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Abstract

The expressive ability of classic Hawkes processes is limited due to the parametric assump-
tion on the baseline intensity and triggering kernel. Therefore, it is desirable to perform
inference in a data-driven, nonparametric approach. Many recent works have proposed
nonparametric Hawkes process models based on Gaussian processes (GP). However, the
likelihood is non-conjugate to the prior resulting in a complicated and time-consuming
inference procedure. To address the problem, we present the sigmoid Gaussian Hawkes
process model in this paper: the baseline intensity and triggering kernel are both modeled
as the sigmoid transformation of random trajectories drawn from a GP. By introducing aux-
iliary latent random variables (branching structure, Pólya-Gamma random variables and
latent marked Poisson processes), the likelihood is converted to two decoupled components
with a Gaussian form which allows for an efficient conjugate analytical inference. Using the
augmented likelihood, we derive an efficient Gibbs sampling algorithm to sample from the
posterior; an efficient expectation-maximization (EM) algorithm to obtain the maximum
a posteriori (MAP) estimate and furthermore an efficient mean-field variational inference
algorithm to approximate the posterior. To further accelerate the inference, a sparse GP
approximation is introduced to reduce complexity. We demonstrate the performance of our
three algorithms on both simulated and real data. The experiments show that our proposed
inference algorithms can recover well the underlying prompting characteristics efficiently.

Keywords: Hawkes process, Gaussian process, Pólya-Gamma distribution, conjugacy

1. Introduction

The self-excitation is a common phenomenon in numerous applications, e.g. in seismology
one shock will prompt aftershocks (Hawkes, 1973); in social media a tweet posted by a star
may be shared by the followers of the original poster through retweeting (Chen and Tan,
2018). More similar application domains cover crime (Liu et al., 2018), ecosystem (Gupta
et al., 2018), transportation (Du et al., 2016) and finance (Bacry et al., 2015). The Hawkes
process (Hawkes, 1971) is one important class of point processes which can be utilized to
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model the self-exciting phenomenon. An important characteristic of point processes is the
conditional intensity: the probability of one event occurring in an infinitesimal time interval
given history. Specifically, the conditional intensity of Hawkes process is

λ(t) = µ(t) +

∫ t

0
φ(t− s)dN(s) = µ(t) +

∑
ti<t

φ(t− ti), (1)

where µ(t) > 0 is the baseline intensity, {ti} are timestamps of events occurring before t,
N(t) is the corresponding counting process and φ(τ) > 0 where τ = t− ti is the triggering
kernel. Each observation ti could either arise independently due to the baseline intensity
(exogenous) or because of the exciting effect of previous observations via the triggering ker-
nel (endogenous). The summation of triggering kernels explains the nature of self-excitation:
events occurring in the past intensify the rate of occurrence in the future.

The classic Hawkes process is supposed to be in a parametric form: the baseline intensity
µ(t) is assumed to be a constant with triggering kernel φ(τ) being a parametric function,
e.g. exponential decay or power law decay function. However, in reality, the actual exoge-
nous rate µ can change over time due to the varying exterior context; the actual endogenous
rate capturing how previous events trigger subsequent ones, which is modeled by φ(τ), can
be rather flexible among different applications. For example, the exogenous rate of civilian
deaths due to insurgent activity is changing over time (Lewis and Mohler, 2011) and the
prompting effect of vehicle collision decays periodically and in an oscillatory way (Zhou
et al., 2018). Obviously, the models based on the classic Hawkes process tend to be over-
simplified or even incapable of capturing the ground truth in numerous scenarios (refer to
the real data experiment for an investigation of such an instance). Therefore, it is desir-
able to estimate the exogenous and endogenous dynamics in a data-driven, nonparametric
approach.

A wide variety of nonparametric estimation approaches of Hawkes process have been
largely investigated over past few years. From frequentist nonparametric perspective,
Marsan and Lengline (2008) proposed to estimate the triggering kernel modeled as a his-
togram function with an EM algorithm and Lewis and Mohler (2011) extended this method
by introducing a smooth regularizer and performed estimation by solving a Euler-Lagrange
equation, Zhou et al. (2013) further extended this algorithm to multivariate Hawkes pro-
cess; Bacry and Muzy (2016) provided an estimation approach that is based on the solution
of a Wiener-Hopf equation relating the triggering kernel with the second order statistics;
Eichler et al. (2017) and Reynaud-Bouret and Schbath (2010) attempted to minimize a
quadratic contrast function with a grid based triggering kernel. From Bayesian nonpara-
metric perspective, most related works are based on Gaussian-Cox processes: the Poisson
process with a stochastic intensity modulated by GP. To guarantee the non-negativity of the
intensity, trajectories drawn from a GP prior need to be squashed by a link function. For
example, a log-Gaussian intensity is utilized by Møller et al. (1998) and Samo and Roberts
(2015); Adams et al. (2009) proposed a sigmoid-GP intensity and a tractable Markov chain
Monte Carlo (MCMC) algorithm. Lloyd et al. (2015) developed a variational Gaussian
approximation algorithm with a square link function. Flaxman et al. (2017) designed a
reproducing kernel Hilbert space (RKHS) formulation to estimate the intensity. As far as
we know, only a small amount of works attempted to infer the Hawkes process with a GP
prior since the Hawkes process is more complicated than the Poisson process. For example,
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work model nonparametric link function conjugacy inference

Adams et al. (2009) Poisson GP for intensity sigmoid × MCMC

Samo and Roberts (2015) Poisson GP for intensity exponential × MCMC

Lloyd et al. (2015) Poisson GP for intensity square × variational inference

Flaxman et al. (2017) Poisson RKHS for intensity square - RKHS

Zhang et al. (2018) Hawkes RKHS for only φ(τ) square - RKHS

Zhang et al. (2019) Hawkes GP for only φ(τ) square × variational inference

Zhou (2019) Hawkes GP for both µ(t) and φ(τ) square × variational inference

our work Hawkes GP for both µ(t) and φ(τ) sigmoid X Gibbs sampler/EM/mean field

Table 1: The differences between some recent Bayesian nonparametric point process models
and our model. All works are sorted by time.

Zhou et al. (2018) added an extra GP regression step into the EM algorithm by Marsan
and Lengline (2008) to achieve the smoothness and facilitate the choice of hyperparameters;
Zhang et al. (2018) extended the approach in Flaxman et al. (2017) to the Hawkes process
where the triggering kernel is modeled as the square transformation of the trajectory drawn
from the RKHS; Zhang et al. (2019) extended the variational inference algorithm by Lloyd
et al. (2015) to the Hawkes process where the triggering kernel is a square transformation
of a GP; Zhou (2019) further extended the approach in Lloyd et al. (2015) to model both
the flexible baseline intensity and triggering kernel simultaneously. To be more specific, we
provide Tab.1 to show the differences between these Bayesian nonparametric models and
our model.

All GP modulated intensity models mentioned above have the same issues: 1) due
to the existence of link function, the likelihood of GP variables is non-conjugate to the
prior resulting in a non-Gaussian posterior. The non-conjugacy leads to a complicated and
time-consuming inference procedure. 2) Furthermore, in the Hawkes process, the exoge-
nous component (baseline intensity) and the endogenous component (triggering kernel) are
coupled in the likelihood, which further hampers the tractability of inference.

To circumvent these problems, we augment the likelihood with auxiliary latent random
variables: branching structure, Pólya-Gamma random variables and latent marked Poisson
processes. The branching structure of Hawkes process is introduced to decouple µ(t) and
φ(τ) to two independent components in the likelihood; inspired by Polson et al. (2013),
Donner (2019) and Donner and Opper (2018), we use a sigmoid link function in the model
and convert the sigmoid to an infinite mixture of Gaussians involving Pólya-Gamma random
variables; the latent marked Poisson processes are augmented to linearize the exponential
integral term in likelihood. By augmenting the likelihood in such a way, the likelihood
becomes conjugate to the GP prior. With these latent random variables, we use the aug-
mented likelihood to construct three efficient analytical iterative algorithms. The first one
is a Gibbs sampler which accurately characterizes the posterior with the second one being
an EM algorithm to obtain the MAP estimate; furthermore, we extend the EM algorithm
to a mean-field variational inference algorithm that provides an approximated posterior dis-
tribution rather than point estimation. It is worth noting that the näıve implementations
of three algorithms are time-consuming. To improve the efficiency remarkably, the sparse
GP approximation (Titsias, 2009) is introduced.
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Specifically, we make the following contributions:
1. We propose the sigmoid Gaussian Hawkes process model wherein the baseline inten-

sity and triggering kernel are both sigmoid-GP rates. The original Hawkes process likelihood
is converted to two decoupled factors which are conjugate to GP priors by augmenting the
branching structure, Pólya-Gamma random variables and latent marked Poisson processes.

2. Three simple and efficient iterative algorithms: a Gibbs sampler, an EM algorithm
and a mean-field variational inference algorithm, are derived with closed-form expressions for
the Bayesian nonparametric Hawkes process wherein both baseline intensity and triggering
kernel are nonparametric.

3. All three algorithms are efficient because of the closed-form expressions. Moreover,
they are further accelerated by the utilization of sparse GP approximation.

Our paper is organized as follows. In Section 2 we present the model of sigmoid Gaussian
Hawkes process and how the likelihood is augmented with branching structure, Pólya-
Gamma random variables and latent marked Poisson processes. An efficient Gibbs sampler
is proposed in Section 3, EM algorithm in Section 4 and mean-field variational inference
algorithm in Section 5. In Section 6 we propose some numerical insight on the simulated
and real data experiments. In Section 7 we analyze the advantages and disadvantages of
each algorithm and the most appropriate application scenario for each algorithm and discuss
the relationship among our proposed algorithms, then draw a conclusion and prospect the
future research direction in the end.

2. Sigmoid Gaussian Hawkes Process

A Hawkes process is a stochastic process whose realization is a sequence of timestamps
D = {ti}Ni=1 ∈ [0, T ]. Here, ti stands for the occurrence time of i-th event with T being
the observation window. The conditional intensity of Hawkes process is already provided in
Eq.(1). Given µ(t) and φ(τ), the Hawkes process likelihood (Daley and Vere-Jones, 2003)
is

p(D|µ(t), φ(τ)) =
N∏
i=1

µ(ti) +
∑
tj<ti

φ(ti − tj)

 · exp

(
−
∫
T

(
µ(t) +

∑
ti<t

φ(t− ti)

)
dt

)
. (2)

We propose a GP based Bayesian nonparametric Hawkes process model: sigmoid Gaus-
sian Hawkes process (SGHP) whose baseline intensity and triggering kernel are functions
drawn from a GP prior, passed through a sigmoid link function to guarantee non-negativity
and then scaled by an upper-bound: µ(t) = λ∗µσ(f(t)), φ(τ) = λ∗φσ(g(τ)) where σ(·) is the
sigmoid function, f and g are two functions drawn from the corresponding GP priors, λ∗µ
and λ∗φ are the upper-bounds of µ(t) and φ(τ).

In a näıve Bayesian framework, the inference of posterior of µ(t) and φ(τ) is non-trivial
because of 1) the doubly-intractable problem introduced by Adams et al. (2009) caused
by intractable integrals in the numerator and denominator; 2) the posterior has no closed-
form solution. However, as we can see later, these two problems can be circumvented by
augmenting the likelihood with auxiliary latent random variables. The sigmoid link function
is chosen since it can be transformed to infinite mixture of Gaussians; consequently, the
augmented likelihood is in a conjugate form allowing for more efficient Gibbs sampling, EM
and variational inference with explicit expressions.
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2.1 Augmenting Branching Structure

In the above likelihood Eq.(2), the coupling of µ(t) and φ(τ) in the products term leads
to inference difficulty. A well-known decoupling method is to incorporate the branching
structure of Hawkes process (Marsan and Lengline, 2008; Zhou et al., 2013). The branching
structure X is a triangular matrix with Bernoulli variables xij indicating whether the i-th
event is triggered by itself or a previous event j.

xii =

{
1 if event i is a background event

0 otherwise

xij =

{
1 if event i is caused by event j

0 otherwise

After augmenting the branching structure X, the joint likelihood has the following repre-
sentation

p(D,X|µ(t), φ(τ))

=

N∏
i=1

µ(ti)
xii exp

(
−
∫
T
µ(t)dt

)
︸ ︷︷ ︸

µ(t) part

·
N∏
i=2

i−1∏
j=1

φ(ti − tj)xij
N∏
i=1

exp

(
−
∫
Tφ

φ(τ)dτ

)
︸ ︷︷ ︸

φ(τ) part

, (3)

where we assume the support of triggering kernel is bounded with [0, Tφ] for the convenience
of numerical integral, µ(t) = λ∗µσ(f(t)), φ(τ) = λ∗φσ(g(τ)). If the branching structure X is
marginalized out in Eq.(3), we get the original likelihood in Eq.(2). After introducing the
branching structure, the joint likelihood is decoupled to two independent factors.

2.2 Transformation of Sigmoid Function

We utilize a remarkable representation discovered in the literature of Bayesian inference for
logistic regression (Polson et al., 2013) in recent years. Surprisingly, the sigmoid function
is redefined as a Gaussian representation

σ(z) =

∫ ∞
0

eh(ω,z)pPG(ω|1, 0)dω, (4)

where h(ω, z) = z/2 − z2ω/2 − log 2, pPG(ω|1, 0) is the Pólya-Gamma distribution with
ω ∈ R+. The derivation is shown in Appendix A.

Using Eq.(4), the products of observations σ(f(ti)) and σ(g(τij)) (τij = ti − tj) in the
likelihood Eq.(3) are transformed into a Gaussian form. It is worth noting that we do not
need to know the exact form of Pólya-Gamma distribution but only its first order moment.

2.3 Transformation of Exponential Integral

Utilizing Eq.(4) and the sigmoid property σ(z) = 1−σ(−z), the exponential integral in the
likelihood Eq.(3) can be rewritten as

exp

(
−
∫
T
λ∗µσ(f(t))dt

)
= exp

(
−
∫
T

∫
R+

(
1− eh(ωµ,−f(t))

)
λ∗µpPG(ωµ|1, 0)dωµdt

)
. (5)
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Donner and Opper (2018) has proved, according to Campbell’s theorem (Kingman,
2005) (shown in Appendix B), the right hand side of Eq.(5) is a characteristic functional of
a marked Poisson process, so we can rewrite it as

exp

(
−
∫
T
λ∗µσ(f(t))dt

)
= Epλµ

 ∏
(ωµ,t)∈Πµ

eh(ωµ,−f(t))

 , (6)

where Πµ = {(ωµm, tm)}Mµ

m=1 denotes a random realization of a marked Poisson process and
pλµ is the probability measure of the marked Poisson process Πµ with intensity λµ(t, ωµ) =

λ∗µpPG(ωµ|1, 0). The events {tm}
Mµ

m=1 follow a Poisson process with rate λ∗µ and the latent
Pólya-Gamma variable ωµm denotes the independent mark at each location tm. The detailed
derivation can be found in Appendix B. Here, we only discuss the baseline intensity part.
All derivation in the triggering kernel part is same as the baseline intensity part except
some notations.

2.4 Augmented Likelihood

Substituting Eq.(4) and Eq.(6) into Eq.(3), we obtain the final factorised and augmented
likelihood

p(D,Πµ, {Πφi}
N
i=1,ω,X|λ∗µ, λ∗φ, f, g)

= p(D,Πµ,ωii,Xii|λ∗µ, f)︸ ︷︷ ︸
µ(t) part

· p(D, {Πφi}
N
i=1,ωij ,Xij |λ∗φ, g)︸ ︷︷ ︸
φ(τ) part

,

where
1. the augmented joint likelihood of µ(t) part (derivation in Appendix C) is

p(D,Πµ,ωii,Xii|λ∗µ, f) =

N∏
i=1

(
λµ(ti, ωii)e

h(ωii,f(ti))
)xii
·pλµ(Πµ|λ∗µ)

∏
(ωµ,t)∈Πµ

eh(ωµ,−f(t)) (7)

with ωii denoting a vector of ωii on each ti and Xii being the diagonal of branching structure
X;

2. and the augmented joint likelihood of φ(τ) part (derivation in Appendix C) is

p(D, {Πφi}
N
i=1,ωij ,Xij |λ∗φ, g)

=

N∏
i=2

i−1∏
j=1

(
λφ(τij , ωij)e

h(ωij ,g(τij))
)xij
·
N∏
i=1

pλφ(Πφi |λ
∗
φ)

∏
(ωφ,τ)∈Πφi

eh(ωφ,−g(τ))

 , (8)

where pλφ is the probability measure of the corresponding latent marked Poisson process

Πφi = {(ωφm, τm)}Mφi
m=1 with intensity λφ(τ, ωφ) = λ∗φpPG(ωφ|1, 0), ωij denotes the vector of

ωij on each τij and Xij is the entries off the diagonal of branching structure. It is worth
noting that there exists N independent latent marked Poisson processes because of the
exponential integral product term in Eq.(3).

The motivation of augmenting auxiliary latent random variables should now be clear.
The augmented representation of likelihood contains the GP variables f(·) and g(·) only lin-
early and quadratically in the exponents and is thus conjugate to the GP prior. Our SGHP

6



Inference for Hawkes Processes Using Auxiliary Variables

model can be considered as an extension of the sigmoid Gaussian Cox process (Adams et al.,
2009) in two aspects: (1) If the latent Pólya-Gamma random variables in the augmented
joint distribution are integrated out (µ(t) part or φ(τ) part), we obtain the likelihood used
by Adams et al. (2009) (Eq.4). We utilize the Campbell’s theorem to introduce Pólya-
Gamma random variables, which results in a likelihood being conjugate to the GP priors.
(2) The branching structure of Hawkes process is incorporated. This leads to the decou-
pling of µ(t) component and φ(τ) component, consequently, the solution in Cox process
scenario is extended to Hawkes process scenario.

3. Gibbs Sampler

A näıve Gibbs sampler is derived in this section. However, the näıve implementation is
time-consuming because of the cubic complexity with respect to (w.r.t.) the number of ob-
servations and latent Poisson events when sampling f and g. This issue has been introduced
in Adams et al. (2009). To circumvent the problem, we utilize the sparse GP approximation
to introduce some inducing points to make the inference efficient.

3.1 Näıve Gibbs Sampler

Incorporating the priors of λ∗µ and f into Eq.(7), we obtain the joint distribution over all
variables of baseline intensity part. Without loss of generality, an improper prior p(λ∗µ) =
1/λ∗µ (Bishop, 2006) and a symmetric GP prior GP(f |0,Kf ) are utilized here

p(D,Πµ,ωii,Xii, λ
∗
µ, f)

=
N∏
i=1

(
λµ(ti, ωii)e

h(ωii,f(ti))
)xii
· pλµ(Πµ|λ∗µ)

∏
(ωµ,t)∈Πµ

eh(ωµ,−f(t)) · λ∗µ
−1GP(f).

(9)

All derivation in the triggering kernel part is same as the baseline intensity part except
some notations. The joint distribution over all variables of triggering kernel part is

p(D, {Πφi}
N
i=1,ωij ,Xij , λ

∗
φ, g)

=

N∏
i=2

i−1∏
j=1

(
λφ(τij , ωij)e

h(ωij ,g(τij))
)xij
·
N∏
i=1

pλφ(Πφi |λ
∗
φ)

∏
(ωφ,τ)∈Πφi

eh(ωφ,−g(τ))

 · λ∗φ−1GP(g)

(10)
with GP(g) being symmetric GP(g|0,Kg).

3.1.1 Sampling the Pólya-Gamma Variables

The conditional posteriors of Pólya-Gamma variables ωii and ωij only depend on the func-
tion values f and g at the observations ti and τij

p(ωii|f) =

N∏
i=1

(pPG(ωii|1, f(ti)))
xii

p(ωij |g) =

N∏
i=2

i−1∏
j=1

(pPG(ωij |1, g(τij)))
xij ,

(11)
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where we utilize the tilted Pólya-Gamma distribution pPG(ω|b, c) ∝ e−c2ω/2pPG(ω|b, 0). The
Pólya-Gamma random variable can be efficiently sampled by the method proposed in Polson
et al. (2013).

3.1.2 Sampling the Upper Bounds

The conditional posteriors of upper bounds λ∗µ and λ∗φ depend on the branching structure
and latent marked Poisson processes.

p(λ∗µ|Xii,Πµ) = Gamma(λ∗µ|Nµ +Mµ, T )

p(λ∗φ|Xij ,Πφ) = Gamma(λ∗φ|Nφ +Mφ, NTφ),
(12)

where Nµ =
∑N

i=1 xii, Mµ = |Πµ|, Nφ =
∑N

i=2

∑i−1
j=1 xij and Mφ =

∑N
i=1Mφi =

∑N
i=1

∣∣Πφi

∣∣
with | · | denoting the number of points on a Poisson process.

3.1.3 Sampling the Function Values

Due to the augmentation of Pólya-Gamma random variables, the likelihoods of GP variables
fNµ+Mµ and gNφ+Mφ

are conjugate to the GP priors. Therefore, the conditional posteriors
are still Gaussian

p(fNµ+Mµ |ωii,Πµ) = N (fNµ+Mµ |mNµ+Mµ ,ΣNµ+Mµ)

p(gNφ+Mφ
|ωij , {Πφi}

N
i=1) = N (gNφ+Mφ

|mNφ+Mφ
,ΣNφ+Mφ

),
(13)

with covariance matrix ΣNµ+Mµ = [Dµ + K−1
Nµ+Mµ

]−1. Dµ is a diagonal matrix with its

first Nµ entries being ωii and the following Mµ entries being {ωµm}
Mµ

m=1. KNµ+Mµ is the

covariance matrix of GP prior evaluated at the observed points {ti}
Nµ
i=1 and the latent points

{tm}
Mµ

m=1. The mean mNµ+Mµ = ΣNµ+Mµ · vNµ+Mµ with the first Nµ entries of vNµ+Mµ

being 0.5 and the following Mµ entries being −0.5. The solution for the mean and covariance
matrix of gNφ+Mφ

is the same with the corresponding subscripts being replaced.

3.1.4 Sampling the Latent Marked Poisson Processes

The conditional posterior of the latent marked point process is

p(Πµ|f, λ∗µ) =
pλµ(Πµ|λ∗µ)

∏
(ωµ,t)∈Πµ

eh(ωµ,−f(t))∫
pλµ(Πµ|λ∗µ)

∏
(ωµ,t)∈Πµ

eh(ωµ,−f(t))dΠµ
. (14)

As proved by Donner and Opper (2018), this conditional point process is again a marked
Poisson process by utilizing the Campbell theorem to calculate its characteristic function.
But we provide a more concise proof here: using Eq.(5) and (6) to convert the denominator,
Eq.(14) can be rewritten as

p(Πµ|f, λ∗µ) =
pλµ(Πµ|λ∗µ)

∏
(ωµ,t)∈Πµ

eh(ωµ,−f(t))

exp (−
∫∫

(1− eh(ωµ,−f(t)))λ∗µpPG(ωµ|1, 0)dωµdt)

=
∏

(ωµ,t)∈Πµ

(
eh(ωµ,−f(t))λ∗µpPG(ωµ|1, 0)

)
· exp

(
−
∫∫

eh(ωµ,−f(t))λ∗µpPG(ωµ|1, 0)dωµdt

)
(15)
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It is straightforward to see the above conditional posterior is just in the likelihood form of
a marked Poisson process with intensity function

Λµ(t, ωµ) = eh(ωµ,−f(t))λ∗µpPG(ωµ|1, 0) = λ∗µσ(−f(t))pPG(ωµ|1, f(t)). (16)

The derivation of conditional posterior of Πφ is same as Πµ. It is worth noting that
there exists N independent marked Poisson processes with the same intensity function
Λφ(τ, ωφ) = λ∗φσ(−g(τ))pPG(ωφ|1, g(τ)).

For sampling from the posterior marked Poisson processes, we first draw the timestamps
tm (τm) with the rate λ∗µσ(−f(t)) (λ∗φσ(−g(τ))) by using the thinning algorithm (Ogata,
1998), and then draw the marks ωµ (ωφ) from the conditional distribution pPG(ωµ|1, f(t))
(pPG(ωφ|1, g(τ))).

3.1.5 Sampling the Branching Structure

After combining Eq.(9) and Eq.(10) and integrating out ωii and ωij , we obtain the condi-
tional posterior of X

p(X|λ∗µ, λ∗φ, f, g) ∝
N∏
i=1

(µ(ti))
xii

N∏
i=2

i−1∏
j=1

(φ(τij))
xij ,

with µ(ti) = λ∗µσ(f(ti)) and φ(τij) = λ∗φσ(g(τij)). This is a categorical distribution with

p(xii = 1) =
µ(ti)

µ(ti) +
∑i−1

j=1 φ(τij)

p(xij = 1) =
φ(τij)

µ(ti) +
∑i−1

j=1 φ(τij)

(17)

which is a well-known result in Lewis and Mohler (2011) and Zhou et al. (2013).

3.2 Algorithm Speeding Up

The näıve Gibbs sampler above is impractical. The reasons are: (1) the bottleneck of
the algorithm is the step of sampling function values. Because we have to perform matrix
inversion, the complexity is O((Nµ+Mµ)3 +(Nφ+Mφ)3) where Nµ+Nφ = N . This means
it is non-scalable to even a few hundreds of observations. (2) The function values have
to be sampled twice in one MCMC loop. Each time when the branching structure or the
latent marked Poisson process is updated, the function values have to be updated once in
order to avoid dimension mismatch. This slows down the Gibbs sampler even further.

To circumvent these problems, we utilize the sparse GP approximation to introduce some
inducing points. f and g are supposed to be dependent on their corresponding inducing

points {ts}
Sµ
s=1 and {τs}

Sφ
s=1 where Sµ and Sφ are the number of inducing points for µ(t)

and φ(τ); the function values of f and g at these inducing points are fts and gτs . Given
a sample fts and gτs , fNµ+Mµ and gNφ+Mφ

in Eq.(13) are assumed to be the posterior GP
mean functions

fNµ+Mµ = KttsK
−1
tstsfts , gNφ+Mφ

= KττsK
−1
τsτsgτs , (18)
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with Ktts and Kττs being the kernel matrixes w.r.t. the observations and inducing points
while Ktsts and Kτsτs being w.r.t. inducing points only. Now the conditional posteriors of
function values are transformed from observations to inducing points

p(fts |ωii,Πµ) = N (fts |mts ,Σts)

p(gτs |ωij , {Πφi}
N
i=1) = N (gτs |mτs ,Στs)

(19)

with Σts =
[
K−1
tstsK

T
ttsDµKttsK

−1
tsts + K−1

tsts

]−1
and mts = ΣtsK

−1
tstsK

T
ttsvNµ+Mµ . The solu-

tion for Στs and mτs is the same with the corresponding subscripts being replaced.

With sparse GP approximation, the complexity of matrix inversion is reduced to O(S3
µ+

S3
φ) with Sµ � Nµ +Mµ Sφ � Nφ +Mφ. This results in a complexity scaling linearly with

data size: O(N) due to the sparsity of branching structure: each event i is triggered only
by a previous event j or itself. What makes this even more remarkable is the fact that the
function values only need to be sampled once in one MCMC loop because they only depend
on inducing points which are fixed during the sampling process. Moreover, the sampling of
latent marked Poisson processes can be parallelized.

3.3 Hyperparameters

Throughout this work, the GP covariance kernel we use is the squared exponential kernel

k(x, x′) = θ0 exp
(
− θ1

2 ‖x− x
′‖2
)

. The hyperparameters θ0 and θ1 can be sampled by a

Metropolis-Hasting method (Hastings, 1970). Empirically, we find that if we update θ0 and
θ1 too frequently, the convergence will be slow because the deviation of µ(t) and φ(τ) at the
beginning of Gibbs loops will provide poor estimations of θ0 and θ1. Therefore, we update
them every 20 loops.

Additional hyperparameters are the number and location of inducing points which affect
the complexity and estimation quality of µ(t) and φ(τ). A large number of inducing points
will lead to high complexity while a small number cannot capture the dynamics. For fast
inference, the inducing points are uniformly located on the domain. Another advantage
of uniform location is that the kernel matrix has Toeplitz structure (Cunningham et al.,
2008) which means the matrix inversion can be implemented more efficiently. The number
of inducing points is gradually increased until no more significant improvement. The final
pseudo code is provided in Alg.1.

4. EM Algorithm

An EM algorithm is derived to obtain the MAP estimate in this section. With the original
likelihood Eq.(2) and GP priors GP(f) and GP(g) (symmetric prior GP(·|0,K·)), the log-
posterior corresponds to a penalized log-likelihood. As discussed by Donner (2019) and
Rasmussen (2003) for GP models with likelihood depending on finite inputs, the regularizer
is given by the squared reproducing kernel Hilbert space (RKHS) norm corresponding to
the GP kernel. Therefore, we obtain

λ̂∗µ, f̂ , λ̂
∗
φ, ĝ = argmax

{
log p(D|λ∗µ, f, λ∗φ, g)− 1

2
‖f‖2Hkf −

1

2
‖g‖2Hkg

}
, (20)

10



Inference for Hawkes Processes Using Auxiliary Variables

Algorithm 1: Accelerated Gibbs sampler for SGHP

Result: µ(t), φ(τ)
Initialize hyperparameters and X, λ∗µ, λ∗φ, ωii, ωij , fts , gτs , Πµ, {Πφi}Ni=1;

for do
Sample ωii and ωij with Eq.(11);
Sample λ∗µ and λ∗φ with Eq.(12);

Sample fts and gτs with Eq.(19);
Sample Πµ and {Πφi}Ni=1 with Eq.(16);
Sample X with Eq.(17);
Sample hyperparameters with Metropolis-Hasting algorithm.

end

where λ̂∗µ, f̂ , λ̂
∗
φ, ĝ are the MAP estimates, ‖ · ‖2Hk is the squared RKHS norm with kernel k.

The regularizer is the functional counterpart of log Gaussian prior. Instead of performing
direct optimization, we propose an EM algorithm with the augmented auxiliary variables.
Specifically, we propose a lower-bound of the log-posterior

Q((λ∗µ, f, λ
∗
φ, g)|(λ∗µ, f, λ∗φ, g)old) =

E
[
log p(D,Πµ, {Πφi}

N
i=1,ω,X|λ∗µ, f, λ∗φ, g)

]
− 1

2
‖f‖2Hkf −

1

2
‖g‖2Hkg ,

(21)

with E over p(Πµ, {Πφi}Ni=1,ω,X|(λ∗µ, f, λ∗φ, g)old), the subscript “old” means the value from
the last iteration.

As we can see later, because of auxiliary variables augmentation, the GP variables are
in a quadratic form in the lower-bound, which results in an analytical solution in the M
step.

4.1 E Step

In the E step, we first derive the conditional density p(Πµ, {Πφi}Ni=1,ω,X|(λ∗µ, f, λ∗φ, g)old)
and then compute the lower-bound Q.

4.1.1 Conditional Density

The conditional density p(Πµ, {Πφi}Ni=1,ω,X|(λ∗µ, f, λ∗φ, g)old) can be factorized and ob-
tained from Eq.(7) and (8). More specifically, we provide details of these factors.

1. The conditional distributions of Pólya-Gamma variables ωii and ωij depend on the
function values fold and gold at ti and τij

p(ωii|fold) =
N∏
i=1

pPG(ωii|1, fold(ti))

p(ωij |gold) =

N∏
i=2

i−1∏
j=1

pPG(ωij |1, gold(τij)),

(22)

where we marginalize out X and utilize the tilted Pólya-Gamma distribution pPG(ω|b, c) ∝
e−c

2ω/2pPG(ω|b, 0) with the first order moment being E[ω] = b
2c tanh c

2 (Polson et al., 2013).

11
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2. The conditional density of Πµ depends on fold and λ∗µold

p(Πµ|fold, λ
∗
µold

) =
pλµ(Πµ|λ∗µold

)
∏

(ωµ,t)∈Πµ
eh(ωµ,−fold(t))∫

pλµ(Πµ|λ∗µold
)
∏

(ωµ,t)∈Πµ
eh(ωµ,−fold(t))dΠµ

. (23)

Similarly, using Eq.(5) and (6) to convert the denominator, Eq.(23) can be rewritten as

p(Πµ|fold, λ
∗
µold

) =
pλµ(Πµ|λ∗µold

)
∏

(ωµ,t)∈Πµ
eh(ωµ,−fold(t))

exp (−
∫∫

(1− eh(ωµ,−fold(t)))λ∗µold
pPG(ωµ|1, 0)dωµdt)

=
∏
Πµ

(
eh(ωµ,−fold(t))λ∗µold

pPG(ωµ|1, 0)
)
· exp

(
−
∫∫

eh(ωµ,−fold(t))λ∗µold
pPG(ωµ|1, 0)dωµdt

)
.

Again, it is straightforward to see the above conditional distribution is in the likelihood
form of a marked Poisson process with intensity function

Λµ(t, ωµ) = eh(ωµ,−fold(t))λ∗µold
pPG(ωµ|1, 0) = λ∗µold

σ(−fold(t))pPG(ωµ|1, fold(t)). (24)

The derivation of conditional distribution of Πφi is same as Πµ with the corresponding
subscripts being replaced. It is worth noting that there exists N independent marked
Poisson processes {Πφi}Ni=1 with the same intensity function

Λφ(τ, ωφ) = λ∗φold
σ(−gold(τ))pPG(ωφ|1, gold(τ)). (25)

3. Combining Eq.(7) and (8) and marginalizing out ωii and ωij , we obtain the condi-
tional distribution of X

p(X|(λ∗µ, f, λ∗φ, g)old) ∝
N∏
i=1

(µold(ti))
xii

N∏
i=2

i−1∏
j=1

(φold(τij))
xij ,

with µold(ti) = λ∗µold
σ(fold(ti)) and φold(τij) = λ∗φold

σ(gold(τij)). This is a categorical
distribution with

p(xii = 1) =
µold(ti)

µold(ti) +
∑i−1

j=1 φold(τij)

p(xij = 1) =
φold(τij)

µold(ti) +
∑i−1

j=1 φold(τij)
.

(26)

4.1.2 Lower-bound of Log-posterior

Given those conditional densities above, we can compute the lower-bound Q. The expecta-
tion of log-likelihood (ELL) term in Eq.(21) can be rewritten as the summation of baseline
intensity part and triggering kernel part. The ELL of baseline intensity part is

ELLµ(λ∗µ, f)

= Ep(Πµ,ωii,Xii|(λ∗µ,f,λ∗φ,g)old)

[
log p(D,Πµ,ωii,Xii|λ∗µ, f)

]
= −1

2

∫
T
Aµ(t)f2(t)dt+

∫
T
Bµ(t)f(t)dt

− λ∗µT +

(
N∑
i=1

E(xii) +

∫∫
Λµ(t, ωµ)dωµdt

)
log λ∗µ

(27)
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where

Aµ(t) =
N∑
i=1

E[ωii]E[xii]δ(t− ti) +

∫ ∞
0

ωµΛµ(t, ωµ)dωµ

Bµ(t) =
1

2

N∑
i=1

E[xii]δ(t− ti)−
1

2

∫ ∞
0

Λµ(t, ωµ)dωµ,

with E over p(ωii|fold(ti)) or p(xii|(λ∗µ, f, λ∗φ, g)old).
Similarly, the ELL of triggering kernel part is written as

ELLφ(λ∗φ, g)

= Ep({Πφi}Ni=1,ωij ,Xij |(λ∗µ,f,λ∗φ,g)old)

[
log p(D, {Πφi}

N
i=1,ωij ,Xij |λ∗φ, g)

]
= −1

2

∫
Tφ

Aφ(τ)g2(τ)dτ +

∫
Tφ

Bφ(τ)g(τ)dτ

−Nλ∗φTφ +

 N∑
i=2

i−1∑
j=1

E(xij) +N

∫∫
Λφ(τ, ωφ)dωφdτ

 log λ∗φ

(28)

where

Aφ(τ) =
N∑
i=2

i−1∑
j=1

E[ωij ]E[xij ]δ(τ − τij) +N

∫ ∞
0

ωφΛφ(τ, ωφ)dωφ

Bφ(τ) =
1

2

N∑
i=2

i−1∑
j=1

E[xij ]δ(τ − τij)−
N

2

∫ ∞
0

Λφ(τ, ωφ)dωφ,

with E over p(ωij |gold(τij)) or p(xij |(λ∗µ, f, λ∗φ, g)old).
However, the ELL is intractable for general GP priors by the fact that the ELL is a

functional. To circumvent the problem, we utilize the sparse GP approximation to intro-
duce some inducing points. Once again, f and g are supposed to be dependent on their

corresponding inducing points {ts}
Sµ
s=1 and {τs}

Sφ
s=1; the function values of f and g at these

inducing points are fts and gτs . Given a sample fts and gτs , f(t) and g(τ) in Eq.(27) and
(28) are assumed to be the posterior mean functions

f(t) = kTtstK
−1
tstsfts , g(τ) = kTτsτK

−1
τsτsgτs , (29)

with kTtst and kTτsτ being the kernel vector w.r.t. the observations and inducing points while
Ktsts and Kτsτs being w.r.t. inducing points only.

Substituting Eq.(29) to Eq.(27) and (28), we obtain

Q((λ∗µ, fts , λ
∗
φ,gτs)|(λ∗µ, fts , λ∗φ,gτs)old)

= ELLµ(λ∗µ, fts) + ELLφ(λ∗φ,gτs)−
1

2
fTtsK

−1
tstsfts −

1

2
gTτsK

−1
τsτsgτs .

(30)

4.2 M Step

In the M step, we maximize the lower-bound Q. The optimal parameters λ̂∗µ, f̂ts , λ̂
∗
φ, ĝτs

can be obtained by setting the gradient of Eq.(30) to zero. Due to auxiliary variables
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augmentation, we have analytical solutions

λ̂∗µ =

(
N∑
i=1

E[xii] +Mµ

)
/T

λ̂∗φ =

 N∑
i=2

i−1∑
j=1

E[xij ] +NMφ

 /(NTφ)

f̂ts = ΣtsK
−1
tsts

∫
T
Bµ(t)ktstdt

ĝτs = ΣτsK
−1
τsτs

∫
Tφ

Bφ(τ)kτsτdτ

(31)

where Σts =
[
K−1
tsts

∫
Aµ(t)ktstk

T
tstdtK

−1
tsts + K−1

tsts

]−1
, Mµ =

∫∫
Λµ(t, ωµ)dωµdt, Στs =[

K−1
τsτs

∫
Aφ(τ)kτsτk

T
τsτdτK

−1
τsτs + K−1

τsτs

]−1
, Mφ =

∫∫
Λφ(τ, ωφ)dωφdτ . All intractable in-

tegrals are w.r.t. Lebesgue measure, thus can be solved by numerical methods such as
Gaussian quadrature (Golub and Welsch, 1969).

4.3 Complexity

The analysis of complexity of EM algorithm is similar with that of Gibbs sampler. By
introducing sparse GP approximation, the complexity of matrix inversion is fixed to O(S3

µ+
S3
φ) where Sµ (or Sφ) � N . For the fixed µ(t), φ(τ) and Tφ, as T increases, the complexity

scales linearly with data size: O(N) due to the sparsity of expectation of branching structure:
previous points that are more than Tφ far away from event i have no influence on event i
(E[xij ] = 0).

4.4 Hyperparameters

Once again, the GP covariance kernel is the squared exponential kernel. The hyperpa-
rameters θ0 and θ1 can be optimized by performing maximization of Q over {θ0, θ1} using
numerical packages. Normally, we update {θ0, θ1} every 20 iterations. The number and
location of inducing points are optimised utilizing the same method in Section 3.3. The
final pseudo code is provided in Alg.2.

Algorithm 2: EM algorithm for SGHP

Result: µ(t) = λ∗µσ(f(t)), φ(τ) = λ∗φσ(g(τ))

Initialize hyperparameters and X, λ∗µ, λ∗φ, ωii, ωij , fts , gτs , Πµ, {Πφi}Ni=1;

for do
Update the posterior of ωii and ωij by Eq.(22);
Update intensities of Πµ and {Πφ} by Eq.(24), (25);
Update the posterior of X by Eq.(26);
Update λ∗µ, fts , λ

∗
φ and gτs by Eq.(31);

Update hyperparameters.
end
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5. Mean-field Variational Inference

In this section, we extend the EM algorithm to a mean-field variational inference (Bishop,
2006) algorithm which solves the inference problem slightly slower than EM, but can provide
uncertainty with a distribution estimation rather than point estimation.

In variational inference, the posterior distribution over latent variables is approximated
by a variational distribution. The optimal variational distribution is chosen by minimising
the Kullback-Leibler (KL) divergence or equivalently maximizing the evidence lower bound
(ELBO). A common approach is the mean-field method where the variational distribution
is assumed to factorize over some partition of latent variables. The mean-field variational
inference algorithm can be seen as an extension of the EM algorithm from a MAP point
estimation to a fully Bayesian estimation which approximates the posterior distribution of
all variables.

For the problem at hand, after incorporating priors of λ∗µ, f , λ∗φ and g into Eq.(7) and
(8), we obtain the joint distribution over all variables in Eq.(9) and (10). Because of the
mean-field assumption, we assume the variational distribution q can factorize as

q(Πµ, {Πφi}
N
i=1,ω,X, λ

∗
µ, f, λ

∗
φ, g) = q1(Πµ, {Πφi}

N
i=1,ω,X)q2(λ∗µ, f, λ

∗
φ, g).

A standard derivation in the variational mean-field approach shows that the optimal distri-
bution for each factor maximizing the ELBO is given by

log q1(Πµ, {Πφi}
N
i=1,ω,X) = Eq2 [log p(Πµ, {Πφi}

N
i=1,ω,X, λ

∗
µ, f, λ

∗
φ, g)] + C1

log q2(λ∗µ, f, λ
∗
φ, g) = Eq1 [log p(Πµ, {Πφi}

N
i=1,ω,X, λ

∗
µ, f, λ

∗
φ, g)] + C2

(32)

Substituting Eq.(9) and (10) into Eq.(32), we obtain the optimal distribution for each
factor maximizing the ELBO. What is worth noting is that, to circumvent the functional
problem caused by f and g, we again utilize the sparse GP approximation to introduce
inducing points. Once again, given a sample fts and gτs , f and g in Eq.(32) are assumed to
be the posterior mean functions in Eq.(29).

5.1 Optimal Density of Pólya-Gamma Variables

q1(ωii) =
N∏
i=1

pPG(ωii|1, f̃(ti))

q1(ωij) =
N∏
i=2

i−1∏
j=1

pPG(ωij |1, g̃(τij)),

(33)

where we marginalize out X and f̃(ti) =
√
E(f2(ti)) and g̃(τij) =

√
E(g2(τij)) which can

be computed utilizing E(C2) = E2(C) + Var(C).

5.2 Optimal Marked Poisson Processes

Λ1
µ(t, ωµ) = λ̃∗µσ(−f̃(t))pPG(ωµ|1, f̃(t))e(f̃(t)−f̄(t))/2

Λ1
φ(τ, ωφ) = λ̃∗φσ(−g̃(τ))pPG(ωφ|1, g̃(τ))e(g̃(τ)−ḡ(τ))/2,

(34)

where λ̃∗µ = eE(log λ∗µ), f̄(t) = E(f(t)), λ̃∗φ = eE(log λ∗φ) and ḡ(τ) = E(g(τ)).
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5.3 Optimal Density of Intensity Upper-bounds

q2(λ∗µ) = Gamma(λ∗µ|αµ, βµ)

q2(λ∗φ) = Gamma(λ∗φ|αφ, βφ),
(35)

with αµ =
∑N

i=1 E(xii)+
∫∫

Λ1
µ(t, ωµ)dtdωµ, αφ =

∑N
i=2

∑i−1
j=1 E(xij)+N

∫∫
Λ1
φ(τ, ωφ)dτdωφ,

βµ = T , βφ = NTφ and all intractable integrals can be solved by Gaussian quadrature. This
provides the required expectation for Eq.(34) by E(λ∗) = α/β and E(log λ∗) = ψ(α)− log β
where ψ(·) is the digamma function. Note also the similarity to EM algorithm in Eq.(31).

5.4 Optimal Sparse Gaussian Process

q2(fts) = N (fts |m̃ts , Σ̃ts)

q2(gτs) = N (gτs |m̃τs , Σ̃τs),
(36)

where

Σ̃ts =

[
K−1
tsts

∫
Ãµ(t)ktstk

T
tstdtK

−1
tsts + K−1

tsts

]−1

, m̃ts = Σ̃tsK
−1
tsts

∫
B̃µ(t)ktstdt

with

Ãµ(t) =
N∑
i=1

E[ωii]E[xii]δ(t− ti) +

∫ ∞
0

ωµΛ1
µ(t, ωµ)dωµ

B̃µ(t) =
1

2

N∑
i=1

E[xii]δ(t− ti)−
1

2

∫ ∞
0

Λ1
µ(t, ωµ)dωµ

and

Σ̃τs =

[
K−1
τsτs

∫
Ãφ(τ)kτsτk

T
τsτdτK

−1
τsτs + K−1

τsτs

]−1

, m̃τs = Σ̃τsK
−1
τsτs

∫
B̃φ(τ)kτsτdτ

with

Ãφ(τ) =

N∑
i=2

i−1∑
j=1

E[ωij ]E[xij ]δ(τ − τij) +N

∫ ∞
0

ωφΛ1
φ(τ, ωφ)dωφ

B̃φ(τ) =
1

2

N∑
i=2

i−1∑
j=1

E[xij ]δ(τ − τij)−
N

2

∫ ∞
0

Λ1
φ(τ, ωφ)dωφ.

All intractable integrals are w.r.t. Lebesgue measure, thus can be solved by Gaussian
quadrature. Note also the similarity to EM algorithm in Eq.(31).

5.5 Optimal Density of Branching Structure

q1(xii = 1) =
µ̃(ti)

µ̃(ti) +
∑i−1

j=1 φ̃(τij)

q1(xij = 1) =
φ̃(τij)

µ̃(ti) +
∑i−1

j=1 φ̃(τij)
,

(37)

where we marginalize out ω and µ̃(ti) = λ̃∗µe
E(log σ(f(ti))), φ̃(τij) = λ̃∗φe

E(log σ(g(τij))). The
E(log σ(·)) term can be solved by Gaussian quadrature.
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5.6 Complexity

The analysis of complexity of mean-field approach is similar with that of EM algorithm.
For the fixed µ(t), φ(τ) and Tφ, as T increases, the complexity scales linearly with data
size: O(N) due to the sparsity of expectation of branching structure. Since the mean-field
approach computes not only the mean but also the variance, it is slightly slower than the
EM algorithm.

5.7 Hyperparameters

Similarly, the hyperparameters θ0 and θ1 can be optimized by performing maximization of
ELBO over {θ0, θ1} using numerical packages. The optimization of number and location of
inducing points is same as EM algorithm. The final pseudo code is provided in Alg.3.

Algorithm 3: Mean-field algorithm for SGHP

Result: µ(t) = λ∗µσ(f(t)), φ(τ) = λ∗φσ(g(τ))
Initialize hyperparameters and variational distributions of X, λ∗µ, λ∗φ, ωii, ωij , fts ,

gτs , Πµ, {Πφi}Ni=1;
for do

Update q1 of ωii and ωij by Eq.(33);
Update Λ1 of Πµ and {Πφ} by Eq.(34);
Update q2 of λ∗µ and λ∗φ by Eq.(35);

Update q2 of fts and gτs by Eq.(36);
Update q1 of X by Eq.(37);
Update hyperparameters.

end

6. Experiments

We evaluate the performance of our proposed Gibbs sampler, EM and mean-field (MF)
algorithms on both simulated and real-world data. Specifically, we compare our proposed
algorithms to the following alternatives.

• Sigmoid Gaussian Cox Process (SGCP): an inhomogeneous Poisson process where the
intensity is modeled as a scaled sigmoid transformation of a GP (Adams et al., 2009).
This baseline is used for real data only as the ground truth in simulated data is fixed to
Hawkes process.

• Maximum Likelihood Estimation (MLE): the vanilla Hawkes process with constant µ and
exponential decay triggering kernel α exp(−β(t−ti)). The inference is performed by MLE
(Ozaki, 1979).

• Wiener-Hopf (WH): a nonparametric algorithm for Hawkes process where µ is a constant
and φ(τ) is a continuous nonparametric function. The inference is based on the solution
of a Wiener-Hopf equation (Bacry and Muzy, 2016).
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• Majorization Minimization Euler-Lagrange (MMEL): a nonparametric algorithm for the
Hawkes process with constant µ and smooth φ(τ), which similarly utilized the branching
structure and estimated φ(τ) by an Euler-Lagrange equation (Zhou et al., 2013).

We also tried to compare to the long short-term memory (LSTM) based neural Hawkes
process (Mei and Eisner, 2017) but found it hard to converge at least on our data. On the
contrary, our proposed algorithms are easier to converge due to the fact that there are fewer
parameters to tune, which constitutes another advantage.

We use the following metrics to evaluate the performance of various methods:

• TestLL: the log-likelihood of hold-out data using the trained model. This is a metric
describing the model prediction ability.

• EstErr : the mean squared error between the estimated µ̂(t), φ̂(τ) and the ground truth.
It is only used for simulated data.

• PreAcc: given an event sequence {tn}i−1
n=1, we wish to predict the time of ti. The expec-

tation of ti is E[ti] =
∫∞
ti−1

tp(ti = t)dt with P (ti = t) = λ(t) exp
(
−
∫ t
ti−1

λ(s)ds
)

. The

integral can be estimated by Monte Carlo method. We predict multiple timestamps in
a sequence: if the predicted t̂i is within an error bound ε, then it is considered to be a
correct prediction; or it is a wrong one. The percentage of correct prediction is defined
as the prediction accuracy. It is only used for real data.

• RunTime: the running time of various methods w.r.t. the number of training data.

6.1 Simulated Data Experiments

In simulated data experiments, we use the thinning algorithm (Ogata, 1998) to generate
100 sets of training data and 10 sets of test data with Tφ = 6 and T = 100 in three cases:

1. µ(t) = 1 and φ(τ) = 1 · exp(−2τ);

2. µ = 1 and φ(τ) =

{
0.33 sin τ (0 < τ ≤ π)

0 (π < τ < Tφ)
;

3. µ(t) = sin
(

2π
T · t

)
+ 1 (0 < t < T ) and φ(τ) = 0.3

(
sin(2π

3 · τ) + 1
)
· exp(−0.7τ) (0 <

τ < Tφ).

The first case is the traditional case with a constant µ and an exponential decay φ(τ)
while the second case has a half sinusoidal φ(τ). The third case is the most general one
with time-changing baseline intensity and sinusoidal exponential decay φ(τ). The first case
is used to show that our SGHP model can work well for the classic scenario; the second case
is to show SGHP can recover a constant baseline intensity with a non-exponential-decay
triggering kernel; the third case is the most general case which demonstrates the powerful
fitting ability of SGHP fitting the time-changing µ(t) and flexible non-exponential-decay
φ(τ) simultaneously.

The inducing points and hyperparameters are optimized for inference. The estimated
µ̂(t) and φ̂(τ) are shown in Fig1, 2 and 3. The learned results from Gibbs, EM and MF are
similar with each other with Gibbs providing an accurate posterior, EM providing a MAP
estimate and MF providing an approximated posterior. The posterior variance obtained
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from MF is relatively smaller than that of Gibbs, which is a well known result in Blei et al.
(2017).

For three cases, we compare the alternative baseline inference algorithms to our Gibbs
sampler in Fig.1, EM algorithm in Fig.2 and MF approach in Fig.3. The corresponding
TestLL and EstErr are computed in Tab.2. For Gibbs and MF, multiple trajectories are
sampled from the posterior distribution and TestLL and EstErr are reported with mean and
standard deviation. To show the convergence of three algorithms, the training loglikelihood
curves are plotted for Gibbs, EM and MF of three cases in Fig.1d, 2d and 3d. It is observed
that the loglikelihood of three algorithms in three cases reaches a plateau after 50 loops
indicating excellent convergence.

From accuracy perspective, the result in Tab.2 confirms that our Gibbs, EM and MF
algorithms outperform alternatives in most cases except the first case. For the first case,
the MLE is the champion w.r.t. TestLL because the parametric assumption coincides with
the ground truth which is a rare scenario in real applications, but other algorithms are still
competitive. It is worth noting that because the decay parameter β is not fixed in our case,
the MLE is a non-convex optimization but the Gibbs sampler can avoid the local maximum
and that may be the reason the EstErr of Gibbs is better. For the second case, the MLE
estimation is far away from the ground truth due to parametric constraints on both µ(t)
and φ(τ); our SGHP model achieves comparable performance with WH and MMEL because
all of them can model the constant baseline intensity and flexible triggering kernel. For the
third case, the MLE estimation still deviates severely from the ground truth; for WH and
MMEL, the µ(t) is limited to be constant which in turn affects the estimation of φ(τ); on the
contrary, our Gibbs, EM and MF algorithms provide the most flexible estimation of both
µ̂(t) and φ̂(τ), that is the reason their estimation result is closest to the ground truth. The
EM and MF algorithms are in general slightly outperformed by the Gibbs sampler perhaps
because the Gibbs sampler can characterize the true posterior more accurately than EM
and MF.

From efficiency perspective, the RunTime of Gibbs, EM and MF algorithms are com-
pared to the other iterative nonparametric algorithm MMEL (WH is excluded as it is based
on the solution of a linear system without the need of iteration, SGCP is excluded as it is
a Poisson process model) with the same number of iterations. In Fig.4, we can see Gibbs,
EM and MF have superior efficiency to MMEL with complexity scaling linearly with obser-
vation as we analysed in the section of complexity. The reason our proposed algorithms are
efficient is: on one side, the sparse GP is utilized to reduce the complexity of matrix inver-
sion; on the other side, all proposed algorithms have explicit closed-form expressions due
to the conjugacy induced by the augmentation of auxiliary latent variables. Furthermore,
Gibbs sampler is less efficient than EM and MF because the sampling procedure of latent
Poisson processes is computation intensive; MF is slightly slower than EM due to the extra
computation of variance.

6.2 Real Data Experiments

We compare various methods on two real-world data sets of crime. In criminology, there
is a self-exciting phenomenon from past crimes to future ones which is reported in Mohler
et al. (2011). The two data sets both comprise times of security violation or report in a
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(a) (b)

(c) (d)

Figure 1: Gibbs sampler: simulated data experimental results. (a): The estimated µ̂(t)
and φ̂(τ) (with shading being one standard deviation) for Case 1; (b): for Case
2; (c): for Case 3; (d): the training loglikelihood of Gibbs sampler in three cases.
(GT=Ground Truth)

period of several years. For each data set, we aim to test the goodness-of-fit on test data
(TestLL) and predict the time of event happening in the future time window (PreAcc).

6.2.1 Crime in Vancouver (Canada)

The data of crimes in Vancouver1 comes from the Vancouver Open Data Catalogue. It
includes miscellaneous crimes from 2003-01-01 to 2017-07-13. The columns are crime type,
year, month, day, hour, minute, block, neighbourhood, latitude, longitude etc.

6.2.2 NYPD Complaint Data

This data set2 includes all valid felony, misdemeanour and violation crimes reported to the
New York police department (NYPD) for all complete quarters so far in 2017. The columns
are complaint number, date, time, offense description, borough etc.

1. https://www.kaggle.com/wosaku/crime-in-vancouver
2. https://data.cityofnewyork.us/Public-Safety/NYPD-Complaint-Data-Current-YTD/5uac-w243
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(a) (b)

(c) (d)

Figure 2: EM algorithm: simulated data experimental results. (a): The estimated µ̂(t) and
φ̂(τ) for Case 1; (b): for Case 2; (c) for Case 3; (d): the training loglikelihood of
EM in three cases.(GT=Ground Truth)

6.2.3 Preliminary Setup

For Crime in Vancouver, we filter out the theft records from June to November in 2016
happening in central business district and add a small time interval to separate all the
simultaneous records. For NYPD Complaint Data, we filter out the complaints records in
Brooklyn and Queens in 2016 with the offense description being petit larceny. For each of
these data sets, we split the timestamps of events into a train and test set. The precise
split scheme varies for each data set as follows: for Crime in Vancouver, the first 519 data
points are selected as training set to train the models with the rest being test data (time
unit: days); for NYPD Complaint Data, the first 324 data points are selected as training
set with the rest being test (time unit: days). For the prediction task, we assume the top
17% of a sequence is observed (ε = 0.14 for Crime in Vancouver and 1 for NYPD Complaint
Data where the choice of ε only affects the absolute magnitude of prediction accuracy but
not the relative magnitude, 400 samples for Monte Carlo integration) and then predict the
time of next event, and then the real time of next event is incorporated into the observed
data and then predict the further next one and the iteration goes on.
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(a) (b)

(c) (d)

Figure 3: MF approach: simulated data experimental results. (a): The estimated µ̂(t) and
φ̂(τ) (with shading being one standard deviation) for Case 1; (b): for Case 2; (c)
for Case 3; (d): the training loglikelihood of MF in three cases where the mean
is used. (GT=Ground Truth)

MLE WH MMEL Gibbs EM MF

Case 1
EstErr(µ̂, µ) 0.077 0.142 0.253 0.068 (0.045) 0.186 0.165 (0.031)

EstErr(φ̂, φ) 0.0012 0.0045 0.0021 0.0008 (0.0032) 0.0017 0.0013 (0.0015)
TestLL -55.75 -56.04 -56.77 -56.12 (2.05) -56.53 -56.51 (1.51)

Case 2
EstErr(µ̂, µ) 0.144 0.263 0.123 0.053 (0.134) 0.141 0.236 (0.035)

EstErr(φ̂, φ) 0.0288 0.0065 0.0053 0.0012 (0.0151) 0.0016 0.0005 (0.0071)
TestLL 27.92 30.13 30.21 31.89 (1.52) 30.96 31.33 (1.06)

Case 3
EstErr(µ̂, µ) 1.141 0.701 1.153 0.165 (0.042) 0.134 0.112 (0.023)

EstErr(φ̂, φ) 0.0076 0.0093 0.0058 0.0008 (0.0125) 0.0011 0.0019 (0.0068)
TestLL 32.93 28.66 32.26 38.94 (2.31) 38.21 37.43 (1.22)

Table 2: EstErr and TestLL for simulated data sets. For distribution estimation algorithms
Gibbs and MF, the mean and standard deviation (in brackets) are computed after
running each experiment 5 times.
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Figure 4: The running time (seconds) of different iterative nonparametric algorithms on
varying # of observations with 100 iterations. Gibbs, EM and MF algorithms
scale linearly with observation, which is more efficient than MMEL. (b) is the
zoom in of the bottom of (a).

6.2.4 Results

To access the convergence of our proposed algorithms, the training loglikelihood curves of
three algorithms are plotted in Fig.5 for both data sets. We can see all three algorithms
reach a plateau after 100 loops. For crime in Vancouver, the Gibbs sampler achieves a
higher training loglikelihood compared to EM and MF; this might be the result of the non-
convexity of loss which we will discuss in Section 7. For NYPD complaint data, the Gibbs
sampler and EM are higher than MF, this could be due to the fact that the MF provides
an approximated posterior whose mean deviates from the mode of true posterior.

The TestLL of our proposed algorithms and alternatives are shown in Tab. 3. We
can see all Hawkes-based models outperform SGCP; this demonstrates the necessity of
utilizing Hawkes process to model the self-exciting phenomenon in crime domain. Also,
WH, MMEL, Gibbs, EM and MF all outperform MLE, which demonstrates the necessity
of nonparametric models to capture the underlying dynamic triggering effect. Besides,
Gibbs, EM and MF’s consistent superiority over other nonparametric models with constant
baseline intensity demonstrates that the time-changing baseline intensity does provide a
better fitting capability. Our SGHP model has a natural advantage because it not only
captures the completely flexible µ(t) and φ(τ) leading to better goodness-of-fit but also has
the superior efficiency.

We also measure the PreAcc of all alternatives on both data sets. The average PreAcc
of test data is shown in Fig.6. In general, the PreAcc result is consistent with TestLL.
From the results of PreAcc, the Hawkes-based models outperforming SGCP demonstrates
the self-exciting effect in both real data sets; all nonparametric models outperforming MLE
demonstrates the better fitting capability of nonparametric models; the performance of
Gibbs, EM and MF is comparable with that of other nonparametric models. We can see
that the self-exciting phenomenon in the data of crime in Vancouver is more obvious than
that in the NYPD complaint data because the Hawkes-based models outperform SGCP with
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TestLL SGCP MLE WH MMEL Gibbs EM MF

Vancouver 299.77 (13.11) 380.88 400.36 386.66 430.43 (11.47) 458.27 453.11 (8.94)

New York -292.30 (4.97) -276.00 -225.93 -198.80 -193.76 (4.59) -195.08 -200.70 (3.32)

Table 3: TestLL for real data sets. For distribution estimation algorithms SGCP, Gibbs and
MF, the mean and standard deviation (in brackets) are computed after running
each experiment 5 times.
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Figure 5: The training loglikelihood curves of Gibbs, EM and MF for real data (a): crime
in Vancouver; (b): NYPD complaint data.

a larger magnitude in the data of crime in Vancouver than that in the NYPD complaint
data.

7. Discussions and Conclusions

In this section, we analyze the advantages and disadvantages of each algorithm and the most
appropriate application scenario for each algorithm and discuss the relationship among our
proposed algorithms, then draw a conclusion and discuss some future research directions in
the end.

7.1 Which Algorithm to Use

We proposed three inference algorithms in this paper, so a natural question is: which
algorithm should be used or which one is better? The experimental results have verified
that the estimation results of three algorithms are close to each other and it is difficult to
say which one is definitely better than the others. Which one to use depends on what sort
of statistics you desire to estimate (approximate v.s. exact; distribution v.s. point) in the
application. Gibbs sampler provides an asymptotically exact estimation of the posterior but
is the least efficient algorithm among the three; EM is the fastest algorithm and provides an
exact MAP estimate, but it cannot characterize the uncertainty as a point estimator and
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Figure 6: The PreAcc of Gibbs, EM, MF and alternatives on two real data sets.

may fall into a local maximum; MF combines the advantages of speed and uncertainty but
the estimated posterior distribution is an approximation and may also get a locally optimal
solution. To summarize, if the efficiency is the first consideration, EM and MF should be
given the priority; if the uncertainty is necessary, Gibbs and MF are recommended; if the
accuracy is the most crucial, Gibbs and EM are superior.

7.2 Relation Among Gibbs, EM and MF

To some extent, the Gibbs sampler of our SGHP model can be considered as a stochastic EM
(SEM) algorithm (Celeux, 1985) for Hawkes process. In deterministic EM Hawkes process
algorithms e.g. our proposed EM, Lewis and Mohler (2011) and Zhou et al. (2013), the
basic idea is to compute the branching structure in probabilistic counterpart and maximize
the corresponding surrogate (penalized) likelihood. Instead of computing the surrogate
likelihood based on probabilistic branching structure, we incorporate a stochastic branching
structure sampling step between E and M steps. This results in a much easier update of the
parameters based on the pseudo-completed data. Moreover, unlike the deterministic EM
trying to maximize the surrogate likelihood, we sample the conditional posterior in M step.
This prompts the transformation between EM-Hawkes and Gibbs-Hawkes. Although the
Gibbs sampler is time-consuming compared to EM and MF, an advantage of Gibbs-Hawkes
is, with a complex surrogate function, the random samplings prevent converging to saddle
points or local maxima while the EM-Hawkes and MF-Hawkes cannot avoid. As we stated
earlier, the MF-Hawkes can be treated as an extension of the EM-Hawkes from the most
probable value of each parameter (MAP estimate) and true posterior distribution of latent
variables to Bayesian estimation which estimates an approximated posterior distribution of
the parameters and latent variables.

7.3 Conclusions and Prospects

To conclude, we propose the sigmoid Gaussian Hawkes process model which nonparamet-
ricly represents the baseline intensity and triggering kernel as the scaled sigmoid trans-
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formation of Gaussian processes. By augmenting the branching structure, Pólya-Gamma
random variables and latent marked Poisson processes, the likelihood is transformed to a
conjugate form with the prior. Three efficient inference algorithms: Gibbs sampler, EM
algorithm and mean-filed variational inference, are proposed. The choice of inference al-
gorithms depends on the requirement in application. Moreover, by introducing sparse GP
approximation, our proposed algorithms are further accelerated. The simulated and real
data experimental results confirm that the fitting capability of our proposed algorithms is
superior to the state-of-the-art alternatives with better efficiency at the same time.

In this paper, we considered the single-variate and single-dimensional Hawkes process
for convenience. Future research can be done on the extension to multivariate or multidi-
mensional Hawkes processes. Multidimensional Hawkes processes are the ideal model for
modeling the self-exciting characteristics of events occurring in a high dimensional space,
e.g. the 2D planar space, which is suitable for some specific applications such as in the earth
quake domain. Multivariate Hawkes processes are designed to characterize the mutually-
exciting phenomenon among multiple instances. Both aforementioned models require more
complex computation which raises even more challenging problems.

Appendix A. Proof of Transformation of Sigmoid Function

Polson et al. (2013) found that the inverse hyperbolic cosine can be expressed as an infinite
mixture of Gaussian densities

cosh−b (z/2) =

∫ ∞
0

e−z
2ω/2pPG(ω|b, 0)dω, (38)

where pPG(ω|b, 0) is the Pólya-Gamma distribution with ω ∈ R+. As a result, the sigmoid
function can be defined as a Gaussian representation

σ(z) =
ez/2

2 cosh (z/2)
=

∫ ∞
0

eh(ω,z)pPG(ω|1, 0)dω, (39)

where h(ω, z) = z/2− z2ω/2− log 2. This proves Eq.(4) in the main paper.

Appendix B. Campbell’s Theorem

Let ΠẐ = {(zn,ωn)}Nn=1 be a marked Poisson process on the product space Ẑ = Z × Ω
with intensity Λ(z,ω) = Λ(z)p(ω|z). Λ(z) is the intensity for the unmarked Poisson process
{zn}Nn=1 with ωn ∼ p(ωn|zn) being an independent mark drawn at each zn. Furthermore,
we define a function h(z,ω) : Z × Ω → R and the sum H(ΠẐ) =

∑
(z,ω)∈ΠẐ

h(z,ω). If

Λ(z,ω) <∞, then

EΠẐ

[
exp

(
ξH(ΠẐ)

)]
= exp

[∫
Ẑ

(
eξh(z,ω) − 1

)
Λ(z,ω)dωdz

]
,
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for any ξ ∈ C. The above equation defines the characteristic functional of a marked Poisson
process. This proves Eq.(6) in the main paper. The mean and variance are

EΠẐ

[
H(ΠẐ)

]
=

∫
Ẑ
h(z,ω)Λ(z,ω)dωdz

VarΠẐ

[
H(ΠẐ)

]
=

∫
Ẑ

[h(z,ω)]2Λ(z,ω)dωdz

Appendix C. Proof of Augmented Likelihood

Substituting Eq.(4) and (6) into Eq.(3) in the main paper, we obtain the augmented joint
likelihood of baseline intensity part

p(D,Xii|λ∗µ, f)

=

N∏
i=1

(
λ∗µσ(f(ti))

)xii exp

(
−
∫
T
λ∗µσ(f(t))dt

)

=
N∏
i=1

(∫ ∞
0

λ∗µe
h(ωii,f(ti))pPG(ωii|1, 0)dωii

)xii
· Epλµ

 ∏
(ωµ,t)∈Πµ

eh(ωµ,−f(t))


=

∫∫ N∏
i=1

(
λµ(ti, ωii)e

h(ωii,f(ti))
)xii
· pλµ(Πµ|λ∗µ)

∏
(ωµ,t)∈Πµ

eh(ωµ,−f(t))dωiidΠµ.

with ωii denoting a vector of ωii and λµ(ti, ωii) = λ∗µpPG(ωii|1, 0). Therefore, the augmented
joint likelihood is

p(D,Πµ,ωii,Xii|λ∗µ, f) =
N∏
i=1

(
λµ(ti, ωii)e

h(ωii,f(ti))
)xii
· pλµ(Πµ|λ∗µ)

∏
(ωµ,t)∈Πµ

eh(ωµ,−f(t))

This proves Eq.(7) in the main paper. The proof of Eq.(8) in the main paper is same and
omitted here.

Appendix D. Comparison with Another Related Work

In this section, we provide some comparison results with another related work by Zhou
(2019) which also utilized GP to model the nonparametric Hawkes process. The model
in Zhou (2019) is a Hawkes process in which both the baseline intensity and triggering
kernel are modeled by the square transformation of GPs to guarantee the nonnegativity,
which is the key difference with our model (sigmoid link function) in this paper. The
comparison in this section illustrates how the specific link function (sigmoid vs. square)
impacts the inference procedure. Generally speaking, both Zhou (2019) and our proposed
method use the sparse GP to accelerate the inference and provide the flexible µ(t) and
φ(τ) simultaneously, but the inference algorithm in Zhou (2019) is computation intensive
compared with our method because it performs optimization to find the optimal covariance
matrix of variational distribution wherein each optimization loop requires a complex matrix
computation.
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Figure 7: The estimated µ̂(t) and φ̂(τ) of our proposed algorithms, EMV and alternatives
for the simulated data in Case 3. (a): for Gibbs sampler; (b) for EM; (c) for
MF. (with shading being one standard deviation, GT=Ground Truth); (d): the
running time (seconds) of different iterative nonparametric algorithms on varying
# of observations with 100 iterations.

MLE WH MMEL EMV Gibbs EM MF

EstErr(µ̂, µ) 1.141 0.701 1.153 0.046 0.165 (0.042) 0.134 0.112 (0.023)

EstErr(φ̂, φ) 0.0076 0.0093 0.0058 0.0039 0.0008 (0.0125) 0.0011 0.0019 (0.0068)

TestLL 32.93 28.66 32.26 38.88 38.94 (2.31) 38.21 37.43 (1.22)

Table 4: The EstErr and TestLL results of our methods, EMV and alternatives for Case 3.
For the distribution estimation algorithms Gibbs and MF, the mean and standard
deviation (in brackets) are computed after running each experiment 5 times.

We perform experiments to compare the inference algorithm EM-variational (denoted
by EMV) in Zhou (2019) with our three inference algorithms and alternatives w.r.t. the es-
timation accuracy (EstErr), test loglikelihood (TestLL) and running time for the synthetic
data in Case 3. The estimated µ̂(t) and φ̂(τ) are shown in Fig.7. To compare the estima-
tion results quantitatively, the EstErr and TestLL are shown in Tab.4 where our proposed
methods are competitive with EMV. Also, the running time w.r.t. different number of
observations is shown in Fig.7d where our proposed methods are more efficient than EMV.
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