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Abstract

This paper considers a new identifiability condition for additive noise models (ANMs) in
which each variable is determined by an arbitrary Borel measurable function of its parents
plus an independent error. It has been shown that ANMs are fully recoverable under some
identifiability conditions, such as when all error variances are equal. However, this identifi-
able condition could be restrictive, and hence, this paper focuses on a relaxed identifiability
condition that involves not only error variances, but also the influence of parents. This new
class of identifiable ANMs does not put any constraints on the form of dependencies, or dis-
tributions of errors, and allows different error variances. It further provides a statistically
consistent and computationally feasible structure learning algorithm for the identifiable
ANMs based on the new identifiability condition. The proposed algorithm assumes that
all relevant variables are observed, while it does not assume faithfulness or a sparse graph.
Demonstrated through extensive simulated and real multivariate data is that the proposed
algorithm successfully recovers directed acyclic graphs.

Keywords: Bayesian Network, Causal Inference, Directed Acyclic Graph, Identifiability,
Structural Equation Modeling, Structure Learning

1. Introduction

Directed acyclic graphical (DAG) models, or Bayesian networks, are widely used to represent
conditional independence and causal relations among random variables in many fields, such
as meteorology, epidemiology, finance, genetics, neuroscience, sports science, and many oth-
ers (Friedman et al. 2000; Peters and Bühlmann 2014; Sachs et al. 2005; Park and Raskutti
2018). However, learning directed graphical models is a notoriously difficult problem when
interventional experiments are very expensive or impossible due to the identifiability is-
sue and the super-exponentially growing size of the space of directed acyclic graphs in the
number of nodes.

A number of prior works have tackled the non-identifiability problem for different classes
of joint distributions by placing further restrictions. As a result, Spirtes et al. (2000),
Chickering (2003), Tsamardinos and Aliferis (2003), Zhang and Spirtes (2016), Raskutti
and Uhler (2018), and many other works show that DAG models are recoverable up to
the Markov equivalence class under faithfulness or related assumptions. However, the true
graph may not be uniquely determined, since most Markov equivalence classes contain more
than one graph.
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Hence, many recent works have attempted to find fully identifiable classes of DAG
models by placing a different type of restrictions on the distributions. For example, Shimizu
et al. (2006); Zhang and Hyvärinen (2009b) show that linear non-Gaussian additive noise
models (ANMs) can be identifiable where each variable is determined by a linear function
of its parents plus an independent error term. More precisely, the models are identifiable
if one of its parents or error term belongs to a set of some non-Gaussian distributions.
Zhang and Hyvärinen (2009a); Hoyer et al. (2009); Mooij et al. (2009); Peters et al. (2012)
relax the assumption of linearity, and prove the identifiability of nonlinear ANMs where
each variable is determined by a non-linear function of its parents and an error term.
Park and Raskutti (2015, 2018); Park and Park (2019a,b) prove the identifiability of DAG
models where a higher order moment of the conditional distribution of each node given its
parents is a non-concave function of the mean; and Peters and Bühlmann (2014) prove that
(Gaussian) linear structural equation models (SEMs) with equal or known error variances
are identifiable. More recently, Ghoshal and Honorio (2018); Park and Kim (2020) show
that Gaussian linear SEMs with unknown heterogeneous error variances can be identifiable.
Mooij et al. (2016); Eberhardt (2017); Glymour et al. (2019) elegantly summarize the ideas
of all these approaches using the notion of complexity or uncertainty. The uncertainty level
of the conditional distribution of a node given its parents is, in general, lower than the
conditional distribution given a strict subset of its parents, while all the approaches exploit
the different uncertainty measures for the marginal and conditional probability distributions.

This paper proves the identifiability of additive noise models (ANMs) with any form
of relationship between variables and unknown heterogeneous error variances by exploiting
marginal and conditional variances. Our approach is a generalization of the identifiability
result for linear SEMs in Peters and Bühlmann (2014); Loh and Bühlmann (2014); Ghoshal
and Honorio (2017, 2018); Chen et al. (2019) where a (conditional) variance is used for the
uncertainty measure of a (conditional) distribution. We provide a detailed comparison of our
new condition to the previous identifiability conditions of linear SEMs in Section 3. However,
the emphasis of our approach is not restricted to linear SEMs. Hence, our identifiable class
of DAG models includes linear and non-linear SEMs with unknown heterogeneous error
variances.

Further developed is a DAG structure learning algorithm, called Uncertainty Scoring
(US), for learning the new identifiable ANMs based on the proposed identifiability con-
dition. A notable point is that our identifiability condition enables the US algorithm to
learn a DAG in two-steps. In the first step, the US algorithm estimates the ordering com-
ponent wisely, either from the beginning or the end, using conditional variances. In the
second step, the algorithm estimates the directed edges using conditional independence re-
lationships. By decoupling the ordering estimation or parents search, the US algorithm
gains significant computational improvements like many existing scalable DAG learning
algorithms (e.g., Shimizu et al. 2011; Loh and Bühlmann 2014; Park and Raskutti 2018;
Ghoshal and Honorio 2017; Park and Park 2019a; Wang and Drton 2020). Also provided
is statistical consistency of our US algorithm in learning Gaussian linear SEMs.

The US algorithm is compared, through simulation studies and real multivariate data,
against state-of-the-art greedy equivalence search (GES) (Chickering, 2003), greedy DAG
search (GDS) (Peters and Bühlmann, 2014), linear structural equation model learning (LIS-
TEN) (Ghoshal and Honorio, 2018), and linear non-Gaussian acyclic models (LINGAM) (Shimizu
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et al., 2006) algorithms in terms of the accuracy of recovering a graph structure. The sim-
ulation study first considers the various p-node Gaussian linear SEMs, with the number
of nodes p ∈ {20, 200}, with the maximum number of parents d ∈ {2, 4}, and with error
variances both homogeneous and heterogeneous. Also considered are non-Gaussian linear
SEMs and Gaussian non-linear SEMs, where each variable is determined by a polynomial
function of its parents plus a possibly non-Gaussian additive error.

The remainder of this paper is structured as follows. Section 2.1 summarizes the nec-
essary notations and problem settings. Section 2.2 discusses additive noise models and
their identifiability conditions. Section 3 introduces a new class of identifiable ANMs, and
explains how the models are identifiable. In Sections 3.1, the new identifiability condition
in linear settings is restated and compared to the previous identifiability conditions. Sec-
tion 4 introduces the graph structure learning algorithm, referred to as uncertainty scoring
(US). Furthermore, Section 4.1 provides theoretical guarantees for learning Gaussian linear
SEMs via the US algorithm. Section 5 explains the numerical experiments and provides
an evaluation of the US algorithm against other state-of-the-art DAG learning algorithms,
such as the GDS, LISTEN, and LINGAM algorithms when recovering the graphs. Finally,
Section 6 compares our algorithm to the GES, GDS, LISTEN, and LINGAM algorithms by
analyzing real mathematics marks data.

2. Preliminaries

We first introduce some necessary notations and definitions for directed acyclic graphi-
cal (DAG) models, additive noise models (ANMs), and linear structural equation models
(SEMs). Then, we provide some detailed descriptions of the previous works on the identifi-
ability of ANMs and (Gaussian) linear SEMs in Shimizu et al. (2006); Hoyer et al. (2009);
Peters et al. (2012); Peters and Bühlmann (2014); Ghoshal and Honorio (2018); Chen et al.
(2019).

2.1. Problem Set-up and Notations

A directed acyclic graph G = (V,E) consists of a set of nodes V = {1, 2, · · · , p} and a set
of directed edges E ⊂ V × V with no directed cycles. A directed edge from node j to k is
denoted by (j, k) or j → k. The set of parents of node k denoted by Pa(k) consists of all
nodes j such that (j, k) ∈ E. If there is a directed path j → · · · → k, then k is called a
descendant of j and j is an ancestor of k. The set De(k) denotes the set of all descendants
of node k. The non-descendants of node k are Nd(k) := V \ ({k} ∪De(k)). The length of a
directed path j → j+1→ ...→ k is the number of sequential edges. An important property
of DAGs is that there exists a (possibly non-unique) ordering π = (π1, ...., πp) of a directed
graph that represents directions of edges such that for every directed edge (j, k) ∈ E, j
comes before k in the ordering. Hence, learning a graph can be decomposed into learning
the ordering and the skeleton that is the set of directed edges without their directions.

We consider a set of random variables X := (Xj)j∈V with a probability distribution
taking values in probability space XV over the nodes in the graph G. Suppose that a
random vector X has a joint probability density function P (G) := P (X1, X2, ..., Xp). For
any subset S of V , let XS := {Xj : j ∈ S ⊂ V } and let X (S) := ×j∈SXj . For any node
j ∈ V , P (Xj | XS) denotes the conditional distribution of a variable Xj given a random
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vector XS . With these notations, a joint distribution of a DAG model has the following
factorization:

P (G) = P (X1, X2, ..., Xp) =

p∏
j=1

P (Xj | XPa(j)), (1)

where P (Xj | XPa(j)) is the conditional distribution of a variable Xj given its parent

variables XPa(j) := {Xk : k ∈ Pa(j) ⊂ V }.
Throughout the paper, we assume causal sufficiency such that all relevant variables have

been observed. Causal sufficiency is also assumed in the Gaussian SEM learning algorithms
of Peters and Bühlmann (2014); Loh and Bühlmann (2014); Ghoshal and Honorio (2017,
2018). However, we assume neither the (adjacent) faithfulness assumption nor bounded
number of neighbors or parents assumption that could be very restrictive (Uhler et al.,
2013; Park and Park, 2019b). Lastly, for ease of presentation, we sometimes use the node
j ∈ V for the variables Xj as a slight abuse of notation.

2.2. Additive Noise Models and their Identifiability

Additive noise models and linear structural equation models, also known as functional
models (Pearl, 2014), are a special case of DAG models where the joint distribution is
defined by the following structural equations with additive noise: For all j ∈ V ,

Xj = fj(XPa(j)) + εj , (2)

where (fj)j∈V are allowed to have any form of Borel measurable functions and (εj)j∈V are
independent, but can be different distributions with mean zero and heterogeneous variances
(σ2j )j∈V . Here, they are denoted as εj ∼ (0, σ2j ). Hence, we have ε = (ε1, ε2, ..., εp)

T ∼
(0p,Σε) where 0p = (0, 0, ..., 0)T ∈ Rp, and Σε is a diagonal matrix with unknown variances,
which are σ21, σ

2
2, ..., σ

2
p.

A linear SEM is a special ANM where (fj)j∈V are all linear functions, and hence, the
joint distribution of a linear SEM is defined by the following linear equations: For all j ∈ V ,

Xj = βj0 +
∑

j′∈Pa(j)

βj′jXj′ + εj . (3)

The linear SEM in Equation (3) can be restated in the following matrix form:

(X1, X2, ..., Xp)
T = BT

0 +BT (X1, X2, ..., Xp)
T + (ε1, ε2, ..., εp)

T , (4)

where B0 ∈ Rp is an intercept vector, and B ∈ Rp×p is an edge weight matrix, an auto
regression matrix, or a weighted adjacency matrix with each element [B]jk = βjk, in which
βjk is the linear weight of an edge from Xj to Xk.

The edge weight matrix B encodes the graph structure under the non-zero edge weights
condition where βj′j is non-zero if j′ is a parent of j, otherwise, βj′j = 0, as in other linear
structural equation models (see details in Spirtes 1995; Peters and Bühlmann 2014). It is
a natural condition in accordance with the intuitive understanding of causal or functional
relationships among variables. In linear SEMs, Theorems 1, 2, and 3 in Spirtes (1995) and
Lemma 4 in Peters and Bühlmann (2014) show that the non-zero edge weights condition

4



Identifiability of Additive Noise Models Using Conditional Variances

is equivalent to the Markov and causal minimality assumptions. Causal minimality means
that a joint distribution is not Markov with respect to a strict sub-graph of the true graph.
In the settings used here, it is equivalent to the following statement: For any node j ∈ V
and one of its parents k ∈ Pa(j),

∀ Pa(j) \ {k} ⊂ S ⊂ Nd(j) \ {k}, Xj⊥6⊥Xk | XS .

Causal minimality may not be naturally satisfied in a general ANM. Hence, this paper
assumes causal minimality, but does not assume faithfulness that is a very strong form of
causal minimality. As discussed, faithfulness is commonly assumed for learning a DAG
model, such as in the PC (Spirtes et al., 2000) and the max-min hill-climbing (Tsamardinos
et al., 2006) algorithms. Nevertheless, in practice, faithfulness cannot be tested, and can
be very restrictive in finite sample settings (Uhler et al., 2013).

Without loss of generality, this paper assumes that E(Xj) = 0 for all j ∈ V . Then, the
distribution of the linear SEM in Equation (4) is as follows:

X ∼ (0p,ΣX) =
(
0p, (Ip −B)−1Σε(Ip −B)−T

)
,

where Ip ∈ Rp×p is the identity matrix, and Σε is a covariance matrix of the additive errors.
For a special-case Gaussian linear SEM where all error distributions are Gaussian, the

density function can be parameterized by the inverse covariance or concentration matrix
Θ = (Ip −B)TΣ−1ε (Ip −B) � 0, and can be written as:

fG(x1, x2, ..., xp; Θ) =
1√

(2π)p det(Θ−1)
exp
(
− 1

2
(x1, ..., xp)Θ(x1, ..., xp)

T
)
. (5)

Due to this convenient form, recent Gaussian linear SEM learning approaches exploit various
inverse covariance matrix estimation methods. Loh and Bühlmann (2014) applies graphical
Lasso, and Ghoshal and Honorio (2017, 2018) apply the constrained `1-minimization for
inverse covariance matrix estimation (CLIME).

Regarding to the identifiability, recent works prove the identifiable classes of ANMs by
restricting the form of dependency functions (fj)j∈V (Hoyer et al., 2009) or non-Gaussian
error distributions (Hoyer et al., 2009; Mooij et al., 2009; Peters et al., 2012). In addition,
if error distributions are Gaussian and dependency functions (fj)j∈V are all linear, Peters
and Bühlmann (2014); Loh and Bühlmann (2014); Ghoshal and Honorio (2017) prove that
Gaussian linear SEMs with equal or known error variances are identifiable. More recently,
Ghoshal and Honorio (2018); Chen et al. (2019) independently show that (Gaussian) linear
SEMs with unknown heterogeneous error variances can be identifiable. We refer the readers
to Peters et al. (2014); Eberhardt (2017); Glymour et al. (2019) for details. The following
lemma summarizes the identifiable class of ANMs that have been proven.

Lemma 1 (Identifiable Class of ANMs) The following sets have been shown to be iden-
tifiable ANMs (2) where Xj = fj(XPa(j)) + εj for all j ∈ V :

• non-linear ANMs where all (fj)j∈V are not linear,

• non-Gaussian linear ANMs where all (fj)j∈V are linear, and the distributions of either
(Xj)j∈V or (εj)j∈V belongs to a set of some non-Gaussian distributions, and
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• (Gaussian) linear ANMs where all (fj)j∈V are linear, and the variances of εj are the
similar or known.

Detailed proof is provided in Shimizu et al. (2006); Peters et al. (2010); Hoyer et al.
(2009); Peters and Bühlmann (2014); Ghoshal and Honorio (2018); Chen et al. (2019).
Lemma 1 claims that the underlying graph is recoverable from only the joint distribution if
any identifiable assumption is satisfied. In many areas, these classes of ANMs are acceptable
and widely used, for example, the assumption of the exact same error variances, proposed in
Peters and Bühlmann (2014), is used for applications with variables from a similar domain,
spatial or time-series data. However, it might also be unrealistic for real-world data to
have exactly the same error variances. In addition, the assumptions about all non-Gaussian
error distributions and all non-linear dependency functions might be unrealistic in the same
manner.

Therefore, the main focus of this paper is to propose a different identifiability condition
for ANMs without constraints on the form of dependency functions and error distributions
by applying not only the scale of error variances, but also that of the influence of par-
ents. Not surprisingly, our condition is strictly milder than the equal error variance, but a
generalized condition of the recently introduced identifiability conditions for linear SEMs
in Ghoshal and Honorio (2018); Chen et al. (2019). We provide the details of our new
identifiability condition in the next section.

3. Identifiability

This section explains the new identifiability condition for ANMs with any forms of depen-
dency functions and heterogeneous error distributions. To provide intuition, we explain
how bivariate Gaussian linear SEM (5) with unknown homogeneous error variances can
be identifiable from only the joint distribution illustrated in Figure 1: G1 : X1 = ε1 and
X2 = β1X1 + ε2, G2 : X1 = β2X2 + ε1 and X2 = ε2, and G3 : X1 = ε1 and X2 = ε2, where
εj ∼ N(0, σ2j ) for all j ∈ {1, 2}.

Now, we explain how to determine if the underlying graph is either G1, G2, or G3.
For G1, if the error variance ratio satisfies σ22/σ

2
1 > (1 − β21), we can see the following two

conditions from the law of total variance:

(A) Var(X2) = E(Var(X2 | X1)) + Var(E(X2 | X1)) = σ22 + β21σ
2
1 > σ21 = Var(X1), and

(B) E(Var(X1 | X2)) = Var(X1)−Var(E(X1 | X2)) = σ21−
β2
1σ

4
1

β2
1σ

2
1+σ

2
2
< σ22 = E(Var(X2 | X1)).

The former relationship (A) can be understood to mean that the uncertainty level of
X1 is lower than the uncertainty level of X2. It intuitively makes sense, because X1 has
only one random source ε1, whereas X2 has two random sources, X1 and ε2. Similarly,
relationship (B) can be understood to mean that after eliminating the other variable effect,
the uncertainty level of X1 is smaller than that of X2. This also makes sense, because the
remaining part of X2 after eliminating the effect of X1 is ε2 , while the remaining part of
X1 is a part of ε1 since X2 contains some information of ε1. Hence, even when the error
variances are different, we can recover the ordering as long as σ22/σ

2
1 > (1− β21).

In the same manner, we can find the true ordering π = (2, 1) for G2 as long as σ21/σ
2
2 >

(1− β22). Lastly, for G3, there is no guarantee as to which marginal or conditional variance
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X1 X2

G1

X1 X2

G2

X1 X2

G3

Figure 1: Bivariate directed acyclic graphs of G1, G2, and G3

is bigger since (1, 2) and (2, 1) are correct orderings of G3. Hence, any choice is correct.
Therefore, we can recover the orderings of G1, G2, and G3 by testing which marginal or
conditional variance is bigger.

The presence of an edge is easily verified from the dependence relationships between
variables. For G1 and G2, X1 and X2 are dependent, whereas for G3, X1 and X2 are
independent. Therefore, combined with the ordering, we can recover the true graph.

Now, we extend this to general p-variate ANMs with any forms of dependency func-
tions and heterogeneous error distributions with unknown variances. Since both the law of
total variance and independence relationships do not require linearity of f and Gaussian
error distributions, the key idea to extending model identifiability from the bivariate to the
multivariate still involves the comparisons of the (conditional) node variances.

Theorem 2 (Identifiability Conditions for ANMs) Let P (X) be generated from an
ANM (2) with DAG G and true ordering π. Suppose that causal minimality holds. Then,
DAG G is uniquely identifiable if either of the two following conditions is satisfied: For any
node j = πm ∈ V , k ∈ De(j), and ` ∈ An(j),

(A) Forward stepwise selection: σ2j < σ2k + E(Var(E(Xk | XPa(k)) | Xπ1 , ..., Xπm−1)), or

(B) Backward stepwise selection: σ2j > σ2` − E(Var(E(X` | Xπ1 , ..., Xπm \X`) | XPa(`))).

The detailed proof is provided in the Appendix A. Theorem 2 claims that ANMs are
identifiable if either the conditional variance of a node j is smaller than that of its de-
scendant, De(j), given the non-descendant, Nd(j), or if the conditional variance of a node j
given its parents is bigger than that of its ancestor, An(j), given the union of its parents and
any of its descendants. The former condition can be understood to mean that the variance
of εj is overestimated owing to lack of parents. And, the latter can be understood to mean
that the estimated variance of εj is smaller than the true variance due to all parents plus
the addition of descendants that can explain εj . As shown later in Algorithm 3, Condition
(A) is applied to the element-wise selection of the ordering starting from the first one, π1,
and Condition (B) is used for the component-wise selection of the ordering starting from
the last one, πp.

We note that both Conditions (A) and (B) are immediately satisfied when the error
variances are the same, which is the identifiability assumption for linear SEMs in Peters
and Bühlmann (2014); Loh and Bühlmann (2014); Ghoshal and Honorio (2017); Chen et al.
(2019). More generally, we obtain the following sufficient condition for both Conditions (A)
and (B).

Corollary 3 Consider an ANM (2) with DAG G. If the error variances are the same or
weakly monotone increasing in the ordering, then DAG G is uniquely identifiable.
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An important remaining question is the relationship between Conditions (A) and (B)
in Theorem 2. Note that Conditions (A) and (B) are equivalent for any bivariate graphs as
presented in Figure 1. However, they are, in general, not always equivalent. We investigate
the relationship between Conditions (A) and (B) using a 3-node linear SEM in the next
section.

3.1. Identifiability of Linear Structural Equation Models

In the linear SEM (3) setting, a conditional variance can be obtained from the inverse
covariance matrix, Θ = (Ip −B)TΣ−1ε (Ip −B). Hence, our new identifiability conditions in
Theorem 2 can be expressed with error variances as well as edge weights, and we have the
following identifiability conditions.

Theorem 4 (Identifiability Conditions for Linear SEMs) Let P (X) be generated from
a linear SEM (3) with DAG G and true ordering π. Then, DAG G is uniquely identifiable,
if either of the two following conditions is satisfied: for any node j ∈ V , k ∈ De(j) and
` ∈ An(j),

(A) Forward stepwise selection:

σ2j < σ2k +
∑

k′∈Pa(k)\{π1,...,πm−1}

β2k′→kσ
2
k′

where j = πm and βk′→k is the sum over products of coefficients along each directed
paths from k′ to k of products of coefficients along each path.

(B) Backward stepwise selection:

1

σ2j
<

1

σ2`
+

∑
`′∈Ch(`)\{πm,...,πp}

β2``′

σ2`′
.

The detailed proof is provided in Appendix B. Theorem 4 claims that the underlying
graph can be uniquely recoverable even when error variances are different. Specifically,
Condition (A) exploits the sum of squares of all the influences from non-considered parents in
the condition set, whereas Condition (B) applies the sum of squares only of direct influences
from a node to its child.

Condition (A) can be derived from Chen et al. (2019) although it only focuses on a
Gaussian linear SEM with the equal variances. Furthermore, Condition (B) is the same
as the identifiability condition for linear SEMs in Ghoshal and Honorio (2018). Hence,
our identifiability result can be understood as a generalized version of recent linear SEM
identifiability conditions. However, we emphasize that our new conditions have never been
proposed for general ANMs with unknown heterogeneous error variances.

Lastly, we investigate the relationship between Conditions (A) and (B) in Theorem 4
using a simple 3-node chain graph. Consider a linear SEM, X1 → X2 → X3 such that
X1 = ε1, X2 = β1X1 + ε2, and X3 = β2X2 + ε3 where εj ∼ N(0, σ2j ) for all j ∈ {1, 2, 3}.
Then, Condition (A) in Theorem 4 is equivalent to the following three conditions:

(A1) σ21 < σ22 + β21σ
2
1, (A2) σ22 < σ23 + β22σ

2
2, (A3) σ21 < σ23 + β22σ

2
2 + β21β

2
2σ

2
1.
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Algorithm 1: Ordering estimation using the forward stepwise selection

Input : n i.i.d. samples from an ANM, X1:n

Output: Estimated ordering, π̂ = (π̂1, ..., π̂p)

Set π̂0 = ∅
for m = {1, 2, · · · , p} do

Set S = {π̂0, ..., π̂m−1}
for j ∈ {1, 2, · · · , p} \ S do

Estimate the conditional variance of Xj given XS , σ̂2j|S
end
The m-th element of the ordering π̂m = arg minj σ̂

2
j|S

end

In contrast, Condition (B) is equivalent to the following three conditions:

(B1)
σ22
σ21

> (1− β21), (B2)
σ23
σ22

> (1− β22), (B3)
σ23
σ21

> 1− β21σ
2
3

σ22
.

As shown in Corollary 3, when error variances are monotone increasing (that is, σ21 ≤
σ22 ≤ σ23), both conditions are always satisfied. Hence, we consider a case where the error
variances are strictly monotone decreasing, that is, σ2j = aσ2j−1 for some 0 < a < 1. Then,

simple algebra yields that Condition (A) is equivalent to β21 > 1 − a and β22 > 1 − a. In

addition, Condition (B) is equivalent to β21 >
1−a2
a and β22 > 1− a. Hence, in this setting,

Condition (A) is strictly milder.

We also consider another case where (σ21, σ
2
2, σ

2
3) = (2, 2, 1) and β2 = 1. In this setting,

Condition (B) is violated if β21 ≤ 1, while Condition (A) always holds. However, in a different
case where (σ21, σ

2
2, σ

2
3) = (2, 1, 1) and β1 = 1, Condition (A) is violated if β22 ≤ 1/3, while

Condition (B) always holds. Therefore, we again cannot conclude that one is strictly weaker
than another, in general.

4. Algorithms

In this section, we present the uncertainty scoring (US) algorithm (Algorithm 3) for learning
our new class of identifiable ANMs based on the forward and backward stepwise selection
conditions in Theorem 2. The US algorithm consists of two steps: (1) element-wise ordering
estimation from either the initial or terminal using the conditional variances; and (2) parent
estimation using the conditional independence relationships between variables. For each
step of the US algorithm, any conditional variance estimation method and any independence
test can be applied.

Regarding the ordering estimation in Step (1), Algorithms 1 and 2 require the conditional
variance of each variable. Hence, we can use a consistent estimator for the error variances
using any regression methods, such as ordinary linear regression, regularized regression,
generalized additive model regression, and local polynomial regression as in Nowzohour
and Bühlmann (2016). For an example of the conditional variance Var(Xj | XS) in a linear
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Algorithm 2: Ordering estimation using the backward stepwise selection

Input : n i.i.d. samples from an ANM, X1:n

Output: Estimated ordering, π̂ = (π̂1, ..., π̂p)

Set S = {1, 2, · · · , p}
for m = {p, p− 1, · · · , 1} do

for j ∈ S do
Estimate the conditional variance Xj given XS\j , σ̂

2
j|S\j

end
The m-th element of the ordering π̂m = arg maxj σ̂

2
j|S\j

Update S = S \ πm
end

Algorithm 3: Uncertainty Scoring (US) algorithm

Input : n i.i.d. samples from an ANM, X1:n

Output: Estimated directed acyclic graph, Ĝ = (V, Ê)

Step (1): Ordering Estimation
Estimate the ordering π̂ using Algorithm 1 or 2
Step (2): Parents Estimation
for m = {2, · · · , p} do

for j = {1, · · · ,m− 1} do
Perform a conditional independence test between π̂m and π̂j given
{π̂1, ..., π̂m−1} \ π̂j

If dependent, include π̂j into P̂a(π̂m)

end

end

Estimate the edge set Ê := ∪m∈{2,3,...,p} ∪
k∈P̂a(π̂m)

(k, π̂m)

SEM, first regress Xj over XS , and then, estimate Var(Xj | XS) using its residuals. We
describe this more precisely with its statistical guarantees in Section 4.1.

Under Condition (A) in Theorem 2, the conditional variance of the correct element of
the ordering πj given π1, ..., πj−1 is strictly smaller than that of the other nodes in the
population. Hence, Algorithm 1 can find the correct element of the ordering that has the
smallest conditional variance. For the next element of the ordering πj+1, we compute all
conditional variances given π1, ..., πj and choose the node with the smallest conditional
variance. Therefore, Algorithm 1 learns the ordering from the beginning by selecting the
node with the minimum conditional variance and updating the condition set.

In the same manner, under Condition (B) in Theorem 2, the conditional variance of the
correct element of the ordering πj given V \ {πj , πj+1, ..., πp} is strictly bigger than that of
any node πk given V \ {πk, πj+1, ..., πp} for k ∈ {1, 2, ..., j − 1} in the population. Hence,
we can also determine one node at a time by selecting the node with the largest conditional
variance, and hence, we can recover the true ordering from the last using Algorithm 2.

10
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Estimating the parents of a node πj in Step (2) of Algorithm 3 is equivalent to selecting
the parents among all the elements before a node πj in the ordering. Hence, given the
estimated ordering from Step (1), Step (2) is reduced to a neighborhood selection prob-
lem using conditional dependence relationships like the constraint-based graph structure
learning PC algorithm. More precisely, the parent of a node πj is determined as a set of
nodes k such that πj and k are conditionally dependent given {π1, ..., πj−1} \ {k}, that is
Pa(πj) := {k ∈ {π1, ..., πj−1} | Xπj ⊥6⊥Xk | {Xπ1 , ..., Xπj−1} \Xk}. However, unlike the PC
algorithm, our approach does not require faithfulness and a greedy search, owing to the
estimated ordering in Step (1).

When focusing on learning a linear SEM, the main strategy of Algorithms 3 is analogous
to the algorithms using the inverse covariance matrix, as done by Loh and Bühlmann (2014);
Ghoshal and Honorio (2017, 2018); Chen et al. (2019), where each element of the ordering is
estimated from the end, and then, its parent is estimated. However, the proposed algorithm
focuses on learning general ANMs regardless of the complexity degree of a graph, whereas
their algorithms are for learning sparse linear SEMs in high dimensional settings. Hence,
when the algorithms of Loh and Bühlmann (2014); Ghoshal and Honorio (2017, 2018); Chen
et al. (2019) fail to recover the true graph due to a violation of the linearity assumption,
Algorithm 3 can recover the true underlying graph. In addition, our algorithm does not
require the faithfulness assumption, whereas the algorithms in Loh and Bühlmann (2014);
Ghoshal and Honorio (2017, 2018) require the (adjacent) faithfulness assumption.

In terms of the computational complexity, Algorithm 3 involves O(p2) estimations of
conditional variances in Step (1) and O(p2) conditional independence tests in Step (2).
However, the detailed computational complexity of each step relies on the choice of an
estimation method. For a special case of learning a Gaussian linear SEM, the inverse of a
sample covariance matrix can be applied to both Steps (1) and (2). Then, we can see that
the worst-case computational complexity of Algorithm 3 is O(np5).

We empirically verify that Algorithms 1 and 2 successfully recover sparse and non-sparse
linear SEMs with homogeneous as well as heterogeneous error variances in Sections 5.1 and
5.2, respectively. Also shown through simulations in Sections 5.3 and 5.4 is that non-linear
ANMs and non-Gaussian ANMs are successfully recovered by the proposed algorithms.

4.1. Theoretical Guarantees for Learning Gaussian Linear SEMs

This section provides theoretical guarantees on each step of our algorithms for learning a
Gaussian linear SEM when the ordinary least squares method is applied in Step (1), and
Fisher’s z-transform of the partial correlation is exploited in Step (2). The main result is
expressed in terms of the sample size and the fixed node size of the graph.

We begin by discussing the assumptions we impose on Gaussian linear SEMs. Since
the ordinary least squares approach and partial correlations are applied, the assumptions
involve the covariance matrix and partial correlations. The first assumption is that the
minimum and maximum eigenvalues of the covariance matrix are bounded.

Assumption 5 Let X be generated from a linear SEM (3). There exist positive constants
ρmin and ρmax such that the smallest and largest eigenvalue of covariance matrix, Σ =
Cov(X), are bounded.

ρmin ≤ Λmin(Σ) ≤ Λmax(Σ) ≤ ρmax,
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where Λmin(A) and Λmax(A) are the smallest and largest eigenvalues of matrix A, respec-
tively.

This assumption can be understood as ensuring that variables are not overly dependent.
Also required is the following assumption on partial correlations, to ensure that conditional
independent tests using partial correlations are consistent, as discussed in Kalisch and
Bühlmann (2007).

Assumption 6 (Bounded Partial Correlations) Let X be generated from a linear SEM (3).
For any edge (k, j) ∈ E and Pa(j) \ {k} ⊂ S ⊂ Nd(j) \ {k}, there exists M > 0 and
κ(n) = O(

√
1/ log(n)) such that

0 < κ(n) < inf
j,k,S
|ρj,k,S | < sup

j,k,S
|ρj,k,S | < M < 1,

where ρj,k,S is the partial correlation between Xj and Xk given XS.

Lastly, a stronger version of the identifiability assumption in Theorem 4 is required
because we move from the population to finite samples.

Assumption 7 Consider a linear SEM (3) with a true ordering π = (π1, ..., πp). For any
node j = πm ∈ V , k ∈ De(j), and ` ∈ An(j), there exist positive constants τF and τB such
that

• Forward stepwise selection:

σ2j + τF < σ2k +
∑

k′∈Pa(k)\{π1,...,πm−1}

β2k′→kσ
2
k′ , or

• Backward stepwise selection:

1

σ2j
− τB <

1

σ2`
+

∑
`′∈Ch(`)\{πm,...,πp}

β2``′

σ2`′
.

Applying Assumptions 5, and 7, we have the following main result whereby the ordering
can be successfully recovered via Algorithms 1 and 2.

Theorem 8 (Recovery of the Ordering) Consider a linear SEM (3) with a true set of
orderings Π. Suppose that n > p where p is the number of nodes, and π̂ is the estimated
ordering via Algorithm 1 or 2. Then, there exist positive constants C1 and C2 such that

P(π̂ ∈ Π) ≥ 1− C1p
2 exp

(
−C2

n

log n

)
.

The detailed proof is in Appendix C. Theorem 8 shows that both Algorithms 1 and 2
consistently recover the ordering of a linear SEM. The condition n > p is necessary because
ordinary linear regression is applied. However, it can be relaxed if other conditional variance
estimation methods are applied for high dimensional settings. This is also left for future
work.

Under Assumption 6, another main result is reached, such that the true directed edges
of Gaussian linear SEM can be recovered via our algorithm.
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Theorem 9 (Recovery of the Directed Edges) Consider a Gaussian linear SEM (5).
Suppose that true ordering is provided and let Ê be the estimated edges from Algorithm 3
with significance level α(n) = 2(1−Φ(

√
n·κ(n)/2)) where Φ(·) is the cumulative distribution

function of the standard normal distribution. Then, there exist positive constants C3 and
C4 such that

P(Ê = E) ≥ 1− C3np
2 exp

(
−C4n · κ(n)2

)
.

We provide the detailed proof in Appendix D. Theorem 9 claims that when the sample
size is sufficiently large, comparing to the lower bound of the true partial correlations, Step
2 of the US algorithm can recover the parent of each node with a high probability.

Finally, by combining Theorems 8 and 9, we reach our final main result that our al-
gorithm successfully recovers the true structure of a Gaussian linear SEM with a high
probability.

Corollary 10 (Recovery of the Graph Structure) Consider a Gaussian linear SEM (5).
Suppose that n > p, and Assumptions 5, 6, and 7 are satisfied. Let Ĝ = (V, Ê) be the esti-
mated graph from Algorithm 3. Then, there exist positive constants D1 and D2 such that

P(Ĝ = G) ≥ 1−D1np
2 exp

(
−D2

n

log n

)
.

Provided so far are sample complexity guarantees of the US algorithm for a Gaussian
linear SEM (5) when ordinary linear regression and Fisher’s z-transform of the partial
correlation are applied. As we discussed, the US algorithm can make use of any appropriate
regression method and independence test. Hence, if another learning method is applied for
each step, not only Gaussian linear SEMs but general ANMs can be recovered with a high
probability. Moreover, one can find the statistical guarantees for a choice of methods for
each step.

5. Numerical Experiments

This section provides numerical experiments to support our theoretical results: ANMs
with non-equal error variances can be identifiable; and Algorithm 3 consistently recovers
Gaussian linear SEMs. Hence, considered are (i) Gaussian linear SEMs with equal error
variances and (ii) heterogeneous error variances, (iii) Gaussian polynomial SEMs, and (iv)
linear SEMs with Gaussian and non-Gaussian error distributions.

The proposed forward and backward selection-based algorithms and the comparison
GDS, LISTEN, and LINGAM algorithms are evaluated in terms of the average precision
(# of correctly estimated edges

# of estimated edges ) and the average recall (# of correctly estimated edges
# of true edges ). In addition,

we report the Hamming distance between the estimated and true DAGs (# of edges that
are different between two graphs). For precision and recall, the bigger the better, but for
the Hamming distance, smaller is better. We also provide oracles where the edges for true
graph are used while the ordering is estimated via Algorithms 1 and 2. Hence, we can verify
how accurately the proposed algorithms recover the true orderings of graphs.

To validate Theorems 8 and 9, ordinary linear regression for Step (1) is applied. In
addition, Step (2) of Algorithm 3 were implemented using a Fisher’s independence test. We

13



Park

always set the significance level depending on the sample size, α = 1 − Φ(n1/4/2), as in
Theorem 9. For the GDS algorithm, we set the initial graph to a random graph. Since the
GDS algorithm uses a greedy search, and its accuracy relies heavily on the initial graph,
the GDS algorithm can recover the graph better with an appropriate choice of an initial
graph. We do not apply the GDS algorithm to large-scale graphs, p = 200, due to the heavy
computational cost.

We also emphasize that the LISTEN algorithm of Ghoshal and Honorio (2018) using
constrained `1-minimization for inverse covariance matrix estimation may perform well with
the appropriate choice of regularization parameters. However, when the regularization and
hard thresholding parameters are chosen from 10-fold cross validation, the performance in
recovering the graph is poor because the cross-validation does not generally have consistency
properties for model selection (see details in Shao, 1993). In addition, the algorithm often
fails to implement due to the failure of updating the inverse covariance matrix in our settings.
Hence, the regularization parameters were set to 0.001, and the hard threshold parameter
to half of the minimum value of true edge weights, min(|βjk|/2), by using the true model
information because it seems to be much better than the parameters from cross validation
when recovering graphs. However, we also point out that our choice of the parameters are
not the best, especially when sample size is small. Hence, for a better presentation, we do
not present the hamming distance of the LISTEN algorithm for the case of p = 200, n = 250
because it is comparatively too large.

As discussed, our algorithms are for inferring the proposed identifiable ANMs using the
forward and backward selection conditions. In addition, the GDS algorithm is for learning
Gaussian linear SEMs with equal error variances. The LISTEN algorithm is for learning
linear SEMs with heterogeneous error variances using the backward selection condition.
Lastly, the LINGAM algorithm is designed for learning non-Gaussian linear SEMs. In
other words, these algorithms do not guarantee recovering the true graph if the required
conditions are not satisfied. Through the numerical experiments, we also point out that the
proposed and the comparison algorithms sometimes fail to recover a graph because of the
violation of the required assumptions.

5.1. Random Gaussian Linear SEMs with Homogeneous Error Variances

We conducted simulations using 100 realizations of p-node Gaussian linear SEMs (5) with
the randomly generated underlying DAG structures for node size p ∈ {20, 200} while re-
specting the indegree constraint d ∈ {1, 2}. The set of non-zero parameters βjk ∈ R in
Equation (5) were generated uniformly at random in the range βjk ∈ (−

√
0.5/d,−

√
0.125)∪

(
√

0.125,
√

0.5/d). Lastly, all noise variances were set to σ2j = 0.75. In this setting, we have
verified that across hundreds sets of randomly generated samples, all variables have similar
marginal variances varying between 0.75 to approximately 2. In addition, we cannot see
any patterns between the variances.

Figure 2 evaluates the proposed algorithms and state-of-the-art GDS, LISTEN, and
LINGAM algorithms in terms of recovering DAGs by varying sample size n ∈ {250, 500, ..., 2500}.
Figure 2 also provides oracles where the true skeleton is used while the ordering is esti-
mated via the proposed algorithms, referred to as USF1Oracle and USB1Oracle. Hence,
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(a) Precision: p=20, d=2 (b) Recall: p=20, d=2 (c) Hamming: p=20, d=2

(d) Precision: p=20, d=4 (e) Recall: p=20, d=4 (f) Hamming: p=20, d=4

(g) Precision: p=200, d=2 (h) Recall: p=200, d=2 (i) Hamming: p=200, d=2

(j) Precision: p=200, d=4 (k) Recall: p=200, d=4 (l) Hamming: p=200, d=4

Figure 2: Comparison of the proposed algorithms (USF1, USB1), the proposed algo-
rithms with true skeletons (USF1Oracle, USB1Oracle), the GDS, LISTEN, and
LINGAM algorithms in terms of average precision, recall, and Hamming distance
(Hamming) when recovering Gaussian linear SEMs with homogeneous error vari-
ances.

USF1Oracle and USB1Oracle show the accuracy in the recovery of the orderings using the
forward and backward selection conditions in Assumption 7, respectively.

As seen in Figure 2, our forward and backward stepwise selection-based algorithms,
referred to as USF1 and USB1, recover the true directed edges better as sample size increases
and their hamming distances converge to 0. This confirms that Gaussian linear SEMs
with homogeneous errors are identifiable, and our algorithms are consistent as proven in
Theorems 8 and 9. In addition, we can see that our algorithms perform better for the
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sparse (d = 2) graphs than the dense graphs (d = 4). That is mainly because our choice
of significance level is more favorable to the sparse graph setting. Another reason is that a
sparse graph is more likely to have a larger number of true orderings than a dense graph,
and hence, our algorithms are more likely to find the true ordering of a sparse graph.

As discussed in Section 3, there is no relationship between the forward and backward
stepwise selection conditions. Hence, it is impossible to claim that the forward stepwise
selection condition is weaker than the backward stepwise selection condition. Nonetheless,
in limited sample settings, Figure 2 shows that USF1Oracle requires slightly fewer samples
than USB1Oracle, when the ordering of a graph is estimated. This phenomenon makes
sense, because when the first element of the ordering is estimated, the forward selection
condition-based Algorithm 1 requires the marginal variances of all nodes. However, the
backward selection condition-based Algorithm 2 requires the conditional variances of each
node given all other nodes. Since the marginal variance estimation is much easier than
the conditional variance estimation in the limited sample settings, the probability that
Algorithm 1 chooses the first element of the ordering from among p nodes is higher than
the probability that Algorithm 2 selects the last element of the ordering from among p
nodes. With the same reasoning, Algorithm 1 may not suffer from the lack of samples
when learning the first few elements of the ordering even in high dimensional settings. This
phenomenon can also be seen in all other simulation settings in Sections 5.2, 5.3, and 5.4.

Figure 2 shows that the algorithms proposed in this paper generally outperform the
comparison GDS algorithm, on average, even with the same error variances, because our
method is a complete search-based and exploits the weaker identifiability assumption in
Theorem 4. As expected, the LISTEN algorithm performs well when sample size is suffi-
ciently large (n ≥ 500), and the LINGAM algorithm cannot learn Gaussian linear SEMs.
The phenomenon that LISTEN performs better than USF1 and USB1 is not a contradic-
tory result, because LISTEN is designed for learning Gaussian linear SEMs and the hard
thresholding parameter is chosen by the true model information. In addition, decreasing
accuracy of LINGAM makes sense because the required non-Gaussian assumption is more
likely to be violated as sample size increases. However, it does not mean that LINGAM
recovers Gaussian linear SEMs better as sample size decreases. As seen in Figure 2, the
minimum hamming distances are not achieved when sample size is smallest. Lastly, since
the skeleton estimation is not perfect, we can see that USF1 and USB1 are significantly
worse than USF1Oracle and USB1Oracle.

5.2. Random Gaussian Linear SEMs with Heterogeneous Error Variances

In order to authenticate the validation of the theoretical results that Gaussian linear SEMs
with non-equal error variances can be identifiable, we also generated 100 sets of samples
under the same procedure specified in Section 5.1, except for randomly chosen error vari-
ances, σ2j ∈ [0.70, 0.80]. Then, our algorithms and the comparison methods were evaluated
by varying sample size n ∈ {250, 500, ..., 2500} for p ∈ {20, 200} in Figure 3.

As expected, most of the simulation results are analogous to the Gaussian linear SEMs
with homogeneous error variances in Section 5.1. More precisely, Figure 3 shows that our
algorithms, USF1 and USB1, consistently recover the graphs. This heuristically confirms
our theoretical findings that ANMs with heterogeneous error variances are identifiable, and
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(a) Precision: p=20, d=2 (b) Recall: p=20, d=2 (c) Hamming: p=20, d=2

(d) Precision: p=20, d=4 (e) Recall: p=20, d=4 (f) Hamming: p=20, d=4

(g) Precision: p=200, d=2 (h) Recall: p=200, d=2 (i) Hamming: p=200, d=2

(j) Precision: p=200, d=4 (k) Recall: p=200, d=4 (l) Hamming: p=200, d=4

Figure 3: Comparison of the proposed algorithms (USF1, USB1), the proposed algo-
rithms with true skeletons (USF1Oracle, USB1Oracle), the GDS, LISTEN, and
LINGAM algorithms in terms of average precision, recall, and Hamming distance
(Hamming) for recovering Gaussian linear SEMs with different error variances.

that our algorithms are consistent. In addition, the phenomenon that USF1Oracle performs
better than USB1Oracle is more exaggerated when the number of node is large, p = 200.
Hence, Figure 3 reveals the advantages of the forward stepwise selection approach when
recovering large-scale DAG models with heterogeneous error variances. However, for the
case of d = 4, neither USF1Oracle and USB1Oracle have 0 hamming distance even when
sample size is huge. This is mainly because the identifiability conditions in Theorem 3 are
often violated in our setting.
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(a) Precision: Homogeneous (b) Recall: Homogeneous (c) Hamming: Homogeneous

(d) Precision: Heterogeneous (e) Recall: Heterogeneous (f) Hamming: Heterogeneous

Figure 4: Comparison of the proposed algorithms (USF2, USB2), the proposed algo-
rithms with true skeletons (USF2Oracle, USB2Oracle), the GDS, LISTEN, and
LINGAM algorithms in terms of average precision, recall, and Hamming distance
(Hamming) for recovering 20-node Gaussian polynomial SEMs with homogeneous
and heterogeneous error variances.

Lastly, Figure 3 shows that the GDS algorithm recovers graphs better as a sample size
increases. That is also expected, since Peters and Bühlmann (2014) empirically shows that
the GDS algorithm possibly learns Gaussian linear SEMs with different error variances with-
out theoretical reasons. We can also see this robustness of equal error variances assumption
in Loh and Bühlmann (2014); Ghoshal and Honorio (2017), where they assume the same
error variances.

5.3. Random Polynomial SEMs with Homogeneous and Heterogeneous Error
Variances

A popular non-linear ANM is a polynomial SEM in which each variable is modeled as an
m-th degree polynomial in its parents, and hence, it is a non-linear when m > 1. More
precisely, m-th degree polynomial SEMs have the following form. For all j ∈ V ,

Xj =
∑

k∈Pa(j)

β1kjXk +
∑

k∈Pa(j)

β2kjX
2
k + · · ·+

∑
k∈Pa(j)

βmkjX
m
k + εj . (6)

For a special case where each error distribution is Gaussian, εj ∼ N(0, σ2j ), the joint
density is as follows.

fG(x1, x2, ..., xp) = exp
(
−
∑
j∈V

log(
√

2πσj)−
∑
j∈V

1

2σ2j

(
xj −

∑
k∈Pa(j)

∑
h∈{1,...,m}

βhkjX
h
k

)2)
.

To validate the theoretical results that non-linear additive noise models can be iden-
tifiable, we conducted simulations using 100 realizations of 20-node Gaussian polynomial
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SEMs (6). As in Section 5.1, the randomly generated underlying DAG structures while
respecting the indegree constraint d = 2 was considered, and we set the maximum degree
m = 2. The set of non-zero parameters β1jk, β2jk ∈ R in Equation (6) were generated
uniformly at random in the range β1jk ∈ (−0.4,−0.2) ∪ (0.2, 0.4) and β2jk ∈ {−0.2, 0, 0.2}.
For homogeneous error variances, all noise variances were set to σ2j = 0.5, and for hetero-

geneous error variances, all noise variances were randomly chosen σ2j ∈ [0.475, 0.525]. We
again verified that the generated samples have similar variances in this setting.

Our algorithms were implemented using a quadratic model instead of a linear model
for the estimation of error variances. The quadratic models-based algorithms using forward
and backward stepwise selections are referred to as USF2 and USB2, respectively. We
evaluate the USF2, USB2, GDS, LISTEN, and LINGAM algorithms varying sample size
n ∈ {250, 500, ..., 2500}. In addition, USF2Oracle and USB2Oracle are provided where the
true skeleton is used while the ordering is inferred via Algorithms 1 and 2, respectively.

Figure 4 shows that both USF2 and USB2 more accurately recover the true directed
edges as sample size increases. In addition, the performance of USF2 becomes perfect. This
result supports the main results that non-linear ANMs with homogeneous and heterogeneous
error variances can be identifiable, and our algorithms are consistent as long as the required
conditions are met.

It must be pointed out that, given the same sample size, USB2(Ordering) is way worse
than USF2(Ordering), and its the hamming is far way from 0. This represents that the
forward stepwise selection condition is milder than the backward stepwise selection condition
in our non-linear settings. Hence, it makes sense that USF2 performs significantly better
than USB2 as well as the comparison algorithms. More precisely, the GDS, LISTEN,
and LINGAM algorithms cannot recover polynomial SEMs because they are designed only
for learning linear SEMs. Lastly, we emphasize that this result does not imply that the
forward selection condition is strictly weaker than the backward selection condition in a
general setting.

5.4. Random ANMs with Gaussian and Non-Gaussian Errors

This section verifies one of our main results that non-Gaussian ANMs can be identifiable
where non-Gaussian error distributions are allowed. Hence, 100 sets of samples were gener-
ated under the same procedure specified in Sections 5.1 and 5.3, except that error distribu-
tions were sequentially uniform, U(−1, 1), Gaussian N(0, 1/3), and a half of t-distribution
with 10 degree of freedom.

Then, our algorithms and the comparison methods are evaluated by varying sample size
n ∈ {250, 500, ..., 2500} as seen in Figure 5. Step (1) of Algorithm 3 was implemented using
a linear model for linear SEM and a quadratic model for polynomial SEMs. In addition,
Step (2) of Algorithm 3 was implemented using a permutation test with mutual information,
since non-Gaussian error distributions are considered. This procedure is clearly not an exact
test for general continuous distributions, but finding the proper conditional independence
test and its sample complexity is also left to future study.

The simulation results in Figure 5 are analogous to the results for Gaussian linear and
polynomial SEMs in Sections 5.2, and 5.3. Our algorithms are estimating the true directed
edges better as sample size is increasing. In addition, the precision and recall of USF1 and
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(a) Precision: Linear (b) Recall: Linear (c) Hamming: Linear

(d) Precision: Quadratic (e) Recall: Quadratic (f) Hamming: Quadratic

Figure 5: Comparison of the proposed algorithms (USF1, USB1, USF2, USB2), the pro-
posed algorithms with true skeletons (USF1Oracle, USB1Oracle, USF2Oracle,
USB2Oracle), the GDS, LISTEN, and LINGAM algorithms in terms of aver-
age precision, recall, and Hamming distance for recovering 20-node linear and
quadratic SEMs with heterogeneous uniform, normal, and t error distributions.

USF2 converge to 1, and their hamming distances also converge to 0. Hence, this confirms
that ANMs with non-Gaussian error distributions can be identifiable, regardless of error
distributions. In addition, like other simulation settings, USF1 and USF2 perform better
than the comparison methods in terms of recovering DAGs on average.

So far, the simulation results have heuristically confirmed that Algorithm 3 can recover
the proposed identifiable ANMs as long as the required conditions are satisfied. In other
words, Algorithm 3 fail to recover a model when the proposed identifiability condition is
violated. To emphasize this point, 100 sets of samples were again generated under the
same procedure specified in Sections 5.1, except that error distributions were sequentially
uniform, U(−3, 3), Gaussian, N(0, 0.25), and t-distribution with 10 degree of freedom.
In this setting where the error variances are sequentially 3, 0.25, and 1.25, the proposed
identifiability condition is clearly not satisfied.

As we can see in Figure 6, neither USF1Oracle and USB1Oracle can estimate the true
orderings. And hence, it is expected that USF1, USB1, and LISTEN fail to recover the
true graphs. However, it is worth noting that the LINGAM algorithm is for learning non-
Gaussian linear SEMs, and hence, it shows a better performance.

6. Real Multivariate Data: Mathematics Marks

We applied our algorithms and the comparison GES, GDS, LISTEN, and LINGAM algo-
rithms to real multivariate Gaussian data involving students mathematics scores. More
precisely, the variables are the examination marks for 88 students from five different sub-
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(a) Precision (b) Recall (c) Hamming Distance

Figure 6: Comparison of the proposed algorithms (USF1, USB1), the proposed algo-
rithms with true skeletons (USF1Oracle, USB1Oracle), the GDS, LISTEN, and
LINGAM algorithms in terms of average precision, recall, and Hamming distance
for recovering 20-node linear SEMs with heterogeneous uniform, normal and stu-
dents t error distributions.

Figure 7: Correlation and partial correlation plots for students’ examination scores.

jects: mechanics, vectors, algebra, analysis, and statistics. All are measured on the same
scale (from 0 to 100). This dataset is provided in the bnlearn R package (Scutari, 2009).

As we can see on the left side of Figure 7, the correlation plot shows that all five variables
are positively correlated. This means that students who do well in one subject are more
likely to do well in the others. To see the conditional independence relationships, the partial
correlation plot is provided on the right side of Figure 7. As we can see, some components
are very close to 0, for example, between (mechanics, analysis), (mechanics, statistics), and
(vectors, statistics). This shows that some subjects are conditionally independent given
other subjects. That makes sense, because all other subjects’ scores are not necessary to
explain the score of a subject.

The mathematics marks data were originally modeled using the Gaussian undirected
graphical model in Edwards (2012). The estimated undirected graph is provided in Figure 8.
Edwards (2012) claims that the Gaussian undirected graphical model successfully captures
the conditional independence relationships, as shown in Figure 7 (right). The scores for
analysis and statistics are conditionally independent of mechanics and vectors, given algebra.
Hence, the graph shows that for prediction of the statistics scores, the marks for algebra
and analysis are sufficient, and for prediction of the analysis scores, the scores for algebra
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Figure 8: The examination marks’ undirected graph and the directed acyclic graph es-
timated by the proposed algorithms (USF1, USB1) and the comparison GDS,
LISTEN, and LINGAM algorithms.

and statistics are sufficient. In addition for prediction of the scores for algebra, the scores
for all the other subjects are required.

We believe that there exist directional relationships between subjects, because one course
can be essential to another course. For example, algebra is an evidently central subject
for all other subjects. In addition, knowledge of analysis and vectors is prerequisite for
statistics and mechanics, respectively. This may follow a linear SEM with constraints on
linear weights, that is, Xj = βj0 +

∑
k∈Pa(j) βjkXk + εj where Xj is the score of a subject j

and Pa(j) is a set of prerequisites for a subject j.

Clearly, the undirected graph does not provide these directional relationships. Hence, in
order to recover these directional relationships, our algorithms, USF1 and USB1, are applied
using ordinary linear regression and Fisher’s z-transform of the partial correlation. The
significance level was set to α = 1−Φ(n1/4/2) as in Section 5.1, and the estimated directed
graph is provided in Figure 8. For the LISTEN algorithm, we used the regularization
parameters to 0.001 and the hard threshold parameter was set to 0.25 because these seem
to recover the model better.

As we can see in Figure 8, the undirected graph and all the estimated graphs via DAG
learning algorithms, except for LINGAM, have the same skeleton, which implies that the-
ses algorithms recover all important links. Moreover, USB1 and LISTEN find all the di-
rectional relationships between the subjects. USF1 also recovers most of the explainable
directed edges while it returns a reversed edge between vector and mechanics. However, the
estimated edges from GDS are all reversed; LINGAM estimates an unexplainable skeleton
and its directed edges are not well interpretable. That is mainly because GDS applies a
greedy search, and LINGAM does not guarantee recovering the directed edges when the
data follow a Gaussian distribution. Lastly, the GES algorithm cannot find any directed
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USF1 USB1 GDS LINSTEN LINGAM GES

log-likelihood -1695.589 -1695.589 -1711.135 -1762.506 -1695.589 -1695.589

BIC -1731.407 -1731.407 -1746.954 -1793.848 -1731.407 -1731.407

Table 1: Log-likelihood and BIC scores of the proposed algorithms (USF1, USB1) and state-
of-the-art GES, GDS, LISTEN, and LINGAM algorithms.

edges, because it can only find directed edges if at least one v-structures exists while the
true graph does not contain any v-structures.

It is granted that the true graphs considered may not represent true directional rela-
tionships between subjects. Hence, we also compared the log-likelihood and BIC scores
of the algorithms in Table 1. As we can see in Table 1, the USB1, USF1, LISTEN, and
GES algorithms produce the same scores while the GDS and LINGAM algorithms have
lower scores. We point out that, unlike the GES algorithm, the other algorithms are not
focusing on maximizing the log-likelihood or BIC scores. However, our methods and LIS-
TEN algorithm also maximize the scores, and hence, they might be more useful than the
GES algorithm because they find a graph rather than the MEC. Therefore, we believe that
our methods and LISTEN more reliably recovers the directional/functional relationships
between the scores of the five courses.

7. Conclusion and Future Works

In this paper, we proposed a new identifiability condition for ANMs with heterogeneous
error variances which is a generalization of the identifiability conditions for linear SEMs.
Hence, we proved that ANMs can be identifiable without assuming faithfulness, linearity,
and Gaussianity. We also proposed the US algorithm for learning identifiable ANMs, and
provided its consistency for Gaussian linear SEMs. The various numerical experiments
support our theoretical results, and empirically confirm that the US algorithm can capture
the dependency of variables in identifiable non-linear and non-Gaussian ANMs.

Several topics remain for future works. Although the proposed identifiability condition
is a general version of the conditions for linear SEMs, it could be very restrictive. Hence, it
is an important problem of finding a proper test whether the forward or backward selection
condition is satisfied. However, to the best of our knowledge, the conditions cannot be
confirmed from data, and it should be investigated in the future. Furthermore, the statis-
tical consistency of learning non-linear and non-Gaussian ANMs are not yet provided. We
conjecture that the models can be learned in a consistent way, and one may be able to prove
this.
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Appendix A. Proof for Theorem 2

Proof Without loss of generality, assume that the true ordering π = (π1, ..., πp) is unique.
In addition, for ease of notation, define X1:j = {Xπ1 , Xπ2 , · · · , Xπj} and X1:0 = ∅. Now, we
prove the identifiability of ANMs using mathematical induction, as follows:

(A) Forward stepwise selection:

Step (1) By Condition (A) in Theorem 2, for any node k ∈ V \ {π1}, we have,

Var(Xπ1) = σ2π1 < σ2k + Var(E(Xk | XPa(k))) = Var(Xk).

Therefore, the first element of the ordering π1 can be correctly identified.

Step (m-1) For the (m − 1)th element of the ordering, assume that the first m − 1
elements of the ordering and their parents are correctly recovered.

Step (m) Now, consider the mth element of the ordering and its parents. By Theo-
rem 2, for k ∈ {πm+1, · · · , πp},

E(Var(Xπm | X1:(m−1))) = σ2πm < σ2k + E(Var(E(Xk | XPa(k)) | X1:(m−1)))

= dE(Var(Xk | X1:(m−1))).

Hence, we can choose the true mth element of the ordering πm.

In terms of the parents search, it is clear that conditional independence relationships
are naturally encoded by the factorization (1) and imply causal minimality (see details
in Spirtes 1995; Peters and Bühlmann 2014). In ANM models, causal minimality states
that, for any node j ∈ V and one of its parents k ∈ Pa(j),

∀ Pa(j) \ {k} ⊂ S ⊂ Nd(j) \ {k}, Xj⊥6⊥Xk | XS .

Therefore, we can choose the correct parents of πm, that is, Pa(πm) := {k ∈ {π1, ..., πm−1} |
Xk ⊥6⊥ Xπm | Xπ1 , ..., Xπm−1 \ Xk}. By mathematical induction, this completes the
proof.

(B) Backward stepwise selection:

Step (1) By Condition (B) in Theorem 2, for any node ` ∈ V \ {πp}, we have

Var(Xπp | XV \πp) = σ2πp > σ2` − E(Var(E(X` | XV \πp) | XPa(`))) = Var(X` | XV \`).

Therefore, the last element of the ordering πp can be correctly identified. In addition,
causal minimality implies that if a node k is a parent of πp, we have Xj⊥6⊥Xk | XV \{j,k}
; otherwise, Xj and Xk are conditionally independent. Hence, the parents of πp can
also be recovered.

Step (p-m) For the (m + 1)th element of the ordering, assume that the last m + 1
elements of the ordering and their parents are correctly recovered.

Step (p-m+1) Now, we consider the mth element of the causal ordering and its
parents. By Condition (B) in Assumption 2, for ` ∈ {π1, π2, · · · , πm−1},

Var(Xπm | XV \{πm,...,πp}) = σ2πm > σ2` − E(Var(E(X` | XV \{`,πm+1,...,πp}) | XPa(`)))

= Var(X` | XV \{`,πm+1,...,πp}).
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Hence, we can choose the true mth element of the ordering πm. In terms of par-
ents search, it can again be determined by conditional independence relationships.
Therefore, we can choose the correct parents of πm. By mathematical induction, this
completes the proof.

Appendix B. Proof for Theorem 4

Proof Again, without loss of generality, we assume that the true ordering π = (π1, ..., πp) is
unique. In addition for ease of notation, we define X1:j = (Xπ1 , Xπ2 , · · · , Xπj ) and X1:0 = ∅.

(A) Forward stepwise selection: We note that the diagonal component of the inverse
covariance matrix of X is closely related to the conditional variance. Then, for any
node j ∈ {πj , ..., πp} and S ⊂ {π1, π2, ..., πj−1}, we have,

[(ΣS∪j,S∪j)
−1]jj = Σjj − ΣjSΣ−1SSΣSj = E(Var(Xj | XS))

= σ2j + E(Var(E(Xj | XPa(j)) | XS)).

From Equation (5), we have

Σ = (I −B)−TΣε(I −B)−1.

In addition, using the Neumann power series, we obtain

(I −B)−1 = (I +B +B2 +B3 + ...+Bp).

Using the path interpretation, it is clear that for directed acyclic graphs, Bk encodes
the length k path, and hence, matrix Bp is the zero-matrix since there is no cycle.

Then, we have the covariance matrix using (I −B)−1:

Σ = (I −B)−TΣε(I −B)−1 = (I +A+A2 + ...+Ap)Σε(I +B +B2 + ...+Bp)

where A is a transpose of B.

For ease of notation, we define

DT = Σ1/2
ε (1 +B +B2 + ...+Bp)

Then, using the path interpretation, the (j, k)-th element of [D]jk corresponds to the
sum of influences, βj→k, along with all directed paths from j to k of products of
coefficients (βjk) along each path. In addition, matrix D is a lower triangular matrix.

Then, ΣS∪j,S∪j is the product of a matrix that can be partitioned into four blocks,
and can be inverted block-wise as follows: For any node j ∈ {πk+1, ..., πp},

ΣS∪j,S∪j =

[
D1 0
D3 D4

] [
D1 0
D3 D4

]T
,
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where

D1 = [Σ1/2
ε ]S,S


1 0 · · · 0

βπ1π2 1 · · · 0
βπ1→π3 βπ2π3 · · · 0
...

βπ1→πj−1 βπ2→πj−1 · · · 1

 , DT
3 =

 βπ1→jσπ1
· · ·

βπj−1→jσπj−1

 , DT
4 =


βπj→jσπj
· · ·

βπk→jσπk
σj

 .

The 0 ∈ Rj−1×j−1 is a zero matrix from the definition of the ordering, in that there
is no direct path from πk → ...→ πj when j < k.

Then, the inversion of the parts of the covariance matrix is as follows:

[(ΣS∪j,S∪j)
−1]j,j =

(
D3D3

T +D4D4
T −D3D1(D1D

T
1 )
−1
D1

TD3
T
)−1

Since D1 is a lower triangular matrix, we have

[(ΣS∪j,S∪j)
−1]j,j =

(
D3D3

T +D4D4
T −D3D3

T
)−1

= (D4D4
T )−1.

It can be rewritten using the edge weight and error variances, as follows:

Var(Xj | XS) = (D4D4
T ) = σ2j +

∑
k∈Pa(j)\S

β2k→jσ
2
k,

Finally, for any m ∈ {1, 2, ..., p}, let j = πm, k ∈ De(j), and 1 : j = {π1, π2, .., πm}.
Therefore, Assumption 2 (A) is equivalent to

σ2j < σ2k +
∑

k′∈Pa(k)\1:(j−1)

β2k′→kσ
2
k′ .

(B) Backward stepwise selection: Again, note that the diagonal component of the inverse
covariance matrix of X is as follows (see more details in Ghoshal and Honorio, 2018;
Loh and Bühlmann, 2014):

Ωjj =
1

σ2j
+

∑
`∈Ch(j)

β2j`
σ2`
.

Then, for any node j ∈ V and S = V \ j, we have

(Ωjj)
−1 = Σjj − ΣjSΣ−1SSΣSj = E(Var(Xj | XS)) = σ2j − E(Var(E(Xj | XS) | XPa(j))).

Therefore, for any terminal node j and non-terminal node in the ordering `,

σ2j > σ2` − E(Var(E(X` | XS) | XPa(`))) ⇐⇒ Ωjj < Ω`` ⇐⇒
1

σ2j
<

1

σ2`
+

∑
k∈Ch(`)

β2`k
σ2k

Since the remainder of the proof is exactly the same after eliminating the terminal
node, we can omit it.
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Appendix C. Proof for Theorem 8

Proof
Without loss of generality, assume that the true ordering is unique, and that π =

(π1, ..., πp) = (1, 2, ..., p) and π0 = ∅. For ease of notation, define the marginal variance of
Xj as σ2(j), and the conditional variance of Xj given XS as σ2(j, S). Lastly, let π1:j =
(π1, ..., πj). Then, the probability that the ordering is correctly estimated from Algorithm 1
is

P (π̂ = π)

=P

(
σ̂2(1) < min

j=2,...,p
σ̂2(j), σ̂2(2, π1) < min

j=3,...,p
σ̂2(j, π1), ..., σ̂

2(p− 1, π1:p−2) < σ̂2(p, π1:p−2)

)
=P

(
min

j=1,...,p−1
min

k=j+1,...,p
σ̂2(k, π1:j−1)− σ̂2(j, π1:j−1) > 0

)
.

Since it can be decomposed in to the following three terms, we have

P (π̂ = π)

=P

(
min

j=1,...,p−1
k=j+1,...,p

{(
σ2(k, π1:j−1)− σ2(j, π1:j−1)

)
+
(
σ2(j, π1:j−1)− σ̂2(j, π1:j−1)

)
−
(
σ2(k, π1:j−1)− σ̂2(k, π1:j−1)

)
> 0

})

≥P

 min
j=1,...,p−1
k=j+1,...,p

{(
σ2(k, π1:j−1)− σ2(j, π1:j−1)

)}
> τF , and

max
j=1,...,p−1
k=j,...,p

∣∣σ2(k, π1:j−1)− σ̂2(k, π1:j−1)∣∣ < τF
2

 .

The first term in the above probability is always satisfied because σ2(k, π1:j−1)−σ2(j, π1:j−1) >
τF from Assumption 7. Hence, the lower bound of the probability that the ordering is cor-
rectly estimated using our method is reduced to

P (π̂ = π) ≥ P

 max
j=1,...,p−1
k=j,...,p

∣∣σ2(k, π1:j−1)− σ̂2(k, π1:j−1)∣∣ < τF
2

 .

In a linear SEM setting, a conditional variance of Xj given XS can be expressed as
Σjj − Σj,SΣ−1S,SΣS,j . Then, we have,

|V̂ar(Xj | XS)−Var(Xj | XS)| =
∣∣∣∣(Σ̂jj − Σ̂j,SΣ̂−1S,SΣ̂S,j

)
−
(

Σjj − Σj,SΣ−1S,SΣS,j

)∣∣∣∣
≤
∣∣∣∣(Σ̂jj − Σjj

)∣∣∣∣︸ ︷︷ ︸
A

+

∣∣∣∣ (Σ̂j,SΣ̂−1S,SΣ̂S,j

)
−
(

Σj,SΣ−1S,SΣS,j

)∣∣∣∣︸ ︷︷ ︸
B

.
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The first term, marked A, is bounded directly from Lemma 1 of Ravikumar et al. (2011):

P
(

max
j,k∈V

∣∣(Σ̂jk − Σjk

)∣∣ ≥ 1√
log n

)
≤ 4 · exp

(
−n

C1 log n

)
,

where C1 = 1600 maxj(Σjj)
2.

The second term, marked B, is also bounded by the following three terms:∣∣∣∣ (Σ̂j,SΣ̂−1S,SΣ̂S,j

)
−
(

Σj,SΣ−1S,SΣS,j

)∣∣∣∣
≤
∣∣∣∣Σ̂j,S(Σ̂−1S,S − Σ−1S,S)Σ̂S,j

∣∣∣∣+

∣∣∣∣Σ̂j,SΣ−1S,S(Σ̂S,j − ΣS,j)

∣∣∣∣+

∣∣∣∣(Σ̂j,S − Σj,S)Σ−1S,SΣS,j

∣∣∣∣
≤ ‖Σ̂j,S‖2Λmax(Σ̂−1S,S − Σ−1S,S) + Λmax(Σ−1S,S)‖Σ̂j,S − Σj,S‖2(‖Σ̂j,S‖2 + ‖ΣS,j‖2),

where Λmax(A) is a maximum eigenvalue of A.

This is bounded directly from Lemma 29 of Loh and Bühlmann (2014) for a given j ∈ V
and S ⊂ V ; for sufficiently large n such that 2 maxj∈V σ

2
jΛmax(Σ−1) ≤

√
log n, we have

P
(

Λmax(Σ̂S,S − ΣS,S)

)
≥ 1√

log n

)
≤ 2exp

(
−C2

n

log n

)
and

P
(

Λmax(Σ̂−1S,S − Σ−1S,S)

)
≥ Λmax(Σ−1)√

log n

)
≤ 2exp

(
−C3

n

log n

)
.

In addition, we have

‖Σ̂j,S − Σj,S‖2 ≤ Λmax(Σ̂S′,S′ − ΣS′,S′),

where S′ = {j} ∪ S. Furthermore, we also have,

‖Σ̂j,S‖2 ≤ ‖Σj,S‖2 + Λmax(Σ̂S′,S′ − ΣS′,S′)

Hence, for a sufficiently large n, there exist positive constants M1 and C4 such that

|V̂ar(Xj | XS)−Var(Xj | XS)|

≤ 1√
log n

+

(
‖Σj,S‖2 +

1√
log n

)
Λmax(Σ−1)√

log n
+

Λmax(Σ−1)√
log n

(
2‖Σj,S‖2 +

1√
log n

)
≤ M1√

log(n)
≤ τF

2

with a probability of at least 1 − exp(−C4n/ log n). Therefore, for fixed node size p, the
proof for Algorithm 1 is complete.

P (π̂ = π) ≥ 1− p(p− 1)

2
exp

(
−C4

n

log n

)
.
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Now, we provide the proof for Algorithm 2. In a similar method, the probability that
the ordering is correctly estimated from our backward stepwise selection method can be
written as

P (π̂ = π)

= P
(
σ̂2(p, π1:p−1) > min

j=1,...,p−1
σ̂2(j, V \ j), σ̂2(p− 1, π1:p−2) > min

j=1,...,p−2
σ̂2(j, π1:p−1 \ j)

, ..., σ̂2(2, 1) > σ̂2(1, 2)
)

= P
(

min
j=2,...,p

min
k=1,...,j−1

σ̂2(j, π1:j \ j)− σ̂2(k, π1:j \ k) > 0
)

Again, since it can be decomposed in to the following three terms, we have

P (π̂ = π)

= P
(

min
j=2,...,p

k=1,...,j−1

{(
σ2(j, π1:j \ j)− σ2(k, π1:j \ k)

)
−
(
σ2(j, π1:j \ j)− σ̂2(j, π1:j \ j)

)
+
(
σ2(k, π1:j \ k)− σ̂2(k, π1:j \ k)

)
> 0
})

≥ P
(

min
j=2,...,p

k=1,...,j−1

{(
σ2(j, π1:j \ j)− σ2(k, π1:j \ k)

)}
> τB, and

max
j=2,...,p
k=1,...,j

∣∣σ2(k, π1:j \ k)− σ̂2(k, π1:j \ k)
∣∣ < τB

2

)
.

Similar to the proof for Algorithm 1, the first term in the above probability is always
satisfied, because σ2(j, π1:j \ j)− σ2(k, π1:j \ k) > τB from Condition (B) in Assumption 7.
Hence, the lower bound of the probability that the ordering is correctly estimated via
Algorithm 2 is

P (π̂ = π) ≥ P

 max
j=2,...,p
k=1,...,j

∣∣σ2(j, πk)− σ̂2(j, πk)∣∣ < τB
2

 .

Since the remaining proof is analogous to the above proof for Algorithm 1, we can omit
the detail of the proof. Hence, we prove that for a fixed p and a sufficiently large n, there
exists a positive constant C4 such that

P (π̂ = π) ≥ 1− p(p− 1)

2
exp

(
−C4

n

log n

)
.
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Appendix D. Proof for Theorem 9

Proof

Without loss of generality, we suppose that the true ordering is π = (1, 2, ..., p). We
apply partial correlations to test the conditional independencies between variables. The
sample partial correlation ρ̂j,k,S can be calculated via linear regression, the inversion of
the parts of the covariance matrix, or recursively by using the following identity: for some
s ∈ S,

ρ̂j,k,S =
ρ̂j,k,S\s − ρ̂j,s,S\sρ̂k,s,S\s√
(1− ρ̂2j,s,S\s)(1− ρ̂

2
k,s,S\s)

.

With the partial correlations, we apply Fishers z-transform for the conditional indepen-
dence tests:

Zj,k,S =
1

2
log

(
1 + ρ̂j,k,S
1− ρ̂j,k,S

)
.

As seen in Kalisch and Bühlmann (2007), our proof is based on the following lemma:

Lemma 11 (Lemma3 in Kalisch and Bühlmann, 2007) Suppose that Assumption 6
is satisfied. Then, for any γ > 0,

sup
j,k,S

P(|Zj,k,S−zj,k,S | > γ) ≤ O(n−d)

(
exp

{
(n− p− 4) log

(
4− (γ/L)2

4 + (γ/L)2

)}
+ exp

{
− C2(n− p)

})
,

for some constant 0 < C2 <∞ and L = 1/(1− (1 +M)2/4).

Consider a pair of nodes (j, k) where j < k, which means j is not a descendant of k:
j /∈ De(k). In addition, we consider a conditioning set S such that Pa(j) ⊂ S ⊂ V \De(j).
Lastly, let Ej,k,S be an error event that consists of type I and II errors where Ej,k,S =
EIj,k,S ∪ EIIj,k,S .

Then, each type of error is as follows:

type I ErrorEIj,k,S :
√
n− |S| − 3 |Zj,k,S | > Φ−1(1− α/2) when zj,k,S = 0,

type II ErrorEIIj,k,S :
√
n− |S| − 3 |Zj,k,S | ≤ Φ−1(1− α/2) when zj,k,S 6= 0,

where Φ(·) is the cumulative distribution function of a standard normal distribution.

Let significance level α(n) = 2(1 − Φ(
√
n · κ(n)/2)) where κ(n) is as expressed in As-

sumption 6. By Lemma 11, we have

sup
j,k,S

P(EIj,k,S) = sup
j,k,S

P
(
|Zj,k,S − zj,k,S | >

√
n

n− |S| − 3

κ(n)

2

)
≤ O(n− p)exp

(
−C3(n− p)κ(n)2

)
,

for some positive constant C3 > 0 (see more details in Lemma 4 of Kalisch and Bühlmann,
2007).
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In addition, we have

sup
j,k,S

P(EIIj,k,S) = sup
j,k,S

P
(
|Zj,k,S | <

√
n

n− |S| − 3

κ(n)

2

)

= sup
j,k,S

P
(
|Zj,k,S − zj,k,S | > (1−

√
n

4(n− |S| − 3)
)κ(n)

)
≤ O(n− p)exp(−C4(n− p)κ(n)2),

for some positive constant C4 > 0 using Lemma 11 (see more details in Lemma 4 of Kalisch
and Bühlmann, 2007).

Therefore, using the union bound, we have

P(Ej,k,S) ≤ O(n− p)exp(−C5(n− p)κ(n)2).

for a positive constant C5 > 0.
Given the true ordering, there are p(p− 1)/2 hypothesis tests. Hence,

P( an error occurs in our algorithm) ≤ O(p2(n− p))exp
(
−C5(n− p)κ(n)2

)
.

Therefore, for a sufficiently large sample size n, and for a fixed node size p, our algorithm
recovers the true graph with a high probability. This completes the proof.
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