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Abstract

In short-term portfolio optimization (SPO), some financial characteristics like the expected
return and the true covariance might be dynamic. Then there are only a small window
size w of observations that are sufficiently close to the current moment and reliable to
make estimations. w is usually much smaller than the number of assets d, which leads
to a typical undersampled problem. Worse still, the asset price relatives are not likely
subject to any proper distributions. These facts violate the statistical assumptions of the
traditional covariance estimates and invalidate their statistical efficiency and consistency
in risk measurement. In this paper, we propose to reconsider the function of covariance
estimates in the perspective of operators, and establish a rank-one covariance estimate in
the principal rank-one tangent space at the observation matrix. Moreover, we propose a loss
control scheme with this estimate, which effectively catches the instantaneous risk structure
and avoids extreme losses. We conduct extensive experiments on 7 real-world benchmark
daily or monthly data sets with stocks, funds and portfolios from diverse regional markets
to show that the proposed method achieves state-of-the-art performance in comprehensive
downside risk metrics and gains good investing incomes as well. It offers a novel perspective
of rank-related approaches for undersampled estimations in SPO.

Keywords: rank-one covariance estimate, short-term portfolio optimization, undersam-
pled condition, loss control, downside risk

1. Introduction

Short-term portfolio optimization (SPO) has emerged recently as a new topic in the
machine learning community (Li and Hoi, 2012; Li et al., 2015; Huang et al., 2016; Li and
Hoi, 2014; Li et al., 2016; Lai et al., 2018¢). It manages the portfolio over a set of assets
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in the short term and tries to achieve some realistic financial aims, such as gaining excess
returns, diversifying individual risks or reducing extreme losses.

Originating from the classic mean-variance theory (Markowitz, 1952), SPO shares some
basic concepts with the traditional long-term portfolio optimization (LPO), such as getting
more incomes with less risk if possible. However, SPO faces much more complicated realistic
difficulties and challenges that LPO does not have. One of the main difficulties is to catch the
rapidly-changing financial circumstance to make timely and reliable decisions. Specifically,
some financial characteristics like the expected return and the true covariance might be
dynamic p;, 3¢ rather than static g, 3. In this case, we usually have only a small window
size w of observations that are sufficiently close to the current moment ¢ and thus reliable to
make estimations. w is usually much smaller than the number of assets d, which immediately
invalidates the statistical efficiency and consistency of the traditional covariance estimates
(e.g., the unbiased estimate and the maximum-likelihood estimate). Besides, other strict
statistical assumptions regarding asset price relatives or probability distributions seldom
hold in the SPO scenario, since the financial characteristics are dynamic. Therefore, it has
been realized that machine learning methods without strict assumptions are preferable, if
they are more productive and effective in a well-defined technical sense (Das et al., 2013;
Shen et al., 2014; Ho et al., 2015; Lai et al., 2018c).

Without assumptions of good statistical properties, some existing machine learning
methods for SPO turn to discoveries of empirical and behavioral finance, like the mean
reversion criterion (Jegadeesh, 1990, 1991) and irrational investing behaviors (Kahneman
and Tversky, 1979; Shiller, 2003, 2000). For example, the moving average reversion (OL-
MAR, Li et al. 2015) and the robust median reversion (RMR, Huang et al. 2016) are two
trend-reversing systems, while the peak price tracking (PPT, Lai et al. 2018b) is a trend-
following one. There is also a composite trend representation system (AICTR, Lai et al.
2018a) that combines both trends. These systems adaptively catch different kinds of in-
stantaneous trend information and achieve favorable investing incomes. However, they do
not have effective risk terms in their optimization models, thus they are actually vulnerable
to downside risk and extreme losses (see Section 4.3).

In quantitative finance, risk can be interpreted by the difference between reality and
expectation of the investing return. Hence covariance is a suitable risk metric that has been
used for many years since it is first proposed by Markowitz (1952). However, it is adopted
mainly in LPO since it is more probable to satisfy the above-mentioned strict statistical
assumptions. For example, Brodie et al. (2009) propose to establish a kind of sparse and
stable Markowitz portfolio (SSMP) via ¢! regularization. As a trade-off between ¢! and
¢? regularizations, Ho et al. (2015) propose to penalize portfolio via the elastic net (Zou
and Hastie, 2005). These mean-variance-related methods do establish sparse portfolios in
LPO, but have not addressed the failure of traditional covariance estimates in SPO. In
order to establish sparse portfolios in SPO, Lai et al. (2018c) propose to maximize the
increasing factor as well as regularizing the £'-norm of the portfolio, and solve the model
by the alternating direction method of multipliers (ADMM, Boyd et al. 2010). But the ¢!
regularization does not have an effective scheme of risk measurement and may affect the
performance in loss control.

Lacking a suitable covariance estimate in SPO may cause high downside risk and ex-
treme losses, which may lead to serious consequences, such as large-scale withdrawals of
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investors and mandatory liquidation. Then the corresponding mutual fund may not recover
even though it has a good profiting strategy in the long run. Since the traditional covariance
estimate is neither sufficiently-sampled nor subject to good statistical assumptions in SPO,
we have to reconsider its functions from a very different perspective. In this paper, we see
it as a symmetric quadratic form operator composed by an orthogonal projection and a
Gram matrix. Then we give a detailed investigation of the underlying operator space S¢
(d x d-dimensional symmetric matrix space) in its rank-related structure, including determi-
nantal varieties, tangent spaces, and the corresponding orthogonal projections. We further
extract the mutually orthogonal rank-one tangent spaces at the spectral components of the
observation matrix from S%. In these tangent spaces, the principal rank-one tangent space
reveals the most important risk structure of the instantaneous financial circumstance, while
other tangent spaces contain trivial signals, market noise or even misleading information.
We further find that the traditional covariance estimate disperses its spectral energy into
other tangent spaces rather than concentrates it on the principal one (see Figure 1), thus
leading to deterioration in SPO.

To better catch the instantaneous risk structure and improve robustness to downside
risk in the rapidly-changing financial circumstance, we propose a loss control strategy with
a rank-one covariance estimate for SPO (SPOLC). Our main contributions are:

1. Reform the covariance estimation problem from a sufficiently-sampled statistical esti-
mation to a symmetric quadratic form operator.

2. Investigate the rank-related structure of S?, including the determinantal varieties,
their tangent spaces at the spectral components of the observation matrix, and the
corresponding orthogonal projections.

3. Propose a novel rank-one covariance estimate lying in the principal tangent space.

4. Propose a novel loss control scheme in the SPO model with the rank-one covariance
estimate.

The rest of this paper is organized as follows. Section 2 gives the problem setting
of SPO and some related works. Section 3 investigates the rank-related structure and
the relevant tangent spaces of S? in detail and establishes the loss control scheme with the
rank-one covariance estimate. Section 4 conducts extensive experiments with comprehensive
downside risk metrics and investing scores to assess SPOLC. Section 5 makes conclusions
and discussions in the end.

2. Problem Setting and Related Works

In this section, we give the problem setting of SPO, and then show some main related
works in this field.

2.1. Problem Setting of Short-term Portfolio Optimization

We adopt the standard SPO framework taken by many related works in machine learning
(Cover, 1991; Li et al., 2015; Huang et al., 2016; Li et al., 2016; Lai et al., 2018c). Assume
there are d assets in a financial market and their prices at the end of the ¢-th trading
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period are represented by a vector p; € Ri, where Ri is the d-dimensional nonnegative
real cone. As time passest =0,1,2,---, the prices form a sequence pg, p1, P2, - --. Instead
of the price, the price relative x; £ pfl is the assessment for the investing performance of
assets, where the division dominates each element. x; is closely related to the simple return
r; = x; — 14 and they can be mutually converted (14 denotes the d-dimensional vector
with all elements equaling 1). In this paper, none of the p;, x¢, and ry are subject to any
statistical distributions. They are collected from real-world financial markets.
Accordingly, we define a portfolio with the same dimensionality in the simplex as

b€ Ag:={becR%:1;b=1}. (1)

This portfolio is self-financing (1}b = 1: no borrowing-money and full re-investment) and
does not allow for short positions (b(*) < 0 means that the i-th asset has a short position),
as is the most common case in real-world investments. Note that b; is the proportion of
the total wealth invested in different assets throughout the ¢-th period.

At the end of the ¢-th period, the cumulative wealth (CW) S; increases or decreases
with a factor b, x;: S; = Si_1 - (b x;). For simplicity, we can assume the initial wealth
So = 1 and the whole investment lasts for n periods. An SPO system aims to learn an
appropriate sequence of portfolios {Bt}?zl such that the corresponding CW and return
sequences

S't:gt_y(f)zxt), T‘t:lf);rxt—l, t:1,2,--- , N, (2)

achieve some particular financial objectives. To explain the above equations, suppose x; =
[0.9,1,1.1]7, which means that on the ¢-th period the first stock decreases by 10%, the
second stock remains the same, and the third stock increases by 10%. If we hold a portfolio
b, = [1/3,1/3,1/3]T, then the corresponding increasing factor would be b, x; = 1 and the
return of the portfolio is r, = 0. Thus the updated CW would be S; = S;_1 -1, which means
that there is no gain and no loss.

In order to control extreme losses and downside risk, we intend to make {S;}7_, and
{r:}7-, achieve low maximum drawdowns (Magdon-Ismail and Atiya, 2004) and high VaRs
(Jorion, 1997), respectively. The definitions of maximum drawdown and VaR are given
in (61) and (56). Furthermore, we aim to achieve better performance than some trivial
strategies in gaining incomes. The first one is the Market strategy (Li et al., 2015) which
disperses the wealth equally into all the assets at the very beginning and remains unchanged

d
SrTJZ\/[arket _ % Z H Xl(fZ) (3)

It allocates 1/d of the initial wealth to each asset ¢, then the wealth of each asset i grows
along with its own price relatives [[;"; xgi). At the end the wealths of all the assets are
summed by Z?:l- Another trivial strategy is the 1/d strategy (DeMiguel et al., 2009),
which keeps a constant portfolio with equal weights on all the assets at each rebalancing
time:

- 1
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2.2. Related Works on Mean-variance Methods

The mean-variance methods have been the most popular PO models since their first
proposal by Markowitz (1952). Without loss of generality, we can formulate the original
mean-variance (OMV) model as

b = argmin—p' b ++b ' b, (5)
beA,
where p and 3 denote the expected return and the covariance of the assets, respectively.
Accordingly, u"b and b" Xb are the expected return and the risk of the portfolio b. The
objective is to maximize the expected return and minimize the risk simultaneously with a
mixing parameter v > 0. It can be further modified for additional tasks.

For example, Sparse and Stable Markowitz Portfolio (SSMP, Brodie et al. 2009) intro-

duces an ¢! regularization

bssarp = argmin ||el, — Rb||? + 7||b||y
b

= argmin —2¢1, Rb + b " RTRb + ne® + 7||bll; st.b'u=eb'15=1, (6)
b

where € is a predefined expected growth rate, R is an n X d-dimensional asset return matrix,
| - || denotes the £2-norm, || - ||; denotes the £*-norm, and 7 is the regularization strength.
We notice that 2¢1]Rb and b' RTRb are essentially the expected return and the risk,
respectively. Additionally, it relaxes the nonnegativity constraint of b, forces b to be sparse
and constrains the short position (Brodie et al., 2009).

Ho et al. (2015) further proposes a weighted elastic net penalized portfolio (WENPP)
that removes the self-financing constraint b’ 15 = 1 and adopts the elastic net penalization
instead of the ¢! regularization

d d
BWENPP = argmin —bTﬂ + ngb + 7'z|b(l)| + Li’b(i)|2a (7)

where 3 and [t are the estimated covariance and expectation of asset returns, respectively.

Both (6) and (7) take the form of (5), which makes a trade-off between return and risk.
It cannot do without reliable estimations for fi and 3 in order to achieve good investing
performance. An intuitive approach is to introduce traditional statistical methods to make
a single static estimation for fi or 3. But it requires a large number of observations, which
is nearly impossible in the SPO scenario. Neither is it adaptive to the rapidly-changing
financial environment where the true p;, 3; may be dynamic.

Since the covariance term is critical in the Markowitz portfolio, it has been extensively
investigated in the finance communities. For example, Ledoit and Wolf (2017) propose a
Nonlinear Shrinkage of the Covariance Matrix (NSCM) X g as follows:

Sup=QPQT, W =diag(¥r, - ).

— L if; >0
<< 7oA dals(a)> 7T
V]. \/L\du /l/)l { (i_i)g(o) lfﬂ)Z:O,d>w
2]\fS é Q‘iIQT) ‘il - di&g(d;b e 712]11)‘ (8)
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First, a spectral decomposition is performed on the traditional unbiased covariance ﬁ]UB
(see Eq. 17). Then each eigenvalue 1; is shrunk with an estimator of the (complex-valued)
Stieltjes transform §(-) (Ledoit and Wolf, 2015). The resulting 3 ng is constructed by the
same eigenvectors Q and the shrunk eigenvalues ¥. An advantage of 3 ng is that it allows
for the singular case d > w (more variables than observations). When combined with our
loss control framework (51), NSCM shows good performance in the LPO scenario (Table
3). But it deteriorates in the SPO experiments, which indicates that a different kind of
covariance estimate is needed in SPO.

2.3. Related Works on Short-term Portfolio Optimization

Since SPO systems have to adapt to the rapid change of financial environment, they
turn to exploit some heuristic principles of empirical financial studies (Jegadeesh, 1990,
1991) and investing behaviors (Kahneman and Tversky, 1979; Bondt and Thaler, 1985;
Jegadeesh and Titman, 1993). One main approach is the trend representation in the most
recent observation window with size w.

OLMAR (Li et al., 2015) and RMR (Huang et al., 2016) are two typical mean-reversing
strategies. The former uses the popular tool of moving average (MA) while the latter uses
the /!-median (Vardi and Zhang, 2000) as future trends.

LOLMAR t =0 Ptk - ;
X T (w) = = £2k=0 = lat ot o — ] )
Pt wpt w Xt k=0 Xt—k
p w—1
R t+1
Xﬁ]\lﬂ% I ,  Pt+1 = argmin Z IPt—x — PI|- (10)
Pt peR? 1)

The notation ) is the element-wise chain-multiplication. The reason why (10) is called the
¢*-median is that when P;y1, p;—i and p are one-dimensional, the /2-norm in the argmin
becomes an absolute value, then the sum in the argmin has a form of ¢'-norm with respect
to the dimension k. Both OLMAR and RMR use the following model to optimize the
portfolio

|2 st.b'%i41 >€e>0. by =argmin||b—b,]%  (11)

1 .
b;y1 = argmin —||b — by
b 2 beAy

Since the by; 1 computed by the former equation in (11) could violate the portfolio constraint
(1), it should be further normalized to the simplex (the latter equation) with the method
of Duchi et al. (2008). This strategy tries to ensure an expected return b %x;,1 > € with a
portfolio closest to the current one b:.

On the other hand, the peak price tracking (PPT, Lai et al. 2018b) system is a trend-
following strategy

«PPT _ Di+1 . () (@)

= = max 1=1,2,---,d.
Xt+1 P ) pt+1 0<k<w— 1pt ko ) 4y ;
byy1 = argmax bTxﬁplT, s.t. b — byl < e e> 0. (12)
beA,

It tries to maximize the increasing factor bTxﬁrPlT with a portfolio in a neighborhood of b.
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The adaptive input and composite trend representation system (AICTR, Lai et al.
2018a) further combines different trend types with a set of radius basis functions (RBF)

L 5 2
. . . —IX1t+1 — M
b1 = arg{)naxz ¢b X1, Ai(Ripr1) = exp < H t;fz H > )
1=1 l
st. beAg|b—by <ee>0, (13)

where {)El,t+1}lL: ; denotes the L different trend representations. AICTR uses a generalized
increasing factor with the RBF's adjusting the influence of different trend representations.

To establish a sparse portfolio in SPO, Lai et al. (2018c) simultaneously adopts an £
regularization and a self-financing constraint in the increasing factor model

by = mbiancpt +Albll;, st.1Tb=1, (14)

where A > 0 controls the regularization strength and b' ¢, is a negative increasing factor.
(14) can be further formulated as an unconstrained augmented Lagrangian that has a saddle
point, which can be solved by the ADMM.

Although the above SPO systems achieve state-of-the-art performance in gaining in-
vesting incomes, they are vulnerable to downside risk and extreme losses (see Section 4.3).
The main reason is that the risk measurements in their models are ineffective. It is very
difficult and challenging to estimate an appropriate d x d-dimensional covariance matrix
with a small window size w in the rapidly-changing financial environment, which will be
explained and handled in the next section.

3. Loss Control with Rank-one Covariance Estimate

Suppose we have observed the price relatives for d assets in the nearest w trading periods
at the current moment ¢. There are only a small window size w of observations that are
sufficiently close to the current moment ¢ and reliable to make estimations of the dynamic
financial characteristics. These price relatives constitute an observation matrix

X = [Xt—w+17xt—w+27 T 7Xt]T S Rde' (15)

This matrix is almost all the information we could exploit to establish an SPO model in
this section. We use four stages to find a suitable covariance estimate and design the loss
control scheme.

3.1. Reform of Covariance Estimate as Operator

The first stage is to reform the function of a covariance estimate in the perspective of
operators, and then find an adaptive operator in a suitable operator space.
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3.1.1. SUFFICIENTLY-SAMPLED STATISTICAL ESTIMATION

There are two traditional covariance estimates 3 M and ﬁ)U B in the practical statistical
estimation

. 1
Sup 2 XTI, — —1,1,)X € 8, (16)
w
N 1. A 1 -
Sur 2 —3up, XupE ——3up, (17)
w w—1

where I, and 1,, denote the w x w-dimensional identity matrix and the w-dimensional
vector with all elements equaling 1, respectively. The two estimates have the same main
part 32 1p but have different coefficients. Both estimates lie in the space of d x d-dimensional
symmetric matrices S%. 3| ML is the maximum-likelihood estimate while ﬁ]U B is the unbiased
estimate, if the rows of X are independent and identically distributed (i.i.d.) with the same
d-dimensional normal distribution and w > d (or else 3 p would be singular since its rank
is at most min{w — 1,d}). To summarize, by M and ﬁ)U B have statistical meaning only if
X is sufficiently-sampled.

Unfortunately, the rows of X are not likely subject to a normal distribution (or other
proper distributions) in the SPO scenario. Moreover, w < d since we have to observe
a considerable number of assets in a rather small window size that is sufficiently close
to the current moment, in order to better catch the true dynamic covariance. Thus the
assumptions of 3/, and 3y g are easily violated. Though (16) and (17) can still be used
to compute EML and EUB in this case, they may deteriorate in the OMV model (5).

3.1.2. IMPLICIT ORTHOGONAL PROJECTION

These facts motivate us to redefine the function of such “covariance estimates”. Drop-
ping the statistical properties, we notice that the main part 3,,;p is actually a composed
operator with a projection followed by a Gram matrix.

1
Pi: R s RWXd Pr(X) 2 (I, — —1,1))X; (18)
w
g: R8st g(Y)2Y'Y; (19)
g o PIC . Rde — wad — Sd,

. 1 1
Sup2goPr(X)=X"T(I, — —1,1))*2X =X (I, — —1,1,)X. (20)

w w

The last equation holds since the projection P = I,,— %Lulg is symmetric and idempotent.
Next, we have a closer look into Px. It is an orthogonal projection because

1 1
Py - (Iw - PIC) = (Iw - Elwl—r) : Elwlg

w
1 1 T T
= Elwlw - ﬁlw(lwlw)lw
1 1
= el —  Tuly = Ouxe, (21)
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where Oy %, denotes the w X w zero matrix. Px projects the elements of R¥*d onto the
linear subspace with centralized matrices
K={YeR":1]Y=0]}. (22)
Given any Y1, Yo € K and any aj, as € R, we have
lg(alYl + OQYQ) = Q1 11IY1 + agl;}rYg
= 10 + 0] =0, . (23)

Hence (a1Y1 + a2Y3) € K and K is a linear subspace of R¥*?. Since Py is orthogonal, it
induces the following direct sum decomposition

R = K@ KL, (24)

where K1 is the range of (L, — Px).

In the literature of probability, two random variables are uncorrelated if and only if their
inner product in the integration (expectation) form equals zero. If we use the standard inner
product for R¥*¢

<X, Y >2 tr(XTY), (25)

then (24) indicates that the two subspaces K and K of the whole space R”*¢ are uncorre-
lated. To verify this statement, assume Y € K and Yy € K. According to the definitions
of IC and KC*, there exist X;,Xs € R¥*? such that Y; = PxX; and Yo = (I, — Px)Xo.
Then according to (21),

tr(Y] Ya) = tr(X{ P (Ip — P)X2) = tr(X] OwxwXs) = tr(Ogyxq) = 0. (26)

The decomposition K & K+ helps to separate structural information. In this sense, Sup
actually takes the structural information lying in K and drops that in Kt

However, the projection Px and the decomposition K @ K+ do not exploit any specific
information in the observation X. Therefore, when the assumptions of covariance and the
law of large numbers easily fail in SPO, Px and K @ K cannot catch the instantaneous risk
structure embedded in X. It motivates us to find another suitable operator and another
adaptive decomposition.

3.1.3. SYMMETRIC QUADRATIC FORM OPERATOR

We notice that a covariance estimate 3 can be seen as a symmetric quadratic form in
S?, which measures the portfolio risk b’ b when we manage the portfolio b. Hence S is
the very space we should investigate to explore the instantaneous risk structure.

1. S?is a Hilbert space with the standard inner product < X,Y >2 tr(XY), thus it is
self-conjugate.

2. S%is a ring with the standard matrix addition and multiplication.

3. Bach element in S? is a self-adjoint linear operator acting on R%.
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No. 1 and 3 are obvious and we give more details about No. 2. First, S% is an Abelian
group with the standard matrix addition + and the zero element is Ogx4. Second, S is
a semi-group with the standard matrix multiplication -, because the elements in S? can
be multiplied directly due to the same dimensionality of the rows and the columns, and
S1-S2-S3 = S1-(S2-S3),VS1, S2, S3 € S Third, the law of distribution holds: S1-(S2+S3) =
S1-S2+4S;-S3. Thus S?is a ring. These algebraic properties make it possible to investigate
the structure of S%, especially with the specific information in X.

In comparison, the space R¥*% does not have the advantages of S¢. It motivates us
to find a new orthogonal decomposition of S% instead of R¥*?. To do this, we switch the
composing order of operators in (20):

Pog:R"¥ 8%~ §? Pog(X)=PX'X). (27)

The Gram matrix g goes first to map X to S%, then an orthogonal projection P acts on S%
to extract the risk structure.

The next step is to find an appropriate P. The focus comes back to the undersampled
problem in SPO, where the number of observations w is much smaller than the number of
assets d. It leads to rank(X) < w < d, which fails the maximum-likelihood or consistent

covariance estimate. It shows a clue that we should start with the rank-related structure of
se.

3.2. Determinantal Variety and Its Tangent Spaces at Spectral Components

The second stage is to investigate the rank-related structure of S¢ thoroughly, including
the determinantal varieties, their tangent spaces, and the spectral components regarding
the observation X.

3.2.1. DETERMINANTAL VARIETY FOR R%*d

Without loss of generality, we assume rank(X) = w < d in the rest of this paper, since
the observation X has full rank in most practical situations. If not, one could just replace
w with the actual rank(X) and the conclusions still hold.

The rank v of a matrix X is determined by the largest t such that one of the t-minors (the
determinants of the t x v submatrices allowing for index permutations) is nonzero. In other
words, rank(X) < vif and only if all the (v41)-minors of X equal zero. Since a determinant is
a polynomial of the elements in X, the set A (wx d,t) £ {X € R¥*? : rank(X) < t} are the
common roots of the polynomial equations defined by the (t+1)-minors. Hence, A (wxd, t)
is an algebraic variety that has some special properties regarding its determinantal ideals. It
helps to study some rank-related problems in R**¢ as well as some tangent spaces at some
specific matrix X. Interested readers could refer to Kirdly et al. (2015); Chandrasekaran
et al. (2009); Bruns and Vetter (1988) for more details in this topic.

3.2.2. DETERMINANTAL VARIETY AND ITS TANGENT SPACES FOR S¢

Instead of R¥*?, we mainly investigate the rank-related structure of S, in order to find
an appropriate orthogonal projection P. Furthermore, we could exploit the information in
a specific observation X to characterize S?, which is more adaptive to the current financial
circumstance. We start with the following definition:

10
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Definition 1 (Determinantal Variety for S%) The determinantal variety of rank v for
S? is

M (d,t) & {M € S?: rank(M) < t}. (28)

It is well-defined since rank(M) < t if and only if all the (v + 1)-minors of M equal zero
(if v = d, A (d,x) = S?). .#(d,x) consists of all the symmetric roots of the polynomial
equations defined by the (v + 1)-minors.

Suppose we obtain some specific information matrix S € S¢, let the spectral decompo-
sition of S be

Definition 2 (Spectral Decomposition)
S=UOU' st UecR™ U'U=1;0 = diag(0y,0s, - ,0,). (29)

Note that even if rank(S) = t < d, one could still find a full orthonormal basis U for R,
Without loss of generality, we assume 601 = 02 > -+ > 04.

The orthonormal basis U is a useful tool to represent R and S? in the perspective of the
observed information S. We could further look into such a representation via the tangent
spaces of the determinantal variety.

Theorem 1 Let J = {j : 0; # 0} be the index set of nonzero eigenvalues of S € S with
|J| =t. Then the tangent space of the variety .4 (d,t) at S can be characterized as

7(8)={U,;DU] :D e S}, (30)
where Uy € R is the orthonormal set corresponding to the index set J.

Proof .7(S) is the largest linear subspace of S¢ containing S = U;© ;U] such that
the rank of any matrix in 7 (S) is no larger than v. Since {U;DUJ : D € S} is a
linear space containing S and rank(U JDU}—) < ¢ for every U JDU}— in this space, we have
{U,DU] : D € S} C 7(8S). Besides, if t = d, then U; = U and {UDUT : D € §%} fills
up the whole linear space 7 (S). Hence we just need to prove that

J(S)C{U,;DU) :D €S} whent < d. (31)

Given an arbitrary matrix W € .7(8), let the spectral decomposition of W be VAV T
with V and A similar to Definition 2. Let K = {k : A\ # 0} be the index set of nonzero
eigenvalues of W, then W = VAV and |K| < t. We first explain that W should lie
in either the same row-space or the same column-space of S. If not, there exist at least
one eigenvector v; € R? in the orthonormal set Vg that is linearly independent of the
other orthonormal set U ;. Combining v; with U ; forms a linearly independent set of rank
(v + 1), which exceeds the rank constraint of .7 (S). To be specific, v;v,” € 7 (S) because
W e 7(S), and UJU} € 7 (S) according to the above paragraph. Since .7 (S) is a linear
space,

viv] +U;U] € 7(S) but rank(v;v; + U ;UJ) =t +1. (32)

11
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It violates the rank constraint of .7 (S) and leads to a contradiction.

Therefore, W should lie in either the same row-space or the same column-space of S.
In either case, we could let Vi = U ;C for some linear transform C € R™IXl and represent
W via Uy

W = VgAgVi = U ;(CAKCTU}, CAxCT esw. (33)

Thus W € {U;DU] : D € S*}. Now we have proven that YW € 7(S) = W € {U,DU]} :
D € S*}, thus (31) has been proven. Together with the first paragraph of this proof, the
whole theorem has been proven. |

For convenience, we need not state the underlying nonsingular variety .#(d,t) for a
rank< t tangent space in the rest of this paper. Based on Theorem 1, the following theorem
further indicates that two tangent spaces at two nonoverlapping sets of spectral components
are mutually orthogonal.

Theorem 2 Denote two arbitrary nonoverlapping index sets by Ji,Jo C {1,2,--- ,d} and
JiNJy =10. Let Uy, and Uy, be two nonoverlapping orthonormal sets regarding the spectral
decomposition of S. Then 7 (U, U}l) 1 f(UhU:,rz) in the following two senses:

1. Consider 7 (U ;, U} ) and 7 (U1, U} ) as operator spaces of linear mappings for R* —
R%.

2. Consider 9(UJ1U}1) and 7 (U, UL) as linear subspaces of the Hilbert space S% with
its standard inner product.

Proof Given two arbitrary matrices W1 € .7(U;, U} ) and Wy € 7 (Uy, UL), we could
characterize them as W; = U lelU:]rl and Wy =U J~2D2U;2 based on Theorem 1. Note
that rank(W) and rank(W3) need not be the same. Composing W1 and Wy leads to

W1 W, =U,;,D;(Uj U,)DU}
= U, D10, x5, D2U,

Since U, and U, are mutually orthogonal, U}lU J, vanishes to the zero matrix O\, x|
It results in the following two conclusions.

1. The composition W1 Wy = Ogyq is exactly a matrix multiplication. If we consider
this multiplication as an operator inner product with Ogxg4 being the zero element,
we have W1 L Wy, For the arbitrariness of W1 and Wy, y(Ulejl) 1 7(Uy, UL)
in the sense of operator spaces.

2. Computing the standard inner product of W1 and Wy in S? leads to tr(W; Wy) =
tr(Ogxq) = 0. Hence g(UJIUL) 1 y(UJ2U:]|—2) in the sense of linear subspaces of
S4.

12
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Theorem 2 can be easily extended to the case of multiple tangent spaces. This property
induces an orthogonal projection from S? to a tangent space .7 (U KUI{)

Theorem 3 Let K C {1,2,--- ,d} be an arbitrary index set and denote Tx = 7 (U U},)
as the tangent space at the spectral component UKU; of S. Then

Pr:S%— Tk, Pr(W)2UxULWUKU (35)
defines an orthogonal projection from S to T .

Proof First, we verify that Px is a projection:

Pg oPg(W) =UgUg(UgUgWUg U )UgUje
= U (UgUg)ULWUg(ULUEK)Uj
= Ukl g UgWUgI g Ug
= UgULWULU}J =Pg(W), YW esh (36)
Pr(mWi+mWa) = Ug Uk (mWi + W)U Ug
= mUgUW UU g + pUg UL WoU U
= mPr(W1) 4+ mPr(Ws), YW, WyeS% Vn,meR.  (37)
Hence P o Py = Px and Pk is a projection.
To further prove that P is orthogonal, we decompose ¥V W € S? into two components
W = Pie(W) + (1 Pr)(W)
= (UxULWUKUS) 4+ (W - UgULWUKU), (38)

where I denotes the identity mapping. If Px(W) L (I — Px)(W), then Pg is orthogonal.
It can be verified by computing their standard inner product in S%:

tr(UxkUWURUL)(W — UgULWULUL))
=tr(Ux UL WURKULW) — tr(Ug U WUR(ULUg)ULWURUL)
=tr(UxULWUKULW) — tr(Ug U, WULU;WUg Uj)

A B
=tr(Ux UL WUKUW) — tr(U,Ug)ULWULULWUg)
=tr(Ux UL WUKULW) — tr(UL,WURLULW Ug)

A B
=tr(UxULWUKUW) — tr(Ug UL WURULW) = 0. (39)

We use the fact UIT(UK = Ig| in the second and the fourth equations, and the fact
tr(AB) = tr(BA) in the third and the fifth equations. Since the above inner product
is zero, Px is orthogonal. |

13
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Some notes: 1. Now we have already established an orthogonal projection Px and
a direct sum decomposition T P yﬁ- =S¢ for S%. In fact, if JNK = 0, then Z; and
Ik are uncorrelated in the sense of orthogonality, which is similar to (24) and (26). This
property helps to separate the structural information of S into uncorrelated components
and extract the most significant component. Moreover, Px and Jk are adaptive to the
current observation X since they exploit the information therein.

2. An eligible covariance estimate is not only symmetric but also positive semidefinite.
Thus from (27), we could use S = XX € S to characterize S and 7 (S) in (29) and
(30), where S‘i denotes the cone of positive semidefinite symmetric matrices. In this case,
U, simply consists of the first v = rank(S) eigenvectors and 0,y = 610 =+ =63 = 0.

3.3. Rank-one Covariance Estimate

The third stage is to find the most important tangent space among all the tangent spaces
in S, and then find a suitable covariance estimate therein.

3.3.1. RANK-ONE TANGENT SPACES AT SPECTRAL COMPONENTS

Suppose we use the Gram matrix S = XX € S¢ with rank(S) = rank(X) = w. Its
spectral decomposition is illustrated by the above notes. We further discuss a special type
of tangent spaces: the rank-one tangent space at each spectral component

;& F(wu, ), u;is the i-th eigenvector of S, i=1,2,---,d. (40)

The orthogonal projection induced by .Z; in Theorem 3 is denoted by P;. {%}?:1 are
mutually uncorrelated in the sense of orthogonality.

As explained in Section 3.1.3, a covariance estimate 3 can be seen as a quadratic form
in S¢. From the perspective of operators, {uz-uZ-T}}”:1 are the main components of S that
reveal the instantaneous risk structure in S¢ for the current financial circumstance. In these
main components, ululT is the principal component that carries the largest spectral value
f; among all the components. Actually 6; is much larger than other ;s in SPO situations.
For example, Figure 1a shows the box plots of {#;}{", (w = 5) for the observations of the
HS300 data set (Lai et al., 2018a). It indicates that 6; > 200 in all the observations while
05 ~ 05 are rather small. The average spectral values are

(01,602, ,05] =[220.3898,0.0153,0.0075, 0.0045, 0.0026]. (41)

Thus A possesses the most important risk structure while other .Z;s contain trivial signals,
market noise or even misleading information.

We further investigate the spectral values of the traditional covariance estimate Sup
at {uu;] }¥, to see their differences from {6;}% ;. We implement the singular value de-
composition (SVD) on X =V JEU:]I—, where the right singular vector U is exactly the

14
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Figure 1: Box plots of spectral values at {u;u; }*; in an SPO experiment (w = 5). (a)
61 is much larger than other {6;},+1, thus .71 possesses the most important risk
structure. (b) The spectral energy is dispersed into Dq; ~ D35, which weakens
the representation via .7;.

orthonormal set of S = X TX. Based on Theorem 1, we observe that

w

5 1
Sup=goPr(X)=X"(I, - —1,1,)X
w

-2 1_ -
=U (2%~ E:V}—lwllVJ:)U;

2U,DU; € 7(S)nS. (42)

Thus we could use the same spectral components w.r.t. S to represent Sup. To keep a
simple notation and avoid ambiguity as well, we use D particularly for the representation of
3 u/p in the rest of this paper. The diagonal elements {D;;};”, of D are the corresponding
spectral values at the spectral components {uiu,L»T i21. We conduct the same experiment as
the above paragraph to compute {D;;}!”; and show their box plots in Figure 1b. Different
from Figure la, the gap between {D1;} and other {Dy;};+ is much smaller in Figure 1b.

In fact, the average spectral values are

[D11,Dag, -+, Dss] = [0.0167,0.0153,0.0075, 0.0045, 0.0026], (43)

which indicates that the spectral energy is dispersed into D17 ~ Ds5. Hence 3| v p allocates
a considerable proportion of spectral energy to the minor spectral components {uiuiT Yiztt,
which weakens the representation via .77. Experiments in Section 4.2.2 will further demon-
strate that 3/ p fails to catch the instantaneous principal risk structure and thus deterio-
rates in investing performance.

15
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3.3.2. RANK-ONE COVARIANCE ESTIMATE IN 9

Based on the above discoveries, the Gram matrix S = XX seems to be a good substi-
tute for the traditional covariance X ,;p. But there are at least two drawbacks in which S
needs further improvements:

1. It does not extract any asset volatility information from S up.

2. Though it allocates most spectral energy to the principal rank-one tangent space 71,
it still has some energy in the minor tangent spaces {.7; }ix1.

As for the first point, > p has a mathematical expression that measures asset volatility,
which could be useful in setting the magnitude of covariance estimate. To explain the second
point, we give an example

Y =wGu +uiGu), j#1L¢G>0. (44)

Then if the portfolio happens to be b = nu; (1 # 0), the representation via .77 will vanish
in the risk term

b'Sb = ¢, (45)

no matter how large (; is, since 73 L Jj. In this case, b'3b is mostly market noise
that is detrimental to the mean-variance model. In fact, this problem could appear when
b ~ nu;. Even if S were useful, it cannot do without the detailed analyses of the rank-
related structure of S¢ in this whole section. Experiments in Section 4.2.3 would further
show that S is not so effective as the rank-one covariance estimate 3 po to be proposed
below.

Therefore, we eliminate all the minor spectrums in {7}, and only keep the spectrum
in Z7. It leads to the rank-one covariance estimate

230 = 111(1111r eA ﬂSi (46)

1 has already determined almost the whole s ro- The only issue left to be addressed is the
magnitude of the spectral energy (1, which could be set with the asset volatility information
from 3)7p. Since no more assumptions on the price relatives or the covariance estimate are
made, we provide a heuristic and empirical way to find (;, which shows good performance
in reducing downside risk and improving investing return for SPO.

First, we define a magnitude function of a symmetric matrix ¥ € S as follows

~ d-rank(X%)’ (47)

We use the nuclear norm since it has a simple calculation || - || = tr(-) in S?. Besides, we
divide ||X]|« by d - rank(X) as a normalization regarding the dimensionality and the rank
of the matrix. Then we set (; as a trade-off between the magnitude functions of the two
covariance estimates u1«91u1T =P 0g(X) and Sup = g o Pr(X)

p2(u101u1T) ~ ~

¢ = argmin + o(Zro) - p(Sarp)- (48)

>0 p(Zro)
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When p(ﬁ] Rro) increases, the first term decreases while the second term increases, and vice
versa. We square p(u191u1 ) to amplify its influence because u1«91u1 carries the spectrum
regarding X in the principal tangent space .7;. Then (48) reaches its minimum when

2(u16u N .
M = p(Xro) - p(Xmp),
p(Xro)
- u6qu
P(ZRO):i( = 1),
p(Sup)
JwGuf |l _ ||u191111 ||* HEMPH*
d-1

. tr U JDUT
tr(u;(fuy ) = tr(u191u1 )\ ——————=

UTU D)
tr(u] i) = tr(] )/ [ wjl

= (M) | (49)

In the rest of this paper, we use X o = u;(fu] as the covariance estimate for our method.

w\»—t

Figure 2 shows how to construct 3\ RO via tangent spaces. 7 contains by mp and the
principal rank-one tangent space .77, where .7 reveals the main instantaneous risk structure
of the current financial circumstance. At first, S is orthogonally projected onto 7, as
u191uf. Then a point in .77 is found as a trade-off between u6; u]— and 3 M p according to
(49), which is the desired 3 ro.

3.4. Short-term Portfolio Optimization with Loss Control

The fourth stage is to establish a loss control scheme in the SPO model with the rank-
one covariance estimate 3 po. Recall the observation matrix X in (15), we further denote
X; (1 < i < w) as the i-th row of X.

For a portfolio b € Ay, X;b is the increasing factor of the i-th trading period. Fur-
thermore, minj<;<, X;b is the worst performance in the recent time window if we use b
as the portfolio. Recall that there are only a small window size w of observations that are
sufficiently close to the current moment ¢ and reliable to estimate the extreme loss in the
dynamic financial circumstance. To control loss and downside risk, we propose to optimize
b such that the worst performance is maximized

~

b = argmax min X;b. (50)
beAy I<i<w

This strategy can be interpreted by Figure 3. Note that as b changes, the worst-performance
index ¢ may have a “hard shift” to a different index j.

17
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Figure 2: Interpretation of the proposed rank-one covariance estimate Sro via tangent
spaces. The universe .7 is the tangent space of .Z(d,w) at the Gram matrix
S = X'X. ®Find the principal rank-one tangent space 7 (the dashed line).
@Project S orthogonally onto 7 as u191u1r. ®@Find a trade-off point Sro =
ulq‘ulT between u191u1T and ¥ yp in Z.

— argmax
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Figure 3: A toy example of the proposed loss control strategy. A portfolio b is selected to
maximize the minimum increasing factor X;b in the recent time window.

Taking the covariance estimate 3 ko into model (50), we should minimize the risk
b Y rob simultaneously in the optimization

~

b = argmax( min X;b) — b’ Zxob, (51)

beAy I<isw

where v > 0 is a mixing parameter that trades off between the increasing factor and the
risk. Since —'beE rob is invariant to ¢, it could be put in the outer maximization, which
is equivalent to minimizing vb ' 3 rob.

18



Loss CONTROL WITH RANK-ONE COVARIANCE ESTIMATE FOR SPO

Compared with the original mean-variance model (5), our model (51) replaces the ex-
pected portfolio return g ' b with the worst increasing factor minj<;<,, X;b, which i improves
robustness to the short-term loss and the downside risk. Besides, using 3| Rro instead of Sup
could catch the instantaneous risk structure embedded in X with the representation via the
principal rank-one tangent space 7. These mechanisms make our model effective in loss
control and get stable growth in wealth.

To solve (51), we reformulate it as a quadratic programming. First, we introduce a new
variable ¢ € R to simplify minj<;<, X;b:

min X;b <= maxgq s.t.Xb > ql,. (52)

1<iw

The inequality is componentwise, which can be inferred from the context. Now the index ¢
no longer appears and the “hard-shift” problem of the worst-performance index is solved.
Then (51) can be transformed into

b = argmaxq —vb' Srob  s.t.b >0, 1)b=1,Xb > (53)
b

where we explicitly show the two constraints with respect to b € Ay.
Next, we concatenate and augment some variables and matrices

A =[-X,1,] e R 7 = [b;g] € R £ = [04; —1] € R¥,

h = [04; —oc] € R,y = [14;0] € R, H = [ e ] e sit, (54)
d
where [---,--+] and [---;---] are concatenations in the row direction and in the column

direction, respectively. Then (53) can be further transformed into a standard form of
quadratic programming

z=argminyz ' Hz+f'z st.Az<0,z>hy z=1. (55)
z

Note that the maximization is changed to the minimization by adding a negative sign.
Since H is positive semidefinite, the objective function is convex. Thus Slater’s theorem
and strong duality hold for (55), and standard primal-dual algorithms are capable to solve
it (Boyd and Vandenberghe, 2004). Once z is solved, the corresponding optimal portfolio
is composed by the first d elements: b = z[1 : d]. We refer to model (55) by SPOLC in the
rest of this paper. The whole system can be summarized in Algorithm 1.

4. Experimental Results

The experiments include three main parts: the first is to set the parameters for SPOLC
and verify that the rank-one covariance estimate cannot be replaced by simplified variants
or LPO methods; The second is to assess the ability of controlling extreme losses and
downside risk; The third is to evaluate the investing incomes of SPO systems versus the
Market strategy and the 1/d strategy.

19



Lar, TAN, WU AND FANG

ALGORITHM 1: Short-term Portfolio Optimization with Loss Control
(SPOLC)

Input: The observation matrix of asset price relatives X €
and a dimensionality of d. Set the mixing parameter +.
1. Conduct the singular value decomposition X =V JEU;. Correspondingly, The
principal eigenvalue and eigenvector of S = XX are 6; = =2, and uy, respectively.
2. Compute the transform matrix D = =2 — %EV}lw].;VJE.

R¥*4 with a window size of w

_1
3. Let (f = ( dt(ru(]?i)) 2 0,. Compute the rank-one covariance estimate by

fJRO = ulquf.
4. Concatenate and augment some variables and matrices:
A =[-X,1,] e RV 7 = [byg] € R f = [0g; 1] € R,

~

h = 045 —oc] € Ry = [1,;0] € R H = [ wro O } e s,
d
5. Solve the quadratic programming;:
z =argmin,yz Hz +f'z st. Az<0,,z>hy
Output: The optimized portfolio b = z[1 : d].

Tz =1.

4.1. Date Sets and Assessments

We conduct extensive experiments on 7 benchmark data sets from real-world financial
markets. 4 standard data sets consist of daily price relatives of constituent stocks from
Dow Jones Industrial Average (DJIA, Borodin et al. 2004), Standard & Pool 500 (SP500,
Borodin et al. 2004), Toronto Stock Exchange (TSE, Borodin et al. 2004) and China Stock
Index 300 (HS300, Lai et al. 2018a). Besides, we propose 2 new data sets: NYSE19 and
FOF. We extract the constituents that have no more than 1 missing record during a recent
period 2015 ~ 2019 from the New York Stock Exchange (NYSE), which results in 47 stocks
(their codes are given in Appendix A). Then we fill in each missing close price with the
previous close price and convert all the prices to price relatives. FOF consists of daily price
relatives of 24 mutual funds in China (details of these funds are given in Appendix A).
A portfolio on a set of mutual funds functions with the same business logic as a fund of
funds (FOF). The financial properties (e.g., volatility, correlation, liquidity, etc.) of mutual
funds are quite different from those of stocks, thus the FOF data set could bring in new
challenges and materials for new discoveries in SPO. Besides daily data sets, we also adopt
a monthly data set (denoted by “FRENCH”) from Kenneth R. French’s Data Library®. It
consists of 32 North American portfolios formed on size, book-to-market and investment. It
is converted from return sequences to price relative sequences. We use this monthly data set
to further investigate the performance of SPO systems in the LPO situation. Profiles of the
7 data sets are given in Table 1, which cover a wide range of financial markets, frequencies,
asset types and time spans.

For comparison, we evaluate 5 SPO systems with active investments and state-of-the-
art investing performance: OLMAR, RMR, PPT, AICTR, and SSPO. For the baseline

of investing incomes, we use 2 common passive investments: the Market strategy (3) and

1. http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Data set [Region Asset type [Frequency Time Periods [Number of assets
NYSE19 | US Stock Daily 2/Jan/2015 ~ 4/Sep/2019 1167 47
DJIA Us Stock Daily | 14/Jan/2001 ~ 14/Jan/2003 507 30
SP500 | US Stock Daily | 2/Jan/1998 ~ 31/.Jan/2003 | 1276 25
TSE CA Stock Daily 4/Jan /1994 ~ 31/Dec/1998 1259 88
HS300 CN Stock Daily | 21/Jan/2016 ~ 16/Oct/2017 421 44
FOF CN Fund Daily | 4/Jan/2013 ~ 29/Dec/2017 1215 24
FRENCH | NA | Portfolio | Monthly Jul /1990 ~ Feb/2020 356 32

Table 1: Profiles of 7 benchmark data sets from real-world financial markets.

the 1/d strategy (4), as well as 1 LPO method combined with our loss control framework:
NSCM (8). A good active SPO system should outperform these passive strategies and LPO
method in the investing income while keeping the downside risk as low as possible at the
same time. We use the default parameters in the original papers for the competitors (Li
et al., 2015, 2016; Huang et al., 2016; Lai et al., 2018b,a,c): OLMAR: w = 5,¢ = 10; RMR:
w = 5,¢ =5, PPT: w = 5, ¢ = 100; AICTR: w = 5, 0l2 = 0.0025, ¢ = 1000; SSPO:
w = 5\X=0.5,7 =0.01,7 = 0.005,( = 500. The window size w = 5 is consistent among
all these systems, which is much smaller than the numbers of assets (see Table 1). The
parameters for the LPO method NSCM will be set in Section 4.2.4.

We use the following 8 key evaluating indices to assess the SPO systems. Indices 1 ~ 4
offer a comprehensive assessment on the extreme losses and downside risk, while Indices
5 ~ 8 evaluate the investing incomes. It is very challenging to achieve state-of-the-art
performance in all these downside risk indices and keep competitive investing incomes si-
multaneously, since a higher investing income comes with a higher risk in general.

1. Value at Risk (VaR, Jorion 1997): the potential extreme loss over a trading period in
a disastrous situation with a given small probability (confidence level).

2. Downside Semideviation (DSDV, Roy 1952; Markowitz 1959): the deviation that only
counts downward terms.

3. Maximum Drawdown (MDD, Magdon-Ismail and Atiya 2004): the maximum percent-
age loss from a past peak to a past valley in the whole investment.

4. Calmar Ratio (CR, Young 1991): a downside-risk-adjusted return that smooths out
overachievement or underachievement.

5. Cumulative Wealth (CW): the main index to assess investing incomes.

6. Mean Excess Return (MER, Jegadeesh 1990): the average excess income of a system
versus the Market.

7. Sharpe Ratio (SR, Sharpe 1966): risk-adjusted average return.

8. Information Ratio (IR, Treynor and Black 1973): risk-adjusted MER.
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Figure 4: Cumulative wealths of SPOLC with respect to v (fix w = 5).

4.2. Parameter Setting and Other Covariance Estimates

In this subsection, we set the parameters for SPOLC and further investigate how it
works if we replace the rank-one covariance estimate X go with other estimates, such as the
unbiased covariance Xy, the Gram matrix S = XX or the NSCM X yg.

4.2.1. PARAMETER SETTING FOR SPOLC

At first, we set w = 5 to be consistent with other SPO systems. Then we set the mixing
parameter 7 in (55) according to the final CW in the FOF data set, which is in a similar
way to Li et al. (2015); Huang et al. (2016); Lai et al. (2018b,a,c). Let v change in [0, 0.04],
the corresponding CWs of SPOLC are plotted in Figure 4. The v = 0 case is the non-risk
model (50), which is worse than the v > 0 case. Hence the proposed risk term b3 rob is
effective in SPO. Since v = 0.025 achieves a good CW of 1.9228, we fix it in the rest of this
paper.

As for the window size, w = 5 is a conventional and popular setting in SPO and in
many indices of stock-trading softwares. Including more distant observations may affect
the estimation at the current moment, since the financial characteristics are dynamic. But
if one does need to tune w, we suggest that it could be increased by a little. At the same
time, v may also be adjusted by a little to fit the new window size. We give some examples
for w € [5,10] in Table 2.

4.2.2. SPOLC vs. ORIGINAL MEAN-VARIANCE

To verify that SPOLC is more suitable for SPO than the original mean-variance (OMV)
model (5), we search in a wide range [0.5e—3, 2.5e+11] for a good parameter v for OMV with
the unbiased covariance estimate Xy in (17). But the best case is only CW = 1.3881,
which is much worse than CW = 1.9228 of SPOLC. Nor does OMV perform well on
other benchmark data sets in this range of ~. For simplicity, we just show the results of
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NYSE19 | DJIA | SP500 TSE HS300 | FOF || FRENCH
w=>5,y=0.025 | 2.4530 | 3.0097 | 58.1662 | 345.1481 | 1.5647 | 1.9228 6.5739
w=06,v=0.022 | 0.7926 | 2.7925 | 29.6149 | 183.7565 | 1.5782 | 1.5090 9.0157
w="7,v=0.018 | 1.0925 | 1.3318 | 28.8835 | 407.1672 | 1.1642 | 1.6725 7.8942
w=28,v=0.03 1.3620 | 1.6184 | 12.1070 | 284.5688 | 1.5239 | 0.9372 5.6033
w=9,7v=0.035 | 2.7581 | 1.5830 | 10.7396 | 227.6947 | 1.3011 | 0.7258 3.8060
w=10,vy=0.03 | 0.9009 | 2.4711 | 25.1636 | 96.7747 | 1.4768 | 0.5971 5.5834

Table 2: Cumulative wealths of SPOLC with respect to w and ~.
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Figure 5: Cumulative wealths of the original mean-variance model with respect to ~.

FOF in Figure 5. It indicates that OMV stays at about CW = 1.38 when ~ changes in
[2.5e + 4, 5e + 10]. Hence this traditional model for LPO is not effective in SPO.

4.2.3. RANK-ONE COVARIANCE VS. GRAM MATRIX

(41) shows that the Gram matrix S = XX seems to be an approximate rank-one co-
variance in structure since 61 > 0; (i # 1). However, the remaining spectrums {uieiug— Yit1
in the minor tangent spaces still weaken the ability of catching the instantaneous principal
risk structure. Besides, S does not extract any asset volatility information from 3 p, while
3 p could be useful in setting the magnitude of covariance estimate. Even if S were useful,
it cannot do without the detailed analyses of the rank-related structure of % in Section 3.

To see how S works, we substitute 2zo in (51) for S and search v in a wide range
[0.5¢ — 3,2.5e + 11] for a good mixing parameter. The overall best case is v = 2.5 and the
corresponding CWs on the benchmark data sets are shown in Table 3. It indicates that
Sro is superior to S on almost all the data sets except for NYSE19. The gaps are rather
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Cov. | NYSE19 | DJIA SP500 TSE HS300 FOF FRENCH

Sro | 24530 | 3.0097 | 58.1662 | 345.1481 | 1.5647 | 1.9228 6.5739
S 3.4868 | 2.9660 | 43.7565 | 161.9418 | 1.4978 | 1.9142 5.4281

SN 1.1233 0.7307 1.0758 1.5738 1.3099 | 1.4283 20.4540

Table 3: Cumulative wealths of SPOLC with different covariance estimates. X po is the
proposed rank-one covariance estimate, S is the Gram matrix XX, and 3yg is
the NSCM method.

wnys | NYSE19 | DJIA | SP500 | TSE | HS300 | FOF FRENCH
5 0.8150 | 0.4655 | 0.2910 | 0.2182 | 0.6224 | 1.1134 34.0923
100 0.7913 | 0.4643 | 0.2920 | 0.2184 | 0.6225 | 1.1305 35.0910
200 0.7893 | 0.4642 | 0.2916 | 0.2165 | 0.6225 | 1.1341 35.0785
300 0.7900 | 0.4642 | 0.2920 | 0.2173 | 0.2915 | 1.1349 35.0792

Table 4: Cumulative wealths of NSCM with respect to wyg (fix v = 0.025).

significant on SP500, TSE, HS300 and FRENCH. Thus it is beneficial to use 3 ko instead
of S in SPOLC.

4.2.4. RANK-ONE COVARIANCE vS. NSCM

The NSCM ¥ ~Ns in (8) is an improved covariance estimate for LPO. To see whether
3| NS Or 3| ro is more effective, we substitute 3| ro in (51) for 3| NS. Moreover, we try both
small and large window sizes wyg = 5,100,200, 300 in the computation of > NS, because
more observations might better show its strength according to its theory of consistency.
Note that the window size of the first term (mini<;<w X;b) in (51) remains w = 5, in order
to conduct a fair comparison between 3| Ns and )| RO-

First, we fix v = 0.025 and conduct CW experiments with these window sizes. The
results are shown in Table 4. It indicates that increasing the window size would not bring
about better performance for 3 ns. Second, we just keep wys = 100 and search ~ in a wide
range [0.5e — 3, 2.5e+ 11] for a good mixing parameter. The overall best case is v = 2.5e+7
and the corresponding CWs are shown in Table 3. The results match the expectation that
3| ~s works well on the monthly data set FRENCH but quite badly on all the daily data sets.
Hence the proposed | RO 1s a better choice for SPO than > NS as an improved covariance
estimate.

4.3. Assessment on Extreme Losses and Downside Risk

In this subsection, we mainly assess the extreme losses and downside risk of different
SPO systems with several common risk metrics.

4.3.1. VALUE AT RISK

The most important and popular index of loss assessment is the value at risk (VaR,
Jorion 1997), because it not only measures the percentage loss but also considers its prob-
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ability. It is formally the quantile of the strategy return at a given confidence level ¢
Pr{rs <VaR} =1—c, (56)

where Pr{rs; < VaR} is the probability of the event {rs < VaR}, rs is the return of an
investing strategy on one trading period. For example, a VaR = —0.1 at ¢ = 0.95 means
that the investing strategy may suffer a percentage loss > 10% with a probability of 5% on
one trading period.

With the problem setting of this paper, we can use the empirical return distributions of
different SPO systems to assess their VaRs. Once an SPO system runs through a data set
with n trading periods, we convert the increasing factors to returns

~

rsizb;xt—l, t=1,2,---,n, (57)

where rg; and E)S¢ are the return and the optimized portfolio of the SPO system at the ¢-th
period, respectively. We could sort {rs;}y; as {75 x)}j—; in the ascending order, and pick

up the (1 — ¢) quantile as VaR. To be specific, the empirical distribution of Pr{r, < VaR}
is

#{rsr: rer < @} N

n

Pr{r, < VaR} = 1—c, (58)

where #{rs;: 151 < %7%} denotes the count for {rs};; such that rs; < VaR. Given a

confidence level ¢, we use the k-th smallest r5; as VaR such that

k £ I_n(l - C)J7 rs,(l) < rs,(2) <0 < rs,(k:) <o < rs,(n)v
VaR 2 ry s, (59)

where |-] denotes the floor operator.

An SPO system with a higher VaR endures a smaller loss at the given confidence level.
We show the VaRs at two common confidence levels ¢ = 90% and ¢ = 95% for different
SPO systems in Table 5. SPOLC achieves the highest VaRs at both confidence levels on
all the daily or monthly data sets. It outperforms other SPO systems by percentages of
about 9% ~ 15% when ¢ = 90% and 2% ~ 15% when ¢ = 95%, which shows state-of-the-
art performance in loss control. For example, the VaR of SPOLC at ¢ = 90% on FOF is
—0.0166, which means that SPOLC may suffer a percentage loss greater than 1.66% on one
trading day with 10% probability. Such a relatively low level of downside risk indicates
that SPOLC is effective in catching the instantaneous risk structure of the current financial
circumstance.

4.3.2. DOWNSIDE SEMIDEVIATION

Most ordinary investors gain profits mainly by the long position in the portfolio. Al-
though some may be able to make profits by pure short position, these profits could not
reflect the real growth of the whole financial system. Hence the impact of downside risk
is generally much greater than that of upside risk, but the traditional standard deviation
(STD) treats both risks equally as a common risk metric. To stress the importance of
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NYSE19 DJIA SP500 TSE HS300 FOF FRENCH

OLMAR | —0.0390 | —0.0368 | —0.0354 | —0.0427 | —0.0167 | —0.0205 —0.0740

RMR —0.0381 —0.0367 | —0.0360 | —0.0408 | —0.0161 —0.0214 —0.0751

¢ = 90% PPT —0.0415 | —0.0359 | —0.0366 | —0.0435 | —0.0179 | —0.0244 —0.0833
AICTR —0.0400 | —0.0368 | —0.0360 | —0.0435 | —0.0179 | —0.0217 —0.0810

SSPO —0.0405 | —0.0358 | —0.0366 | —0.0435 | —0.0179 | —0.0243 —0.0810

SPOLC | —-0.0325 | —0.0313 | —0.0301 | —0.0370 | —0.0143 | —0.0166 || —0.0672

OLMAR | —0.0554 | —0.0498 | —0.0492 | —0.0710 | —0.0260 | —0.0352 —0.1149

RMR —0.0554 | —0.0482 | —0.0488 | —0.0625 | —0.0257 | —0.0354 —0.1148

¢ — 95% PPT —0.0591 —0.0500 | —0.0512 —0.0692 | —0.0267 | —0.0421 —0.1148
AICTR —0.0563 | —0.0498 | —0.0508 | —0.0698 | —0.0283 | —0.0361 —0.1149

SSPO —0.0589 | —0.0498 | —0.0512 —-0.0678 | —0.0267 | —0.0421 —0.1149

SPOLC | —0.0511 | —0.0473 | —0.0440 | —0.0526 | —0.0219 | —0.0310 || —0.0973

Table 5: VaRs at two confidence levels ¢ = 90% and ¢ = 95% for SPO systems on 7
benchmark data sets.

System | NYSE19 | DJIA SP500 TSE HS300 FOF FRENCH
OLMAR | 0.0253 0.0219 | 0.0217 | 0.0343 | 0.0137 | 0.0172 0.0483
RMR 0.0249 0.0219 | 0.0215 | 0.0327 | 0.0135 | 0.0169 0.0483
PPT 0.0260 0.0221 | 0.0230 | 0.0341 | 0.0135 | 0.0189 0.0494
AICTR 0.0256 0.0218 | 0.0227 | 0.0339 | 0.0140 | 0.0179 0.0476
SSPO 0.0254 0.0218 | 0.0231 | 0.0340 | 0.0135 | 0.0189 0.0495
SPOLC | 0.0224 | 0.0203 | 0.0192 | 0.0275 | 0.0113 | 0.0155 0.0416

Table 6: Downside semideviations for SPO systems on 7 benchmark data sets.

downside risk in risk portfolio management, Roy (1952) and Markowitz (1959) propose the
downside semideviation (DSDV) that only counts the downward terms

if Tst < Ts

_ 1 @ _ . 0 ifrg, > 7,
DD (YRS CRCYET S SN S ()
t=1 s i

where 75 = % > 1oy I's is the mean return for the SPO system, and (-)~ denotes the negative
part of a real number.

The DSDVs for different SPO systems are shown in Table 6. SPOLC outperforms all
the other SPO systems on all the daily or monthly data sets. For example, SPOLC achieves
osporc = 0.0275 and 0.0113 on TSE and HS300, respectively, which are much smaller than
0 pyrr = 0.0327 and 0.0135 for the second best competitor RMR. It indicates that SPOLC is
effective in controlling downside risk, which is more attractive to the risk-averting investors
with heavy long positions.

4.3.3. MAXIMUM DRAWDOWN

In real-world investments, risk-averting investors are highly concerned about the worst
case in the losses they might suffer. Such an extreme loss can be measured by the maximum
drawdown (MDD, Magdon-Ismail and Atiya 2004), which is the maximum percentage loss of
wealth from a past peak to a past valley in the whole investment with a particular investing
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Figure 6: Diagram of maximum drawdown.

strategy
max S, — S, g
MDD 2 max ST 1 i - (61)
7€[l,n]  max St 7€[l,n] | max S
te[l,7] te(l,7]

where S; denotes the CW of the investing strategy at time ¢. As the current time 7 passes, it
searches the past time ¢ € [1, 7] for the peak and the valley CWs and computes the maximum
percentage loss. Note that to be consistent with the custom in the finance industry, the
MDD here is positive (i.e., the absolute value of the actual percentage loss).

A diagram of MDD is shown in Figure 6. It is a hard index that will not decrease as
the investment proceeds. Even if an investing strategy works well for the most time but
fails seriously for only once in a disadvantageous financial circumstance, the MDD will be
very high and it may take much time to recover. Besides, the investors may lose confidence
in this strategy and withdraw their investments, which may lead to the liquidation of the
corresponding fund. Hence MDD is one of the main downside risk metrics adopted by most
institutional investors to supervise their portfolios and funds.

The MDDs for different SPO systems are shown in Table 7. SPOLC outperforms other
SPO systems to a large extent on 6 data sets. Although it is slightly behind AICTR (0.3324)
or RMR (0.3469) on DJIA, the gap is small: 0.3552 — 0.3324 = 0.0228. Besides, all the
other SPO systems suffer high MDDs on at least one of the data sets. The highest MDD
for SPOLC is 0.7186, while the highest MDDs for other systems are: 0.8357 (OLMAR),
0.8236 (RMR), 0.8160 (PPT), 0.8100 (AICTR), and 0.8230 (SSPO), all on NYSE19. The
advantage of SPOLC over other SPO systems in the highest MDD is nearly 0.1. Other SPO
systems also suffer high MDDs on TSE, FOF and FRENCH. Hence SPOLC achieves much
more robust performance than other SPO systems in controlling extreme losses.
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NYSE19 DJIA SP500 TSE HS300 FOF FRENCH
OLMAR 0.8357 0.3685 0.4117 0.8201 0.2277 | 0.6043 0.7952
RMR 0.8236 0.3469 0.4631 0.7488 0.2333 | 0.5932 0.8051
MDD PPT 0.8160 0.4056 0.5249 0.7692 0.2440 | 0.7120 0.7375
AICTR 0.8100 0.3324 0.4161 0.6637 0.2265 | 0.6596 0.7748
SSPO 0.8230 0.3853 0.5190 0.7490 0.2391 | 0.7006 0.7459
SPOLC | 0.7186 | 0.3552(3) | 0.3379 0.5095 0.1902 | 0.5097 0.6426
OLMAR | —0.0242 1.5970 1.7679 1.5340 0.5267 | 0.0997 0.0253
RMR 0.0707 1.8124 1.1188 2.4463 0.8353 | 0.1659 0.0177
CR PPT 0.0711 1.8470 1.1415 2.7089 0.2226 | 0.0746 0.0322
AICTR 0.1015 3.1115 1.6564 4.3761 1.0199 | 0.0188 0.0240
SSPO 0.0790 2.3643 1.4436 3.0137 0.1969 | 0.0845 0.0359
SPOLC | 0.2976 | 2.0529(3) | 3.6432 | 4.3594 (2) | 1.6158 | 0.2849 0.1020

Table 7: Maximum drawdowns (MDD) and Calmar ratios (CR) for SPO systems on 7
benchmark data sets. The numbers in the parentheses are the rankings of SPOLC
on the corresponding data sets when it is not the best SPO system.

4.3.4. CALMAR RATIO

In contrast to risk-averting investors, risk-seeking investors are more concerned about
how much return they could make if they are willing to take a certain amount of downside
risk. Calmar ratio (CR, Young 1991) is such a downside-risk-adjusted return that smooths
out overachievement or underachievement. It is not so hard as MDD, since a sufficient
growth could cover a high drawdown. According to its definition, we first convert the CW
to the annualized return (AR)

N

AR =

3:\t

—1, (62)

where v denotes the total number of trading days (or months) for one year while the
investment lasts for n trading days (or months). We set v = 252 (daily data) or v = 12
(monthly data) according to the custom in the finance industry. Then CR is defined as
follows

AR
~ MDD’

The CRs for different SPO systems are shown in Table 7. SPOLC achieves the highest
CRs on 5 data sets, and is very close to the first-place AICTR on TSE. In particular,
SPOLC achieves much better CRs than other SPO systems on NYSE19, SP500, FOF and
FRENCH, which involve different data types. Therefore, SPOLC is competitive in trading
off between downside risk and return in various scenarios.

CR (63)

4.4. Assessment on Investing Incomes

In this subsection, we turn to evaluate the investing incomes for the active SPO systems.
An effective active SPO system should not sacrifice the excess return just to avoid risk. At
least, it should outperform some passive strategies like the Market strategy (3) and the 1/d
strategy (4), or the LPO method NSCM.
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NYSE19 DJIA SP500 TSE HS300 FOF FRENCH
Market 1.3300 0.7644 1.3416 1.6129 1.3419 1.8202 19.3634
1/d 1.3829 0.8127 1.6487 1.5952 1.3280 1.8951 18.3226
NSCM 1.1233 0.7307 1.0758 1.5738 1.3099 1.4283 20.4540
OLMAR] 0.9096 2.5372 15.9435 58.5127 1.2083 1.3258 1.8040
CW| RMR 1.2999 2.6682 8.2800 181.3437 1.3464 1.5723 1.5226
PPT 1.2982 3.0800 10.7760 277.5791 1.0924 1.2834 2.0062
AICTR 1.4417 4.1734 14.2208 902.5091 1.4151 1.0612 1.7284
SSPO 1.3389 3.6800 16.9677 364.9443 1.0799 1.3197 2.1920
SPOLC 2.4530 3.0097 (4) 58.1662 345.1481 (3) 1.5647 1.9228 6.5739
1/d 3.6469¢ — 05 0.0001 0.0001 0.0000 0.0000 0.0000 —2.5081e — 04
NSCM | —1.7585e — 04f —1.4008e — 04 —2.2472e — 04) —4.1182e — 05 —7.0407e — 05 —3.0926e — 04f| —2.8438e — 04
OLMAR| 3.0440e — 04 0.0028 0.0024 0.0045 —0.0001 —0.0001 —0.0056
MER RMR | 5.9776e — 04 0.0029 0.0019 0.0053 0.0001 0.0000 —0.0061
PPT 6.5369e — 04 0.0032 0.0022 0.0058 —0.0004 0.0000 —0.0052
AICTR| 7.1689e — 04 0.0038 0.0024 0.0067 0.0003 —0.0003 —0.0058
SSPO | 6.5703e — 04 0.0036 0.0025 0.0060 —0.0004 0.0000 —0.0049
SPOLC 0.0011 0.0030 (4) 0.0033 0.0055 (4) 0.0005 0.0002 —0.0024

Table 8: Cumulative wealths (CW) and mean excess returns (MER) for SPO systems on 7
benchmark data sets. The numbers in the parentheses are the rankings of SPOLC
on the corresponding data sets when it is not the best SPO system.

4.4.1. CUMULATIVE WEALTH

The most important assessment is the final CWs for different SPO systems, which are
shown in Table 8. SPOLC outperforms Market, 1/d and NSCM on all the 6 daily data
sets and achieves the highest CWs on 4 daily data sets. Besides, SPOLC outperforms
each competitor on at least 5 data sets, which shows a competitive performance in gaining
investing incomes. As for the monthly data set FRENCH, the passive strategies and NSCM
perform quite well as they are designed for this situation, but SPOLC still outperforms
other SPO systems to a large extent. Although some competitors get better results than
SPOLC on DJIA and TSE, they deteriorate badly on NYSE19, HS300 and FOF. Besides,
only SPOLC outperforms Market or 1/d on the fund data set FOF. Thus SPOLC gains
stable and favourable incomes due to its mechanism of downside risk control. We also draw
the CW plots for different SPO systems on HS300 in Figure 7. It shows that SPOLC gains
more wealths and suffers less drawdowns than other SPO systems on most days.

4.4.2. MEAN EXCESS RETURN

The final CW is only a final score at the end of an investment. If we want to assess
the average performance during the investment, we can use the mean excess return (MER,
Jegadeesh 1990). It compares the mean return of an active SPO system with the Market
baseline (see Lai et al. 2018c for its computation). The MERs for different SPO systems
are shown in Table 8. SPOLC is the only system that achieves positive MERs on all the
daily data sets, and it achieves the highest MERs on 4 daily data sets. Besides, SPOLC
outperforms each competitor on at least 5 data sets. Hence SPOLC is competitive in gaining
excess returns besides controlling downside risk. Although some competitors achieve high
MERs on DJIA and TSE, they get worse than Market on HS300 or FOF. Thus they do not
fit the financial properties in the two new data sets. By contrast, SPOLC is effective to fill
this gap.
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Figure 7: Cumulative wealth plots for SPO systems on HS300.

4.4.3. SHARPE RATIO

The Capital Asset Pricing Model (CAPM, Sharpe 1964) is a fundamental theory that
prices a return at a reasonable level of risk. It leads to a popular risk-adjusted return in
the finance industry, the Sharpe ratio (SR, Sharpe 1966). Its computation can be found
in Lai et al. (2018c). The SRs for different SPO systems are shown in Table 9. SPOLC
outperforms other SPO systems to a large extent on 5 data sets. It is notable that SPOLC
gets better rankings in SR than in CW or MER on DJIA and TSE (see also Table 8).
It indicates that SPOLC gets more competitive and advantageous when risk is taken into
consideration. Furthermore, SPOLC is very close to the first-place AICTR on TSE. To
summarize, SPOLC is effective in gaining returns on the premise of rigorous downside risk
control.

4.4.4. INFORMATION RATIO

We further use the information ratio (IR, Treynor and Black 1973) as a combination of
MER and SR. Its computation can be found in Lai et al. (2018c). The IRs for different
SPO systems are shown in Table 9. Similar to the results on SR, SPOLC outperforms other
SPO systems to a large extent on 5 data sets and gets better rankings in IR than in CW
or MER on DJIA and TSE. Moreover, SPOLC outperforms each competitor on at least
5 data sets. As an improved covariance estimate, SPOLC outperforms NSCM on all the
daily data sets. Note that while SPOLC keeps good IRs on NYSE19, HS300 and FOF,
other SPO systems deteriorate badly on these three data sets. It indicates that SPOLC can

30



Loss CONTROL WITH RANK-ONE COVARIANCE ESTIMATE FOR SPO

NYSEI9 | DJIA SP500 TSE HS300 FOF || FRENCH
1/d 0.0361 | —0.0179 | 0.0349 0.0480 0.0813 | 0.0426 0.2036
NSCM | 0.0282 | —0.0488 | 0.0103 0.0598 0.0996 | 0.0816 0.2457
OLMAR | 0.0166 0.0731 0.0306 0.0820 0.0372 | 0.0217 0.0603
s | RMR 0.0248 0.0763 0.0659 0.0981 0.0512 | 0.0277 0.0531
PPT 0.0253 0.0820 0.0698 0.1018 0.0246 | 0.0211 0.0649
AICTR | 0.0275 0.0994 | 00762 | 0.1179 | 0.0555 | 0.0144 0.0583
SSPO 0.0258 0.0919 0.0791 0.1054 0.0231 | 0.0219 0.0686
SPOLC | 0.0398 | 0.0877(3) | 0.1165 | 0.1134(2) | 0.0768 | 0.0356 || 0.1216
1/d 0.0207 0.1156 0.0371 | —0.0073 | —0.0276 | 0.0400 | —0.0456
NSCM | —0.0268 | —0.0154 | —0.0233 | —0.0097 | —0.0115 | —0.0226 || —0.0140
OLMAR | 0.0089 0.1060 0.0848 0.0768 | —0.0079 | —0.0059 || —0.1504
R | RMR 0.0177 0.1094 0.0678 0.0931 0.0099 | 0.0026 | —0.1688
PPT 0.0187 0.1177 0.0728 0.0970 | —0.0255 | —0.0029 | —0.1344
AICTR | 0.0207 0.1366 | 0.0810 | 0.1133 | 0.0181 | —0.0155 | —0.1567
SSPO 0.0190 0.1307 0.0840 0.1007 | —0.0275 | —0.0014 | —0.1297
SPOLC | 0.0334 | 0.1272(3) | 0.1303 | 0.1084(2) | 0.0343 | 0.0115 | —0.0744

Table 9: Sharpe ratios (SR) and information ratios (IR) for SPO systems on 7 benchmark
data sets. The numbers in the parentheses are the rankings of SPOLC on the
corresponding data sets when it is not the best SPO system.

obtain excess risk-adjusted returns in different financial scenarios while other SPO systems
cannot.

4.5. Transaction Costs and Running Times

To see how the SPO systems work with transaction costs, we use the proportional
transaction cost model (Blum and Kalai, 1999; Li et al., 2015; Huang et al., 2016; Lai
et al., 2018c) to calculate the CWs with respect to the transaction cost rate ¢ € [0,0.5%].
Figure 8 indicates that SPOLC outperforms other SPO systems on 5 data sets and keeps
its advantage when ¢ increases from 0 to 0.5%. It also outperforms NSCM on all the 6 daily
data sets with a moderate transaction cost rate ¢ € [0,0.25%], and outperforms NSCM
on 5 daily data sets with any ¢ € [0,0.5%]. Thus SPOLC can withstand a considerable
transaction cost rate in SPO.

SPOLC enjoys high computational efficiency besides a good ability of loss control and
competitive investing performance. We use an ordinary-setting computer with an Intel
Core i5-4440 CPU and a 16GB DDR3 memory card to run SPOLC in the experiments.
The average running times (in seconds) of SPOLC for one trade on different data sets
are: NYSE19 (0.0166s), DJIA (0.0129s), SP500 (0.0112s), TSE (0.0170s), HS300 (0.0157s),
FOF (0.0112s), FRENCH (0.0126s). Such a running speed is capable of large-scale and
time-limited trading such as High-Frequency Trading (HFT, Aldridge 2013).

5. Conclusions and Discussions

In this paper, we propose a novel loss control scheme with a rank-one covariance estimate
for SPO. In the rapidly-changing financial environment of SPO, some financial characteris-
tics like the expected return and the true covariance might be dynamic p;, 3¢ rather than
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Figure 8: Cumulative wealths of SPO systems with respect to the transaction cost rate ¢
on 7 benchmark data sets.

static u, 3. We usually have only a small window size w of observations that are sufficiently
close to the current moment ¢ and reliable to make estimations. w is usually much smaller
than the number of assets d, then the statistical assumptions regarding asset price relatives
are easily violated. Thus the traditional covariance estimate becomes invalid in statistical
efficiency and consistency, which results in bad investing performance.

In order to solve this undersampled problem, we propose to reconsider the covariance
estimation problem in the perspective of operators. It is essentially a symmetric quadratic
form in S?. Hence we carefully investigate the rank-related structure of S?, including the
determinantal varieties, their tangent spaces at the spectral components of the observation
matrix, and the corresponding orthogonal projections. This orthogonality helps to separate
the structural information of S? into uncorrelated components and extract the most signif-
icant component. Based on this property, we propose a rank-one covariance estimate ) RO
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lying in the principal tangent space together with a loss control scheme for SPO, which
effectively catches the instantaneous risk structure of the current financial circumstance.

Extensive experiments are conducted on 7 real-world benchmark data sets, in which
5 contain daily stock data, 1 contains daily fund data, and 1 contains monthly portfolio
data. The proposed SPOLC system outperforms other state-of-the-art active SPO systems
in the comprehensive assessment of extreme losses and downside risk in most cases. SPOLC
achieves the highest VaR and the smallest downside semideviation. It also keeps relatively
low maximum drawdowns versus other SPO systems in all the cases. Hence it is very strong
in controlling extreme losses and downside risk. Moreover, SPOLC is competitive in gaining
investing incomes on the premise of rigorous downside risk control, according to the risk-
adjusted return metrics (Calmar ratio, Sharpe ratio, and information ratio). It outperforms
the Market benchmark, the 1/d strategy, and the LPO method NSCM in CW on all the
daily data sets. It also outperforms other SPO systems in CW on at least 5 data sets. As
an improved covariance estimate, Sro outperforms the original mean-variance model, the
Gram matrix and the NSCM method in most cases. Thus 3 Rro is an effective covariance
estimate especially in SPO. Last, SPOLC can withstand a considerable transaction cost
rate and enjoys high computational efficiency, which are useful in practical situations.

In conclusion, the perspective of operators and operator spaces might be a promising
approach for undersampled estimations in SPO. Nevertheless, there are some limitations to
be noted and they could be addressed in future works. First, the actual transaction costs
include not only the service charge with a fixed rate but also the bid-ask spread, and the
latter has not been considered in the problem setting of SPO. Second, the data sets may
contain some illiquid assets that may produce good results. Third, whether SPO and LPO
could be effectively handled in a unified framework is an interesting problem for future
investigations.
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Appendix A. Information about the FOF and the NYSE19 Data Sets

Table 10 gives the codes, names, times since establishments (time) and net asset values
(NAV) of the 24 mutual funds in the FOF data set. The censoring time is 29/Dec/2017.
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Code Name Time (year) NAV (CNY)
150019 Yinhua SZSE 100 Index Structured Fund 7.66 3,251,532,745.20
150023 SWS MU Shenzhen Composition Index Structured Fund 7.20 2,339,036, 988.22
159902 ChinaAMC China SME ETF 11.57 2,628,453,724.73
159903 China Southern Shenzhen Stock Exchange Component Stock Index ETF 8.08 454,122,828.12
159907 GF Mid/Small-Plate 300 ETF 6.58 230, 156, 107.84
159915 E Fund GEM ETF 6.28 5,165, 768, 469.64
159919 Harvest SZSE SME-CHINEXT 300 ETF 5.65 18,339, 948,550.23
159920 ChinaAMC Hang Seng ETF 5.40 2,179, 342,466.72
160311 ChinaAMC Blue Chip Core Hybrid Fund (LOF) 10.70 4,480, 724,091.32
160505 Bosera Thematic Sectors Hybrid Fund (LOF) 12.99 10,652, 841, 166.39
160607 Penghua Value Advantage Hybrid Fund (LOF) 11.46 2,378,770,662.37
160916 Dacheng Selected Hybrid Fund (LOF) 5.43 841,008, 868.47
161010 Fullgoal Tianfeng Consolidate Income Bond Fund 9.19 431, 546,991.03
162607 Invesco Great Wall Resources And Monopoly Hybrid Fund (LOF) 11.94 1,830,082, 897.16
162703 GF Small-cap Growth Hybrid Fund(LOF) 12.92 2,305, 886, 940.89
163402 |Aegon-Industrial Trend Investment Hybrid Securities Investment Fund (LOF) 12.17 13,260, 428, 885.65
163503 China Nature Kernel Pullulation Hybrid Fund (LOF) 11.95 594, 212,639.86
163801 BOC China Selected Hybrid Fund (LOF) 13.00 1,342,616, 257.95
510050 ChinaAMC China 50 ETF 13.01 38,085, 289, 036.13
510060 ICBCCS SSE China Central Enterprises 50 ETF 8.35 222,993, 731.63
510160 China Security Southern Well-off Industry Index ETF 7.35 837,739,227.93
510230 Guotai SSE 180 Finance ETF 6.76 3,907,590, 530.78
510300 Huatai-PB CSI 300 ETF 5.66 20,321,022, 282.29
510880 Huatai-PB SSE Dividend Index ETF 11.13 1,423,667,125.14

Table 10: Details of the FOF data set.
UNT UPS URI USB USM UTI UTL VAC VCRA VG VKQ VLO VLT VLY VMC VNQ
VOC VSH VTR VVI VVR WAB WAL WBK WBS WCC WCG WCN WD WEC WES WMK
WMS WNC WPX WRI WSM WST WTR WU WWW WY X XIN YELP ZTR ZTS

Table 11: Codes of the stocks in the NYSE19 data set.
Table 11 gives the codes of the 47 stocks in the NYSE19 data set.
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