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Élisabeth Gassiat elisabeth.gassiat@universite-paris-saclay.fr
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Abstract

This paper considers hidden Markov models where the observations are given as the sum of
a latent state which lies in a general state space and some independent noise with unknown
distribution. It is shown that these fully nonparametric translation models are identifiable
with respect to both the distribution of the latent variables and the distribution of the noise,
under mostly a light tail assumption on the latent variables. Two nonparametric estimation
methods are proposed and we prove that the corresponding estimators are consistent for
the weak convergence topology. These results are illustrated with numerical experiments.
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1. Introduction

This paper considers nonparametric translation hidden Markov models where, for all i =
1, . . . , n, the observation Yi is

Yi = Xi + εi , (1)

where n > 1 is the number of observations, (Xi)i=1,...,n is a d dimensional hidden stationary
Markov chain and (εi)i=1,...,n are independent and identically distributed random variables
independent of (Xi)i=1,...,n. Both the distributions of the latent variables and of the noise
are unknown. The first objective of this paper is to prove that the law of the hidden states
may be recovered using only the observations (Yi)i=1,...,n when no assumption is made on
the noise distribution and with only a weak nonparametric assumption on the distribution
of the hidden Markov chain. In addition, consistent estimation procedures based either on
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a least squares or on a maximum likelihood approach are proposed. This work provides
the first contribution to establish identifiability results in a fully nonparametric setting for
hidden Markov models with general state space.

The use of latent variable models is ubiquitous in time series analysis across a wide range
of applied science and engineering domains such as signal processing (Crouse et al., 1998),
genomics (Yau et al., 2011; Wang et al., 2017), target tracking (Särkkä et al., 2007), en-
hancement and segmentation of speech and audio signals (Rabiner, 1989), see also (Särkkä,
2013; Douc et al., 2014; Zucchini et al., 2016). The specific setting of translation hidden
Markov models described by (1) is commonly used in statistical signal processing, such as
for nonlinear phase estimation, where the problem appears in many applications: detection
of phase synchronization, estimation of instantaneous frequencies or in neuroscience, see
Dahlhaus et al. (2018), Fell and Axmacher (2011). In these applications, the latent signal is
modeled as Xi = g(Zi), for some sequence (Zi)i>1 of relevant hidden variables and function
g : R` → Rd. In Dahlhaus et al. (2017), such models are used to detect oscillation patterns
in human electrocardiogam recordings and to estimate a noisy Rossler attractor. In such a
case, model (1) is a nonparametric hidden regression model given by

Yi = g (Zi) + εi , i > 1 . (2)

Although parametric hidden Markov models have been widely studied and are appealing
for a wide range of applications, parametric inference procedures may lead to poor results
in real data and high dimensional learning problems. This explains the recent keen interest
for nonparametric latent variables models which have been introduced in many disciplines
such as climate state identification (Lambert et al., 2003; Touron, 2019), genomics (Yau
et al., 2011), statistical modelling of animal movement (Langrock et al., 2015) or biology
(Volant et al., 2014). Levine et al. (2011) introduce an iterative algorithm with similar
monotonicity property as the Expectation Maximization algorithm to estimate a nonpara-
metric finite mixture of multivariate components with applications to simulated data and
to the water-level dataset (see the mixtools package). In (Langrock et al., 2017), Markov-
switching generalized additive models where the function g and the noise distribution in (2)
depend on a hidden label are used to describe signals with complex dynamic patterns. The
authors of this paper introduced an efficient nonparametric estimation method of the un-
known functions of the hidden signal. The spline-based nonparametric estimation of these
functionals is applied to advertising data and to Spanish energy price data, see also (Lan-
grock et al., 2015) for an application of nonparametric regression estimation with P-Splines
to the vertical speed of diving beaked whales.

For finite state space hidden Markov models, such nonparametric modeling has been
recently validated by theoretical identifiability results and the analysis of estimation pro-
cedures with provable guarantees, see Gassiat et al. (2016), Alexandrovich et al. (2016),
De Castro et al. (2016), Lehéricy (2018). In this setting, the parameters to be estimated
are the transition matrix of the hidden chain and the emission densities. See also Gassiat
and Rousseau (2016) and Akakpo (2019) for translation hidden Markov models with finite
state space. While certainly of interest, the finite state space setting may be too restrictive
for many applications.

The inverse problem in (1) is also known as the deconvolution problem. There is a wide
range of literature on density deconvolution when the distribution of the noise εi is assumed

2



Identifiability and consistent estimation of nonparametric translation HMM

to be known and the random variables (Xi, εi)i=1,...,n are assumed to be independent and
identically distributed, see Devroye (1989), Liu and Taylor (1989), Stefanski and Carroll
(1990), for some early nonparametric deconvolution methods, Carroll and Hall (1988) and
Fan (1991) for minimax rates, see also Dedecker et al. (2015). However, when the distribu-
tion of the noise is unknown and the observations are independent, model (1) can not be
identified in full generality.

In this paper, we establish the identifiability of the fully nonparametric hidden trans-
lation model under the weak assumption that the Laplace transform of the latent variable
has an exponential growth smaller than 2 and some assumption on the distribution of two
consecutive hidden states which is roughly a dependency assumption, see Theorem 1. In
the case of real valued hidden Markov models, identifiability is extended to latent variables
having Laplace transform with exponential growth smaller than 3, see Theorem 2. Two
different methods are proposed to recover the distribution of the latent variables: a least
squares method arising naturally from the identifiability proof and a classical maximum
likelihood method. Both estimators are proved to be consistent for the weak convergence
topology, see Theorem 5 and Theorem 6. The most surprising result is that the identifiabil-
ity of the signal distribution only requires an assumption on the tail of its distribution and a
dependency assumption, and does not require any assumption on the unknown distribution
of the noise. This has to be compared to works such as (Wilhelm, 2015), (Hu and Shum,
2012) or (Hu and Schennach, 2008) in which some conditions require several operators to be
injective and some variables to have densities. It is also important to note that Theorem 1
encompasses the case of dependent observations in which the hidden signal is not necessarily
a Markov chain, which can be the case for the nonparametric hidden regression model (2).
In that sense, our work extends the identification results of Dumont and Le Corff (2017);
Dahlhaus et al. (2017) to the cases where the distribution of the additive noise is unknown.
Such a general result provides also the first theoretical guarantees for the identification of
nonparametric latent variable models which have been applied in various frameworks such
as in (Langrock et al., 2015) or (Langrock et al., 2017).

The paper is organized as follows. Section 2 displays the general identifiability results.
The consistency of the least squares approach and that of the maximum likelihood esti-
mation procedures are given in Section 3. These results are supported by simulations in
Section 4. Section 5 provides a synthesis of the results obtained in the paper and discusses
some opportunities for future research. In particular, it points out an important, yet very
challenging, unsolved problem in the setting of this paper: obtaining convergence rates in
deconvolution problems where absolutely no information about the noise is available.

2. Identifiability Theorems

Consider a sequence of random variables (Yi)i>1 taking values in Rd and satisfying model (1)
in which the hidden Markov chain (Xi)i>1 is stationary. In the following, Rd is endowed with
its Borel sigma-field B(Rd). For each transition kernel K : Rd×B(Rd)→ [0, 1] with a unique
stationary distribution µK , define the measure RK on R2d as follows. For all E ∈ B(R2d),
RK(E) =

∫
µK(dx)K(x,dy)1E(x, y) . For any probability distribution P on Rd, denote by

PK,P the distribution of the sequence (Yi)i>1 when the stationary Markov chain (Xi)i>1 has
transition K and ε1 has distribution P . For any ρ > 0, letMρ be the set of finite measures
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µ on Rd such that there exist A,B > 0 satisfying, for all u ∈ Rd,
∫

exp
(
uTx

)
dµ(x) 6

A exp (B‖u‖ρ), where for a vector u in a Euclidian space, ‖u‖ denotes its Euclidian norm
and uT denotes its transpose vector. IfK is such that µK ∈Mρ for some ρ, then the function
ΦRK defined for (z1, z2) ∈ Cd×Cd by ΦRK (z1, z2) =

∫
exp

(
zT1 x1 + zT2 x2

)
dR(x1, x2) is well

defined over Cd × Cd. Consider the following assumption.

H1 For any z0 ∈ Cd, z 7→ ΦRK (z0, z) is not the null function or z 7→ ΦRK (z, z0) is not the
null function.

An alternative equivalent formulation of Assumption H1 is the following: for any z0 ∈
Cd, E[ez

T
0 X2 |X1] 6= 0 or E[ez

T
0 X1 |X2] 6= 0. Throughout this paper, the assertion RK = R

K̃

and P = P̃ up to translation means that there exists m ∈ Rd such that if (X1, X2) has
distribution RK and (ε1, ε2) has distribution P ⊗P , then (X1−m,X2−m) has distribution
R
K̃

and (ε1 + m, ε2 + m) has distribution P̃ ⊗ P̃ . The following theorems state that the
distribution of the observations allows to recover the kernel of the hidden Markov chain and
the distribution of the noise up to translation.

Theorem 1 Assume that K (resp. K̃) is a transition kernel on Rd ×B(Rd) with a unique
stationary distribution µK (resp. µ

K̃
) and that RK and R

K̃
satisfy assumption H1. Assume

also that there exists ρ < 2 such that µK ∈Mρ and µ
K̃
∈Mρ. Then, PK,P = P

K̃,P̃
implies

that RK = R
K̃

and P = P̃ up to translation.

In the case of real valued random variables, identifiability holds for a class of transition
kernels including Gaussian Markov chains.

Theorem 2 (case d = 1) Assume that K (resp. K̃) is a transition kernel on R × B(R)
with a unique stationary distribution µK (resp. µ

K̃
) and with a density with respect to the

Lebesgue measure. Assume that there exists ρ < 3 such that µK ∈ Mρ and µ
K̃
∈ Mρ.

Assume that RK and R
K̃

satisfy assumption H1. Assume moreover that if the stationary

Markov chain with transition kernel K (resp. K̃) is Gaussian, it is not a sequence of
independent and identically distributed variables. Then, PK,P = P

K̃,P̃
implies that RK =

R
K̃

and P = P̃ up to translation.

One way to fix the “up to translation” indeterminacy when the noise has a first order
moment is to assume that E[ε1] = 0. Detailed proofs of Theorems 1 and 2 can be found in
Appendix A.

Comments on the assumptions.

i) The assumption that µK ∈Mρ is an assumption on the tails of the distribution µK . If
µK is compactly supported, then µK ∈M1, and if a probability distribution is in Mρ

for some ρ, then ρ > 1 except when it is a Dirac mass at point 0. The assumption ρ < 2
means that µK is required to have tails lighter than that of Gaussian distributions.

ii) The most striking result is that there is no assumption at all on the distribution of
the noise, it could have any distribution (including the possibility of a deterministic
noise). In particular, there is no assumption on the set where its characteristic function
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vanishes. In addition, there is no density or singularity assumption on the distribution
of the hidden signal. The hidden sequence may have atomic distributions, continuous
distributions, and no specific knowledge about this is required. The only assumptions
are on the tail of the signal distribution and assumption H1 which, as discussed below,
is a dependency assumption. In contrast, in previous works such as (Wilhelm, 2015),
(Hu and Shum, 2012) or (Hu and Schennach, 2008), part of the observations and hidden
variables are assumed to have densities (with boundedness or tail assumptions), and
some assumptions require invertibility of operators which in the context of this paper
translate to non vanishing of the characteristic function of the noise. The completeness
assumption ID4 in (Wilhelm, 2015) implies H1 if the hidden variables are bounded.

iii) Assumption H1. Hadamard’s factorization theorem states that entire functions
are completely determined by their set of zeros up to a multiplicative indetermi-
nacy which is the exponential of a polynomial with degree at most the exponential
growth of the function (here ρ). If µK ∈ Mρ for some ρ < 2, then a consequence
of Hadamard’s factorization theorem (arguing variable by variable) is that ΦRK (·, 0)
has no zeros if and only if µK ∈ Mρ is a dirac mass. A simple example in which
Assumption H1 holds is when the Markov chain is a an autoregressive process, that
is there exists a function h and a sequence of i.i.d. centered random variables ηi,
i > 1, such that for all integer i, Xi+1 = h(Xi) + ηi. Indeed in this case, for all
z1 ∈ Cd and z2 ∈ Cd, ΦRK (z1, z2) = E[exp(z1X1 + z2h(X1))]E[exp(z2η1)], so that
for any z1, there exists z2 such that ΦRK (z1, z2) 6= 0 and Assumption H1 holds.
Now, if the variables Xi, i > 1, are independent, then for all z1 ∈ Cd and z2 ∈ Cd,
ΦRK (z1, z2) = ΦRK (z1, 0) ΦRK (0, z2). But if Xi is not deterministic, then the function
ΦRK (·, 0) = ΦRK (0, ·) has zeros, and Assumption H1 does not hold. In other words,
Assumption H1 implies that the variables Xi, i > 1 are not independent except if they
are deterministic. When the hidden variables have a finite support set of cardinality 2,
Assumption H1 is even equivalent to the fact that X1 and X2 are not independent.

Outline of the proofs. The strategy is to write the characteristic functions of the distribution
of two consecutive observations under PK,P and P

K̃,P̃
, and to derive an equality involving

the characteristic functions of RK and R
K̃

in a neighborhood of the origin using the fact
that, in such a neighborhood, the characteristic function of the noise distribution is nonzero
both under P and P̃ . Then, the assumption that µK ∈Mρ for some ρ is used in two main
steps.

i) The first step is to extend the equality that holds between characteristic functions in
a neighborhood of the origin into an equality on Cd × Cd, that is for any z1 ∈ Cd and
z2 ∈ Cd,

ΦRK (z1, z2) ΦR
K̃

(z1, 0) ΦR
K̃

(z2, 0) = ΦR
K̃

(z1, z2) ΦRK (z1, 0) ΦRK (z2, 0) . (3)

This equation is also the starting point of (Gassiat and Rousseau, 2016), but dealing
with continuous multidimensional state spaces requires further developments. In the
proof of Theorem 1 and Theorem 2, this is possible due to the fact that the functions
ΦRK and ΦR

K̃
are multivariate analytic functions. Indeed, it is possible to replace, in
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the integral defining ΦRK and ΦR
K̃

, the exponential term by its series expansion and
interchange sums and integration using dominated convergence since Laplace trans-
forms under RK with R

K̃
are finite everywhere, and the remainder in the series may

be locally uniformly upper bounded. Then, using assumption H1, it is possible to
prove that variable by variable, ΦRK and ΦR

K̃
have the same sets of zeros in C (with

multiplicity) when all other variables are fixed.

ii) The second step is to use (again variable by variable) Hadamard’s factorization theorem
for entire functions, see (Stein and Shakarchi, 2003, Chapter 5, Theorem 5.1), to prove
that ΦRK and ΦR

K̃
are equal up to the exponential of a polynomial of degree at most

the integer part of ρ. This is where the constraint on ρ is used. Indeed, if ρ < 2,
its integer part is 1. We prove that ΦRK and ΦR

K̃
are equal up to the exponential of

a polynomial of degree at most 1 in each variable (the case d > 1 requires a careful
analysis), from which we deduce that RK = R

K̃
and P = P̃ up to translation. In

the case where only ρ < 3 is required, the conclusion is that ΦRK and ΦR
K̃

are equal
up to the exponential of a polynomial of degree at most 2. In this case, we were able
to extend the result only for real valued observations, by proving the following lemma
which is used to conclude that the polynomial has to be of degree at most 1.

Lemma 3 Assume that (Xi)i>1 is a stationary real valued Markov chain with transi-
tion kernel having a density with respect to the Lebesgue measure. Assume that (ηi)i>1

is a sequence of independent and identically distributed real valued Gaussian random
variables with positive variance and independent of (Xi)i>1. If (Xi + ηi)i>1 is Markov
chain, then (Xi)i>1 is an independent and identically distributed sequence.

The proof of Theorem 2 uses the fact that the hidden variables form a Markov chain by
using Lemma 3 where the Markovian property is the starting point of the proof. This is
not the case for Theorem 1 in which only the dependency assumption H1 is used. Thus,
Theorem 1 can be extended to other dependent observations in which the hidden signal is
not necessarily a Markov chain. Consider now model (2). Applying Theorem 1 (with the
assumptions on R as defined below instead of on the kernel of the Markov chain) yields the
following corollary.

Corollary 4 Assume that (Zi)i>1 is a sequence of stationary random variables such that
the distribution of g(Z1) is in Mρ for some ρ < 2, and such that the distribution R of
(g(Z1), g(Z2)) satisfies Assumption H1. Then the mapping that associates R (in Mρ for
some ρ < 2 and satisfying H1) and P (the distribution of the noise) to the distribution of
(Y1, Y2) is one-to-one up to translation.

The function g can be known or unknown. If g is unknown but may be recovered from the
knowledge of the distribution of (g(Z1), g(Z2)), then Corollary 4 states that in model (2),
everything can be recovered based only on (Yi)i>1 in regression problems with dependent
hidden regressors. In particular, Corollary 4 extends the identification results of Dumont
and Le Corff (2017); Dahlhaus et al. (2017) to the cases where the distribution of the
additive noise is unknown. Numerical experiments in the case where g : x 7→ cosx are given
in Section 4.
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3. Consistent Estimation

In this section, we propose two different estimation methods. The first one is directly de-
rived from equation (3). It is similar to the method proposed in (Gassiat and Rousseau,
2016) for parametric estimation of the finite dimensional parameter (in their work, the
hidden variables take finitely many values). The second estimation method is a likelihood
method, which uses the Markov modeling of the hidden variables. The idea is to approxi-
mate the continuous state space by a finite state space obtained by discretization, and to
use penalized likelihood to select automatically the number of points in the approximation
and their location. Since the likelihood uses the joint distribution of all observations, like-
lihood estimation should be more accurate when the hidden process is indeed Markovian.
Moreover, for hidden Markov models in which the distribution of the hidden variable has
distribution in Mρ for 2 6 ρ < 3, the chosen estimation method has to use the Markovian
property. In such a case, we can not use a method based on joint distributions of only two
consecutive observations (like the one proposed in Section 3.1) but rather the likelihood
method which uses the joint distribution of all observations. For both estimation methods,
the identifiability theorem is the cornerstone to establish the consistency of the estimator.

3.1. Using Least Squares for Characteristic Functions

In the following, objects which depend on the true (unknown) distribution P? of the observed
process are denoted with the superscript ?. Let S be a compact neighborhood of 0 in R2d,
and let w : Rd×Rd → R+ be a positive function on S. Let φ? be the characteristic function
of ε1. For any probability distribution R on Rd × Rd, define

M(R) =

∫
S
|ΦR?(it1, it2)ΦR(it1, 0)ΦR(0, it2)− ΦR(it1, it2)ΦR?(it1, 0)ΦR?(0, it2)|2

|φ?(t1)φ?(t2)|2w(t1, t2)dt1dt2 .

Under appropriate assumptions, by the proof of Theorem 1, M(R) = 0 if and only if
R = R? = RK? up to translation. Using an estimator Φ̂n of the characteristic function of
(Y1, Y2), define an estimator of M(·) by

Mn(R)=

∫
S

∣∣∣Φ̂n(t1, t2)ΦR(it1, 0)ΦR(0, it2)− ΦR(it1, it2)Φ̂n(t1, 0)Φ̂n(0, t2)
∣∣∣2w(t1, t2)dt1dt2 .

Let R be a set of probability distributions on Rd × Rd such that for some ρ < 2, for all
R ∈ R, both marginal distributions of R are in Mρ and R satisfies assumption H1. Define

R̂n as an element of R satisfying

Mn(R̂n) = inf
R∈R

Mn(R).

Under the assumptions of Theorem 5, R̂n exists but may be not uniquely defined because
of translation invariance. Let d be a distance that metrizes weak convergence on R, and
define Zn(t1, t2) by Zn(t1, t2) =

√
n(Φ̂n(t1, t2)− ΦR?(it1, it2)φ?1(t1)φ?2(t2)).
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Theorem 5 Assume that sup(t1,t2)∈S |Zn(t1, t2)| = OP?(1) . Then,

M(R̂n) = OP?(n
−1/2).

If moreover R is compact for the weak convergence topology and R? ∈ R, then d(R̂n,R?)
tends to 0 in P?-probability as n tends to infinity, where R? is the set of R ∈ R that are
equal to R? up to translation.

In the parametric setting, the n−1/2 rate on M(R̂n) leads to a n−1/2 rate on the parameter
as proved in (Gassiat and Rousseau, 2016), where the main point is to prove that the
Hessian matrix of the criterion is non singular at the true (unknown) parameter. However,
obtaining nonparametric rates on R̂n from rates on M(R̂n) is much more difficult, since in
this infinite dimensional setting, the Hessian operator can not have continuous inverse.

Note that consistency with respect to some topology is a consequence of the continuity
of M and the compactness of R in the same topology. Consistency in other topologies could
be derived under other assumptions. The proof of Theorem 5 is postponed to Appendix A.

Comments on the assumptions of Theorem 5.

i) Assumption on Zn. If Φ̂n is the empirical estimator, then this assumption holds as
soon as the hidden Markov chain is strongly mixing, see for instance Doukhan et al.
(1994) and Doukhan et al. (1995).

ii) The marginals of each R ∈ R are in Mρ. For any positive ρ, A, B and any positive
integer d′, let Mρ,d′(A,B) be the set of finite measures µ on Rd′ such that for all
u ∈ Rd′ ,

∫
exp

(
uTx

)
dµ(x) 6 A exp (B‖u‖ρ). For any ρ > 0, A > 0 and B > 0,

Mρ,2d(A,B) is compact for the weak convergence topology and for each distribution R
on Rd × Rd such that R ∈ Mρ,2d(A,B), both marginal distributions of R are in Mρ.
Thus, it is enough to choose R ⊂Mρ,2d(A,B) for some ρ, A and B. In this case, the
closure of R is compact and still a subset of Mρ,2d(A,B).

iii) All elements of R satisfy assumption H1. A way to ensure this is to assume that there
exists Ξ > 0 and ϕ : Cd → R∗+ such that

∀R ∈ R, ∀z0 ∈ Cd, sup
z1∈Cd,‖z1‖6Ξ

|ΦR(z0, z1)| ∨ |ΦR(z1, z0)| > ϕ(z0) . (4)

Note that since if (Rn)n>1 is a sequence of distributions inMρ,2d(A,B) that converges
to R in distribution, then ΦRn converges to ΦR uniformly over all compacts of (Cd)2

(because the set of functions {ΦR : R ∈Mρ,2d(A,B)} is pointwise equicontinuous), the
closure of R∩Mρ,2d(A,B) also satisfies equation (4).

Hence, the largest subset R of Mρ,2d(A,B) (for some ρ ∈ (0, 2), A > 0 and B >
0) that contains only probability distributions satisfying equation (4) is compact for
the weak convergence topology, each of its elements satisfies H1, and provided that
the parameters ρ, A, B, Ξ and ϕ are suitable, it contains R?, thus it satisfies the
assumptions of Theorem 5.
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3.2. Using Maximum Likelihood

In this section we fully exploit the Markovian structure of the latent variables. Using
the fact that continuous distributions may be approximated by discrete distributions, we
consider finite state space hidden Markov models and the associated maximum likelihood
estimator. The idea is to replace the (continuous) support of the hidden process by a finite
support. Increasing the number of support points reduces the approximation error (the
bias) while increasing the estimation error. Thus, a careful bias-variance trade-off has to
be performed to obtain consistent estimators. We propose a penalized likelihood estimator
that automatically selects the number of support points. Its consistency is obtained thanks
to the identifiability Theorem 1 and to the oracle inequality proved in (Lehéricy, 2018),
Theorem 6.

We assume in this section that the hidden process (Xi)i>1 takes values in a known com-
pact set Λ = [−L,L]d ⊂ Rd and that the distribution of the noise is absolutely continuous
with respect to the Lebesgue measure on Rd. Denote by K? the transition kernel of the
hidden process, and by γ? the density of the noise with respect to the Lebesgue measure.
Since Λ is known, all possible kernels K are such that µK ∈M1.

Transition kernels on finite sets are described by the number of points r of their support,
the vector X = (x1, . . . , xr) of their support points and the transition matrix Q between
these points: for all (z, z′) ∈ {1, . . . , r}2, Q(z, z′) = P(X1 = xz′ |X0 = xz). For a vector
X ∈ Λr, a transition matrix Q with stationary distribution µQ and a density γ, the log-
likelihood of the parameter (X, Q, γ) given the observations (Yi)16i6n is

`n(X, Q, γ) = log

 ∑
z1,...,zn∈{1,...,r}

µQ(z1)γ(Y1 − xz1)
n∏
k=2

Q(zk−1, zk)γ(Yk − xzk)

 .

In this section, a penalized likelihood function is used to perform model selection. Consider
a collection of finite dimensional models (Sr,D,n)r>1,D>1,n>1, in which D is a complexity
parameter related to the sieve approximation of the nonparametric set in which γ lies.
Then, for each r > 1 and D > 1, the maximum likelihood estimator of model Sr,D,n is
defined by

(X̂r,D,n, Q̂r,D,n, γ̂r,D,n) ∈ arg max
(X,Q,γ)∈Sr,D,n

1

n
`n(X, Q, γ) .

The number of states and the model dimension are selected using the penalized likelihood:

(r̂n, D̂n) ∈ arg max
r6logn,D6n

(
1

n
`n(X̂r,D,n, Q̂r,D,n, γ̂r,D,n)− (D + r2)

(log n)15

n

)
and the final estimators are defined as

(X̂n, Q̂n, γ̂n) =
(
X̂
r̂n,D̂n,n

, Q̂
r̂n,D̂n,n

, γ̂
r̂n,D̂n,n

)
.

The specific form of the penalty is chosen according to the theory developed in (Lehéricy,
2018), but in practice the slope heuristics as in (Baudry et al., 2012) could be used to
calibrate the penalty.
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The nonparametric set Γ of possible noise densities is described now as a set of non-
parametric mixtures. Then, the finite dimensional sieve is given by finite mixtures with at
most D support points. Write GLd(R) the group of invertible real matrices of size d, let
Θ be a compact subset of Rd ×GLd(R), and f : y ∈ Rd 7−→ (2π)−d/2 exp(−‖y‖2/2) be the
density of a standard multivariate normal distribution. Write P(Θ) the set of probability
measures on Θ, let

Γ =

{
γ : y 7−→

∫
Θ
|det(Σ)|f (Σ(y − µ)) dp(µ,Σ) : p ∈ P(Θ),

∫
Θ
µdp(µ,Σ) = 0

}
(5)

be the set of densities of location-scale mixtures of f with parameters in Θ. The condition∫
Θ µdp(µ,Σ) = 0 ensures that all densities in Γ are centered. For (µ,Σ) ∈ Θ, write δµ,Σ the

Dirac measure centered on (µ,Σ). Let (GD)D>1 be defined for all D > 1 by

GD =

{
γ : y 7−→

D∑
i=1

pi det(Σi)f (Σi(y − µi)) :
D∑
i=1

piδ(µi,Σi) ∈ P(Θ),
D∑
i=1

piµi = 0

}
.

Transition kernels are understood as functions from Λ to P(Λ) endowed with the weak
convergence topology. For p > 1, let Wp(µ1, µ2) be the Wasserstein distance between two
probability measures µ1 and µ2 on the same Euclidian space E which is defined as the
infimum of (

∫
E×E ‖x − y‖pπ(dx, dy))1/p over the set of probabilities π such that µ1 =∫

π(·, dy) and µ2 =
∫
π(dx, ·), see (Rachev and Rüschendorf, 1998) or (Villani, 2009).

Wasserstein distances are convenient to compare probability measures that may be singular
to each other and W1 metrizes the weak convergence topology for compactly supported
distributions. Let C > 2 be a constant.

H2 The mapping x ∈ Λ 7−→ K?(x, ·) ∈ (P(Λ),W1) admits the modulus of continuity ω/2
and there exists a probability measure λ? on Λ such that for all x ∈ Λ, K?(x, ·) has a
density with values in [2/C,C/2] with respect to λ?.

It is possible to assume that ω is a concave function with no loss of generality since P(Λ)
has finite W1-diameter.

The collection of models (Sr,D,n)r>1,D>1,n>1 used in the maximum likelihood estimation
is defined as follows. For all r > 1 and D > 1, let Sr,D be the set of all (X, Q, γ) ∈
Λr × [1/(Cr), C/r]r×r × GD such that Q is a transition matrix and the transition kernel
xz 7−→

∑r
z′=1Q(z, z′)δxz′ admits the modulus of continuity ω with respect to W1.

In order to state the consistency result, a continuous kernel associated with the discrete
kernels of the models has to be introduced. For (X, Q, γ) ∈ Sr,D, denote by KX,Q a transi-
tion kernel on Λ that admits the modulus of continuity ω with respect to the Wasserstein
1 metric, extends the kernel defined by Q on {xz}z=1,...,r and such that the support of
KX,Q(x, ·) is in {xz}z=1,...,r for all x ∈ Λ. Linear interpolation provides a way to construct
such a kernel as soon as the modulus ω is concave.

To conclude the definition of the models, let Ξ′ > 0, (Ξn)n be a sequence of positive real
numbers such that Ξn → +∞ and ϕ : Cd → R∗+. For all r,D, n, let Sr,D,n be the subset of
Sr,D such that

∀(X, Q, γ) ∈ Sr,D,n , ∀z0 ∈ Cd s.t. ‖z0‖ 6 Ξn ,

sup
z1∈Cd,‖z1‖6Ξ′

|ΦRKX,Q
(z0, z1)| ∨ |ΦRKX,Q

(z1, z0)| > ϕ(z0) . (6)

10
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This is a relaxed version of H1 and equation (4) in the sense that even though the elements of
Sr,D,n may not satisfy H1, the limit of a convergent sequence (RKXn,Qn

)n with (Xn, Qn, γn) ∈
Sr,D,n for all n satisfies H1. For the following theorem to work, Ξ′ can be chosen arbitrarily,
(Ξn)n must grow “slowly enough” and ϕ be “small enough”; an appropriate choice of these
quantities is discussed in the proof of the Theorem, see Appendix B.2.

Theorem 6 Assume that H1 and H2 hold for K?. Assume also that γ∗ ∈ Γ. Let λ? be
the measure defined in assumption H2 and Supp(λ?) its support. Then, almost surely, the
maximum likelihood estimator satisfies

sup
x∈Supp(λ?)

W1(K
X̂n,Q̂n

(x, ·),K?(x, ·)) −→
n→∞

0

and ‖γ̂n − γ?‖1 −→
n→∞

0 . In particular, almost surely under P?, for all x ∈ Supp(λ?),

K
X̂n,Q̂n

(x, ·) −→ K?(x, ·) for the weak convergence topology and µK
X̂n,Q̂n

−→ µK? for the

weak convergence topology.

Theorem 6 is a special case of a theorem stated and proved in Appendix B that holds for
more general sets Γ and (GD)D>1.

4. Simulations

The following experiment displays a distance criterion between the true observations and
the output of a nonparametric estimation procedure. We use a simulated dataset inspired
by a signal processing application to generate data. However, we do not focus on parameters
values as, in this case, the problem would boil down to a parametric estimation procedure
for which other theoretical and practical results have been obtained recently. We are not
interested in some parameter values but in the law of the hidden process which is the reason
why only distances between the true distribution and the estimated one are represented.
Consider the model where Z0 is a uniform random variable on (0, 2π) and for all k > 1,

Zk = Zk−1 + σxηk , Xk = cos (Zk) and Yk = Xk + σyεk ,

where (σx, σy) ∈ ×R∗+ × R∗+ and where (εk, ηk)k>1 are independent standard Gaussian
random variables independent of Z0. The parameters (σx, σy) = (0.1, 0.1) are used to
sample the observations. Assumption H2 holds: the transition kernel K? of (Xk)k>1 is
1/2-Hölder and the probability measure λ? can be taken as the invariant measure of K?.

This section provides numerical illustrations of the maximum likelihood approach, ad-
ditional simulations using least squares for the characteristic functions are given in Ap-
pendix C. The algorithm proposed here is more efficient than the algorithm proposed in
Appendix C whose performance highly depends on the evolutionnary algorithm to mini-
mize the criterion. The performance of the estimation procedure proposed in Section 3.2
is assessed in the case where Λ = R and Γ is as in (5) with Θ = R × (0,+∞). Although
the compactness assumptions of Section 3.2 are not satisfied, in practice, the estimator is
shown to converge to the true distribution. The main reason for these assumptions is to
ensure theoretical consistency by ruling out the worst case scenarios where the estimators
are degenerate.
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For each n ∈ {5.103, 104, 2.104, 5.104, 105, 2.105}, 10 independent and identically dis-
tributed sequences (Yi)i=1,...,n are generated. For each sample, an approximation of the
maximum likelihood estimator is computed using the Estimation Maximization algorithm
(Dempster et al., 1977) for D = 2 and r ∈ {10, 20, 30}. The error criterion is the estimated
Wasserstein distance between the estimated and the true distribution of (X1, X2), computed

using NX×NW independent and identically distributed pairs (X
(j)
1,i , X

(j)
2,i )i=1,...,NX ,j=1,...,NW

following the distribution RK? with NX = 5000 and NW = 4:

Error(X̂n, Q̂n) =
1

NW

NW∑
j=1

W1

(
RK

X̂n,Q̂n
,

1

NX

NX∑
i=1

δ
(X

(j)
1,i ,X

(j)
2,i )

)
, (7)

or equivalently (when written as a distance between weighted point processes)

Error(X̂n, Q̂n) =
1

NW

NW∑
j=1

W1

 ∑
x,x′∈X̂n

RK
X̂n,Q̂n

(x, x′)δ(x,x′),
1

NX

NX∑
i=1

δ
(X

(j)
1,i ,X

(j)
2,i )

 .

The distance W1 is computed using function wasserstein from R package transport

Schuhmacher et al. (2019); R Core Team (2017). The results are displayed in Figure 1.
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Figure 1: Wasserstein distance computed as in (7) for r = 10 (top), r = 20 (middle) and
r = 30 (bottom). Each dot is an estimated value with the maximum likelihood
approach. For each value of r, the mean value (squares) over all runs as well as
the empirical standard deviation (bars) are displayed.
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n r = 10 r = 20 r = 30

5000 [0.196; 0.327; 0.773] [0.170; 0.312; 0.778] [0.059; 0.304; 0.800]
10000 [0.075; 0.182; 0.355] [0.047; 0.169; 0.363] [0.045; 0.184; 0.371]
20000 [0.075; 0.097; 0.261] [0.045; 0.082; 0.267] [0.036; 0.079; 0.255]
50000 [0.077; 0.098; 0.166] [0.048; 0.077; 0.155] [0.034; 0.074; 0.160]
100000 [0.076; 0.103; 0.149] [0.046; 0.091; 0.142] [0.038; 0.084; 0.139]
200000 [0.076; 0.087; 0.110] [0.045; 0.065; 0.100] [0.037; 0.062; 0.107]

Figure 2: Summary of the Wasserstein distance computed as in (7). Each cell contains the
min, median and max value of the error over the 10 simulations with correspond-
ing r and n.

5. Discussion

In this paper, we proved that statistical learning of a Markov signal corrupted by addi-
tive noise is possible without any knowledge of the noise and with weak nonparametric
assumptions on the distribution of the hidden variables. We proposed estimation methods
and proved the consistency of the estimators under weak assumptions. Establishing rates
of convergence is a much more challenging task. It would require to relate the limiting
criterion to the risk of the estimator, namely to lower bound M(·) in section 3.1 for the
least squares estimator, or the entropy rate K in section B.2 for the maximum likelihood
estimator, to some risk on the kernel of the hidden process and some risk on the distribution
of the noise. In other words, the challenge is to get a quantitative control in the inverse
problem relating the kernel K and the distribution P to PK,P , in a similar way as Theorem
6 in (De Castro et al., 2016). This can not be done as in usual deconvolution problems
where some prior knowledge on the noise distribution is available.

As explained in Section 2, identifiability may be proved in other dependency settings.
In the context of at least 2-dimensional observations, deconvolution is possible without any
knowledge of the noise distribution if the signal to be recovered has dependent coordinates.
This is further developed in (Gassiat et al., 2020). In this work, rates are provided for the
least squares estimator in the setting of independent and identically distributed observa-
tions.

In the numerical section, we provide numerical experiments to support the fact that
nonparametric estimation of the law of the hidden process is possible in a general state
space translation model. A more thorough practical study remains to be done and is the
topic of future works but considering real datasets is out of the scope of this paper where
the take-home message is much more related to the theoretical guarantees obtained here
(and the weak assumptions in comparison to existing works).
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Appendix A. Proof of Theorem 1, Theorem 2 and Theorem 5

A.1. Proof of Theorem 1

The following result, which may be established by arguing variable by variable, is used
repeatedly in this proof. If a multivariate function is analytic on the whole multivariate
complex space and is the null function in an open set of the multivariate real space or in
an open set of the multivariate purely imaginary space, then it is the null function on the
whole multivariate complex space.

Assume that PK,P = P
K̃,P̃

and let φ (resp. φ̃) be the characteristic function of P (resp.

P̃ ). Notice that ΦRK (it1, it2) (resp. ΦR
K̃

(it1, it2)) for real numbers numbers t1 and t2
defines the characteristic function of (X1, X2) when the Markov chain has kernel K (resp.
K̃) and ΦRK (it, 0) = ΦRK (0, it) (resp. ΦR

K̃
(it, 0) = ΦRK (0, it)) for real numbers t defines

the characteristic function of any Xi when the Markov chain has kernel K (resp. K̃). Since
the distribution of Y1 and Y2 are the same under PK,P and P

K̃,P̃
, for any t ∈ Rd,

φ (t) ΦRK (it, 0) = φ̃ (t) ΦR
K̃

(it, 0) . (8)

Since the distribution of (Y1, Y2) is the same under PK,P and P
K̃,P̃

, for any (t1, t2) ∈ Rd×Rd,

φ (t1)φ (t2) ΦRK (it1, it2) = φ̃ (t1) φ̃ (t2) ΦR
K̃

(it1, it2) . (9)

There exists a neighborhood V of 0 in Rd ×Rd such that for all t = (t1, t2) ∈ V , φ (t1) 6= 0,
φ (t2) 6= 0, φ̃ (t1) 6= 0, φ̃ (t2) 6= 0, so that (8) and (9) imply that for any (t1, t2) ∈ V 2,

ΦRK (it1, it2) ΦR
K̃

(it1, 0) ΦR
K̃

(it2, 0) = ΦR
K̃

(it1, it2) ΦRK (it1, 0) ΦRK (it2, 0) .

Since (z1, z2) 7→ ΦRK (z1, z2) ΦR
K̃

(z1, 0) ΦR
K̃

(z2, 0)− ΦR
K̃

(z1, z2) ΦRK (z1, 0) ΦRK (z2, 0) is
a multivariate analytic function of 2d variables which is zero in a purely imaginary neigh-
borhood of 0, then it is the null function on the whole multivariate complex space so that
for any z1 ∈ Cd and z2 ∈ Cd,

ΦRK (z1, z2) ΦR
K̃

(z1, 0) ΦR
K̃

(z2, 0) = ΦR
K̃

(z1, z2) ΦRK (z1, 0) ΦRK (z2, 0) . (10)

Fix (u2, . . . , ud) ∈ Cd−1 and let Z be the set of zeros of u 7→ ΦRK (u, u2, . . . , ud, 0) and Z̃ be
the set of zeros of u 7→ ΦR

K̃
(u, u2, . . . , ud, 0). Let u1 ∈ Z and write z1 = (u1, u2, . . . , ud) so

that by (10), for any z2 ∈ Cd,

ΦRK (z1, z2) ΦR
K̃

(z1, 0) ΦR
K̃

(z2, 0) = 0 and ΦRK (z2, z1) ΦR
K̃

(z1, 0) ΦR
K̃

(z2, 0) = 0 . (11)

By assumption H1, z2 → ΦRK (z1, z2) is not the null function or z2 → ΦRK (z2, z1) is not
the null function. Assume without loss of generality that z2 → ΦRK (z1, z2) is not the
null function (the proof follows the same steps in the other case). Then, there exists z?2
in Cd such that ΦRK (z1, z

?
2) 6= 0 and by continuity, there exists an open neighborhood of

z?2 such that for all z2 in this open set, ΦRK (z1, z2) 6= 0. Since z 7→ ΦR
K̃

(z, 0) is not the

null function and is analytic on Cd, it can not be null all over this open set, so that there
exists z2 such that simultaneously ΦRK (z1, z2) 6= 0 and ΦR

K̃
(z2, 0) 6= 0. Then (11) leads

to ΦR
K̃

(z1, 0) = 0, so that Z ⊂ Z̃. A symmetric argument yields Z̃ ⊂ Z so that Z = Z̃.
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Moreover, the analytic functions u 7→ ΦRK (u, u2, . . . , ud, 0) and u 7→ ΦR
K̃

(u, u2, . . . , ud, 0)
have exponential growth order less than 2, so that using Hadamard’s factorization Theorem,
see (Stein and Shakarchi, 2003, Chapter 5, Theorem 5.1), there exists a polynomial function
s with degree at most 1 (and with coefficients depending on (u2, . . . , ud)) such that for all
u ∈ C,

ΦRK (u, u2, . . . , ud, 0) = es(u)ΦR
K̃

(u, u2, . . . , ud, 0) .

Arguing similarly for all variables, we get that there exists a function S on Cd which
is, for any i = 1, . . . , d, polynomial with degree at most 1 in ui, and such that for all
(u1, . . . , ud) ∈ Cd,

ΦRK (u1, u2, . . . , ud, 0) = eS(u1,u2,...,ud)ΦR
K̃

(u1, u2, . . . , ud, 0) . (12)

In other words, there exists complex functions ai, bi on Cd−1 such that, if we denote u(−i)

the (d − 1)-dimensional complex vectors with the same coordinates as u except that ui is
not included in the coordinates, then

S(u1, u2, . . . , ud) = ai(u
(−i))ui + bi(u

(−i)), i = 1, . . . , d.

But, for i 6= j, the fact that ai(u
(−i))ui + bi(u

(−i)) = aj(u
(−j))uj + bi(u

(−j)) implies that
ai(u

(−i)) and bi(u
(−i)) are polynomial functions with degree at most 1 in uj (this may

be seen for instance by taking complex derivatives), and by induction we get that S is a
polynomial function which is, for any i = 1, . . . , d polynomial with degree at most 1 in ui.

Since ΦRK (0, . . . , 0) = ΦR
K̃

(0, . . . , 0) = 1, the constant term of the polynomial S is 0.

Assume that µ
K̃

is not supported by 0. Then there exist a = (a1, . . . , ad) ∈ Rd, α > 0 and
δ > 0 such that

0 /∈
d∏
j=1

[aj − α, aj + α] and µ
K̃

 d∏
j=1

[aj − α, aj + α]

 > δ ,

which gives, for all u ∈ Rd,

ΦR
K̃

(u, 0) > δe
∑d
j=1 infxj∈[aj−α,aj+α] ujxj ,

so that using (12), for all u ∈ Rd,

ΦRK (u, 0) > δeS(u)e
∑d
j=1 infxj∈[aj−α,aj+α] ujxj .

If S has degree at least 2, then there exist i 6= j and polynomial functions with degree at
most one in each variable c1 on Cd−2 and c2, c3 on Cd−1 such that, if we denote u(−i,−j)

the (d− 2)-dimensional complex vectors with the same coordinates as u except that ui and
uj are not included in the coordinates, then S(u) = c1(u(−i;−j))uiuj + c2(u(−i)) + c3(u(−j)).
Without loss of generality say that i = 1 and j = 2. Then it is possible to find u ∈ Rd and
δ̃ > 0 such that for all t > 0, S(tu1, tu2, u3, . . . , ud) > δ̃t(u2

1 + u2
2) leading to

∀t > 0, ΦRK (tu1, tu2, u3, . . . , ud, 0) > δeδ̃t(u
2
1+u22)e

∑d
j=1 infxj∈[aj−α,aj+α] ujxj ,
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contradicting the assumption that µK ∈Mρ for some ρ < 2. Thus, S has degree at most 1
and there exists m ∈ Cd such that for all z ∈ Cd,

ΦRK (z, 0) = em
T zΦR

K̃
(z, 0) . (13)

As for all z ∈ Rd, ΦRK (−iz, 0) = ΦRK (iz, 0) and ΦR
K̃

(−iz, 0) = ΦR
K̃

(iz, 0), then m ∈ Rd.
Combining (13) with (10) yields, for all (t1, t2) ∈ Rd × Rd,

ΦRK (it1, it2) = eim
T t1+imT t2ΦR

K̃
(it1, it2) . (14)

Then, using (8), for all t ∈ Rd such that ΦRK (it, 0) 6= 0, φ(t) = e−im
T tφ̃(t). Since the set of

zeros of t 7→ ΦRK (it, 0) has empty interior, for each t such that ΦRK (it, 0) = 0 it is possible
to find a sequence (tn)n>1 such that tn tends to t and for all n, ΦRK (itn, 0) 6= 0. But φ and

φ̃ are continuous functions, so that for all t ∈ R,

φ(t) = e−im
T tφ̃(t) . (15)

The proof is concluded by noting that (14) and (15) imply that RK = R
K̃

and P = P̃ up
to translation.

A.2. Proof of Theorem 2

Following the same steps as in the proof of Theorem 1, there exists a polynomial S with
real coefficients and degree at most 2 such that, for all z ∈ C, ΦRK (z, 0) = eS(z)ΦR

K̃
(z, 0) ,

and for all (z1, z2) ∈ C× C,

ΦRK (z1, z2) = eS(z1)eS(z2)ΦR
K̃

(z1, z2) . (16)

Assume that S has degree equal to 2. Then, there exist real numbers a, b, c such that for
all z ∈ C, S(z) = az2 + bz + c. With no loss of generality assume that a > 0 (otherwise,
replace K by K̃). Then, (16) means that there exist independent and identically distributed
Gaussian variables ηi, with variance 2a, such that, if (Xi)i>1 is a stationary Markov chain
with transition kernel K and (X̃i)i>1 is a stationary Markov chain with transition kernel
K̃, (Xi)i>1 has the same distribution as (X̃i+ηi)i>1, with ηi, i > 1, independent of (X̃i)i>1.
Using Lemma 3, this implies that the random variables (Xi)i>1 are independent and iden-
tically distributed. If z 7→ ΦRK (z, 0) has no zeros, then it has the same set of zeros as the
constant function equal to one (corresponding to deterministic independent variables equal
to 0), so that using Hadamard’s Theorem, since µK ∈ Mρ with ρ < 3, then there exists a
polynomial with degree at most 2 such that ΦRK (z, 0) is the exponential of that polynomial,
so that (Xi)i>1 is a sequence of independent Gaussian variables, contradicting the assump-
tion of Theorem 2. But for all (z1, z2) ∈ Cd × Cd, ΦRK (z1, z2) = ΦRK (z1, 0)ΦRK (0, z2).
Thus if z 7→ ΦRK (z, 0) has at least one zero z0, then ΦRK (z0, z) = 0 and ΦRK (z, z0) = 0
for all z ∈ C, contradicting assumption H1 in Theorem 2. Then we may conclude that S
has degree at most 1, and the end of the proof of Theorem 2 follows the same steps as the
proof of Theorem 1.
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A.3. Proof of Lemma 3

For all x ∈ R, let x′ 7→ q(x, x′) be the density of the transition kernel of the Markov chain
(Xi)i>1 with respect to the Lebesgue measure and µ be its stationary density. Denote m
the mean and σ2 the variance of η1, and let φ be the density of η1 . Denote by g1 the
density of Xi+ηi, g2 the density of (Xi+ηi, Xi+1 +ηi+1), g3 the density of (Xi+ηi, Xi+1 +
ηi+1, Xi+2 + ηi+2) for any i > 1. The fact that (Xi + ηi)i>1 is a Markov chain implies
that the conditional distribution of X3 + η3, conditionally to (X2 + η2, X1 + η1), equals
the conditional distribution of X3 + η3, conditionally to X2 + η2 alone, that is for all real
numbers y1, y2, y3,

g3(y1, y2, y3)g1(y2) = g2(y1, y2)g2(y2, y3).

This rewrites as follows. For all real numbers y1, y2, y3,∫
µ(x1)q(x1, x2)φ(y1 − x1)φ(y2 − x2)q(x2, x3)φ(y3 − x3)dx1dx2dx3

∫
µ(x4)φ(y2 − x4)dx4

=

∫
µ(x1)q(x1, x2)φ(y1 − x1)φ(y2 − x2)dx1dx2

∫
µ(x4)q(x4, x3)φ(y3 − x3)φ(y2 − x4)dx3dx4.(17)

But for all real numbers x and y, φ(y − x) = ϕ((x − y + m)/σ) with ϕ the density of the
standard Gaussian distribution.Recall that X is a complete statistic for the Gaussian model
(N (m,σ2))m∈R, meaning that if h is a real function such that for all m ∈ R,

∫
h(x)ϕ((x−

y+m/σ))dx = 0, then h = 0. Thus, (17) implies that for all almost real numbers x1, x3, y2,∫
µ(x1)q(x1, x2)µ(x4)[q(x2, x3)− q(x4, x3)]φ(y2 − x2)φ(y2 − x4)dx2dx4 = 0 . (18)

Using that φ(y2−x2)φ(y2−x4) = φ(
√

2[y2−(x2 +x4)/2)])φ((x2−x4 +m)/
√

2), (18) implies
that for all real numbers x1, x3, u,∫
µ(x1)q

(
x1,

u+ v

2

)
µ

(
u− v

2

)[
q

(
u+ v

2
, x3

)
− q

(
u− v

2
, x3

)]
φ((v +m)/

√
2)dv = 0 .

(19)
Let H : R3 −→ R be any measurable and positive function. Define the measurable and
positive function G : (x, y, z) 7→ H(x, y, z)φ((x− y + 2m)/2

√
2). Then by multiplying (19)

by H((u + v)/2, (u − v)/2, x3) and integrating over x1, x3, u, we get by change of variable
that∫

µ(x1)q(x1, x2)q(x2, x3)µ(x4)G(x2, x4, x3)dx1dx2dx3dx4

=

∫
µ(x1)q(x1, x2)µ(x4)q(x4, x3)G(x2, x4, x3)dx1dx2dx3dx4 . (20)

Let now (X̃i)i>1 be a Markov chain with the same distribution of (Xi)i>1 but independent
of (Xi)i>1. Since the correspondance G↔ H between measurable positive functions is one-

to-one, (20) means that for any measurable and positive function G, E
[
G
(
X2, X̃2, X3

)]
=

E
[
G
(
X2, X̃2, X̃3

)]
, which means that (X2, X̃2, X3) and (X2, X̃2, X̃3) have the same dis-

tribution. But this implies that X2 is independent of (X̃2, X3) which implies that X2 is
independent of X3.

18



Identifiability and consistent estimation of nonparametric translation HMM

A.4. Proof of Theorem 5

Using the fact that characteristic functions are bounded by 1, for all R ∈ R,

|Mn(R)−M(R)| 6 3√
n

sup
(t1,t2)∈S

|Zn(t1, t2)|+ 1

n
sup

(t1,t2)∈S
|Zn(t1, t2)|2 , (21)

and using the assumption on Zn, supR∈R |Mn(R) −M(R)| = OP?(n
−1/2). Now, using the

definition of R̂n and (21), M(R̂n) 6 Mn(R̂n) + OP?(n
−1/2) 6 Mn(R?) + OP?(n

−1/2) 6
M(R?) + OP?(n

−1/2) . M(R̂n) is then upper bounded by a term of order OP?(n
−1/2) since

M(R?) = 0, and the first assertion of Theorem 5 is proved. Now, R 7→M(R) is continuous
for the weak convergence topology, and for any ε > 0, supR∈R,d(R,R?)>εM(R) is attained by
compactness of {R ∈ R, d(R,R?) > ε}, and positive since M(R) = 0 if and only if R = R?

up to translation. Thus using Theorem 5.7 in van der Vaart (1998), the set of limiting
values of (R̂n)n>1 for the weak convergence topology is the set of R ∈ R such that R = R?

up to translation.

Appendix B. Proof of Theorem 6

B.1. General statement

This section provides in Theorem 7 a more general statement of the result claimed in
Theorem 6. It extends the class of emission densities Γ and the models (GD)D considered
beyond mixtures of Gaussian distributions, but does not change the modelling of the state
space. The proof of Theorem 7 is postponed to Section B.2.

Let Γ be a set of probability densities on Rd that satisfies the following assumption.

H3 Γ is a set of continuous and positive probability densities that admit a first order
moment and are centered in the sense that for all γ ∈ Γ,∫

Rd
yγ(y)dy = 0 . (22)

Γ is a compact subset of L1(Rd) and the envelope function

b : y ∈ Rd 7−→ sup
γ∈Γ

sup
x∈Λ

max(γ(y − x), γ(x− y))

satisfies b ∈ L1(Rd)∩L∞(Rd), admits a first order moment, and there exists a constant
CΓ > 0 such that for all γ ∈ Γ and y ∈ Rd, the mapping x ∈ Λ 7−→ γ(y − x)/b(y) is
CΓ-Lipschitz. Finally, γ? ∈ Γ.

The centering assumption (22) allows to fix the translation parameter in the identifiability
results.

Example 1 Let f be a bounded and positive probability density on Rd that admits a first
order moment and is centered. Assume that there exists ε > 0 such that

sup
(µ,Σ)∈Rd×GLd(R)

‖µ‖26ε, ‖Σ−Idd‖F6ε

f(Σ(· − µ)) ∈ L1(Rd)
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and let Θ be a compact subset of Rd×GLd(R). Finally, assume that there exists a function
Df such that for all y, y′ ∈ Rd, |f(y) − f(y′)| 6 Df (y)|y − y′| and such that (Df/f) ∈
L∞(Rd). Then the set of translation-scale mixtures of f with parameters in Θ

Γ =

{
γ : y 7−→

∫
Θ
|det(Σ)|f (Σ(y − µ)) dp(µ,Σ) : p ∈ P(Θ),

∫
Θ
µdp(µ,Σ) = 0

}
satisfies H3.

H4 Γ satisfies H3 with the envelope function b. Let m be the lower envelope function of
Γ defined by

m : y ∈ Rd 7−→ inf
γ∈Γ

inf
x∈Λ

γ(y − x).

There exists ε > 0 such that
∫
b(y)[b(y)/m(y)]εdy <∞.

Example 2 The set Γ of Gaussian location-scale mixtures of Section 3.2 satisfies H3 and
H4.

Then, consider (GD)D>1 a family of subsets of Γ. The following assumption essentially
means that each GD is a parametric model with dimension D.

H5 Γ satisfies H3 and H4 with the functions b and m, the set
⋃
D>1GD is dense in Γ

with respect to the L1 norm, and there exists a constant c̃ > 0, a mapping (D,A) ∈
N∗×R+ 7−→ c(D,A) and an increasing mapping D 7−→ dimD such that the following
holds.

– For all D > 1 and A > 0, log c(D,A) 6 c̃(log dimD +A).

– For all D > 1, there exists a surjective mapping θ ∈ ΘD ⊂ [−1, 1]dimD 7−→ γθ ∈
GD such that for all x ∈ Λ, A > 0 and y ∈ Rd such that log(b(y)/m(y)) 6 A,
the mapping θ ∈ ΘD 7−→ γθ(y − x)/b(y) is c(D,A)-Lipschitz (with ΘD endowed
with the supremum norm).

The exact value of c̃ only matters for the constants in the penalty.

Example 3 The family (GD)D>1 of finite Gaussian translation-scale mixtures defined in
Section 3.2 satisfies H5 with dimD = D(d2 + d) +D − 1 for all D > 1.

Define the sets (Sr,D)r>1,D>1, the models (Sr,D,n)r,D,n and their maximum likelihood esti-

mators (X̂r,D,n, Q̂r,D,n, γ̂r,D,n) as in Section 3.2. Then, select the number of states and the
model dimension using the penalized likelihood. Let pen(n, r,D) be a penalty function such
that pen(n, r,D) −→

n→+∞
0 for all r and D and such that there exists a sequence (un)n>1

satisfying un −→
n→∞

+∞ and for all n, r, D,

pen(n, r,D) > un(dimD +rd+ r2 − 1)
(log n)14 log logn

n
.
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For instance, for any constant cst > 0, this inequality holds by choosing pen : (n, r,D) 7−→
(cst · dimD + r2) (logn)15

n . Let

(r̂n, D̂n) ∈ arg max
r6logn,D s.t. dimD6n

(
1

n
`n(X̂r,D,n, Q̂r,D,n, γ̂r,D,n)− pen(n, r,D)

)
and define the final estimators (X̂n, Q̂n, γ̂n) = (X̂

r̂n,D̂n,n
, Q̂

r̂n,D̂n,n
, γ̂
r̂n,D̂n,n

) .

Theorem 7 Assume that H1, H2, H3, H4 and H5 hold. Let λ? be the measure defined in
assumption H2. Then, almost surely

sup
x∈Supp(λ?)

W1(K
X̂n,Q̂n

(x, ·),K?(x, ·)) −→
n→∞

0

and ‖γ̂n − γ?‖1 −→
n→∞

0. In particular, almost surely under P?, for all x ∈ Supp(λ?),

K
X̂n,Q̂n

(x, ·) −→ K?(x, ·) for the weak convergence topology and if PXK denotes the distri-

bution of the stationary Markov chain with transition kernel K, PXK
X̂n,Q̂n

−→ PXK? for the

weak convergence topology.

The remaining sections of this paper are dedicated to the proof of Theorem 7.

B.2. Proof of Theorem 7

This section states a few intermediate results whose proofs are postponed to the following
sections. These results are followed by the proof of Theorem 7, the consistency of the
maximum likelihood estimator, which is the main result of this appendix. Let ΩC

ω be the
set of transition kernels K on Λ which admit the modulus of continuity ω with respect to
the Wasserstein 1 metric and such that there exists a probability measure λ (which may
depend on K) such that for all x ∈ Λ, K(x, ·) is absolutely continuous with respect to λ
with a density taking values in [1/C,C]. The kernel K? as well as all kernels considered in
the models Sr,D belong to ΩC

ω .

Lemma 8 Assume that ΩC
ω is endowed with the topology of the uniform convergence on

the set of continuous functions with values in (P(Λ),W1), and Γ is endowed with the L1

topology. Then ΩC
ω × Γ endowed with the product topology is compact.

For all probability measures µ and ν, the Kullback Leibler divergence between µ and ν is
defined by

KL(µ‖ν) =

{∫
log dµ

dν dµ when µ is absolutely continuous with respect to ν,

+∞ otherwise.

Lemma 9 Let (Kn, γn)n>1 ∈ (ΩC
ω ×Γ)N

∗
. For all n > 1, the quantity K(PK?,γ?‖PKn,γn) =

limm→+∞
1
mKL(P(m)

K?,γ?‖P
(m)
Kn,γn

) exists and is finite, and the following two statements are
equivalent.

1. K(PK?,γ?‖PKn,γn) −→
n→∞

0.
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2. For all k > 1, dTV (P(k)
K?,γ? ,P

(k)
Kn,γn

) −→
n→∞

0.

The consistency of the maximum likelihood estimator relies on the following oracle inequal-
ity, which follows from (Lehéricy, 2018, Theorem 8). It is proved in detail in Section B.7
how Proposition 10 is deduced from (Lehéricy, 2018, Theorem 8) in the setting of this paper.

Proposition 10 For each r,D and n, let Sr,D,n and (X̂n, Q̂n, γ̂n) be defined as in Sec-
tion 3.2. There exist constants Cpen, A and n0 such that the following holds. Assume that
the penalty satisfies pen(n, r,D) > Cpen(dimD +rd + r2 − 1) log(n)14/n for all n > n0, r
and D. Then, for all n > n0, with probability at least 1− 3n−2,

K(PK?,γ?‖PX̂n,Q̂n,γ̂n
)

6 2 inf
r6logn,D s.t.dimD6n

(
inf

(X ,Q,γ)∈Sr,D
K(PK?,γ?‖PX,Q,γ) + 2pen(n, r,D)

)
+A

(log n)9

n
.

Lemma 11 Let (Kn, γn)n>1 ∈ (ΩC
ω × Γ)N

∗
be a sequence that converges to (K, γ). Then,

for all k > 1, dTV (P(k)
K,γ ,P

(k)
Kn,γn

) −→
n→∞

0.

Lemma 12 There exists a sequence (Xt, Qt, γt)t>1 taking values in
⋃
r>1,D>1 Sr,D such that

K(PK?,γ?‖PXt,Qt,γt) −→t→∞ 0 and RKXt,Qt
−→
t→∞

RK? in distribution.

Let us now discuss the choice of Ξ′, (Ξn)n and ϕ in equation (6). Let Ξ′ be a positive
real number. (Ξn)n and ϕ are chosen such that there exists sequences rn, tn → +∞ with
rn 6 log n for n large enough such that (Xtn , Qtn , γtn) ∈ Srn,D,n for all n (the choice of D
does not matter since (γt)t can be replaced by any sequence that converges to γ?). Let us
show that such a choice is possible. Let tn → ∞ and (rn)n be such that rn 6 log n and
(Xtn , Qtn , γtn) ∈

⋃
D>1 Srn,D for all n large enough. With the notationMρ,d′(A,B) defined

in Section 3.1, the sequence (RKXt,Qt
)t>1 takes values inM1,2d(1, L

√
2d). By equicontinuity

of {ΦR : R ∈M1,2d(1, L
√

2d)}, the convergence

ΦRKXt,Qt
−→
t→∞

ΦRK?

holds uniformly over all compacts of C2d. Take ϕ such that equation (4) holds with Ξeq.(4) =

Ξ′ and ϕeq.(4) = 2ϕ since RK? satisfies equation (4). Then the uniform convergence over all
compacts entails that by choosing Ξn →∞ slowly enough, the desired property holds.

Theorem 7 may now be proved. Proposition 10 actually gives a deterministic function
f : N∗ −→ R+ such that for all n > n0, with probability at least 1− 3n−2,

K(PK?,γ?‖PX̂n,Q̂n,γ̂n
) 6 f(n) .

By the previous paragraph and the assumption that pen(n, r,D) goes to zero as n goes to
infinity for each r and D, f → 0. Hence, by Borel-Cantelli’s Lemma, almost surely,

K(PK?,γ?‖PX̂n,Q̂n,γ̂n
) −→
n→∞

0 .
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Thus, by Lemma 9, almost surely, for all k > 1,

dTV

(
P(k)
K?,γ? ,P

(k)

X̂n,Q̂n,γ̂n

)
−→

n→+∞
0 .

In particular, by Lemma 11, all limits (K, γ) of convergent subsequences of (K
X̂n,Q̂n

, γ̂n)n

satisfy P(2)
K?,γ? = P(2)

K,γ . Since the support of X is in the known compact set Λ, µK ∈ M1.
Moreover, equation (6) entails that K satisfies H1. Since the translation parameter is fixed
by the centering condition on the densities, Theorem 1 ensures that RK? = RK and γ = γ?.
Therefore, using the continuity of K and K?, it follows that K(x, ·) = K?(x, ·) for all
x ∈ Supp(λ?). Since the set of parameters is compact by Lemma 8, the estimators converge
to the true parameters, which is the first part of Theorem 7. Finally, since K? admits a
unique stationary distribution, Theorem 4 and the corollary of Theorem 6 of Karr (1975)
entail that

PXK
X̂n,Q̂n

(d)−→
n→∞

PXK? ,

which concludes the proof of Theorem 7.

B.3. Proof of Lemma 8

Let Ωω be the set of transition kernels on Λ which admit the modulus of continuity ω
with respect to the Wasserstein 1 metric. Ωω is an equicontinuous family of functions from
Λ to the set of probability measures P(Λ) on Λ endowed with the Wasserstein 1 metric.
Since Λ is compact, convergence in Wasserstein distance is equivalent to convergence in
distribution and P(Λ) is compact for the topology of the convergence in distribution, so
that Arzel-Ascoli’s theorem ensures that Ωω is relatively compact in the class of continuous
functions from Λ to (P(Λ),W1) with respect to the uniform convergence distance. It is
closed, therefore it is compact.

Recall that ΩC
ω is the subset of Ωω such that K ∈ ΩC

ω if and only if there exists a
probability measure λ such that for all x ∈ Λ, K(x, ·) is absolutely continuous with respect
to λ with a density taking values in [1/C,C]. Let us show that it is closed. Let (Kn)n>1

be a convergent sequence in ΩC
ω and (λn)n>1 the associated probability measures. Write

K ∈ Ωω its limit. Without loss of generality, it is possible to assume that λn −→ λ for some
λ ∈ P(Λ) as n grows to +∞. Let C0

b,+ be the set of real-valued, nonnegative, bounded and

continuous function on Λ, then for all f ∈ C0
b,+ and all x ∈ Λ,∫

Kn(x, dx′)f(x′) ∈
[

1

C

∫
fdλ,C

∫
fdλ

]
by definition of ΩC

ω . Then, using the convergence of the sequences, for all f ∈ C0
b,+ and all

x ∈ Λ, ∫
K(x,dx′)f(x′) ∈

[
1

C

∫
fdλ,C

∫
fdλ

]
.

For all closed set F ⊂ Λ, there exists a sequence (fi)i>1 ↘ 1F . Therefore, for all closed set
F ⊂ Λ and all x ∈ Λ,

K(x, F ) ∈
[
λ(F )

C
,Cλ(F )

]
.
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Thus, using the regularity of Borel probability measures on polish spaces, the same holds
for all measurable sets, so that K ∈ ΩC

ω . Therefore, ΩC
ω is closed, so that it is compact.

B.4. Proof of Lemma 9

The following lemma follows from the proof of Lemma 3 of Douc et al. (2004). In this
section only, for all integers a 6 b, write Y b

a instead of (Ya, . . . , Yb).

Lemma 13 Assume that H3 holds. By stationarity, extend the process (Yt)t>1 into a pro-
cess (Yt)t∈Z. Let K,K ′ ∈ ΩC

ω and γ, γ′ ∈ Γ. Then, there exists random variables δk,∞(K, γ)
and δk,∞(K ′, γ′) such that almost surely, for all k ∈ Z and m > 0,∣∣∣∣∣∣log

pYk|Y k−1
k−m,K,γ

(Yk|Y k−1
k−m)

pYk|Y k−1
k−m,K

′,γ′(Yk|Y
k−1
k−m)

− log
δk,∞(K, γ)

δk,∞(K ′, γ′)

∣∣∣∣∣∣ 6 2C2

(
1− 1

C2

)m−1

,

and for all k ∈ Z,sup
m>0

∣∣∣∣∣∣log
pYk|Y k−1

k−m,K,γ
(Yk|Y k−1

k−m)

pYk|Y k−1
k−m,K

′,γ′(Yk|Y
k−1
k−m)

∣∣∣∣∣∣
 ∨ ∣∣∣∣log

δk,∞(K, γ)

δk,∞(K ′, γ′)

∣∣∣∣ ∈ L1(P?) .

Proof Write first how the notations of this paper match those of Douc et al. (2004). The
set X (resp. Y ) of Douc et al. (2004) is Λ (resp. Rd) and Rd is equiped with the measure
with density b/‖b‖1 with respect to the Lebesgue measure. Finally, the set Θ of Douc et al.
(2004) is {(K, γ), (K ′, γ′)}. Contrary to the setting of Douc et al. (2004), X is endowed with
a measure that depends on the parameter θ. The proof of Lemma 3 of Douc et al. (2004)
holds with the following relaxed assumptions (with the notations of Douc et al. (2004)).

(A1’) For all θ ∈ Θ, there exists a measure µθ on X such that the transition kernel of
(Xk)k>1 has a density qθ with respect to µθ such that for all x, x′ ∈ X , 1/C 6
qθ(x, x

′) 6 C.

(A3’) Ēθ∗ [| log b+(Y1, Ȳ0)|] <∞ and Ēθ∗ [| log b−(Y1, Ȳ0)|] <∞ where

b+(y1, ȳ0)
∆
= sup

θ

∫
X
gθ(y1|ȳ0, x)µθ(dx),

b−(y1, ȳ0)
∆
= inf

θ

∫
X
gθ(y1|ȳ0, x)µθ(dx).

These assumptions are equivalent to the following (A1”) and (A3”).

(A1”) There exists a measure λK on Λ such that the transition kernel K has a density
with respect to λK with values in [1/C,C], and likewise for K ′.

(A3”) E?[| log
∫

Λ ‖b‖1(γ(Y1 − x)/b(Y1))dλK(x)|] <∞, and likewise for (K ′, γ′).

The lemma then follows from Lemma 3 of Douc et al. (2004) applied on (K, γ) and (K ′, γ′).
(A1”) is direct by definition of ΩC

ω . By H4, ‖b‖1m(y)/b(y) 6
∫

Λ gx(y)dλK(x) 6 ‖b‖1. Thus,
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(A3”) is implied by the integrability condition of H4 since the distribution of Y1 under P?
is dominated by the distribution with density b with respect to the Lebesgue measure.

Thus, for all K,K ′ ∈ ΩC
ω and γ, γ′ ∈ Γ, the limit

K(PK,γ‖PK′,γ′) = lim
m→+∞

1

m
KL(P(m)

K,γ‖P
(m)
K′,γ′) = EK,γ

[
log

δ0,∞(K, γ)

δ0,∞(K ′, γ′)

]
exists, is finite, and for all k,m > 1,∣∣∣kK(PK,γ‖PK′,γ′)−

(
KL(P(m+k)

K,γ ‖P(m+k)
K′,γ′ )−KL(P(m)

K,γ‖P
(m)
K′,γ′)

)∣∣∣ 6 2C4

(
1− 1

C2

)m−1

.

Let (Kn, γn)n>1 ∈ (ΩC
ω×Γ)N be a sequence of parameters such that K(PK?,γ?‖PKn,γn) −→ 0.

The above equation implies that for all k > 1, there exists sequences (mn)n>1 −→ +∞ and
(ln)n>1 −→ +∞ such that

KL(P(mn+ln+k)
K?,γ? ‖P(mn+ln+k)

Kn,γn
)−KL(P(mn)

K?,γ?‖P
(mn)
Kn,γn

) −→
n→∞

0 .

Using the chain rule and Pinsker’s inequality,

KL(P(mn+ln+k)
K?,γ? ‖P(mn+ln+k)

Kn,γn
)−KL(P(mn)

K?,γ?‖P
(mn)
Kn,γn

)

= EYmn1 |K?,γ?

[
KL

(
P
Ymn+ln+k
mn+1 |Ymn1 ,K?,γ?

‖P
Ymn+ln+k
mn+1 |Ymn1 ,Kn,γn

)]
,

> EYmn1 |K?,γ?

[
KL

(
P
Ymn+ln+k
mn+ln+1 |Y

mn
1 ,K?,γ?

‖P
Ymn+ln+k
mn+ln+1 |Y

mn
1 ,Kn,γn

)]
,

> 2EYmn1 |K?,γ?

[
d2

TV

(
P
Ymn+ln+k
mn+ln+1 |Y

mn
1 ,K?,γ?

,P
Ymn+ln+k
mn+ln+1 |Y

mn
1 ,Kn,γn

)]
.

Since the kernels satisfy the Doeblin condition (see for instance Cappé et al. (2005), Section
4.3.3), the resulting processes are φ-mixing with mixing coefficients φ(i) 6 2(1− 1/C)i (see
the proof of Lemma 1 of Lehéricy (2018) for a proof, and Bradley (2005) for a survey of
mixing properties). In particular, for all K ∈ ΩC

ω , for all positive and continuous probability
density γ on Rd and for all A ∈ σ(Y1, . . . , Ymn) such that PK,γ(A) > 0,

dTV

(
P
Ymn+ln+k
mn+ln+1 |A,K,γ

,P
Ymn+ln+k
mn+ln+1 |K,γ

)
6 2

(
1− 1

C

)ln
,

so that using the continuity and positivity of γ,

dTV

(
P
Ymn+ln+k
mn+ln+1 |Y

mn
1 ,K,γ

,P
Ymn+ln+k
mn+ln+1 |K,γ

)
6 2

(
1− 1

C

)ln
.

Finally,

2EYmn1 |K?,γ?

[
d2

TV

(
P
Ymn+ln+k
mn+ln+1 |Y

mn
1 ,K?,γ?

,P
Ymn+ln+k
mn+ln+1 |Y

mn
1 ,Kn,γn

)]
> 2

(
dTV

(
P
Ymn+ln+k
mn+ln+1 |K?,γ?

,P
Ymn+ln+k
mn+ln+1 |Kn,γn

)
− 4

(
1− 1

C

)ln)2

,

> d2
TV

(
P(k)
K?,γ? ,P

(k)
Kn,γn

)
− 32

(
1− 1

C

)2ln

,
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using that (a− b)2 > a2/2− b2 for all a, b ∈ R and the stationarity of the distributions PK,γ
for all K ∈ ΩC

ω and γ ∈ Γ. Therefore, for all k > 1,

dTV

(
P(k)
K?,γ? ,P

(k)
Kn,γn

)
−→

n→+∞
0 .

Conversely, let (Kn, γn)n>1 ∈ (ΩC
ω × Γ)N

∗
be a sequence of parameters such that for all

k > 1,

dTV

(
P(k)
K?,γ? ,P

(k)
Kn,γn

)
−→

n→+∞
0 .

Then by Lemma 13, for all k, n > 1,

K(PK?,γ?‖PKn,γn) 6 EKL(PYk|Y k−1
1 ,K?,γ?‖PYk|Y k−1

1 ,Kn,γn
) + 2C2

(
1− 1

C2

)k−2

6 KL(P(k)
K?,γ?‖P

(k)
Kn,γn

) + 2C2

(
1− 1

C2

)k−2

, (23)

by the entropy chain rule. Lemma 4 of Shen et al. (2013) entails that there exists λ0 ∈ (0, 1)
such that for all λ ∈ (0, λ0),

KL(P(k)
K?,γ?‖P

(k)
Kn,γn

) 6

(
1 + 2k log

1

λ

)
h2(P(k)

K?,γ? ,P
(k)
Kn,γn

)

+ 2E

[
log

(
pY k1 |K?,γ?

pY k1 |Kn,γn

)
1

(
pY k1 |K?,γ?

pY k1 |Kn,γn
>

1

λ

)]
,

6 2

(
1 + 2k log

1

λ

)
dTV(P(k)

K?,γ?,,P
(k)
Kn,γn

)

+ 2

∫ k∏
i=1

b(yi) log

(
k∏
i=1

b(yi)

m(yi)

)
1

(
k∏
i=1

b(yi)

m(yi)
>

1

λ

)
dy ,

using that the square of the Hellinger distance is upper bounded by the L1 distance, that is
twice the total variation distance. The second term is finite for all λ by H4. Therefore, by

carefully choosing a sequence λ that tends to zero, we obtain lim supnKL(P(k)
K?,γ?‖P

(k)
Kn,γn

) =
0 for all k > 1. This, together with taking k that tends to infinity in Equation (23), proves
the second statement of the lemma.

B.5. Proof of Lemma 11

The set of possible parameters ΩC
ω × Γ is endowed with the product topology induced by

the uniform convergence topology on ΩC
ω and the L1 norm on Γ. It is compact for this

topology. Let (Kn, γn)n>1 be a sequence in Ωω ×Γ that converges to (K, γ) with respect to
this topology. The aim is now to show that the distribution of (Y1, . . . , Yk) with parameters
(Kn, γn) converges in total variation distance to the distribution with parameters (K, γ).
The transition kernel K admits a unique stationary distribution, so that Theorem 4 and
the corollary of Theorem 6 of Karr (1975) entail that

PXKn
(d)−→

n→∞
PXK , (24)
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where PXK denotes the distribution of a stationary Markov chain (Xn)n>1 with transition
kernel K. This convergence holds for the distribution of the whole Markov chain, which
implies in particular that the distribution of k-tuples (X1, . . . , Xk) for all k > 1 converges
in the same way. For any k > 1, the total variation distance between the distributions of
(Y1, . . . , Yk) is, up to a factor 2,

‖p(Y1,...,Yk)|K,γ − p(Y1,...,Yk)|Kn,γn‖1 =

∫ ∣∣∣∣∣
∫ k∏

i=1

γ(yi − xi)dPXK(x)−
∫ k∏

i=1

γn(yi − xi)dPXKn(x)

∣∣∣∣∣ dy ,
6
∫ ∣∣∣∣∣
∫ k∏

i=1

γ(yi − xi)dPXK(x)−
∫ k∏

i=1

γ(yi − xi)dPXKn(x)

∣∣∣∣∣ dy ,
+

∫ ∫ ∣∣∣∣∣
k∏
i=1

γ(yi − xi)−
k∏
i=1

γn(yi − xi)

∣∣∣∣∣dPXKn(x)dy .

Consider the first term of the right hand side. Since x 7−→ γ(y − x) is continuous and
bounded for all y ∈ Rd, Equation (24) yields, for all y ∈ Rd,∣∣∣∣∣

∫ k∏
i=1

γ(yi − xi)dPXK(x)−
∫ k∏

i=1

γ(yi − xi)dPXKn(x)

∣∣∣∣∣ −→n→∞ 0 .

Then, since supx∈Λ γ(y − x) 6 b(y) for all y ∈ Rd,
∣∣∣∫ ∏k

i=1 γ(yi − xi)dPXK(x)
∣∣∣ 6∏k

i=1 b(yi) ,

and the right hand side is integrable. The same holds for Kn, so that the dominated
convergence theorem implies

∫ ∣∣∣∣∣
∫ k∏

i=1

γ(yi − xi)dPXK(x)−
∫ k∏

i=1

γ(yi − xi)dPXKn(x)

∣∣∣∣∣ dy −→n→∞ 0 .

For the second term, write

∫ ∫ ∣∣∣∣∣
k∏
i=1

γ(yi − xi)−
k∏
i=1

γn(yi − xi)

∣∣∣∣∣dPXKn(x)dy

6
k∑
i=1

∫ ∫ ∏
j<i

γ(yj − xj) |γ(yi − xi)− γn(yi − xi)|
∏
j>i

γn(yj − xj)dPXKn(x)dy ,

6
k∑
i=1

∫ ∫
|γ(yi − xi)− γn(yi − xi)|dyidPXKn(xi) ,

= k‖γ − γn‖1 ,

where the last term converges to 0 as n → ∞. Hence, dTV(P(k)
K,γ ,P

(k)
Kn,γn

) −→
n→∞

0 for all

k > 1.
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B.6. Proof of Lemma 12

By Lemmas 9 and 11, to show the convergence with K, it suffices to show that there exists
a sequence (Xt, Qt)t>1 such that (Xt, Qt,−) ∈

⋃
r,D Sr,D and such that the sequence of

kernels (Kt)t>1 = (KXt,Qt)t>1 converges to K?. It also suffices to show the convergence of
(RKXt,Qt

)t>1 since K? admits a unique stationary distribution by using Theorem 4 and the
corollary of Theorem 6 of Karr (1975).

The following lemma, which is a consequence of simple algebra, is stated without proof.

Lemma 14 Let λ be a probability measure on a compact set of Rd which is absolutely
continuous with respect to the Lebesgue measure. Then, there exists a sequence of integers
(rt)t>1 −→ +∞ and a sequence ((Ati)16i6rt)t>1 of measurable partitions of the support of λ
such that Dt = sup

16i6rt
diam(Ati) −→t→+∞

0 ,

∀t > 1, ∀1 6 i 6 rt, λ(Ati) ∈
[

1
2rt
, 2
rt

]
.

To address the case where λ? is not absolutely continuous with respect to the Lebesgue
measure, consider convolutions of the kernels. For all ε ∈ (0, 1], let Uε be the uniform
measure on [−ε, ε]d. For all probability measure λ on Rd, write λ ∗ Uε the convolution of
λ and Uε, and for all transition kernel K on Rd, write K ∗ Uε the transition kernel defined
by (K ∗ Uε)(x, ·) = K(x, ·) ∗ Uε. Then K? ∗ Uε admit the modulus of continuity ω for all
ε > 0 (since W1(µ ∗ Uε, ν ∗ Uε) 6 W1(µ, ν) for all probability measures µ, ν) and K? ∗ Uε
admits a density taking values in [2/C,C/2] with respect to the measure λ? ∗ Uε (which
is absolutely continuous with respect to the Lebesgue measure), so that it belongs to ΩC

ω

(up to enlarging Λ). Moreover, K? ∗ Uε −→ K? in ΩC
ω as ε −→ 0. Therefore, it remains

to show that for all ε > 0, the kernel K? ∗ Uε can be approximated by kernels in ΩC
ω with

finite support. Equivalently, assume that λ? is absolutely continuous with respect to the
Lebesgue measure and construct a sequence approximating K?.

Let (rt)t>1 and ((Ati)16i6rt)t>1 be the sequences obtained by applying Lemma 14 to λ?.
For all t > 1 and i ∈ {1, . . . , rt}, let xti be an element of Ati. For all t > 1, the elements
of the vector Xt = (xti)16i6rt are distinct because (Ati)16i6rt is a partition of Supp(λ?).

Let (ηt)t>1 −→ 0 be a sequence of positive numbers. Let K̃t be the transition kernel from
Λ ∩ (ηtZd) to {xti}16i6rt defined, for all x ∈ Λ ∩ (ηtZd) and all i ∈ {1, . . . , rt}, by

K̃t(x, x
t
i) = K?(x,Ati) .

By the Lemma 14 and assumption H2, K̃t(x, x
t
i) ∈ [1/(Crt), C/rt] for all x and i. Moreover,

for all x, x′ ∈ Λ ∩ (ηtZd),

W1(K̃t(x, ·), K̃t(x
′, ·)) 6W1(K?(x, ·),K?(x′, ·)) + 2 sup

16i6rt
diam(Ati)

6
ω(|x− x′|)

2
+ 2

Dt

ηt
|x− x′| ,

6 ω(|x− x′|) ,
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by choosing ηt > 4Dt/ infu∈(0,diam(Λ)] ω(u)/u, which is finite since ω is concave, nondecreas-

ing and not equal to zero, so that there exists an extension Kt ∈ ΩC
ω of K̃t such that the

support of Kt(x, ·) is {xti}16i6rt for all x ∈ Λ.

For all i, j, define Qt(i, j) = Kt(x
t
i, x

t
j). All kernels considered here (K?, K̃t, Kt and

KXt,Qt) are kernels on the compact set Supp(λ?). Therefore, we only need to show that

KXt,Qt −→ K in the subset Ω̃C
ω of kernels on Supp(λ?) in ΩC

ω to show that it is an approxi-
mating sequence, that is

sup
x∈Supp(λ?)

W1(KXt,Qt(x, ·),K?(x, ·)) −→
t→+∞

0 . (25)

For all x ∈ Supp(λ?), let X(x) (resp. X(x)) be one of the elements of Λ ∩ (ηtZd) (resp.
{xti}16i6rt) closest to x. Then supx∈Supp(λ?) |x−X(x)| 6 Dt and supx∈Supp(λ?) |x−X(x)| 6 ηt
(with the supremum norm on Rd) and for all x ∈ Supp(λ?),

W1(KXt,Qt(x, ·),K?(x, ·)) 6W1(KXt,Qt(x, ·),KXt,Qt(X(x), ·))
+W1(KXt,Qt(X(x), ·),Kt(X(x), ·)) (26)

+W1(Kt(X(x), ·),Kt(X(X(x)), ·))
+W1(Kt(X(X(x)), ·),K?(X(X(x)), ·)) (27)

+W1(K?(X(X(x)), ·),K?(x, ·)) .

By definition of the kernels, (26) and (27) are equal to 0. Thus, the regularity assumptions
on the kernels ensure that for all x ∈ Supp(λ?),

W1(KXt,Qt(x, ·),K?(x, ·)) 6 ω(Dt) + ω(ηt) + ω(Dt + ηt)/2 ,

which proves Equation (25).

B.7. Proof of Proposition 10

This section first states Theorem 8 of Lehéricy (2018) and its assumptions. It is then proved
that the assumptions are satisfied and that Proposition 10 is deduced from this theorem.
Let λb be the probability measure on Rd which has the density b/‖b‖1 with respect to the
Lebesgue measure. When necessary, the process (Yt)t>1 is extended to a process (Yt)t∈Z by
stationarity. In this section only, for all integers a 6 b, write Y b

a instead of (Ya, . . . , Yb).

[A?forgetting] There exists two constants C? > 0 and ρ? ∈ (0, 1) such that for all i ∈ Z,
for all k, k′ ∈ N∗ and for all yii−(k∨k′) ∈ (Rd)(k∨k′)+1,∣∣∣∣∣log

(
dPYi|Y i−1

i−k ,K
?,γ?

dλb
(yi|yi−1

i−k)

)
− log

(
dPYi|Y i−1

i−k′ ,K
?,γ?

dλb
(yi|yi−1

i−k′)

)∣∣∣∣∣ 6 C?ρ
k∧k′−1
? .

Let (Ω,F , P ) be a measured space and A ⊂ F and B ⊂ F be two sigma-fields. Then, the
ρ-mixing coefficient between A and B is

ρmix(A,B) = sup
f∈L2(Ω,A,P )

g∈L2(Ω,B,P )

|Corr(f, g)| .
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The ρ-mixing coefficient of (Yt)t∈Z is

ρmix(n) = ρmix(σ(Yi, i > n), σ(Yi, i 6 0)) .

[A?mixing] There exists two constants c? > 0 and n? ∈ N∗ such that for all n > n?,
ρmix(n) 6 4e−c?n.

[A?tail] There exists a constant B? > 1 such that for all i ∈ Z, all k ∈ N and all v > e,

P

(
dPYi|Y i−1

i−k ,K
?,γ?

dλb
(Yi|Y i−1

i−k ) > vB
?

)
6

1

v
.

Lehéricy (2018) considers models written Tr,D in the following (instead of SK,M,n in Lehéricy
(2018)). These models are sets of hidden Markov model parameters (not translation hidden
Markov models), that is of vectors of the form (r, π,Q, g) where r is the number of values the
Markov chain can take, π is the initial distribution of the Markov chain, Q is its transition
matrix and g = (gz)z=1,...,r the vector of its emission densities, that is a vector of probability
densities on Rd with respect to the Lebesgue measure. Let (mr,D)r>1,D>1 be a sequence
of nonnegative integers. For all n > 1, let σ−(n) ∈ (0, e−1] and let Pn be a subset of
{(r,D) ∈ (N∗)2 : r 6 1/(2σ−(n)) and mr,D 6 2n}. This set lists the indices of the models
among which the final model is selected. Let Tn =

⋃
(r,D)∈Pn Tr,D be the set of all model

parameters considered when n observations are available.

[Aergodic] For all (r, π,Q,−) ∈ Tn,

inf
x,x′=1,...,r

Q(x, x′) > σ−(n) and inf
x=1,...,r

π(x) > σ−(n) .

[Atail] There exists a constant B(n) > 1 such that for all u > 1,

P?
(

sup
(r,−,−,g)∈Tn

∣∣∣∣∣log
r∑
z=1

gz(Y1)

∣∣∣∣∣ > B(n)u

)
6 e−u .

Finally, the assumptions [Aentropy] and [Agrowth] of Lehéricy (2018) are replaced by
the following more general assumption, which allows to improve the penalty (the original
assumptions induce a penalty proportional to r dimD +rd + r2 instead of dimD +rd + r2).
Let N (B, d, ε) be the smallest number of brackets of size ε for the distance d needed to
cover the set of functions B.

[Aentropy’] There exist a mapping (r,D, n,A) 7−→ Caux(r,D, n,A) > 1, a sequence of
nonnegative integers (mr,D)r>1,D>1 and a family of sets (Sn,A)n>1,A>0 ⊂ Rd such that
for all n > 1 and A > 0, P?(Y1 /∈ Sn,A) 6 exp(−2A/B(n)) where B(n) is as in [Atail],
for all y ∈ Sn,A,

sup
(r′,−,−,g′)∈Tn

∣∣∣∣∣log
r′∑
z=1

g′z(y)

∣∣∣∣∣ 6 A
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and for all r > 1, D > 1, n > 1, A > B(n) and δ ∈ (0, 1),

N

({(
y 7→ gz(y)1y∈Sn,A

)
z=1,...,r

}
(r,−,−,g)∈Tr,D

, d∞, δ

)
6 max

(
Caux(r,D, n,A)

δ
, 1

)mr,D
, (28)

where d∞ is the distance associated with the supremum norm on (L∞(Y))r. Moreover,
there exist an integer ngrowth and a constant cgrowth > 0 such that for all n > ngrowth,

sup
(r,D)∈Pn

logCaux(r,D, n,B(n) log n) 6 cgrowth(log n)2 log logn .

Note that choosing Sn,A = {y ∈ Rd : sup(r′,−,−,g′)∈Tn | log
∑r′

z=1 g
′
z(y)| 6 A} gives the origi-

nal formulation of Lehéricy (2018). Write Pr,π,Q,g the distribution of a hidden Markov model
with parameter (r, π,Q, g). Lemma 4 and 5 of Lehéricy (2018) show that for all r, D and
for all (r, π,Q, g) ∈ Tr,D, the limit K(PK?,γ?‖Pr,Q,g) = limmm

−1KL(PYm1 |K?,γ?‖PYm1 |r,π,Q,g)
exists, is finite and does not depend on π. This quantity coincides with the one defined
in Lemma 9 when the hidden Markov model with parameter (r, π,Q, g) is a translation
hidden Markov model with transition kernel in ΩC

ω and emission density in Γ. Define the
loglikelihood of a hidden Markov model with parameter (r, π,Q, g) by

`HMM
n (r, π,Q, g) = log

 ∑
z1,...,zn∈{1,...,r}

π(z1)gz1(Y1)
n∏
t=2

Q(zt−1, zt)gzt(Yt)

 .

Theorem 8 of Lehéricy (2018) may now be stated with a noteworthy modification: not
all possible number of states and model indices are considered during the model selection
step (29), but only the ones in Pn. This has no consequence on the proof.

Theorem 15 Assume that [A?forgetting], [A?mixing], [A?tail], [Aergodic], [Atail]
and [Aentropy’] hold. Assume that σ−(n) = Cσ(log n)−1 and B(n) = CB log n for some
constants Cσ > 0 and CB > 2. Let α > 0. For all r and D, let

(r, π̂r,D,n, Q̂r,D,n, ĝr,D,n) ∈ arg max
(r,π,Q,g)∈Tr,D

1

n
`HMM
n (r, π,Q, g) ,

(r̂n, D̂n) ∈ arg max
(r,D)∈Pn

(
1

n
`HMM
n (r, π̂r,D,n, Q̂r,D,n, ĝr,D,n)− pen(n, r,D)

)
, (29)

for some function pen, and let

(r̂n, π̂n, Q̂n, ĝn) = (r̂n, π̂r̂n,D̂n,n, Q̂r̂n,D̂n,n, ĝr̂n,D̂n,n)

be the nonparametric maximum likelihood estimator. Then, there exist constants A, Cpen

and n0 depending only on α, Cσ, CB, n∗, c∗ and cgrowth such that for all

n > ngrowth ∨ n0 ∨ exp

(
Cσ

(
(1 + C∗) ∨

2− ρ∗
1− ρ∗

∨ e2

))
∨ exp

(
B∗

CB

)
∨ exp

√
Cσ
2

(n∗ + 1) ,
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all t > 1, all η 6 1, with probability at least 1− e−t − 2n−α,

K(PK?,γ?‖Pr̂n,Q̂n,ĝn) 6 (1 + η) inf
(r,D)∈Pn

{
inf

(r,π,Q,g)∈Tr,D
K(PK?,γ?‖Pr,Q,g) + 2pen(n, r,D)

}
+
A

η
t
(log n)8

n

as soon as

pen(n, r,D) >
Cpen

η
(mr,D + r2 − 1)

(log n)14 log logn

n
.

Let us now check the assumptions. [A?mixing] and [A?forgetting] follow from Lemma
1 of Lehéricy (2018) and from H2 with ρ? = 1 − 4/C2, C? = C2/4, n? = 1 and c? =
− log(1− 2/C)/2, where C is the constant from H2. [A?tail] follows from assumption H3
with B? = max(1, log ‖b‖1): by definition of λb and b, for all i ∈ Z, k ∈ N, yii−k ∈ (Rd)k+1

and v > e,

dPYi|Y i−1
i−k ,K

?,γ?

dλb
(yi|yi−1

i−k) =

∫
γ?(yi − x)dPXi|Y i−1

i−k ,K
?,γ?(x|y

i
i−k)

b(yi)/‖b‖1
6 ‖b‖1 6 vB

?
.

For each r > 1 and D > 1, let mr,D = dimD +rd. For each n > 1, let σ−(n) = (2 log n)−1

and Pn = {(r,D) : r 6 log n and dimD 6 n}. For n large enough, Pn is indeed a subset
of {(r,D) ∈ (N∗)2 : r 6 1/(2σ−(n)) and mr,D 6 2n}. For each r > 1 and D > 1, the
model Tr,D is the set of translation hidden Markov model parameters in Sr,D seen as hidden
Markov model parameters (with the dominating measure λb on Rd instead of the Lebesgue
measure):

Tr,D =

{(
r, πQ, Q,

(
y 7−→ γ(y − xr)

b(y)/‖b‖1

)
z=1,...,r

)
: ((xz)z=1,...,r, Q, γ) ∈ Sr,D, πQQ = πQ

}
.

By definition of Sr,D, for all (r, π,Q,−) ∈ Tr,D and x, x′ ∈ {1, . . . , r}, Q(x, x′) > (Cr)−1

and π(x) > (Cr)−1. Thus, for all (r, π,Q,−) ∈ Tn, Q(x, x′) > (C log n)−1 > σ−(n) since
C > 2. The same holds for π, so that [Aergodic] is satisfied.

By H3, for all n > 1 and y ∈ Rd, sup(r,−,−,g)∈Tn
∑r

z=1 gz(y) 6 ‖b‖1 log n, and by H4,

inf
(r,−,−,g)∈Tn

r∑
z=1

gz(y) > ‖b‖1m(y)/b(y) ,

so that by Markov’s inequality, for all t > 0, with ε as in H4,

PK?,γ?

[(
inf

(r,−,−,g)∈Tn

r∑
z=1

gz(y)

)−ε
> t

]
6 ‖b‖−ε1

EK?,γ? [(b(Y1)/m(Y1))ε]

t
,

so that there exists a constant CH4 > 0 such that

PK?,γ?

[
inf

(r,−,−,g)∈Tn
log

r∑
z=1

gz(y) 6 −1

ε
u

]
6 CH4e

−u .
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Thus, there exists ntail such that [Atail] holds for any n > ntail and for any B(n) >
max(2/ε, log(‖b‖1 log n)). Choose B(n) = logn.

Finally, [Aentropy’] is implied by the following assumption, which follows from H3 and
H5 with c(r,D,A) = c(D,A) + CΓ.

[Aentropy”] There exists a mapping (r,D,A) ∈ N∗×N∗×R+ 7−→ c(r,D,A) and a constant
c′ such that log c(r,D,A) 6 c′(logmr,D + A). There exists a sequence (ΘD)D>1 of
sets such that for all D > 1, ΘD ⊂ [−1, 1]dimD and there exists a surjective mapping
θ ∈ ΘD 7−→ γθ ∈ GD. For all r > 1, D > 1, A > 0 and y ∈ Rd such that
log(b(y)/m(y)) 6 A, the mapping (x, θ) ∈ Λr × ΘD 7−→ (γθ(y − xz)/b(y))z∈{1,...,r} is
c(r,D,A)-Lipschitz (when Λ and ΘD are endowed with the supremum norm).

Let us see how this implies [Aentropy’]. Let Sn,A = {y ∈ Rd : log(b(y)/m(y)) 6 A}. By
H4 and Markov’s inequality, P?(Y1 ∈ Sn,A) 6 exp(−Aε/2) for A large enough. Moreover,
for all A > log(‖b‖1 log n) and y ∈ Sn,A,

sup
(r′,−,−,g′)∈Tn

∣∣∣∣∣log
r′∑
z=1

g′z(y)

∣∣∣∣∣ 6 max

(
log

b(y)

‖b‖1m(y)
, log(‖b‖1 log n)

)
6 A.

A bracket covering of size δ of [−1, 1]rd × [−1, 1]dimD gives a bracket covering of size δL of
Λr ×ΘD, which in turn gives bracket covering of size c(r,D,A)δL‖b‖1 of the set{(

y 7−→ ‖b‖1
γ(y − xz)
b(y)

1y∈Sn,A

)
z=1,...,r

: x ∈ Λr, γ ∈ GD

}
.

Since there exists a bracket covering of size δ of [−1, 1] with cardinality at most max(2/δ, 1),
Equation (28) of [Aentropy’] holds with Caux(r,D, n,A) = 2c(r,D,A)L‖b‖1. Finally, since
sup(r,D)∈Pn log c(r,D,A) 6 c′(log n+A), the last part of [Aentropy’] holds.

Thus, Theorem 15 holds and ensures that there exists n0, Cpen and A such that if
pen(n, r,D) > Cpen(mr,D+r2−1)(log n)14/n, then for all n > n0 and t > 1, with probability
at least 1− e−t − 2n−2,

K(PK?,γ?‖PX̂n,Q̂n,γ̂n
) 6 2 inf

(r,D)∈Pn

{
inf

(X,Q,γ)∈Sr,D
K(PK?,γ?‖PX,Q,γ) + 2pen(n, r,D)

}
+At

(log n)8

n

and Proposition 10 follows by taking t = 2 log n and recalling that mr,D = dimD +rd and
Pn = {(r,D) : r 6 log n and dimD 6 n}.

Appendix C. Additional Simulations based on Least Squares for
Characteristic Functions

In this section, the empirical least squares criterion Mn(R) introduced in Section 3.1 is
approximated to obtain a practical estimate of R using the same model as in Section 4.
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The estimate Φ̂n of the characteristic function of the observations (Y1, Y2) is given for all
(t1, t2) ∈ R2 by

Φ̂n(t1, t2) =
1

n

n−1∑
j=1

eit1Yj+it2Yj+1 .

The function w is set as the probability density function of a Gaussian random variable
with standard deviation σ = 3 and Mn is estimated by the Monte Carlo estimate:

M̂n(R) =
1

N

N∑
`=1

∣∣∣Φ̂n(U `1 , U
`
2)ΦR(U `1 ; 0)ΦR(0;U `2)− ΦR(U `1 , U

`
2)Φ̂n(U `1 ; 0)Φ̂n(0;U `2)

∣∣∣2 ,
where (U `1 , U

`
2)16`6N are independent and identically distributed with distribution w. In

the following experiments, N is set to 5000. This estimated criterion is minimized over the
set Dr of piecewise constant probability densities on (−1, 1) × (−1, 1) with r2 uniformly
spaced cells:

Dr =
{
R : R2 → R+ ; R =

r∑
i,j=1

αi,j1(xi,xi+1)×(xj ,xj+1)

}
,

where for all 1 6 i, j 6 r, xi = −1 + 2(i − 1)/r, αi,j > 0 and
∑r

i,j=1 αi,j = r−2. In
this setting where the support of the law of (X1, X2) is compact and known, the up to
translation indeterminacy is ruled out. The optimization is performed using the Covariance
Matrix Adaptation Evolutionary Strategy (CMA-ES, Igel et al., 2007) which optimizes
iteratively all parameters using (µ, λ)-selection. At each iteration, the best offsprings of the
current parameter estimate are combined to form the population of the following iteration
and the other offsprings are discarded.

The performance of the least squares approach is assessed by comparing the estimated
probability that (X1, X2) lies in each cell (xi, xi+1)× (xj , xj+1), 1 6 i, j 6 r, which is α̂ni,jr

2

and the benchmark estimation α̃n,emp
i,j that would be computed if the sequence (Xk)16k6n

were observed: p̃n,emp
i,j = n−1

∑n−1
k=1 1(xi,xi+1)×(xj ,xj+1)(Xk, Xk+1). The results are displayed

in Figure 3 over 10 independent runs, when the order r is in {10, 20, 30}, with CMA-ES

initialized at a random point, and a maximum number of evaluations of M̂n(R) set to 75000.
Each estimate is obtained with a sequence of n = 100000 observations and the L1 score is

εr1,n =
1

r2

r∑
i,j=1

∣∣∣r2α̂ni,j − p̃
n,emp
i,j

∣∣∣ . (30)

The associated estimated probabilities for the distribution of X1 are displayed in Figure 4
with their confidence regions.
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standard deviation (bars) are displayed.
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