
Journal of Machine Learning Research 21 (2020) 1-7 Submitted 10/19; Revised 3/20; Published 4/20

pyDML: A Python Library for Distance Metric Learning

Juan Luis Suárez jlsuarezdiaz@ugr.es

Salvador Garćıa salvagl@decsai.ugr.es

Francisco Herrera herrera@decsai.ugr.es

DaSCI, Andalusian Research Institute in Data Science and Computational Intelligence

University of Granada, Granada, Spain

Editor: Andreas Mueller

Abstract

pyDML is an open-source python library that provides a wide range of distance metric
learning algorithms. Distance metric learning can be useful to improve similarity learn-
ing algorithms, such as the nearest neighbors classifier, and also has other applications,
like dimensionality reduction. The pyDML package currently provides more than 20 algo-
rithms, which can be categorized, according to their purpose, in: dimensionality reduction
algorithms, algorithms to improve nearest neighbors or nearest centroids classifiers, infor-
mation theory based algorithms or kernel based algorithms, among others. In addition,
the library also provides some utilities for the visualization of classifier regions, parame-
ter tuning and a stats website with the performance of the implemented algorithms. The
package relies on the scipy ecosystem, it is fully compatible with scikit-learn, and
is distributed under GPLv3 license. Source code and documentation can be found at
https://github.com/jlsuarezdiaz/pyDML.

Keywords: Distance Metric Learning, Classification, Mahalanobis Distance, Dimension-
ality, Python

1. Introduction

The use of distances in machine learning has been present since its inception, since they
provide a similarity measure between the data. Algorithms such as the nearest neighbor
classifier (Cover and Hart, 1967) use that similarity measure to label new samples. Tra-
ditionally, standard distances, like the euclidean distance, have been used to measure the
data similarity. However, a standard distance may not fit our data properly, so the learning
results could be non optimal. Finding a distance that brings similar data as close as possi-
ble, while moving non similar data away can significantly increase the quality of similarity
based learning algorithms. This is the task that distance metric learning carries out.

Distance metric learning (DML) (Suárez et al., 2019; Bellet et al., 2015; Kulis, 2013) is
a machine learning discipline with the purpose of learning distances from a dataset. If we
focus on Mahalanobis distances, which are expressed as dM (x, y) =

√
(x− y)TM(x− y),

where M is a positive semidefinite matrix, learning a distance reduces to learning the matrix
M . This is equivalent to learning a linear map L. In this case, M = LTL and the learned
distance is equivalent to the euclidean distance after applying the transformation L to the
data. Therefore, DML algorithms aim at optimizing functions parameterized by a positive

c©2020 Juan Luis Suárez, Salvador Garćıa, Francisco Herrera.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v21/19-864.html.

https://github.com/jlsuarezdiaz/pyDML
https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v21/19-864.html

Suárez, Garćıa and Herrera

semidefinite (also called metric) matrix M , or by a linear map L (Weinberger and Saul,
2009; Ying and Li, 2012).

Several DML libraries have been developed in different programming languages. In
R, we can find the package dml (Tang et al., 2018), which proposes 11 DML algorithms.
However, only 5 algorithms are currently implemented and the package has not exhibited
activity for some time. In MATLAB, the DistLearn1 toolkit provides links to several DML
implementations, many of them corresponding to the original authors. However, many of
the links are currently broken and the algorithms are not presented in a unified framework.
In Python, the metric-learn library (de Vazelhes et al., 2019) provides 9 different DML
algorithms, mostly oriented towards weak supervised learning, with the exception of a few
classical supervised DML algorithms.

In this paper, we present the pyDML library, a Python package that gathers a wide variety
of DML algorithms. The following sections describe the main features of the software,
some instructions for installation and usage, several quality standards to which the project
subscribes, and finally we expose our plans on future functionalities to be included in the
project.

2. Software Description

The pyDML library currently contains around 20 (mostly supervised) algorithms and dis-
tances that can be used to prepare a dataset for a subsequent similarity-based learning.
These algorithms, and some of their main features, are shown in Table 1.

Algorithm/distance Supervised Dimensionality
reduction

Oriented to
improve...

Information
theory based

Kernel
version

Learns ...
(L or M)

Euclidean 7 7 Just a static distance 7 7 Identity
Covariance 7 7 Just a static distance 7 7 M
PCA (Jolliffe, 2002) 7 3 Non-specific 7 7 L
LDA (Fisher, 1936) 3 3 Non-specific 7 7 L
LLDA (Sugiyama, 2007) 3 3 Non-specific 7 7 L
ANMM (Wang and Zhang, 2007) 3 3 k-NN 7 7 L
LMNN (Weinberger and Saul, 2009) 3 3 k-NN 7 7 Both
NCA (Goldberger et al., 2005) 3 3 1-NN 7 7 L
NCMML (Mensink et al., 2013) 3 3 Nearest class mean 7 7 L
NCMC (Mensink et al., 2013) 3 3 Generalized NCM 7 7 L
ITML (Davis et al., 2007) Weak 7 Non-specific 3 7 M
DMLMJ (Nguyen et al., 2017) 3 3 k-NN 3 7 L
MCML (Globerson and Roweis, 2006) 3 7 Non-specific 3 7 M
LSI / MMC (Xing et al., 2003) Weak 7 Non-specific 7 7 M
DML-eig (Ying and Li, 2012) Weak 7 Non-specific 7 7 M
LDML (Guillaumin et al., 2009) 3 7 Non-specific 7 7 M
GMML (Zadeh et al., 2016) Weak 7 Non-specific 7 7 M
KDA (Mika et al., 1999) 3 3 Non-specific 7 3 L
KLLDA (Sugiyama, 2007) 3 3 Non-specific 7 3 L
KANMM (Wang and Zhang, 2007) 3 3 k-NN 7 3 L
KLMNN (Torresani and Lee, 2007) 3 3 k-NN 7 3 L
KDMLMJ (Nguyen et al., 2017) 3 3 k-NN 3 3 L

Table 1: Current algorithms/distances available in the pyDML library.

Python, the chosen programming language, is widely used in machine learning, and has
several libraries specialized in this field. The main one is Scikit-Learn (Pedregosa et al.,
2011), an efficient open-source library for machine learning, which relies on the Scipy2

1. https://www.cs.cmu.edu/~liuy/distlearn.htm
2. https://www.scipy.org

2

https://www.cs.cmu.edu/~liuy/distlearn.htm
https://www.scipy.org

pyDML: A Python Library for Distance Metric Learning

ecosystem, which contains numerical calculus libraries, such as NumPy, data processing li-
braries, such as Pandas, or data visualization libraries, such as Matplotlib. Python has
been also chosen because until now it does not have an extensive library with supervised
DML algorithms. pyDML tries to fill this gap, providing numerous supervised DML algo-
rithms, both classic algorithms and new proposals.

The design followed for the development of the algorithms has preserved the struc-
ture of the algorithms of the Scikit-Learn library. In particular, the DML algorithms
are included in the group of transformation algorithms, where the transformation con-
sists in applying the learned linear map to the samples. Therefore, the implemented al-
gorithms inherit from a template class DML Algorithm, which in turn inherits from the
sklearn.base.TransformerMixin3 class of the Scikit-Learn toolkit. This hierarchy al-
lows the DML algorithms to be treated as black-box transformers, which facilitates their
handling and pipelining with other Scikit-Learn algorithms. The DML Algorithm class
provides the inherited methods fit(X,y) and transform(X), to learn the distance and
apply it to the data, following the Scikit-Learn syntax, as well as the specific methods
metric(), transformer() and metadata() that allow us to access the learned metric ma-
trix, the learned linear map or several metadata generated during the learning process,
respectively.

It is important to emphasize that these algorithms include different hyperparameters
that can be modified to improve the performance or to change the conditions of the learned
distances. To this end the package includes tune functions, which allow the parameters of
the DML algorithms to be easily estimated with cross validation, using the success rate of
a k-neighbors classifier or some of the metadata of the algorithms as validation metrics. A
detailed description of all hyperparameters for each algorithm can be found in the pyDML’s
full documentation4.

The pyDML library also incorporates graphical tools for the representation and evaluation
of the learned distances, which use the Matplotlib library internally. These tools allow
labeled data to be represented, along with the regions determined by any Scikit-Learn

classifier, including distance-based classifiers, for which several functionalities are provided
to easily represent the effect of different distances.

3. Installation and Usage

The pyDML library can be installed through PyPI (Python package index), using the com-
mand pip install pyDML. It is also possible to download or clone the repository directly
from GitHub. In such a case, the installation of the software package can be done by run-
ning the setup script available in the root directory, using the command python setup.py

install. Once installed, we can access all DML algorithms, and the additional functional-
ities, by importing the desired class within the dml module.

3. http://scikit-learn.org/stable/modules/generated/sklearn.base.TransformerMixin.html#
sklearn.base.TransformerMixin

4. https://pydml.readthedocs.io/

3

http://scikit-learn.org/stable/modules/generated/sklearn.base.TransformerMixin.html#sklearn.base.TransformerMixin
http://scikit-learn.org/stable/modules/generated/sklearn.base.TransformerMixin.html#sklearn.base.TransformerMixin
https://pydml.readthedocs.io/

Suárez, Garćıa and Herrera

As already mentioned, the way DML algorithms are used is similar to the Scikit-Learn
transformers. Figure 1 shows a basic example. More detailed examples of all the posibilities
offered by pyDML can be found in the documentation5.

1 >>> import numpy as np # NumPy library

2 >>> from sklearn.datasets import load_iris # Iris dataset

3 >>> from dml import NCA # Loading DML algorithm

4

5 >>> # Loading dataset

6 >>> iris = load_iris()

7 >>> X = iris['data']

8 >>> y = iris['target']

9

10 >>> nca = NCA() # DML construction

11 >>> nca.fit(X,y) # Fitting algorithm

12

13 >>> # We can look at the algorithm metadata

14 >>> # after fitting it

15 >>> meta = nca.metadata()

16 >>> meta

17 {'final_expectance': 0.95771240234375,

18 'initial_expectance': 0.8380491129557291,

19 'num_iters': 3}

20 >>> # We can see the metric the algorithm has learned.

21 >>> M = nca.metric()

22 >>> M

23 array([[1.1909, 0.5129, -2.1581, -2.0146],

24 [0.5129, 1.5812, -2.1457, -2.1071],

25 [-2.1581, -2.1457, 6.4688, 5.8628],

26 [-2.0146, -2.1071, 5.8628, 6.8327]])

27 >>> # Equivalently, we can see the learned linear map.

28 >>> L = nca.transformer()

29 >>> L

30 array([[0.7796, -0.0191, -0.3586, -0.2399],

31 [-0.0444, 1.0074, -0.2993, -0.2581],

32 [-0.6074, -0.5728, 2.1609, 1.3521],

33 [-0.4606, -0.4875, 1.2573, 2.2091]])

34 >>> # Finally, we can obtain the transformed data,

35 >>> # or transform new data.

36 >>> Lx = nca.transform() # Transforming training set.

37 >>> Lx[:5,:]

38 array([[3.3590, 2.8288, -1.8073, -1.8538],

39 [3.2126, 2.3339, -1.3993, -1.5179],

40 [3.0887, 2.5743, -1.6085, -1.6490],

41 [2.9410, 2.4181, -1.0583, -1.3027],

42 [3.2791, 2.9340, -1.8038, -1.8565]])

Figure 1: Use of distance metric learning algorithms in pyDML.

4. Quality Standards

The project code follows the PEP8 style standards for Python code. Continuous integration
is performed, using the Travis CI service, to ensure back-compatibility and integrate code
in a simple way. The project adheres to Semantic Versioning and uses the Keep a Changelog
standards to make it easier to users to see the changes between each version. A thorough
documentation is provided using sphinx and numpydoc, and is hosted in the Read the
Docs platform. Finally, a stats website is also provided6, where the performance of the
implemented algorithms is evaluated under different conditions (Suárez et al., 2019). Those
algorithms available in other DML libraries are also compared to each other in this website.

5. Conclusions and Future Work

In this paper, we presented a new Python library that integrates a wide range of distance
metric learning algorithms, with additional functionalities such as visualization or parameter
estimation. The pyDML library is fully compatible with Scikit-Learn and is distributed under
GPLv3 license.

5. https://pydml.readthedocs.io/en/latest/examples.html
6. https://jlsuarezdiaz.github.io/software/pyDML/stats/index.html#

4

https://pydml.readthedocs.io/en/latest/examples.html
https://jlsuarezdiaz.github.io/software/pyDML/stats/index.html#

pyDML: A Python Library for Distance Metric Learning

As future work we plan to extend the library by adding more recent algorithms, and
also algorithms oriented to problems beyond standard classification, like ordinal classifica-
tion (Nguyen et al., 2018), imbalanced classification (Wang et al., 2018) or non-standard
problems (Charte et al., 2019). We will also explore new ways of learning distances beyond
the Mahalanobis approach, such as deep metric learning (Yi et al., 2014).

Acknowledgments

Our work has been supported by the research project TIN2017-89517-P and by a research
scholarship (FPU18/05989), given to the author Juan Luis Suárez by the Spanish Ministry
of Science, Innovation and Universities.

References

A. Bellet, A. Habrard, and M. Sebban. Metric Learning. Morgan & Claypool, 2015.

D. Charte, F. Charte, S. Garćıa, and F. Herrera. A snapshot on nonstandard super-
vised learning problems: taxonomy, relationships, problem transformations and algorithm
adaptations. Progress in Artificial Intelligence, 8(1):1–14, 2019.

T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Transactions on
Information Theory, 13(1):21–27, 1967.

J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon. Information-theoretic metric
learning. In Proceedings of the 24th International Conference on Machine learning, pages
209–216. ACM, 2007.

W. de Vazelhes, C. Carey, Y. Tang, N. Vauquier, and A. Bellet. metric-learn: Metric
learning algorithms in python. arXiv preprint arXiv:1908.04710, 2019.

R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals of eugenics,
7(2):179–188, 1936.

A. Globerson and S. T. Roweis. Metric learning by collapsing classes. In Advances in Neural
Information Processing Systems, pages 451–458, 2006.

J. Goldberger, G. E. Hinton, S. T. Roweis, and R. R. Salakhutdinov. Neighbourhood
components analysis. In Advances in Neural Information Processing Systems, pages 513–
520, 2005.

M. Guillaumin, J. Verbeek, and C. Schmid. Is that you? metric learning approaches for
face identification. In 2009 IEEE 12th International Conference on Computer Vision,
pages 498–505. IEEE, 2009.

I. Jolliffe. Principal Component Analysis. Springer Series in Statistics. Springer, 2002.

B. Kulis. Metric learning: A survey. Foundations and Trends in Machine Learning, 5(4):
287–364, 2013.

5

Suárez, Garćıa and Herrera

T. Mensink, J. Verbeek, F. Perronnin, and G. Csurka. Distance-based image classification:
Generalizing to new classes at near-zero cost. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 35(11):2624–2637, 2013.

S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K.-R. Mullers. Fisher discriminant analysis
with kernels. In Neural networks for signal processing IX, 1999. Proceedings of the 1999
IEEE signal processing society workshop., pages 41–48. IEEE, 1999.

B. Nguyen, C. Morell, and B. De Baets. Supervised distance metric learning through
maximization of the jeffrey divergence. Pattern Recognition, 64:215–225, 2017.

B. Nguyen, C. Morell, and B. De Baets. Distance metric learning for ordinal classification
based on triplet constraints. Knowledge-Based Systems, 142:17–28, 2018.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, et al. Scikit-learn: Machine learning in python.
Journal of Machine Learning Research, 12(Oct):2825–2830, 2011.

J. L. Suárez, S. Garćıa, and F. Herrera. A tutorial on distance metric learning: Mathemat-
ical foundations, algorithms and experiments. arXiv preprint arXiv:1812.05944, 2019.

M. Sugiyama. Dimensionality reduction of multimodal labeled data by local fisher discrim-
inant analysis. Journal of Machine Learning Research, 8(May):1027–1061, 2007.

Y. Tang, T. Gao, and N. Xiao. dml: Distance metric learning in r. Journal of Open Source
Software, 3(30):1036, 2018.

L. Torresani and K.-C. Lee. Large margin component analysis. In Advances in Neural
Information Processing Systems, pages 1385–1392, 2007.

F. Wang and C. Zhang. Feature extraction by maximizing the average neighborhood margin.
In 2007 IEEE Conference on Computer Vision and Pattern Recognition, pages 1–8. IEEE,
2007.

N. Wang, X. Zhao, Y. Jiang, and Y. Gao. Iterative metric learning for imbalance data
classification. In International Joint Conferences on Artificial Intelligence, pages 2805–
2811, 2018.

K. Q. Weinberger and L. K. Saul. Distance metric learning for large margin nearest neighbor
classification. Journal of Machine Learning Research, 10(Feb):207–244, 2009.

E. P. Xing, M. I. Jordan, S. J. Russell, and A. Y. Ng. Distance metric learning with appli-
cation to clustering with side-information. In Advances in Neural Information Processing
Systems, pages 521–528, 2003.

D. Yi, Z. Lei, S. Liao, and S. Z. Li. Deep metric learning for person re-identification. In
2014 IEEE 22nd International Conference on Pattern Recognition, pages 34–39. IEEE,
2014.

Y. Ying and P. Li. Distance metric learning with eigenvalue optimization. Journal of
Machine Learning Research, 13(Jan):1–26, 2012.

6

pyDML: A Python Library for Distance Metric Learning

P. Zadeh, R. Hosseini, and S. Sra. Geometric mean metric learning. In International
Conference on Machine Learning, pages 2464–2471, 2016.

7

	Introduction
	Software Description
	Installation and Usage
	Quality Standards
	Conclusions and Future Work

