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Abstract

When the data is distributed across multiple servers, lowering the communication
cost between the servers (or workers) while solving the distributed learning problem is
an important problem and is the focus of this paper. In particular, we propose a fast,
and communication-efficient decentralized framework to solve the distributed machine
learning (DML) problem. The proposed algorithm, Group Alternating Direction Method of
Multipliers (GADMM) is based on the Alternating Direction Method of Multipliers (ADMM)
framework. The key novelty in GADMM is that it solves the problem in a decentralized
topology where at most half of the workers are competing for the limited communication
resources at any given time. Moreover, each worker exchanges the locally trained model
only with two neighboring workers, thereby training a global model with a lower amount
of communication overhead in each exchange. We prove that GADMM converges to the
optimal solution for convex loss functions, and numerically show that it converges faster and
more communication-efficient than the state-of-the-art communication-efficient algorithms
such as the Lazily Aggregated Gradient (LAG) and dual averaging, in linear and logistic
regression tasks on synthetic and real datasets. Furthermore, we propose Dynamic GADMM
(D-GADMM), a variant of GADMM, and prove its convergence under the time-varying
network topology of the workers.

1. Introduction

Distributed optimization plays a pivotal role in distributed machine learning applica-
tions (Ahmed et al., 2013; Dean et al., 2012; Li et al., 2013, 2014) that commonly aims
to minimize 1

N

∑N
n=1 fn(Θ) with N workers. As illustrated in Fig. 1-(a), this problem is

often solved by locally minimizing fn(θn) at each worker and globally averaging their model
parameters θn’s (and/or gradients) at a parameter server, thereby yielding the global model
parameters Θ (Tsianos et al., 2012). Another way is to formulate the problem as an average
consensus problem that minimizes 1

N

∑N
n=1 fn(θn) under the constraint θn=Θ, ∀n which

can be solved using dual decomposition or Alternating Direction Method of Multipliers
(ADMM). ADMM is preferable since standard dual decomposition may fail in updating the
variables in some cases. For example, if the objective function fn(θn) is a nonzero affine
function of any component in the input parameter θn, then the θn-update fails, since the
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Lagrangian is unbounded from below in θn for most choices of the dual variables (Boyd
et al., 2011). However, using ADMM or dual decomposition, an existence of a central entity
is necessary.

Such a centralized solution is, however, not capable of addressing a large network size
exceeds the parameter server’s coverage range. Even if the parameter server has a link to
each worker, communication resources may become the bottleneck since, at every iteration,
all workers need to transmit their updated models to the server before the server updates
the global model and send it to the workers. Hence, as the number of workers increases, the
uplink communication resources become the bottleneck. Because of this, we aim to develop
a fast and communication-efficient decentralized algorithm, and propose Group Alternating
Direction Method of Multipliers (GADMM). GADMM solves the problem 1

N

∑N
n=1 fn(θn)

subject to θn=θn+1,∀n ∈ {1, · · · , N − 1}, in which the workers are divided into two groups
(head and Tail), and each worker in the head (tail) group communicates only with its
two neighboring workers from the tail (head) group as shown in Fig. 1-(b). Due to its
communication with only two neighbors rather than all the neighbors or a central entity, the
communication in each iteration is significantly reduced. Moreover, by dividing the workers
into two equal groups, at most half of the workers are competing for the communication
resources at every communication round.

Despite this sparse communication where each worker communicates with at most two
neighbors, we prove that GADMM converges to the optimal solution for convex functions.
We numerically show that its communication overhead is lower than that of state-of-the-art
communication-efficient centralized and decentralized algorithms including Lazily Aggregated
Gradient (LAG) (Chen et al., 2018), and dual averaging (Duchi et al., 2011) for linear and
logistic regression on synthetic and real datasets. Furthermore, we propose a variant of
GADMM, Dynamic GADMM (D-GADMM), to consider the dynamic networks in which the
workers are moving objects (e.g., vehicles), so the neighbors of each worker could change
over time. Moreover, we prove that D-GADMM inherits the same convergence guarantees
of GADMM. Interestingly, we show that D-GADMM not only adjusts to dynamic networks,
but it also improves the convergence speed of GADMM, i.e., given a static physical topology,
keeping on randomly changing the way the connectivity chain is constructed (Fig. 1-(b)) can
significantly accelerate the convergence of GADMM. It is worth mentioning that it was shown
in (Nedić et al., 2018) as the number of links in the network graph decreases, the convergence
speed becomes slower. However, we show that the decrease of the convergence speed of
GADMM compared to the standard parameter server-based ADMM (fully connected graph)
due to sparsifying the network graph can be compensated by continuously keep changing
neighbors and utilize D-GADMM.

2. Related Works and Contributions

Distributed Optimization. There are a variety of distributed optimization algorithms
proposed in the literature, such as primal methods (Jakovetić et al., 2014; Nedić and
Olshevsky, 2014; Nedić and Ozdaglar, 2009; Shi et al., 2015) and primal-dual methods
(Chang et al., 2014a; Koppel et al., 2017; Bedi et al., 2019). Consensus optimization
underlies most of the primal methods, while dual decomposition and ADMM are the most
popular among the primal-dual algorithms (Glowinski and Marroco, 1975; Gabay and
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parameter server

Figure 1: An illustration of (a) distributed gradient descent with a parameter server and (b)
GADMM without any central entity.

Mercier, 1975; Boyd et al., 2011; Jaggi et al., 2014; Ma et al., 2017; Deng et al., 2017).
The performance of distributed optimization algorithms is commonly characterized by their
computation time and communication cost. The computation time is determined by the
per-iteration complexity of the algorithm. The communication cost is determined by: (i)
the number of communication rounds until convergence, (ii) the number of channel uses per
communication round, and (iii) the bandwidth/power usage per channel use. Note that the
number of communication rounds is proportional to the number of iterations; e.g., 2 rounds
at every iteration k, for uplink and downlink transmissions in Fig. 1-(a) or for head-to-tail
and tail-to-head transmissions in Fig. 1-(b). For a large scale network, the communication
cost often becomes dominant compared to the computation time, calling for communication
efficient distributed optimization (Zhang et al., 2012; McMahan et al., 2017; Park et al.,
2019; Jordan et al., 2018; Liu et al., 2019; Sriranga et al., 2019).

Communication Efficient Distributed Optimization. A vast amount of work is
devoted to reducing the aforementioned three communication cost components. To reduce
the bandwidth/power usage per channel use, decreasing communication payload sizes is one
popular solution, which is enabled by gradient quantization (Suresh et al., 2017), model
parameter quantization (Zhu et al., 2016; Sriranga et al., 2019), and model output exchange
for large-sized models via knowledge distillation (Jeong et al., 2018). To reduce the number
of channel uses per communication round, exchanging model updates can be restricted only
to the workers whose computation delays are less than a target threshold (Wang et al.,
2018), or to the workers whose updates are sufficiently changed from the preceding updates,
with respect to gradients (Chen et al., 2018), or model parameters (Liu et al., 2019). Albeit
their improvement in communication efficiency for every iteration k, most of the algorithms
in this literature are based on distributed gradient descent, and this limits their required
communication rounds to the convergence rate of distributed gradient descent, which is
O(1/k) for differentiable and smooth objective functions and can be as low as O(1/

√
k)

(e.g., when the objective function is non-differentiable everywhere (Boyd et al., 2011)).

On the other hand, primal-dual decomposition methods are shown to be effective in
enabling distributed optimization (Jaggi et al., 2014; Boyd et al., 2011; Ma et al., 2017;
Glowinski and Marroco, 1975; Gabay and Mercier, 1975; Deng et al., 2017), among which
ADMM is a compelling solution that often provides a fast convergence rate with low
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complexity (Glowinski and Marroco, 1975; Gabay and Mercier, 1975; Deng et al., 2017). It
was shown in (Chen et al., 2016) that Gauss-Seidel ADMM (Glowinski and Marroco, 1975)
achieves the convergence rate o(1/k). However, this convergence rate is ensured only when
the objective function is a sum of two separable convex functions.

Finally, all aforementioned distributed algorithms require a parameter server being
connected to every worker, which may induce a costly communication link to some workers
or it may not even be feasible particularly for the workers located beyond the server’s
coverage. In sharp contrast, we aim at developing a decentralized optimization framework
ensuring fast convergence without any central entity.

Decentralized Optimization. For decentralized topology, decentralized gradient
descent (DGD) has been investigated in (Nedić et al., 2018). Since DGD encounters a lower
number of connection per worker compared to parameter-server based GD, it achieves a slower
convergence. Beyond GD based approaches, several communication-efficient decentralized
algorithms were proposed for both time-variant and invariant topologies. (Duchi et al.,
2011; Scaman et al., 2018) proposed decentralized algorithms to solve the problem for
time-invariant topology at a convergence rate of O(1/

√
k). On the other hand, (Lan et al.,

2017) proposed a decentralized algorithm that enforces each worker to transmit the updated
primal and dual variables at each iteration. Note that, in GADMM, each worker is required
to share the primal parameters only per iteration. Finally, it is worth mentioning that a
decentralized algorithm was proposed in (He et al., 2018), but that algorithm was studied
only for linear learning tasks.

For time-varying topology, there are a few proposed algorithms in the literature. For
instance, (Nedić and Olshevsky, 2014) proposed a sub-gradient based algorithm for time-
variant directed graph. The algorithm enforces each worker to send two sets of variables
to its neighboring nodes per iteration and achieves O(1/

√
k) convergence rate. In contrast

to that, in D-GADMM, only primal variables are shared with neighbors at each iteration.
Finally, (Nedic et al., 2017) proposed an algorithm that achieves a linear convergence speed
but for strongly convex functions only. Moreover, it also enforces each worker to send more
than one set of variables per communication round.

Contribution. We formulate the decentralized machine learning (DML) problem as a
constrained optimization problem that can be solved in a decentralized way. Moreover, we
propose a novel algorithm to solve the formulated problem optimally for convex functions.
The proposed algorithm is shown to be fast and communication-efficient. It achieves
significantly less communication overhead compared to the standard ADMM. The proposed
GADMM algorithm allows (i) only half of the workers to transmit their updated parameters
at each communication round, (ii) the workers update their model parameters in parallel,
while each worker communicates only with two neighbors which makes it communication-
efficient. Moreover, we propose D-GADMM which has two advantages: (i) it accounts
for time-varying network topology, (ii) it improves the convergence speed of GADMM by
randomly changing neighbors even when the physical topology is not time-varying. Therefore,
D-GADMM integrates the communication efficiency of GADMM which uses only two links
per worker (sparse graph) with the fast convergence speed of the standard ADMM with
parameter server (star topology with N connection to a central entity). It is worth mentioning
that GADMM is closely related to other group-based ADMM methods as in (Wang et al.,
2017), but these methods consider more communication links per iteration than our proposed
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GADMM algorithm. Notably, the algorithm in (Wang et al., 2017) still relies on multiple
central entities, i.e., master workers under a master-slave architecture, whereas GADMM
requires no central entity wherein workers are equally divided into head and tail groups.

The rest of the paper is organized as follows. In section 3, we describe the problem
formulation. We describe our proposed variant of ADMM (GADMM) and analyze its
convergence guarantees in sections 4 and 5 respectively. In section 6, we describe D-
GADMM which is an extension of our proposed algorithm to time varying networks. In
section 7, we discuss our simulation results comparing GADMM to the considered baselines.
Finally, in section 8, we conclude the paper and briefly discuss future directions.

3. Problem Formulation

We consider a network of N workers where each worker is equipped with the task to learn a
global parameter Θ. The aim is to minimize the global convex loss function F (Θ) which
is sum of the local convex, proper, and closed functions fn(Θ) for all n. We consider the
following optimization problem

min
Θ

F (Θ), F (Θ) :=
N∑

n=1

fn(Θ), (1)

where Θ ∈ Rd is the global model parameter. Gradient descent algorithm can be used to
solve the problem in (1) iterativly in a central entity. The goal here is to solve the problem in
a distributed manner. The standard technique used in the literature for distributed solution
is consensus formulation of (1) given by.

min
Θ,{θn}Nn=1

N∑

n=1

fn(θn) (2)

s.t. θn = Θ, ∀ n. (3)

Note that with the reformulation in (2)-(3), the objective function becomes separable across
the workers and hence can be solved in a distributed manner. The problem in (2)-(3) is
known as the global consensus problem since the constraint forces all the variables across
different workers to be equal as detailed in (Boyd et al., 2011). The problem in (2)-(3) can
be solved using the primal-dual based algorithms as in (Chang et al., 2014b; Touri and Nedic,
2009; Nedić and Ozdaglar, 2009), saddle point algorithms proposed in (Koppel et al., 2017;
Bedi et al., 2019), and ADMM-based techniques such as (Glowinski and Marroco, 1975;
Boyd et al., 2011; Deng et al., 2017). ADMM forms an augmented Lagrangian which adds a
quadratic term to the Lagrange function and breaks the main problem into sub-problems
that are easier to solve per iteration. Note that in the ADMM implementation (Boyd et al.,
2011; Deng et al., 2017), only the primal variables {θn}Nn=1 can be updated in a distributed
manner. However, the step of updating Θ requires collecting θn from all workers which is
communication inefficient (Boyd et al., 2011).
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The problem formulation in (2)-(3) can be solved using standard ADMM (parameter
server based-ADMM). The augmented Lagrangian of the optimization problem in (2)-(3) as

Lρ(Θ, {θn}Nn=1,λ) =
N∑

n=1

fn(θn) +
N∑

n=1

〈λn,θn −Θ〉 +
ρ

2

N∑

n=1

‖θn −Θ‖2, (4)

where λ := [λT1 , · · · ,λTN ]T is the collection of the dual variables, and ρ is a constant adjusting
the penalty for the disagreement between θn and Θ. The primal and dual variables under
ADMM are updated in the following three steps.

1) At iteration k + 1, the primal variable of each workers is updated as:

θk+1
n = arg min

θn

[
fn(θn)+〈λkn,θn −Θk〉 +

ρ

2
‖θn −Θk‖2

]
, n ∈ {1, · · · , N} (5)

2) After the update in (5), each workers sends its primal variable (updated model) to the
parameter server. The primal variable of the parameter server is then updated as:

Θk+1 =
1

N

N∑

n=1

(
θk+1
n +

1

ρ
λkn

)
. (6)

3) After the update in (6), the parameter server broadcasts its primal variable (the updated
global model) to all workers. After receiving the global model (Θk+1) from the parameter
server, each worker locally updates its dual variable λn as follows

λk+1
n = λkn + ρ(θk+1

n −Θk+1), n = {1, · · · , N}. (7)

Note that standard ADMM requires a parameter server that collects updates from all workers,
update a global model and broadcast that model to all workers. Such a scheme may not be
a communication-efficient due to: (i) N workers competing for the limited communication
resources at every iteration, (ii) the worker with the weakest communication channel will
be the bottleneck for the communication rate of the broadcast channel from the parameter
server to the workers, (iii) some workers may not be in the coverage zone of the parameter
server.

In contrast to standard ADMM, we propose a decentralized algorithm that minimizes
the communication cost required per worker by allowing only N/2 workers to transmit at
every communication round, so the communication resources to each worker are doubled
compared to parameter server-based ADMM. Moreover, it limits the communication of each
worker to include only two neighbors. We consider the optimization problem in (2)-(3) and
rewrite the constraints as follows.

θ? := arg min
{θn}Nn=1

N∑

n=1

fn(θn) (8)

s.t. θn = θn+1, n = 1, · · · , N − 1. (9)

6
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Here θ? is the optimal and note that θ?n−1 = θ?n and θ?n = θ?n+1 for all n. This implies
that each worker n has joint constraints with only two neighbors (except for the two end
workers which have only one). Nonetheless, ensuring θn = θn+1 for all n ∈ {1, · · · , N − 1} at
the convergence point yields convergence to a global model parameter that is shared across
all workers.

4. Proposed Algorithm: GADMM

We will now describe our proposed algorithm, GADMM, that solves the optimization problem
defined in (8)-(9) in a decentralized manner. The proposed algorithm is fast since it allows
workers belonging to the same group to update their model parameters in parallel, and it
is communication-efficient since it allows workers to exchange variables with a minimum
number of neighbors and enjoys a fast convergence rate. Moreover, it allows only half of the
workers to transmit their updated model parameters at each communication round. Note
that when the number of workers who update their parameters per communication round is
reduced to half, the communication physical resources (e.g., bandwidth) available to each
worker are doubled when those resources are shared among workers.

The main idea of the proposed algorithm is presented in Fig. 1-(b). The proposed
GADMM algorithm splits the network nodes (workers) connected with a chain into two
groups head and tail such that each worker in the head’s group is connected to other workers
through two tail workers. It allows updating the parameters in parallel for the workers in
the same group. In one algorithm iterate, the workers in the head group update their model
parameters, and each head worker transmits its updated model to its directly connected tail
neighbors. Then, tail workers update their model parameters to complete one iteration. In
doing so, each worker (except the edge workers) communicates with only two neighbors to
update its parameter, as depicted in Fig. 1-(b). Moreover, at any communication round,
only half of the workers transmit their parameters, and these parameters are transmitted to
only two neighbors.

In contrast to the Gauss-Seidel ADMM in (Boyd et al., 2011), GADMM allows all the
head (tail) workers to update their parameters in parallel and still converges to the optimal
solution for convex functions as will be shown later in this paper. Moreover, GADMM has
much less communication overhead as compared to PJADMM in (Deng et al., 2017) which
requires all workers to send their parameters to a central entity at every communication
round. Also, GADMM has fewer hyperparameters to control and less computation per
iteration than PJADMM. The detailed steps of the proposed algorithm are summarized in
Algorithm 1.

To intuitively describe GADMM, without loss of generality, we consider an even N
number of workers under their linear connectivity graph shown in Fig. 1-(b), wherein each
head (or tail) worker communicates at most with two neighboring tail (or head) workers,
except for the edge workers (i.e., first and last workers). With that in mind, we start by
writing the augmented Lagrangian of the optimization problem in (8)-(9) as

Lρ({θn}Nn=1,λ) =
N∑

n=1

fn(θn) +
N−1∑

n=1

〈λn,θn − θn+1〉 +
ρ

2

N−1∑

n=1

‖θn − θn+1‖2, (10)

7
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Let’s divide the N workers into two groups, head Nh = {θ1,θ3,θ5, · · · ,θN−1}, and tail
Nt = {θ2,θ4,θ6, · · · ,θN}, respectively. The primal and dual variables under GADMM are
updated in the following three steps.

1) At iteration k + 1, the primal variables of head workers are updated as:

θk+1
n = arg min

θn

[
fn(θn)+〈λkn−1,θkn−1 − θn〉 + 〈λkn,θn − θkn+1〉 +

ρ

2
‖θkn−1 − θn‖2

+
ρ

2
‖θn − θkn+1‖2

]
, n ∈ Nh \ {1} (11)

Since the first head worker (n = 1) does not have a left neighbor (θn−1 is not defined), its
model is updated as follows.

θk+1
n = arg min

θn

[
fn(θn) + 〈λkn,θn − θkn+1〉 +

ρ

2
‖θn − θkn+1‖2

]
, n = 1 (12)

2) After the updates in (11) and (12), head workers send their updates to their two tail
neighbors. The primal variables of tail workers are then updated as:

θk+1
n = arg min

θn

[
fn(θn)+〈λkn−1,θk+1

n−1 − θn〉 + 〈λkn,θn − θk+1
n+1〉 +

ρ

2
‖θk+1

n−1 − θn‖2

+
ρ

2
‖θn − θk+1

n+1‖2
]
, n ∈ Nt \ {N}. (13)

Since the last tail worker (n = N) does not have a right neighbor (θn+1 is not defined),
its model is updated as follows.

θk+1
n = arg min

θn

[
fn(θn)+〈λkn−1,θk+1

n−1 − θn〉 +
ρ

2
‖θk+1

n−1 − θn‖2
]
, n = N. (14)

3) After receiving the updates from neighbors, every worker locally updates its dual variables
λn−1 and λn as follows

λk+1
n = λkn + ρ(θk+1

n − θk+1
n+1), n = {1, · · · , N − 1}. (15)

These three steps of GADMM are summarized in Algorithm 1. We remark that when
fn(θn) is convex, proper, closed, and differentiable for all n, the subproblems in (11) and
(13) are convex and differentiable with respect to θn. That is true since the additive terms
in the augmented Lagrangian are the addition of quadratic and linear terms, which are also
convex and differentiable.

5. Convergence Analysis

In this section, we focus on the convergence analysis of the proposed algorithm. It is
essential to prove that the proposed algorithm indeed converges to the optimal solution
of the problem in (8)-(9) for convex, proper, and closed objective functions. The idea to
prove the convergence is related to the proof of Gauss-Seidel ADMM in (Boyd et al., 2011),
while additionally accounting for the following three challenges: (i) the additional terms

8
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Algorithm 1 Group ADMM (GADMM)

1: Input: N, fn(θn) for all n, ρ
2: Initialization:
3: Nh = {θn | n: odd}, Nt = {θn | n: even}
4: θ

(0)
n = 0,λ

(0)
n = 0 for all n

5: for k = 0, 1, 2, · · · ,K do
6: Head worker n ∈ Nh:
7: computes its primal variable θk+1

n via (11) in parallel; and
8: sends θk+1

n to its neighboring workers n− 1 and n+ 1.
9: Tail worker n ∈ Nt:

10: computes its primal variable θk+1
n via (13) in parallel; and

11: sends θk+1
n to its neighbor workers n− 1 and n+ 1.

12: Every worker updates the dual variables λkn−1 and λkn via (15) locally.
13: end for

that appear when the problem is a sum of more than two separable functions, (ii) the fact
that each worker can communicate with two neighbors only, and (iii) the parallel model
parameter updates of the head (tail) workers. We show that the GADMM iterates converge
to the optimal solution after addressing all the above-mentioned challenges in the proof.
Before presenting the main technical Lemmas and Theorems, we start with the necessary
and sufficient optimality conditions, which are the primal and the dual feasibility conditions
(Boyd et al., 2011) defined as

θ?n =θ?n−1, n ∈ {2, · · · , N} (primal feasibility) (16)

0 ∈ ∂fn(θ?n)− λ?n−1 + λ?n, n ∈ {2, · · · , N − 1}
0 ∈ ∂fn(θ?n) + λ?n, n = 1 (dual feasibility)

0 ∈ ∂fn(θ?n) + λ?n−1, n = N (17)

We remark that the optimal values θ?n are equal for each n, we denote θ? = θ?n = θ?n−1 for
all n. Note that, at iteration k + 1, we calculate θk+1

n for all n ∈ Nt \ {N} as in (13), from
the first order optimality condition, it holds that

0 ∈ ∂fn(θk+1
n )− λkn−1 + λkn + ρ(θk+1

n − θk+1
n−1) + ρ(θk+1

n − θk+1
n+1). (18)

Next, rewrite the equation in (18) as

0 ∈ ∂fn(θk+1
n )−

(
λkn−1 + ρ(θk+1

n−1 − θk+1
n )

)
+
(
λkn + ρ(θk+1

n − θk+1
n+1)

)
. (19)

From the update in (15), the equation in (19) implies that

0 ∈ ∂fn(θk+1
n )− λk+1

n−1 + λk+1
n , n ∈ Nt \ {N}. (20)

Note that for the N -th worker, We calculate θk+1
N as in (14), then we follow the same steps,

and we get

0 ∈ ∂fn(θk+1
n )− λk+1

n−1, n = N. (21)

9
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From the result in (20) and (21), it holds that the dual feasibility condition in (17) is always
satisfied for all n ∈ Nt.

Next, consider every θk+1
n such that n ∈ Nh \ {1} which is calculated as in (11) at

iteration k. Similarly from the first order optimality condition, we can write

0 ∈ ∂fn(θk+1
n )− λkn−1 + λkn + ρ(θk+1

n − θkn−1) + ρ(θk+1
n − θkn+1). (22)

Note that in (22), we don’t have all the primal variables calculated at k+ 1 instance. Hence,
we add and subtract the terms θk+1

n−1 and θk+1
n+1 in (22) to get

0 ∈ ∂fn(θk+1
n )−

(
λkn−1 + ρ(θk+1

n−1 − θk+1
n )

)
+
(
λkn + ρ(θk+1

n − θk+1
n+1)

)

+ ρ(θk+1
n−1 − θkn−1) + ρ(θk+1

n+1 − θkn+1). (23)

From the update in (15), it holds that

0 ∈ ∂fn(θk+1
n )− λk+1

n−1 + λk+1
n + ρ(θk+1

n−1 − θkn−1) + ρ(θk+1
n+1 − θkn+1). (24)

Following the same steps for the first head worker (n = 1) after excluding the terms λkn−1
and ρ(θk+1

n − θkn−1) from (22) (worker 1 does not have a left neighbor) gives

0 ∈ ∂fn(θk+1
n ) + λk+1

n + ρ(θk+1
n+1 − θkn+1). (25)

Let sk+1
n∈Nh

, the dual residual of worker n ∈ Nh at iteration k + 1, be defined as follows

sk+1
n =

{
ρ(θk+1

n−1 − θkn−1) + ρ(θk+1
n+1 − θkn+1), for n ∈ Nh \ {1}

ρ(θk+1
n+1 − θkn+1), for n = 1.

(26)

Next, we discuss about the primal feasibility condition in (16) at iteration k + 1. Let
rk+1
n,n+1 = θk+1

n − θk+1
n+1 be the primal residual of each worker n ∈ {1, · · · , N − 1}. To show

the convergence of GADMM, we need to prove that the conditions in (16)-(17) are satisfied
for each worker n. We have already shown that the dual feasibility condition in (17) is
always satisfied for the tail workers, and the dual residual of tail workers is always zero.
Therefore, to prove the convergence and the optimality of GADMM, we need to show that
the rkn,n+1 for all n = 1, · · · , N − 1 and skn∈Nh

converge to zero, and
∑N

n=1 fn(θkn) converges

to
∑N

n=1 fn(θ?) as k →∞. Now we are in position to introduce our first result in terms of
Lemma 1.

Lemma 1 For the iterates θk+1
n generated by Algorithm 1, we have

(i) Upper bound on the optimality gap

N∑

n=1

[fn(θk+1
n )− fn(θ?)] ≤ −

N−1∑

n=1

〈λk+1
n , rk+1

n,n+1〉 +
∑

n∈Nh

〈sk+1
n ,θ?n − θk+1

n 〉. (27)

(ii) Lower bound on the optimality gap

N∑

n=1

[fn(θk+1
n )− fn(θ?)] ≥ −

N−1∑

n=1

〈λ?n, rk+1
n,n+1〉. (28)
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The detailed proof is provided in Appendix A. The main idea for the proof is to utilize the
optimality of the updates in (11) and (13). We derive the upper bound for the objective
function optimality gap in terms of the primal and dual residuals as stated in (27). To get
the lower bound in (28) in terms of the primal residual, the definition of the Lagrangian is
used at ρ = 0. The result in Lemma 1 is used to derive the main results in Theorem 2 of
this paper presented next.

Theorem 2 When fn(θn) is closed, proper, and convex for all n, and the Lagrangian L0

has a saddle point, for GADMM iterates, it holds that

(i) the primal residual converges to zero as k →∞.i.e.,

lim
k→∞

rkn,n+1 = 0, n ∈ {1, · · · , N − 1}. (29)

(ii) the dual residual converges to zero as k →∞.i.e.,

lim
k→∞

skn = 0, n ∈ Nh. (30)

(iii) the optimality gap converges to zero as k →∞.i.e.,

lim
k→∞

N∑

n=1

fn(θkn) =

N∑

n=1

fn(θ?). (31)

Proof The detailed proof of Theorem 2 is provided in Appendix B. There are three main
steps to prove convergence of the proposed algorithm. For a proper, closed, and convex
objective function fn(·), with Lagrangian L0 which has a saddle point (θ?, {λn}∀n), we
define a Lyapunov function Vk as

Vk = 1/ρ
N−1∑

n=1

∥∥∥λkn − λ?n

∥∥∥
2

+ ρ
∑

n∈Nh\{1}

∥∥∥θkn−1 − θ?
∥∥∥
2

+ ρ
∑

n∈Nh

∥∥∥θkn+1 − θ?
∥∥∥
2
. (32)

In the proof, we show that Vk is monotonically decreasing at each iteration k of the proposed
algorithm. This property is then used to prove that the primal residuals go to zero as k →∞
which implies that rkn,n+1 → 0 for all n. Secondly, we prove that the dual residuals converges

to zero as k →∞ which implies that skn → 0 for all n ∈ Nh. Note that the convergence in
the first and the second step implies that the overall constraint violation due to the proposed
algorithm goes to zero as k → ∞. In the final step, we utilize statement (i) and (ii) of
Theorem 2 into the results of Lemma 1 to prove that the objective optimality gap goes to
zero as k →∞.

11
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Algorithm 2 Dynamic GADMM (D-GADMM)

1: Input: N, fn(·) for all n, ρ, and τ
2: Initialization:
3: Nh = {θn | n: odd}, Nt = {θn | n: even}
4: θ

(0)
n = 0,λ

(0)
n = 0, for all n

5: for k = 0, 1, 2, · · · ,K do
6: if k mod τ = 0 then
7: Every worker:
8: broadcasts current model parameter
9: finds neighbors and refreshes indices {n} as explained in Appendix C.

10: sends λkn to its right neighbor (worker nr,k)
11: end if
12: Head worker n ∈ Nh:
13: computes its primal variable θk+1

n via (11) in parallel; and
14: sends θk+1

n to its neighboring workers nl,k and nr,k.
15: Tail worker n ∈ Nt:
16: computes its primal variable θk+1

n via (13) in parallel; and
17: sends θk+1

n to its neighbor workers nl,k and nr,k.
18: Every worker updates the dual variables λkn−1 and λkn via (15) locally.
19: end for

6. Extension to Time-Varying Network: D-GADMM

In this section, we present an extension of the proposed GADMM algorithm to the scenario
where the set of neighboring workers to each worker is varying over time. Note that the
overlay logical topology under consideration is still chain while the physical neighbors are
allowed to change. Under this dynamic setting, the execution of the proposed GADMM
in Algorithm 1 would be disrupted. Therefore, we propose, D-GADMM (summarized in
Algorithm 2) which adjusts to the changes in the set of neighbors.

In D-GADMM, all the workers periodically reconsider their connections after every τ
iterations. if neighbors and/or worker assignment to head/tail group change, every worker
broadcasts its current model parameter to the new neighbors. We assume that the workers
run an algorithm that can keep constructing a communication-efficient logical chain as the
underlying physical topology changes, and the design of such an algorithm is not the main
focus of the paper. It is worth mentioning that a logical graph that starts at one worker and
reaches every other worker only once in the most communication-efficient way is an NP-hard
problem. It can be easily shown that this problem can be reduced to a Traveling Salesman
Problem (TSP). This is due to the fact that starting from one worker and choosing every
next one such that the total communication cost is minimized is exactly equal to starting
from one city and reaching every other city such that the total distance is minimized, i.e.,
the workers in our problem are the cities in TSP, and the communication cost between each
pair of workers in our problem is the distance between each pair of cities in TSP. Hence,
proposed heuristics to solve TSP (Lenstra and Kan, 1975; Bonomi and Lutton, 1984) can
be used to construct the chain in our problem with the aid of a central entity, and then
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the algorithm continues working on the decentralized way. Decentralized heuristics for TSP
have been proposed which can also be used (Peterson, 1990; Dorigo and Gambardella, 1997).
However, in this paper, we use a simple decentralized heuristic that we describe in Appendix
C. Finally, it is worth mentioning that D-GADMM can still be utilized even if the physical
topology does not change. In such a scenario, the workers can agree on a predefined sequence
of logical chains, so changing neighbors does not require running an online algorithm, and
thus it encounters zero overhead. We observe in section 7 that D-GADMM can improve the
convergence speed when it is utilized even when the physical topology does not change.

The detailed steps of D-GADMM is described in Algorithm 2. We note that before the
execution, we assume that all the nodes are connected to each other with a chain. Each
node is associated with an index n and there exists a link from node 1 to node 2, node
2 to node 3, and so on till N − 1 to N . For each node n there is an associated primal
variable θn from n = 1 to N and a dual variable λn from node n = 1 to N − 1. Under the
dynamic settings, we assume that the nodes at position n = 1 and N are fixed while the
other nodes are allowed to move in the network. This means that instead of having the
connection in the order 1− 2− 3 · · ·N , the nodes are allowed to connect in any order such
as 1 − 5 − 3 − · · · − 4 − N , or 1 − 4 − 2 − · · · − 5 − N , etc. Alternatively, the neighbors
of each node n are no longer fixed under the dynamic settings. To denote this behavior,
since the topology is still the chain, we call the left neighbor to node n as nl,k at iteration
k and similarly nr,k for the right neighbor node. Therefore, at each iteration k, each node
implements the algorithm considering nl,k and nr,k as its neighbors. Note that, when the
topology changes at iteration k, every worker n transmits its right dual variable λkn to its
right neighbor in the new chain to ensure that both neighbors share the same dual variable.
Therefore, the right neighbor of each worker n will replace λknl,k

with the dual variable that
is received from its new left neighbor. With that, we show in Appendix D that the algorithm
converges to the optimal solution in a similar manner to GADMM.

7. Numerical Results

To validate our theoretical foundations, we numerically evaluate the performance of GADMM
in linear and logistic regression tasks, compared with the following benchmark algorithms.

• LAG-PS (Chen et al., 2018): A version of LAG where parameter server selects commu-
nicating workers.

• LAG-WK (Chen et al., 2018): A version of LAG where workers determine when to
communicate with the server.

• Cycle-IAG (Blatt et al., 2007; Gurbuzbalaban et al., 2017): A cyclic modified version of
the incremental aggregated gradient (IAG).

• R-IAG (Chen et al., 2018; Schmidt et al., 2017): A non-uniform sampling version of
stochastic average gradient (SAG).

• GD: Batch gradient descent.

• DGD (Nedić et al., 2018) Decentralized gradient descent.
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Iteration
Linear Regression Logistic Regression

N =14 20 24 26 N =14 20 24 26

LAG-PS 542 8,043 54,249 141,132 21,183 20,038 19,871 20,544
LAG-WK 385 6,444 44,933 121,134 18,584 17,475 17,050 17,477
GADMM 78 292 558 550 120 235 112 160
GD 524 8,163 55,174 143,651 1,190 1,204 1,181 1,152

TC
Linear Regression Logistic Regression

N =14 20 24 26 N =14 20 24 26

LAG-PS 3,183 52,396 363,571 1,035,778 316,570 419,819 495,792 553,493
LAG-WK 820 12,369 82,985 241,944 18,786 17,835 17,432 17,915
GADMM 1,092 5,840 13,392 14,300 696 1,962 1,030 1,712
GD 7,860 171,423 1,379,350 3,878,577 17,850 25,284 29,525 31,104

Table 1: The required number of iterations (top) and total communication cost (bottom) to
achieve the target objective error 10−4 for different number of workers, in linear and logistic
regression with the real datasets.

• DualAvg (Duchi et al., 2011) Dual averaging.

For the tuning parameters, we use the setup in (Chen et al., 2018). For our decentralized
algorithm, we consider N workers without any central entity, whereas for centralized
algorithms, a uniformly randomly selected worker is considered as a central controller having
a direct link to each worker. The performance of each algorithm is measured using:

• the objective error |∑N
n=1

[
fn(θ

(k)
n )− fn(θ∗)

]
| at iteration k.

• (ii) The total communication cost (TC). The TC of a decentralized algorithm
is
∑Ta

t=1

∑N
n=1 1n,t · Lmn,t, where Ta is the number of iterations to achieve a target

accuracy a, and 1n,t denotes an indicator function that equals 1 if worker n is sending
an update at t, and 0 otherwise. The term Lmn,t is the cost of the communication link
between workers n and m at communication round t. Next, let Lcn,t denote the cost of
the communication between worker n and the central controller at t. Then, the TC
of a centralized algorithm is

∑Ta
t=1(L

c
BC,t +

∑N
n=1 1n,t · Lcn,t), where LcBC,t and Lcn,t’s

correspond to downlink broadcast and uplink unicast costs, respectively. It is noted
that the communication overhead in (Chen et al., 2018) only takes into account uplink
costs.

• The total running time (clock time) to achieve objective error a. This metric considers
both the communication and the local computation time. We consider Lmn,t = Lcn,t =
LcBC,t = 1 unless otherwise specified.

All simulations are conducted using the synthetic and real datasets described in (Dua
and Graff, 2017; Chen et al., 2018). The synthetic data for the linear and logistic regression
tasks are generated as described in (Chen et al., 2018). We consider 1,200 samples with 50
features, which are evenly split into workers. Next, the real data tests linear and logistic
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Figure 2: Objective error, total communication cost, and total running time comparison
between GADMM and five benchmark algorithms, in linear regression with synthetic
(N = 24) datasets.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Number of Iterations

(a)
×10

4

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

O
b

je
ct

iv
e 

E
rr

o
r

GD
cyclic-IAG
R-IAG
LAG-PS
LAG-WK
DGD
Dual-Avg
GADMM, ρ=3
GADMM, ρ=5
GADMM, ρ=7

1 2 3 4 5 6 7 8 9 10

Cumulative Communication Cost

(b)
×10

4

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

O
b

je
ct

iv
e 

E
rr

o
r

GD
LAG-PS
LAG-WK
DGD
Dual-Avg
GADMM, ρ=3
GADMM, ρ=5
GADMM, ρ=7

0 0.05 0.1 0.15 0.2 0.25

Clock Time

(c)

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

O
b

je
ct

iv
e 

E
rr

o
r

GD
LAG-PS
LAG-WK
DGD
Dual-Avg
GADMM, ρ=3
GADMM, ρ=5
GADMM, ρ=7

200 600 1000
10

-4

10
-2

10
0

Figure 3: Objective error, total communication cost, and total running time comparison
between GADMM and five benchmark algorithms, in linear regression with real (N = 10)
datasets.

regression tasks with Body Fat (252 samples, 14 features) and Derm (358 samples, 34
features) datasets (Dua and Graff, 2017), respectively. As the real dataset is smaller than
the synthetic dataset, we by default consider 10 and 24 workers for the real and synthetic
datasets, respectively.

Figs. 2, 3, 4, and 5 corroborate that GADMM outperforms the benchmark algorithms by
several orders of magnitudes, thanks to the idea of two alternating groups where each worker
communicates only with two neighbors. For linear regression with the synthetic dataset, Fig. 2
shows that all variants of GADMM with ρ = 3, 5, and 7 achieve the target objective error of
10−4 in less than 1,000 iterations, whereas GD, LAG-PS, and LAG-WK (the closest among
baselines) require more than 40,000 iterations to achieve the same target error. Furthermore,
the TC of GADMM with ρ = 3 and ρ = 5 are 6 and 9 times lower than that of LAG-WK
respectively. Table 1 shows similar results for different numbers of workers, only except for
linear regression with the smallest number of workers (14), in which LAG-WK achieves the
lowest TC. We also observe from Figs. 2 and 3 that GADMM outperforms all baselines in
terms of the total running time, thanks to the fast convergence. GADMM performs matrix

15



Elgabli, Park, Bedi, Bennis, and Aggarwal

0 2 4 6 8 10

Number of Iterations

(a)
×10

4

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

O
b

je
ct

iv
e 

E
rr

o
r

GD
cyclic-IAG
R-IAG
LAG-PS
LAG-WK
DGD
dualAvg
GADMM, ρ=2E-3
GADMM, ρ=3E-3

0 2 4 6 8 10

Cumulative Communication Cost

(b)
×10

5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

O
b

je
ct

iv
e 

E
rr

o
r

GD
LAG-PS
LAG-WK
DGD
dualAvg
GADMM, ρ=2E-3
GADMM, ρ=3E-3

0 0.5 1 1.5

Clock Time

(c)

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

O
b

je
ct

iv
e 

E
rr

o
r

GD
LAG-PS
LAG-WK
DGD
dualAvg
GADMM, ρ=2E-3
GADMM, ρ=3E-3

500 1000 1500 2000

10
0

20 40 60 80

10
0

Figure 4: Objective error, total communication cost, and total running time comparison
between GADMM and five benchmark algorithms, in logistic regression with synthetic
(N = 24) datasets.
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Figure 5: Objective error, total communication cost, and total running time comparison
between GADMM and five benchmark algorithms, in logistic regression with real (N = 10)
datasets.

inversion which is computationally complex compared to calculating gradient. However, the
computation cost per iteration is compensated by fast convergence.

For logistic regression, Figs. 4 and 5 validate that GADMM outperforms the benchmark
algorithms, as in the case of linear regression in Figs. 2 and 3. One thing that is worth
mentioning here is shown in Fig 4-(c), where we can see that the total running time of
GADMM is equal to the running time of GD. The reason behind this is that the logistic
regression problem is not solved in a closed-form expression at each iteration. However,
GADMM still significantly outperforms GD in communication-efficiency.

Next, comparing the results in Fig. 2 and Fig. 3, we observe that the optimal ρ depends
on the data distribution across workers. Namely, when the local data samples of each worker
are highly correlated with the other workers’ samples (i.e., Body Fat dataset, Fig. 3), the
local optimal of each worker is very close to the global optimal. Therefore, reducing the
penalty for the disagreement between θn and θn+1 by lowering ρ yields faster convergence.
Following the same reasoning, higher ρ provides faster convergence when the local data
samples are independent of each other (i.e., synthetic datasets in Fig. 2).
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Figure 6: The cumulative distribution function (CDF) of total communication cost (TC)
in (a) linear and (b) logistic regression by uniformly randomly distributed 24 workers with
1,000 observations, and (c) the average consensus constraint violation (ACV) of GADMM in
logistic regression by 4 workers.

Fig. 6-(a) and (b) demonstrate that GADMM is communication efficient under different
network topologies. In fact, the TC calculations of GADMM in Table 1 and Fig. 2 rely on a
unit communication cost for all communication links, i.e., Lmn,t = Lcn,t = LcBC,t = 1, which
may not capture the communication efficiency of GADMM under a generic network topology.
Instead, we use the consumed energy per communication iteration as the communication cost
metric. We illustrate the cumulative distribution function (CDF) of TC by observing 1,000
different network topologies. At the beginning of each observation, 24 workers are randomly
distributed over a 10×10 m2 square area. In GADMM, the method described in Appendix
C is used to construct the logical chain. In centralized algorithms, the worker closest to the
center becomes a central worker associating with all the other workers. We assume that the
bandwidth is evenly distributed among users, and we also assume that each worker needs a
bit rate of 10Mbps to transmit its model in a one-time slot. Therefore, the communication
cost per worker per iteration is the amount of energy that worker consumes to achieve the
rate of 10Mbps. Note that according to Shannon’s formula, the achievable rate is a function
of the bandwidth and power, i.e., R = B · log2( P

d2·N0·B ), where B is the bandwidth, P is the
communication power, N0 is the noise spectral density, and d is the distance between the
transmitter and the receiver (McKeague, 1981), so we assume a free-space communication
link. In our simulations, we assume, B = 2MHz, N0 = 1E − 6, we find the required power
(energy) to achieve 10Mbps over link l at time slot t, and that reflects the communication
cost of using link l at time slot t.

The CDF results in Fig. 6-(a) and (b) show that with high probability, GADMM achieves
much lower TC in both linear and logistic regression tasks for generic network topology,
compared to other baseline algorithms. On the other hand, Fig. 6-(c) validates that GADMM
guarantees consensus on the model parameters of all workers when training converges. Indeed,
GADMM complies with the constraint θn = θn+1 in (3). We observe in Fig. 4-(c) that the

average consensus constraint violation (ACV), defined as
∑N−1

n=1 |θ
(k)
n − θ

(k)
n+1|/N , goes to

zero with the number of iterations. Specifically, AVC becomes 8×10−7 after 495 iterations
at which the loss becomes 1×10−4. This underpins that GADMM is robust against its
consensus violations temporarily at the early phase of training, thereby achieving the average
consensus at the end.
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Figure 7: Objective error, total communication cost, and total running time of D-GADMM
versus GADMM in linear regression with the synthetic dataset at ρ = 1, N = 50

We now extend GADMM to D-GADMM, and evaluate its performance under the time-
varying network topology. One note to make, in simulating D-GADMM, we do not exchange
dual variables between neighbors at every topology change as described in line 10, Algorithm
2. However, as we will show, D-GADMM still converges. Therefore, the extra communication
overhead that might be encountered in D-GADMM when workers share their dual variables
is avoided and the convergence is still preserved. We change the topology every 15 iterations.
Therefore, we assume that the system coherence time is 15 iterations. To simulate the
change in the topology, 50 workers are randomly distributed over a 250×250 m2 square area
every 15-th iteration. D-GADMM uses the method described in appendix D which consumes
2 iterations (4 communication rounds) to build the chain. In contrast, GADMM keeps the
logical worker connectivity graph unchanged even when the underlying physical topology
changes. In linear regression with the synthetic dataset and 50 workers, as observed in Fig. 7,
even though D-GADMM consumes two iterations per topology change in building the chain,
both the total number of iterations to achieve the objective error of 1E − 4 and the TC of
D-GADMM are significantly reduced compared to GADMM. We observe that by changing
the neighboring set of each worker more frequently, the convergence speed is significantly
improved. Therefore, even for the static scenario in which the physical topology does not
change, reconstructing the logical chain every few iterations can significantly improve the
convergence speed.

We finally compare both GADMM and D-GADMM with the standard ADMM which
requires a parameter server (star topology). Since the topology does not change, we replace
“system coherence time” with “refresh rate”. Therefore, the objective of using D-GADMM is
not to adapt to topology changes, while to improve the convergence speed of GADMM. To
compare the algorithms, we use 24 workers (N = 24), and we randomly drop them over a
250×250 m2 square area. For standard ADMM, we use the worker that is closest to the
center of the grid as the parameter server.

As observed from Fig. 8, compared to GADMM, standard ADMM requires fewer iterations
to achieve the objective error of 1E−4, but that comes at significantly higher communication
cost as shown in Fig. 8-(b) (4 times higher cost than GADMM). We show that by randomly
changing the logical connectivity graph and utilizing D-GADMM, we can reduce the gap in
the number of iterations between GADMM and standard ADMM and significantly reduce
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Figure 8: Objective error, total communication cost, and total running time of D-GADMM,
GADMM, and Standared ADMM in linear regression with the synthetic dataset at ρ = 1,
N = 24

the communication cost. In fact, Fig. 8 shows that by changing the logical graph every
iteration, D-GADMM converges faster than standard ADMM and achieves a communication
cost that is 40 times less. It is worth mentioning that for static physical topology, changing
the logical graph comes at zero cost since workers can agree on a predefined pseudorandom
sequence in the graph changes. Therefore, every worker knows its neighbors in the next
iteration.

8. Conclusions and Future work

In this paper, we formulate a constrained optimization problem for distributed machine
learning applications, and propose a novel decentralized algorithm based on ADMM, termed
Group ADMM (GADMM) to solve this problem optimally for convex functions. GADMM
is shown to maximize the communication efficiency of each worker. Extensive simulations in
linear and logistic regression with synthetic and real datasets show significant improvements
in convergence rate and communication overhead compared to the state-of-the-art algorithms.
Furthermore, we extend GADMM to D-GADMM which accounts for time-varying network
topologies. Both analysis and simulations confirm that D-GADMM achieves the same
convergence guarantees as GADMM with lower communication overhead under the time-
varying topology scenario. Constructing a communication-efficient logical chain may not
always be possible; therefore, extending the algorithm to achieve a low communication
overhead under an arbitrary topology could be an interesting topic for future study.
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Appendix A. Proof of Lemma 1

Proof of statement (i): We note that fn(θn) for all n is closed, proper, and convex, hence
Lρ is sub-differentiable. Since θk+1

n∈Nh
minimizes Lρ(θn∈Nh

,θkn∈Nt
,λn), the following must

hold true at each iteration k + 1

0 ∈ ∂fn(θk+1
n )− λk+1

n−1 + λk+1
n + sk+1

n , n ∈ Nh \ {1} (33)

0 ∈ ∂fn(θk+1
n ) + λk+1

n + sk+1
n , n = 1 (34)

Note that we use (34) for worker 1 since it does not have a left neighbor (i.e., λk+1
0 is

not defined). However, for simplicity and to avoid writing separate equations for the edge
workers (workers 1 and N), we use: λk+1

0 = λk+1
N = 0 throughout the rest of the proof.

Therefore, we can use a single equation for each group (e.g., equation (33) for n ∈ Nh).

The result in (33) implies that θk+1
n for n ∈ Nh minimizes the following convex objective

function

fn(θn) + 〈−λk+1
n−1 + λk+1

n + sk+1
n∈Nh

,θn〉. (35)

Next, since θk+1
n for n ∈ Nh is the minimizer of (35), then, it holds that

fn(θk+1
n ) + 〈−λk+1

n−1 + λk+1
n + sk+1

n∈Nh
,θk+1
n 〉 ≤ fn(θ?)+ 〈−λk+1

n−1+λk+1
n +sk+1

n∈Nh
,θ?〉 (36)

where θ? is the optimal value of the problem in (8)-(9). Similarly for θk+1
n for n ∈ Nt

satisfies (17) and it holds that

fn(θk+1
n ) + 〈−λk+1

n−1 + λk+1
n ,θk+1

n 〉 ≤ fn(θ?) + 〈−λk+1
n−1 + λk+1

n ,θ?〉. (37)

Adding (36) and (37), and then taking the summation over all the workers, we get

N∑

n=1

fn(θk+1
n ) +

∑

n∈Nt

〈−λk+1
n−1 + λk+1

n ,θk+1
n 〉 +

∑

n∈Nh

〈−λk+1
n−1 + λk+1

n + sk+1
n∈Nh

,θk+1
n 〉

≤
N∑

n=1

fn(θ?) +
∑

n∈Nt

〈−λk+1
n−1 + λk+1

n ,θ?〉 +
∑

n∈Nh

〈−λk+1
n−1 + λk+1

n + sk+1
n∈Nh

,θ?〉 (38)

After rearranging the terms, we get

N∑

n=1

fn(θk+1
n )−

N∑

n=1

fn(θ?) ≤
∑

n∈Nt

〈−λk+1
n−1 + λk+1

n ,θ?〉 +
∑

n∈Nh

〈−λk+1
n−1 + λk+1

n ,θ?〉

−
∑

n∈Nt

〈−λk+1
n−1 + λk+1

n ,θk+1
n 〉−

∑

n∈Nh

〈−λk+1
n−1 + λk+1

n ,θk+1
n 〉

+
∑

n∈Nh

〈sk+1
n∈Nh

,θ? − θk+1
n 〉. (39)
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Note that,
∑

n∈Nh

〈−λk+1
n−1 + λk+1

n ,θn〉 =〈λk+1
1 ,θ1〉− 〈λk+1

2 ,θ3〉 + 〈λk+1
3 ,θ3〉 + · · ·

· · · − 〈λk+1
N−2,θN−1〉 + 〈λk+1

N−1,θN−1〉, (40)

and ∑

n∈Nt

〈−λk+1
n−1 + λk+1

n ,θn〉 =− 〈λk+1
1 ,θ2〉 + 〈λk+1

2 ,θ2〉− 〈λk+1
3 ,θ4〉 + · · ·

· · · − 〈λk+1
N−1,θN〉 + 〈λk+1

N−1,θN〉. (41)

From (40) and (41), at θk+1
n , it holds that

∑

n∈Nt

〈−λk+1
n−1 + λk+1

n ,θk+1
n 〉 +

∑

n∈Nh

〈−λk+1
n−1 + λk+1

n ,θk+1
n 〉

= 〈λk+1
1 ,θk+1

1 − θk+1
2 〉 + 〈λk+1

2 ,θk+1
2 − θk+1

3 〉 + · · ·+ 〈λk+1
N−1,θ

k+1
N−1 − θk+1

N 〉
= 〈λk+1

1 , rk+1
1,2 〉 + 〈λk+1

2 , rk+1
2,3 〉 + · · ·+ 〈λk+1

N−1, r
k+1
N−1,N〉, (42)

where for the second equality, we have used the definition of primal residuals defined after
(24). Similarly, it holds for θ? that
∑

n∈Nt

〈−λk+1
n−1 + λk+1

n ,θ?〉 +
∑

n∈Nh

〈−λk+1
n−1 + λk+1

n ,θ?〉 (43)

= 〈λk+1
1 ,θ?〉 + 〈λk+1

2 − λk+1
1 ,θ?〉 + 〈λk+1

3 − λk+1
2 ,θ?〉 + · · ·+ 〈λk+1

N − λk+1
N−1,θ

?〉
= 0.

The equality in (43) holds since λk+1
N = 0. Next, substituting the results from (42) and (43)

into (39), we get

N∑

n=1

fn(θk+1
n )−

N∑

n=1

fn(θ?) ≤ −
N−1∑

n=1

〈λk+1
n , rk+1

n,n+1〉 +
∑

n∈Nh

〈sk+1
n∈Nh

,θ? − θk+1
n 〉, (44)

which concludes the proof of statement (i) of Lemma 1.
Proof of statement (ii): The proof of this Lemma is along the similar line as in (Boyd

et al., 2011, A.3) but is provided here for completeness. We note that for a saddle point
(θ?, {λ?n}∀n) of L0({θn}∀n, {λn}∀n), it holds that

L0(θ
?, {λ?n}∀n) ≤ L0({θk+1

n }∀n, {λ?n}∀n) (45)

for all n. Substituting the expression for the Lagrangian from (10) on the both sides of (45),
we get

N∑

n=1

fn(θ?) ≤
N∑

n=1

fn(θk+1
n ) +

N−1∑

n=1

〈λ?n, rk+1
n,n+1〉. (46)

After rearranging the terms, we get

N∑

n=1

fn(θk+1
n )−

N∑

n=1

fn(θ?) ≥ −
N−1∑

n=1

〈λ?n, rk+1
n,n+1〉 (47)

which is the statement (ii) of Lemma 1.
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Appendix B. Proof of Theorem 2

To proceed with the analysis, add (44) and (47), multiply by 2, we get

2

N−1∑

n=1

〈λk+1
n − λ?n, r

k+1
n,n+1〉 + 2

∑

n∈Nh

〈sk+1
n ,θk+1

n − θ?〉 ≤ 0. (48)

By applying, λk+1
n = λkn + ρrk+1

n,n+1 obtained from the dual update in (15), (48) can be recast
as

2
N−1∑

n=1

〈λkn + ρrk+1
n,n+1 − λ?n, r

k+1
n,n+1〉 + 2

∑

n∈Nh

〈sk+1
n ,θk+1

n − θ?〉 ≤ 0. (49)

Note that the first term on the left hand side of (49) can be written as

N−1∑

n=1

2〈λkn − λ?n, r
k+1
n,n+1〉 + ρ

∥∥∥rk+1
n,n+1

∥∥∥
2

+ ρ
∥∥∥rk+1

n,n+1

∥∥∥
2
. (50)

Replacing rk+1
n,n+1 in the first and second terms of (50) with λk+1

n −λk
n

ρ , we get

N−1∑

n=1

(2/ρ)〈λkn − λ?n,λ
k+1
n − λkn〉 + (1/ρ)

∥∥∥λk+1
n − λkn

∥∥∥
2

+ ρ
∥∥∥rk+1

n,n+1

∥∥∥
2
. (51)

Using the equality λk+1
n − λkn = (λk+1

n − λ?n)− (λkn − λ?n), we can rewrite (51) as

N−1∑

n=1

(2/ρ)〈λkn−λ?n, (λk+1
n −λ?n)− (λkn−λ?n)〉+(1/ρ)

∥∥∥(λk+1
n −λ?n)− (λkn−λ?n)

∥∥∥
2

+ ρ
∥∥∥rk+1

n,n+1

∥∥∥
2

=
N−1∑

n=1

(2/ρ)〈λkn − λ?n,λ
k+1
n − λ?n〉− (2/ρ)

∥∥∥λkn − λ?n

∥∥∥
2

+ (1/ρ)
∥∥∥λk+1

n − λ?n

∥∥∥
2

− (2/ρ)〈λk+1
n − λ?n,λ

k
n − λ?n〉 + 1/ρ

∥∥∥λkn − λ?n

∥∥∥
2

+ ρ
∥∥∥rk+1

n,n+1

∥∥∥
2

(52)

=

N−1∑

n=1

[
(1/ρ)

∥∥∥λk+1
n − λ?n

∥∥∥
2
− (1/ρ)

∥∥∥λkn − λ?n

∥∥∥
2

+ ρ
∥∥∥rk+1

n,n+1

∥∥∥
2 ]
. (53)

Next, consider the second term on the left hand side of (49). From the equality (26), it
holds that

2
∑

n∈Nh

〈sk+1
n ,θk+1

n − θ?〉 (54)

=
∑

n∈Nh\{1}

(
2ρ〈θk+1

n−1 − θkn−1,θ
k+1
n − θ?〉

)
+
∑

n∈Nh

(
2ρ〈θk+1

n+1 − θkn+1,θ
k+1
n − θ?〉

)
.
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Note that θk+1
n = −rk+1

n−1,n +θk+1
n−1 = rk+1

n,n+1 +θk+1
n+1, ∀n = {2, · · · , N − 1} , which implies that

we can rewrite (54) as follows

2
∑

n∈Nh

〈sk+1
n ,θk+1

n − θ?〉

=
∑

n∈Nh\{1}

(
− 2ρ〈θk+1

n−1 − θkn−1, r
k+1
n−1,n〉 + 2ρ〈θk+1

n−1 − θkn−1,θ
k+1
n−1 − θ?〉

)

+
∑

n∈Nh

(
2ρ〈θk+1

n+1 − θkn+1, r
k+1
n,n+1〉 + 2ρ〈θk+1

n+1 − θkn+1,θ
k+1
n+1 − θ?〉

)
. (55)

Using the equalities,

θk+1
n−1 − θ? =(θk+1

n−1 − θkn−1) + (θkn−1 − θ?), ∀n ∈ Nh \ {1}
θk+1
n+1 − θ? =(θk+1

n+1 − θkn+1) + (θkn+1 − θ?), ∀n ∈ Nh (56)

we rewrite the right hand side of (55) as
∑

n∈Nh\{1}

(
− 2ρ〈θk+1

n−1 − θkn−1, r
k+1
n−1,n〉 + 2ρ〈θk+1

n−1 − θkn−1, (θ
k+1
n−1 − θkn−1) + (θkn−1 − θ?)〉

)

+
∑

n∈Nh

(
2ρ〈θk+1

n+1 − θkn+1, r
k+1
n,n+1〉 + 2ρ〈θk+1

n+1 − θkn+1, (θ
k+1
n − θkn+1) + (θkn+1 − θ?)〉

)

=
∑

n∈Nh\{1}

(
− 2ρ〈θk+1

n−1 − θkn−1, r
k+1
n−1,n〉 + 2ρ

∥∥∥θk+1
n−1 − θkn−1

∥∥∥
2

+ 2ρ〈θk+1
n−1 − θkn−1,θ

k
n−1 − θ?〉

)

+
∑

n∈Nh

(
2ρ〈θk+1

n+1 − θkn+1, r
k+1
n,n+1〉 + 2ρ

∥∥∥θk+1
n+1 − θkn+1

∥∥∥
2

+ 2ρ〈θk+1
n+1 − θkn+1,θ

k
n+1 − θ?n+1〉

)
.

(57)

Further using the equalities

θk+1
n−1 − θkn−1 =(θk+1

n−1 − θ?)− (θkn−1 − θ?),∀n ∈ Nh \ {1}
θk+1
n+1 − θkn+1 =(θk+1

n+1 − θ?)− (θkn+1 − θ?),∀n ∈ Nh (58)

we can write (57) as
∑

n∈Nh\{1}

(
− 2ρ〈θk+1

n−1 − θkn−1, r
k+1
n−1,n〉+2ρ

∥∥∥θk+1
n−1 − θkn−1

∥∥∥
2
+2ρ〈(θk+1

n−1−θ?)−(θkn−1−θ?),θkn−1−θ?〉
)

+
∑

n∈Nh

(
2ρ〈θk+1

n+1 − θkn+1, r
k+1
n,n+1〉 + 2ρ

∥∥∥θk+1
n+1 − θkn+1

∥∥∥
2

+ 2ρ〈(θk+1
n+1 − θ?)− (θkn+1 − θ?),θkn+1 − θ?〉

)
(59)

=
∑

n∈Nh\{1}

(
− 2ρ〈θk+1

n−1 − θkn−1, r
k+1
n−1,n〉+2ρ

∥∥∥θk+1
n−1 − θkn−1

∥∥∥
2
+ 2ρ〈θk+1

n−1−θ?,θkn−1−θ?〉

− 2ρ
∥∥∥θkn−1−θ?

∥∥∥
2 )

+
∑

n∈Nh

(
2ρ〈θk+1

n+1 − θkn+1, r
k+1
n,n+1〉 + 2ρ

∥∥∥θk+1
n+1 − θkn+1

∥∥∥
2

+ 2ρ〈θk+1
n+1 − θ?,θkn+1 − θ?〉− 2ρ

∥∥∥θkn+1 − θ?
∥∥∥
2 )
. (60)

23



Elgabli, Park, Bedi, Bennis, and Aggarwal

After rearranging the terms, we can write

=
∑

n∈Nh\{1}

(
− 2ρ〈θk+1

n−1 − θkn−1, r
k+1
n−1,n〉 + ρ

∥∥∥θk+1
n−1 − θkn−1

∥∥∥
2

+ ρ
∥∥∥(θk+1

n−1 − θ?)− (θkn−1 − θ?)
∥∥∥
2

+ 2ρ〈θk+1
n−1 − θ?,θkn−1 − θ?〉− 2ρ ‖ θkn−1 − θ? ‖22

)
+
∑

n∈Nh

(
2ρ〈θk+1

n+1 − θkn+1, r
k+1
n,n+1〉

+ ρ
∥∥∥θk+1

n+1 − θkn+1

∥∥∥
2

+ ρ
∥∥∥(θk+1

n+1 − θ?)− (θkn+1 − θ?)
∥∥∥
2

+ 2ρ〈θk+1
n+1 − θ?,θkn+1 − θ?〉− 2ρ

∥∥∥θkn+1 − θ?
∥∥∥
2 )
. (61)

Next, expanding the square terms in (61), we get

2
∑

n∈Nh

〈sk+1
n ,θk+1

n − θ?〉

=
∑

n∈Nh\{1}

(
− 2ρ〈θk+1

n−1 − θkn−1, r
k+1
n−1,n〉 + ρ

∥∥∥θk+1
n−1 − θkn−1

∥∥∥
2

(62)

+ ρ
∥∥∥θk+1

n−1−θ?
∥∥∥
2
−ρ
∥∥∥θkn−1 − θ?

∥∥∥
2 )

+
∑

n∈Nh

(
2ρ〈θk+1

n+1 − θkn+1, r
k+1
n,n+1〉

+ ρ
∥∥∥θk+1

n+1 − θkn+1

∥∥∥
2

+ ρ
∥∥∥θk+1

n+1 − θ?
∥∥∥
2
− ρ

∥∥∥θkn+1 − θ?
∥∥∥
2 )
.

Substituting the equalities from (53) and (62) to the left hand side of (49), we obtain

N−1∑

n=1

[
(1/ρ)

∥∥∥λk+1
n − λ?n

∥∥∥
2
− (1/ρ)

∥∥∥λkn − λ?n

∥∥∥
2

+ ρ
∥∥∥rk+1

n,n+1

∥∥∥
2 ]

+
∑

n∈Nh\{1}

(
− 2ρ〈θk+1

n−1 − θkn−1, r
k+1
n−1,n〉 + ρ

∥∥∥θk+1
n−1 − θkn−1

∥∥∥
2

(63)

+ ρ
∥∥∥θk+1

n−1−θ?
∥∥∥
2
−ρ
∥∥∥θkn−1 − θ?

∥∥∥
2 )

+
∑

n∈Nh

(
2ρ〈θk+1

n+1 − θkn+1, r
k+1
n,n+1〉

+ ρ
∥∥∥θk+1

n+1 − θkn+1

∥∥∥
2

+ ρ
∥∥∥θk+1

n+1 − θ?
∥∥∥
2
− ρ

∥∥∥θkn+1 − θ?
∥∥∥
2 )
≤ 0. (64)

Multiplying both the sides by −1, we get

N−1∑

n=1

[
− (1/ρ)

∥∥∥λk+1
n − λ?n

∥∥∥
2

+ (1/ρ)
∥∥∥λkn − λ?n

∥∥∥
2
− ρ

∥∥∥rk+1
n,n+1

∥∥∥
2 ]

−
∑

n∈Nh\{1}

(
− 2ρ〈θk+1

n−1 − θkn−1, r
k+1
n−1,n〉 + ρ

∥∥∥θk+1
n−1 − θkn−1

∥∥∥
2

(65)

+ ρ
∥∥∥θk+1

n−1−θ?
∥∥∥
2
−ρ
∥∥∥θkn−1 − θ?

∥∥∥
2 )

+
∑

n∈Nh

(
2ρ〈θk+1

n+1 − θkn+1, r
k+1
n,n+1〉

+ ρ
∥∥∥θk+1

n+1 − θkn+1

∥∥∥
2

+ ρ
∥∥∥θk+1

n+1 − θ?
∥∥∥
2
− ρ

∥∥∥θkn+1 − θ?
∥∥∥
2 )
≥ 0, (66)
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After rearranging the terms in (65) and using the definition of the Lyapunov function in
(32), we get

Vk+1 ≤ Vk−
N−1∑

n=1

ρ
∥∥∥rk+1

n,n+1

∥∥∥
2
−
[ ∑

n∈Nh\{1}

ρ
∥∥∥θk+1

n−1 − θkn−1

∥∥∥
2

+
∑

n∈Nh

ρ
∥∥∥θk+1

n+1 − θkn+1

∥∥∥
2 ]

−
[ ∑

n∈Nh\{1}

−2ρ〈θk+1
n−1 − θkn−1, r

k+1
n−1,n〉 +

∑

n∈Nh

2ρ〈θk+1
n+1 − θkn+1, r

k+1
n,n+1〉

]
. (67)

In order to prove that k + 1 is a one step towards the optimal solution or the Lyapunov
function decreases monotonically at each iteration, we need to show that the sum of the inner
product terms on the right hand side of the inequality is positive. In other words, we need to
prove that the term

∑
n∈Nh\{1}−2ρ〈θk+1

n−1 − θkn−1, r
k+1
n−1,n〉 +

∑
n∈Nh

2ρ〈θk+1
n+1 − θkn+1, r

k+1
n,n+1〉

is always positive. Note that this term can be written as.
∑

n∈Nh\{1}

− 2ρ〈θk+1
n−1 − θkn−1, r

k+1
n−1,n〉 +

∑

n∈Nh

2ρ〈θk+1
n+1 − θkn+1, r

k+1
n,n+1〉 (68)

=2ρ
[
〈rk+1

1,2 ,θ
k+1
2 − θk2〉− 〈rk+1

2,3 ,θ
k+1
2 − θk2〉 + 〈rk+1

3,4 ,θ
k+1
4 − θk4〉− 〈rk+1

4,5 ,θ
k+1
4 − θk4〉+

· · ·+ rk+1
N−1,N (θk+1

N − θkN )
]

=2ρ〈rk+1
1,2 − rk+1

2,3 ,θ
k+1
2 − θk2〉 + 2ρ〈rk+1

3,4 − rk+1
4,5 ,θ

k+1
4 − θk4〉+

· · ·+ 2ρ〈rk+1
N−1,N ,θ

k+1
N − θkN〉.

We know that θk+1
n∈Nt

minimizes fn(θn) + 〈−λk+1
n−1 + λk+1

n ,θn〉; hence it holds that

fn(θk+1
n ) + 〈−λk+1

n−1 + λk+1
n ,θk+1

n 〉 ≤ fn(θkn) + 〈−λk+1
n−1 + λk+1

n ,θkn〉, (69)

Similarly, θkn∈Nt
minimizes fn(θn) + 〈−λkn−1 + λkn,θn〉, which implies that

fn(θkn) + 〈−λkn−1 + λkn,θ
k
n〉 ≤ fn(θk+1

n ) + 〈−λkn−1 + λkn,θ
k+1
n 〉. (70)

Adding (69) and (70), we get

〈(−λk+1
n−1 + λk+1

n )− (−λkn−1 + λkn),θk+1
n − θkn〉 ≤ 0. (71)

Further after rearranging, we get

〈(λkn−1 − λk+1
n−1) + (λk+1

n − λkn),θk+1
n − θkn〉 ≤ 0. (72)

By knowing that rk+1
n−1,n = (1/ρ)(λk+1

n−1 − λkn−1) and rk+1
n,n+1 = (1/ρ)(λk+1

n − λkn), (72) can be
written as

−ρ〈rk+1
n−1,n − rk+1

n,n+1,θ
k+1
n − θkn〉 ≤ 0,∀n ∈ Nt. (73)

The above inequality implies that

ρ〈rk+1
n−1,n − rk+1

n,n+1,θ
k+1
n − θkn〉 ≥ 0, ∀n ∈ Nt. (74)
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Note that since worker N does not have a right neighbor, rk+1
N,N+1 = λk+1

N = λkN = 0.

Next, for ρ > 0. Using the inequality in (74) into (68), we get

∑

n∈Nh\{1}

− 2ρ〈θk+1
n−1 − θkn−1, r

k+1
n−1,n〉 +

∑

n∈Nh

2ρ〈θk+1
n+1 − θkn+1, r

k+1
n,n+1〉 ≥ 0. (75)

Next, we use the result in (75) into (67) to get

Vk+1 ≤ Vk−
N−1∑

n=1

ρ
∥∥∥rk+1

n,n+1

∥∥∥
2
−
[ ∑

n∈Nh\{1}

ρ
∥∥∥θk+1

n−1 − θkn−1

∥∥∥
2

+
∑

n∈Nh

ρ
∥∥∥θk+1

n+1 − θkn+1

∥∥∥
2 ]
.

(76)

The result in (76) proves that Vk+1 decreases with k. Now, since Vk ≥ 0 and Vk ≤ V0, it holds

that

[
∑N−1

n=1 ρ
∥∥∥rk+1

n,n+1

∥∥∥
2

+
[∑

n∈Nh\{1} ρ
∥∥∥θk+1

n−1 − θkn−1

∥∥∥
2

+
∑

n∈Nh
ρ
∥∥∥θk+1

n+1 − θkn+1

∥∥∥
2 ]
]
. is

bounded. Taking the telescopic sum over k in (76) as limit K →∞, we get

lim
K→∞

K∑

k=0

[
N−1∑

n=1

ρ
∥∥∥rk+1

n,n+1

∥∥∥
2

+
[ ∑

n∈Nh\{1}

ρ
∥∥∥θk+1

n−1 − θkn−1

∥∥∥
2

+
∑

n∈Nh

ρ
∥∥∥θk+1

n+1 − θkn+1

∥∥∥
2 ]
]
≤ V0.

(77)

The result in (77) implies that the primal residual rk+1
n,n+1 → 0 as k → ∞ for all n ∈

{1, · · · , N − 1} completing the proof of statement (i) in Theorem 2. Similarly, the norm

differences
∥∥∥θk+1

n−1 − θkn−1

∥∥∥ and
∥∥∥θk+1

n+1 − θkn+1

∥∥∥→ 0 as k →∞ which implies that the dual

residual skn → 0 as k →∞ for all n ∈ Nh stated in the statement (ii) of Theorem 2. In order
to prove the statement (iii) of Theorem 2, consider the lower and the upper bounds on the
objective function optimality gap given by

N∑

n=1

[fn(θk+1
n )− fn(θ?)] ≤ −

N−1∑

n=1

〈λk+1
n , rk+1

n,n+1〉 +
∑

n∈Nh

〈sk+1
n ,θ? − θk+1

n 〉 (78)

N∑

n=1

[fn(θk+1
n )− fn(θ?)] ≥ −

N−1∑

n=1

〈λ?n, rk+1
n,n+1〉. (79)

Note that from the results in statement (i) and (ii) of Theorem 2, it holds that the right
hand side of the upper bound in (78) converge to zero as k →∞ and also the right hand
side of the lower bound in (79) converges to zero as k →∞. This implies that

lim
k→∞

N∑

n=1

[fn(θk+1
n )− fn(θ?)] = 0 (80)

which is the statement (iii) of Theorem 2.
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Appendix C. Method for D-GADMM Chain Construction

To ensure that a chain in a given graph is found in a decentralized way, we use the following
method.

• The N workers (N is assumed to be even) share a pseudorandom code that is used
every τ seconds, where τ is the system coherence time, to generate a set H containing
(N/2− 2) integer numbers, with each number chosen from the set {2, · · · , N − 1}. In
other words, we assume that the topology changes every τ seconds. Note that the
generated numbers at i · τ and (i+ 1) · τ time slots may differ. However, at the i · τ -th
time slot, the same set of numbers is generated across workers with no communication.

• Every worker with physical index n ∈
{
H ∪ {1}

}
is assigned to the head set. Note

that the worker whose physical index 1 is always assigned to the head set. On the
other hand, every worker with physical index n such that n /∈

{
H ∪ {1}

}
assigns itself

to the tail set. Therefore, the worker whose physical index N is always assigned to the
tail set. Following this strategy, the number of heads will be equal to the number of
tails, and are both equal to N/2.

• Every worker in the head set broadcasts its physical index alongside a pilot signal.
Pilot signal is a signal known to each worker. It is used to measure the signal strength
and find neighboring workers.

• Every worker in the tail set calculates its cost of communication to every head based
on the received signal strength. For example, the communication cost between head
n and tail m is equal to [1/power of the received signal from head n to tail m], in
which the link with lower received signal level is more costly, as it is incurring higher
transmission power.

• Every worker in the tail set broadcasts a vector of length N/2, containing the com-
munication cost to the N/2 heads, i.e., the first element in the vector captures the
communication cost between this tail and worker 1, since worker 1 is always in the
head set, whereas the second element represents the communication cost between this
tail and the first index in the head set H and so on.

• Once head worker n ∈
{
H ∪ {1}

}
receives the communication cost vector from tail

workers, it finds a communication-efficient chain that starts from worker 1 and passes
through every other worker to reach worker N . In our simulations, we use the following
simple and greedy strategy that is performed by every head to ensure they generate
the same chain. The strategy is as follows:

– Find the tail that has the minimum communication cost to worker 1 and create a
link between this tail and worker 1.

– From the remaining set of heads, find the head that has the minimum communi-
cation cost to this tail and create a link between this head and the corresponding
tail.

– Follow the same strategy until all workers are connected. When every head follows
this strategy, all heads will generate the same chain.
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– Under the following two assumptions: (i) the communication cost between any
pair of workers is <∞, and (ii) no two tails have equal communication cost to
the same head, this strategy guarantees that every head will generate the same
chain.

• Once every head finds its chain, all neighbors share their current models, and D-
GADMM is carried out for τ seconds using the current chain.

Note that, the described heuristic requires 4 communication rounds (2 iterations). Finally,
it is worth mentioning that this approach has no guarantee to find the most communication-
efficient chain. As mentioned in section 6, our focus in this paper is not to design the chain
construction algorithm.

Appendix D. Convergence Analysis of D-GADMM

For the dynamic settings, we assume that the first n = 1 and the last node n = N are fixed
and the others can move at each iterate. Therefore, we denote the neighbors to each node n
at iteration k as nl,k and nr,k as the left and the right neighbors , respectively. Note that
when, nl,k = n− 1 and nr,k = n+ 1 for all k, we recover the GADMM implementation. With
that in mind, we start by writing the augmented Lagrangian of the optimization problem in
(8)-(9) at each iteration k as

Lk
ρ({θn}Nn=1,λ) =

N∑

n=1

fn(θn) +
N−1∑

n=1

〈λn,θn − θnr,k
〉 +

ρ

2

N−1∑

n=1

‖θn − θn+1‖2, (81)

where λ := [λT1 , · · · ,λTN−1]T is the collection of dual variables. Note that the set of nodes

in head N k
h and tail N k

t will change with k.6 The primal and dual variables under GADMM
are updated in the following three steps. The modified algorithm updates are written as

1. At iteration k + 1, the primal variables of head workers are updated as:

θk+1
n = arg min

θn

[
fn(θn)+〈λknl,k

,θknl,k
− θn〉 + 〈λkn,θn − θknr,k

〉 +
ρ

2
‖θknl,k

− θn‖2

+
ρ

2
‖θn − θknr,k

‖2
]
, n ∈ Nh \ {1} (82)

Since the first head worker (n = 1) does not have a left neighbor (θn−1 is not defined),
its model is updated as follows.

θk+1
n = arg min

θn

[
fn(θn) + 〈λkn,θn − θknr,k

〉 +
ρ

2
‖θn − θknl,k

‖2
]
, n = 1 (83)

2. After the updates in (82) and (83), head workers send their updates to their two tail
neighbors. The primal variables of tail workers are then updated as:

θk+1
n = arg min

θn

[
fn(θn)+〈λknl,k

,θk+1
nl,k
− θn〉 + 〈λkn,θn − θk+1

nr,k
〉 +

ρ

2
‖θk+1

nl,k
− θn‖2

+
ρ

2
‖θn − θk+1

nr,k
‖2
]
, n ∈ Nt \ {N}. (84)
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Since the last tail worker (n = N) does not have a right neighbor (θn+1 is not defined),
its model is updated as follows

θk+1
n = arg min

θn

[
fn(θn)+〈λknl,k

,θk+1
nl,k
− θn〉 +

ρ

2
‖θk+1

nl,k
− θn‖2

]
, n = N. (85)

3. After receiving the updates from neighbors, every worker locally updates its dual
variables λn−1 and λn as follows

λk+1
n = λkn + ρ(θk+1

n − θk+1
nr,k

), n = {1, · · · , N − 1}. (86)

Note that when the topology changes, λkn of worker n is received from the left neighbor nl,k
before updating λk+1

n according to (86). For the proof, we start with the necessary and
sufficient optimality conditions, which are the primal and the dual feasibility conditions
(Boyd et al., 2011) for each k are defined as

θ?n =θ?nl,k
, n ∈ {2, · · · , N} (primal feasibility) (87)

0 ∈ ∂fn(θ?n)− λ?nl,k
+ λ?n, n ∈ {2, · · · , N − 1}

0 ∈ ∂fn(θ?n) + λ?n, n = 1 (dual feasibility)

0 ∈ ∂fn(θ?n) + λ?n−1, n = N (88)

We remark that the optimal values θ?n are equal for each n, we denote θ? = θ?n = θ?n−1 for
all n. Note that, at iteration k + 1, we calculate θk+1

n for all n ∈ N k
t \ {N} as in (13), from

the first order optimality condition, it holds that

0 ∈ ∂fn(θk+1
n )− λknl,k

+ λkn + ρ(θk+1
n − θk+1

nl,k
) + ρ(θk+1

n − θk+1
nr,k

). (89)

Next, rewrite the equation in (89) as

0 ∈ ∂fn(θk+1
n )−

(
λknl,k

+ ρ(θk+1
nl,k
− θk+1

n )
)

+
(
λkn + ρ(θk+1

n − θk+1
nr,k

)
)
. (90)

From the update in (86), the equation in (90) implies that

0 ∈ ∂fn(θk+1
n )− λk+1

nl,k
+ λk+1

n , n ∈ N k
t \ {N}. (91)

Note that for the N -th worker, we calculate θk+1
N as in (14), then we follow the same steps,

and we get

0 ∈ ∂fN (θk+1
N )− λk+1

Nl,k
. (92)

From the result in (91) and (92), it holds that the dual feasibility condition in (88) is always
satisfied for all n ∈ N k

t .
Next, consider every θk+1

n such that n ∈ N k
h \ {1} which is calculated as in (82) at

iteration k. Similarly from the first order optimality condition, we can write

0 ∈ ∂fn(θk+1
n )− λknl,k

+ λkn + ρ(θk+1
n − θknl,k

) + ρ(θk+1
n − θknr,k

). (93)
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Note that in (93), we don’t have all the primal variables calculated at k+ 1 instance. Hence,
we add and subtract the terms θk+1

nl,k
and θk+1

nr,k
in (93) to get

0 ∈ ∂fn(θk+1
n )−

(
λknl,k

+ ρ(θk+1
nl,k
− θk+1

n )
)

+
(
λkn + ρ(θk+1

n − θk+1
nr,k

)
)

+ ρ(θk+1
nl,k
− θknl,k

) + ρ(θk+1
nr,k
− θknr,k

). (94)

From the update in (86), it holds that

0 ∈ ∂fn(θk+1
n )− λk+1

nl,k
+ λk+1

n + ρ(θk+1
nl,k
− θknl,k

) + ρ(θk+1
nr,k
− θknr,k

). (95)

Following the same steps for the first head worker (n = 1) after excluding the terms λk0 and
ρ(θk+1

1 − θk0) from (93) (worker 1 does not have a left neighbor) gives

0 ∈ ∂f1(θk+1
1 ) + λk+1

1 + ρ(θk+1
1r,k
− θk1r,k). (96)

Let sk+1
n , the dual residual of worker n ∈ N k

h at iteration k + 1, be defined as follows

sk+1
n =

{
ρ(θk+1

nl,k
− θknl,k

) + ρ(θk+1
nr,k
− θknr,k

), for n ∈ N k
h \ {1}

ρ(θk+1
nr,k
− θknr,k

), for n = 1.
(97)

Next, we discuss about the primal feasibility condition in (87) at iteration k + 1. Let
rk+1
n,nr,k

= θk+1
n − θk+1

nr,k
be the primal residual of each worker n ∈ {1, · · · , N − 1}. To show

the convergence of GADMM, we need to prove that the conditions in (87)-(88) are satisfied
for each worker n. We have already shown that the dual feasibility condition in (88) is
always satisfied for the tail workers, and the dual residual of tail workers is always zero.
Therefore, to prove the convergence and the optimality of GADMM, we need to show that
the rkn,nr,k

for all n = 1, · · · , N − 1 and sk
n∈N k

h

converge to zero, and
∑N

n=1 fn(θkn) converges

to
∑N

n=1 fn(θ?) as k →∞. We proceed as follows to prove the same.
We note that fn(θn) for all n is closed, proper, and convex, hence Lk

ρ is sub-differentiable.

Since θk+1
n for n ∈ N k

h at k minimizes Lk
ρ(θn∈Nh

,θkn∈Nt
,λn), the following must hold true

at each iteration k + 1, which implies that

0 ∈ ∂fn(θk+1
n )− λk+1

nl,k
+ λk+1

n + sk+1
n , n ∈ N k

h \ {1} (98)

0 ∈ ∂f1(θk+1
1 ) + λk+1

1 + sk+1
1 , n = 1 (99)

Note that we use (99) for worker 1 since it does not have a left neighbor (i.e., λk+1
0 is

not defined). However, for simplicity and to avoid writing separate equations for the edge
workers (workers 1 and N), we use: λk+1

0 = λk+1
N = 0 throughout the rest of the proof.

Therefore, we can use a single equation for each group (e.g., equation (33) for n ∈ N k
h ).

The result in (98) implies that θk+1
n for n ∈ N k

h minimizes the following convex objective
function

fn(θn) + 〈−λk+1
nl,k

+ λk+1
n + sk+1

n ,θn〉. (100)
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Next, since θk+1
n for n ∈ N k

h is the minimizer of (100), then, it holds that

fn(θk+1
n ) + 〈−λk+1

nl,k
+ λk+1

n + sk+1
n ,θk+1

n 〉 ≤ fn(θ?)+ 〈−λk+1
nl,k

+λk+1
n +sk+1

n ,θ?〉 (101)

where θ? is the optimal value of the problem in (8)-(9). Similarly for θk+1
n for n ∈ N k

t

satisfies (88) and it holds that

fn(θk+1
n ) + 〈−λk+1

nl,k
+ λk+1

n ,θk+1
n 〉 ≤ fn(θ?) + 〈−λk+1

nl,k
+ λk+1

n ,θ?〉. (102)

Add (101) and (102), and then take the summation over all the workers, note that for a
given k, the topology in the network is fixed, we get

N∑

n=1

fn(θk+1
n ) +

∑

n∈N k
t

〈−λk+1
nl,k

+ λk+1
n ,θk+1

n 〉 +
∑

n∈N k
h

〈−λk+1
nl,k

+ λk+1
n + sk+1

n ,θk+1
n 〉

≤
N∑

n=1

fn(θ?) +
∑

n∈N k
t

〈−λk+1
nl,k

+ λk+1
n ,θ?〉 +

∑

n∈N k
h

〈−λk+1
nl,k

+ λk+1
n + sk+1

n ,θ?〉 (103)

After rearranging the terms, we get

N∑

n=1

fn(θk+1
n )−

N∑

n=1

fn(θ?) ≤
∑

n∈N k
t

〈−λk+1
nl,k

+ λk+1
n ,θ?〉 +

∑

n∈N k
h

〈−λk+1
nl,k

+ λk+1
n ,θ?〉

−
∑

n∈N k
t

〈−λk+1
nl,k

+ λk+1
n ,θk+1

n 〉−
∑

n∈N k
h

〈−λk+1
nl,k

+ λk+1
n ,θk+1

n 〉

+
∑

n∈N k
h

〈sk+1
n ,θ? − θk+1

n 〉. (104)

Note that we can write

∑

n∈N t
t

〈−λk+1
nl,k

+ λk+1
n ,θk+1

n 〉 +
∑

n∈N k
h

〈−λk+1
nl,k

+ λk+1
n ,θk+1

n 〉 =

N−1∑

n=1

〈λk+1
n , rk+1

n,nk
r
〉, (105)

where for the equality, we have used the definition of primal residuals defined after (95).
Similarly, it holds for θ? as

∑

n∈N k
t

〈−λk+1
nl,k

+ λk+1
n ,θ?〉 +

∑

n∈N k
h

〈−λk+1
nl,k

+ λk+1
n ,θ?〉 = 0. (106)

The equality in (106) holds since λk+1
N = 0. Next, substituting the results from (105) and

(106) into (104), we get

N∑

n=1

fn(θk+1
n )−

N∑

n=1

fn(θ?) ≤ −
N−1∑

n=1

〈λk+1
n , rk+1

n,nr,k
〉 +

∑

n∈N k
h

〈sk+1
n ,θ? − θk+1

n 〉, (107)
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which provides an upper bound on the optimality gap. Next, we get the lower bound as
follows. We note that for a saddle point (θ?, {λ?n}∀n) of L0({θn}∀n, {λn}∀n), it holds that

L0(θ
?, {λ?n}∀n) ≤ L0({θk+1

n }∀n, {λ?n}∀n). (108)

Substituting the expression for the Lagrangian from (81) on the both sides of (108), we get

N∑

n=1

fn(θ?) ≤
N∑

n=1

fn(θk+1
n ) +

N−1∑

n=1

〈λ?n, rk+1
n,nr,k

〉. (109)

After rearranging the terms, we get

N∑

n=1

fn(θk+1
n )−

N∑

n=1

fn(θ?) ≥ −
N−1∑

n=1

〈λ?n, rk+1
n,nr,k

〉 (110)

which provide the lower bound on the optimality gap. Next, we show that both the lower
and upper bound converges to zero as → ∞. This would prove that the optimality gap
converges to zero with k →∞.

To proceed with the analysis, add (107) and (110), multiply by 2, we get

2
N−1∑

n=1

〈λk+1
n − λ?n, r

k+1
n,nr,k

〉 + 2
∑

n∈N k
h

〈sk+1
n ,θk+1

n − θ?〉 ≤ 0. (111)

From the dual update in (86), we have λk+1
n = λkn + ρrk+1

n,nr,k
and (111) can be written as

2
N−1∑

n=1

〈λkn + ρrk+1
n,nr,k

− λ?n, r
k+1
n,nr,k

〉 + 2
∑

n∈N k
h

〈sk+1
n ,θk+1

n − θ?〉 ≤ 0. (112)

Note that the first term on the left hand side of (112) can be written as

N−1∑

n=1

2〈λkn − λ?n, r
k+1
n,nr,k

〉 + ρ
∥∥∥rk+1

n,nr,k

∥∥∥
2

+ ρ
∥∥∥rk+1

n,nr,k

∥∥∥
2
. (113)

Replacing rk+1
n,nr,k

in the first and second terms of (113) with λk+1
n −λk

n
ρ , we get

N−1∑

n=1

(2/ρ)〈λkn − λ?n,λ
k+1
n − λkn〉 + (1/ρ)

∥∥∥λk+1
n − λkn

∥∥∥
2

+ ρ
∥∥∥rk+1

n,nr,k

∥∥∥
2
. (114)

Using the equality λk+1
n − λkn = (λk+1

n − λ?n)− (λkn − λ?n), we can write (114) as

N−1∑

n=1

(2/ρ)〈λkn−λ?n, (λk+1
n −λ?n)− (λkn−λ?n)〉+(1/ρ)

∥∥∥(λk+1
n −λ?n)− (λkn−λ?n)

∥∥∥
2

+ ρ
∥∥∥rk+1

n,nr,k

∥∥∥
2

=

N−1∑

n=1

(2/ρ)〈λkn − λ?n,λ
k+1
n − λ?n〉− (2/ρ)

∥∥∥λkn − λ?n

∥∥∥
2

+ (1/ρ)
∥∥∥λk+1

n − λ?n

∥∥∥
2

− (2/ρ)〈λk+1
n − λ?n,λ

k
n − λ?n〉 + 1/ρ

∥∥∥λkn − λ?n

∥∥∥
2

+ ρ
∥∥∥rk+1

n,nr,k

∥∥∥
2

(115)

=

N−1∑

n=1

[
(1/ρ)

∥∥∥λk+1
n − λ?n

∥∥∥
2
− (1/ρ)

∥∥∥λkn − λ?n

∥∥∥
2

+ ρ
∥∥∥rk+1

n,nr,k

∥∥∥
2 ]
. (116)
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Next, consider the second term on the left hand side of (112), from the equality (97), it
holds that

2
∑

n∈N k
h

〈sk+1
n ,θk+1

n − θ?〉 (117)

=
∑

n∈Nh\{1}

(
2ρ〈θk+1

nl,k
− θknl,k

,θk+1
n − θ?〉

)
+
∑

n∈Nh

(
2ρ〈θk+1

nr,k
− θknr,k

,θk+1
n − θ?〉

)
.

Note that θk+1
n = −rk+1

nl,k,n
+ θk+1

nl,k
= rk+1

n,nr,k
+ θk+1

nr,k
, ∀n = {2, · · · , N − 1} , which implies that

we can rewrite the equation in (117) as follows

2
∑

n∈N k
h

〈sk+1
n ,θk+1

n − θ?〉

=
∑

n∈N k
h \{1}

(
− 2ρ〈θk+1

nl,k
− θknl,k

, rk+1
nl,k,n

〉 + 2ρ〈θk+1
nl,k
− θknl,k

,θk+1
nl,k
− θ?〉

)

+
∑

n∈Nh

(
2ρ〈θk+1

nr,k
− θknr,k

, rk+1
n,nr,k

〉 + 2ρ〈θk+1
nr,k
− θknr,k

,θk+1
nr,k
− θ?〉

)
. (118)

Using the equalities,

θk+1
nl,k
− θ? =(θk+1

nl,k
− θknl,k

) + (θknl,k
− θ?),∀n ∈ N k

h \ {1}
θk+1
nr,k
− θ? =(θk+1

nr,k
− θknr,k

) + (θknr,k
− θ?), ∀n ∈ N k

h (119)

we rewrite the right hand side of (118) as

∑

n∈N k
h \{1}

(
− 2ρ〈θk+1

nl,k
− θknl,k

, rk+1
nl,k,n

〉 + 2ρ‖θk+1
nl,k
− θknl,k

‖2 + 2ρ〈θk+1
nl,k
− θknl,k

,θknl,k
− θ?〉

)

+
∑

n∈N k
h

(
2ρ〈θk+1

nr,k
− θknr,k

, rk+1
n,nr,k

〉 + 2ρ‖θk+1
nr,k
− θknr,k

‖2 + 2ρ〈θk+1
nr,k
− θknr,k

,θknr,k
− θ?nr,k

〉
)
.

(120)

Further using the equalities

θk+1
nl,k
− θknl,k

=(θk+1
nl,k
− θ?)− (θknl,k

− θ?),∀n ∈ N k
h \ {1}

θk+1
nr,k
− θknr,k

=(θk+1
nr,k
− θ?)− (θknr,k

− θ?), ∀n ∈ N k
h , (121)

we can write (120) after the rearrangement as

∑

n∈N k
h \{1}

(
− 2ρ〈θk+1

nl,k
− θknl,k

, rk+1
n−1,n〉 + ρ‖θk+1

nl,k
− θknl,k

‖2 + ρ‖(θk+1
nl,k
− θ?)− (θknl,k

− θ?)‖2

+ 2ρ〈θk+1
nl,k
− θ?,θknl,k

− θ?〉− 2ρ ‖ θknl,k
− θ? ‖22

)
+
∑

n∈N k
h

(
2ρ〈θk+1

nr,k
− θknr,k

, rk+1
n,nr,k

〉

+ ρ‖θk+1
nr,k
− θknr,k

‖2 + ρ‖(θk+1
nr,k
− θ?)− (θknr,k

− θ?)‖2

+ 2ρ〈θk+1
nr,k
− θ?,θknr,k

− θ?〉− 2ρ‖θknr,k
− θ?|2

)
. (122)
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Next, expanding the square terms in (122), we get the upper bound for the term in (116) as
follows

∑

n∈N k
h \{1}

(
− 2ρ〈θk+1

nl,k
− θknl,k

, rk+1
n−1,n〉 + ρ‖θk+1

nl,k
− θknl,k

‖2 + ρ‖θk+1
nl,k
−θ?‖2−ρ‖θknl,k

− θ?‖2
)

+
∑

n∈N k
h

(
2ρ〈θk+1

nr,k
− θknr,k

, rk+1
n,nr,k

〉 + ρ‖θk+1
nr,k
− θknr,k

‖2 + ρ‖θk+1
nr,k
− θ?‖2 − ρ‖θknr,k

− θ?‖2
)
.

(123)

Substituting the equalities from (116) and (123) to the left hand side of (112), we obtain

N−1∑

n=1

[
− (1/ρ)‖λk+1

n − λ?n‖2 + (1/ρ)‖λkn − λ?n‖2 − ρ‖rk+1
n,nr,k

‖2
]

−
∑

n∈N k
h \{1}

(
− 2ρ〈θk+1

nl,k
− θknl,k

, rk+1
nl,k,n

〉+ρ‖θk+1
nl,k
− θknl,k

‖2+ρ‖θk+1
nl,k
−θ?‖2−ρ‖θknl,k

− θ?‖2
)

−
∑

n∈N k
h

(
2ρ〈θk+1

nr,k
− θknr,k

, rk+1
n,nr,k

〉 + ρ‖θk+1
nr,k
− θknr,k

‖2 + ρ‖θk+1
nr,k
− θ?‖2 − ρ‖θknr,k

− θ?‖2
)

≥ 0, (124)

Next, consider the Lyapunov function Vk as

Vk = 1/ρ

N−1∑

n=1

‖λkn − λ?n‖2 + ρ
∑

n∈N k
h \{1}

‖θknl,k
− θ?‖2 + ρ

∑

n∈N k
h

‖θknl,k
− θ?‖2. (125)

After rearranging the terms in (124) and using the definition of the Lyapunov function in
(125), we get

Vk+1 ≤ Vk−
N−1∑

n=1

ρ‖rk+1
n,nr,k

‖2 −
[ ∑

n∈N k
h \{1}

ρ‖θk+1
nl,k
− θknl,k

‖2 +
∑

n∈N k
h

ρ‖θk+1
nr,k
− θknr,k

‖2
]

−
[ ∑

n∈N k
h \{1}

−2ρ〈θk+1
nl,k
− θknl,k

, rk+1
nl,k,n

〉 +
∑

n∈N k
h

2ρ〈θk+1
nr,k
− θknr,k

, rk+1
n,nr,k

〉
]
. (126)

We rewrite (126) as

Vk+1 ≤ Vk−
∑

n∈N k
h \{1}

ρ‖rk+1
nl,n
‖2 +

∑

n∈N k
h

ρ‖rk+1
n,nr
‖2 −

[ ∑

n∈N k
h \{1}

ρ‖θk+1
nl,k
− θknl,k

‖2 +
∑

n∈N k
h

ρ‖θk+1
nr,k
− θknr,k

‖2
]

−
[ ∑

n∈N k
h \{1}

−2ρ〈θk+1
nl,k
− θknl,k

, rk+1
nl,k,n

〉 +
∑

n∈N k
h

2ρ〈θk+1
nr,k
− θknr,k

, rk+1
n,nr,k

〉
]
. (127)
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Next, the equation in (127) can be re-written as

Vk+1 ≤ Vk−ρ
∑

n∈N k
h \{1}

[
‖rk+1
nl,n
‖2 − 2〈θk+1

nl,k
− θknl,k

, rk+1
nl,k,n

〉 + ‖θk+1
nl,k
− θknl,k

‖2
]

− ρ
∑

n∈N k
h

[
‖rk+1
n,nr
‖2 + 2〈θk+1

nr,k
− θknr,k

, rk+1
n,nr,k

〉 + ‖θk+1
nr,k
− θknr,k

‖2
]

(128)

Further, we write (128) as

Vk+1 ≤ Vk−ρ


 ∑

n∈N k
h \{1}

‖rk+1
nl,n
− (θk+1

nl,k
− θknl,k

)‖2 +
∑

n∈N k
h

‖rk+1
n,nr

+ (θk+1
nr,k
− θknr,k

)‖2

 (129)

The result in (129) proves that Vk+1 decreases in each iteration k. Now, since Vk ≥ 0 and

Vk ≤ V0, it holds that

[
∑

n∈N k
h \{1}

‖rk+1
nl,n
−(θk+1

nl,k
−θknl,k

)‖2+
∑

n∈N k
h
‖rk+1
n,nr

+(θk+1
nr,k
−θknr,k

)‖2
]

is bounded. Taking the telescopic sum over k in (129) and taking limit K →∞, we get

lim
K→∞

K∑

k=0

[ ∑

n∈N k
h \{1}

‖rk+1
nl,n
− (θk+1

nl,k
− θknl,k

)‖2 +
∑

n∈N k
h

‖rk+1
n,nr

+ (θk+1
nr,k
− θknr,k

)‖2
]
≤ V0. (130)

The result in (130) implies that the primal residual rk+1
n,nr,k

→ 0 as k → ∞ for all n ∈
{1, · · · , N − 1}. Similarly, the norm differences

∥∥∥θk+1
nl,k
− θknl,k

∥∥∥ and
∥∥∥θk+1

nr,k
− θknr,k

∥∥∥→ 0 as

k →∞ which implies that the dual residual skn → 0 as k →∞ for all n ∈ N k
h . In order to

prove the convergence to optimal point, , consider the lower and the upper bounds on the
objective function optimality gap given by

N∑

n=1

[fn(θk+1
n )− fn(θ?)] ≤ −

N−1∑

n=1

〈λk+1
n , rk+1

n,nr,k
〉 +

∑

n∈N k
h

〈sk+1
n ,θ? − θk+1

n 〉 (131)

N∑

n=1

[fn(θk+1
n )− fn(θ?)] ≥ −

N−1∑

n=1

〈λ?n, rk+1
n,nr,k

〉. (132)

Note that from the results established in this appendix, it holds that the right hand side of
the upper bound in (131) converge to zero as k → ∞ and also the right hand side of the
lower bound in (132) converges to zero as k →∞. This implies that

lim
k→∞

N∑

n=1

[fn(θk+1
n )− fn(θ?)] = 0 (133)

which is the required result. Hence proved.
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