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Abstract

A factor-augmented vector autoregressive (FAVAR) model is defined by a VAR equation
that captures lead-lag correlations amongst a set of observed variables X and latent fac-
tors F , and a calibration equation that relates another set of observed variables Y with F
and X. The latter equation is used to estimate the factors that are subsequently used in
estimating the parameters of the VAR system. The FAVAR model has become popular in
applied economic research, since it can summarize a large number of variables of interest
as a few factors through the calibration equation and subsequently examine their influence
on core variables of primary interest through the VAR equation. However, there is increas-
ing need for examining lead-lag relationships between a large number of time series, while
incorporating information from another high-dimensional set of variables. Hence, in this
paper we investigate the FAVAR model under high-dimensional scaling. We introduce an
appropriate identification constraint for the model parameters, which when incorporated
into the formulated optimization problem yields estimates with good statistical properties.
Further, we address a number of technical challenges introduced by the fact that esti-
mates of the VAR system model parameters are based on estimated rather than directly
observed quantities. The performance of the proposed estimators is evaluated on synthetic
data. Further, the model is applied to commodity prices and reveals interesting and in-
terpretable relationships between the prices and the factors extracted from a set of global
macroeconomic indicators.

Keywords: Model Identifiability; Compactness; Low-rank plus Sparse Decomposition;
Finite-Sample Bounds

1. Introduction

There is a growing need in employing a large set of time series (variables) for modeling social
or physical systems. For example, economic policy makers have concluded based on exten-
sive empirical evidence (e.g. Sims, 1980; Bernanke et al., 2005; Bańbura et al., 2010) that
large scale models of economic indicators provide improved forecasts, together with better
estimates of how current economic shocks propagate into the future, which produces better
guidance for policy actions. Another reason for considering large number of time series in
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social sciences is that key variables implied by theoretical models for policy decisions1 are
not directly observable, but related to a large number of other variables that collectively
act as a good proxy of the unobservable key variables. In other domains such as genomics
and neuroscience, advent of high throughput technologies have enabled researchers to ob-
tain measurements on hundreds of genes from functional pathways of interest (Shojaie and
Michailidis, 2010) or brain regions (Seth et al., 2015), thus allowing a more comprehensive
modeling to gain insights into biological mechanisms of interest. There are two popular
modeling paradigms for such large panel of time series, with the first being the Vector
Autoregressive (VAR) model (Lütkepohl, 2005) and the second being the Dynamic Factor
Model (DFM) (Stock and Watson, 2002; Lütkepohl, 2014).

The VAR model has been the subject of extensive theoretical and empirical work primar-
ily in econometrics, due to its relevance in macroeconomic and financial modeling. However,
the number of model parameters increases quadratically with the number of time series in-
cluded for each lag period considered, and this feature has limited its applicability since in
many applications it is hard to obtain adequate number of time points for accurate esti-
mation. Nevertheless, there is a recent body of technical work that leveraging structured
sparsity and the corresponding regularized estimation framework has established results for
consistent estimation of the VAR parameters under high dimensional scaling. Basu and
Michailidis (2015) examined Lasso penalized Gaussian VAR models and proved consistency
results, while at the same time providing technical tools useful for analysis of sparse models
involving temporally dependent data. Melnyk and Banerjee (2016) extended the results
to other regularizers, Lin and Michailidis (2017) to the inclusion of exogenous variables
(the so-called VAR-X model in the econometrics literature), Hall et al. (2019) to models
for count data and Nicholson et al. (2017) to the simultaneous estimation of time lags and
model parameters. However, a key requirement for the theoretical developments is a spec-
tral radius constraint that ensures the stability of the underlying VAR process (see Basu
and Michailidis, 2015; Lin and Michailidis, 2017, for details). For large VAR models, this
constraint implies a smaller magnitude on average for all model parameters, which makes
their estimation more challenging, unless one compensates with a higher level of sparsity.
Nevertheless, very sparse VAR models may not be adequately informative, while their esti-
mation requires larger penalties that in turn induce higher bias due to shrinkage, when the
sample size stays fixed.

The DFM model aims to decompose a large number of time series into a few common
latent factors and idiosyncratic components. The premise is that these common factors
are the key drivers of the observed data, which themselves can exhibit temporal dynamics.
They have been extensively used for forecasting purposes in economics (Stock and Watson,
2002), while their statistical properties have been studied in depth (see Bai and Ng, 2008,
and references therein). Despite their ability to handle very large number of time series,
theoretically appealing properties and extensive use in empirical work in economics, DFMs
aggregate the underlying time series and hence are not suitable for examining their individ-
ual cross-dependencies. Since in many applications researchers are primarily interested in
understanding the interactions between key variables (Sims, 1980; Stock and Watson, 2016),

1. such as the concept of output gap for monetary policy, the latter defined as the difference between the
actual output of an economy and its potential output
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while accounting for the influence of many others so as to avoid model misspecification that
leads to biased results, DFMs may not be the most appropriate model.

To that end, Bernanke et al. (2005) proposed a “fusion” model, namely the Factor
Augmented VAR, that aims to summarize the information contained in a large set of time
series by a small number of factors and includes those in a standard VAR model. Specifically,
let {Ft} ∈ Rp1 be the latent factor and {Xt} ∈ Rp2 the observed sets of variables, they jointly
form a VAR system given by[

Ft
Xt

]
= A(1)

[
Ft−1

Xt−1

]
+ · · ·+A(d)

[
Ft−d
Xt−d

]
+

[
wFt
wXt

]
. (1)

In addition, there is a large panel of observed time series Yt ∈ Rq, whose current values are
influenced by both Xt and Ft; i.e., the calibration equation:

Yt = ΛFt + ΓXt + et. (2)

The primary variables of interest Xt together with the unobserved factors Ft—both are
assumed to have small and fixed dimensions—drives the dynamics of the system, and the
factors are inferred from (2).

Even in the low-dimensional setting (p2 fixed), there is very limited theoretical work (Bai
et al., 2016) on the FAVAR model and some work on identification restrictions for the model
parameters (e.g. Bernanke et al., 2005). However, the fixed dimensionality assumption is
rather restrictive in many applications; in particular, the model has been extensively used in
empirical work in economics and finance (e.g. Eickmeier et al., 2014; Caggiano et al., 2014),
yet customarily a very small size block Xt is considered. For example, in Bernanke et al.
(2005) that introduces the FAVAR model, Xt comprises of three “core” economic indicators
(industrial production, consumer price index and the federal funds rate) and Yt of 120
other economic indicators. The VAR system is augmented by one factor summarizing the
macroeconomic indicators, and the augmented system shows 7-lag time dependence that
significantly increases the sample size requirement for estimation purposes. In a recent
application, Stock and Watson (2016) apply the FAVAR model to macroeconomics effects
of oil supply shocks; the augmented VAR system consists of 8 times series (observed and
latent), but due to the limitation in sample size to avoid non-stationarities (T = 120)
the lag of the model is fixed to 1. Hence, as argued in Stock and Watson (2016), there is
growing need for large scale FAVAR models and this paper aims to examine their estimation
and theoretical properties in high-dimensions, leveraging sparsity constraints on key model
parameters.

The key contributions of this paper are twofold: (1) the introduction of an identifia-
bility constraint compatible with the high-dimensional nature of the model, under sparsity
assumptions on model parameters Γ and {A(k)}, and (2) the ensuing formulation of the
optimization problem that leads to their estimators based on observational data and esti-
mators’ high-probability error bounds. At the technical level there are two sets of challenges
that are successfully resolved: (i) the calibration equation involves both an observed set of
covariates and a set of latent factors, and their interactions require careful handling to en-
able accurate estimation of the factors that constitute part of the input to the augmented
VAR system and are crucial for estimating the transition matrix; and (ii) with the presence
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of a block of variables in the VAR system that are subject to error due to being estimated
rather than directly observed, a number of new technical challenges emerge and they are
compounded by the presence of temporal dependence. Note that for ease of presentation,
the main technical developments are shown for Gaussian data (all noise processes in (1)
and (2) are assumed to be Gaussian), but the key theoretical results are also established
for sub-Gaussian and sub-exponential error processes; see Appendix C for a result of inde-
pendent theoretical interest, even for the standard sparse VAR model.

Outline of the paper. The remainder of the paper is organized as follows. In Section 2, the
model identifiability constraint is introduced, followed by formulation of the objective func-
tion to be optimized that obtains estimates of the model parameters. Theoretical properties
of the proposed estimators, specifically, their high probability finite-sample error bounds,
are investigated in Section 3. Subsequently in Section 4, we introduce an empirical im-
plementation procedure for obtaining the estimates and present its performance evaluation
based on synthetic data. An application of the model on interlinkages of commodity prices
and the influence of world macroeconomic indicators on them is presented in Section 5,
while Section 6 provides some concluding remarks. All proofs and other supplementary
materials are deferred to Appendices.

Notations. Throughout this paper, we use |||A|||· to denote matrix norms for some generic
matrix A ∈ Rm×n. For example, |||A|||1 and |||A|||∞ respectively denote the matrix induced
1-norm and infinity norm, |||A|||op the matrix operator norm and |||A|||F the Frobenius norm.
Moreover, We use ‖A‖1 and ‖A‖∞ respectively to denote the element-wise 1-norm and
infinity norm. For two matrices A and B of commensurate dimensions, denote their inner
product by 〈〈A,B〉〉 = tr(A>B). Finally, we write A & B if there exists some absolute
constant c that is independent of the model parameters such that A ≥ cB; and A � B if
A & B and B & A hold simultaneously.

2. Model Identification and Problem Formulation

The FAVAR model proposed in Bernanke et al. (2005) has the following two components,
as seen in Section 1: a system given in (1) that describes the dynamics of the latent
block Ft ∈ Rp1 and the observed block Xt ∈ Rp2 that jointly follow a stationary VAR(d)
model (the “VAR equation”); and the model in (2) that characterizes the contemporaneous
dependence of the large observed informational series Yt ∈ Rq as a linear function of Xt

and Ft (the “calibration equation”). Further, wFt , wXt and et are all noise terms that
are independent of the predictors, and we assume they are serially uncorrelated mean-zero
Gaussian random vectors: wFt ∼ N (0,ΣF

w), wXt ∼ N (0,ΣX
w ) and et ∼ N (0,Σe). In this

study we consider a potentially large VAR system that has many coordinates, hence in
contrast to Bernanke et al. (2005) and Bai et al. (2016) where both p1 and p2 are fixed
and small, we allow the size of the observed block, p2, to be large2 and to grow with the
sample size; yet the size of the latent block, p1, can not be too large and is still assumed
fixed. Moreover, the size of the informational series, q, can also be large and grow with the

2. We do not impose the restriction that p2 is smaller than the available sample size.
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sample size. Further, we assume that the transition matrices {A(i)}di=1 and the regression
coefficient matrix Γ are sparse. Finally, the factor loading matrix Λ is assumed to be dense.

2.1. Model identification considerations

The latent nature of Ft leads to the following observational equivalence across the following
two models encoded by (Λ,Γ) and (Λ̃, Γ̃), respectively: for any invertible matrixQ1 ∈ Rp1×p1

and Q2 ∈ Rp1×p2 ,

Yt = ΛFt + ΓXt + et ≡ Λ̃F̃t + Γ̃Xt + et, (Yt ∈ Rq, Ft ∈ Rp1 , Xt ∈ Rp2)

where
Λ̃ := ΛQ1, F̃t := Q−1

1 Ft −Q−1
1 Q2Xt, Γ̃ := Γ + ΛQ2. (3)

In other words, the key model parameters (Λ,Γ) and the latent factors Ft are not uniquely
identified, a known problem even in classical factor analysis (Anderson, 1958). Thus, addi-
tional restrictions are required to overcome this indeterminacy, since there is an equivalence
class parametrized by (Q1, Q2) within which individual models are not mutually distin-
guishable based on observational data. For the FAVAR model, a total number of p2

1 + p1p2

restrictions are needed for unique identification of Λ, Γ and Ft.
Various schemes have been proposed in the literature to address this issue. Specifically,

Bernanke et al. (2005) impose the necessary restrictions through the coefficient matrices of
the calibration equation, requiring Λ =

[
Ip1∗
]

and Γ[1:p1],· = 0; that is, the upper p1 × p1

block of Λ is set to the identity matrix and the first p1 rows of Γ to zero. Bai et al.
(2016) consider different sets of restrictions that involve combinations of coefficients from
the calibration equation and the noise term from the VAR equation. In the low-dimensional
setting (p2 fixed), one can proceed to estimate the parameters subject to these restrictions,
by adopting either a single-step Bayesian likelihood approach (Bernanke et al., 2005) or
an orthogonal projection-based approach by profiling out Xt (Bai et al., 2016). However,
neither approach is applicable in high-dimensional settings, due to the growing dimension
p2 which would render a projection-based approach infeasible or add to the computational
demands of a Bayesian procedure.

To overcome these issues in high-dimensional settings, we introduce an alternative iden-
tification scheme “IR+Compactness” that is compatible with the model specification and
can also be seamlessly incorporated in the estimation procedure, leveraging sparsity of the
regression coefficient Γ. Specifically, we first impose constraint (IR):

(IR) Λ =
[

Ip1∗
]
: the upper p1×p1 block of Λ is an identity matrix, while the bottom block

is left unconstrained.

Note that (IR) imposes p2
1 constraints but crucially not on the latent factors, given their

subsequent utilization in the VAR system. Further, it yields uniquely identifiable Λ and Ft,
for any given product ΛFt, and the indeterminacy incurred by Q1 ∈ Rp1×p1 in (3) vanishes.

However, the issue is not fully resolved, since for any Q2 ∈ Rp1×p2 , the following rela-
tionship holds:

Yt = ΛFt + ΓXt + et ≡ ΛF̌t + Γ̌Xt + et,
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where
F̌t = Ft −Q2Xt Γ̌ := Γ + ΛQ2. (4)

All such models encoded by (F̌t, Γ̌), form an equivalence class parametrized by Q2 that
specifies the transformation. We denote this equivalence class by C(Q2). If Q2 = O, then
C(Q2) degenerates to a singleton that contains only the true data-generating model, which
requires the imposition of p1p2 restrictions on primary model quantities. One applicable
constraint out of theoretical consideration is to impose orthogonality on Xt and Ft — it
yields the necessary p1p2 restrictions; yet is excessively stringent and limits the appeal of the
FAVAR model, while also being challenging to operationalize. Therefore as a good working
alternative, we address the identifiability issue through a weaker constraint that effectively
limits sufficiently the size of the C(Q2).

To this end, let X ∈ Rn×p2 , Y ∈ Rn×q and F ∈ Rn×p1 be centered data matrices whose
rows are samples of Xt, Yt and the latent process Ft respectively, and F̌ is analogously
defined. The characterization of C(Q2) is through the sample versions of the underlying
processes. Specifically, define the set of factor hyperplanes induced by C(Q2) by

S(Θ̌) := {Θ̌ := F̌Λ> ∈ Rn×q | F̌ are samples of F̌t defined through (4)},

and we let Θ? denote the factor hyperplane associated with the true data-generating model,
to distinguish it from some generic element in S(Θ̌) that is denoted by Θ̌. Note that
Θ? ∈ S(Θ̌) and Θ̌ coincides with Θ? when Q2 = 0. Moreover, all elements in S(Θ̌) are at
most of rank p1, hence a low-rank component relative to their size n× q. Next, in a similar
spirit to Negahban and Wainwright (2012), we define the following constrained set:

Sφ(Θ̌) :=
{
ϕR(Θ̌) ≤ φ(n, q)

∣∣ Θ̌ ∈ S(Θ̌)
}
,

where ϕR(Θ) is defined according to

ϕR(Θ) := κ(R∗)R∗(Θ)|||X/
√
n|||op,

and κ(R∗) := supΘ 6=0

(
|||Θ|||F/R∗(Θ)

)
with R∗ being the dual norm of some regularizer

R. Base on the above definition, ϕR(Θ) captures the interaction between the factor space
and the observed X-space; the product κ(R∗)R∗(Θ) measures the spikiness of Θ w.r.t. R,
and in the case where R corresponds to the sparsity-induced `1-norm which would be the
setup of interest in this paper (see Section 2.2), R∗(Θ) = ‖Θ‖∞ and κ(R∗) =

√
nq. With

the definition of Sφ(Θ̌), we impose the following compactness constraint on Θ̌ to further
encourage identifiability:

(Compactness) Θ̌ ∈ Sφ(Θ̌) for some φ(n, q) satisfying φ(n, q) ≥ φ? := ϕR(Θ?).

(Compactness) effectively limits the spikiness of all possible Θ̌’s by imposing a box constraint
through the dual norm corresponding to the sparsity regularizer, and for an arbitrary set
of fixed realizations, it restricts the factor hyperplane set induced by C(Q2) to its φ-radius
subset Sφ(Θ̌). This in turn limits the size of the equivalence class C(Q2) under consideration,
since there is a one-to-one correspondence at the set level between C(Q2) and the factor
hyperplane set induced by it. This further implies that although the models encoded by
(Ft,Γ) and (F̌t, Γ̌) may not be perfectly distinguishable based on observational data, at the
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population level the discordance between the two models can not be too large. It is worth
pointing out that the bound φ(n, q) is allowed to grow, but at a much slower rate than the
size of Θ̌; specifically, we require φ(n, q) = o(κ(R∗)). For ease of presentation, we use φ
to denote this bound henceforth and further note that it is in fact a constant in any finite
sample setting.

In summary, our proposed identification scheme comprises of two parts: (IR) and (Com-
pactness). The former provides exact identification within the factor hyperplane and nar-
rows the scope of observationally equivalent models to C(Q2), while the latter limits its size;
and they jointly incur approximate identification of the true data generating model; and
thus, for estimation purposes henceforth, it becomes adequate to focus on this restricted
equivalence class, rather than its individual elements. The proposed scheme is suitable for
the high-dimensional nature of the problem and can easily be incorporated in the formula-
tion of the optimization problem for parameter estimation (see Section 2.2), which in turn
yields estimates with tight error bounds (see Section 3).

2.2. Proposed formulation

Without loss of generality, we focus on the case where d = 1 in subsequent technical
developments, so that Zt := (F>t , X

>
t )> follows a VAR(1) model Zt = AZt−1 +Wt:[

Ft
Xt

]
=

[
A11 A12

A21 A22

] [
Ft−1

Xt−1

]
+

[
wFt
wXt

]
. (5)

The generalization to the VAR(d) (d > 1) case is straightforward since for any generic
VAR(d) process satisfying Ad(L)Zt = wt where Ad(L) := I − A(1)L − · · · − A(d)Ld, it can
always be written in the form of a VAR(1) model for some dp-dimensional process Z̃t (see
Lütkepohl, 2005, for details).

Based on the introduced model identification scheme (IR+Compactness), we propose
the following procedure to estimate the FAVAR model, whose parameters include a sparse
coefficient matrix Γ, a dense loading matrix Λ, and a sparse transition matrix A. Observed
data matrices X and Y are identical to what have been previously defined, and to distinguish
the responses from their lagged predictors when considering the VAR system, we let Xn−1 :=
[x1, . . . , xn−1]> denote the predictor matrix and Xn := [x2, . . . , xn]> the response one;
Fn,Fn−1,Zn,Zn−1 are analogously defined. Based on these notations, the sample versions
of the VAR system and the calibration equation in (5) and (2) can be written as

Zn = Zn−1A
> + W, and Y = FΛ> + XΓ> + E =: Θ + XΓ> + E.

We propose the following estimators obtained from a two-stage procedure for the coefficient
matrices Λ, Γ and subsequently the transition matrices {Aij}i,j=1,2.

• Stage I: estimation of the calibration equation under (IR+Compactness). We formu-
late the following constrained optimization problem using a least squares loss function
and incorporating the sparsity-induced `1 regularization of the sparse block Γ, the
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rank constraint on the hyperplane Θ, and (Compactness):

(Θ̂, Γ̂) := arg min
Θ∈Rn×q ,Γ∈Rq×p2

{ 1

2n
|||Y −Θ−XΓ>|||2F + λΓ‖Γ‖1

}
,

subject to rank(Θ) ≤ r, ‖Θ‖∞ ≤
φ

√
nq · |||X/

√
n|||op

.

(6)

Once Θ̂ is obtained, under (IR), the estimated factors F̂ and the corresponding loading
matrix Λ̂ are extracted as follows:

F̂ = F̂PC(Λ̂PC
1 )>, Λ̂ = Λ̂PC(Λ̂PC

1 )−1, (7)

where Λ̂PC
1 is the upper p1 sub-block of Λ̂PC, with F̂PC and Λ̂PC being the PC esti-

mators (Stock and Watson, 2002) given by F̂PC :=
√
nÛ and Λ̂PC := V̂ D̂/

√
n. The

estimates Û , D̂ and V̂ are obtained from the SVD of Θ̂ = ÛΘ̂V̂ >. Note that after
these algebra, F̂ corresponds to the first p1 columns of Θ̂.

Of note, |||X/
√
n|||2op = Λmax(X>X/n) and it can be shown that for any random

realizations X, the latter can be bounded with high probability (see Lemma 5).

• Stage II: estimation of the VAR equation based on X and F̂. With the estimated
factor F̂ as the surrogate for the true latent factor F, the transition matrix A can be
estimated by solving

Â := arg min
A∈R(p1+p2)×(p1+p2)

{ 1

2n
|||Ẑn − Ẑn−1A

>|||
2

F + λA‖A‖1
}
, (8)

where Ẑn := [F̂n,Xn] and Ẑn−1 is analogously defined. The `1-norm penalty induces
sparsity on A according to the model assumption.

In the presence of additional contemporaneous dependence amongst the coordinates for the
error processes wt, one may consider a maximum likelihood-based loss function, but the full
estimation would require additional structural assumptions of Σw (or its inverse) given the
high dimensionality; we do not further elaborate in this study, since our prime interest is
estimating the coefficient/transition matrices of the FAVAR model.

The formulation in (8) based on the least squares loss function and the surrogate F̂ is
straightforward. However, the formulation for the calibration equation merits additional
discussion. First, note that the factor hyperplane Θ has at most rank p1 and therefore has
low rank structure relative to its size n× q. We impose a rank constraint in the estimation
procedure to enforce such structure. Together with the (IR+Compactness) constraint intro-
duced above, the objective then becomes to estimate accurately the parameters of a model
within the equivalence class C(Q2), in the sense that the estimate obtained by solving (6)
effectively corresponds to recovering an arbitrary Θ̌, Θ̌ ∈ C(Q2); such an estimate, however,
will be close to the true data generating Θ?. Once this goal is achieved, this would enable
accurate estimation of the transition matrix of the VAR system.

From an optimization perspective, the objective function admits a low-rank-plus-sparse
decomposition and compactification is necessary for establishing statistical properties of
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the global optima in the absence of explicitly specifying the interaction structure between
the low rank and the sparse blocks (or the spaces they live in). Note that the form of the
compactness constraint is dictated by the statistical problem under consideration. For ex-
ample, Agarwal et al. (2012) study a multivariate regression problem, where the coefficient
is decomposed to a sparse and a low rank block. In that setting, a compactness constraint is
imposed through the entry-wise infinity norm bound of the low rank block. Chandrasekaran
et al. (2012) study a graphical model with latent variables where the conditional concentra-
tion matrix is the parameter of interest. The marginal concentration matrix is decomposed
to a sparse and a low rank block via the alignment of the Schur complement, and the com-
pactness constraint is imposed on both blocks and manifests through the corresponding
regularization terms in the resulting optimization problem. Hence, the compactness con-
straint takes different forms but ultimately serves the same goal, namely, to introduce an
upper bound on the magnitude of the low rank–sparse block interaction, with the latter
being an important component in analyzing the estimation errors. The compacteness con-
straint adopted for the FAVAR model serves a similar purpose, although the presence of
temporal dependence introduces a number of additional technical challenges compared to
the two aforementioned settings that consider independent and identically distributed data.

Finally, we remark that the model identification scheme (IR+Compactness) incorpo-
rated in the optimization problem as a constraint, enables us to establish high-probability
error bounds (relative to the true data generating parameters/factors) for the proposed
estimators, as shown next in Section 3. Therefore, although (IR+Compactness) does not
encompass the full p2

1 + p1p2 restrictions, it provides sufficient identifiability for estimation
purposes.

3. Theoretical Properties

In this section, we investigate the theoretical properties of the estimators proposed in Sec-
tion 2.2. We focus on formulations (6) and (8), whose global optima correspond to (Θ̂, Γ̂)
and Â, respectively.

Since (8) relies not only on prime observable quantities (namely Xt), but also on esti-
mated quantities from Stage I (namely F̂), the analysis requires a careful examination of
how the estimation error in the factor propagates to that of Â. We start by outlining a road
map of our proof strategy together with a number of regularity conditions needed in sub-
sequent developments. Section 3.1 establishes error bounds for Γ̂, Θ̂ 3and Â under certain
regularity conditions and employing suitable choices of the tuning parameters, for determin-
istic realizations from the underlying observable processes. Specifically when considering
the error bound of Â, the error of the plug-in estimate F̂ is assumed non-random and given.
Subsequently, Section 3.2 examines the probability of the events in which the regularity
conditions are satisfied for random realizations, and further establishes high-probability up-
per bounds for quantities to which the tuning parameters need to conform. Finally, the
high-probability finite sample error bounds for the estimates obtained based on random
realizations of the data generating processes readily follow after properly aligning the con-
ditioning arguments, and the results are presented in Section 3.3. All proofs are deferred
to Appendices A and B.

3. Consequently, the error bounds of F̂ and Λ̂ under (IR) are also obtained.
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Additional notations. Throughout, we use superscript ? to denote the true value of the
parameters of interest, and ∆ for errors of the estimators; e.g., ∆A = Â − A?. For sample
quantities (e.g., X and F) and their corresponding error (e.g., ∆F), we use subscript (n−1)
to denote their first n− 1 rows. We let SE := 1

nE>E denote the sample covariance matrix
of E and the sample covariance of other quantities are analogously defined. Additionally,
denote the density level of Γ? by sΓ? := ‖Γ?‖0, and that of A? by sA? .

A road map for establishing consistency results. As previously mentioned, the key steps
are:

• Part 1: analyses based on deterministic realizations using the optimality of the esti-
mators, assuming the parameters of the objective function (e.g., the Hessian and the
penalty parameter) satisfy certain regularity conditions;

• Part 2: analyses based on random realizations that the probability of the regularity
conditions being satisfied, primarily involving the utilization of concentration inequal-
ities.

In Part 1, note that the first-stage estimators obtained from the calibration equation are
based on observed data and thus the regularity conditions needed are imposed on (func-
tions of) the observed samples. On the other hand, the second-stage estimator relies on
the plugged-in first-stage estimates that have bounded errors; therefore, the analysis is car-
ried out in an analogous manner to problems involving error-in-variables. Specifically, the
required regularity conditions on quantities appearing in the optimization (8) involve the
error of the first stage estimates, with the latter assumed fixed. In Part 2, the focus shifts to
the probability of the regularity conditions being satisfied under random realizations, again
starting from the first stage estimates, with the aid of Gaussian concentration inequalities
and proper accounting for temporal dependence. Once the required regularity conditions
are shown to hold with high probability, combining the results established in Part 1 for
deterministic realizations, the high-probability error bounds for Θ̂ and Γ̂ are established.
The high-probability error bound of the estimated factors readily follows, which ensures
that the variables which Stage II estimates rely upon are sufficiently accurate with high
probability. Based on the latter result, the regularity conditions required for the Stage II
estimates are then verified to hold with high probability at a certain rate. In the FAVAR
model, since the estimation of the VAR equation is based on quantities among which one
block is subject to error, to obtain an accurate estimate of the transition matrix requires
more stringent conditions on population quantities (e.g., extremes of the spectrum), so that
the regularity conditions hold with high probability. In essence, the joint process Zt need to
be adequately “regular” in order to get good estimates of the transition matrix , vis-a-vis
the case of the standard VAR model where all variables are directly observed.

Next, we introduce the following key concepts that are widely used in establishing theo-
retical properties of high-dimensional regularized M -estimators (e.g. Negahban et al., 2012;
Loh and Wainwright, 2012), as well as quantities that are related to processes exhibiting
temporal dependence (see also Basu and Michailidis, 2015).
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Definition 1 (Restricted strong convexity (RSC)) A matrix X ∈ Rn×p satisfies the
RSC condition with respect to norm Φ with curvature αRSC > 0 and tolerance τn ≥ 0, if

1

2n
|||X∆|||2F ≥

αRSC

2
|||∆|||2F − τnΦ2(∆), ∀ ∆ ∈ Rp×p.

In our setting, we consider the norm Φ(∆) = ‖∆‖1.

Definition 2 (Deviation condition) For a regularized M -estimator given in the generic
form of

Â := min
A

{ 1

2n
|||Y −XA>|||2F + λA‖A‖1

}
,

with HA := 1
nX>X denoting the Hessian and GA := 1

nY>X denoting the gradient, we define
the tuning parameter λA to be selected in accordance with the deviation condition, if

λA ≥ c0‖HA − GA(A?)>‖∞, for some c0.

Under the current model setup, however, the exact form of the deviation bound becomes
more involved and requires proper modifications to incorporate quantities associated with
the factor hyperplane, as seen in Proposition 1.

Definition 3 (Spectrum and its extremes) For a p-dimensional stationary process Xt,
its spectral density fX(ω) is defined as

fX(ω) := 1
2π

∞∑
h=−∞

ΣX(h)eiωh, (9)

where ΣX(h) := E(XtX
>
t+h). Its upper and lower extremes are defined as

M(fX) := ess sup
ω∈[−π,π]

Λmax(fX(ω)), and m(fX) := ess inf
ω∈[−π,π]

Λmin(fX(ω)).

The cross-spectrum for two generic stationary processes Xt and Yt is defined as

fX,Y (ω) :=
1

2π

∞∑
h=−∞

ΣX,Y (h)eiωh,

where ΣX,Y (h) := E(XtY
>
t+h), and its upper extreme is defined as

M(fX,Y ) := ess sup
ω∈[−π,π]

√
Λmax

(
f∗X,Y (ω)fX,Y (ω)

)
,

where ∗ denotes the conjugate transpose.

We start by providing error bounds for Γ̂ and Θ̂, as well as those of the corresponding
F̂ and Λ̂ extracted under (IR). For the optimization problem given in (6), we assume that
r ≥ p1 and φ is always compatible with the true data generating mechanism, so that Θ?

is always feasible. To this end, the error bounds of Θ̂ and Γ̂ for deterministic realizations

11
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crucially rely on two components: (i) X satisfying the RSC condition with curvature αX
RSC;

and (ii) the tuning parameter λΓ being chosen in accordance with the deviation bound
condition that is associated with the interaction between X and E, the strength of the
noise, and the interaction between the space spanned by the factor hyperplane and the
observed X. Upon the satisfaction of these conditions, the error bounds of Θ̂ and Γ̂ are
given by

|||∆Γ|||2F + |||∆Θ/
√
n|||2F ≤ C1λ

2
Γ

(
p1 + r + 4sΓ?

)
/min{αX

RSC, 1}2,

and these conditions hold with high probability for random realizations of Xt and Yt. Since
F̂ is the first p1 columns of Θ̂, it possesses an error bound of the similar form.

Next, we briefly sketch the error bounds of Â. For the optimization in (8), for de-
terministic realizations, the results in Basu and Michailidis (2015) can be applied with the
corresponding RSC condition and deviation condition imposed on quantities associated with
Ẑn and Ẑn−1, and the error for Â is in the form of

|||∆A|||2F ≤ C2sA?λ
2
A/(α

Ẑ
RSC)2.

Then, for random realizations, assuming ∆F known and non-random, to satisfy the corre-
sponding regularity conditions, we additionally require that the following functional involv-
ing the spectral density of the underlying joint process Zt exhibits adequate curvature, that
is, m(fZ)/

√
M(fZ) > c0h1(∆Fn−1) for constant c0 and some function h1 of the error ∆Fn−1

that captures its magnitude. Moreover, the deviation bound is of the form h2(∆F), which
can be viewed as another function of the error4. Further, since ∆F is bounded with high
probability from the analysis in Stage I, it will be established that h1(∆F) and h2(∆F) are
both upper bounded at a certain rate, thus ensuring that the RSC condition and the de-
viation conditions can both be satisfied unconditionally, by properly choosing the required
constants.

3.1. Statistical error bounds with deterministic realizations

Proposition 1 below gives the error bounds for the estimators in (6), assuming certain
regularity conditions hold for deterministic realizations of the processes Xt and Yt, upon
suitable choice of the regularization parameters.

Proposition 1 (Bound for ∆Θ and ∆Γ under fixed realizations) Suppose the fixed re-
alizations X ∈ Rn×p2 of process {Xt ∈ Rp2} satisfies the RSC condition with curvature
αX
RSC > 0 and a tolerance τX for which

τX ·
(
p1 + r + 4sΓ?

)
< min{αX

RSC, 1}/16.

Then, for any matrix pair (Θ?,Γ?) satisfying the constraint ϕR(Θ?) ≤ φ that generates Y,
for estimators (Θ̂, Γ̂) obtained by solving (6) with regularization parameters λΓ satisfying

λΓ ≥ max
{

2‖X>E/n‖∞, 4φ/
√
nq, Λ1/2

max(SE)
}
,

4. note the deviation bound in principle also depends on other population quantities such as m(fZ), M(fZ),
Λmax(Σw) etc.
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the following bound holds:

|||∆Γ|||2F + |||∆Θ/
√
n|||2F ≤

16λ2
Γ

(
p1 + r + 4sΓ?

)
min{αX

RSC, 1}2
. (10)

Based on Proposition 1, under fixed realizations of Xt and Yt, the error bounds of Γ̂
and Θ̂ are established. Using these Stage I estimates and the IR condition, estimates of
the factors and their loadings can be calculated. In particular, since ∆F corresponds to
the first p1 columns of ∆Θ, the above bound automatically holds for ∆F. Further, the
following lemma provides the relative error of the estimated Λ under (IR) and the condition

on Λ
1/2
max(SF), with the latter translating to the requirement that the leading signal of F

overrules the averaged row error of ∆Θ.

Lemma 1 (Bound of ∆Λ) The following error bound holds for Λ̂, provided that Λ
1/2
max(SF) >

|||∆Θ/
√
n|||F:

|||∆Λ|||F
|||Λ?|||F

≤
√
p1 · |||∆Θ/

√
n|||F

Λ
1/2
max(SF)− |||∆Θ/

√
n|||F

(
1 + 1/|||Λ?|||F

)
. (11)

Up to this point, error bounds have been obtained for all the parameters in the cali-
bration equation. The following proposition establishes the error bound for the estimator
obtained from solving (8), based on observed X and estimated F̂, and assuming ∆F is
fixed.

Proposition 2 (Bound for ∆A under fixed realization and a non-random ∆F) Consider
the estimator Â obtained by solving (8). Suppose the following conditions hold:

A1. Ẑn−1 := [F̂n−1,Xn−1] satisfies the RSC condition with curvature αẐ
RSC and tolerance

τZ for which sA?τZ < αẐ
RSC/64;

A2. ‖Ẑ>n−1

(
Ẑn− Ẑn−1(A?)>

)
/n‖∞ ≤ C(n, p1, p2) where C(n, p1, p2) is some function that

depends on n, p1 and p2.

Then, for any λA ≥ 4C(n, p1, p2), the following error bound holds for Â:

|||∆A|||F ≤ 16
√
sA?λA/α

Ẑ
RSC.

Note that Proposition 2 applies the results in Basu and Michailidis (2015, Proposition 4.1)
to the setting in this study, where Stage II estimation of the transition matrix is based on
Ẑn and Ẑn−1; consequently, the regularity conditions should be imposed on corresponding
quantities associated with Ẑn and Ẑn−1.

Propositions 1 and 2 give finite sample error bounds for the estimators of the parameters
obtained by solving optimization problems (6) and (8) based on fixed realizations of the
observable processes Xt and Yt, and the regularity conditions outlined. Next, we exam-
ine and verify these conditions for random realizations of the processes, to establish high
probability error bounds for these estimators.
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3.2. High probability bounds under random realizations

We provide high probability bounds or concentrations for the quantities associated with the
required regularity conditions, for random realizations of Xt and Yt. Specifically, we note
that when Xt is considered separately from the joint system, it follows a high-dimensional
VAR-X model (Lin and Michailidis, 2017)

Xt = A22Xt−1 +A21Ft−1 + wXt ,

whose spectrum fX(ω) satisfies

fX(ω) =
[
A−1
X (e−iω)

](
A21fF (ω)A>21 + fwX (ω) + fwX ,F (ω)A>21 +A21fF,wX (ω)

)[
A−1
X (e−iω)

]∗
,

where AX(L) := I − A22L. Similar properties hold for Ft. Throughout, we assume
{Xt}, {Ft} and {Yt} are all mean-zero stable Gaussian processes.

Lemmas 2 to 4 respectively verify the RSC condition associated with X and establish
the high probability bounds for ‖X>E/n‖∞, Λmax(SE) and Λmax(SX).

Lemma 2 (Verification of the RSC condition for X) Consider X ∈ Rn×p2 whose rows
correspond to a random realization {x1, . . . , xn} of the stable Gaussian {Xt} process, and
its dynamics are governed by (5). Then, there exist positive constants ci > 0, i = 1, 2, such
that with probability at least 1− c1 exp(−c2nmin{γ−2, 1}) where γ := 54M(gX)/m(gX), the
RSC condition holds for X with curvature αX

RSC and tolerance τX satisfying

αX
RSC = πm(fX), τX = αRSCγ

2
( log p2

n

)
/2 ,

provided that n & log p2.

Lemma 3 (High probability bound for ‖X>E/n‖∞) There exist positive constants ci (i =
0, 1, 2) such that for sample size n & log(p2q), with probability at least 1−c1 exp(−c2 log(p2q)),
the following bound holds:

‖X>E/n‖∞ ≤ c0

(
2πM(fX) + Λmax(Σe)

)√ log p2 + log q

n
. (12)

Lemma 4 (High probability bound for Λmax(SE)) Consider E ∈ Rn×q whose rows
are independent realizations of the mean zero Gaussian random vector et with covariance
Σe. Then, for sample size n & q, with probability at least 1 − exp(−n/2), the following
bound holds:

Λmax(SE) ≤ 9Λmax(Σe).

Lemma 5 (High probability bound for Λmax(SX)) Consider X ∈ Rn×p2 whose rows
correspond to a random realization {x1, . . . , xn} of the stable Gaussian {Xt} process, and
its dynamics are governed by (5). There exist positive constants ci > 0, i = 0, 1, 2, such that
for sample size n & p2, with probability at least 1− c1 exp(−c2n), the following bound holds:

Λmax(SX) ≤ c0M(fX).

14



Estimating High-Dimensional FAVAR Models

In the next two lemmas, we verify the RSC condition for random realizations of Ẑn−1

and obtain the high probability bound C(n, p1, p2) for ‖Ẑ>n−1

(
Ẑn− Ẑn−1(A?)>

)
/n‖∞, with

the underlying truth F being random but the error ∆F non-random. Note that this can be
equivalently viewed as a conditional RSC condition and deviation bound, when conditioning
on some fixed ∆F.

Lemma 6 (Verification of RSC for Ẑn−1) Consider Ẑn−1 given by

Ẑn−1 = Zn−1 + ∆Zn−1 = [Fn−1,Xn−1] + [∆Fn−1 , O],

with rows of [Fn−1,Xn−1] being a random realization drawn from process {Zt} whose dy-
namics are given by (5). Suppose the lower and upper extremes of its spectral density fZ(ω)
satisfy

m(fZ)/M1/2(fZ) > c0 · Λ1/2
max

(
S∆Fn−1

)
, where S∆Fn−1

:= ∆>Fn−1
∆Fn−1/n,

for some constant c0 ≥ 6. Then, with probability at least 1 − c1 exp(−c2n), Ẑn−1 satisfies
the RSC condition with curvature

αẐ
RSC = πm(fZ)− 54Λ1/2

max

(
S∆Fn−1

)√
2πM(fZ) + πm(fZ)/27, (13)

and tolerance

τn =
(π

2
m(fZ) + 27Λ1/2

max

(
S∆Fn−1

)√
2πM(fZ) + πm(fZ)/27

)
ω2

√
log(p1 + p2)

n
,

where ω = 54M(fZ)
m(fZ) , provided that the sample size n & log(p1 + p2).

Lemma 7 (Deviation bound for ‖Ẑ>n−1

(
Ẑn − Ẑn−1(A?)>

)
/n‖∞) There exist positive con-

stants ci (i = 1, 2) and Ci (i = 1, 2, 3) such that with probability at least 1 − c1 exp
(
−

c2 log(p1 + p2)
)

we have

C(n, p1, p2) ≤ C1

[
M(fZ) +

Λmax(Σw)

2π
+M(fZ,W+)

]√ log(p1 + p2)

n

+ C2

[
M1/2(fZ) max

j∈{1,...,p1}
‖∆Fn,·j/

√
n‖
]√ log p1 + log(p1 + p2)

n

+ C3

[
Λ1/2

max(Σw) max
j∈{1,...,(p1+p2)}

‖εn,·j/
√
n‖
]√ log(p1 + p2)

n
(14)

+
1

n
‖∆>Fn−1

∆Fn‖∞ +
1

n
‖∆>Fn−1

∆Fn−1(A?11)>‖∞,

where εn := ∆Zn − ∆Zn−1(A?)> = [∆Fn − ∆Fn−1(A?11)>,−∆Fn−1(A?21)>], and {W+
t } :=

{Wt+1} is the shifted Wt process.

Remark 1 Before moving to the high probability error bounds of the estimates, we discuss
the conditions and the various quantities appearing in Lemmas 6 and 7 that determine
the error bound of the estimated transition matrix and underlie the differences between
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the original VAR estimation problem based on primal observed quantities (the “vanilla
VAR problem” henceforth), and the present one in which one block of the variables enters
the VAR system with errors. Note that the statements in the two lemmas are under the
assumption that the error in the Ft block is pre-determined and non-random.

As previously mentioned, due to the presence of the error of the latent factor block, the
corresponding regularity conditions need to be imposed and verified on quantities with the
error incorporated, namely, Ẑ, instead of the original true random realizations Z. Lemma 6
shows that with high probability, the random design matrix although exhibits error-in-
variables, will still satisfy the RSC condition with some positive curvature as long as the
spectrum of the process Zt has sufficient regularity relative to the magnitude of the error,

with the former determined by m(fX)/M1/2(fX) and the latter by Λ
1/2
max(S∆Fn−1

). In par-
ticular, the RSC curvature is pushed toward zero compared with that in the vanilla VAR
problem, due to the presence of the second term in (13) that would be 0 if ∆Fn−1 = 0,
i.e., there were no estimation errors. This curvature affects the constant scalar part of the
ultimate high probability error bound obtained for the transition matrix.

Lemma 7 gives the deviation bound associated with the Hessian and the gradient (both
random), which comprises of three components attributed to the random samples observed,
the non-random error, and their interactions, respectively. Further, it is the relative order
of these components that determines the error rate (as a function of model dimensions and
the sample size). In particular, for the vanilla VAR problem, only the first term in (14)
exists and yields an error rate of O(

√
log(p1 + p2)/n) (see also Basu and Michailidis, 2015).

For the current setting, as it is later shown in Theorem 1, since |||∆F/
√
n|||F � O(1), the

dominating term of the three components is the one attributed to the non-random error5

and it ultimately determines the error rate of Â, which will also be O(1).

3.3. High probability error bounds for the estimators

Given the results in Sections 3.1 and 3.2, we provide next high probability error bounds
for the estimates, obtained by solving the optimization problems in (6) and (8) based on
random snapshots from the underlying processes Xt and Yt.

Theorem 1 combines the results in Proposition 1 and Lemmas 2 to 4 and provides the
high probability error bound of the estimates, when Θ̂ and Γ̂ are estimated based on random
realizations from the observable processes Xt and Yt, with the latter driven by both Xt and
the latent Ft.

Theorem 1 (High probability error bounds for Θ̂ and Γ̂) Suppose we are given some
randomly observed snapshots {x1, . . . , xn} and {y1, . . . , yn} obtained from the stable Gaus-
sian processes Xt and Yt, whose dynamics are described in (5) and (2). Suppose the follow-
ing conditions hold for some (CX,l, CX,u) and (Ce,l, Ce,u):

C1. CX,l ≤ m(fX) ≤M(fX) ≤ CX,u;

C2. Ce,l ≤ Λmin(Σe) ≤ Λmax(Σe) ≤ Ce,u.

5. with the implicit assumption that log(p1 + p2)/n = o(1) which is satisfied for this study.
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Then, there exist universal constants {Ci} and {ci} such that for sample size n & q, by
solving (6) with regularization parameter

λΓ = max
{
C1(2πM(fX) + Λmax(Σe))

√
log(p2q)

n
, C2φ/

√
nq, C3Λ1/2

max(Σe)
}
, (15)

the solution (Θ̂, Γ̂) has the following bound with probability at least 1− c1 exp(−c2 log(p2q)):

|||∆Θ/
√
n|||2F + |||∆Γ|||2F .

λ2
Γ

m(fX)
ψ(sΓ? , p1, r) =: K1, (16)

for some function ψ(·) that depends linearly on sΓ? , p1 and r.

Note that the above bound also holds if we replace ∆Θ by ∆F under (IR). Next, using
the results in Proposition 2, Lemmas 6 and 7 and combine the bound in Theorem 1, we
establish a high probability error bound for the estimated Â in Theorem 2.

Theorem 2 (High probability error bound for Â) Under the settings and with the
procedures in Theorem 1, we additionally assume the following condition holds for the spec-
trum of the joint process Zt:

C3. m(fZ)/M1/2(fZ) > CZ for some constant CZ .

Then there exists universal constants {ci}, {c′i} and {Ci} such that for sample size n & q,

such that the estimator Â obtained by solving for (8) with λA satisfying

λA = C1

(
M(fZ) +

Σw

2π
+M(fZ,W+)

)√ log(p1 + p2)

n

+ C2M1/2(fZ)

√
log(p1 + p2) + log p1

n
+ C3Λ1/2

max(Σw)

√
log(p1 + p2)

n
+ C4,

with probability at least(
1− c1 exp{−c2 log(p2q)}

)(
1− c′1 exp{−c′2 log(p1 + p2)}

)
, (17)

the following bound holds for ∆A:

|||∆A|||2F ≤ Č(K1,m(fZ),M(fZ)) · ψ̌(sA?),

for some function Č(K1,m(fZ),M(fZ)) that does not depend on n, p2, q and ψ̌(·) that de-
pends linearly on sA?. Here K1 denotes the upper bound of the first stage error shown
in (16).

Remark 2 (Rate of convergence) It is worth pointing out similarities in the formulation
of the calibration equation and a matrix completion problem. Note that the factor hyper-
plane corresponds to the low-rank component one seeks to recover in the latter problem in
a noisy setting. Hence, the resulting similarity in the rate obtained in our setting to that
established for the matrix completion problem (Candes and Plan, 2010), is a consequence
of absence of the restricted isometry property (RIP) (see also Gunasekar et al., 2015).
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Remark 3 (Sample size requirement) To establish the finite-sample high probability
error bound for the estimated transition matrices Â, the proposed estimation procedure
requires the sample size to satisfy n & q; this condition is more stringent compared to the
standard VAR estimation problem under sparsity, given by n &

√
log(p1 + p2). However,

this is due to the fact that in the FAVAR formulation the Ft block is latent and needs to be
estimated from the data and hence comes with “measurement error”. The more restrictive
sample size requirement reflects the latter fact and is embedded in the factor recovery step
in the calibration equation – specifically, the concentration of Λmax(SE) that is necessary
for providing adequate control over ∆F.

Remark 4 (Generalization to VAR(d)) As a straightforward generalization, for a
VAR(d), d > 1 system Zt = (F>t , X

>
t )>, a similar error bound holds by considering the

augmented process Z̃>t := (Zt, Zt−1, . . . , Zt−d+1) that satisfies

Z̃t = ÃZ̃t−1 + W̃t, where Ã :=

A(1) A(2) ··· A(d)

Ip O O O

...
. . .

...
...

O O Ip O

 , W̃t =

Wt
0
...
0

 .
In particular, with probability at least(

1− c1 exp{−c2 log(p2q)}
)(

1− c′1 exp{−c′2 log(d(p1 + p2))}
)
,

the following bound holds for the estimate of Ã:

||∆
Ã
||2

F
≤ C̃(K1,m(f

Z̃
),M(f

Z̃
)) · κ̃(s

Ã?
).

However, note that although the error bound is still of the same form, the stronger temporal
dependence yields a larger C̃(K1,m(f

Z̃
),M(f

Z̃
) through the RSC curvature parameter;

specifically, a smaller value of m(f
Z̃

). Its impact on the deviation bound will not manifest
itself in terms of the order of the error, since it only affects the constants in front of lower
order terms in the expression of choosing λA.

4. Implementation and Performance Evaluation

We first discuss implementation issues of the proposed problem formulation for the high-
dimensional FAVAR model. Specifically, the formulation requires imposing the compactness
constraint for identifiability purposes and for obtaining the necessary statistical guarantees
for the estimates of the model parameters. However, the value φ in the compactness con-
straint is hard to calibrate in any real data set. Hence, in the implementation we relax this
constraint and assess the performance of the algorithm. Due to its importance in constrain-
ing the size of the equivalence class C(Q2), we examine in Appendix D certain relatively
extreme settings where the proposed relaxation fails to provide accurate estimates of the
model parameters.

Implementation. The following relaxation of (6) is used in practice:

min
Θ,Γ

f(Θ,Γ) :=
{ 1

2n
|||Y −Θ−XΓ>|||2F + λΓ‖Γ‖1

}
subject to rank(Θ) ≤ r,

(18)
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Algorithm 1: Computational procedure for estimating A, Γ and Λ.

Input: Time series data {xi}ni=1 and {yi}ni=1, (λΓ, r), and λA.

1 Stage I: recover the latent factors by solving (18), through iterating between (1.1) and
(1.2) until |f(Θ(m),Γ(m))− f(Θ(m−1),Γ(m−1))| < tolerance:

2 – (1.1) Update Θ̂(m) by singular value thresholding (SVT): do SVD on the residual

hyperplane, i.e., Y −X(Γ̂(m−1))> = UDV , where D := diag
(
d1, . . . , dmin(n,q)

)
, and

construct Θ̂(m) by

Θ̂(m) = UDrV, where Dr := diag
(
d1, . . . , dr, 0, . . . , 0

)
.

3 – (1.2) Update Γ̂(m) with the plug-in Θ̂(m) so that each row j is obtained with Lasso
regression (in parallel) and solves

minβ
{ 1

2n
||(Y − Θ̂(m))·j −Xβ||

2
+ λA‖β1‖1

}
4 Stage I output: Θ̂ and Γ̂; the estimated factor F̂ and Λ̂ via (7) under (IR);

5 Stage II: estimate the transition matrix by solving (8): update each row of A (in parallel)
by solving the Lasso problem:

minβ
{ 1

2n
||(Ẑn)·j − Ẑn−1β||

2
+ λA‖β‖1

}
.

6 Stage II output: Â.

Output: Estimates Γ̂, Λ̂, Â and the latent factor F̂.

which leads to Algorithm 1. The implementation of Stage I requires the pair of tuning
parameters (λΓ, r) as input, and the choice of r is particularly critical since it determines
the effective size of the latent block. In our implementation, we select the optimal pair
based on the Panel Information Criterion (PIC) proposed in Ando and Bai (2018), which
searches for (λΓ, r) over a lattice that minimizes

PIC(λΓ, r) :=
1

nq

∣∣∣∣∣∣∣∣∣Y − Θ̂−XΓ̂>
∣∣∣∣∣∣∣∣∣2

F
+ σ̂2

[ log n

n
‖Γ̂‖0 + r(

n+ q

nq
) log(nq)

]
,

where σ̂2 = 1
nq |||Y − Θ̂−XΓ̂>|||

2

F. Analogously, the implementation of Stage II requires λA
as input, and we select λA over a grid of values that minimizes the Bayesian Information
Criterion (BIC):

BIC(λA) =

q∑
i=1

log RSSi +
log n

n
‖Â‖0,

where RSSi := ‖(Xn)·i − Xn−1Â
>
i· ‖2 is the residual sum of square of the ith regression.

Extensive numerical work shows that these two criteria select very satisfactory values for the
tuning parameters, which in turn yield highly accurate estimates of the model parameters.

Simulation setup. Throughout, we assume ΣX
w , ΣF

X and Σe are all diagonal matrices, and
the sample size is fixed at 200, unless otherwise specified. We first generate samples of
Ft ∈ Rp1 and Xt ∈ Rp2 recursively according to the VAR(d) model in (1), and then the
samples of Yt ∈ Rq are generated according to the linear model given in (2). Specifically,
(IR) is imposed on the true value of the parameter, hence Λ? that is used for generating
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Yt always satisfies the restriction Λ =
[

Ip1∗
]
. Unless otherwise specified, all error terms are

generated according to some mean-zero Gaussian distribution.
For the calibration equation, the density level of the sparse coefficient matrix Γ ∈ Rq×p2

is fixed at 5/p2 for each regression; thus, each Yt coordinate is affected by 5 series (coordi-
nates) from the Xt block on average. The bottom (q− p1)× p1 block of the loading matrix
Λ ∈ Rq×p1 is dense. The magnitude of nonzero entries of Γ and that of entries of Λ may
vary to capture different levels of signal contributions to Yt, and we adjust the standard
deviation of et to maintain the desired level of the signal-to-noise ratio for Yt (averaged
across all coordinates).

For the transition matrix A of the VAR equation, the density for each of its component
block {Aij}i,j=1,2 varies across settings, so as to capture different levels of the influence from
the lagged value of the latent block Ft on the observed Xt. Note that to ensure stability of
the VAR system, the spectral radius of A, %(A), needs to be smaller than 1. In particular,
when a VAR(d) (d > 1) system is considered, we need to ensure that the spectral radius of
Ã is smaller than 16, where we let p = p1 + p2 and

Ã :=


A(1) A(2) · · · A(d)

Ip O O O
...

. . .
...

...
O O Ip O

 .
Table 1 lists the simulation settings and their parameter setup.

Table 1: Parameter setup for different simulation settings for the VAR equation.

q p1 p2 sA11
sA12

sA21
sA22

SNR(Yt)
A1 100 5 50 3/(p1 + p2) 1.5
A2 200 10 100 3/(p1 + p2) 1.5
A3 200 5 100 3/p1 2/p2 2/p1 2/p2 1.5
A4 300 5 500 3/p1 2/p2 0.8 2/p2 1.5

B1
200 5 100

A(1) : 3/(p1 + p2)
2

(d = 2) A(2) : 2/(p1 + p2)

200 5 100

A(1) : 0.5 3/p2 0.5 3/p2

2
B2 A(2) : 0.2 2/p2 0.25 2/p2

(d = 4) A(3) : 2/(p1 + p2)

A(4) : 2/(p1 + p2)

100 5 25

A(1) : 0.5 2/p2 0.5 2/p2

2
B3 A(2) : 0.2 1.5/p2 0.1 1.5/p2

(d = 4) A(3) : 1/(p1 + p2)

A(4) : 0.8/(p1 + p2)
C1 same as setting A1 with t4 noise for the VAR system
C2 same as setting B1 with t8 noise for the VAR system
C3 same as setting B2 with sub-exponential noise for the VAR system
C4 same as setting B2 with sub-exponential noise for the VAR system and 500 observations

Specifically, in settings A1 – A4, (F>t , X
>
t )> jointly follows a VAR(1) model. The (av-

erage) signal-to-noise ratio for each regression of Yt is 1.5. For settings A1 and A2, the

6. In practice, this can be achieved by first generating A(1), . . . , A(d), align them in Ãinitial and obtain the
scale factor ζ := %target/%(Ãinitial), then scale A(i) by ζi. The validity of this procedure follows from
simple algebraic manipulations.
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transition matrix A is uniformly sparse, with A2 corresponding to a larger system; for set-
tings A3 and A4, we increase the density level (the proportion of nonzero entries) for the
transition matrices that govern the effect of Ft−1 on Ft and Xt. In particular, for setting
A4, we consider a large system with 500 coordinates in Xt, and the factor effect is almost
pervasive on these coordinates (through the lags), as the density level of A21 is set at 0.8.
Settings B1, B2 and B3 consider settings with more lags (d = 2 and d = 4, respectively),
and to compensate for the higher level of correlation between Ft and Xt, we elevate the
signal-to-noise for each regression of Yt to 2. For B1, the transition matrices for both lags
(A(1) and A(2)) have uniform sparsity patterns, with A(2) being slightly more sparse com-
pared to A(1); for B2, the transition matrices for the first two lags have higher density in
the component that governs the Ft−i → Xt cross effect, and those for the last two lags have
uniform sparsity. B3 has approximately the same scale as observed in real data, and due to
a small p2, the system exhibits a higher sparsity level in general. In settings C1 – C4, the
error terms of the VAR system are generated from distributions with tails heavier than a
Gaussian (e.g. t-distributions, squares of Gaussian which have sub-exponential tails), and
the joint process (F ′t , Xt)

′ will be heavy-tailed as a result of the recursive data generating
mechanism.

Performance evaluation. We consider both the estimation and the forecasting performance
of the proposed estimation procedure. The performance metrics used for estimation are
sensitivity (SEN), specificity (SPC) and the relative error in Frobenius norm (Err) for the
sparse components (transition matrices A and the coefficient matrix Γ), defined as

SEN =
TP

TP + FN
, SPC =

TN

FP + TN
, Err = |||∆M |||F/|||M

?|||F.

We also track the estimated size of the latent component (i.e., the rank constraint in (6),
jointly with λΓ is selected by PIC), as well as the relative errors of Θ̂, F̂ and Λ̂. For fore-
casting, we focus on evaluating the h-step-ahead predictions for the Xt block. Specifically,
for settings where the VAR system is 1-lag dependent (A1–A4, C1), we consider h = 1; for
settings where the VAR system has more lag dependencies (B1–B3, C2–C4), we consider
h = 1, 2. We use the same benchmark model as in Bańbura et al. (2010) which is based
on a special case of the Minnesota prior distribution (Litterman, 1986), so that the for any
generic time series Xt ∈ Rp, each of its coordinates j = 1, . . . , p follows a centered random
walk:

Xt,j = Xt−1,j + ut,j , ut,j ∼ N (0, σ2
u). (19)

For each forecast x̂T+h, its performance is evaluated based on the following two measures:

rel-err = ‖x̂T+h − xT+h‖22/‖xT+h‖22, rel-err-ratio =

1
p2

∑p2
j=1

∣∣ x̂T+h,j−xT+h,j

xT+h,j

∣∣
1
p2

∑p2
j=1

∣∣ x̃T+h,j−xT+h,j

xT+h,j

∣∣ ,
where rel-err measures the `2 norm of the relative error of the forecast to the true value;
whereas for rel-err-ratio, it measures the ratio between the relative error of the forecast and
the above described benchmark. In particular, its numerator and denominator respectively
capture the averaged relative error of all coordinates of the forecast x̂T+h and that of the
benchmark x̃T+h that evolves according to (19), while the ratio measures how much the
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forecast based on the proposed FAVAR model outperforms (< 1) or under-performs (> 1)
compared to the benchmark.

All tabulated results are based on the average of 50 replications. Tables 2, 3 and 4,
respectively, depict the performance of the estimates of the parameters in the calibration
and the VAR equations, as well as the forecasting performance under the settings considered.
Based on the results listed in Tables 2 and 3, we notice that in all settings, the parameters in
the calibration equation Θ̂ and Γ̂ are well estimated, while the rank slightly underestimated.
Further, the SEN and SPC measures of Γ̂ show excellent performance regarding support
recovery. It is worth pointing out that the estimation accuracy of the parameters in the
calibration equation strongly depends on the signal-to-noise ratio of Yt. In particular, if
the signal-to-noise ratio in A1-A4 is increased to 1.8, the rank is always correctly selected
by PIC, and the estimation relative error of Θ̂ further decreases(results omitted for space
considerations)7. Under the given IR, we decompose the estimated factor hyperplane into
the factor block and its loadings. The results show that both quantities exhibit a higher
relative error compared to that of the factor hyperplane. Of note, the loadings estimates
exhibit a lot of variability as indicated by the high standard deviation in the Table.

Regarding the estimates in the VAR equation, for settings A1, A2 and B1 that are
characterized by an adequate degree of sparsity, the recovery of the skeleton of the transition
matrices is very good. However, performance deteriorates if the latent factor becomes
“more pervasive” (settings A3 and A4), which translates to the A21 block having lower
sparsity. On the other hand, this does not have much impact on the recovery of the A22

sub-block, as for these two settings, SEN and SPC of A22 still remain at a high level.
For settings with more lags, performance deteriorates (as expected) although SEN and
SPC remain fairly satisfactory. On the other hand, the relative error of the transition
matrices increases markedly. Nevertheless, the estimates of the first lag transition matrix
is better than the remaining ones. Further, the results indicate that smaller size VAR
systems (B3) exhibit better performance than larger ones. Finally, in terms of forecasting
(results depicted in Table 4), the one-step-ahead forecasting value yields approximately 50%
to 90% rel-err (compared to the truth), depending on the specific setting and the actual
SNR, while it outperforms the forecast of the benchmark by around 40% (based on the
rel-err-ratio measure). Of note, the 2-step-ahead forecasting value for settings with more
lags outperforms the benchmark by an even wider margin with the rel-err-ratio decreasing
to less than 0.3.

Finally, the proposed methodology is robust in the presence of heavier than Gaussian
tails in the VAR processes. Further, note that in setting C3 wherein the temporal depen-
dence is strong and the error terms are generated according to a sub-exponential distri-
bution, the performance of the estimated transition matrices deteriorates significantly, as
expected from the theoretical results outlined in Appendix C. Nevertheless, with proper
compensation in terms of sample size (setting C4), the performance improves markedly.

7. This also comes up when comparing the relative error of Θ̂ in the A1-A4 settings to that in the B1-B2
ones, where the latter two have a higher SNR.
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Table 2: Performance evaluation of estimated parameters in the calibration equation.

PIC-selected r Err(Θ̂) Err(F̂) Err(Λ̂) SEN(Γ̂) SPC(Γ̂) Err(Γ̂)
A1 4.80(.40) 0.32(.010) 0.56(.074) 0.67(.345) 0.99(.007) 0.98(.003) 0.45(.013)
A2 9.96(.19) 0.32(.008) 0.90(.065) 2.54(1.30) 0.99(.005) 0.98(.001) 0.52(.010)
A3 4.78(.54) 0.33(.048) 0.73(.103) 2.59(1.59) 0.99(.003) 0.99(.001) 0.57(.009)
A4 4.42(.49) 0.38(.040) 0.84(.100) 2.66(2.14) 0.97(.009) 0.99(.001) 0.59(.015)
B1 5(0) 0.23(.004) 0.41(.043) 0.54(.020) 1.00(.000) 0.97(.011) 0.27(.014)
B2 5(0) 0.26(.007) 0.38(.047) 0.42(.087) 1.00(.000) 0.99(.002) 0.37(.007)
B3 5(0) 0.25(.007) 0.34(.031) 0.34(.080) 1.00(.000) 0.99(.001) 0.32(.012)
C1 4.96(.20) 0.32(.019) 0.58(.075) 0.86(.564) 0.99 (.001) 0.96(.009) 0.47(.017)
C2 5(0) 0.23(.005) 0.43(.042) 0.54(.155) 1.00 (.000) 0.96(.008) 0.27(.010)
C3 5(0) 0.21(.006) 0.39(.040) 0.41(.123) 1.00 (.000) 0.97(.003) 0.27(.052)
C4 5(0) 0.20(.007) 0.27(.028) 0.25(.041) 1.00 (.000) 0.97(.011) 0.18(.012)

Table 3: Performance evaluation of the estimated transition matrices in the VAR equation.

coef SEN(Â) SPC(Â) Err(Â) SEN(Â22) SPC(Â22) Err(Â22)
A1 A 0.99(.003) 0.95(.012) 0.35(.019) 0.99(.001) 0.96(.013) 0.31(.022)
A2 A 0.98(.008) 0.97(.004) 0.46(.018) 0.99(.001) 0.98(.003) 0.39(.017)
A3 A 0.86(.050) 0.98(.006) 0.73(.029) 0.93(.032) 0.98(.005) 0.65(.034)
A4 A 0.75(.046) 0.92(.002) 0.71(0.024) 0.99(.001) 0.92(.002) 0.60(.018)

B1 A(1) 0.99(.003) 0.98(.002) 0.47(.017) 0.99(.002) 0.98(.002) 0.46(.017)

A(2) 0.97(.010) 0.98(.002) 0.55(.017) 0.98(.011) 0.98(.003) 0.55(.018)

B2 A(1) 0.89(.017) 0.88(.003) 0.71(.014) 0.90(.017) 0.99(.003) 0.70(.014)

A(2) 0.75(.028) 0.88(.003) 0.89(.020) 0.77(0.032) 0.88(.003) 0.90(.021)

A(3) 0.84(.025) 0.88(.003) 0.85(.015) 0.85(.027) 0.88(.004) 0.84(.018)

A(4) 0.72(.022) 0.88(.003) 0.99(.017) 0.73(.025) 0.88(.003) 0.98(.017)

B3 A(1) 0.93(.034) 0.96(.010) 0.61(.043) 0.94(.035) 0.97(.009) 0.60(.045)

A(2) 0.77(.078) 0.96(.010) 0.74(.044) 0.78(.084) 0.97(.010) 0.74(.046)

A(3) 0.80(.098) 0.96(.012) 0.75(.052) 0.81(.102) 0.97(.010) 0.74(.056)

A(4) 0.74(.122) 0.97(.011) 0.78(.059) 0.72(.134) 0.97(.009) 0.79(.065)
C1 A 0.99(.007) 0.95(.012) 0.42(.024) 0.99(.002) 0.96(.011) 0.38(.024)

C2 A(1) 0.99(.004) 0.98(.002) 0.46(.013) 0.99(.003) 0.98(.002) 0.45(.015)

A(2) 0.98(.008) 0.97(.003) 0.54(.018) 0.98(.009) 0.98(.003) 0.54(.019)

C3 A(1) 0.93(.013) 0.42(.005) 1.54(.024) 0.93(.013) 0.42(.006) 1.61(.027)

A(2) 0.86(.019) 0.44(.006) 2.11(.029) 0.86(.023) 0.44(.006) 2.30(.032)

A(3) 0.88(.023) 0.44(.006) 2.06(.028) 0.89(.023) 0.44(.005) 2.07(.028)

A(4) 0.82(.023) 0.44(.006) 2.51(.043) 0.83(.025) 0.44(.006) 2.51(.041)

C4 A(1) 0.89(.016) 0.96(.002) 0.67(.013) 0.89(.016) 0.96(.002) 0.65(.014)

A(2) 0.73(.025) 0.96(.006) 0.78(.029) 0.74(.026) 0.96(.002) 0.79(.011)

A(3) 0.82(.027) 0.96(.002) 0.74(.015) 0.82(.028) 0.96(.002) 0.74(.017)

A(4) 0.60(.031) 0.96(.002) 0.87(.014) 0.60(.033) 0.96(.002) 0.87(.015)

Table 4: Performance evaluation of forecasting.

h = 1 h = 2

rel-err rel-err-ratio rel-err rel-err-ratio
A1 0.53(.117) 0.38(.065) - -
A2 0.60(.075) 0.38(.046) - -
A3 0.80(.075) 0.45(.064) - -
A4 0.56(.109) 0.40(.055) - -
B1 0.62(.060) 0.35(.171) 0.66(.127) 0.24(.071)
B2 0.89(.091) 0.42(.217) 0.94(.173) 0.29(.118)
B3 0.81(.094) 0.32(.129) 0.90(.402) 0.26(.174)
C1 0.59(.176) 0.50(.118) - -
C2 0.59(.121) 0.41(.350) 0.61(.270) 0.26(.089)
C3 1.25(.305) 0.19(.081) 1.26(.396) 0.15(.059)
C4 0.52(.073) 0.12(.071) 0.51(.168) 0.07(.034)
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5. Application to Commodity Price Interlinkages

Interlinkages between commodity prices represent an active research area in economics and
have been a source of concern for policymakers. Commodity prices, unlike stocks and bonds,
are determined more strongly by global demand and supply considerations. Nevertheless,
other factors are also at play as outlined next. The key ones are: (i) the state of the
global macro-economy and the state of the business cycle that manifest themselves as direct
demand for commodities; (ii) monetary policy, specifically, interest rates that impact the
opportunity cost for holding inventories, as well as having an impact on investment and
hence production capacity that subsequently contribute to changes in supply and demand
in the market; and (iii) the relative performance of other asset classes through portfolio
allocation (see Frankel, 2006, 2014, and references therein). We employ the FAVAR model
and the proposed estimation method to investigate interlinkages amongst major commodity
prices. The Xt block corresponds to the set of commodity prices of interest, while the Yt
block contains representative indicators for the global economic environment. We extract
the factors Ft based on the calibration equation and then consider the augmented VAR
system of (Ft, Xt), so that the estimated interlinkages amongst commodity prices are based
on a larger information set that takes into account broader economic activities.

Data. The commodity price data (Xt) are retrieved from the International Monetary Fund,
comprising of 16 commodity prices in the following categories: Metal, Energy (oil) and
Agricultural. The set of economic indicators (Yt) contain core macroeconomic variables
and stock market composite indices from major economic entities including China, EU,
Japan, UK and US, with a total number of 54 indicators. Specifically, the macroeconomic
variables primarily account for: Output & Income (e.g. industrial production index), Labor
Market (unemployment), Money & Credit (e.g. M2), Interest & Exchange Rate (e.g. Fed
Funds Rate and the effective exchange rate), and Price Index (e.g. CPI). For variables that
reflect interest rates, we use both the short-term interest rate such as 6-month LIBOR, and
the 10-year T-bond yields from the secondary market. Further, to ensure stationarity of
the time series, we take the difference of the logarithm for Xt; for Yt, we apply the same
transformation as proposed in Stock and Watson (2002). A complete list of the commodity
prices and economic indicators used in this study is provided in Appendix E. For all time
series considered, we use monthly data spanning the January 2001 to December 2016 period.
Further, based on previous empirical findings in the literature related to the global financial
crisis of 2008 (Stock and Watson, 2017), we break the analysis into the following three sub-
periods (Stock and Watson, 2017): pre-crisis (2001–2006), crisis (2007–2010) and post-crisis
(2011–2016), each having sample size (available time points) 72, 48, and 72, respectively8.

We apply the same estimation procedure for each of the above three sub-periods. Start-
ing with the calibration equation, we estimate the factor hyperplane Θ and the sparse
regression coefficient matrix Γ, then extract the factors based on the estimated factor hy-

8. For each individual time series, we test for its normality using data spanning the pre-crisis, crisis, and
post-crisis periods, respectively. Based on the Shapiro-Wilk test, the null hypothesis of normality is not
rejected for selected time series (e.g., ALUMINUM) and rejected for others (e.g., OIL). However, when
testing for multivariate normality of the joint distribution of all time series resp. across the three periods,
we fail to reject the null hypothesis. The latter result may be due to inadequate power of the test given
the relatively small sample size.
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perplane under the (IR) condition. For each of the three sub-periods, 4, 3, and 3 factors are
respectively identified based on the PIC criterion, with the key variable loadings (collapsed
into categories) on each extracted factor listed in Table 5, after adjusting for ΓXt. Based

Table 5: Composition of the factors identified for three sub-periods. +, − and ∗ respectively
stand for positive (all economic indicators in that category have a positive sign in Λ),
negative and mixed (sign) contribution.

pre-crisis crisis post-crisis
F1 F2 F3 F4 F1 F2 F3 F1 F2 F3

bond return − + + − + −
economic output + + +
equity return + − − − +
interest/exchange rate ∗ ∗
labor + − −
money & credit + + +
price index + + −
trade − ∗ ∗

on the composition of the factors, we note that the factors summarize both the macroe-
conomic environment and also capture information from the secondary market (bond &
equity return), as suggested by economic analysis of potential contributors to commodity
price movements (Frankel, 2006, 2014). Hence, the obtained factors summarize the neces-
sary information to include in the VAR system that examines commodity price interlinkages
over time. Further, across all three periods considered, Economic Output and Money &
Credit indicators contribute positively to the factor composition. In particular, the positive
contribution from the M2 measure of money supply for the US during the crisis period
and that from the Fed Funds Rate post crisis are pronounced; hence, the estimated factors
strongly reflect the effect of the Quantitative Easing policy adopted by the US central bank.
The contribution of the other categories are mixed, with that from bond returns being note-
worthy due to their role as a proxy for long-term interest rates, which impact both the cost
of investment in increasing production capacity and on holding inventories, as well as on
the composition of asset portfolios across a range of investment possibilities (stocks, bonds,
commodities, etc.).

Next, using these estimated factors, we fit a sparse VAR(2) model to the augmented
(F̂>t , X

>
t )> system. The estimated transition matrices are depicted in Figures 1 to 3 as

networks9. It is apparent that the factors play an important role, both as emitters and
receivers. The effects from the first lag are generally stronger to that from the second one.
In particular, focusing on the first lag, the dominant nodes in the system have shifted over
time from (OIL, SOYBEANS, ZINC) pre crisis to (SUGAR, WHEAT, COPPER) during
the crisis, then to (OIL, SOYBEANS, RICE) post crisis. Based on node weighted degree,
the role of OIL is dominant in both pre- and post-crisis periods, but is much weaker during
the crisis.

9. In all three figures, the left panel corresponds to Â(1) and the right panel corresponds to Â(2). Node
sizes are proportional to node weighted degrees. Positive edges are in red and negative edges are in blue.
Edges with higher saturation have larger magnitudes.
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Figure 1: Estimated transition matrices for Pre-crisis period.
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Figure 2: Estimated transition matrices for the Crisis period.
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Figure 3: Estimated transition matrices for Post-crisis period
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Another key feature of the interlinkage networks is their increased connectivity during
the crisis period, vis-a-vis the pre- and post-crisis periods. The same empirical finding
has been noted for stock returns (see Lin and Michailidis, 2017, and references therein).
Before the global financial crisis of 2008, commodity prices were fast rising primarily due
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to increased demand from China. Specifically, as Chinese industrial production quadrupled
between 2001 and 2011, its consumption of industrial metals (Copper, Zinc, Aluminum,
Lead) increased by 330%, while its oil consumption by 98%. This strong demand shock
led to a sharp rise in these commodity prices, particularly accentuated beginning in 2006
(the onset of the crisis period considered in our analysis), briefly disrupted with a quick
plunge of commodity prices in 2008 and their subsequent recovery in the ensuing period
until late 2010, when demand from China subsided, which coupled with weak demand
from the EU, Japan and the US in the aftermath of the crisis created an oversupply that
put downward pressure on prices. These events induce strong inter-temporal and cross-
temporal correlations amongst commodity prices, and hence are reflected in their estimated
interlinkage network.

6. Discussion

This paper considered the estimation of FAVAR model under the high-dimensional scal-
ing. It introduced an identifiability constraint (IR+Compactness) that is suitable for high-
dimensional settings, and when such a constraint is incorporated in the optimization prob-
lem based upon the calibration equation, the global optimizer corresponds to model param-
eter estimates with bounded statistical errors. This development also allows for accurate
estimation of the transition matrices of the VAR system, despite the plug-in factor block
contains error due to the fact that it is an estimated quantity. Extensive numerical work il-
lustrates the overall good performance of the proposed empirical implementation procedure,
but also illustrates that the imposed constraint is not particularly stringent, especially in
settings where the coefficient matrix Γ of the observed predictor variables in the calibration
equation exhibits sufficient level of sparsity.

The key advantage of the FAVAR model is that it can leverage information from a large
number of variables, while modeling the cross-temporal dependencies of a smaller number
of them that are of primary interest to the analyst.

Recall that the nature of the FAVAR model results in estimating the transition matrix
of a VAR system with one block of the observations (factors) being an estimated quantity,
rather than conducting the estimation based on observed samples. Similar in flavor problems
have been examined in the high-dimensional iid setting (e.g. Loh and Wainwright, 2012),
as well as low dimensional time series settings; for example, Chanda et al. (1996) examine
parameter estimation of a univariate autoregressive process with error-in-variables and in
more recent work Komunjer and Ng (2014) investigate parameter identification of VAR-X
and dynamic panel VAR models subject to measurement errors.
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Appendix A. Proofs for Theorems and Propositions

This section is divided into two parts. In the first part, we provide proofs for the proposition
and theorem related to Stage I estimates, i.e., Θ̂ and Γ̂. In the second part, we give proofs for
the statements related to Stage II estimates, namely Â, with an emphasis on how to obtain
the final high probability error bound through properly conditioning on related events.

Part 1. Proofs for the Θ̂ and Γ̂ estimates.

Proof of Proposition 1. Using the optimality of (Γ̂, Θ̂) and the feasibility of (Γ?,Θ?), the
following basic inequality holds:

1

2n
|||X∆>Γ + ∆Θ|||

2

F ≤
1

n

(
〈〈∆>Γ ,X>E〉〉+ 〈〈∆Θ,E〉〉

)
+ λΓ

(
||Γ?||1 − ||Γ̂||1

)
, (20)

which after rearranging terms gives

1

2n
|||X∆>Γ |||

2

F+
1

2
|||∆Θ/

√
n|||2F ≤

1

n
〈〈X∆>Γ , Θ̂−Θ?〉〉

+
1

n

(
〈〈∆>Γ ,X>E〉〉+ 〈〈∆Θ,E〉〉

)
+ λΓ

(
||Γ?||1 − ||Γ̂||1

)
.

(21)

The remainder of the proof proceeds in three steps: in Step (i), we obtain a lower bound
for the left-hand-side (LHS) leveraging the RSC condition; in Step (ii), an upper bound for
the right-hand-side (RHS) based on the designated choice of λΓ is derived; in Step (iii), the
two sides are aligned to yield the desired error bound after rearranging terms.

To complete the proof, we first define a few quantities that are associated with the
support set of Γ and its complement:

S :=
{

∆ ∈ Rq×p2 |∆ij = 0 for (i, j) /∈ SΓ?
}
,

Sc :=
{

∆ ∈ Rq×p2 |∆ij = 0 for (i, j) ∈ SΓ?
}
,

where SΓ? is the support of Γ?. Further, define ∆S and ∆Sc as

∆S,ij = 1{(i, j) ∈ SΓ?}∆ij , ∆Sc,ij = 1{(i, j) ∈ ScΓ?}∆ij ,

and note that they satisfy

∆ = ∆S + ∆Sc , ‖∆‖1 = ‖∆S‖1 + ‖∆Sc‖1,

and
‖∆S‖1 ≤

√
s|||∆S|||F ≤

√
sΓ? |||∆|||F. (22)

Step (i). Since X satisfies the RSC condition, the first term on the LHS of (21) is lower
bounded by

αX
RSC

2
|||∆Γ|||2F − τX||∆Γ||21. (23)
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To get a lower bound for (23), consider an upper bound for ||∆Γ||1 with the aid of (20).
Specifically, for the first two terms in the RHS of (20), by Hölder’s inequality, the following
inequalities hold for the inner products:

〈〈∆>Γ ,X>E〉〉 ≤ ‖∆Γ‖1‖X>E‖∞
〈〈∆Θ,E〉〉 ≤ |||∆Θ|||∗|||E|||op = n|||∆Θ|||∗Λ

1/2
max(SE);

(24)

for the last term, since

‖Γ̂‖1 = ‖Γ?S + Γ?Sc + ∆Γ|S + ∆Γ|Sc‖1 = ‖Γ?S + ∆Γ|S‖1 + ‖∆S|Sc‖1
≥ ‖Γ?S‖1 − ‖∆Γ|S‖1 + ‖∆Γ|Sc‖1,

the following inequality holds:

‖Γ?‖1 − ‖Γ̂‖1 ≤ ‖∆Γ|S‖1 − ‖∆Γ|Sc‖1. (25)

Using the non-negativity of the RHS in (20), by choosing

λΓ ≥ max
{

2‖X>E/n‖∞, Λ1/2
max(SE)

}
, (26)

the following inequality holds:

0 ≤ λΓ

2
‖∆Γ‖1+λΓ|||∆Θ/

√
n|||∗ + λΓ(‖∆Γ|S‖1 − ‖∆Γ|Sc‖1)

=
3λΓ

2
‖∆Γ|S‖1 −

λΓ

2
‖∆Γ|Sc‖1 + λΓ|||∆Θ/

√
n|||∗.

Since ∆Θ = Θ̂−Θ? has rank at most p1 + r, |||∆Θ/
√
n|||∗ ≤

√
p1 + r|||∆Θ/

√
n|||F. It follows

that

λΓ

2
‖∆Γ|Sc‖1 ≤ λΓ

√
p1 + r|||∆Θ/

√
n|||F +

3λΓ

2
‖∆Γ|S‖1,

λΓ

2
‖∆Γ|S‖1 +

λΓ

2
‖∆Γ|Sc‖1 ≤ λΓ

√
p1 + r|||∆Θ/

√
n|||F +

3λΓ

2
‖∆Γ|S‖1 +

λΓ

2
‖∆Γ|S‖1,

‖∆Γ‖1 ≤
√

4(p1 + r)|||∆Θ/
√
n|||F + 4‖∆Γ|S‖1

≤
√

4(p1 + r)|||∆Θ/
√
n|||F + 4

√
sΓ? |||∆Γ|||F,

where the second line is obtained by adding λΓ
2 ‖∆Γ|S‖1 on both sides, and the last inequality

uses (22). Further, by the Cauchy-Schwartz inequality, we have

||∆Γ||1 ≤
√

(
√

4(p1 + r))2 + (4
√
s)2

√
|||∆Γ|||2F + |||∆Θ/

√
n|||2F,

that is,

‖∆Γ‖21 ≤ 4
(
p1 + r + 4s

)[
|||∆Γ|||2F + |||∆Θ/

√
n|||2F

]
. (27)

Combine (23) and (27), a lower bound for the LHS of (21) is given by(αX
RSC

2
− 4τX

(
p1 + r + 4s

))
|||∆Γ|||2F +

(1

2
− 4τX

(
p1 + r + 4s

))
|||∆Θ/

√
n|||2F. (28)
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Step (ii). For the first term in the RHS of (21), using the duality of `1-`∞ dual norm pair,
the following inequality holds:

1

n
|〈〈X∆>Γ , Θ̂−Θ?〉〉| ≤ 1

n
|〈〈∆>Γ ,X>Θ̂〉〉|+ 1

n
|〈〈∆>Γ ,X>Θ?〉〉|

≤ ‖∆Γ‖1‖X>Θ̂/n‖∞ + ‖∆Γ‖1‖X>Θ?/n‖∞
≤ ‖∆Γ‖1 · ||X/n||1 · ‖Θ̂‖∞ + ‖∆Γ‖1 · ||X/n||1 · ‖Θ

?‖∞.

(29)

Using the fact that both Θ? and Θ̂ are feasible and satisfy the box constraint ‖Θ‖∞ ≤
φ

κ(R∗)|||X/
√
n|||op

, it follows that

|||X/n|||1‖Θ̂‖∞ ≤
φ

κ(R∗)
and |||X/n|||1‖Θ

?‖∞ ≤
φ

κ(R∗)
,

Consequently, (29) is upper bounded by 2φ
κ(R∗) · ‖∆Γ‖1. By additionally requiring λΓ to

satisfy
λΓ ≥ 4φ/κ(R∗),

and combining (24), (25) and (26), the following upper bound holds for the RHS of (21):

λΓ
2 ||∆Γ||1 + λΓ

2 ‖∆Γ‖1 + λΓ
√
p1 + r|||∆Θ/

√
n|||F + λΓ(‖∆Γ|S‖1 − ‖∆Γ|Sc‖1)

≤ λΓ

(
2
√
sΓ? |||∆Γ|||F +

√
p1 + r|||∆Θ/

√
n|||F

)
≤ λΓ

√
4sΓ? + p1 + r

√
|||∆Γ|||2F + |||∆Θ/

√
n|||2F. (30)

Step (iii). Combine (28) and (30), by rearranging terms and requiring τX to satisfy τX(p1 +
r + 4sΓ?) < min{αX

RSC, 1}/16, the following inequality holds:

min{αX
RSC, 1}
4

(
|||∆Γ|||2F + |||∆Θ/

√
n|||2F

)
≤ λΓ

√
4sΓ? + p1 + r

√
|||∆Γ|||2F + |||∆Θ/

√
n|||2F,

which gives

|||∆Γ|||2F + |||∆Θ/
√
n|||2F ≤

16λ2
Γ

(
p1 + r + 4sΓ?

)
min{αX

RSC, 1}2
.

Proof sketch for Theorem 1. First we note that the requirement on the tuning parameter λΓ

determines the leading term in the ultimate high probability error bound. By Lemma 4, to
have adequate concentration for the leading eigenvalue Λmax(SE) of the sample covariance
matrices, the requirement imposed on the sample size makes

√
log(p2q)/n a lower order

term relative to Λ
1/2
max(Σe), with the latter being an O(1) term. Consequently, the choice of

the tuning parameter effectively becomes

λΓ � O(1),
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The conclusion readily follows as a result of Proposition 1.

Part 2. This part contains the proofs for the results related to Â.

Proof sketch for Proposition 2. The result follows along the lines of Basu and Michailidis
(2015, Proposition 4.1). In particular, in Basu and Michailidis (2015), the authors consider
estimation of A based on the directly observed samples of the Xt process, with the restricted
eigenvalue (RE) condition imposed on the corresponding Hessian matrix and the tuning
parameter selected in accordance to the deviation bound defined in Definition 2. On the
other hand, in the current setting, estimation of the transition matrix is based on quantities
that are surrogates for the true sample quantities. Consequently, as long as the required
conditions are imposed on their counterparts associated with these surrogate quantities, the
conclusion directly follows.

Finally, we would like to remark that the RSC condition used is in essence identical to the
RE condition required in Basu and Michailidis (2015) in the setting under consideration.

Proof of Theorem 2. First, we note that under (IR), by Theorem 1, there exists some
constant K1 that is independent of n, p1, p2 and q such that the following event holds with
probability at least P1 := 1− c1 exp(−c2 log(p2q)):

E1 :=
{
|||∆F/

√
n|||F ≤ K1

}
.

Conditional on E1, by Proposition 2, Lemmas 6 and 7, with high probability, the following
event holds:

E2 :=
{
|||∆A|||F ≤ ϕ(n, p1, p2,K1)

}
,

for some function ϕ(·) that not only depends on sample size and dimensions, but also on K1,
provided that the “conditional” RSC condition is satisfied. What are left to be examined
are: (i) what does E1 imply in terms of the RSC condition being satisfied unconditionally;
and (ii) what does E1 imply in terms of the bound in E2,

Towards this end, for (i), we note that since

Λ1/2
max(S∆Fn−1

) = |||∆F/
√
n|||op ≤ |||∆F/

√
n|||F ≤ K1,

then as long as CZ in condition C3 satisfies CZ ≥ c0K1 with the specified c0 ≥ 6
√

165π,
with probability at least P1P2,RSC where we define P2,RSC := 1−c′1 exp(−c′2n), by Lemma 6
the required RSC condition is guaranteed to be satisfied with a positive curvature. For
(ii), with the aid of Lemma 7, with probability at least P1P2,DB where we define P2,DB :=
1− c′1 exp(−c′2 log(p1 + p2)), the following bound holds for the deviation bound C(n, p1, p2)
unconditionally:10

C(n, p1, p2) ≤ C1

(
M(fZ) +

Σw

2π
+M(fZ,W )

)√ log(p1 + p2)

n

+ C2M1/2(fZ)

√
log(p1 + p2) + log p1

n
+ C3Λ1/2

max(Σw)

√
log(p1 + p2)

n
+ C4,

10. Note that it can be shown that |||εn|||2F = O(|||∆F|||2F)
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where the constants {Ci} have already absorbed the upper error bound K1 of the Stage
I estimates, compared with the original expression in Proposition 2. With the required
sample size, the constant becomes the leading term, so that there exists some constant K2

such that unconditionally:
C(n, p1, p2) ≤ K2 � O(1).

Combine (i) and (ii), and with probability at least min{P1P2,RSC,P1P2,DB}, the bound in
Theorem 2 holds.

Appendix B. Proof for Lemmas

In this section, we provide proofs for the lemmas in Section 3.2.

Proof of Lemma 1. Note that

Θ̂ = Θ? + ∆Θ = (F + ∆F)(Λ? + ∆Λ)>

∆Θ = ∆F(Λ?)> + F̂∆>Λ .

Multiply the left inverse of F̂ which gives

∆>Λ =
(
F̂>F̂

)−1
F̂>∆Θ +

(
F̂>F̂

)−1
F̂>∆F(Λ?)>.

Since for some generic matrix M , we have |||M−1|||F ≥ (|||M |||F)−1, an application of the
triangle inequality gives

|||∆Λ|||F ≤
|||F̂|||F
|||F̂>F̂|||F

(
|||∆Θ|||F + |||∆F(Λ?)>|||F

)
=
|||F̂/
√
n|||F

||| 1n F̂>F̂|||
F

(
1√
n

)
(
|||∆Θ|||F + |||∆F(Λ?)>|||F

)
≤ √p1Λ−1/2

max (S
F̂

)|||∆Θ/
√
n|||F

(
1 + |||Λ?|||F

)
,

where S
F̂

:= 1
n F̂>F̂, and the numerator and the denominator of

|||F̂|||F
|||F̂>F̂|||F

are respectively by

|||F̂|||F ≤
√
p1|||F̂|||op, |||F̂>F̂|||F ≥ |||F̂

>F̂|||op.

Further, note that |||F̂/
√
n|||

2

op = Λmax(S
F̂

) = |||S
F̂
|||

op
. What remains is to obtain a lower

bound for
Λ1/2

max

(
S
F̂

)
= |||(F + ∆F)/

√
n|||op.

One such bound is given by

|||(F + ∆F)/
√
n|||op ≥ |||F/

√
n|||op − |||∆F/

√
n|||op ≥ |||F/

√
n|||op − |||∆F/

√
n|||F

≥ Λ1/2
max(SF)− |||∆Θ/

√
n|||F,
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which leads to the following bound for |||∆Λ|||F, provided that the RHS is positive:

|||∆Λ|||F
|||Λ?|||F

≤ √p1
|||∆Θ/

√
n|||F

Λ
1/2
max(SF)− |||∆Θ/

√
n|||F

(
1 + 1/|||Λ?|||F

)
.

Proof of Lemma 2. First, suppose we have

1

2
v′SXv =

1

2
v′
(X′X

n

)
v ≥ αRSC

2
‖v‖22 − τn‖v‖21, ∀ v ∈ Rp; (31)

then, for all ∆ ∈ Rp×p, and letting ∆j denote its jth column, the RSC condition automati-
cally holds since

1

2n
|||X∆|||2F =

1

2

q∑
j=1

∆′j
(
X′X
n

)
∆j ≥

αRSC

2

q∑
j=1

‖∆j‖22 − τn
q∑
j=1

‖∆j‖21

≥ αRSC

2
|||∆|||2F − τn‖∆‖

2
1.

Therefore, it suffices to verify that (31) holds. In Basu and Michailidis (2015, Proposition
4.2), the authors prove a similar result under the assumption that Xt is a VAR(d) process.
Here, we adopt the same proof strategy and state the result for a more general process Xt.

Specifically, by Basu and Michailidis (2015, Proposition 2.4(a)), ∀v ∈ Rp, ‖v‖ ≤ 1 and
η > 0,

P
[∣∣v′(SX − ΣX(h)

)
v
∣∣ > 2πM(gX)η

]
≤ 2η exp

(
− cnmin{η2, η}

)
.

Applying the discretization in Basu and Michailidis (2015, Lemma F.2) and taking the
union bound, define K(2s) := {v ∈ Rp, ‖v‖ ≤ 1, ‖v‖0 ≤ 2k}, and the following inequality
holds:

P
[

sup
v∈K(2k)

∣∣v′(SX − ΣX(h)
)
v
∣∣ > 2πM(gX)η

]
≤ 2 exp

(
− cnmin{η, η2}+ 2kmin{log p, log(21ep/2k)}

)
.

With the specified γ = 54M(gX)/m(gX), set η = γ−1, then apply results from Loh and
Wainwright (2012, Lemma 12) with Γ = SX − ΣX(0) and δ = πm(gX)/27, so that the
following holds

1

2
v′SXv ≥

αRSC

2
‖v‖2 − αRSC

2k
‖v‖21,

with probability at least 1−2 exp
(
−cnmin{γ−2, 1}+2k log p

)
and note that min{γ−2, 1} =

γ−2 since γ > 1. Finally, let k = min{cnγ−2/(c′ log p), 1} for some c′ > 2, and conclude
that with probability at least 1− c1 exp(−c2n), the inequality in (31) holds with

αRSC = πm(gX), τn = αRSCγ
2 log p

2n
,

and so does the RSC condition.
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Proof of Lemma 3. We note that

1

n

∣∣∣∣∣∣X>E
∣∣∣∣∣∣
∞

= max
1≤i,j≤p

∣∣e>i (X>E/n
)
ej
∣∣,

where ei is the p-dimensional standard basis with its i-th entry being 1. Applying Basu and
Michailidis (2015, Proposition 2.4(b)), for an arbitrary pair of (i, j), the following inequality
holds:

P
[∣∣e>i (X>E/n

)
ej
∣∣ > 2π

(
M(gX) +

Λmax(Σe)

2π

)
η
]
≤ 6 exp

(
− cnmin{η2, η}

)
,

and note that et is a pure noise term that is assumed to be independent of Xt; hence, there is
no cross-dependence term to consider. Take the union bound over all 1 ≤ i ≤ p2, 1 ≤ j ≤ q,
and the following bound holds:

P
[

max
1≤i≤p2,1≤j≤q

∣∣e>i (X>E/n
)
ej
∣∣ > 2π

(
M(gX) +

Λmax(Σe)

2π

)
η
]

≤ 6 exp
(
− cnmin{η2, η}+ log(p2q)

)
.

Set η = c′
√

log p/n for c′ > (1/c) and with the choice of n & log(p2q), min{η2, η} = η2,
then with probability at least 1 − c1 exp(−c2 log p2q), there exists some c0 such that the
following bound holds:

1

n

∣∣∣∣∣∣X>E
∣∣∣∣∣∣
∞
≤ c0

(
2πM(gX) + Λmax(Σe)

)√ log(p2q)

n
.

Proof of Lemma 4. For E whose rows are iid realizations of a sub-Gaussian random vector
et, by Wainwright (2009, Lemma 9), the following bound holds:

P
[
|||SE − Σe|||op ≥ Λmax(Σe)δ(n, q, η)

]
≤ 2 exp(−nη2/2),

where δ(n, q, η) := 2
(√ q

n + η
)

+
(√ q

n + η
)2

. In particular, by triangle inequality, with

probability at least 1− 2 exp(−nη2/2),

|||SE|||op ≤ |||Σε|||op + |||SE − Σε|||op ≤ Λmax(Σε) + Λmax(Σε)δ(n, q, t).

So for n & q, by setting η = 1, which yields δ(n, q, η) ≤ 8 so that with probability at least
1− 2 exp(−n/2), the following bound holds:

Λmax(SE) ≤ 9Λmax(Σε).
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Proof of Lemma 5. To prove this lemma, we use a similar strategy as in the proof of
Negahban and Wainwright (2011, Lemma 3) while taking into consideration the temporal
dependence present in the rows of X. In the remainder of the proof, we use p (instead of
p2) to denote generically the dimension of the process.

Let Sp = {u ∈ Rp|‖u‖ = 1} denote the p-dimensional unit sphere. Then, Λmax(SX) is
the operator norm of SX, which has the following variational representation form:

Λmax(SX) =
1

n

∣∣∣∣∣∣X′X∣∣∣∣∣∣
op

=
1

n
sup
u∈Sp

u′X′Xu.

For a positive scalar s, define

Ψ(s) := sup
u∈sSp1

〈Xu,Xu〉;

the goal is to establish an upper bound for Ψ(1)/n. Let A = {u1, · · · , uA} denote the 1/4
covering of Sp. Negahban and Wainwright (2011) established that

Ψ(1) ≤ 4 max
ua∈A

〈Xua,Xua〉;

further, according to Anderson (2011), there exists a 1/4 covering of Sp with at most
|A| ≤ 8p elements. Consequently,

P
[∣∣ 1
n

Ψ(1)
∣∣ ≥ 4δ

]
≤ 8p max

ua
P
[ |(ua)′XX(ua)|

n
≥ δ
]
.

What remains to be bounded is 1
nu
′X′Xu, for an arbitrary u ∈ Sp. By Basu and Michailidis

(2015, Proposition 2.4(b)), we have

P
[∣∣∣u′((X′X

n

)
− ΣX(0)

)
u
∣∣∣ > 2πM(fX)η

]
≤ 2 exp

(
−cnmin{η, η2}

)
,

and thus

P
[
u′
(X′X
n

)
u > 2πM(fX)η + |||ΣX(0)|||op

]
≤ 2 exp

(
−cnmin{η, η2}

)
.

Therefore, it follows that

P
[∣∣ 1
n

Ψ(1)
∣∣ ≥ 8πM(fX)η + 4|||ΣX(0)|||op

]
≤ 2 exp

(
p log 8− cnmin{η, η2}

)
.

With the specified choice of sample size n, the probability vanishes by choosing η = c′0 for
constant c′0 sufficiently large. Finally, by Proposition 2.3 in Basu and Michailidis (2015),
|||ΣX(0)|||op ≤ 2πM(fX), and thus the conclusion in Lemma 5 holds.
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Proof of Lemma 6. It suffices to show that the following inequality holds with high prob-

ability for some curvature αẐ
RSC > 0 and tolerance τZ, where we define ŜZ := 1

n Ẑ>n−1Ẑn−1:

1

2
θ>ŜZθ ≥

αẐ
RSC

2
‖θ‖2 − τZ‖θ‖21, ∀ θ ∈ Rp.

Define SZ := 1
nZ>n−1Zn−1, then ŜZ can be written as

ŜZ = SZ +
( 1

n
Z>n−1∆Zn−1 +

1

n
∆>Zn−1

Zn−1

)
+
( 1

n
∆>Zn−1

∆Zn−1

)
, (32)

First, notice that the last term satisfies the following natural lower bound deterministically,
since ∆F is assumed non-random and ∆Z = [∆F, O]:

θ>
( 1

n
∆>Zn−1

∆Zn−1

)
θ ≥ 0 ∀ θ ∈ Rp,

which however, does not contribute to the “positive” part of curvature. For the first two
terms, we adopt the following strategy, using Lemma 12 in Loh and Wainwright (2012)
as an intermediate step. Specifically, Loh and Wainwright (2012, Lemma 12) proves that
for any fixed generic matrix Γ ∈ Rp×p that satisfies |θ>Γθ| ≤ δ for any θ ∈ K(2s)11, the
following bound holds

|θ>Γθ| ≤ 27δ
(
‖θ‖22 +

1

s
‖θ‖21

)
, ∀ θ ∈ Rp. (33)

Then, based on (33), consider Γ = Γ̂ − Σ then rearrange terms, so that θ>Γ̂θ ≥ θ>Σθ −
27δ
2

(
‖θ‖22 + 1

2‖θ‖
2
1

)
. The RE condition follows by setting δ to be some quantity related to

Λmin(Σ).
In light of this, for the first two terms in (32), let

Ψ := SZ +
( 1

n
Z>n−1∆Zn−1 +

1

n
∆>Zn−1

Zn−1

)
,

denote their sum, in order to obtain an upper bound for
∣∣θ>(Ψ−ΣZ(0)

)
θ
∣∣, so that Lemma

12 in Loh and Wainwright (2012) can be applied. To this end, since∣∣∣θ>[Ψ− ΣZ(0)
]
θ
∣∣∣ ≤ ∣∣∣θ′(SZ − ΣZ(0))θ

∣∣∣+
∣∣∣θ′( 1

n
Z′n−1∆Zn−1 +

1

n
∆′Zn−1

Zn−1

)
θ
∣∣∣,

we consider getting upper bounds for each of the two terms:

(i)
∣∣∣θ′(SZ − ΣZ(0))θ

∣∣∣ , (ii)
∣∣∣θ′( 1

n
Z′n−1∆Zn−1 +

1

n
∆′Zn−1

Zn−1

)
θ
∣∣∣.

For (i), we follow the derivation in Basu and Michailidis (2015, Proposition 2.4(a)), that is,
for all ‖θ‖ ≤ 1,

P
[∣∣∣θ′(SZ − ΣZ(0)

)
θ
∣∣∣ > 2πM(fZ)η

]
≤ 2 exp

[
− cnmin{η2, η}

]
,

11. K(2s) := {θ : ‖θ‖0 = 2s} is the set of 2s-sparse vectors.
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and further with probability at least

1− 2 exp
(
− cnmin{η2, η}+ 2smin{log p, log(21ep/2s)}

)
,

the following bound holds:

sup
θ∈K(2s)

∣∣∣θ>(SZ − ΣZ(0)
)
θ
∣∣∣ < 2πM(fZ)η. (34)

For (ii), the two terms are identical, with either one given by

1

n
(Zn−1θ)

>(∆Zn−1θ).

To obtain its upper bound, consider the following inequality, based on which we bound the
two terms in the product separately:

sup
θ∈K(2s)

∣∣∣ 1
n
〈Zn−1θ,∆Zn−1θ〉

∣∣∣ ≤ ( sup
θ∈K(2s)

||Zn−1θ√
n
||
)(

sup
‖θ‖≤1

||
∆Zn−1θ√

n
||
)
. (35)

For the first term in (35), since rows of Zn−1 are time series realizations from (5), then if we
let ξ := Zn−1θ, ξ ∼ N (0n×1, Qn×n) is Gaussian with Qst = θ′ΣZ(t − s)θ. To get its upper
bound, we bound its square, and use again (34), that is,

sup
θ∈K(2s)

∣∣∣θ>( 1

n
Z>n−1Zn−1

)
θ
∣∣∣ ≤ sup

θ∈K(2s)

θ′ΣZ(0)θ + 2πM(fZ) ≤ 2πM(fZ) + 2πM(fZ)η.

For the second term ‖∆Zn−1θ/
√
n‖, this is non-random, and for all ‖θ‖ ≤ 1, ‖∆Zn−1θ/

√
n‖ ≤

Λ
1/2
max

(
S∆Zn−1

)
= Λ

1/2
max

(
S∆Fn−1

)
. Therefore, the following bound holds for (35):

sup
θ∈K(2s)

∣∣∣ 1
n
〈Zn−1θ,∆Zn−1

θ〉
∣∣∣ ≤ Λ1/2

max

(
S∆Fn−1

)√
2πM(fZ) + 2πM(fZ)η. (36)

Combine (34) and (36) that are respectively the bounds for (i) and (ii), and the following
bound holds with probability at least 1−2 exp

(
−cnmin{η2, η}+2smin{log p, log(21ep/2s)}

)
:

sup
θ∈K(2s)

∣∣∣θ>(Ψ− ΣZ(0)
)
θ
∣∣∣ ≤ 2πM(fZ)η + 2Λ1/2

max

(
S∆Fn−1

)√
2πM(fZ) + 2πM(fZ)η. (37)

Now applying Loh and Wainwright (2012, Lemma 12) to Γ = Ψ − ΣZ(0), and δ being the
RHS of (37), then the following bound holds:

θ>ŜZθ ≥ 2πm(fZ)‖θ‖22 − 27δ(‖θ‖22 +
1

s
‖θ‖21) =

(
2πm(fZ)− 27δ

)
‖θ‖2 − 27δ

s
‖θ‖21.

By setting η = ω−1 := m(fZ)
54M(fZ) ,

δ =
π

27
m(fZ) + 2Λ1/2

max

(
S∆Fn−1

)√
2πM(fZ) + πm(fZ)/27

≤ π

27
m(fZ) + 2Λ1/2

max

(
S∆Fn−1

)√55π

27
M(fZ).
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Since we have required that m(fZ)/M1/2(fZ) > c0 · Λ1/2
max(S∆Fn−1

) with c0 ≥ 6
√

165π,

2πm(fZ)− 27δ > 0. Therefore, the RSC condition is satisfied with curvature

αẐ
RSC = 2πm(fZ)− 27δ = πm(fZ)− 54Λ1/2

max

(
S∆Fn−1

)√
2πM(fZ) + πm(fZ)/27 > 0,

and tolerance 27δ/(2s), with probability at least 1 − 2 exp
(
− cnω−2 + 2s log p

)
. Finally,

set s = dcnω−1/4 log pe, we get the desired conclusion.

Proof of Lemma 7. First, we note that the quantity of interest can be upper bounded by
the following four terms:

1

n
‖Ẑ>n−1

(
Ẑn−Ẑn−1(A?)>

)
‖∞

=
1

n
||
(
Zn−1 + ∆Zn−1

)>(
W + ∆Zn

−∆Zn−1
(A?)>

)
||
∞

≤ || 1
n

Z>n−1W||
∞

+ || 1
n

∆>Zn−1
W||

∞
+ || 1

n
Z>n−1

(
∆Zn −∆Zn−1(A?)>

)
||
∞

+ || 1
n

∆>Zn−1

(
∆Zn −∆Zn−1(A?)>

)
||
∞

:= T1 + T2 + T3 + T4. (38)

We provide bounds on each term in (38) sequentially. T1 is the standard Deviation Bound,
which according to previous derivations (e.g., Basu and Michailidis (2015) for the expression
specifically derived for VAR(1)) satisfies

1

n
||Z>n−1W||∞ ≤ c0

[
M(fZ) +M(fW ) +M(fZ,W+)

]√ log(p1 + p2)

n

with probability at least 1− c1 exp(−c2 log(p1 +p2)) for some {ci}. For T2, since rows of W
are iid realizations from N (0,Σw), then for ∆>Zn−1

W ∈ R(p1+p2)×(p1+p2) which has at most
p1 × (p1 + p2) nonzero entries, each entry (i, j) given by

κij :=
( 1

n
∆>Zn−1

W
)
ij

=
1

n
∆>Zn−1,·iW·j

is Gaussian, and the following tail bound holds:

P
[
|κij | ≥ t

]
≤ e · exp

(
− cnt2

Λmax(Σw) max
i∈{1,...,p1+p2}

‖∆Z·i/
√
n‖22

)

= e · exp
(
− cnt2

Λmax(Σw) max
i∈{1,...,p1}

‖∆F·i/
√
n‖22

)
.

Taking the union bound over all p1 × (p1 + p2) nonzero entries, the following bound holds:

P
[ 1

n
||∆>Zn−1

W||∞ ≥ t
]
≤ exp

(
− cnt2

Λmax(Σw) max
i∈{1,...,p1}

‖∆F·i/
√
n‖22

+ log
(
ep1(p1 + p2)

))
.
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Choose t = c0

(
Λ

1/2
max(Σw) max

i=1,...,p1

‖∆F·i/
√
n‖
)√ log(p1(p1+p2))

n , the following bound holds with

probability at least 1− exp
(
− c1 log

(
p1(p1 + p2)

))
:

1

n
||∆>Zn−1

W||∞ ≤ c0Λ1/2
max(Σw) max

i=1,...,p1

‖∆F·i/
√
n‖
√

log p1 + log(p1 + p2)

n
.

For T3, let εn := ∆Zn − ∆Zn−1(A?)> = [∆Fn − ∆Fn−1(A?11)>,−∆Fn−1(A?21)>], then each
entry of 1

nZ>n−1εn is given by (
1
nZ>n−1εn

)
ij

=
1

n
Z>n−1,·iεn,·j ,

and it has (p1+p2)×(p1+p2) entries. Next, note that column i of Zn−1 ∈ Rn can be viewed as
a mean-zero Gaussian random vector with covariance matrix Qi where (Qi)st = [ΣZ(t−s)]ii
satisfying Λmax(Qi) ≤ Λmax(ΣZ(0)) ≤ 2πM(fZ), so for any (i, j),

(
1
nZ>n−1εn

)
ij

satisfies

P
[∣∣( 1

nZ>n−1εn
)
ij

∣∣ > t
]
≤ exp

(
1− cnt2

Λmax(ΣZ(0)) max
j∈{1,...,p1}

‖εn,·j/
√
n‖2

)
.

Again by taking the union bound over all (p1 + p2)2 entries, and let

t = c0

(
2πM(fZ)

)1/2
max

j∈{1,...,p1}
‖εn,·j/

√
n‖
√

log p1 + log(p1 + p2)

n
,

the following bound holds w.p. at least 1− exp(−c1 log(p1 + p2)):

1

n
‖Z>n−1

(
∆Zn −∆Zn−1(A?)>

)
‖∞

≤ c0

(
2πM(fZ)

)1/2
max

j∈{1,...,(p1+p2)}
‖εn,·j/

√
n‖
√

log(p1 + p2)

n
.

For T4, it is deterministic, and satisfies

1

n
||∆>Zn−1

(
∆Zn −∆Zn−1(A?)>

)
||
∞
≤ ‖ 1

n
∆>Zn−1

∆Zn‖∞ + ‖ 1

n
∆>Zn−1

∆Zn−1(A?)>‖∞

= ‖ 1

n
∆>Fn−1

∆Fn‖∞ + ‖ 1

n
∆>Fn−1

∆Fn−1(A?11)>‖∞

Combine all terms, and there exist some constant C1, C2, C3 and c1, c2 such that with prob-
ability at least 1− c1 exp

(
− c2 log(p1 + p2)

)
, the bound in (14) holds.

Appendix C. Generalization of the Main Results to Sub-exponential
Tailed Error Processes: a Sketch

In this section, we provide the counterpart of Theorem 1 for the case where the underlying
processes are linear with generalized sub-exponential tails. Specifically, the stable joint
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VAR process Zt = (F ′t , Xt)
′ has the following moving average representation with absolutely

summable coefficients B`’s (c.f. Rosenblatt (2012)):

Zt =
∞∑
`=0

B`wt−`.

In the case where the process is Gaussian, the wt’s correspond to Gaussian white noise
processes. Throughout this section, we relax the Gaussian assumption and assume wt is a
white noise process whose coordinates have the following α-sub-exponential tail decay, that
is, there exist two constants a, b such that the following holds:

P
(
|wtj | ≥ ξ

)
≤ a exp(−bξα), ∀ ξ > 0. (39)

Specifically, the case of sub-Gaussian tails corresponds to α = 2, whereas for α ∈ (0, 1] it
leads to distributions with heavier tails, such as the sub-exponential distribution (α = 1) or
the Weibull distribution; see also Erdős et al. (2012); Götze et al. (2019). As a consequence,
Xt and Ft deviate from being Gaussian due to the recursive data generating mechanism.
Additionally, we assume the noise term of the calibration equation et comes from the same
α-sub-exponential family.

Proposition 3 (High probability error bounds for Θ̂ and Γ̂) Suppose we are given
some randomly observed snapshots {x1, . . . , xn} and {y1, . . . , yn} obtained from the stable
processes Xt and Yt, whose dynamics are described in (5) and (2). Assume that the same
conditions as in Theorem 1 hold. Then, there exist universal positive constants {Ci} and
{ci} such that by solving (6) with regularization parameter

λΓ = max
{
C1(2πM(fX) + Λmax(Σe))

(log p2 + log q)1/α

√
n

, C2φ/
√
nq, C3Λ1/2

max(Σe)
}
, (40)

the solution (Θ̂, Γ̂) has the following bound with probability at least 1−c1 exp{−c2

(
log(p2q)

)2/α}:
|||∆Θ/

√
n|||2F + |||∆Γ|||2F .

λ2
Γ

m(fX)
ψ(sΓ? , p1, r), (41)

for a sufficiently large sample size and some function ψ(·) that depends linearly on sΓ? , p1

and r.

Note that the bounds for each individual probabilistic event (e.g., RSC condition, devia-
tion bound) differ from those in the Gaussian case, although their expressions in (41) do
not exhibit marked differences compared to the Gaussian case; specifically, the bound for
|||∆Θ/

√
n|||2F + |||∆Γ|||2F is governed by the more stringent sample size requirement amongst

its building components (i.e., concentration in the operator norm) and the slowest term in
terms of probability decay.

In the rest of this section, we sketch the statements and proofs for key lemmas that
underlie the high probability statements, assuming α-sub-exponential tail decay where α ∈
(0, 1]∪{2}. In particular, one can verify that the rates obtained below would coincide with
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the Gaussian case, if α = 2. Similar arguments can be applied to the Stage II estimate to
arrive at the counterpart of Theorem 2, which are omitted.

Lemmas C.1 generalizes Hanson-Wright type concentration inequality to samples of Xt.

Lemma C.1 Consider some generic p-dimensional linear process given in the form of
Xt :=

∑∞
`=0 Φ`ut−`, where ut is i.i.d coming from the α-sub-exponential family defined

in (39). Denote its realization by X ∈ Rn×p with n consecutive observations stacked in its
rows. Then for a deterministic np × np matrix A, there exists some constant C such that
the following bound holds:

P
(∣∣∣vec(X>)>A vec(X>)− E

[
vec(X>)>A vec(X>)

]∣∣∣ > 2πηM(fX)
)
≤ T (η, α,A), (42)

where

T (η, α,A) := 2 exp
[
− C min

{ η2

rk(A)|||A|||2op
,
( η

|||A|||op

)α
2
}]
. (43)

Proof of Lemma C.1. Let vec(X>)
d
= Ω1/2Z where Ω is the covariance matrix of the np-

dimensional random vector vec(X>) and Z satisfies EZ = 0,E(ZZ>) = Inp. Applying
Götze et al. (2019, Proposition 1.1) gives

P
(∣∣∣vec(X>)>A vec(X>)− E

[
vec(X>)>A vec(X>)

]∣∣∣ > 2πηM(fX)
)

= P
(∣∣∣Z>Ω1/2AΩ1/2Z − E

[
Z>Ω1/2AΩ1/2Z

]∣∣∣ > 2πηM(fX)
)

≤ 2 exp
{
− c0 · ν

(
Ω1/2AΩ1/2, α, 2πηM(fX)

)} (44)

where

ν(A,α, t) := min
{ t2

M4|||A|||2F
,
( t

M2|||A|||op

)α/2}
; (45)

both c0 and M are constants that depend on a, b. Next, we consider the bounds for various
norms of Ω1/2AΩ1/2:

– |||Ω1/2AΩ1/2|||op ≤ |||Ω|||op|||A|||op ≤ 2πM(fX)|||A|||op where the last inequality follows from Basu
and Michailidis (2015, Proposition 2.3) which applies to general linear processes;

– |||Ω1/2AΩ1/2|||F ≤
√

rk(Ω1/2AΩ1/2)|||Ω1/2AΩ1/2|||op ≤ 2π
√

rk(A)|||A|||opM(fX);

Therefore, the last expression in (44) can be upper bounded by (43) and the claim in (42)
follows.

Lemma C.2 is a generalization of Proposition 2.4 in Basu and Michailidis (2015) to the
case where the underlying processes come from the α-sub-exponential family.

Lemma C.2 Consider some generic linear processes given in the form of Xt :=
∑∞

`=0 Φ`ut−`,
where ut comes from the α-sub-exponential family. Let ΣX(0) := Cov(Xt, Xt). Denote its
realization by X ∈ Rn×p and sample covariance by S := 1

nX>X,respectively.
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(i) For unit vectors v1 and v2 satisfying ‖v1‖ ≤ 1, ‖v2‖ ≤ 1, the following bound holds:

P
(
|v′1(S − ΣX(0))v1| > 2πηM(fX)

)
≤ T ′

(
η, α, n

)
,

and
P
(
|v′1(S − ΣX(0))v2| > 6πηM(fX)

)
≤ 2T ′

(
η, α, n

)
.

(ii) Consider the linear process Zt :=
∑∞

`=0 Ψ`wt−` ∈ Rq with wt coming from the same
family of distributions as ut and satisfies Cov(Xt, Zt) = 0; Z is similarly defined.
Then, the following bound holds:

P
(
|v′1(X>Z)v2| > 2πη(M(fZ) +M(fZ) +M(fX,Z))

)
≤ 3 T ′

(
η, α, n

)
,

where M(fX,Z) is identically defined to the quantity in Section 3.

T ′ has the following functional form:

T ′(η, α, n) = c1 exp
[
− c2 min{nη2, (nη)α/2}

]
, for some constants c1, c2.

Proof of Lemma C.2. First we note that with A = In and the definition of T (η, α, n), the
following holds for some constant C > 0:

T (nη, α,A) = 2 exp
[
− C min{nη2, (nη)α/2}

]
.

Let yt := v>1 Xt and Y = Xv1 ∈ Rn be n consecutive observations of the scalar process {yt},
then

v′1Sv1
d
=

1

n
Y>Y and v′1ΣX(0)v1 = E

[
Y>Y/n

]
.

Apply Lemma C.1 to process {Yt} with A = In (since moment properties are preserved
under linear transformations), to obtain

P
(
|v′1(S−ΣX(0))v1| > 2πηM(fY )

)
= P

(∣∣Y>Y−EY>Y
∣∣ > 2π(nη)M(fY )

)
≤ T ′

(
η, α, n

)
.

Further, by Lemma C.6 in Sun et al. (2018), it follows that M(fY ) ≤ ‖v1‖2M(fX) =
M(fX); hence, the following bound holds:

P
(
|v′1(S − ΣX(0))v1| > 2πηM(fX)

)
≤ T ′

(
η, α, n

)
.

This proves the first part in (i). The rest of the proof follows along similar lines to the
derivation of Proposition 2.4 in Basu and Michailidis (2015), and we give an outline without
getting into too many details. For |v′1(S − ΣX(0))v2|, one considers the decomposition

2|v′1(S−ΣX(0))v2| ≤ |v′1(S−ΣX(0))v1|+ |v′2(S−ΣX(0))v2|+ |(v1 +v2)′(S−ΣX(0))(v1 +v2)|

with ‖v1 + v2‖ ≤ 2. Repeating the steps above to each of the three terms yields the desired
result.
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For |v′1(X>Z)v2|, let ỹt = v>2 Zt; then v′1(X>Z)v2 = 1
n

∑n
t=1 ytỹt and it satisfies the

following decomposition

2

n

n∑
t=1

ytỹt =
[ 1

n

n∑
t=1

(yt + ỹt)
2 −Var(yt + ỹt)

]
−
[ 1

n

n∑
t=1

y2
t −Var(yt)

]
−
[ 1

n

n∑
t=1

ỹ2
t −Var(ỹt)

]
=:
[
G>G− EG>G

]
−
[
Y>Y − EY>Y

]
−
[
Ỹ>Ỹ − EỸ>Ỹ

]
,

where {gt := yt + ỹt} is the summation process; G and Ỹ are analogously defined to Y.
Repeating the above steps to each term. Note that

M(fg) ≤M(fZ) +M(fX) +M(fX,Z),

and this completes the proof.

The following lemma considers the deviation bound. Of note, to ensure the deviation
bound vanishes, the sample size requirement would be n & (log p+ log q)

2
α .

Lemma C.3 (high probability deviation bound) There exist positive constants C and
ci > 0 such that the following deviation bound holds

‖X>E/n‖∞ ≤ C · (log p+ log q)
1
α /
√
n

with probability at least

1− c1 exp
{
− c2

(
log(pq)

)2/α}
,

for any random realizations X ∈ Rn×p and E ∈ Rn×q, drawn from the linear processes
{Xt ∈ Rp} and {εt ∈ Rq} that are constructed as linear filters of the white noise processes
coming from some α-sub-exponential family.

Proof of Lemma C.3. Apply Lemma C.2, so that for any standard basis vector ek and ej ,
the following holds:

P
(
|e′k(X>E)ej | > 2πη(M(fX) +M(fε) +M(fX,ε))

)
≤ 3 T ′

(
η, α, n

)
.

Taking the union bound across all pq elements, with probability at least 1−3(pq)T ′
(
η, α, n

)
=

1− 3c1 exp{−c2 min{nη2, (nη)α/2}+ log(pq)}, the following bound holds:

‖X>E/n‖∞ ≤ 2π(M(fX) +M(fε) +M(fX,ε)) · η.

Set η := c0(log p + log q)
1
α /
√
n, the desired result holds for some sufficiently large c0 pro-

vided that nα/4 & log(pq)(2/α−1/2) (which ensures that min{nη2, (nη)α/2}). Specifically,
in the context of this problem, the most stringent sample size requirement is dictated by
the concentration for the operator norm (see Lemma C.5), and therefore this sample size
requirement is automatically fulfilled.

The following lemma verifies the RSC condition.
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Lemma C.4 (Verification of RSC) Consider a snapshot of random realizations X ∈
Rn×p drawn from the linear process Xt :=

∑∞
`=0 Φ`ut−` with ut coming from the α-sub-

exponential family. Then RSC holds for X with parameter αRSC = πm(fX) and tolerance
τ := c0αRSC log p/(nα/2), with probability at least 1− c1 exp{−c2n

α/2}.

Proof of Lemma C.4. Let S = 1
nX>X. First, suppose we have

1

2
v′Sv =

1

2
v′
(X′X

n

)
v ≥ αRSC

2
‖v‖22 − τ‖v‖21, ∀ v ∈ Rp; (46)

then, for all ∆ ∈ RpZ×pZ , and letting ∆j denote its jth column, the RSC condition auto-
matically holds since

1

2T
|||X∆|||2F =

1

2

p∑
j=1

∆′j
(
X′X
n

)
∆j ≥

αRSC

2

p∑
j=1

‖∆j‖22 − τ
pZ∑
j=1

‖∆j‖21 ≥
αRSC

2
|||∆|||2F − τ‖∆‖

2
1.

Therefore, it suffices to verify that (46) holds. By Lemma C.2, ∀v ∈ Rp, ‖v‖ ≤ 1 and η > 0,

P
[∣∣v′(S − ΣX(0)

)
v
∣∣ > 2πM(fX)η

]
≤ 2T ′(η, α, n).

Applying the discretization argument in Basu and Michailidis (2015, Lemma F.2 & Lemma
F.3), define K(2s) := {v ∈ Rp, ‖v‖ ≤ 1, ‖v‖0 ≤ 2s}, and taking the union bound in this
2s-sparse cone gives the following inequality:

P
[

sup
v∈K(2s)

∣∣v′(S − ΣX(0)
)
v
∣∣ >2πM(fX)η

]
≤ 2 ·min{ps, (21e · p/s)s} · T ′(η, α, n)

= 2c1 exp
[
− c2 min{nη2, (nη)α/2}+ smin{log p, log(21ep/s)}

]
.

(47)

Let η = m(fX)/[54M(fX)], then apply results from Loh and Wainwright (2012, Lemma 12)
with Γ = S − ΣX(0) and δ = πm(fX)/27, so that the following holds

1

2
v′Sv ≥ αRSC

2
‖v‖2 − αRSC

2s
‖v‖21, where αRSC = πm(fX),

with probability at least 1− 2 min{ps, (21e · p/s)s}T ′(η, α, n). By letting s := c′0n
α/2/ log p

for some small constant c0, then τ can be expressed as τ = c0αRSC log p/(nα/2) and the
bound holds with probability at least 1− c1 exp{−c2n

α/2}.

Lemma C.5 (High probability bound for Λmax(SE)) Consider E ∈ Rn×q whose rows
are independent realizations drawn from some mean-zero α-sub-exponential distribution with
covariance Σe. Then, the following holds for some constants ci > 0 provided that the sample
size satisfies nα/2 & q:

Λmax(SE) ≤ c0Λmax(Σe),

with probability at least 1− c1 exp(−c2n
α/2).
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Proof of Lemma C.5. The main arguments of the proof follow closely along the lines of
those in the proof of Lemma 5, while ignoring the temporal dependence. Specifically, using
similar covering arguments, with the tail decay as in Lemma C.2, there exists some constant
ci > 0 such that

P
[
Λmax(SE) ≥ c0η|||Σe|||op + |||Σe|||op

]
≤ c1 exp{−c2 min{nη2, (nη)α/2}+ q log 8}.

By choosing η to be a sufficiently large constant, with nα/2 & q, the statement in the lemma
holds.

Remark 5 To ensure concentration of the operator norm, with the specified choice of η,
the sample size requirement in (C.5) is more stringent than that of the Gaussian case. In
particular, for the case of sub-exponential tails with α = 1, this would imply a sample size
requirement

√
n & q. If however, the elements of the random noise vector et’s are bounded,

that is, ‖et‖2 ≤
√
C almost surely for some C > 0, one can directly apply the matrix

Bernstein inequality to obtain the following bound (Wainwright, 2019, Corollary 6.20):

P
[∣∣∣Λmax(SE)− |||Σe|||op

∣∣∣ ≥ η] ≤ 2q exp
{ −nη2

2C(|||Σe|||op + η)

}
.

Depending on how C grows with q, the sample size requirement could potentially be more
relaxed to attain concentration.

Appendix D. Additional Numerical Studies

In this section, we investigate selected scenarios where the relaxed implementation on es-
timating the calibration equation may fail to produce good estimates, due to the absence
of the compactness constraint. For illustration purposes, it suffices to consider the setting
where Xt and Ft jointly follow a multivariate Gaussian distribution and are independent
and identically distributed across samples. Throughout, we set n = 200, p1 = 5, p2 = 50, q =

100, and
(
Xt
Ft

)
∼ N (0,Σ) with Σij = 0.25 (i 6= j) and Σii = 1. The noise level is fixed at

σe = 1.
First, we note that based on the performance evaluation shown in Section 4, the esti-

mates demonstrate good performance even without the compactness constraint. The sim-
ulation settings are characterized by adequate sparsity in Γ, which in turn limits the size
of the equivalence class C(Q2) as mentioned in Section 2.1. Therefore, we focus on the fol-
lowing two issues: (i) whether sparsity encourages additional “approximate identification”;
and (ii) whether a good initializer helps constrain estimates from subsequent iterations to
a ball around the true value.

We start by considering a non-sparse Γ. Specifically, for both Λ and Γ, their entries
are generated from Unif{(−1.5,−1.2) ∪ (1.2, 1.5)}. Additionally, we specify one alternative
model in C(Q2) by setting Q2 = 5p1×p2 , which will generate the corresponding F̌, Θ̌ and Γ̌.
Table 6 depicts the performance of the estimated Θ based on different initializers:

The results in Table 6 show that the algorithm converges (if at all) to different local
optima whose values may deviate markedly for the true ones. Specifically, initializer Θ? +
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Table 6: Performance evaluation of Θ̂ obtained from different initializers under a non-sparse setting.

initializer Θ̂(0) Θ? 0n×q Θ? + 0.1 ∗ Zn×q Θ̌

Rel.Err 0.09 0.63 fail to converge within 5000 iterations 1.82 (0.02, relative to Θ̌)

0.1 ∗Zn×q, where each entry Θ? is perturbed by an iid standard Gaussian random variable
scaled by 0.1, fails to converge. Note that the perturbation is small, but the operator norm
of the initializer far exceeds φ0. Initializer Θ̌ yields an estimate that is far from the true
data-generating factor hyperplane, yet close to its observationally equivalent one. This
suggests that in non-sparse settings, without imposing the compactness constraint on the
equivalence class, a good initializer is required for the actual relaxed implementation to
produce a fairly good estimate of the true data generating parameters.

However, this is not the case if there is sufficient sparsity in Γ. Specifically, using the
same generating mechanism for Λ and Γ as in Section 4, we found that even with different
initializers, the algorithm always produces estimates that are close to each other and also
exhibit good performance. This finding strongly suggests that sparsity in Γ effectively
shrinks the size of the equivalence class and the algorithm after a few iterations produces
updates that are close to each other, irrespective of the initializer employed. Hence, the
effective equivalence class is constrained to the one whose elements are encoded by Γ̌ that
have similar characteristics in terms of the location of the non-zero parameters to Γ.

Finally, we consider a case that lies between the above two settings, that is, there is a
structured sparsity pattern in Γ. Specifically, we set the last 5 columns of Γ to be dense
while the remaining ones are sparse. The overall density level of Γ is fixed at 10%. Note
that in this case, the size of the corresponding equivalence class is much larger to the one
corresponding to a Γ with 10% uniformly distributed non-zeros entries, due to the presence
of the five dense columns.

Table 7: Performance evaluation for Θ̂ with different initializers under structured sparsity.

initializer Θ̂(0) Θ? 0n×q Θ? + 0.1 ∗ Zn×q 20n×q
Rel.Err 0.65 0.65 0.65 0.68

As the results in Table 7 indicate, when the initializer starts to deviate from the true
value, there exist initializers that would yield inferior estimates.

In summary, in a non-sparse setting without compactification of the equivalence class,
different initializers yield drastically different estimates that are not close enough to the
true data-generating model, as expected by the approximate (IR+) condition employed.
The problem is largely mitigated for sufficiently sparse Γ, which leads to shrinking the
equivalence class. However, an exact characterization of the equivalence class is hard to
obtain in practice, since the location of the non-zero entries in Γ is unknown.
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Appendix E. List of Commodities and Macroeconomic Variables

Table 8: List of commodities considered in this study. Data source: International Monetary Fund.

Commodity Key Description
ALUMINUM PALUM Aluminum, 99.5% minimum purity, LME spot price
COCOA PCOCO Cocoa beans, International Cocoa Organization cash price
COFFEE PCOFFOTM Coffee, Other Mild Arabicas, International Coffee Organization New York cash price
COPPER PCOPP Copper, grade A cathode, LME spot price
COTTON PCOTTIND Cotton, Cotton Outlook ’A Index’, Middling 1-3/32 inch staple
LEAD PLEAD Lead, 99.97% pure, LME spot price
MAIZE PMAIZMT Maize (corn), U.S. No.2 Yellow, FOB Gulf of Mexico, U.S. price
NICKEL PNICK Nickel, melting grade, LME spot price
OIL POILAPSP Crude Oil (petroleum), simple average of three spot prices
RICE PRICENPQ Rice, 5 percent broken milled white rice, Thailand nominal price quote
RUBBER PRUBB Rubber, Singapore Commodity Exchange, No. 3 Rubber Smoked Sheets, 1st contract
SOYBEANS PSOYB Soybeans, U.S. soybeans, Chicago Soybean futures contract (first contract forward)
SUGAR PSUGAUSA Sugar, U.S. import price, contract no.14 nearest futures position
TIN PTIN Tin, standard grade, LME spot price
WHEAT PWHEAMT Wheat, No.1 Hard Red Winter, ordinary protein
ZINC PZINC Zinc, high grade 98% pure

Name Description tCode Category Region
IPI US IP Index: total 5 Output & Income US
CUM US Capacity Utilization: manufacturing 2 Output & Income US
UNEMP US Civilian unemployment rate: all 2 Labor Market US
HOUST US Housing Starts: ttl new privately owned 4 Housing US
ISR US Total Business: inventories to sales ratio 2 Consumption US
M2 US M2 Money Stock 6 Money & Credit US
BUSLN US Commericial and industrial loans 6 Money & Credit US
REALN US Real estate loans at all commercial banks 6 Money & Credit US
FFR US Effective federal funds rate 2 Interest & Exchange Rates US
TB10Y US 10-year treasury rate 2 Interest & Exchange Rates US
BAA US Moody’s Baa corporate bond yield 2 Interest & Exchange Rates US
USDI US Trade weighted U.S.dollar index 5 Interest & Exchange Rates US
CPI US CPI: all iterms 5 Prices US
PCEPI US Personal Consumption Expenditure: chain index 5 Prices US
SP500 US S&P’s Common Stock Price Index: composite 5 Stock Market US
CPI EU Consumer Price Indices, percent change 2 Prices EU
IPI EU Industrial Production Index: total industry (excluding construction) 5 Output & Income EU
IPICP EU Industrial Production Index: construction 5 Output & Income EU
M3 EU Monetary aggregate M3 6 Money & Credit EU
LOANRES EU Credit to resident sectors, non-MFI excluding gov 6 Money & Credit EU
LOANGOV EU Credit to general government sector 6 Money & Credit EU
PPI EU Producer Price Index: total industry (excluding construction) 6 Prices EU
UNEMP EU Unemployment rate: total 2 Labor Market EU
IMPORT EU Total trade: import value 6 Trade EU
EXPORT EU Total trade: export value 6 Trade EU
EB1Y EU Euribor 1 year 2 Interest & Exchange Rates EU
TB10Y EU 10-year government benchmark bond yield 2 Interest & Exchange Rates EU
EFFEXR EU ECB nominal effective exchange rate againt group of trading partners 2 Interest & Exchange Rates EU
EUROSTOXX50 EU Euro STOXX composite index 5 Stock Market EU
IOP UK Index of Production 5 Output & Income UK
CPI UK CPI Index 5 Prices UK
PPI UK Output of manufactured products 5 Prices UK
UNEMP UK Unemployment rate: aged 16 and over 2 Labor Market UK
EFFEXR UK Effective exchange rate index, Sterling 2 Interest & Exchange Rates UK
TB10Y UK 10-year British government stock, nominal par yield 2 Interest & Exchange Rates UK
LIBOR6M UK 6 month interbank lending rate, month end 2 Interest & Exchange Rates UK
M3 UK Monetary aggregate M3 6 Money & Credit UK
CPI CN CPI: all iterms 5 Prices CN
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PPI CN Producer price index for industrial products (same month last year = 100) 2 Prices CN
M2 CN Monetary aggregate M2 6 Money & Credit CN
EFFEXR CN Real broad effective exchange rate 2 Interest & Exchange Rates CN
EXPORT CN Value goods 6 Trade CN
IMPORT CN Value goods 6 Trade CN
INDGR CN Growth rate of industrial value added (last year = 100) 2 Output & Income CN
SHANGHAI CN Shanghai Composite Index 5 Stock Market CN
TB10Y JP 10-year government benchmark bond yield 2 Interest & Exchange Rates JP
EFFEXR JP Real broad effective exchange rate 2 Interest & Exchange Rates JP
CPI JP CPI Index: all items 5 Prices JP
M2 JP Monetary aggregate M2 6 Money & Credit JP
UNEMP JP Unemployment rate: aged 15-64 2 Labor Market JP
IPI JP Production of Total Industry 5 Output & Income JP
IMPORT JP Import price index: all commodities 6 Trade JP
EXPORT JP Value goods 6 Trade JP
NIKKEI225 JP NIKKEI 225 composite index 5 Stock Market JP

Table 9: List of macroeconomic variables in this study.

Data source: Fred St.Louis, ECB Statistical Data Warehouse, UK Office for National Statistics, Bank of England,

National Bureau of Statistics of China, YAHOO!. tCode: 1: none; 2: ∆Xt; 3: ∆2Xt; 4: logXt; 5: ∆ logXt; 6:

∆2 logXt; 7: ∆(Xt/Xt−1 − 1).

References

Alekh Agarwal, Sahand Negahban, Martin J Wainwright, et al. Noisy matrix decomposition
via convex relaxation: optimal rates in high dimensions. The Annals of Statistics, 40(2):
1171–1197, 2012.

Theodore W Anderson. The Statistical Analysis of Time Series, volume 19. John Wiley &
Sons, 2011.

Theodore Wilbur Anderson. An Introduction to Multivariate Statistical Analysis, volume 2.
Wiley New York, 1958.

Tomohiro Ando and Jushan Bai. Selecting the regularization parameters in high-
dimensional panel data models: Consistency and efficiency. Econometric Reviews, 37
(3):183–211, 2018.

Jushan Bai and Serena Ng. Large dimensional factor analysis. Foundations and Trends R©
in Econometrics, 3(2):89–163, 2008.

Jushan Bai, Kunpeng Li, and Lina Lu. Estimation and inference of favar models. Journal
of Business & Economic Statistics, 34(4):620–641, 2016.
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