

+
r

nρ
(
∇f(Θn−1,θ)−∇FM,n(Θn−1,θ)

)
.

(56)
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Let Θ̃M,r
n−1,θ : An−1 → Rd satisfy that

Θ̃M,r
n−1,θ = Θn−1,θ −

r

nρ
(

Hess f
)
(p(Θn−1,θ)) · (Θn−1,θ − p(Θn−1,θ)) .

After taking the norm-squared of (56), on the event An−1 it holds that∣∣∣Θn,θ − Θ̃M,r
n−1,θ

∣∣∣2 =
r2

n2ρ
|εn|2 − 2

r2

n2ρ
εn ·

(
∇f(Θn−1,θ)−∇FM,n(Θn−1,θ)

)
+

r2

n2ρ

∣∣∇f(Θn−1,θ)−∇FM,n(Θn−1,θ)
∣∣2 . (57)

We will estimate (57) by taking the expectation on the event An−1. The first term on the
righthand side of (57) is handled using Proposition 20 and (55). For the second term, from
(43) we recall the sigma algebras Fm ⊆ F , m ∈ N, which satisfy that

Fm = σ
(
{X1,k}Mk=1, . . . , {Xm,k}Mk=1

)
.

Since εn : An−1 → Rd is Fn−1-measurable, it follows identically to (44) and (45) that

E
[
εn ·

(
∇f(Θn−1,θ)−∇FM,n(Θn−1,θ)

)
1An−1

]
= 0. (58)

For the final term on the righthand side of (57), the compactness of V R0,δ0(x0), the inde-
pendence of the Xm,k, m, k ∈ N, and Lemma 19 prove that there exists c ∈ (0,∞) which
satisfies that

E
[∣∣∇f(Θn−1,θ)−∇FM,n(Θn−1,θ)

∣∣2 1An−1

]
≤ c

M
. (59)

In combination, Proposition 20 and estimates (55), (57), (58), and (59) prove that there
exists c ∈ (0,∞) which satisfies that

E
[∣∣∣Θn,θ − Θ̃M,r

n−1,θ

∣∣∣2 1An−1

]
≤ c

(
r2δ2

n2ρ
E
[
d(Θn−1,θ,M∩ U)2

]
+

r2

n2ρM

)
≤ c

(
r2δ2

n3ρ
+

r2

n2ρM

)
.

(60)

It follows from the definition of Θ̃M,r
n−1,θ, (53), and the definition of the projection that, on

the event An−1 there exists c ∈ (0,∞) which satisfies that∣∣∣Θ̃M,r
n−1,θ −Θn−1,θ

∣∣∣2 =
r2

n2ρ

∣∣(Hess f
)
(p(Θn−1,θ)) · (Θn−1,θ − p(Θn−1,θ))

∣∣2
≤ c r

2

n2ρ
d(Θn−1,θ,M∩ U)2.

Proposition 20 proves that there exists c ∈ (0,∞) such that

E
[∣∣∣Θ̃M,r

n−1,θ −Θn−1,θ

∣∣∣2 1An−1

]
≤ cr2

n3ρ
. (61)

It follows from the triangle inequality, (60), and (61) that there exists c1 ∈ (0,∞) which
satisfies that

E
[
|Θn,θ −Θn−1,θ|2 1An−1

] 1
2 ≤ E

[∣∣∣Θn,θ − Θ̃M,r
n−1,θ

∣∣∣2 1An−1

] 1
2

+ E
[∣∣∣Θ̃M,r

n−1,θ −Θn−1,θ

∣∣∣2 1An−1

] 1
2

≤ c1
(

r

n
3
2ρ

+
r

nρM
1
2

)
,

(62)

24



Convergence rates for the stochastic gradient descent method

which completes the proof of (54). Since for every r ≤ s ∈ N0 we have 1As ≤ 1Ar , it follows
from (62), the triangle inequality, and Hölder’s inequality that there exists c2 ∈ (0,∞)
which satisfies for every r ∈ (0, r] that

E
[

max
1≤k≤n

|Θk,θ −Θ0,θ|1Ak−1

]
≤

n∑
k=1

E
[
|Θk,θ −Θk−1,θ|1Ak−1

]
≤

n∑
k=1

E
[
|Θk,θ −Θk−1,θ|2 1Ak−1

] 1
2

≤ c1r

(
n∑
k=1

k−
3
2ρ +M−

1
2

n∑
k=1

k−ρ

)
≤ c2r

(
1 +M−

1
2n1−ρ

)
,

where we have used that fact that, since ρ ∈ (2/3, 1), there exists a c ∈ (0,∞) such that

n∑
k=1

k−
3
2ρ +M−

1
2

n∑
k=1

k−ρ ≤ c
(

1 +M−
1
2n1−ρ

)
. (63)

This completes the proof of Proposition 21.

Remark 22 The assumption ρ ∈ (2/3, 1) is only used to ensure the boundedness in n ∈ N of the
first sum appearing on the lefthand side of (63), which cannot be countered by the mini-batch size
M ∈ N. Every other argument in the paper applies without change to the case ρ ∈ (0, 1). In
particular, because the result of Proposition 21 is not needed if M∩ U is compact, the results of
Section 6 apply for every ρ ∈ (0, 1).

In the following lemma and proposition, we obtain a lower bound in probability for the
events {An}n∈N, n ∈ N0. The interesting observation is that Proposition 20 and Proposi-
tion 21 can be used together and inductively to obtain lower bound for these probabilities.
Namely, Proposition 20 implies that, on the event An−1, the process is converging toM∩U
in the normal directions with high probability, and Proposition 21 can be used to estimate
the probability that the solution (38) escapes the basin of attraction along the tangential
directions.

Lemma 23 Let d ∈ N, let d ∈ {0, 1, . . . , d − 1}, and let M ∩ U ⊆ Rd be a d-dimensional C2-
submanifold. Then for every x0 ∈M∩U there exists R0, δ0 ∈ (0,∞) such that, for every R ∈ (0, R0]
and δ ∈ (0, δ0],

{x ∈ Rd : d(x,M∩ U) < δ and |x− x0| ≤ R− δ } ⊆ VR,δ(x0).

Proof [Proof of Lemma 23] Let x0 ∈ M ∩ U , let V ∈ Proj(x0) (cf. Definition 8), and let
R0, δ0 ∈ (0,∞) satisfy the conclusion of Proposition 13. That is, for every R ∈ (0, R0],
δ ∈ (0, δ0] it holds that V R,δ(x0) ⊆ V and that

VR,δ(x0) = {x ∈ Rd : d(x,M∩ U) = d(x,BR(x0) ∩M∩ U) < δ}.

Suppose that x ∈ Rd satisfies that

d(x,M∩ U) < δ with |x− x0| ≤ R− δ. (64)
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The definition of the distance to M∩ U and |x− x0| ≤ R − δ imply that there exists a
possibly non-unique x̃ ∈M∩ U which satisfies that

|x− x̃| = d(x,M∩ U) < δ.

The triangle inequality implies that

|x̃− x0| ≤ |x̃− x|+ |x− x0| < δ + (R− δ) < R.

It follows that x̃ ∈ BR(x0) ∩M∩ U , and therefore that

d(x,M∩ U) = d(x,BR(x0) ∩M∩ U) < δ. (65)

It follows from (64) and (65) that x ∈ VR,δ(x0), which completes the proof of Lemma 23.

Proposition 24 Let d ∈ N, let (S,S) be a measurable space, let (Ω,F ,P) be a probability space,
let F : Rd × S → R be measurable, let {Xn,m : Ω → R}n,m∈N be i.i.d. random variables. Assume
that F and X1,1 satisfy Assumption 2. Let f : Rd → R be defined by f(θ) = E[F (θ,X1,1)] and
assume that f satisfies Assumption 1. For every M ∈ N, ρ ∈ (2/3, 1), r ∈ (0,∞), θ ∈ Rd let
{Θn,θ = Θn,θ(M,ρ, r)}n∈N0 be defined by Θ0,θ = θ and, for every n ∈ N,

Θn,θ = Θn−1,θ −
r

nρM

[
M∑
m=1

(∇θF )(Θn−1,θ, Xn,m)

]
,

and for every R, δ ∈ (0,∞), x0 ∈ (M ∩ U), and n ∈ N let An = An(M, r, ρ, θ, R, δ, x0) ∈ F be
defined by

An =
{
∀ m ∈ {0, . . . , n} Θm,θ ∈ VR,δ(x0) (cf. Definition 12)

}
.

Then for every x0 ∈ (M∩ U) and ρ ∈ (2/3, 1) there exist R0, δ0, r, c ∈ (0,∞) such that, for every
R ∈ (0, R0], δ ∈ (0, δ0], r ∈ (0, r], n,M ∈ N, θ ∈ VR/2,δ(x0) (cf. Definition 12),

P[An] ≥ c

exp
(
− c

M

)
−M−1n1−ρ −

r
(

1 +M−
1
2n1−ρ

)
(
R
2 − 2δ

)
+

 .

Proof [Proof of Proposition 24] Let d(·,M∩ U) : Rd → R be defined by

d(x,M∩ U) = inf {|x− y| : y ∈ (M∩ U)} .

Let x0 ∈ (M∩U). Since U ⊆ Rd is open, fix V ∈ Proj(x0) (cf. Definition 8) which satisfies
that V ⊆ U . Fix R0, δ0 ∈ (0,∞) which satisfy the conclusion of Proposition 13 for this set
V . Fix r ∈ (0,∞) which satisfies the conclusion of Lemma 15. Let R ∈ (0, R0], δ ∈ (0, δ0],
r ∈ (0, r], n,M ∈ N. As in Proposition 20, let ∇θFM,n : Rd × Ω → Rd, n ∈ N, be the
functions which satisfy for every (θ, ω) ∈ Rd × Ω that

∇θFM,n(θ) = ∇θFM,n(θ, ω) =
1

M

M∑
m=1

(∇θF )(θ,Xn,m(ω)).

Let θ ∈ VR/2,δ(x0), let Θ0,θ : Ω → Rd satisfy for every ω ∈ Ω that Θ0,θ(ω) = θ, and for

every n ∈ N let Θn,θ : Ω→ Rd satisfy that

Θn,θ = Θn−1,θ −
r

nρ
∇θFM,n(Θn−1,θ).
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Since it holds that

d(Θn,θ,M∩ U) ≥ δ implies that Θn,θ /∈ VR,δ(x0),

it follows that

P [Θn,θ /∈ VR,δ(x0), An−1] = P [d(Θn,θ,M∩ U) ≥ δ, An−1]

+ P [d(Θn,θ,M∩ U) < δ,Θn,θ /∈ VR,δ(x0), An−1] .
(66)

The two terms on the righthand side of (66) will be handled separately. We will first prove
that there exists c ∈ (0,∞) which satisfies that

P [d(Θn,θ,M∩ U) ≥ δ, An−1] ≤ c

Mn2ρ
P [An−1] +

c

Mnρ
. (67)

On the event An−1, it follows from Lemma 14 that there exists εn : An−1 → Rd, c1 ∈ (0,∞)
such that

|εn| ≤ c1d(Θn−1,θ,M∩ U)2, (68)

and such that on the event An−1 it holds that

∇f(Θn−1,θ) =
(

Hess f
)
(p(Θn−1,θ)) · (Θn−1,θ − p(Θn−1,θ)) + εn.

Therefore, on the event An−1, we have that

Θn,θ = Θn−1,θ −
r

nρ
(

Hess f
)
(p(Θn−1,θ)) · (Θn−1,θ − p(Θn−1,θ))−

r

nρ
εn

+
r

nρ
(
∇f(Θn−1,θ)−∇FM,n(Θn−1,θ)

)
.

Lemma 15, (68), the choice of r ∈ (0,∞), the definition of the projection, and the triangle
inequality prove that there exist c1, λ ∈ (0,∞) such that on the event An−1 it holds that

d(Θn,θ,M∩ U)

≤
∣∣∣Θn−1,θ − p(Θn−1,θ)−

r

nρ
(

Hess f
)
(p(Θn−1,θ)) · (Θn−1,θ − p(Θn−1,θ))

∣∣∣
+
∣∣∣ r
nρ
εn

∣∣∣+
∣∣∣ r
nρ
(
∇f(Θn−1,θ)−∇FM,n(Θn−1,θ)

)∣∣∣
≤
(

1− rλ

nρ

)
d(Θn−1,θ,M∩ U) + c1

r

nρ
d(Θn−1,θ,M∩ U)2

+
r

nρ
∣∣∇f(Θn−1,θ)−∇FM,n(Θn−1,θ)

∣∣ .
(69)

Fix δ1 ∈ (0, δ0] which satisfies that

c1δ1 ≤
λ

2
.

Let δ ∈ (0, δ1]. On the event An−1, it follows from (69) and the choice of δ1 ∈ (0, δ0] that

d(Θn,θ,M∩ U) ≤
(

1− rλ

2nρ

)
d(Θn−1,θ,M∩ U) +

r

nρ
∣∣∇f(Θn−1,θ)−∇FM,n(Θn−1,θ)

∣∣ .
We therefore conclude that

P [d(Θn,θ,M∩ U) ≥ δ, An−1] ≤

P
[∣∣∇f(Θn−1,θ)−∇FM,n(Θn−1,θ)

∣∣ ≥ δnρ

2r
,Θn−1,θ ∈ VR, δ2 (x0), An−2

]
+ P

[∣∣∇f(Θn−1,θ)−∇FM,n(Θn−1,θ)
∣∣ ≥ δλ

2
,Θn−1,θ ∈ VR,δ(x0) \ VR, δ2 (x0), An−2

]
.

(70)
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Similarly to (44) and computation (45), it follows from the independence of the random
variables Xm,k, m, k ∈ N, that

P
[ ∣∣∇f(Θn−1,θ)−∇θFM,n(Θn−1,θ)

∣∣ ≥ δnρ

2r
,Θn−1,θ ∈ VR, δ2 (x0), An−2

]
≤ sup
θ∈V

R, δ
2

(x0)

P
[ ∣∣∇f(θ)−∇θFM,n(θ)

∣∣ ≥ δnρ

2r

]
P
[
Θn−1,θ ∈ VR, δ2 (x0), An−2

]
,

(71)

and that

P
[ ∣∣∇f(Θn−1,θ)−∇θFM,n(Θn−1,θ)

∣∣ ≥ δλ

2
,Θn−1,θ ∈ VR,δ(x0) \ VR, δ2 (x0), An−2

]
≤ sup
θ∈VR,δ(x0)\V

R, δ
2

(x0)

P
[ ∣∣∇f(θ)−∇θFM,n(θ)

∣∣ ≥ δλ

2

]
P
[
Θn−1,θ ∈ VR,δ(x0) \ VR, δ2 (x0), An−2

]
.

(72)
The definition of An−1, Chebyshev’s inequality, Lemma 19, and (71) prove that there exists
c ∈ (0,∞) which satisfies that

P
[ ∣∣∇f(Θn−1,θ)−∇θFM,n(Θn−1,θ)

∣∣ ≥ δnρ

2r
,Θn−1,θ ∈ VR, δ2 (x0), An−2

]
≤ c

M
· 4r2

δ2n2ρ
P [An−1]

≤ c

Mn2ρ
P [An−1] .

(73)

In the case of (72), Proposition 20 and Chebyshev’s inequality prove that, for the indicator
function 1An−2

of the event An−2, there exists c ∈ (0,∞) which satisfies that

P
[
Θn−1,θ ∈ VR,δ(x0) \ VR, δ2 (x0), An−2

]
≤ P

[
(d (Θn−1,θ,M∩ U) ∧ 1)

2
1An−2

≥ δ2

4

]
≤ 4c

δ2
n−ρ

≤ cn−ρ,

where we have used the fact that, since ρ ∈ (2/3, 1), there exists c ∈ (0,∞) such that for
every n ∈ N it holds that (n − 1)−ρ ≤ cn−ρ. Furthermore, Chebyshev’s inequality and
Lemma 19 prove that there exists c ∈ (0,∞) which satisfies that

P
[ ∣∣∇f(Θn−1,θ)−∇θFM,n(Θn−1,θ)

∣∣ ≥ δλ

2

]
≤ c

M
· 4

δ2λ2
≤ c

M
.

Returning to (72), the previous two inequalities prove that there exists c ∈ (0,∞) which
satisfies that

P
[ ∣∣∇f(Θn−1,θ)−∇θFM,n(Θn−1,θ)

∣∣ ≥ δλ

2
,Θn−1,θ ∈ Vδ \ V δ

2
, An−2

]
≤ c

Mnρ
. (74)

Combining (70), (73), and (74), there exists c ∈ (0,∞) such that

P [d(Θn,θ,M∩ U) ≥ δ, An−1] ≤ c

Mn2ρ
P [An−1] +

c

Mnρ
, (75)

which completes the proof of (67). Returning to (66), it follows from (75) that there exists
c ∈ (0,∞) such that

P [Θn,θ /∈ VR,δ(x0), An−1]

≤ c

Mn2ρ
P [An−1] +

c

Mnρ
+ P [d(Θn,θ,M∩ U) < δ,Θn,θ /∈ VR,δ(x0), An−1] .
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Therefore, there exists c ∈ (0,∞) which satisfies that

P[An] = P [Θn,θ ∈ VR,δ(x0), An−1]

≥
(

1− c

Mn2ρ

)
+
P [An−1]− c

Mnρ
− P [d(Θn,θ,M∩ U) < δ,Θn,θ /∈ VR,δ(x0), An−1] .

(76)

We will prove inductively that (76) implies that there exists c ∈ (0,∞) such that for every
n ∈ N it holds that

P[An] ≥
n∏
k=1

(
1− c

Mk2ρ

)
+
−

n∑
k=1

c

Mkρ
−

n∑
k=1

P [d(Θk,θ,M∩ U) < δ,Θk,θ /∈ VR,δ(x0), Ak−1] .

The base case n = 0 follows immediately from θ ∈ VR/2,δ(x0). For the inductive step,
suppose that (77) is satisfied for some n ∈ N. It follows from (76) that

P [An+1] ≥
(

1− c

M(n+ 1)2ρ

)
+

P [An]− c

M(n+ 1)ρ

− P [d(Θn+1,θ,M∩ U) < δ,Θn+1,θ /∈ VR,δ(x0), An] .

It then follows from the inductive hypothesis (77) that

P [An+1]

≥
n+1∏
k=1

(
1− c

Mk2ρ

)
+
P [A0]− c

M(n+ 1)ρ

− P [d(Θn+1,θ,M∩ U) < δ,Θn+1,θ /∈ VR,δ(x0), An]

−
(

1− c

M(n+ 1)2ρ

)
+

(
n∑
k=1

c

Mkρ
+

n∑
k=1

P [d(Θk,θ,M∩ U) < δ,Θk,θ /∈ VR,δ(x0), Ak−1]

)
,

which proves that

P [An+1]

≥
n+1∏
k=1

(
1− c

Mk2ρ

)
+
P [A0]−

n+1∑
k=1

c

Mkρ
−
n+1∑
k=1

P [d(Θk,θ,M∩ U) < δ,Θk,θ /∈ VR,δ(x0), Ak−1] .

Finally, since θ ∈ VR/2,δ(x0) ⊆ VR,δ(x0) implies that P(A0) = 1, it holds that

P [An+1] ≥
n+1∏
k=1

(
1− c

Mk2ρ

)
+
−
n+1∑
k=1

c

Mkρ
−
n+1∑
k=1

P [d(Θk,θ,M∩ U) < δ,Θk,θ /∈ VR,δ(x0), Ak−1] , (77)

which completes the induction step, and the proof of (77). It remains only to estimate
the final term on the righthand side of inequality (77). The definition of the events Am,
m ∈ N0, implies that

{d(Θk,θ,M∩ U) < δ,Θk,θ /∈ VR,δ(x0), Ak−1} ⊆ Ω, k ∈ N, are disjoint events.

Therefore, it holds that

n∑
k=1

P [d(Θk,θ,M∩ U) < δ,Θk,θ /∈ VR,δ(x0), Ak−1]

= P

[
n∐
k=1

{d(Θk,θ,M∩ U) < δ,Θk,θ /∈ VR,δ(x0), Ak−1}

]
.

(78)
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Lemma 23 proves that

P

[
n∐
k=1

{d(Θk,θ,M∩ U) < δ,Θk,θ /∈ VR,δ(x0), Ak−1}

]
≤ P

[
max

1≤k≤n
|Θk,θ − x0|1Ak−1

> R− δ
]
. (79)

Since ΘM,k
0,θ ∈ VR/2,δ(x0), the triangle inequality prove for every k ∈ {1, 2, . . . , n} that

|Θk,θ − x0| ≤
∣∣∣Θk,θ −ΘM,k

0,θ

∣∣∣+
∣∣∣ΘM,k

0,θ − p(Θ
M,k
0,θ )

∣∣∣+ |p(Θ0,θ)− x0|

≤ |Θk,θ − θ|+ δ +
R

2
.

Therefore, for every k ∈ {1, . . . , n}, on the event
{∣∣Θk,θ − x0

∣∣ > R− δ
}

it holds that

R

2
− 2δ <

∣∣Θk,θ −Θ0,θ

∣∣.
This implies that{

max
1≤k≤n

|Θk,θ − x0|1Ak−1
> R− δ

}
⊆
{

max
1≤k≤n

|Θk,θ −Θ0,θ|1Ak−1
>
R

2
− 2δ

}
. (80)

In combination, (78), (79), and (80) prove that

n∑
k=1

P [d(Θk,θ,M∩ U) < δ,Θk,θ /∈ VR,δ(x0), Ak−1] ≤ P
[

max
1≤k≤n

|Θk,θ −Θ0,θ|1Ak−1
>
R

2
− 2δ

]
.

(81)
It follows from Proposition 21, (81), and Chebyshev’s inequality that there exists c ∈ (0,∞)
which satisfies that

n∑
k=1

P [d(Θk,θ,M∩ U) < δ,Θk,θ /∈ VR,δ(x0), Ak−1] ≤
cr
(

1 +M−
1
2n1−ρ

)
(
R
2 − 2δ

)
+

. (82)

Returning to (77), it follows from (82) that there exists c ∈ (0,∞) which satisfies that

P[An] ≥
n∏
k=1

(
1− c

Mk2ρ

)
+
− cM−1n1−ρ −

cr
(

1 +M−
1
2n1−ρ

)
(
R
2 − 2δ

)
+

, (83)

where we have used the fact that, since ρ ∈ (2/3, 1), there exists c ∈ (0,∞) which satisfies
that

n∑
k=1

k−ρ ≤ cn1−ρ.

Finally, it follows that, for c ∈ (0,∞) as in (83), for all M ≥ 2c,

log

(
n∏
k=1

(
1− c

Mk2ρ

)
+

)
≥ − 2c

M

n∑
k=1

k−2ρ. (84)

Therefore, since ρ ∈ (2/3, 1) that the sum on the righthand side of (83) is uniformly bounded
in n ∈ N, the there exists c ∈ (0,∞) such that, for all M ∈ N sufficiently large,

n∏
k=1

(
1− c

Mk2ρ

)
+
≥ exp

(
− c

M

)
.
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Since the case of small M ∈ N can be absorbed into the second term on the rigththand
side of (83), we conclude from (83) and (84) that there exists c ∈ (0,∞) such that

P[An] ≥ c

exp
(
− c

M

)
−M−1n1−ρ −

r
(

1 +M−
1
2n1−ρ

)
(
R
2 − 2δ

)
+

 .

This completes the proof of Proposition 24.

In the following theorem, we estimate the convergence of SGD with initial data sampled
uniformly from a non-empty, bounded open set of Rd. We assume that this sampling is
done independently of the noise driving the algorithm.

Theorem 25 Let d ∈ N, let (S,S) be a measurable space, let (Ω,F ,P) be a probability space, let
F : Rd × S → R be measurable, and let {Xn,m : Ω → R}n,m∈N be i.i.d. random variables. Assume
that F and X1,1 satisfy Assumption 2. Let f : Rd → R be defined by f(θ) = E[F (θ,X1,1)] and
assume that f satisfies Assumption 1. For every M ∈ N, ρ ∈ (2/3, 1), r ∈ (0,∞), and θ ∈ Rd let
{Θn,θ = Θn,θ(M,ρ, r)}n∈N0

be defined by Θ0,θ = θ and, for every n ∈ N,

Θn,θ = Θn−1,θ −
r

nρM

[
M∑
m=1

(∇θF )(Θn−1,θ, Xn,m)

]
.

Let A ⊆ Rd be a non-empty, bounded open set and let Θ0 : Ω→ A be a uniformly distributed random
variable on A that is independent of {Xn,m}n,m∈N. Then for every x0 ∈ (M∩ U) and ρ ∈ (2/3, 1)
there exist R0, δ0, r, c ∈ (0,∞) such that, for every R ∈ (0, R0], δ ∈ (0, δ0], r ∈ (0, r], n,M ∈ N,
ε ∈ (0, 1),

P
(
d
(
Θn,Θ0

,M∩U
)
≥ ε
)
≤
∣∣A\VR/2,δ(x0)

∣∣
|A|

+c

ε−2n−ρ +M−1n1−ρ +
r
(

1 +M−
1
2n1−ρ

)
(
R
2 − 2δ

)
+

 . (85)

Proof [Proof of Theorem 25] Let x0 ∈ (M∩ U). Since U ⊆ Rd is open, fix V ∈ Proj(x0)
(cf. Definition 8) which satisfies that V ⊆ U . Fix R0, δ0 ∈ (0,∞) that satisfy the conclusion
of Proposition 13 for this set V . Fix r ∈ (0,∞) that satisfies the conclusions of Lemma 15
and Proposition 24. Let R ∈ (0, R0], δ ∈ (0, δ0], r ∈ (0, r], M ∈ N. As in Proposition 20,
let ∇θFM,n : Rd×Ω→ Rd, n ∈ N, be the functions which satisfy for every (θ, ω) ∈ Rd×Ω
that

∇θFM,n(θ) = ∇θFM,n(θ, ω) =
1

M

M∑
m=1

(∇θF )(θ,Xn,m(ω)).

For every θ ∈ Rd let Θ0,θ : Ω→ Rd satisfy for every ω ∈ Ω that Θ0,θ(ω) = θ and for every
n ∈ N let Θn,θ : Ω→ Rd satisfy that

Θn,θ = Θn−1,θ −
r

nρ
∇θFM,n(Θn−1,θ).

Let Θ0 : Ω → Rd be a random variable which is uniformly distributed on A, assume that
Θ0 and (Xn,m)n,m∈N are independent, and for every n ∈ N let Θn : Ω→ Rd be defined by
Θn = Θn,Θ0

. Let n ∈ N, ε ∈ (0, 1). We have that

P
(
d
(
Θn,M∩ U

)
≥ ε
)

= P
(
d
(
Θn,M∩ U

)
≥ ε,Θ0 ∈ VR/2,δ(x0)

)
+ P

(
d
(
Θn,M∩ U

)
≥ ε,Θ0 /∈ VR/2,δ(x0)

)
.

(86)
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For the second term on the righthand side of (85), it follows from the uniform distribution
of Θ0 on A that

P
(
d
(
Θn,M∩ U

)
≥ ε,Θ0 /∈ VR/2,δ(x0)

)
≤
∣∣A\VR/2,δ(x0)

∣∣
|λ(A)|

. (87)

We will now estimate the first term on the righthand side of (86). For every m ∈ N0,
θ ∈ Rd let Am,θ ⊆ Ω be the event which satisfies that that

Am,θ =
{
∀ k ∈ {0, . . . ,m} Θk,θ ∈ VR,δ(x0)

}
,

and for every m ∈ N0 let Am ∈ F satisfy that

Am =
{
∀ k ∈ {0, . . . ,m} Θk ∈ VR,δ(x0)

}
.

It holds that

P
(
d
(
Θn,M∩ U

)
≥ ε,Θ0 ∈ VR/2,δ(x0)

)
= P

(
d
(
Θn,M∩ U

)
≥ ε,Θ0 ∈ VR/2,δ(x0), An−1

)
+ P

(
d
(
Θn,M∩ U

)
≥ ε,Θ0 ∈ VR/2,δ(x0),Ω\An−1

)
.

(88)

For the second term on the righthand side of (88), it follows from Proposition 24 that there
exists c ∈ (0,∞) such that

P
(
d
(
Θn,M∩ U

)
≥ ε,Θ0 /∈ VR/2,δ(x0),Ω\An−1

)
≤ 1− c exp

(
− c

M

)
+ cM−1n1−ρ +

cr
(

1 +M−
1
2n1−ρ

)
(
R
2 − 2δ

)
+

,

(89)

where we have used the fact that ρ ∈ (2/3, 1) implies that there exists c ∈ (0,∞) that
satisfies for every n ∈ {2, 3, . . .} that n1−ρ ≤ c(n − 1)1−ρ. For the first term on the
righthand side of (88), since the random variables Θ0 and

(
Xn,m

)
n,m∈N are independent,

it holds that

P
(
d
(
Θn,M∩ U

)
≥ ε,Θ0 ∈ VR/2,δ(x0), An−1

)
≤
∣∣VR/2,δ(x0) ∩A

∣∣
|A|

sup
θ∈VR/2,δ(x0)

P
(
d
(
Θn,θ,M∩ U

)
≥ ε,An−1,θ

)
.

(90)

Proposition 20 and Chebyshev’s inequality prove that there exists c ∈ (0,∞) such that for
every θ ∈ VR/2,δ(x0) it holds that

P
(
d
(
Θn,θ,M∩ U

)
≥ ε,An−1,θ

)
≤ ε−2E

[(
d
(
Θn,θ,M∩ U

)
∧ 1
)2

1An−1,θ

]
≤ cε−2n−ρ. (91)

In combination (90) and (91) prove that there exists c ∈ (0,∞) such that

P
(
d
(
Θn,M∩ U

)
≥ ε,Θ0 ∈ VR/2,δ(x0), An−1

)
≤ cε−2n−ρ. (92)

Returning to (88), it follows from (89) and (92) that there exists c ∈ (0,∞) such that

P
(
d
(
Θn,M∩ U

)
≥ ε,Θ0 ∈ VR/2,δ(x0)

)
≤ cε−2n−ρ + 1− c exp

(
− c

M

)
+ cM−1n1−ρ +

cr
(

1 +M−
1
2n1−ρ

)
(
R
2 − 2δ

)
+

.

(93)
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Returning finally to (86), it follows from (87) and (93) that there exists c ∈ (0,∞) such
that

P
(
d
(
Θn,M∩ U

)
≥ ε
)
≤∣∣A\VR/2,δ(x0)

∣∣
|λ(A)|

+ cε−2n−ρ + 1− c exp
(
− c

M

)
+ cM−1n1−ρ +

cr
(

1 +M−
1
2n1−ρ

)
(
R
2 − 2δ

)
+

.

(94)

Finally, we observe that by Taylor expansion there exists c ∈ (0,∞) such that

1− c exp
(
− c

M

)
≤ c

M
,

which since 1 − ρ > 0 can be absorbed into the fifth term on the righthand side of (94).
This completes the proof of Theorem 25.

Remark 26 In the conclusion of Theorem 25, we observe that δ ∈ (0,∞) can be chosen small

enough in relation to R ∈ (0,∞) to guarantee that R/2− δ > 0. In this way, since M−1 < M−
1
2 , we

conclude that for this choice of R ∈ (0,∞) and δ ∈ (0, 1) there exists c ∈ (0,∞) such that

P
(
d
(
Θn,Θ0 ,M∩ U

)
≥ ε
)
≤
∣∣A\VR/2,δ(x0)

∣∣
|A|

+ c
(
ε−2n−ρ +M−1n1−ρ + r

)
,

which recovers the statement of Theorem 3 of the introduction. The form of estimate (85) is nonethe-
less useful, however, because it quantifies the fact that r ∈ (0,∞) can be chosen on the order of the
tangential diameter of the basin of attraction VR

2 ,δ
(x0).

The next corollary extends Theorem 25 to the case of several independent copies of
SGD, each with the same mini-batch size. Corollary 28 below then extends this result to
a statement about the convergence of the objective function.

Corollary 27 Let d ∈ N, let (S,S) be a measurable space, let (Ω,F ,P) be a probability space, let
F : Rd×S → R be measurable, and let {Xn,m,k : Ω→ R}n,m,k∈N be i.i.d. random variables. Assume
that F and X1,1,1 satisfy Assumption 2. Let f : Rd → R be defined by f(θ) = E[F (θ,X1,1,1)] and
assume that f satisfies Assumption 1. For every k,M ∈ N, ρ ∈ (2/3, 1), r ∈ (0,∞), and θ ∈ Rd let
{Θk

n,θ = Θk
n,θ(M,ρ, r)}n∈N0 be defined by Θk

0,θ = θ and, for every n ∈ N,

Θk
n,θ = Θk

n−1,θ −
r

nρM

[
M∑
m=1

(∇θF )(Θk
n−1,θ, Xn,m,k)

]
.

Let A ⊆ Rd be a non-empty, bounded open set and let {Θk
0 : Ω→ A}k∈N be i.i.d. uniformly distributed

random variables on A that are independent of {Xn,m,k}n,m,k∈N. Then for every x0 ∈ (M∩U) and
ρ ∈ (2/3, 1) there exist R0, δ0, r, c ∈ (0,∞) such that for every R ∈ (0, R0], δ ∈ (0, δ0], r ∈ (0, r],
n,M,K ∈ N, ε ∈ (0, 1) it holds that

P
(

min
k∈{1,2,...,K}

d(Θk
n,Θk0

,M∩ U) ≥ ε
)
≤∣∣A\VR/2,δ(x0)

∣∣
|A|

+ c

ε−2n−ρ +M−1n1−ρ +
r
(

1 +M−
1
2n1−ρ

)
(
R
2 − 2δ

)
+

K

.

(95)
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Proof [Proof of Corollary 27] Let x0 ∈ (M∩U). Since U ⊆ Rd is open, fix V ∈ Proj(x0) (cf.
Definition 8) which satisfies that V ⊆ U . Fix R0, δ0 ∈ (0,∞) which satisfy the conclusion of
Proposition 13 for this set V . Fix r ∈ (0,∞) which satisfy the conclusions of Lemma 15 and
Proposition 24. Let R ∈ (0, R0], δ ∈ (0, δ0], r ∈ (0, r], n,M,K ∈ N. Since the {Θk

n,Θk0
}k∈N

are i.i.d. we have that

P
(

min
k∈{1,2,...,K}

d(Θk
n,Θk0

,M∩ U) ≥ ε
)

=

K∏
k=1

P
(
d(Θk

n,Θk0
,M∩ U) ≥ ε

)
= P

(
d(Θ1

n,Θ1
0
,M∩ U) ≥ ε

)K
.

(96)

Theorem 25 and (96) prove estimate (95), which completes the proof of Corollary 27.

Corollary 28 Let d ∈ N, let (S,S) be a measurable space, let (Ω,F ,P) be a probability space, let
F : Rd×S → R be measurable, and let {Xn,m,k : Ω→ R}n,m,k∈N be i.i.d. random variables. Assume
that F and X1,1,1 satisfy Assumption 2. Let f : Rd → R be defined by f(θ) = E[F (θ,X1,1,1)] and
assume that f satisfies Assumption 1. For every k,M ∈ N, ρ ∈ (2/3, 1), r ∈ (0,∞), and θ ∈ Rd let
{Θk

n,θ = Θk
n,θ(M,ρ, r)}n∈N0

be defined by Θk
0,θ = θ and, for every n ∈ N,

Θk
n,θ = Θk

n−1,θ −
r

nρM

[
M∑
m=1

(∇θF )(Θk
n−1,θ, Xn,m,k)

]
.

Let A ⊆ Rd be a non-empty, bounded open set and let {Θk
0 : Ω→ A}k∈N be i.i.d. uniformly distributed

random variables on A that are independent of {Xn,m,k}n,m,k∈N. Then for every x0 ∈ (M∩U) and
ρ ∈ (2/3, 1) there exist R0, δ0, r, c ∈ (0,∞) such that, for every R ∈ (0, R0], δ ∈ (0, δ0], r ∈ (0, r],
n,M,K ∈ N, ε ∈ (0, 1),

P
(

min
k∈{1,2,...,K}

f(Θk
n,Θk0

)− inf
θ∈Rd

f(θ) ≥ ε
)
≤∣∣A\VR/2,δ(x0)

∣∣
|A|

+ c

ε−2n−ρ +M−1n1−ρ +
r
(

1 +M−
1
2n1−ρ

)
(
R
2 − 2δ

)
+

K

.

(97)

Proof [Proof of Corollary 28] The proof is an immediate consequence of Corollary 27 and
the local regularity of the objective function.

Since the minimum appearing on the lefthand side of (97) is oftentimes computationally
impractical or impossible to determine, in the lemma and theorem to follow we compute
this minimum using a second mini-batch approximation. The lemma below identifies a
measurable selection for this minimum, and the theorem below estimates the probability
of identifying the correct minimum using the mini-batch approximation.

Lemma 29 Let d ∈ N, let (Ω,F ,P) be a probability space, let (S,S) be a measurable space, let
F : Rd × S → R be a measurable function, let {Xk : Ω → S}k∈N be i.i.d. random variables, and let
{Θk : Ω → Rd}k∈N be i.i.d. random variables. Then for every K,M ∈ N there exists a random
variable ΘK,M : Ω→ Rd such that

1

M

M∑
m=1

F (ΘK,M, Xm) =
[

min
k∈{1,2,...,K}

( 1

M

M∑
m=1

F (Θk, Xm)
)]
. (98)
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Proof [Proof of Lemma 29] Let K,M ∈ N. Let K : Ω → {1, 2, . . . ,M} satisfy for every
ω ∈ Ω that

K(ω) = min
{
k ∈ {1, 2, . . . ,K} :

M∑
m=1

F (Θk(ω), Xm) =
[

min
j∈{1,2,...,M}

( M∑
m=1

F (Θj , Xm)
)]}

. (99)

Let ΘK,M : Ω→ Rd be defined by

ΘK,M(ω) = ΘK(ω)(ω). (100)

It follow from (99) and (100) that ΘK,M is measurable and satisfies (98), which completes
the proof of Lemma 29.

Theorem 30 Let d ∈ N, let (S,S) be a measurable space, let (Ω,F ,P) be a probability space, let
F : Rd×S → R be measurable, and let {Xn,m,k : Ω→ R}n,m,k∈N be i.i.d. random variables. Assume
that F and X1,1,1 satisfy Assumption 2. Let f : Rd → R be defined by f(θ) = E[F (θ,X1,1,1)] and
assume that f satisfies Assumption 1. For every k,M ∈ N, ρ ∈ (2/3, 1), r ∈ (0,∞), and θ ∈ Rd let
{Θk

n,θ = Θk
n,θ(M,ρ, r)}n∈N0

be defined by Θk
0,θ = θ and, for every n ∈ N,

Θk
n,θ = Θk

n−1,θ −
r

nρM

[
M∑
m=1

(∇θF )(Θk
n−1,θ, Xn,m,k)

]
.

Let A ⊆ Rd be a non-empty, bounded open set and let {Θk
0 : Ω→ A}k∈N be i.i.d. uniformly distributed

random variables on A that are independent of {Xn,m,k}n,m,k∈N. For every n,M,M,K ∈ N, ρ ∈
(2/3, 1), and r ∈ (0,∞) let {Θn = Θ(M,M,K, ρ, r) : Ω→ Rd}n∈N0 be random variables which satisfy
that

1

M

M∑
m=1

F (Θn, Xn+1,1,m) =
[

min
k∈{1,2,...,K}

( 1

M

M∑
m=1

F (Θk
n,Θk0

, Xn+1,1,m)
)]
.

Then for every x0 ∈ (M∩ U) and ρ ∈ (2/3, 1) there exist R0, δ0, r, c ∈ (0,∞) such that, for every
R ∈ (0, R0], δ ∈ (0, δ0], r ∈ (0, r], n,M,M,K ∈ N, ε ∈ (0, 1),

P
([
f(Θn)− infθ∈Rd f(θ)

]
≥ ε
)
≤ cK

ε2M

+

∣∣A\VR/2,δ(x0)
∣∣

|A|
+ c

ε−2n−ρ +M−1n1−ρ +
r
(

1 +M−
1
2n1−ρ

)
(
R
2 − 2δ

)
+

K

.

Proof [Proof of Theorem 30] Let x0 ∈ (M∩U). Since U ⊆ Rd is open, fix V ∈ Proj(x0) (cf.
Definition 8) which satisfies that V ⊆ U . Fix R0, δ0 ∈ (0,∞) which satisfy the conclusion
of Proposition 13 for this set V . Fix r ∈ (0,∞) which satisfy the conclusions of Lemma 15
and Proposition 24. Let R ∈ (0, R0], δ ∈ (0, δ0], r ∈ (0, r], n,M,M,K ∈ N. For every
i ∈ {1, 2, . . . ,K} let B′i ⊆ Ω satisfy that

B′i =
{
ω ∈ Ω: f(Θi

n,Θi0
(ω)) =

[
min

k∈{1,2,...,K}
f(Θk

n,Θk0
(ω))

]}
,
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and let B1 ⊆ Ω satisfy that B1 = B′1 and for every i ∈ {2, 3, . . . ,K} let Bi ⊆ Ω satisfy that
Bi = B′i\ ∪

i−1
m=1 Bm. Since the events Bi, i ∈ {1, 2, . . . ,K}, are disjoint, it holds that

P
([
f(Θn)− infθ∈Rd f(θ)

]
≥ ε
)

=

K∑
i=1

P
([
f(Θn)− infθ∈Rd f(θ)

]
≥ ε,Bi

)
=

K∑
i=1

P
([
f(Θn)− f(Θi

n,Θi0
) + f(Θi

n,Θi0
)− inf

θ∈Rd
f(θ)

]
≥ ε,Bi

)
≤ P

([[
min

k∈{1,2,...,K}
f(Θk

n,Θk0
)
]
− infθ∈Rd f(θ)

]
≥ ε

2

)
+

K∑
i=1

P
([
f(Θn)− f(Θi

n,Θi0
) ≥ ε

2
, Bi

)
.

(101)

For the first term on the righthand side of (101), Corollary 28 proves that there exists
c ∈ (0,∞) which satisfies that

P
([[

min
k∈{1,2,...,K}

f(Θk
n,Θk0

)
]
− infθ∈Rd f(θ)

]
≥ ε

2

)

≤

∣∣A\VR/2,δ(x0)
∣∣

|A|
+ c

ε−2n−ρ +M−1n1−ρ +
r
(

1 +M−
1
2n1−ρ

)
(
R
2 − 2δ

)
+

K

.

(102)

We will now estimate the second term on the righthand side of (102). Let B̃j ⊆ Ω,

j ∈ {1, 2, . . . ,K}, be disjoint events which satisfy that Ω =
∐
j∈{1,2,...,K} B̃j and that

B̃j ⊆
{
ω ∈ Ω:

M∑
m=1

F (Θn(ω), Xn+1,m(ω)) =

M∑
m=1

F (Θj

n,Θj0
(ω), Xn+1,m(ω))

}
.

Since the events B̃j , j ∈ {1, 2, . . . ,K}, are disjoint, the final term of (101) satisfies that

K∑
i=1

P
(
f(Θn)− f(Θi

n,Θi0
) ≥ ε

2
, Bi

)
=

K∑
i,j=1

P
(
f(Θj

n,Θj0
)− f(Θi

n,Θi0
) ≥ ε

2
, Bi, B̃j

)
. (103)

Let FM,n : Rd × Ω→ R be the function which satisfies for every θ ∈ Rd, ω ∈ Ω that

FM,n(θ, ω) =
1

M

M∑
m=1

F (θ,Xn+1,m(ω)).

For every i, j ∈ {1, 2, . . . ,K}, since it holds for every ω ∈ Bi ∩ B̃j that

FM,n(Θj

n,Θj0
(ω), ω)− FM,n(Θi

n,Θi0
(ω), ω) ≤ 0,

it holds for every i, j ∈ {1, 2, . . . ,K} that

P
(
f(Θj

n,Θj0
)− f(Θi

n,Θi0
) ≥ ε

2
, Bi, B̃j

)
≤ P

(
f(Θj

n,Θj0
(ω))− FM,n(Θj

n,Θj0
(ω), ω) + FM,n(Θi

n,Θi0
(ω), ω)− f(Θi

n,Θi0
(ω)) ≥ ε

2
, Bi, B̃j

)
≤ P

(∣∣∣f(Θj

n,Θj0
(ω))− FM,n(Θj

n,Θj0
(ω), ω)

∣∣∣ ≥ ε

4
, Bi, B̃j

)
+ P

(∣∣∣f(Θi
n,Θi0

(ω))− FM,n(Θi
n,Θi0

(ω), ω)
∣∣∣ ≥ ε

4
, Bi, B̃j

)
.

(104)
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It follows from (103) and (104) that

K∑
i=1

P
(
f(Θn)− f(Θi

n,Θi0
) ≥ ε

2
, Bi

)
≤

K∑
j=1

P
(∣∣∣f(Θj

n,Θj0
(ω))− FM,n(Θj

n,Θj0
(ω), ω)

∣∣∣ ≥ ε

4
, B̃j

)

+

K∑
i=1

P
(∣∣∣f(Θi

n,Θi0
(ω))− FM,n(Θi

n,Θi0
(ω), ω)

∣∣∣ ≥ ε

4
, Bi

)
.

(105)

For the first term on the righthand side of (105), it holds that

K∑
j=1

P
(∣∣∣f(Θj

n,Θj0
(ω))− FM,n(Θj

n,Θj0
(ω), ω)

∣∣∣ ≥ ε

4
, B̃j

)

≤
K∑
j=1

P
(∣∣∣f(Θj

n,Θj0
(ω))− FM,n(Θj

n,Θj0
(ω), ω)

∣∣∣ ≥ ε

4

)
.

Since the random variables {Θk
n,Θk0
}k∈N and {Xn+1,1,k}k∈N are independent and since the

distribution of Θ1
n,Θ1

0
has bounded support on Rd, for the distribution µn of Θ1

n,Θ1
0

on Rd,
Lemma 19, Chebyshev’s inequality, and the definition of FM,n prove that that there exists
c ∈ (0,∞) which satisfies for every j ∈ {1, . . . ,K} that

P
(∣∣∣f(Θj

n,Θj0
(ω))− FM,n(Θj

n,Θj0
(ω), ω)

∣∣∣ ≥ ε

4

)
=

∫
Rd

P
(∣∣∣f(θ)− 1

M

M∑
m=1

F (θ,Xn+1,m)
∣∣∣ ≥ ε

4

)
µn(d θ)

≤ c

ε2M
.

Therefore, it holds that

K∑
j=1

P
(∣∣∣f(Θj

n,Θj0
(ω))− FM,n(Θj

n,Θj0
(ω), ω)

∣∣∣ ≥ ε

4
, B̃j

)
≤ cK

ε2M
. (106)

For the second term on the righthand side of (105), it is sufficient to apply the same
argument, which proves that there exists c ∈ (0,∞) which satisfies that

K∑
i=1

P
(∣∣∣f(Θi

n,Θi0
(ω))− FM,n(Θi

n,Θi0
(ω), ω)

∣∣∣ ≥ ε

4
, Bi

)
≤ cK

ε2M
.

Returning to (103), it follows from (105) and (106) that there exists c ∈ (0,∞) which
satisfies that

K∑
i=1

P
(
f(Θn)− f(Θi

n,Θi0
) ≥ ε

2
, Bi

)
≤ cK

ε2M
. (107)
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Returning finally to (101), it follows from (102) and (107) that there exists c ∈ (0,∞)
which satisfies that

P
([
f(Θn)− infθ∈Rd f(θ)

]
≥ ε
)
≤ cK

ε2M
+∣∣A\VR/2,δ(x0)

∣∣
|A|

+ c

ε−2n−ρ +M−1n1−ρ +
r
(

1 +M−
1
2n1−ρ

)
(
R
2 − 2δ

)
+

K

,

which completes the proof of Theorem 30.

In the final corollary of this section, we will compute the computational efficiency of the
algorithm proposed in Theorem 30. The constant implicitly depends on the computational
cost of computing F and ∇θF and initializing the random variable X1,1,1, but it does not
depend upon the running time n ∈ N, the sampling size K ∈ N, or the mini-batch sizes
M,M ∈ N. We observe that, for learning rates ρ close to 1, the estimate below shows that
the mini-batch size can essentially be considered an order one quantity.

Corollary 31 In the setting of Theorem 30, let x0 ∈ (M∩ U), ρ ∈ (2/3, 1), and let A ⊆ Rd be a
non-empty open set. In the conclusion of Theorem 30, choose R0 ∈ (0,∞) and δ0 ∈ (0, 1) such that
R0/2− δ0 > 0 and assume that ∣∣A\VR0/2,δ0(x0)

∣∣
|A|

∈ (0, 1).

Then there exist r1 ∈ (0, r] and {ci ∈ (0,∞)}i∈{1,2,3,4} such that, for every ε, η ∈ (0, 1), for
n(ε),M(ε),K(η),M(ε, η) ∈ N defined by

n(ε) = c1ε
−2/ρ, M(ε) = c2ε

−4/ρ+4, M(ε, η) = c3ε
−2η−1 |log(η)| , and K = c4 |log(η)| ,

we have, for every r ∈ (0, r1],

P
([
f(Θn(ε) − infθ∈Rd f(θ)

]
≥ ε
)
≤ η.

Proof [Proof of Corollary 31] We define the constant∣∣A\VR0/2,δ0(x0)
∣∣

|A|
= c1 ∈ (0, 1).

Theorem 30 and R0/2 − δ0 > 0 prove that there exists c ∈ (0,∞) such that, for every
n,M,M,K ∈ N, ε ∈ (0, 1), and r ∈ (0, r],

P
([
f(Θn)− infθ∈Rd f(θ)

]
≥ ε
)
≤ cK

ε2M
+
(
c1 + c

(
ε−2n−ρ +M−

1
2n1−ρ + r

))K
.

Fix r1 ∈ (0, r] such that
c1 + cr1 = c2 ∈ (0, 1).

We then have, for every r ∈ (0, r1],

P
([
f(Θn)− infθ∈Rd f(θ)

]
≥ ε
)
≤ cK

ε2M
+
(
c2 + c

(
ε−2n−ρ +M−

1
2n1−ρ

))K
.

The statement now follows by a direct computation, which completes the proof of Corol-
lary 31.
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6. Stochastic Gradient Descent—The Compact Case

In this section, we will analyze the converge of SGD to the manifold of local minima under
the additional assumption that the manifold of local minima is compact. The essential
difference in this case is that SGD cannot leave a basin of attraction along directions
tangential to the manifold, and therefore the results apply for every ρ ∈ (0, 1). The proofs
are essentially identical, after taking Remark 22 into account. We therefore record only the
main results.

Theorem 32 Let d ∈ N, let (S,S) be a measurable space, let (Ω,F ,P) be a probability space, let
F : Rd×S → R be measurable, and let {Xn,m,k : Ω→ R}n,m,k∈N be i.i.d. random variables. Assume
that F and X1,1,1 satisfy Assumption 2. Let f : Rd → R be defined by f(θ) = E[F (θ,X1,1,1)], assume
that f satisfies Assumption 1, and assume that M∩ U is compact. For every k,M ∈ N, ρ ∈ (0, 1),
r ∈ (0,∞), and θ ∈ Rd let {Θk

n,θ = Θk
n,θ(M,ρ, r)}n∈N0

be defined by Θk
0,θ = θ and, for every n ∈ N,

Θk
n,θ = Θk

n−1,θ −
r

nρM

[
M∑
m=1

(∇θF )(Θk
n−1,θ, Xn,m,k)

]
.

Let A ⊆ Rd be a non-empty, bounded open set and let {Θk
0 : Ω→ A}k∈N be i.i.d. uniformly distributed

random variables on A that are independent of {Xn,m,k}n,m,k∈N. For every n,M,M,K ∈ N, ρ ∈
(0, 1), and r ∈ (0,∞) let {Θn = Θ(M,M,K, ρ, r) : Ω→ Rd}n∈N0 be a random variables which satisfy
that

1

M

M∑
m=1

F (Θn, Xn+1,1,m) =
[

min
k∈{1,2,...,K}

( 1

M

M∑
m=1

F (Θk
n,Θk0

, Xn+1,1,m)
)]
.

Then for every x0 ∈ (M∩ U) and ρ ∈ (0, 1) there exist R0, δ0, r, c ∈ (0,∞) such that, for every
R ∈ (0, R0], δ ∈ (0, δ0], r ∈ (0, r], n,M,M,K ∈ N, ε ∈ (0, 1),

P
([
f(Θn)− infθ∈Rd f(θ)

]
≥ ε
)

≤ cK

ε2M
+

(∣∣A\VR/2,δ(x0)
∣∣

|A|
+ cε−2n−ρ + 1− c exp

(
− c

M

)
+ cM−1n1−ρ

)K
.

Corollary 33 In the setting of Theorem 32, for every x0 ∈ (M ∩ U) and ρ ∈ (0, 1) there ex-
ist R0, δ0, r ∈ (0,∞) such that for every R ∈ (0, R0], δ ∈ (0, δ0], r ∈ (0, r] there exist {ci ∈
(0,∞)}i∈{1,2,3,4} such that for every ε, η ∈ (0, 1), for n(ε),M(ε),K(η),M(ε, η) ∈ N defined by

n(ε) = c1ε
−2/ρ, M(ε) = c2ε

−2/ρ+2, M(ε, η) = c3ε
−2η−1 |log(η)| , and K = c4 |log(η)| ,

we have that
P
([
f(Θn(ε))− infθ∈Rd f(θ)

]
≥ ε
)
≤ η.

7. Applications

In this section, we prove that the Assumptions 1 and 2 are satisfied for some (simple)
objective functions that arise in the training of neural networks. We will first consider a
four-parameter affine-linear network with a linear activation function, for which the set
of global minima is a locally smooth codimension 2 submanifold of the parameter space.
We will then consider a two-parameter network with the ReLU activation function, for
which the set of minima is a locally smooth codimension 1 submanifold of the parameter
space. We observe in particular that this implies the global minima are not locally unique,
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and therefore the established convergence results such as those proven in Dereich and
Mueller-Gronbach (2015); Jentzen et al. (2020) do not apply. The example considered in
Proposition 35 below furthermore explains why it is necessary in Corollary 4 thatM∩U∩A
be non-empty, as can be seen by considering a set A inside the set {θ1 < 0}, where the
gradient of the rectifier function vanishes identically.

Proposition 34 Let ϕ ∈ L2([0, 1]) be finite, let (Ω,F ,P) be a probability space, let {Xn,m}n,m∈N
be i.i.d. random variables that are uniformly distributed on [0, 1], let f : R4 → R be defined by

f(θ) =

∫ 1

0

|θ3θ1x+ θ3θ2 + θ4 − ϕ(x)|2 dx,

and let F : R4 × [0, 1]→ R be defined by

F (θ, x) = |θ3θ1x+ θ3θ2 + θ4 − ϕ(x)|2 .

Then f satisfies Assumption 1 and F and X1,1 satisfy Assumption 2.

Proof [Proof of Proposition 34] Let ϕ ∈ L2([0, 1]) be finite. The finiteness of ϕ proves that,
for every x ∈ [0, 1], we have F (·, x) ∈ C0,1

loc(R4). It follows by the uniform distribution of the
Xn,m, n,m ∈ N, on [0, 1] that f(·) = E[F (·, X1,1)], and it follows from the L2-integrability
of ϕ that for every compact subset C ⊆ R4 it holds that

sup
θ∈C

E
[
|F (θ,X1,1)|2 + |∇θF (θ,X1,1)|2

]
<∞.

It follows by the definition of f and ϕ ∈ L2([0, 1]) that f ∈ C3
loc(R4). It remains to

characterize the set of minima of f . We first observe that when minimizing f , it is sufficient
to minimize the potential over the set {θ3 6= 0}. To see this, suppose that θ = (θ1, θ2, 0, θ4).
Then for θ̃ = (0, 0, 1, θ4) it holds that

f(θ) =

∫ 1

0

|θ4 − ϕ(x)|2 dx = f(θ̃).

Therefore, it holds that

inf
θ∈R4

f(θ) = inf
θ∈{θ3 6=0}

f(θ).

Let θ ∈ R4 ∩ {θ3 6= 0} be fixed but arbitrary. An explicit computation proves the critical
points of f satisfy that

∇f(θ) = 2

∫ 1

0

(θ3θ1x+ θ3θ2 + θ4 − ϕ(x))


θ3x

θ3

θ1x+ θ2

1

 dx = 0. (108)

For rk ∈ R, k ∈ {0, 1}, which satisfy that

rk =

∫ 1

0

xkϕ(x) dx,
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it follows that θ ∈ R4 satisfies equation (108) if and only if it holds that

1

3
θ1θ

2
3 +

1

2
θ2θ

2
3 +

1

2
θ3θ4 − r1θ3 = 0,

1

2
θ1θ

2
3 + θ2θ

2
3 + θ3θ4 − r0θ3 = 0,

1

3
θ2

1θ3 +
1

2
θ1θ2θ3 +

1

2
θ1θ4 − r1θ1 +

1

2
θ1θ2θ3 + θ2

2θ3 + θ2θ4 − r0θ2 = 0,

1

2
θ1θ3 + θ2θ3 + θ4 − r0 = 0.

(109)

For θ ∈ R4 which satisfies that θ3 6= 0, an explicit computation proves that θ satisfies
system (109) if and only if it holds that

θ1θ3 = −6(r0 − 2r1) and θ4 = −θ2θ3 + 4r0 − 6r1. (110)

For U ⊆ R4 which satisfies that

U = {θ ∈ R4 : θ3 6= 0},

for M⊆ R4 which satisfies that

M = {θ ∈ R4 : f(θ) = infϑ∈R4 f(ϑ)},

we claim that

M∩ U = { θ ∈ R4 : θ satisfies (110) and θ3 6= 0 }. (111)

Let θ ∈ R4 satisfy (110) and θ3 6= 0. Proceeding by contradiction, suppose that there exists
θ0 = (θ1,0, θ2,0, θ3,0, θ4,0) which satisfies θ3,0 6= 0 such that

f(θ0) < f(θ).

Since an explicit computation proves for every (θ1, θ4) ∈ R2 that

lim
|(θ1,θ4)|→∞

f(θ1, θ2,0, θ3,0, θ4) =∞,

the identical considerations leading to (110) prove that

(θ1, θ4) ∈ R2 7→ f(θ1, θ2,0, θ3,0, θ4),

is uniquely minimized, owing to θ3,0 6= 0, by (θ1, θ4) ∈ R2 which satisfies that

θ1 = −6(r0 − 2r1)

θ3,0
and θ4 = −θ2,0θ3,0 + 4r0 + 6r1.

We conclude that θ̃0 ∈ R4 satisfies that

θ̃0 = (−6(r0 − 2r1)

θ3,0
, θ2,0, θ3,0,−θ2,0θ3,0 + 4r0 + 6r1),

satisfies (110) and θ̃3,0 6= 0. Therefore, it holds that

f(θ̃0) < f(θ0),
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which contradicts the fact that ∇f = 0 on the connected set of θ ∈ R4 which satisfies
(110) and θ3 6= 0. This proves (111). It is immediate from (110) that M∩ U is a non-
empty, 2-dimensional, C2-submanifold of R4. It remains only to prove the nondegeneracy
assumption. for every θ ∈ (M∩ U), after computing the Hessian3, it holds that

(
Hess f

)
(θ) = 2

∫ 1

0


θ2

3x
2 θ2

3x θ1θ3x
2 + θ2θ3x θ3x

θ2
3 θ1θ3x+ θ2θ3 θ3

(θ1x+ θ2)2 θ1x+ θ2

1

 dx

=



2

3
θ2

3 θ2
3

2

3
θ1θ3 + θ2θ3 θ3

2θ2
3 θ1θ3 + 2θ2θ3 2θ3

2

3
θ2

1 + 2θ1θ2 + 2θ2
2 θ1 + 2θ2

2

 ,

where this equality relies upon the fact that, due to (108) and θ3 6= 0 on M∩ U , we have
that ∫ 1

0

(θ3θ1x+ θ3θ2 + θ4 − ϕ(x)) dx =

∫ 1

0

(θ3θ1x+ θ3θ2 + θ4 − ϕ(x))xdx = 0.

A column-reduction, which relies on the fact that for every θ ∈ (M∩ U) we have θ3 6= 0,
proves for every θ ∈ (M∩ U) that

rank((Hess f)(θ)) = 2 = codim(M∩ U).

This completes the proof of Proposition 34.

Proposition 35 Let (Ω,F ,P) be a probability space, let {Xn,m}n,m∈N be i.i.d. random variables
that are uniformly distributed on [0, 1], let f : R2 → R be defined by

f(θ) =

∫ 1

0

|θ2 max(θ1x, 0)− sin(x)|2 dx,

and let F : R2 × [0, 1]→ R be defined by

F (θ, x) = |θ2 max(θ1x, 0)− sin(x)|2 .

Then f satisfies Assumption 1 and F and X1,1 satisfy Assumption 2.

Proof [Proof of Proposition 35] It is immediate that F (·, x) ∈ C0,1
loc(R2). Since the

{Xn,m}n,m∈N are uniformly distributed on [0, 1], for every θ ∈ R2,

f(θ) = E[F (θ,X1,1)],

and, furthermore, a straightforward computation proves for every compact set C ⊆ R2 that

sup
θ∈C

E
[
|F (θ,X1,1)|2 + |∇θF (θ,X1,1)|2

]
<∞.

3Due to the symmetry of the Hessian, we only write the upper diagonal.
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It remains only to characterize the minima of the objective function, and to verify the
nondegeneracy condition. An explicit computation proves that, when minimizing f , it is
sufficient to restrict to the set {θ1 > 0, θ2 > 0}. Let U ⊆ R2 satisfy that

U = {θ ∈ R2 : θ1 > 0, θ2 > 0}.

We observe for every θ ∈ U that

f(θ) =

∫ 1

0

|θ1θ2x− sin(x)|2 dx, (112)

and for every θ ∈ U that

∇f(θ) = 2

∫ 1

0

(θ1θ2x− sin(x))

(
θ2x

θ1x

)
dx.

Therefore, for θ ∈ U it holds that ∇f(θ) = 0 if and only if it holds that

θ1θ2 = 3

∫ 1

0

x sin(x) dx = 3(sin(1)− cos(1)). (113)

Let M⊆ R2 satisfy that

M = {θ ∈ R2 : f(θ) = infϑ∈R4 f(ϑ)}.

We claim that

M∩ U = { θ ∈ R2 : θ satisfies (113), θ1 > 0, and θ2 > 0}. (114)

Suppose that θ ∈ U satisfies (113). By contradiction suppose that there exists θ0 =
(θ1,0, θ2,0) ∈ {θ1 > 0, θ2 > 0} such that

f(θ0) < f(θ).

Since θ1,0 > 0 an explicit computation proves that

lim
θ2→∞

f(θ1,0, θ2) = +∞ and f(θ1,0, 0) > f(θ0). (115)

The arguments leading from (112) to (113) prove that (115) is uniquely minimized when

θ2 =
3

θ1,0
(sin(1)− cos(1)).

Therefore, for θ̃0 ∈ R2 which satisfies that

θ̃0 = (θ1,0,
3

θ1,0
(sin(1)− cos(1))),

we have that θ̃0 ∈ U , that θ̃0 satisfies (113), and that

f(θ̃0) ≤ f(θ0) < f(θ).

This contradicts the fact that ∇f = 0 on the connected set of θ ∈ U that satisfy (113). This
proves (114). Since it is clear that M∩ U is a non-empty, 1-dimensional, C2-submanifold
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of R2, it remains only to establish the nondegeneracy assumption. For every θ ∈ (M∩ U)
it holds that (

Hess f
)
(θ) = 2


1

3
θ2

2

2

3
θ1θ2 − (sin(1)− cos(1))

1

3
θ2

1



= 2


1

3
θ2

2 sin(1)− cos(1)

3(sin(1)− cos(1))2

θ2
2

 .

A column reduction and θ2 6= 0 prove for every θ ∈ (M∩ U) that

rank((Hess f)(θ)) = 1 = codim(M∩ U).

This completes the proof of Proposition 35.
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