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Sercan Ö. Arık soarik@google.com
Google Cloud AI
Sunnyvale, CA

Tomas Pfister tpfister@google.com

Google Cloud AI

Sunnyvale, CA

Editor: Christoph Lampert

Abstract

We propose a novel inherently interpretable machine learning method that bases decisions
on few relevant examples that we call prototypes. Our method, ProtoAttend, can be
integrated into a wide range of neural network architectures including pre-trained models.
It utilizes an attention mechanism that relates the encoded representations to samples in
order to determine prototypes. Protoattend yields superior results in three high impact
problems without sacrificing accuracy of the original model: (1) it enables high-quality
interpretability that outputs samples most relevant to the decision-making (i.e. a sample-
based interpretability method); (2) it achieves state of the art confidence estimation by
quantifying the mismatch across prototype labels; and (3) it obtains state of the art in
distribution mismatch detection. All these can be achieved with minimal additional test
time and a practically viable training time computational cost.

Keywords: Sample-based interpretability, confidence, attention, explainable deep learning,
prototypical.

1. Introduction

Deep neural networks have been pushing the frontiers of artificial intelligence (AI) by yielding
excellent performance in numerous tasks, from understanding images (He et al., 2016) to
text (Conneau et al., 2016). Yet, high performance is not always a sufficient factor - as some
real-world deployment scenarios might necessitate that an ideal AI system is ‘interpretable’,
such that it builds trust by explaining rationales behind decisions, allow detection of common
failure cases and biases, and refrains from making decisions without sufficient confidence. In
their conventional form, deep neural networks are considered as black-box models – they are
controlled by complex nonlinear interactions between many parameters that are difficult to
understand. There are numerous approaches, e.g. (Kim et al., 2018; Erhan et al., 2009; Zeiler
and Fergus, 2013; Simonyan et al., 2013), that bring post-hoc explainability of decisions to
already-trained models. Yet, these have the fundamental limitation that the models are not
designed for interpretability. There are also approaches on the redesign of neural networks
towards making them inherently-interpretable, as in this paper. Some notable ones include
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sequential attention (Bahdanau et al., 2015), capsule networks (Sabour et al., 2017), and
interpretable convolutional filters (Zhang et al., 2018).
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Figure 1: ProtoAttend bases the decision on a few prototypes from the database. This
enables interpretability of the prediction (by visualizing the highest weight proto-
types) and confidence estimation for the decision (by measuring agreement across
prototype labels).

We focus on inherently-interpretable deep neural network modeling with the foundations
of prototypical learning. Prototypical learning decomposes decision making into known
samples (see Fig. 1), referred here as prototypes. We base our method on the principle that
prototypes should constitute a minimal subset of samples with high interpretable value that
can serve as a distillation or condensed view of a data set (Bien and Tibshirani, 2012). Given
that the number of objects a human can interpret is limited (Miller, 1956), outputting few
prototypes can be an effective approach for humans to understand the AI model behavior.
In addition to such interpretability, prototypical learning: (1) provides an efficient confidence
metric by measuring mismatches in prototype labels, allowing performance to be improved
by refraining from making predictions in the absence of sufficient confidence, (2) helps
detect deviations in the test distribution by measuring mismatches in prototype labels that
represent the support of the training data set, and (3) enables performance in the high
label noise regime to be improved by controlling the number of selected prototypes. Given
these motivations, prototypes should be controllable in number, and should be perceptually
relevant to the input in explaining the decision making task. Prototype selection in its naive
form is computationally expensive and perceptually challenging (Bien and Tibshirani, 2012).
We design ProtoAttend to address this problem in an efficient way. Our contributions can
be summarized as follows:

1. We propose a novel method, ProtoAttend, for selecting input-dependent prototypes based
on an attention mechanism between the input and prototype candidates. ProtoAttend is
model-agnostic and can even be integrated with pre-trained models.

2. ProtoAttend allows interpreting the contribution of each prototype via the attention
outputs.

3. For a ‘condensed view’, we demonstrate that sparsity in weights can be efficiently imposed
via the choice of the attention normalization and additional regularization.

4. On image, text and tabular data, we demonstrate the four key benefits of ProtoAttend:
interpretability, confidence control, diagnosis of distribution mismatch, and robustness
against label noise. ProtoAttend yields superior quality for sample-based interpretability,
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better-calibrated confidence scoring, and more sensitive out-of-distribution detection
compared to alternative approaches.

5. ProtoAttend enables all these benefits via the same architecture and method, while
maintaining comparable overall accuracy.

This paper is organized as follows. Section 2 presents the related literature. Section 3
first explains the principles of ProtoAttend, and then describes are proposed deep learning
architecture and training methodology. Section 4 explains how ProtoAttend can be used
for confidence scoring as an extra capability beyond sample-based interpretability. Section
5 compares our proposed method to well-known Influence Functions, and explains how
ProtoAttend improves over it. Section 6 presents our experiments on high-quality sample-
based explainability, robustness to label noise, well-calibrated confidence scoring, and out-of-
distribution sample detection. Section 7 explains the computational cost of ProtoAttend
training and inference, and finally Section 8 contains the conclusions

2. Related Work

Prototypical learning: The principles of ProtoAttend are inspired by (Bien and Tibshi-
rani, 2012). They formulate prototype selection as an integer program and solve it using a
greedy approach with linear program relaxation. It seems unclear whether such approaches
can be efficiently adopted to deep learning. (Chen et al., 2019) and (Li et al., 2018) introduce
a prototype layer for interpretability by replacing the conventional inner product with a
distance computation for perceptual similarity. Compared to these, a key difference of our
work is learning ‘sample-dependent’ prototypes, rather than ‘global’ ones. Also, (Chen et al.,
2019) considers similarity for image patches rather than the entire sample, as opposed to
our work. In contrast, our method uses an attention mechanism to quantify perceptual
similarity and can choose input-dependent prototypes from a large-scale candidate database.
(Drumond et al., 2019) adapts the prototypical learning architecture from few-shot learning
(Snell et al., 2017) by adding a softmax layer to correlate the prototype matching to class
labels. Similar to our work, linear aggregation of weighted encoded representations is consid-
ered. (Yeh et al., 2018) decomposes the prediction into a linear combination of activations
of training points for interpretability using representer values. The linear decomposition
idea also exists in ProtoAttend, but the weights are learned via an attention mechanism and
sparsity is encouraged in the decomposition. In (Koh and Liang, 2017), the training points
that are the most responsible for a given prediction are identified using Influence Functions
via oracle access to gradients and Hessian-vector products.

Metric learning: Metric learning aims to find an embedding representation of the
data where similar data points are close and dissimilar data pointers are far from each other.
ProtoAttend is motivated by efficient learning of such an embedding space which can be
used to decompose decisions. Metric learning for deep neural networks is typically based on
modifications to the objective function, such as using triplet loss and N-pair loss (Sohn, 2016;
Cui et al., 2016; Hoffer and Ailon, 2014). These yield perceptually meaningful embedding
spaces yet typically require a large subset of nearest neighbors to avoid degradation in
performance (Cui et al., 2016). (Kim et al., 2018) proposes a deep metric learning framework
which employs an attention-based ensemble with a divergence loss so that each learner can
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attend to different parts of the object. Our method has metric learning capabilities like
relating similar data points, but also performs well on the ultimate supervised learning task.

Attention-based few-shot learning: Some of our inspirations are based on recent
advances in attention-based few-shot learning. In (Vinyals et al., 2016), an attention
mechanism is used to relate an example with candidate examples from a support set using
a weighted nearest-neighbor classifier applied within an embedding space. In (Ren et al.,
2018), incremental few-shot learning is implemented using an attention attractor network on
the encoded and support sets. In (Snell et al., 2017), a non-linear mapping is learned to
determine the prototype of a class as the mean of its support set in the embedding space.
During training, the support set is randomly sampled to mimic the inference task. Overall,
the attention mechanism in our method follows related principles but fundamentally differs
in that few-shot learning aims for generalization to unseen classes whereas the goal of our
method is robust and interpretable learning for seen classes.

Uncertainty and confidence estimation: ProtoAttend takes a novel perspective on
the perennial problem of quantifying how much deep neural networks’ predictions can be
trusted. Common approaches are based on using the scores from the prediction model, such
as the probabilities from the softmax layer of a neural network, yet it has been shown that the
raw confidence values are typically poorly calibrated (Guo et al., 2017). Ensemble of models
(Lakshminarayanan et al., 2017) is one of the simplest and most efficient approaches, but
significantly increases complexity and decreased interpretability. In (Papernot and McDaniel,
2018), the intermediate representations of the network are used to define a distance metric,
and a confidence metric is proposed based on the conformity of the neighbors. (Jiang et al.,
2018), proposes a confidence metric based on the agreement between the classifier and a
modified nearest-neighbor classifier on the test sample. In (DeVries and Taylor, 2018), direct
inference of confidence output is considered with a modified loss. Another direction of
uncertainty and confidence estimation is Bayesian neural networks that return a distribution
over the outputs (Kendall and Gal, 2017b) (Mullachery et al., 2018) (Kendall and Gal,
2017a).

3. ProtoAttend network architecture and training

Consider a training set with samples, T = {xi, yi}. Conventional supervised learning aims
to learn a model s(xi; S) that minimizes a predefined loss 1/B ·

∑B
i=1 L(yi, ŷi = s(xi; S))1 at

each iteration, where B is the batch size for training. Our goal is to impose that decision
making should be based on only a small number of training examples, i.e. prototypes, such
that their linear superposition in an embedding space can yield the overall decision and
the superposition weights correspond to their importance. Towards this goal, we propose
defining a solution to prototypical learning with the following six principles:

i. We employ a trainable encoder, f(; θ), to extract information from raw data. vi =
f(xi; θ) encodes all relevant information of xi for the final decision. f() considers
the global distribution of the samples, i.e. learns from all {xi, yi}. Although all the
information in training data set is embodied in the weights of the encoder2, we construct

1. S represents the trainable parameters for s(;S) and is sometimes not show for notation convenience.
2. Training of f() may also involve initializing with pre-trained models or transfer learning.
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the learning method in such a way that decision is dominated by the prototypes with
high weights.

ii. From the encoded information, we can find a decision function so that the mapping
g(vi; η) is close to the ground truth yi, in a consistent way with conventional supervised
learning.

iii. Given candidates x
(c)
j to select the prototypes from, we find weights pi,j

3, such that

the decision for sample i g(
∑D

j=1 pi,jv
(c)
j ; η) (where v

(c)
j = f(x

(c)
j ; θ)) is accurate, given

the ground truth yi.

iv. When the linear combination
∑D

j=1 pi,jv
(c)
j is considered, prototypes with higher

weights pi,j have higher contribution in the decision g(
∑D

j=1 pi,jv
(c)
j ; η).

v. The weights should be sparse – only a controllable amount of weights pi,j should be
non-zero. Ideally, there exists an efficient mechanism for outputting pi,j to control the
sparsity without significantly affecting performance.

vi. The weights pi,j depend on the relation between input and the candidate samples,

pi,j = r(xi,x
(c)
j ; Γ), based on their perceptual relation for decision making. We do

not introduce any heuristic relatedness metric such as distances in the representation
space, but we allow the model to learn the relation function that helps the overall
performance.

Learning involves optimization of the parameters θ,Γ, η of the corresponding functions. If
the proposed principles (such as reasoning from the linear combination of embeddings or
assigning relevance to the weights) are not imposed during training but only at inference, a
high performance cannot be obtained due to the train-test mismatch, as the intermediate
representations can be learned in an arbitrary way without any necessities to satisfy them.4

The subsequent section presents ProtoAttend and training procedure to implement it.

The principles above are conditioned on efficient learning of an encoding function to
encode the relevant information for decision making, a relation function to determine the
prototype weights, and a final decision making block to return the output. Conventional
supervised learning comprises the encoding and decision blocks. On the other hand, it is
challenging to design a learning method with a relation function with a reasonable complexity.
To this end, we adapt the idea of attention (Corbetta and Shulman, 2002; Vaswani et al.,
2017), where the model focuses on an adaptive small portion of input while making the
decision. Different from conventional employment of attention in sequence or visual learning,
we propose to use attention at sample level, such that the attention mechanism is used
to determine the prototype weights by relating the input and the candidate samples via
alignment of their keys and queries. Fig. 2 shows the proposed architecture for training and
inference. The three main blocks are described below:

Encoder: We employ a trainable encoder to transform B input samples (note that
B may be 1 at inference) and D samples from the database of prototype candidates (note
that D may be as large as the entire training data set at inference) into keys, queries and
values. The encoder is shared and jointly updated for the input samples and prototype
candidate database, to learn a common representation space for the values. The encoder

3. We constrain pi,j ≥ 0 and
∑D

j=1 pi,j = 1.

4. For example, commonly-used distance metrics in the representation spaces fail at determining perceptual
relevance between samples when the model is trained in a vanilla way (Sitawarin and Wagner, 2019).
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Figure 2: ProtoAttend method for training and testing. Shared encoder between input
samples and the candidate samples generates input representations, that are
mapped to key, query and value embeddings (with a single nonlinear layer). The
alignment between keys and queries determines the weights of the prototypes, and
the linear combination of the values determines the final decision. Conformity of
the prototype labels is used as a confidence metric.

architecture can be based on any trainable discriminative feature mapping function, e.g. a
simple multi-layer perceptron, or ResNet architecture (He et al., 2016) for images or VDCNN
architecture (Conneau et al., 2016) for text. The only modification we bring to these is
generating three types of encoded representations, instead of one (before their classification
layer). For mapping of the encoder output to key, query and value embeddings, we simply
use a single fully-connected layer with a nonlinearity, separately for each.5 For input samples,
V ∈ <B×dout and Q ∈ <B×datt denote the values and queries, and for candidate database
samples K(c) ∈ <D×datt and V(c) ∈ <D×dout denote the keys and values.

Relational attention: The relational attention yields the weight between the ith sample
and jth candidate, pi,j , via alignment of the corresponding key and query in dot-product
attention form6:

pi,j = n
(
K

(c)
j Qi

T /
√
datt

)
, (1)

where n() is a normalization function to satisfy pi,j ≥ 0 and
∑D

j=1 pi,j = 1 for which

we consider softmax and sparsemax (Martins and Astudillo, 2016)7. The choice of the
normalization function is an efficient mechanism to control the sparsity of the prototype
weights, as demonstrated in experiments. Note that the relational attention mechanism does
not introduce any extra trainable parameters.

Decision making: The final decision making function g() is simply a linear mapping
from a convex combination of values that results in the output yi. Consider the convex

5. There are other viable options for the mapping but we restrict it to a single layer to minimize the
additional number of trainable parameters, which becomes negligible in most cases.

6. We use Ai to denote the ith row of A.
7. Sparsemax encourages sparsity by mapping the Euclidean projection onto the probabilistic simplex.
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combination of value embeddings, parameterized by α:

ŷi(α) = g

(
(1− α)vi + α

∑D

j=1
pi,jv

(c)
j

)
. (2)

As the function g() is a linear mapping, Eq. 2 implies that v
(c)
j plays a bigger role in decision

making for sample i as pi,j gets larger. For α = 0, L (yi, ŷi(0)) is the conventional supervised
learning loss (ignoring the relational attention mechanism) that can only impose principles
(i) and (ii), but not the principles (iii)-(vi). A high accuracy for ŷi(0) merely indicates that
the value embedding space represents each input sample accurately. For α = 1, L (yi, ŷi(1))
encourages the principles (i), (iii)-(iv), but not the principles (ii) and (vi).8 A high accuracy
for ŷi(1) indicates that the linear combination of value embeddings accurately maps to the
decision. For (vi), we propose that there should be a similar output mapping for the input
and prototypes, for which we encourage high accuracy for both ŷi(0) and ŷi(1) with a loss
term that is a mixture of L (yi, ŷi(0)) and L (yi, ŷi(1)) or guidance with an intermediate term,
as ŷi(0.5), is required. Lastly, when α ≤ 0.5, we obtain the condition that the input sample
itself has the largest contribution in the linear combination. Intuitively, the sample itself
should be more relevant for the output compared to other samples, so the principles (iii) and
(iv) can be encouraged. We propose and compare different training objective functions in
Table 1. We observe that the last four are all viable options as the training objective, with
similar performance. We choose the last one for the rest of the experiments, as in some cases,
slightly better prototypes are observed qualitatively (see Sect. 5.2 for further discussion).

Table 1: Impact of various training losses on ProtoAttend with softmax attention for Fashion-
MNIST. 1 ≤ i ≤ Nt is the training iteration index and Nt is the total number of
iterations. See Section 3 and Appendix B.2 for experimental details.

Training objective function
Acc. %
for ŷi(0)

Acc. %
for ŷi(1)

− E
ŷ=y
{C} − E

ŷ 6=y
{C}

L (yi, ŷi(0)) 94.28 13.13 0.029 0.194

L (yi, ŷi(1)) 10.92 94.21 0.103 0.002

L (yi, ŷi(0.5)) 94.01 94.25 0.927 0.049

L (yi, ŷi(0)) + L (yi, ŷi(1)) 94.37 94.38 0.931 0.047

(1− i/Nt) · L (yi, ŷi(0)) +
(i/Nt) · L (yi, ŷi(1))

94.14 94.18 0.927 0.049

L (yi, ŷi(0)) + L (yi, ŷi(1)) +
L (yi, ŷi(0.5))

94.37 94.45 0.928 0.047

To control the sparsity of the weights (beyond the choice of the attention operation), we
also propose a sparsity regularization term with a coefficient λsparse in the form of entropy,

Lsparse(p) = −1/B
∑B

i=1

∑D
j=1 pi,j log(pi,j + ε), where ε is a small number for numerical

stability. Lsparse(p) is minimized when p has only 1 non-zero value.

8. For example, simply assigning non-zero weights to another predetermined class, prototypical learning
method can obtain perfect accuracy, but the assignment of predetermined class would be arbitrary.
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4. Confidence scoring using prototypes

Figure 3: Impact of confidence on ProtoAttend accuracy. Reliability diagram for Fashion-
MNIST, as in (Papernot and McDaniel, 2018). Bars (left axis) indicate the mean
accuracy of predictions binned by confidence; the red line (right axis) shows the
number of samples across bins.

ProtoAttend provides a linear decomposition (via value embeddings) of the decision into
prototypes that have known labels. Ideally, labels of the prototypes should all be the same
as the labels of the input. When prototypes with high weights belong to the same class,
the model shall be more confident and a correct classification result is expected, whereas in
the cases of disagreement between prototype labels, the model shall be less confident and
the likelihood of a wrong prediction is higher. With the motivation of separating correct
vs. incorrect decisions via its value, we propose a confidence score based on the agreement
between the prototypes:

Ci =
D∑
j=1

pi,j · I(y(c)
j = ŷi), (3)

where I() is the indicator function. Table 1 shows the significant difference of the average
confidence metric between correct vs. incorrect classification cases for the test data set,
as desired. In Fig. 3, the impact of confidence on accuracy is further analyzed with the
reliability diagram as in (Papernot and McDaniel, 2018). When test samples are binned
according to their confidence, it is observed that the bins with higher confidence yield much
higher accuracy. There are small number of samples in the bins with lower confidence, and
those tend to be the incorrect classification cases. In Section 6.4, the efficacy of confidence
score in separating correct vs. incorrect classification is experimented in confidence-controlled
prediction setting, demonstrating how much the prediction accuracy can be improved by
refraining from small number of samples with low confidence at test time.
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To further encourage confidence during training, we also consider a regularization term

Lconf (p) = −1/B
∑B

i=1

∑D
j=1 pi,j · I(y

(c)
j = yi) with a coefficient λconf . Lconf is minimized

when all prototypes with pi,j > 0 are from the same ground truth class with output yi.
9

5. Relation to Influence Functions

Influence Functions (Koh and Liang, 2017) quantify how a model’s predictions would
change if we did not have a particular training point. For the purpose of sample-based
explainability, (Koh and Liang, 2017) proposes that the relation between an input sample xi

and the candidate samples10 x
(c)
j can be obtained by quantifying the influence of upweighting

(x
(c)
j , y

(c)
j ) on the loss at a query point (xi, yi):

Ii,j = −∇(θ,φ)L(y
(c)
j )T (H−1

(θ̂,φ̂)
)T∇(θ,φ)L(yi), (4)

where H(θ̂,φ̂) is the Hessian and is positive definite by assumption 11. Let’s consider the

singular value decomposition (H−1
(θ̂,φ̂)

) = Ξ ·Σ ·ΨT and also define the function k(x, y) =

∇(θ,φ)L(y). Then, we have:

Ii,j = (ΨT · k(x
(c)
j , y

(c)
j ))T · (−Σ ·ΞT ) · k(xi, yi), (5)

We observe that Ii,j is in the form of an inner product between two functions applied

on (xi, yi) and (x
(c)
j , y

(c)
j ). These two functions are composed of a shared (and potentially

complex) function, followed by a linear mapping with non-shared parameters. This expression
is indeed in a similar form with the argument of the normalization function for attention in
Eq. 1, where the queries and keys are obtained by a shared encoder except the last layer.

The only notable difference is that ProtoAttend encoder functions merely input xi and x
(c)
j ,

not the ground truth labels. Instead of relying on ground truth labels or complex Hessian
estimations, ProtoAttend infers the encoded representations for the queries and keys directly
in a feedforward way, by learning from the entire training data set. Note that ProtoAttend
does not use a separate encoder for values, and obtains a high performance by sharing the
vast majority of the parameters while obtaining the keys, queries and values.

In (Koh and Liang, 2017), Influence Functions are related to nearest neighbor search-
based relevant point determination approaches, for sample-based explainability. When
Euclidean space is considered for distances, with the assumption that all points have the
same norm, the inner product between the representations correspond to their similarity.
This scenario is the special case of ProtoAttend when we use the same representation for keys,
queries and values, and when we train with only α = 0 loss term although we would use pi,j
for similarity determination. As studied in (Koh and Liang, 2017), nearest neighbor-based
methods are far less accurate in capturing the effect of model training, compared to Influence

9. Note that the gradients of this regularization term with respect to pi,j is either 0 or 1 and it is often
insufficient to train the model itself from scratch. But it is observed to provide further improvements in
some cases.

10. All training samples are used as candidate samples in (Koh and Liang, 2017).
11. It is not necessarily symmetric, depending on the network architecture.
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Functions. Our empirical results show superior performance of ProtoAttend compared to
Influence Functions in finding perceptually more similar samples.

Overall, unlike Influence Functions, ProtoAttend modifies the model training for the
desired goals, that fundamentally yields more degrees of freedom to optimize while achieving
superior prototype learning quality effectively.

6. Experiments

6.1 Setup

We demonstrate the results of ProtoAttend for image, text and tabular data classification
problems with different encoder architectures (see Supplementary Material for details).
Outputs of the encoders are mapped to queries, keys and values using a fully-connected
layer followed by ReLU. For values, layer normalization (Lei Ba et al., 2016) is employed
for more stable training. 12 A fully-connected layer is used in the decision making block,
yielding logits for determining the estimated class. Softmax cross entropy loss is used as
L(). Adam optimization algorithm is employed (Kingma and Ba, 2014) with exponential
learning rate decay (with parameters optimized on a validation set). For image encoding,
unless specified, we use the standard ResNet model (He et al., 2016). For text encoding, we
use the very deep convolutional neural network (VDCNN) (Conneau et al., 2016) model,
inputting sequence of raw characters. For tabular data encoding, we use an LSTM model
(Hochreiter and Schmidhuber, 1997), which inputs the feature embeddings at every timestep.
See Supplementary Material for implementation details, additional results and discussions.

6.2 Sparse explanations of decisions

We foremost demonstrate that our inherently-interpretable model design does not cause
significant degradation in performance. Table 2 shows the accuracy and the median number
of prototypes required to add up to a particular portion of the decision13 for different
prototypical learning cases. In all cases, very small accuracy gap is observed with the
baseline encoder that is trained in conventional supervised learning way. The attention
normalization function and sparsity regularization are efficient mechanisms to control the
sparsity – the number of prototypes required is much lower with sparsemax attention
compared to softmax attention and can be further reduced with sparsity regularization (see
Supplementary Material for details). With a small decrease in performance, the number
of prototypes can be reduced to just a handful.14 There is difference between data sets, as
intuitively expected from the discrepancy in the degree of similarity between the intra-class
samples.

Figs. 4, 5 and 6 exemplify prototypes for image, text and tabular data. In general,
perceptually-similar samples are chosen as the prototypes with the largest weights. We

12. For example, using the standard ResNet except its classification layer, we have [[K,Q, V ]] =
[ReLU(FCK(ResNet)), ReLU(FCQ(ResNet)), LayerNorm(ReLU(FCV (ResNet)))]).

13. E.g. if the prototype weights are [0.2, 0.15, 0.15, 0.25, 0.1, 0.05, 0.28, 0.02], then 2 prototypes are required
for 50% of the decision, 6 for 90% and 7 for 95%.

14. We observe that excessively high sparsity (e.g. to yield 1-2 prototypes in most cases) may sometimes
decrease the quality of prototypes due to overfitting to discriminative features that are less perceptually
meaningful.
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carlos abraham caadas anaya (born june 7 1980 in san salvador el salvador) is a salvadoran football player who currently plays 
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premiership teams and in 1957 won city's best and fairest award.howell made his vfl debut with the st kilda football club 
in 1958 after being signed from tasmania in 1953.
wolfgang paul (born 25 january 1940 in olsberg province of westphalia) is a german former football player.captaining
borussia dortmund to the european cup winners cup in 1966 paul got included in helmut schn's west german squad for the 
1966 fifa world cup. despite this the defender never played a match for west germany and had to retire early because of 
the effects an injury picked up in the late 1960s had to his game.

bradley james orr (born 1 november 1982) is an english footballer who plays for toronto fc on loan from blackburn rovers 
as a right-back. he is the uncle of the liverpool fc full back jon flanagan.

Figure 5: Example inputs and ProtoAttend prototypes for DBPedia (with sparsemax).
While classifying the inputs as athlete, prototypes have very similar sentence
structure, words and concepts.
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Table 2: ProtoAttend achieves interpretability without significant degradation in perfor-
mance. Accuracy and median number of prototypes to add up to 50%, 90% and
95% of the decision, quantified with prototype weights.

data set Method Acc. %
No. of prototypes for
50 % 90 % 95 %

MNIST
Baseline enc. 99.70 -
Softmax attn. 99.66 365 1324 1648

Sparsemax attn. 99.69 2 4 5

Fashion-MNIST

Baseline enc. 94.74 -
Softmax attn. 94.42 712 2320 2702

Sparsemax attn. 94.42 4 10 11
Sparsemax attn. + sparsity reg. 94.47 1 2 2

CIFAR-10

Baseline enc. 91.97 -
Softmax attn. 91.69 317 1453 1898

Sparsemax attn. 91.44 5 14 16
Sparsemax attn. + sparsity reg. 91.26 2 3 4

DBPedia

Baseline enc. 98.25 -
Softmax attn. 98.20 63 190 225

Sparsemax attn. 97.74 2 4 4

Income

Baseline enc. 85.68 -
Softmax attn. 85.64 2263 9610 12419

Sparsemax attn. 85.58 20 57 67
Sparsemax attn. + sparsity reg. 85.41 3 6 7

also compare the relevant samples found by ProtoAttend with the methods of Representer
Point Selection (Yeh et al., 2018) and Influence Functions (Koh and Liang, 2017) (see
Supplementary Material for details) on Animals with Attributes data set. As shown in Fig.
7, our method finds qualitatively more relevant samples. This case also exemplifies the
potential of our method for integration into pre-trained models by addition of simple layers
for key, query and value generation.

We perform a user study by asking humans how much an extra image helps in explaining
the guessed class of the input, after showing what the trained network predicts for that
input, on the Animals with Attributes data set. We randomly pick test samples and assess
how much showing the top prototype makes a difference. We use 7 human raters who are
not knowledgeable of the test details. Each rater provides scores for 50-80 images. The
results in Table 3 is an indication that ProtoAttend picks samples that humans find very
relevant to the input for decision making task.

6.3 Robustness to label noise

As prototypical learning with sparsemax attention aims to extract decision-making informa-
tion from a small subset of training samples, it can be used to improve performance when
the training data set contains noisy labels.

12
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Inputs Prototypes
0.22 0.08 0.34 

0.09 0.25 0.13 0.09 

0.07 

Figure 6: Example inputs and ProtoAttend prototypes for Adult Census Income (with
sparsemax and sparsity regularization). For the first example, all prototypes have
similar age, two share similar education level and one has the same occupation.
For the second example, three prototypes have the same occupation, all work
more than 40 hours/week, and three have postgraduate education.

Input ProtoAttend Representer point selection Influence functions

Figure 7: Samples found by ProtoAttend vs. Representer Point Selection (Yeh et al., 2018)
and influence function (Koh and Liang, 2017) for the two examples from (Yeh
et al., 2018) on Animals with Attributes data set. See Supplementary Material
for more examples.

Table 3: Human ratings (mean score and 95% confidence interval) on how much an extra
image helps guessing the class of the input.

Sampling method Score (out of 5)
Top prototype by ProtoAttend 4.33± 0.09

Randomly sampled from the predicted class 3.97± 0.12
Randomly sampled from any class 1.33± 0.09
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To test this hypothesis, we consider noise-robust learning experiments, by introducing
uniform label noise, i.e. assigning a wrong label from the uniform distribution of the
labels other than the correct label. For a fair comparison, we re-optimize the learning rate
parameters on a separate validation set, as explained in Section B. 3. Table 4 presents
ProtoAttend vs. baseline training and dropout method (Arpit et al., 2017) (optimizing the
keep probability). For ProtoAttend, we use sparsemax attention and sparsity regularization.
We observe that ProtoAttend results in higher test set accuracy. The optimal value of λsparse
increases with higher noisy label ratios, underlining the increasing efficacy of sparse learning.

Table 4: Label noise ratio vs. accuracy for baseline encoder, dropout method (Arpit et al.,
2017) (optimizing the keep probability) and ProtoAttend with sparsemax attention
and sparsity regularization for CIFAR-10.

Noise level
Test accuracy %

Baseline Dropout ProtoAttend
0.8 57.02 56.76 60.50
0.6 71.27 72.15 74.67
0.4 77.47 78.99 80.04

6.4 Confidence-controlled prediction

By varying the threshold for the confidence metric, a trade-off can be obtained for what ratio
of the test samples that the model makes a prediction for vs. the overall accuracy it obtains
on the samples above that threshold.15 Figs. 8(a) and 8(b) demonstrate this trade-off and
compare it to alternative methods. The sharper slope of the plots show that our method
is superior to dkNN (Papernot and McDaniel, 2018) and trust score (Jiang et al., 2018),
the methods based on quantifying the mismatch with nearest-neighbor samples, in terms of
finding related samples. Although the baseline accuracy is higher with 4 ensemble networks
obtained via deep ensemble (Lakshminarayanan et al., 2017), our method utilizes a single
network and the additional accuracy gains by refraining from uncertain predictions is similar
to our approach as shown by the similar slopes of the curves.

Overall, the baseline accuracy can be significantly improved by making less predictions.
Compared to the state of the art models, our canonical method with simple and small
models shows similar accuracy by making slightly fewer predictions – e.g. for MNIST, (Wan
et al., 2013) achieves 0.21% error rate, that is obtained by our method refraining from only
0.45% of predictions using ResNet-32 and for DBpedia, (Sachan and Petuum, 2018) achieves
0.91% error, that is obtained by our method refraining from 3% of predictions using 9-layer
VDCNN. In general, the smaller the number of prototypes, the smaller the trade-off space.
Thus, softmax attention (which normally results in more prototypes) is better suited for
confidence-controlled prediction compared to sparsemax (see Supplementary Material for
more comparisons).

15. Note that this trade-off is often more meaningful to consider rather than the metrics based on the actual
value of confidence score itself, as methods may differ in how they define the confidence metric, and thus
yield very different ranges and distributions for it.
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(a) (b)

Figure 8: Confidence-controlled prediction. (a) Accuracy vs. ratio of samples for MNIST.
We compare dkNN (Papernot and McDaniel, 2018) and prototypical learning
(with softmax attention and λconf=0.1) using the same network architecture
from (Papernot and McDaniel, 2018) without augmentation. (b) Accuracy vs.
ratio of samples for CIFAR-10. We compare prototypical learning (with softmax
attention and λconf=0.1) with trust score (Jiang et al., 2018) and deep ensemble
(Lakshminarayanan et al., 2017) methods for the same baseline encoder network
architecture.

6.5 Out-of-distribution samples

Well-calibrated confidence scores at inference can be used to detect deviations from the
training data set. As the test distribution deviates from the training distribution, prototype
weights tend to mismatch more and yield lower confidence scores. Fig. 9 (a) shows the ratio
of samples above a certain confidence level as the test data set deviates. Rotations deviate
the distribution of test images from the training images, and cause significant degradation in
confidence scores, as well as the overall accuracy. On the other hand, using test image from
a different data set, degrade them even further. Next, Fig. 9 (b) shows quantification of
out-of-distribution detection with prototypical learning, using the method from (Hendrycks
and Gimpel, 2016). ProtoAttend yields an AUC of 0.838, being on par with the-state of the
art approaches (Hendrycks et al.).

7. Computational Cost

ProtoAttend requires only a very small increase in the number of learning parameters
(merely two extra small matrices for the fully-connected layers to obtain queries and keys).
However, it does require a longer training time and has higher memory requirements to
process the candidate database. At inference, keys and values for the candidate database can
be computed only once and integrated into the model. Thus, the overhead merely becomes
the computation of attention outputs (e.g. for CIFAR-10 model, the attention overhead
at inference is less than 0.6 MFLOPs, orders of magnitude lower than the computational

15



Arık and Pfister

(a) (b)

Figure 9: Out-of-distribution detection. (a) Ratio of samples above the confidence level
for prototypical learning with softmax attention, trained with Fashion-MNIST,
and tested on the shown data sets. E.g. if we assess the ratio of samples above
confidence 0.9, it is far more likely that those samples to come from the same
distribution with the training data set. (b) ROC curve for in-distribution vs.
out-of-distribution detection, using CIFAR-10 as in-distribution and SVHN as
out-of-distribution, computed using the method from (Hendrycks and Gimpel,
2016) and compared to the proposed baseline in (Hendrycks and Gimpel, 2016).
Softmax attention and confidence regularization (λconf = 0.1) are used.
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complexity of a ResNet model). During training on the other hand, both forward and
backward propagation steps for the encoder need to be computed for all candidate samples
and the total time is higher (e.g. 4.45 times slower to train until convergence for CIFAR-10
compared to the conventional supervised learning). The size of the candidate database
is limited by the memory of the processor, so in practice we sample different candidate
databases randomly from the training data set at each iteration. For faster training, data and
model parallelism approaches are straightforward to implement – e.g., different processors
can focus on different samples, or they can focus on different parts of the convolution or
inner product operations. Further computationally-efficient approaches may involve less
frequent updates for candidate queries and values.

8. Conclusions

We propose an attention-based prototypical learning method, ProtoAttend, and demonstrate
its usefulness for a wide range of problems on image, text and tabular data. By adding a
relational attention mechanism to an encoder, prototypical learning enables novel capabilities.
With sparsemax attention, it can base the learning on a few relevant samples that can be
returned at inference for interpretability, and can also improves robustness to label noise.
With softmax attention, it enables confidence-controlled prediction that can outperform
state of the art results with simple architectures by simply making slightly fewer predictions,
as well as enables detecting deviations from the training data. All these capabilities are
achieved without sacrificing overall accuracy of the base model.
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Appendix A. Pseudo code for training

Algorithm 1 Pseudo-code of ProtoAttend training

1: Inputs: Training data set T , encoder model h(x; θ), classifier model h(v;φ), normaliza-
tion function n, input batch size B, candidate batch size D, attention dimension datt, α
values to be used for loss: (0, 0.5, 1), task-specific loss function L, ADAM learning rate
r, and exponential decay rate parameters β1 and β2

2: Initialize Trainable encoder parameters θ and classifier layer parameters φ
3: while until convergence do
4: Sample a mini-batch from the training data set for the inputs: (xi, yi)

B
i=1 ∼ T

5: Sample a mini-batch from the training data set for the prototypes: (x
(c)
j , y

(c)
j )Dj=1 ∼ T

6: for i = 1, ..., B do
7: Obtain queries and values for the input:

Qi,Vi ← h(x; θ)

8: for j = 1, ..., D do
9: Obtain keys and values for the prototypes:

K
(c)
j ,V

(c)
j ← h(x(c); θ)

10: for i = 1, ..., B do
11: for j = 1, ..., D do
12: Estimate the relational attention coefficients:

pi,j ← n
(
K

(c)
j Qi

T /
√
datt

)
13: Obtain the predictions
14: for i = 1, ..., B do

ŷi(α = 0)← g (vi;φ)

ŷi(α = 0.5)← g

(
0.5vi + 0.5

∑D

j=1
pi,jv

(c)
j ;φ

)

ŷi(α = 1)← g

(∑D

j=1
pi,jv

(c)
j ;φ

)
15: Estimate the total loss function

Lbatch ← 1/B ·
∑B

i=1
L (yi, ŷi(0)) + L (yi, ŷi(1)) + L (yi, ŷi(0.5))

16: Update the encoder model and the classifier layer

φ← φ−ADAM(∇φLbatch, r, β1, β2)

θ ← θ −ADAM(∇θLbatch, r, β1,2 )
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Appendix B. Training details

Different candidate databases are sampled randomly from the training data set at each
iteration. Training database size is chosen to fit the model to the memory of a single
GPU. D at inference is chosen sufficiently large to obtain high accuracy. Table 5 shows
the database size D for the data sets used in the experiments. The size of the prototype
candidate database should be sufficiently large such that the model can attend to reasonable
prototypes with high coefficients (separately for each input). With appropriate sparsity
mechanisms, we normally only end up with a few prototypes with large coefficients. Indeed,
most of the coefficients would be zero with sparsemax activation and sparsity regularization.

Table 5: data sets and database size D.

data set Encoder
Database size D

Training Inference
MNIST ResNet 1024 32768

Fashion-MNIST ResNet 1024 32768
CIFAR-10 ResNet 1024 32768

Fruits ResNet 256 4096
ISIC Melanoma ResNet 256 4096

DBPedia VDCNN 512 4096
Census Income LSTM 4096 15360

B.1 MNIST data set

We apply random cropping after padding each side by 2 pixels and per image standardization.
The base encoder uses a standard 32 layer ResNet architecture. The number of filters is
initially 16 and doubled every 5 blocks. In each block, two 3× 3 convolutional layers are
used to transform the input, and the transformed output is added to the input after a 1× 1
convolution. 4× downsampling is applied by choosing the stride as 2 after 5th and 10th blocks.
Each convolution is followed by batch normalization and ReLU nonlinearity. After the last
convolution, 7× 7 average pooling is applied. The output is followed by a fully-connected
layer of 256 units and ReLU nonlinearity, followed by layer normalization (Lei Ba et al.,
2016). Keys and queries are mapped from the output using a fully-connected layer followed
by ReLU nonlinearity, where the attention size is datt=16. Values are mapped from the
output using a fully-connected layer of dout=64 units and ReLU nonlinearity, followed by
layer normalization. For the baseline encoder, the initial learning rate is chosen as 0.002
and exponential decay is applied with a rate of 0.9 applied every 6k iterations. The model is
trained for 84k iterations. For prototypical learning model with softmax attention, the initial
learning rate is chosen as 0.002 and exponential decay is applied with a rate of 0.8 applied
every 8k iterations. The model is trained for 228k iterations. For prototypical learning
model with sparsemax attention, the initial learning rate is chosen as 0.001 and exponential
decay is applied with a rate of 0.93 applied every 6k iterations. The model is trained for
228k iterations. All models use a batch size of 128 and gradient clipping above 20.
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B.2 Fashion-MNIST data set

We apply random cropping after padding each side by 2 pixels, random horizontal flipping, and
per image standardization. The base encoder uses a standard 32 layer ResNet architecture,
similar to our MNIST experiments. For the baseline encoder, the initial learning rate is
chosen as 0.0015 and exponential decay is applied with a rate of 0.9 applied every 10k
iterations. The model is trained for 332k iterations. For prototypical learning with softmax
attention, the initial learning rate is chosen as 0.0007 and exponential decay is applied
with a rate of 0.92 applied every 8k iterations. The model is trained for 450k iterations.
For prototypical learning with sparsemax attention, the initial learning rate is chosen as
0.001 and exponential decay is applied with a rate of 0.9 applied every 8k iterations. The
model is trained for 392k iterations. For prototypical learning with sparsemax attention and
sparsity regularization (with λsparse = 0.0003), the initial learning rate is chosen as 0.001
and exponential decay is applied with a rate of 0.94 applied every 8k iterations. λconf = 0.1
is chosen when confidence regularization is applied. The model is trained for 440k iterations.
All models use a batch size of 128 and gradient clipping above 20.

B.3 CIFAR-10 data set

We apply random cropping after padding each side by 3 pixels, random horizontal flipping,
random vertical flipping and per image standardization. The base encoder uses a standard
50 layer ResNet architecture. The number of filters is initially 16 and doubled every 8
blocks. In each block, two 3× 3 convolutional layers are used to transform the input, and
the transformed output is added to the input after a 1× 1 convolution. 4× downsampling is
applied by choosing the stride as 2 after 8th and 16th blocks. Each convolution is followed
by batch normalization and the ReLU nonlinearity. After the last convolution, 8× 8 average
pooling is applied. The output is followed by a fully-connected layer of 256 units and
the ReLU nonlinearity, followed by layer normalization (Lei Ba et al., 2016). Keys and
queries are mapped from the output using a fully-connected layer followed by the ReLU
nonlinearity, where the attention size is datt=16. Values are mapped from the output using
a fully-connected layer of dout=128 units and the ReLU nonlinearity, followed by layer
normalization. For the baseline encoder, the initial learning rate is chosen as 0.002 and
exponential decay is applied with a rate of 0.95 applied every 10k iterations. The model
is trained for 940k iterations. For prototypical learning with softmax attention, the initial
learning rate is chosen as 0.0035 and exponential decay is applied with a rate of 0.95 applied
every 10k iterations. The model is trained for 625k iterations. For prototypical learning
with sparsemax attention, the initial learning rate is chosen as 0.0015 and exponential decay
is applied with a rate of 0.95 applied every 10k iterations. The model is trained for 905k
iterations. For prototypical learning with sparsemax attention and sparsity regularization
(with λsparse = 0.00008), the initial learning rate is chosen as 0.0015 and exponential decay
is applied with a rate of 0.95 applied every 12k iterations. λconf = 0.1 is chosen when
confidence regularization is applied. The model is trained for 450k iterations. All models
use a batch size of 128 and gradient clipping above 20.

CIFAR-10 experiments with noisy labels. For CIFAR-10 experiments with noisy
labels for the base encoder we only optimize the learning parameters. Noisy labels are

20



ProtoAttend

sampled uniformly from the set of labels excluding the correct one. The baseline model with
noisy label ratio of 0.8 uses an initial learning rate of 0.001, decayed with a rate of 0.92 every
6k iterations, and is trained for 15k iterations. For the dropout approach, dropout with a
rate of 0.1 is applied, and the model uses an initial learning rate of 0.002, decayed with a
rate of 0.85 every 8k iterations, and is trained for 24k iterations. The baseline model with
noisy label ratio of 0.6 uses an initial learning rate of 0.002, decayed with a rate of 0.92 every
6k iterations, and is trained for 12k iterations. For the dropout approach, dropout with a
rate of 0.3 is applied, and the model uses an initial learning rate of 0.002, decayed with a
rate of 0.92 every 8k iterations, and is trained for 18k iterations. The baseline model with
noisy label ratio of 0.4 uses an initial learning rate of 0.002, decayed with a rate of 0.92 every
6k iterations, and is trained for 15k iterations. For the dropout approach, dropout with a
rate of 0.5 is applied, and the model uses an initial learning rate of 0.002, decayed with a
rate of 0.92 every 6k iterations, and is trained for 18k iterations. For experiments for the
prototypical learning model with sparsemax attention, we optimize the learning parameters
and λsparse. For the model with noisy label ratio of 0.8, λsparse = 0.0015, initial learning
rate is chosen as 0.0006 and exponential decay is applied with a rate of 0.95 applied every 8k
iterations. The model is trained for 108k iterations. For the model with noisy label ratio of
0.6, λsparse = 0.0005, initial learning rate is chosen as 0.001 and exponential decay is applied
with a rate of 0.9 applied every 8k iterations. The model is trained for 92k iterations. For
the model with noisy label ratio of 0.4, λsparse = 0.0003, initial learning rate is chosen as
0.001 and exponential decay is applied with a rate of 0.9 applied every 6k iterations. The
model is trained for 122k iterations.

B.4 Fruits data set

We apply random cropping after padding each side by 5 pixels, random horizontal flipping,
random vertical flipping and per image standardization. In the encoder, first, a downsampling
with a convolutional layer is applied with a stride of 2, and using 16 filters, followed by
a downsampling with max-pooling with a stride of 2. After obtaining the 25× 25 inputs,
a standard 32 layer ResNet architecture (similar to MNIST) is used, followed by a fully-
connected layer of 128 units and the ReLU nonlinearity, followed by layer normalization (Lei
Ba et al., 2016). Keys and queries are mapped from the output using a fully-connected layer
followed by the ReLU nonlinearity, where the attention size is datt=16. Values are mapped
from the output using a fully-connected layer of dout=64 units and the ReLU nonlinearity,
followed by layer normalization. W eight decay with a factor of 0.0001 is applied for the
convolutional filters. The model uses a batch size of 128 and gradient clipping above 20.

B.5 ISIC Melanoma data set

The ISIC Melanoma data set is formed from the ISIC Archive (?) that contains over 13k
dermoscopic images collected from leading clinical centers internationally and acquired from a
variety of devices within each center. The data set consists of skin images with labels denoting
whether they contain melanoma or are benign. We construct the training and validation data
set using 15122 images (13511 benign and 1611 melanoma cases), and the evaluation data
set using 3203 images (2867 benign and 336 melanoma). While training, benign cases are
undersampled in each batch to have 0.6 ratio including candidate database sets at training
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and inference. All images are resized to 128× 128 pixels. We apply random cropping after
padding each side by 8 pixels, random horizontal flipping, random vertical flipping and per
image standardization. In the encoder, first, a downsampling with a convolutional layer is
applied with a stride of 2, and using 16 filters, followed by a downsampling with max-pooling
with a stride of 2. After obtaining the 32 × 32 inputs, the base encoder uses a standard
50 layer ResNet architecture (similar to CIFAR10), followed by a fully-connected layer of
128 units and the ReLU nonlinearity, followed by layer normalization (Lei Ba et al., 2016).
Keys and queries are mapped from the output using a fully-connected layer followed by
the ReLU nonlinearity, where the attention size is datt=16. Values are mapped from the
output using a fully-connected layer of dout=64 units and the ReLU nonlinearity, followed
by layer normalization. For the baseline encoder, the initial learning rate is chosen as 0.002
and exponential decay is applied with a rate of 0.9 applied every 3k iterations. The model
is trained for 220k iterations. For prototypical learning with softmax attention, the initial
learning rate is chosen as 0.0006 and exponential decay is applied with a rate of 0.9 applied
every 3k iterations. The model is trained for 147k iterations. For prototypical learning with
sparsemax attention, the initial learning rate is chosen as 0.0006 and exponential decay
is applied with a rate of 0.9 applied every 4k iterations. The model is trained for 166k
iterations. All models use a batch size of 128 and gradient clipping above 20.

B.6 Animals with Attributes data set

We train ProtoAttend with sparsemax attention using the features from a pre-trained ResNet-
50 as provided in (Yeh et al., 2018). To map the pre-trained features, we simply insert a
single fully-connected layer with 256 units with ReLU nonlinearity and layer normalization,
followed by the individual fully-connected layers of keys, queries and values (16, 16 and
64 units respectively with ReLU nonlinearity). Sparsity regularization is applied with
λsparse = 0.000001. We train the model for 70k iterations. The initial learning rate is chosen
as 0.0006 and exponential decay is applied with a rate of 0.8 applied every 10k iterations. A
classification accuracy above 91% is obtained for the test set.

B.7 DBPedia data set

There are 14 output classes: Company, Educational Institution, Artist, Athlete, Office
Holder, Mean Of Transportation, Building, Natural Place, Village, Animal, Plant, Album,
Film, Written Work. As the input, 16-dimensional trainable embeddings are mapped from
the dictionary of 69 raw characters (Conneau et al., 2016). The maximum length is set
to 448 and longer inputs are truncated while the shorter inputs are padded. The input
embeddings are first transformed with a 1-D convolutional block consisting 64 filters with
kernel width of 3 and stride of 2. Then, 8 convolution blocks as in (Conneau et al., 2016) are
applied, with 64, 64, 128, 128, 256, 256, 512 and 512 filters respectively. All use the kernel
width of 3, and after each two layers, max pooling is applied with kernel width of 3 and a
stride of 2. All convolutions are followed by batch normalization and the ReLU nonlinearity.
Convolutional filters use weight normalization with parameter 0.00001. The last convolution
block is followed by k-max pooling with k=8 (Conneau et al., 2016). Finally, we apply two
fully-connected layers with 1024 hidden units. In contrast to (Conneau et al., 2016), we
also use layer normalization (Lei Ba et al., 2016) after fully-connected layers as we observe
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this leads to more stable training behavior. Keys and queries are mapped from the output
using a fully-connected layer followed by the ReLU nonlinearity, where the attention size is
datt=16. Values are mapped from the output using a fully-connected layer of dout=64 units
and the ReLU nonlinearity, followed by layer normalization. For the baseline encoder, initial
learning rate is chosen as 0.0008 and exponential decay is applied with a rate of 0.9 applied
every 8k iterations. The model is trained for 212k iterations. For prototypical learning
model with softmax attention, the initial learning rate is chosen as 0.0008 and exponential
decay is applied with a rate of 0.9 applied every 8k iterations. The model is trained for 146k
iterations. For prototypical learning model with sparsemax attention, the initial learning
rate is chosen as 0.0005 and exponential decay is applied with a rate of 0.82 applied every
8k iterations. The model is trained for 270k iterations. All models use a batch size of 128
and gradient clipping above 20. We do not apply any data augmentation.

B.8 Adult Census Income

There are two output classes: whether or not the annual income is above $50k. Categorical
categories such as the ‘marital-status’ are mapped to multi-hot representations. Continuous
variables are used after a fixed normalization transformation. For ‘age’, the transformation
first subtracts 50 and then divides by 30. For ‘fnlwgt’, the transformation first takes the log,
and then subtracts 9, and then divides by 3. For ‘education-num’, the transformation first
subtracts 6 and then divides by 6. For ‘hours-per-week’, the transformation first subtracts
50 and then divides by 50. For ‘capital-gain’ and ‘capital-loss’, the normalization takes
the log, and then subtracts 5, and then divides by 5. The concatenated features are then
mapped to a 64 dimensional vector using a fully-connected layer, followed by the ReLU
nonlinearity. The base encoder uses an LSTM architecture, with 4 timesteps. At each
timestep, 64-dimensional inputs are applied after a dropout with rate 0.5. The output of the
last timestep is used after applying a dropout with rate 0.5. Keys and queries are mapped
from this output using a fully-connected layer followed by the ReLU nonlinearity, where the
attention size is datt=16. Values are mapped from the output using a fully-connected layer of
dout=16 units and the ReLU nonlinearity, followed by layer normalization. For the baseline
encoder, the initial learning rate is chosen as 0.002 and exponential decay is applied with
a rate of 0.9 applied every 2k iterations. The model is trained for 4.5k iterations. For the
models with attention in prototypical learning framework, the initial learning rate is chosen
as 0.0005 and exponential decay is applied with a rate of 0.92 applied every 2k iterations.
The softmax attention model is trained for 13.5k iterations and the sparsemax attention
model is trained for 11.5k iterations. For the model with sparsity regularization, the initial
learning rate is 0.003 and exponential decay is applied with a rate of 0.7 applied every 2k
iterations, and the model is trained for 7k iterations. All models use a batch size of 128 and
gradient clipping above 20. We do not apply any data augmentation.

Appendix C. Additional prototype examples

Fig. 10 exemplify prototypes for CIFAR-10. For most cases, we observe the similarity of
discriminative features between inputs and prototypes. For example, the body figures of
birds, the shape of tires, the face patterns of dogs, the body figures of frogs, the appearance
of the background sky for planes, are among the features apparent in examples.
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Input Prototypes
0.12 0.09 0.05

0.25 0.21 0.07

0.10 0.09 0.06

0.16 0.15 0.12

0.18 0.08 0.08

0.21 0.18 0.10

0.10 0.07 0.05

(a) With sparsemax

Input Prototypes
0.370.53 0.07

0.67 0.22 0.10

0.64 0.36

0.65 0.22 0.08
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Figure 10: Example inputs and corresponding prototypes for CIFAR-10.
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payback is a hindi thriller film directed by sachin p. karande and produced by sarosh khan. the film released on 17 december 2010 
under the archangel entertainment banner.

hush... hush sweet charlotte is a 1964 american thriller film directed and produced by robert aldrich and starring bette
davis olivia de havilland joseph cotten and agnes moorehead as well as mary astor in her final film.the movie was adapted 
for the screen by henry farrell and lukas heller from farrell's unpublished short story what ever happened to cousin 
charlotte? it received seven academy award nominations.

nammal is a blockbuster malayalam movie released in 2002. it is directed by the notable director kamal and produced by david
kachapalli. the movie stars jishnu siddharth renuka menon and bhavana. it is best known for its award winning song sukamanee
nilavu sung by vidhu prathap and jyotsana. the movie was shot in the campus of government engineering college thrissur and 
holy trinity school palakkad.other members of the cast i
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hazen high school is an accredited public secondary school located in rural distant community of hazen arkansas united states. 
the school provides comprehensive education to more than 150 students annually in grades nine through twelve. hazen high school 
is one of two public high schools in prairie county and is the sole high school administered by the hazen school district.

the vivien t. thomas medical arts academy (vttmaa) is a public high school located in baltimore maryland.

liceo requnoa (english: requnoa high school) is a chilean high school located in requnoa cachapoal province chile.

iranshahr high school is a high school in yazd iran.
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viettesia infuscata is a moth in the arctiidae family. it was described by de toulgot in 1959. it is found in madagascar.

bellulia antemediana is a moth of the micronoctuidae family. it is known from western thailand.the wingspan is about 13 
mm. the forewing is brown. the hindwing is light grey with an indistinct discal spot. the underside is unicolorous grey 
with a small discal spot on the hindwing.

grammia favorita is a moth of the arctiidae family. it was described by neumgen in 1890. it is found in the sand hills of 
nebraska nevada and north-eastern colorado. the habitat consists of prairie sand dunes.the length of the forewings is 
about 17.7 millimetres (0.70 in). the forewings are dark brown to black dorsally with creamy buff to pinkish buff bands. 
the hindwings are deep pinkish red with black markings. adults are on wing from mid 

opsirhina lechriodes is a species of moth of the lasiocampidae family. it is found in new south wales and victoria.the
wingspan is about 40 mm.the larvae feed on eucalyptus species.

Figure 11: Example inputs and corresponding prototypes for DBPedia (with sparsemax).
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Figure 12: Example inputs and corresponding prototypes for ISIC Melanoma (with sparse-
max attention).

Fig. 11 shows additional prototype examples for DBPedia data set. Prototypes have
very similar sentence structure, words and concepts, while categorizing the sentences into
ontologies.

Fig. 12 shows example prototypes for ISIC Melanoma. In some cases, we observe the
commonalities between input and prototypes that distinguish melanoma cases such as the
non-circular geometry or irregularly-notched borders (Jerant et al., 2000). Compared to
other data sets, ISIC Melonama data set yields lower interpretable prototype quality on
average. We hypothesize this to be due to the perceptual difficulty of the problem as well as
the insufficient encoder performance shown by the lower classification accuracy (despite the
acceptable AUC).

Fig. 13 shows more comparison examples for prototypical learning framework with
sparsemax attention vs. Representer Point Selection (Yeh et al., 2018) on Animals with
Attributes data set. For some cases, including chimpanzee, zebra, dalmatian and tiger,
ProtoAttend yields perceptually very similar samples. The similarity of the chimpanzee
body form and the background, zebra patterns, dalmatian pattern on the grass, and tiger
pattern and head pose, are prominent. Representer Point Selection fails to capture such
similarity features as effectively. On the other hand, for bat, otter and wolf, the results are
somewhat less satisfying. The wing part of the bat, multiple count of the otters with the
background, and the color and furry head of the wolf seem to be captured, but with less
apparent similarity than some other possible samples from the data set. Representer Point
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Selection method also cannot be claimed to be successful in these cases. Lastly, for leopard,
ProtoAttend only yields one non-zero prototype (which is indeed statistically rare given the
model and sparsity choices). The pattern of the leopard image seems relevant, but it is also
not fully satisfying to observe a single prototype that is not perceptually more similar. All
of the test examples in Fig. 13 are classified correctly with our framework and all of the
shown prototypes are also from the correct classes.

Fig. 14 shows the comparisons on CIFAR-10 data set, following the setting in (Yeh et al.,
2018). Overall, we observe that the chosen prototypes are qualitatively meaningful samples
of the classes with ProtoAttend, while they are sometimes not even from the same class
with Representer Point Selection or Influence Functions.

Appendix D. Comparison of confidence-controlled prediction for softmax
vs. sparsemax

Figs. 15 and 16 show the accuracy vs. ratio of samples for softmax vs. sparsemax attention
without confidence regularization. The baseline accuracy (at 100% prediction ratio) is higher
for softmax attention for some data sets, whereas higher for sparsemax for some others. On
the other hand, higher number of prototypes yielded by softmax attention results in a wider
range for confidence-controlled prediction trade-off.

As an impactful case study, we consider melanoma detection problem with ISIC data
set (?) in Supplementary Material. In medical diagnosis, it is strongly desired to maintain
a sufficiently-high prediction performance, potentially by verifying the decisions of an AI
system by medical experts in the cases where the AI models are not confident. By refraining
from some predictions, as shown in Fig. 17, we demonstrate unprecedentedly high AUC
values without using transfer learning or highly-customized models (Haenssle et al., 2018).

Appendix E. Controlling sparsity via regularization

Fig. 18 shows the impact of sparsity regularization coefficient on training. By varying the
value of λsparse, the number of prototypes can be efficiently controlled. For high values
of sparsity regularization coefficient, the model gets stuck at a point where it is forced
to make decision from a low number of prototypes before the encoder model is properly
learned, hence typically yields considerably lower performance. We also observe sparsity
mechanism via sparsemax attention to yield better performance than softmax attention with
high sparsity regularization.

Appendix F. Prototype quality

In general, the following scenarios may yield low prototype quality:

1. Lack of related samples in the candidate database.
2. Perceptual difference between humans and encoders in determining discriminative

features.
3. High intra-class variability that makes training difficult.
4. Imperfect encoder that cannot yield fully accurate representations of the input.
5. Insufficiency of relational attention to determine weights from queries and keys.
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Figure 13: Relevant samples found by ProtoAttend with sparsemax attention vs. Representer
Point Selection (Yeh et al., 2018) for the examples from Supplementary Material
of (Yeh et al., 2018) on AwA.

28



ProtoAttend

Input ProtoAttend Representer point selection Influence functions

Figure 14: Relevant samples found by ProtoAttend vs. Representer Point Selection (Yeh
et al., 2018) and Influence Functions (Koh and Liang, 2017), based on learned
representations of a pre-trained model as in (Yeh et al., 2018) on CIFAR-10.
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(a) MNIST (b) Fashion MNIST

Figure 15: Accuracy vs. ratio of samples for (a) MNIST and (b) Fashion MNIST, for
confidence levels between 0 and 0.999.

(a) DBpedia (b) Adult Census Income

Figure 16: Accuracy vs. ratio of samples for (a) DBpedia and (b) Adult Census Income, for
confidence levels between 0 and 0.999.
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Figure 17: Area-under-curve (AUC) vs. ratio of samples for ISIC Melanoma with softmax
attention, for confidence values ranging between 0 and 0.99.
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Figure 18: Number of training iterations vs. median number prototypes to explain 95% of
the decision (in logarithmic scale), for Fashion-MNIST with softmax attention.

6. Inefficient decoupling between encoder & attention blocks and the final decision block.

There can be problem-dependent fundamental limitations on (1)-(3), whereas (4)-(6) are
raised by choices of models and losses and can be further improved. We leave the quan-
tification of prototype quality using information-theoretic metrics or discriminative neural
networks to future work.

Appendix G. Understanding misclassification cases

One of the benefits of prototypical learning is insights into wrong decision cases. Fig. 19
exemplifies prototypes with wrong labels, that give insights about why the model is confused
about a particular input (e.g. due to similarity of the visual patterns). Such insights can be
actionable to improve the model performance, such as adding more training samples for the
confusing classes or modifying the loss functions.
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Inputs Prototypes

(cat) (dog)

(airplane) (ship)

(bird) (airplane)

Figure 19: Example prototypes with wrong labels for CIFAR-10.

References

Devansh Arpit, Stanislaw Jastrzkbski, Nicolas Ballas, David Krueger, Emmanuel Bengio,
et al. A Closer Look at Memorization in Deep Networks. arXiv:1706.05394, 2017.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. In ICLR, 2015.

Jacob Bien and Robert Tibshirani. Prototype selection for interpretable classification.
arXiv:1202.5933, 2012.

Chaofan Chen, Oscar Li, Alina Barnett, Jonathan Su, and Cynthia Rudin. This looks like
that: deep learning for interpretable image recognition. NeurIPS, 2019.
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