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Abstract
We consider a setting where multiple players sequentially choose among a common set of actions
(arms). Motivated by an application to cognitive radio networks, we assume that players incur a
loss upon colliding, and that communication between players is not possible. Existing approaches
assume that the system is stationary. Yet this assumption is often violated in practice, e.g., due to
signal strength fluctuations. In this work, we design the first multi-player Bandit algorithm that
provably works in arbitrarily changing environments, where the losses of the arms may even be
chosen by an adversary. This resolves an open problem posed by Rosenski et al. (2016).

Keywords: Multi-Armed Bandits, Multi-Player Problems, Online Learning, Sequential Decision
Making, Cognitive Radio Networks

1. Introduction

The Multi Armed Bandit (MAB) problem is a fundamental setting for capturing and analyzing
sequential decision making. Since the seminal work of Robbins (1952) there has been a plethora of
research on this topic (Cesa-Bianchi and Lugosi, 2006; Bubeck and Cesa-Bianchi, 2012; Lattimore
and Szepesvári, 2018), addressing both the stochastic and adversarial MAB settings. In the stochastic
setting it is assumed that the environment is stationary, namely that except for noisy fluctuations,
the environment does not change over time. The adversarial setting is more general, and enables to
capture dynamic (arbitrarily changing) environments.

Most existing work on MABs considers a single player who sequentially interacts with the
environment. Nevertheless, in many real world scenarios, the learner also interacts with other
players, either collaboratively or competitively. One such intriguing multi-player setting arises in
cognitive radio networks, where multiple broadcasters (players) share a common set of transmission
channels (arms). In this setting, players incur an extra loss upon colliding (transmitting on the same
channel), and communication between players is generally not possible. This challenging setting
has recently received considerable attention, see Avner and Mannor (2014); Rosenski et al. (2016);
Bistritz and Leshem (2018).
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Despite impressive progress on multi-player Bandit problems, existing work only addresses the
stochastic setting where the environment is stationary. Yet, this may not capture common phenomena
in cognitive radio networks, such as channel breakdowns or signal strength fluctuations due to
changing environmental conditions.

In this work, we address the adversarial multi-player MAB setting, and provide the first efficient
algorithm with provable guarantees. This resolves an open problem posed by Rosenski, Shamir,
and Szlak (2016). Assuming that K players choose among a set of N arms, we provide an ef-
ficient method with two variants that ensure respective regret bounds of Õ(K4/3N2/3T 2/3), and
Õ(K4/3N1/3T 2/3)1.

Our key algorithmic technique is to imitate the idealized case where there is full communication
between the players. Then, to address the no-communication constraint, we enforce the players to
keep the same arms within long periods of time (blocks). This gives them the chance to coordinate
among themselves via a simple protocol that uses collisions as a primitive, yet effective manner of
coordination. We suggest two different coordination schemes, yielding two different guarantees.

Related Work: The stochastic multi-player MAB problem has been extensively investigated
in the past years. The majority of work on this topic assumes that players may communicate with
each other (Lai et al., 2008; Liu and Zhao, 2010; Vakili et al., 2013; Liu et al., 2013; Avner and
Mannor, 2016, 2018). The more realistic “no-communication" setting is discussed in (Anandkumar
et al., 2011; Avner and Mannor, 2014; Rosenski et al., 2016; Bistritz and Leshem, 2018). Avner
and Mannor (2014) are the first to provide regret guarantees for the “no-communication" stochastic
setting, establishing a bound of O(T 2/3). This has been later improved by Rosenski et al. (2016),
who establish a constant regret (independent of T ) for the case where there exists a fixed gap between
mean losses. Recently, Bistritz and Leshem (2018) have explored a more challenging setting, where
each player has a different loss vector for the arms. They provide an algorithm that ensuresO(log2 T )
regret for this setting.

The stochastic setting where the number of players may change throughout the game is addressed
by Rosenski et al. (2016), where a regret bound of O(

√
T ) is established. Avner and Mannor (2014)

also discuss this case and provide an algorithm that in some scenarios ensures an O(T 2/3) regret.
Different multi-player adversarial MAB settings are explored in Awerbuch and Kleinberg (2008);

Cesa-Bianchi et al. (2016). Nevertheless, these works allow players to communicate, and do
not assume a “collision loss". There also exists rich literature on Combinatorial bandit settings
Uchiya et al. (2010); Audibert et al. (2013); Combes et al. (2015), where several players may fully
communicate to jointly choose a set of arms in each round. Nevertheless, these works do not address
the “no communication" setup. In a contemporary unpublished work (Bubeck et al. (2019)), a regret
of O(

√
T ) is obtained for the case of two-players MAB setting. However, their paper does not

establish any guarantees for the general multi-players MAB setting. Conversely, we provide an
efficient algorithm which holds for the general multi-player setting.

2. Background and Setting

2.1. Background

The N -armed bandit setting can be described as a repeated game over T rounds between a single
player and an adversary. At each round t ∈ [T ] (we denote [N ] := {1, . . . , N}, for any N ∈ Z+),

1. Using Õ(·) we ignore logarithmic factors in T,N .
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the player chooses an arm It ∈ [N ] and the adversary independently chooses a loss for each arm
lti ∈ [0, 1], ∀i ∈ [N ]. Then, the player incurs the loss of the chosen arm ltIt , and gets to view the
loss of this arm only (bandit feedback). The goal of the player is to minimize the regret, defined
as RT :=

∑T
t=1 l

t
It − mini∈[N ]

∑T
t=1 l

t
i . We are interested in learning algorithms that ensure an

expected regret which is sublinear in T , here expectation is with respect to possible randomization
in the player’s strategy as well as in the choices of the adversary.

The seminal work of Auer et al. (2002) presents an algorithm that achieves an optimal regret
bound of O(

√
TN logN) for this setting. Their algorithm, called EXP3, devises an unbiased

estimate of the loss vector in each round,
{
l̃ti

}
i∈[N ]

. These are then used to pick an arm in each

round by sampling It ∝ exp(−η
∑t−1

τ=1 l̃
τ
i ), for any arm i ∈ [N ].

2.2. K-Player MAB Setting

We consider a repeated game of T rounds between K players and an adversary in the N -armed
bandit setting. For now assume that each player has a unique rank in [K], and that each player knows
her own rank (but does not necessarily know the rank of other players)2. We also refer to the player
with rank k as “player k". Now at each round t ∈ [T ],

1. each player k ∈ [K] chooses an arm Itk ∈ [N ]

2. the adversary independently chooses a loss for each arm lti ∈ [0, 1], ∀i ∈ [N ]

3. for each player k ∈ [K] one of two cases applies,

Collision: if another player chose the same arm, i.e., ∃m 6= k such that Itk = Itm, then player
k gets to know that a collision occurred, and incurs a loss of 1.
No Collision: if there was no collision, player k incurs the loss of the chosen arm lt

Itk
, and gets

to view the loss of this arm only (bandit feedback).

We emphasize that at each round all players play simultaneously. We further assume that communi-
cation between players is not possible. Finally, note that the ability to distinguish between collision
and non-collision is a reasonable assumption when modeling cognitive radio networks and was also
used in previous work, e.g. by Rosenski et al. (2016).

Our assumption is that the players are cooperative and thus their goal is to obtain low regret
together with respect to the K distinct best arms in hindsight. Let Ctk ∈ {0, 1} be an indicator for
whether player k collided at time t (Ctk = 1) or not (Ctk = 0). With this, we define the regret RT
after T rounds as follows:

RT :=
T∑
t=1

K∑
k=1,
Ctk=0

ltItk

︸ ︷︷ ︸
no collisions

+

T∑
t=1

K∑
k=1

Ctk︸ ︷︷ ︸
collisions

− min
i1,...,iK∈[N ]
im 6=in,∀m 6=n

T∑
t=1

K∑
k=1

ltik .

We are interested in learning algorithms that ensure an expected regret that is sublinear in T .

2. As we show in Section 3, such ranking can be achieved by running a simple procedure at the beginning of the game
(see Algorithm 2).
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Staying quiet: For simplicity, we assume that a player may choose to stay quiet, i.e., not choose
an arm, in any given round. By staying quiet she does not cause any collisions, but she will still
suffer a loss of 1 for that round. This is a reasonable assumption in cognitive radio applications, as a
user may choose to not transmit anything. In Appendix A.3 we show how to relax this assumption.

Adversary: Our analysis focuses on oblivious adversaries, meaning that the adversary may know
the strategy of the players, yet he is limited to choosing the loss sequence before the game starts.

Further assumptions: We assume that every player knows T , the number of arms N , the number
of players K and that K < N and N < T . Furthermore, we assume that the set of players is fixed
and no player enters or exits during the game. Using a standard doubling technique we may extend
our method to the case where T is unknown.

3. Multi-Player MABs

In this section, we present our algorithm for the N -armed bandit setting with K players. We first
discuss an idealized setting in which players can fully communicate and then build our K-player
communication-free algorithm on top of that. For ease of exposition we mainly discuss a variant of
our method ensuring a regret of Õ(K4/3N2/3T 2/3) (see Thm. 2). We then explain how to improve
this rate to Õ(K4/3N1/3T 2/3) (see Thm. 4) by using a more sophisticated coordination mechanism.

3.1. Idealized, Communication-Enabled Setting

In this setting, the players can fully communicate and thus, they can coordinate their choices to avoid
collisions, resulting in a collision loss of 0, i.e.,

∑T
t=1

∑K
k=1C

t
k = 0. In this case, the K players

would behave as a single player who chooses K distinct arms in each round and aims to obtain low
regret with respect to the K best arms in hindsight.

Such a hypothetical player (let us call her K-Metaplayer) chooses K distinct arms It :=
{It1, ..., ItK} in each step t and receives the losses of these arms3. Her regret after T rounds is
Rmeta
T :=

∑T
t=1

∑K
k=1 l

t
Itk
−min i1,...,iK∈[N ]

im 6=in,∀m 6=n

∑T
t=1

∑K
k=1 l

t
ik

. We will see soon show a simple adap-

tation of the EXP3 algorithm ((Auer et al., 2002)) yields low regret for the K-Metaplayer. First, let
us define the set of meta-armsM as follows:

M :=
{
{i1, ..., iK} ⊆ [N ]

∣∣∣im 6= in for any m 6= n
}
.

We further define the loss ltI of a meta-arm I ∈M at time t as ltI :=
∑

k∈I l
t
k.

From this, it is immediate that the best meta-arm in hindsight w.r.t. losses (ltI)I∈M,t∈[T ] consists
of the K best arms in hindsight w.r.t. (lti)i∈[N ],t∈[T ].

With these definitions, one can view the K-Metaplayer as a player who chooses one meta-arm
in each step, receives that meta-arm’s loss and aims to obtain low regret with respect to the best
meta-arm in hindsight. This exact setting was described and analyzed by Uchiya et al. (2010), who
present and analyze an adaptation of EXP3 to obtain a low-regret K-Metaplayer algorithm.

Feedback model: In Alg. 1 we describe and analyze a variant of the above setting. We assume
a more restrictive bandit feedback, where the Metaplayer gets to view only a single arm chosen

3. Actually, as we will soon see, we analyze a slightly different setting where the Metaplayer gets to view only a single
arm chosen uniformly at random from It.
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Algorithm 1 K-Metaplayer algorithm (Input: η)

1: Input: η
2: for t = 1 to T do
3: Set cumulative loss estimate L̃t

I =
∑t−1

τ=1

∑
i∈I l̃

τ
i , for all meta-arms I ∈M

4: Set probability pt(I) = e
−ηL̃t

I∑
J∈M e

−ηL̃t
J

, for all meta-arms I ∈M

5: Sample meta-arm It = {It1, ..., ItK} at random according to P t = (pt(I))I∈M
6: Pick one of the K arms J t ∼ Uniform(It1, ..., I

t
K)

7: Choose arms It1, ..., I
t
K in the game, suffer losses lt

It1
, ..., lt

ItK
and observe ltJt

8: Set loss estimate l̃ti = K · lti∑
i∈I∈M pt(I) · I{Jt=i}, for all arms i ∈ [N ]

9: end for

uniformly at random (u.a.r.) among It := {It1, ..., ItK}. As we show later, this serves as a building
block for our algorithm in the more realistic no-communication setting. The following Lemma states
the guarantees of Algorithm 1,

Lemma 1 Employing the K-Metaplayer algorithm (Alg. 1) with η =

√
log (NK)
KTN guarantees a regret

bound of E[Rmeta
T ] ≤ 2

√
KTN log

(
N
K

)
≤ 2K

√
TN logN . We defer the proof to Appendix A.1.

Note that the above bound is worse by a factor of
√
K compared to the bound appearing in Uchiya

et al. (2010). This is since we consider a more restrictive feedback model (i.e., viewing a single arm
rather than K arms in each round).

Together as one K-Metaplayer Let us turn our attention back to the K players in an idealized
setting with full communication. How do the players need to play in order to behave as the K-
Metaplayer in Alg. 1?

We suggest to do so by assigning roles as follows: Player 1 takes the role of a global coordinator,
who decides which arm each of the K players should pick. She samples K arms in each step using
the metaplayer algorithm, chooses one out of those K u.a.r. for herself and assigns the rest to the
other players. She then communicates to the other players what arms she has chosen for them.
Players 2, ...,K simply behave as followers and accept whatever arm the coordinator chooses for
them. With this, they are playing exactly as the metaplayer from Algorithm 1 and their regret would
be bounded according to Lemma 1.

Note that the coordinator samples K arms but receives feedback only for one of them. This is the
reason behind the feedback model considered in Alg. 1. Also, note that in this case, the coordinator
is the only player that actually “learns" from the feedback. All other players follow the coordinator
and ignore their loss observations.

3.2. Real, Communication-Free Setting

In the previous section, we described and analyzed an idealized setting where all players can fully
communicate and can therefore act as a single metaplayer. Then we have shown that by assigning
Player 1 the role of a global coordinator, and the rest of the players being followers, we can exactly
imitate the metaplayer algorithm. This strategy however, requires full communication. Here, we show
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:::

Block 1 Block 2 Block T

τ

Round 1 Round T

Ranking Block 3

sub-block

2

(N steps)

sub-block

K

(N steps)

Figure 1: Illustration of the K-player algorithm. The upper part illustrates the timeline of the
algorithm and the lower part shows the close-up view of a single block in the algorithm. Coordinate
phases are marked in orange and Play phases are shown in blue. At the beginning of the algorithm,
the players compute a ranking (red). This will be discussed further below.

how to build on these ideas to devise an algorithm for the realistic “no-communication" setting. Our
C&P (Coordinate & Play) algorithm is depicted in Figure 1, as well as in Alg. 3, and 4. Its guarantees
are stated in Theorem 2 and at the end of this section we discuss an efficient implementation of our
method.

Our method builds on top of the idealized scheme, with two additional ideas.

Infrequent switches: In order to give players the opportunity to coordinate, we prevent them
from frequently switching their decisions. Concretely, as is described in Fig 1, instead of sampling K
arms in each round, the coordinator (as well as the followers) keeps the same K arms for a block of
τ consecutive rounds. The coordinator (Alg. 3) runs a blocked version of the K-metaplayer algorithm
(Alg. 1): In each block, the coordinator samples an arm according to Alg. 1, but stays on that arm
for the entire block. Then she feeds the average loss of that arm back into Alg. 1 to update her loss
estimates. While these blocks enable coordination, they cause degradation to the regret guarantees
(Dekel et al., 2012). We elaborate on that in the analysis.

Coordinate and Play: We depict the timeline of our algorithm in Figure 1. As can be seen,
we divide each block into two phases: Coordinate phase (orange), and Play phase (blue). At the
beginning of each block, the coordinator picks K arms according to the blocked version of the
K-metaplayer algorithm. Then, during Coordinate, the coordinator assigns an arm to each of the
K − 1 followers. Thus, the Coordinate phase is further divided into K − 1 sub-blocks 2, ...,K
(Fig. 1, bottom part). At sub-block k, the k’th follower gets assigned to an arm by a protocol that
uses collisions as a primitive, yet efficient, manner of coordination.

This protocol (see Alg. 3, and Alg. 4) is very simple: during sub-block k, the coordinator stays
on the arm for player k (a follower). Player k tries out all arms in a round-robin fashion, until she
collides with the coordinator. At this point, player k learns her arm and the coordinator can repeat
this procedure with the other players. While player k is trying to find her arm, all other followers
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will stay quiet. Since each follower needs at most N trials, all followers will have learned their arms
after (K − 1) ·N rounds.

After Coordinate, each player has learned her arm. During Play, all players stay on their arms
for the remaining steps of the block. At the end of the block, the coordinator uses the feedback she
has collected in order to update her loss estimates.

If T is not divisible by τ , the players will play for bTτ c blocks and choose arms uniformly at
random for the remaining steps. This will increase the regret by at most Kτ .

Ranking: So far we assumed that the players have unique ranks in [K]. They can compute the
ranking by using a scheme that we adopt from Rosenski et al. (2016). The idea is playing a "Musical
Chairs game" on the first K arms {1, . . . ,K} for TR rounds: A player chooses arms uniformly at
random until she chooses an arm i without colliding. At this point, that player becomes the owner of
arm i and will receive the rank i. This player i then just stays on arm i for the remaining of the TR
rounds. We will set TR in a way that the ranking completes successfully with high probability.

Theorem 2 Suppose that the K players use our C&P Algorithm. Meaning, they first compute a
ranking using Algorithm 2 with TR = K · e · log T . Afterwards, player 1 will act as coordinator
and play according to Algorithm 3. The other players will behave as followers and run Algorithm 4.
Then, the expected regret of the K players is bounded as follows,

E[RT ] ≤ 4K4/3N2/3(logN)1/3T 2/3 + 2K2 · e · log T ,

for block size τ =
(
K2NT
logN

)1/3
and η =

√
log (NK)
T
τ
KN

.

Remark: In the variant that we present and analyze above, the coordinator requires N steps in each
sub-block in order to communicate an arm in [N ] to the follower. Nevertheless, one requires roughly
log2N bits to communicate a number in [N ]. This observation can be used to design a coordination
mechanism that requires only log2N rounds in each sub-block. This leads to an improved regret
bound of Õ(K4/3N1/3T 2/3). See Section. 3.3 for more details.
Proof [Proof of Theorem 2] By setting the length of the ranking phase TR = K ·e · log T , the ranking
completes after TR rounds with probability at least 1− K

T (see Appendix A.2 for the derivation).
Case 1: Ranking unsuccessful With probability at most K

T , the players do not succeed in
computing a ranking. The worst regret that they could obtain in the game is KT .

Case 2: Ranking successful In the idealized setting with communication from the previous
Section 3.1, the Coordinate phase would not be necessary. In that case, Algorithms 3 and 4 together
are just the result of applying the blocking technique to the K-Metaplayer algorithm 1. This can be
analyzed using the following Theorem from Dekel et al. (2012),

Algorithm 2 C&P Ranking

1: Input: TR
2: for t = 1 to TR do
3: Choose arm r ∼ Uniform(1, ...,K)
4: if I did not collide then . My rank is r
5: Choose arm r for the remaining of the TR rounds and return.
6: end if
7: end for
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Algorithm 3 C&P Coordinator algorithm

1: Input: η, block size τ
2: for block b = 1 to T

τ do
Choose K arms according to the metaplayer

3: Set cumulative loss estimate L̃b
I =

∑b−1
t=1

∑
i∈I l̃

t
i , for all meta-arms I ∈M

4: Set probability pb(I) = e
−ηL̃b

I∑
J∈M e

−ηL̃b
J

, for all meta-arms I ∈M

5: Choose meta-arm J̃b = {J̃b1 , ..., J̃bK} at random according to P b = (pb(I))I∈M

6: Let Ĩb = (Ĩb1, ..., Ĩ
b
K) be a uniform random permutation of J̃b

Coordinate
7: for sub-block r = 2 to K do . Each sub-block has exactly N steps
8: Choose It1 = Ĩbr in steps t until collision
9: After collision, choose It1 = Ĩb1 for the remaining steps t of sub-block r

10: end for
Play

11: Choose arm It1 = Ĩb1 for remaining steps t of block b

Feed average loss of arm Ĩb1 back to the metaplayer

12: Set l̂bi =
∑b·τ

t=(b−1)·τ+1 I{It1=i} · l
t
i , for all arms i ∈ [N ]

13: Set loss estimate l̃bi = K ·
1
τ
l̂bi∑

i∈I∈M pb(I)
· I
{Ĩb1=i}

, for all arms i ∈ [N ]

14: end for

Algorithm 4 C&P Follower algorithm

1: Input: block size τ , rank r
2: for block b = 1 to T

τ do
Coordinate

3: Stay quiet during sub-blocks 2, ..., r − 1 . Each sub-block has exactly N steps
4: During sub-block r, explore arms in a round-robin fashion until collision. Ĩbr is the arm on

which the collision occurred. Choose Ĩbr for remaining steps of sub-block r.
5: Stay quiet during remaining sub-blocks r + 1, ...,K

Play
6: Choose Itr = Ĩbr for remaining steps t of block b
7: end for

Theorem 3 (Dekel et al. (2012)) Let A be a bandit algorithm with expected regret bound of R(T ).
Then using the blocked version of A with a block of size τ gives a regret bound of τR(T/τ) + τ .

The term τ above accounts for the additional regret in case T is not divisible by τ . Since we have K
players, we will replace that term by Kτ . Hence, by applying the above theorem to the regret bound
from Lemma 1, we obtain that the regret of the K players in a setting with communication would be

C · T 1/2τ1/2 +Kτ for C = 2
√
KN log

(
N
K

)
≤ 2K

√
N logN .
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In the real setting without communication, the Coordinate phase is needed and takes (K − 1) ·N
steps. During the Coordinate phase in one block, each player adds at most (K − 1) ·N to the total
regret, either by staying quiet (loss 1) or by not choosing the optimal arm (round-robin exploration).
Thus, the Coordinate phase increases the total regret by at most Tτ · (K − 1) ·N ·K.

Finally, the ranking algorithm adds K · TR = K2 · e · log T to the regret. Put together, the
expected regret of the K players, assuming that ranking was successful (we denote this event by S),
is bounded as follows:

E[RT |S] ≤ C · T 1/2τ1/2 +Kτ︸ ︷︷ ︸
Thm. 3 + Lemma 1

+
T

τ
·K2N︸ ︷︷ ︸

Coordinate

+K2 · e · log T︸ ︷︷ ︸
Ranking

≤ Õ(K4/3N2/3(logN)1/3T 2/3) ,

where in the second line we use C = 2K
√
N logN which holds by Lemma 1; we also take

τ =
(
K2·N ·T
logN

)1/3
and η =

√
log (NK)
T
τ
KN

. Furthermore, we use K < T .

Combining the results from cases 1 and 2 with TR = K · e · log T , gives the following bound:

E[RT ] = Pr[S]︸ ︷︷ ︸
≤1

·E[RT |S] + Pr[Sc]︸ ︷︷ ︸
≤K
T

·E[RT |Sc]︸ ︷︷ ︸
≤K·T

≤ 4K4/3N2/3(logN)1/3T 2/3 + 2K2e log T ,

where S denotes the event where ranking is successful, and Sc is its complement.

Remark: So far we assumed that the players need to stay quiet during the Coordinate phase, but
this assumption is actually not necessary. In Appendix A.3 we show how to relax this assumption.

Efficient Implementation: As the number of meta-arms is exponential |M| = Θ(NK), sampling
a meta-arm directly according to Alg. 3 can be very slow. Nevertheless, as we show in Section 4,
we can reduce the computational complexity to O(NK). The key insight that enables an efficient
implementation is that the sampling distribution may be described as a K-DPP. This allows us
to use powerful sampling mechanisms to reduce the computational cost to O(NK) in any block.
Similarly, computing the marginal probability

∑
i∈I∈M pb(I) for any fixed arm i ∈ [N ] can be done

in O(NK).

3.3. Improved Coordination Scheme and Regret Bounds

In section 3, we discussed our C&P algorithm which achieves low regret for the K-player setting.
C&P is a blocked algorithm and consists of a Coordinate and a Play phase in each block (see Fig. 1).
In this section, we will discuss a more efficient scheme to shorten the Coordinate phase. Concretely,
we will show how to reduce the size of each sub-block in Coordinate from N to dlog2(N + 1)e
rounds.

In C&P the Coordinate part between coordinator and player k (follower) in block b works as
follows:

1. Coordinator chooses arm Ĩbk ∈ [N ] for player k

2. In sub-block k, the coordinator stays on arm Ĩbk until a collision. At the same time, player k
explores arms in a round-robin fashion until collision.
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The collision happens on arm Ĩbk and at this point, player k learns her arm. Using the round-robin
exploration of arms, player k will learn her arm in at most N steps.

Instead of doing a naive round-robin exploration on the arms, we can have a more efficient
coordination scheme using binary encoding. The idea is that in order to encode any number in [N ]
(we assume N > 1), we need at most dlog2(N + 1)e bits. This enables to reduce the length of each
sub-block from N to dlog2(N + 1)e. Next we elaborate on this efficient coordination scheme.

Based on the above idea, we propose the following coordination scheme using sub-blocks of
size dlog2(N + 1)e: In a sub-block k of block b, the coordinator first computes the binary represen-
tation of Ĩbk ∈ [N ], which is the arm that she has chosen for player k. Then, coordinator and player k
iterate over arms 1, ..., dlog2(N + 1)e in an increasing order. In step i ∈ {1, ..., dlog2(N + 1)e} of
the iteration, if the binary representation of Ĩkb has a "1" at position i, the coordinator will choose arm
i, otherwise she will stay quiet. Player k will choose arm i in step i of the iteration and interpret a
collision (no collision) as a "1" ("0"). At the end of sub-block k, player k can reconstruct the binary
number to obtain the value of Ĩbk from that.

With this, we reduce the size of each sub-block in Coordinate from N to dlog2(N + 1)e rounds.
The next theorem demonstrates the affect of this coordination scheme on the regret of C&P.

Theorem 4 Suppose that the K players use our C&P Algorithm with the improved coordination
scheme we describe above. Meaning, they first compute a ranking using Algorithm 2 with TR =
K · e · log T . Afterwards, player 1 will act as coordinator and play according to Algorithm 3. The
other players will behave as followers and run Algorithm 4. Then, the expected regret of the K
players is bounded as follows,

E[RT ] ≤ 7K4/3N1/3(logN)2/3T 2/3 + 2K2e log T ,

for block size τ =
(
4·K2·logN ·T
(log 2)2·N

)1/3
and η =

√
log (NK)
T
τ
KN

.

Proof [Proof of Theorem 4] As the following analysis is based on the proof for Theorem 2, we
recommend the reader to take a look at that proof first.

In the original C&P the regret accounted for the Coordinate phases was T
τ K

2N . With the
improvement, the regret for Coordinate becomes T

τ K
2dlog2(N + 1)e ≤ 2 · Tτ K

2 log2N (for
N > 1). Plugging this into the expression for E[RT |S] (see Theorem 2), we obtain:

E[RT |S] ≤ C · T 1/2τ1/2 +Kτ︸ ︷︷ ︸
Thm. 3 + Lemma 1

+ 2
T

τ
K2 log2N︸ ︷︷ ︸
Coordinate

+K2 · e · log T︸ ︷︷ ︸
Ranking

≤ 7K4/3N1/3(logN)2/3T 2/3 +K2 · e · log T ,

where in the second line we use C = 2K
√
N logN (by Lemma 1), τ =

(
4·K2·logN ·T
(log 2)2·N

)1/3
,

η =

√
log (NK)
T
τ
KN

and the log base change log2(N) = logN
log 2 . Finally, we also use K < T .

10
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As in Theorem 2, combining the results for the two cases, i.e. S and Sc with TR = K · e · log T ,
we obtain the following improved regret bound:

E[RT ] = Pr[S]︸ ︷︷ ︸
≤1

·E[RT |S] + Pr[Sc]︸ ︷︷ ︸
≤K
T

·E[RT |Sc]︸ ︷︷ ︸
≤K·T

≤ 7K4/3N1/3(logN)2/3T 2/3 + 2K2e log T .

4. Efficient sampling from the K-Metaplayer’s distribution using K-DPPs

In this section, we will discuss how the coordinator can efficiently sample K arms and compute
marginal probabilities in Alg. 3 using K-DPPs. We will first give some background on DPPs and
K-DPPs before explaining how to use them for our case.

DPPs (Determinantal Point Processes) are probabilistic models that can model certain probability
distributions of the type P : 2Y → [0, 1], where Y = [N ] and 2Y is the power set of Y .4 Hence, a
DPP samples subsets over a ground set Y . In general, a DPP P is specified by a Kernel matrix (see
definition 2.1 of Kulesza and Taskar (2012)). L-Ensembles are a specific type of DPPs and we will
focus only on those since this is what we will need for the coordinator algorithm. An L-Ensemble
DPP P is defined by a N ×N -Kernel matrix L as follows (see definition 2.2 of Kulesza and Taskar
(2012)):

P(Y = Y ) ∝ det(LY ) (Y ⊆ Y , Y is a random variable specifying the outcome of the DPP.)

LY is the submatrix of L obtained by keeping only the rows and columns indexed by Y . The only
restriction on L is that it needs to be symmetric and positive semidefinite.

K-DPPs define probability distributions over subsets of size K, while the outcome set of a DPP
can have any size. A K-DPP PK is specified by a N ×N -Kernel matrix L as follows (see definition
5.1 of Kulesza and Taskar (2012)):

PK(Y = Y ) =
det(LY )∑

Y ′⊆Y,|Y ′|=K det(LY ′)

As before, L needs to be positive and semidefinite. For DPPs and K-DPPs, sampling and
marginalization can be done efficiently. Because of this, K-DPPs were appealing to us as they
would allow us to efficiently sample a set of exactly K distinct arms, which is what we need for
the coordinator. We will now see how we can model the coordinator’s probability distribution over
meta-arms as a K-DPP, i.e. we will determine how L needs to be set.

Let us first recall the coordinator’s probability for meta-arms. For this, let L̃bi =
∑b−1

τ=1 l̃
τ
i denote

the cumulative loss estimate for any arm i ∈ Y in block b. And let L̃b
I =

∑
i∈I L̃

b
i be the cumulative

loss estimate for any meta-arm I ∈ M in block b. The probability that the coordinator chooses
I ∈M in block b, is:

pb(I) =
e−ηL̃

b
I∑

J∈M e−ηL̃
b
J

(see in Alg. 3)

4. In general, Y does not need to be discrete. For more information on the continuous case, please refer to Kulesza and
Taskar (2012).

11
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For our K-DPP, Y = [N ] is the ground set and M the set of outcomes. For block b, let the
N ×N -Kernel matrix Lb be defined as follows:

Lbi,j =

{
e−ηL̃

b
i , i = j

0, i 6= j (diagonal matrix)

Clearly, L is symmetric and positive definite. Hence, it induces the following K-DPP PK :

PK(Y = I) ∝ det(LbI) (Y is the random variable specifying the K-DPP’s outcome, I ∈M)

=
∏
i∈I

Lbi,i (LbI is a diagonal matrix)

= e−η
∑
i∈I L̃

b
i

= e−ηL̃
b
I (by definition of L̃b

I )

Note that a K-DPP samples subsets of size K, i.e. Y does not contain any element twice and its size
is K. Since the probabilities need to sum up to one, we conclude:

P(Y = I) =
e−ηL̃

b
I∑

J∈M e−ηL̃
b
J

= Pr[J̃b = I] (Coordinator’s probability of choosing meta-arm I)

Cost for sampling a meta-arm Kulesza and Taskar (2012) describe in their Algorithm 1 how to
sample from a general DPP. In a general DPP, the outcome can be any subset of Y , its size is not
necessarily equal to K. Their algorithm consists of two phases:

1. Sample eigenvectors of Lb. This determines the size of the DPP outcome.

2. Use the sampled eigenvectors to actually choose a subset of Y .

In order to obtain a K-DPP algorithm, they replace phase 1 with an algorithm that samples exactly K
eigenvectors (see Alg. 6). This then fixes the size of the outcome to K, which is what we want in a
K-DPP. Algorithm 5 describes the algorithm for sampling from a K-DPP.

Since our matrix Lb is diagonal, its eigendecomposition is very simple: The eigenvalues are the
diagonal elements of Lb, the eigenvectors are the standard basis vectors. This means, that in phase 2
of Alg. 5, we would simply end up choosing the indexes of the eigenvectors computed in phase 1.
Thus, we can actually finish after phase 1.

Algorithm 6 describes how to sample exactly K eigenvectors. Since this part requires O(NK),
we conclude that sampling a meta-arm in any block can be done in O(NK). For completeness, we
have written down the algorithm for sampling K eigenvectors from Kulesza and Taskar (2012) and a
sub-algorithm that it uses here in Algorithm 6 and 7, respectively.

12
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Algorithm 5 Sampling from a K-DPP (based on Algorithm 1 from Kulesza and Taskar (2012))

1: (vn, λn)Nn=1 = Eigendecomposition of Lb

Phase 1 begins
2: V ← Sample K eigenvectors of Lb (Algorithm 6)

Phase 2 begins
3: J ← ∅
4: while |V | > 0 do
5: Select i from [N ] with Pr(i) = 1

|V |
∑

v∈V (vT ei)
2 . ei = i-th standard basis vector

6: J ← J ∪ {i}
7: V ← V⊥, an orthonormal basis for the subspace of V orthogonal to ei
8: end while

Output: J

Algorithm 6 Sampling K eigenvectors (Algorithm 8 in Kulesza and Taskar (2012))

Input: K, (vn, λn)Nn=1 = Eigendecomposition of Lb

Compute enl for l = 0, 1, ...,K and n = 0, 1, ..., N (Algorithm 7)
1: J ← ∅
2: l← K
3: for n = N, ..., 2, 1 do
4: if l = 0 then
5: break
6: end if
7: if u ∼ U [0, 1] < λn

en−1
l−1

enl
then

8: J ← J ∪ {vn}
9: l← l − 1

10: end if
11: end for

Output: J

Cost for computing the marginal probability of one arm If the K-Metaplayer decides to update
arm i at the end of block b, she needs to compute the marginal probability

∑
i∈I∈M pb(I). We can

rewrite this as follows:

∑
i∈I∈M

pb(I) =
∑

i∈I∈M

e−ηL̃
b
I

ZNK
(Normalizer ZNK :=

∑
J∈M e−ηL̃

b
J )

=
1

ZNK

∑
i∈I∈M

e−η
∑
j∈I L̃

b
j (by definition of L̃b

I )

=
e−ηL̃

b
i

ZNK
·

∑
i/∈{i1,...,iK−1}⊆Y

e
−η

∑K−1
k=1 L̃bik

︸ ︷︷ ︸
=:(∗)

13
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Algorithm 7 Sub-algorithm for Alg. 6: Computing elementary symmetric polynomials (Algorithm 7
in Kulesza and Taskar (2012))

Input: K, eigenvalues λ1, λ2, ..., λN
1: en0 ← 1 ∀n ∈ {0, 1, 2, ..., N}
2: e0l ← 0 ∀l ∈ {1, 2, ...,K}
3: for l = 1, 2, ...,K do
4: for n = 1, 2, ..., N do
5: enl ← en−1l + λne

n−1
l−1

6: end for
7: end for

Output: Values eji , ∀i ∈ {0, ...,K}, ∀j ∈ {0, ..., N}

By inspecting the expression inside sum (∗) more closely, we observe that it looks very similar
to the K-DPP that we defined before. In fact, that expression can be seen as a (K-1)-DPP over ground
set [N ] \ {i} with Kernel matrix Lb−i consisting of Lb without the i-th row and column. Therefore,
the sum (∗) is actually just the normalization constant, let’s call it ZN−iK−1, of that (K-1)-DPP. Hence,
the marginal probability for arm i can be written as:

∑
i∈I∈M

pb(I) =
e−ηL̃

b
i

ZNK
· ZN−iK−1

From proposition 5.1 in Kulesza and Taskar (2012), we know that both ZNK and ZN−iK−1 can be
computed in O(NK) each. We conclude that calculating the marginal probability for one arm in any
block can be done in O(NK).

5. Experiments

We run experiments with three different setups and compare the performance of C&P to the Musical
Chairs algorithm (MC) from Rosenski et al. (2016).

MC achieves constant regret with high probability in a stochastic setting by assuming a fixed
gap between the K-th and (K + 1)-th best arms. It starts with a learning phase of T0 ∈ O(1)
rounds, during which players explore arms uniformly at random and observe losses. Based on these
observations, the players compute a mean loss estimate for each arm. In the second phase, the
players play a musical chairs game, where each player keeps choosing u.a.r. among the K best arms
according to her own estimates. As soon as a player chooses an arm without colliding for the first
time, she becomes the owner of that arm and stays there for the rest of the game.

For all experiments, we set N = 8, K = 4, T = 240000, TR = 20 and T0 = 3000. This value
for T0 was also used for the experiments by Rosenski et al. (2016). We repeat this for 10 runs for
each setup and measure the online regret Rt, i.e., the difference between the cumulative player loss
at time t ∈ [T ] and the cumulative loss of the K arms that are the K best in the time period [t].

For each setup, we create a plot that shows the average regret and the standard deviation (as a
colored region around the average). In the plots, the blue curves show the results of MC and the
green curves show the results of C&P. The black dashed line indicates the end of MC’s learning
phase (t = T0).

14



MULTI-PLAYER BANDITS: THE ADVERSARIAL CASE

(a) Experiment 1 (stochastic) (b) Experiment 2 (link failures)

(c) Experiment 3 (link improves)

Figure 2: Results: The red dashed lines indicate when a link failed or came up.

For all of the following three setups, we also run experiments to measure the accumulated regret
RT after T rounds. These can be found in Section A.4 of Appendix A.

Experiment 1 (Stochastic) We choose N mean losses in [0,1] u.a.r. with a gap of at least 0.05
between the Kth and (K + 1)-th best arms. For each arm, the losses are sampled i.i.d. from a
Bernoulli distribution with the selected means. This is a similar setup as the one from Rosenski et al.
(2016). The results are shown in Figure 2a. As we can see, MC (blue curve) accumulates regret up to
time T0 but the regret stays constant afterwards. For our algorithm (green curve), we can see that it
keeps accumulating regret until the end of the game.

Experiment 2 (Non-stochastic) We model a network scenario in which good links (i.e. small
losses) fail suddenly. Concretely, we initially set the mean loss µi for each arm i as follows:
µ1 = µ2 = µ3 = µ4 = 0.1 and µ5 = µ6 = µ7 = µ8 = 0.3. Each arm i’s losses are sampled i.i.d.
from Bernoulli distribution Ber(µi). At time T

4 , “link" (arm) 1 fails and its remaining losses are
sampled i.i.d. from Ber(0.9). After a while, at time T

3 , link 3 also fails and from then on its losses
are also chosen from Ber(0.9). Figure 2b shows the results of this experiment. The red dashed lines
represent the two link failures.

Experiment 3 (Non-stochastic) We model another network scenario, in which a bad link improves
suddenly (or a link that was down comes up). We set the initial mean losses as follows: µ1 = 0.9
and µ2 = µ3 = µ4 = µ5 = µ6 = µ7 = µ8 = 0.7. As before, the losses are sampled i.i.d. from a
Bernoulli distribution with the corresponding means. At time T

4 , link 1 improves and its losses are
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from then on chosen from Ber(0.1). Figure 2c shows the results of this experiment. The red dashed
line shows when link 1 improves.

In Experiments 2 and 3, the link failures and improvements, respectively, happen after the
learning phase T0 in MC. Due to this, MC (blue curve) cannot react to them and its regret starts to
increase. For C&P (green curve), the regret is initially larger than MC, yet it is able to react to the
link changes.

6. Discussion and Conclusions

We have presented the first efficient algorithm for the multiplayer “no communication" adversarial
setting. Our method obtains a regret bound of Õ(K4/3N1/3T 2/3), and it is interesting to understand
whether one can devise an efficient method that obtains a rate of O(poly(K,N)

√
T ).

In our algorithm, there is a single learner (coordinator) while all others just accept the coordina-
tor’s decisions and ignore the loss feedback that they receive. This poses a single point of failure.
One possible way to remedy this might be to switch coordinators after each block in a round-robin
fashion: Player 1 would be the coordinator in block 1, player 2 would be the coordinator in block 2
and so on.
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Appendix A.

A.1. Regret analysis for Lemma 1 (K-Metaplayer)

In this section, we will prove that using η =

√
log (NK)
KTN , the metaplayer’s regret with Alg. 1 is bounded

by,

E[Rmeta
T ] ≤ 2

√
KTN log

(
N

K

)
≤ 2K

√
TN logN .

Proof Using the view of meta-arms (see Section 3.1), Alg. 1 is very similar to playing EXP3 on
|M| =

(
N
K

)
meta-arms. In order to apply regret guarantees from the EXP3 analysis, we need to show

that:

1. A meta-arm I ∈M is chosen proportional to exp(−ηL̃t
I) at time t, where L̃t

I =
∑t−1

τ=1

∑
i∈I l̃

τ
i

is the cumulative loss estimate of I at time t. This can be seen directly in Alg. 1.

2. l̃tI =
∑

i∈I l̃
t
i is an unbiased estimate of the true meta-arm’s loss ltI =

∑
i∈I l

t
i at time t, for

any I ∈M and any t. For this, we will first show that for any arm i ∈ [N ], l̃ti is an unbiased
estimate of lti:

E[l̃ti|p
t] = K · lti∑

i∈Z∈M pt(Z)
· Pr[J t = i]

= K · lti∑
i∈Z∈M pt(Z)

· Pr[i ∈ It]︸ ︷︷ ︸
=
∑
i∈Z∈M pt(Z)

·Pr[J t = i|i ∈ It]︸ ︷︷ ︸
= 1
K

= lti

From the law of total expectation, we can derive that E[l̃ti] = E[E[l̃ti|pt]] = lti . Finally, by
linearity of expectation (as l̃tI =

∑
i∈I l̃

t
i , we conclude that l̃tI is an unbiased estimate of ltI.

Given 1. and 2., we can apply standard EXP3 regret guarantees to obtain the following bound on
the metaplayer’s regret:

E[Rmeta
T ] ≤ η

T∑
t=1

∑
I∈M

E[pt(I) · E[(l̃tI)
2|pt]︸ ︷︷ ︸

=:(∗)

] +
log
(
N
K

)
η

(e.g. see Lecture 9, McMahan and Dekel (2014). Also, we used that |M| =
(
N
K

)
.)
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The variance term (∗) can be simplified as follows:

E[(l̃tI)
2|pt] = E[(

∑
i∈I

l̃ti)
2|pt] (by definition)

=
∑
j,k∈I

E[l̃tj · l̃tk|p
t] (Linearity of expectation)

=
∑
i∈I

E[(l̃ti)
2|pt]

(The loss estimate at time t is non-zero for at most one arm, thus all terms for j 6= k cancel)

=
∑
i∈I

(
K · lti∑

i∈Z∈M pt(Z)

)2

· Pr[J t = i]

=
∑
i∈I

(
K · lti∑

i∈Z∈M pt(Z)

)2

· Pr[i ∈ It]︸ ︷︷ ︸
=
∑
i∈Z∈M pt(Z)

·Pr[J t = i|i ∈ It]︸ ︷︷ ︸
= 1
K

= K
∑
i∈I

(lti)
2∑

i∈Z∈M pt(Z)

Plugging this back into our expression for the regret, we obtain:

E[Rmeta
T ] ≤ η

T∑
t=1

∑
I∈M

E[pt(I) · E[(l̃tI)
2|pt]] +

log
(
N
K

)
η

= η
T∑
t=1

∑
I∈M

E[pt(I) ·K
∑
i∈I

(lti)
2∑

i∈Z∈M pt(Z)
] +

log
(
N
K

)
η

= Kη
T∑
t=1

E[
∑
I∈M

pt(I)
∑
i∈I

(lti)
2∑

i∈Z∈M pt(Z)︸ ︷︷ ︸
(?)

] +
log
(
N
K

)
η

(Linearity of expectation)

In (?), we first sum over all meta-arms I and then over all arms i that are in I . We can instead
sum over all arms i first and then over all meta-arms I that contain i. Hence, we can rewrite (?) as
follows:

∑
I∈M

pt(I)
∑
i∈I

(lti)
2∑

i∈Z∈M pt(Z)
=

N∑
i=1

(lti)
2∑

i∈Z∈M pt(Z)

∑
i∈I∈M

pt(I)

=

N∑
i=1

(lti)
2
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By plugging this back into our regret expression, we get:

E[Rmeta
T ] ≤ Kη

T∑
t=1

E[
∑
I∈M

pt(I)
∑
i∈I

(lti)
2∑

i∈Z∈M pt(Z)
] +

log
(
N
K

)
η

= Kη
T∑
t=1

E[
N∑
i=1

(lti)
2] +

log
(
N
K

)
η

= Kη
T∑
t=1

N∑
i=1

E( lti︸︷︷︸
∈[0,1]

)2 +
log
(
N
K

)
η

≤ KTNη +
log
(
N
K

)
η

= 2

√
KTN log

(
N

K

)
(for η =

√
log (NK)
KTN )

≤ 2K
√
TN logN

This concludes the regret analysis for Lemma 1.

A.2. Success analysis of the ranking algorithm 2

In this section, we will show that the players will successfully compute a ranking using algorithm 2
within TR = K · e · log T rounds with probability at least 1− K

T . The analysis uses ideas from the
proof of Lemma 3 in Rosenski et al. (2016).

For a fixed player, let qt be the probability that she gets a rank assigned in step t. qt can be
bounded as:

qt =
∑
i∈Free

1

K
· (1− 1

K
)Unranked−1

(Free = set of available arms at time t, Unranked = number of players who don’t have a rank yet)

≥
∑
i∈Free

1

K
· (1− 1

K
)K−1 (Unranked is at most K)

≥ 1

K · e
(|Free| ≥ 1, (1− 1

K )K−1 ≥ e−1 for K ≥ 1)

The probability that she doesn’t have a rank after step t is thus at most:

(1− 1

K · e
)t

≤ e−
t
K·e (Using the inequality 1− x ≤ e−x)

By union bound, the probability that there’s at least one player who is not fixed after t = TR rounds,
is at most

K · e−
TR
K·e
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By setting TR = K · e · log T , we conclude that after TR rounds, the probability that all players have
a rank, is at least

1−K · e−K·e·
log T
K·e

= 1− K

T

A.3. Staying Quiet

So far, we assumed that players need to stay quiet during the Coordinate phase of our C&P algorithm
presented in Section 3. I.e., during sub-block k, all players except the coordinator and player k, don’t
pick any arms. This assumption can however be relaxed using a simple modification to our protocol:

During sub-block k ∈ {2, ...,K}, all followers except player k stay on arm 1. Player k explores
all arms in a round-robin fashion for at most N steps, until she collides on an arm i 6= 1. If she
manages to do so, i is the arm that the coordinator has chosen for her. If player k doesn’t collide on
any other arm except on 1, she can conclude that the coordinator has picked arm 1 for her.

A.4. Experiments (Measuring the accumulated regret)

For the three setups that we described in Section 5, we run experiments to measure the accumulated
regret RT of both MC and our algorithm. We visualize the outcome in a loglog plot to compare the
experimental results with our theoretical bound (Theorem 2).

In all three experiments, we set N = 8, K = 4, TR = 25 and T0 = 3000 (length of MC’s
learning phase). For T , we choose T = 100000 + i · 1000, where i ∈ {0, ..., 1300}. Per value of T ,
we do 10 runs and measure the regrets.

In the loglog plots, the blue dots show the average regrets of MC and the green dots the average
regrets of our algorithm. The standard deviations are shown as colored regions around the average
regrets. Besides this, we fit a line on the log average regrets for each algorithm and plotted those as
well. With these lines, we can compare whether the experimental results match what we expect from
Theorem 2.

Experiment 1 We use the same setup as in experiment 1 from 5, i.e. arms with i.i.d. Bernoulli
losses where the arms’ means are sampled u.a.r. from [0,1] with a gap of at least 0.05 between the
K-th and (K + 1)-th best arm. The results are shown in Figure 3a.

Experiment 2 In this experiment, we use the setup from experiment 2 in Section 5, i.e. we model
a network in which two links go down at time T

4 and T
3 , respectively. Figure 3b shows the results of

this experiment.

Experiment 3 For this, we use the setup from experiment 3 in Section 5, in which a bad link
suddenly improves or comes up at time T

4 . The outcome of this experiment is shown in Figure 3c.
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(a) Loglog plot of experiment 1 (stochastic losses). (b) Loglog plot of experiment 2 (link failures).

(c) Loglog plot of experiment 3 (link improves).

Figure 3
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