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Abstract

Precision medicine is an emerging medical approach that allows physicians to select the
treatment options based on individual patient information. The goal of precision medicine
is to identify the optimal treatment regime (OTR) that yields the most favorable clinical
outcome. Prior to adopting any OTR in clinical practice, it is crucial to know the impact of
implementing such a policy. Although considerable research has been devoted to estimating
the OTR in the literature, less attention has been paid to statistical inference of the OTR.
Challenges arise in the nonregular cases where the OTR is not uniquely defined. To deal
with nonregularity, we develop a novel inference method for the mean outcome under
an OTR (the optimal value function) based on subsample aggregating (subagging). The
proposed method can be applied to multi-stage studies where treatments are sequentially
assigned over time.

Bootstrap aggregating (bagging) and subagging have been recognized as effective vari-
ance reduction techniques to improve unstable estimators or classifiers (Bühlmann and Yu,
2002). However, it remains unknown whether these approaches can yield valid inference
results. We show the proposed confidence interval (CI) for the optimal value function
achieves nominal coverage. In addition, due to the variance reduction effect of subag-
ging, our method enjoys certain statistical optimality. Specifically, we show that the mean
squared error of the proposed value estimator is strictly smaller than that based on the sim-
ple sample-splitting estimator in the nonregular cases. Moreover, under certain conditions,
the length of our proposed CI is shown to be on average shorter than CIs constructed based
on the existing state-of-the-art method (Luedtke and van der Laan, 2016) and the “oracle”
method which works as well as if an OTR were known. Extensive numerical studies are
conducted to back up our theoretical findings.
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1. Introduction

Precision medicine is an emerging medical approach that allows physicians to select the
treatment options based on individual patient information. In contrast to the “one-size-fits-
all” approach, precision medicine proposes to identify the optimal treatment regime (OTR)
that yields the most favorable clinical outcome. A treatment regime is a function that
maps a patient’s baseline covariates to the space of available treatment options. For chronic
diseases such as cancer and diabetes, treatment of patients involves a series of decisions. In
these applications, it is of considerable interest to estimate the optimal dynamic treatment
regime (ODTR) that consists of a list of decision rules for assigning treatment based on a
patient’s covariates and treatment history.

In the literature, considerable research has been devoted to estimating the OTR (or
ODTR). Some popular methods include Q-learning (Watkins and Dayan, 1992; Chakraborty
et al., 2010), A-learning (Robins et al., 2000; Murphy, 2003; Shi et al., 2018a), policy search
methods (Zhang et al., 2012, 2013a), outcome weighted learning (Zhao et al., 2012, 2015),
concordance-assisted learning (Fan et al., 2017; Liang et al., 2018), maximin projection
learning (Shi et al., 2018b) and decision list-based methods (Zhang et al., 2015, 2018). Prior
to adopting any OTR in clinical practice, it is crucial to know the impact of implementing
such a policy. This requires to evaluate the mean outcome in the population under an
OTR, i.e, the optimal value function. The inference of the optimal value function helps us
to evaluate whether the OTR can lead to a clinically meaningful increment value compared
to fixed treatment regimes.

Despite the popularity of estimating the OTR, less attention has been paid to statistical
inference of the optimal value function. This is an extremely challenging task in the non-
regular cases where there is a positive probability that the interaction between treatment
and covariates (i.e, the contrast function) is equal to zero. The nonregularity occurs when
the treatment is neither beneficial nor harmful for a subset of patients in the population.
Restricting inference to the regular cases is limited since it requires the optimal treatment
to be uniquely defined for nearly all patients. The main challenge lies in that the OTR is
unknown and needs to be estimated from the data. Consider the following naive method
that first estimates the OTR and then evaluates its mean outcome based on the augmented
inverse propensity-score weighted estimator (AIPWE) for the value function (Zhang et al.,
2012, 2013a). The validity of such a procedure relies on the estimated treatment regime
being consistent to a unique OTR. However, this condition is typically violated in the
nonregular cases (see Section 2.2 for details).

Chakraborty et al. (2014) considered inference for the value of an estimated OTR using
them-out-of-n bootstrap. The CI based on this method is valid in the nonregular cases when
m grows to infinity at a rate slower than n. However, the length of the CI shrinks at a rate
of m−1/2. As a result, such CI will be much wider than the CI of our proposed procedure
which shrinks at a rate of n−1/2. Luedtke and van der Laan (2016) proposed an online
one-step estimator that is n−1/2-consistent to the optimal value function. Their method
mimics the online prediction algorithms and recursively updates the initial estimated OTR
and value function using new observations. Based on the online one-step estimator, they
developed a valid inference procedure. However, their procedure relies on a data ordering.
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The online one-step estimator can be sensitive to the order of the data, especially when the
sample size is small.

In this paper, we develop a novel inference method for the optimal value function based
on subsample aggregating (subagging) and refitted cross-validation. Specifically, we esti-
mate the OTR based on a random subsample of the data and evaluate its value based on
the remaining data using AIPWE. We then iterate this procedure multiple times. Our final
estimator is defined as an average of all value estimators. Bootstrap aggregating (bagging)
and subagging have been recognized as effective variance reduction techniques to improve
unstable estimators or classifiers (Bühlmann and Yu, 2002). However, it remains unknown
whether these procedures can yield valid inference results. We show the proposed estimator
is asymptotically normal even in nonregular cases. We further provide a consistent estimator
for its asymptotic variance and derive a Wald-type CI for the optimal value function.

At nonregular cases, the estimated OTR might fluctuate randomly and does not converge
to a fixed function, even as the sample size grows to infinity. Subagging averages over
estimated OTRs computed based on different subsamples, resulting in a smoothed decision
rule, yielding smaller variance and mean squared error. Due to the variance reduction effect
of subagging, our method enjoys certain statistical optimality. Specifically, we prove that:

• The mean squared error of the proposed value estimator is strictly smaller than that
based on the simple sample-splitting method in the nonregular cases;

• The length of our proposed CI is on average shorter than the CI constructed based
on the online one-step method (Luedtke and van der Laan, 2016) in the nonregular
cases;

• Our proposed CI is asymptotically narrower than the CI of the “oracle” method which
works as well as if an OTR were known in the nonregular cases.

Moreover, the proposed method can be applied to multi-stage studies to evaluate the
mean outcome under an ODTR. Specifically, we show that our proposed value estimator
is asymptotically unbiased and our CI achieves nominal coverage, as long as the estimated
contrast function at each stage satisfies certain convergence rates and the true contrast
function at each stage satisfies certain margin conditions (see Appendix A). The number of
treatment stages is allowed to be an arbitrary fixed integer.

The rest of the paper is organized as follows. In Section 2, we introduce our inference
procedure in a point treatment study. In Section 3, we discuss the asymptotic optimality of
our proposed method. Section 4 contains the extension to multi-stage studies. Simulation
studies are conducted in Section 5. We apply the proposed method to a real dataset in
Section 6, followed by a discussion section. All proofs are provided in the appendix.

2. Point Treatment Study

2.1. Optimal Treatment Regime and Optimal Value Function

We begin by considering a single stage study with two treatments. Let X0 ∈ X be a
patient’s baseline covariates, A0 ∈ {0, 1} denote the treatment a patient receives, and Y0

denote a patient’s clinical outcome (the larger the better by convention). The subscript 0
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indicates that these are population variables. A treatment regime d(·) is a deterministic
function that maps X to {0, 1}. Let Y ∗0 (0) and Y ∗0 (1) be a patient’s potential outcomes,
representing the response he/she would get if treated by treatment 0 and 1, respectively.
In addition, define the potential outcome

Y ∗0 (d) = Y ∗0 (0){1− d(X0)}+ Y ∗0 (1)d(X0),

representing the response a patient would have if treated according to a treatment regime d.
Let V (d) = E{Y ∗0 (d)}. An OTR dopt is defined as the maximizer of the expected potential
outcome V (d) among the set of all possible treatment regimes, i.e,

dopt ∈ arg max
d

V (d).

The OTR may not be unique. Let Dopt denote the set of all OTRs,

Dopt = {d0 : V (d0) = max
d
V (d)}.

Assume the following two assumptions hold.

(A1.) Stable unit treatment value assumption (SUTVA): Y0 = (1−A0)Y ∗0 (0) +A0Y
∗

0 (1).
(A2.) No unmeasured confounders: Y ∗0 (0), Y ∗0 (1) ⊥⊥ A0|X0.

SUTVA requires the outcome of each patient to depend on his (or her) own treatment
only. In other words, there is no interference effect between patients. The no unmeasured
confounders assumption automatically holds in randomized studies. These two assumptions
guarantee the OTR is identifiable from the observed data. Specifically, define the conditional
mean functions h(a,x) ≡ E(Y0|A0 = a,X0 = x) and the contrast function

τ(x) ≡ h(1,x)− h(0,x).

The following lemma relates OTR to the function τ(·).

Lemma 1 Let X1 = {x ∈ X : τ(x) > 0} and X2 = {x ∈ X : τ(x) < 0}. Assume (A1),
(A2) hold, and E|τ(X0)| <∞. Then, for any d ∈ Dopt,

Pr(X0 ∈ X1 ∩ X2,d) = 0 and Pr(X0 ∈ X2 ∩ X1,d) = 0, (1)

where X1,d = {x ∈ X : d(x) = 1} and X2,d = {x ∈ X : d(x) = 0}. Conversely, for any
treatment regime d satisfying Equation 1, we have d ∈ Dopt.

Lemma 1 implies that dopt,0 ∈ Dopt where

dopt,0(x) = I{τ(x) > 0}, ∀x ∈ X, (2)

where I(·) stands for the indicator function. Let V0 = maxd V (d) = V (dopt,0). Our ob-
jective is to construct confidence intervals (CIs) for V0 given the observed data {Oi =
(Xi, Ai, Yi), i = 1, . . . , n} that are i.i.d copies of O0 = (X0, A0, Y0).

To estimate V0, we need to estimate the OTR first. For a given subset I ⊆ {1, . . . , n},
let d̂I denote the estimated OTR based on the sub-dataset {Oi}i∈I . One way to derive the
OTR is to consider the class of plug-in classifiers, i.e, d̂I(·) = I{τ̂I(·) > 0} where τ̂I(·) stands
for the estimated contrast function based on {Oi}i∈I . Alternatively, we may apply some
weighted classification procedure such as outcome weighted learning to directly compute
d̂I . Let Ic denote the complement of I and |I| be its cardinality.
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2.2. The Challenge in the Nonregular Cases

Before presenting the proposed method, we briefly discuss the challenge of constructing CIs
for V0. We begin by introducing a robust estimator for the value under a fixed decision rule.
For any a = 0, 1 and any x ∈ X, let π(a,x) = Pr(A0 = a|X0 = x) denote the propensity
score function. For i = 0, 1, . . . , n and any function d : X→ R, define

ψi(d, π
∗, h∗) =

Aid(Xi) + (1−Ai){1− d(Xi)}
π∗(Ai,Xi)

{Yi − h∗(Ai,Xi)}

+ d(Xi)h
∗(1,Xi) + {1− d(Xi)}h∗(0,Xi).

Zhang et al. (2012) proposed to use the augmented inverse propensity-score weighted esti-
mator (AIPWE)

∑n
i=1 ψi(d, π

∗, h∗)/n for V (d). AIPWE is robust to the misspecification
of the outcome regression model h. Specifically, it is consistent to V (d) when either π∗ or
h∗ is consistent. This is referred to as the doubly-robustness property of AIPWE (see e.g.,
Bang and Robins, 2005).

For illustration purposes, we assume functions π and h are known in this section and
Section 2.3. In Section 2.4, we allow these functions to be estimated from the observed
dataset. Let I0 = {1, . . . , n}. Based on AIPWE, it’s temping to consider the estimator
n−1

∑n
i=1 ψi(d̂I0 , π, h). Such a plug-in estimator is consistent to V0 under certain conditions

on d̂I0 . However, it might not have a tractable limiting distribution in the nonregular cases
where Pr{τ(X0) = 0} > 0. To better illustrate this, notice that

1√
n

n∑
i=1

{ψi(d̂I0 , π, h)− V0} =
1√
n

n∑
i=1

{ψi(dopt,0, π, h)− V0}︸ ︷︷ ︸
η1

+
√
n{V (d̂I0)− V0}︸ ︷︷ ︸

η2

+
1√
n

n∑
i=1

{ψi(d̂I0 , π, h)− ψi(dopt,0, π, h)− V (d̂I0) + V0}︸ ︷︷ ︸
η3

.

Since Eψi(d
opt,0, π, h) = V0, η1 corresponds to a sum of i.i.d mean-zero random variables

and is asymptotically normal. Under certain mild conditions, we have η2 = op(1). Assume

η3 = op(1). Then it follows that n−1/2
∑n

i=1{ψi(d̂I0 , π, h) − V0} is asymptotically normal.

However, as commented in the introduction, the condition η3 = op(1) relies on |d̂I0(X0)−
I{τ(X0) > 0}| P→ 0. For any x that satisfies τ(x) = 0, the estimated OTR d̂I(x) is
“unstable” in the sense that it might recommend different treatments due to sufficiently
small changes in the data. When Pr{τ(X) = 0} > 0, d̂I0(X0) might not converge to a
deterministic quantity. The condition η3 = op(1) is thus violated. Subagging remedies
this issue by averaging across estimated OTRs from subsamples as illustrated in the next
section.

Alternatively, one may apply sample-split estimation to allow for valid inference in the
non-regular cases. Specifically, let I∗ be a random subsample of I0 with |I∗| ≈ n/2. The
estimator |Ic∗|−1

∑
i∈Ic∗ ψi(d̂I∗ , π, h) is consistent to V0. Moreover, its asymptotic variance

can be consistently estimated by the sampling variance estimator. However, such an esti-
mator is not efficient since the value function is evaluated based only on samples in Ic∗. To
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improve the estimation efficiency, one can also average two such value estimators, i.e,

η4 ≡
1

2|I∗|
∑
i∈I∗

ψi(d̂Ic∗ , π, h) +
1

2|I∗|c
∑
i∈Ic∗

ψi(d̂I∗ , π, h).

However, in the nonregular cases, these two value estimators can be correlated with each
other. It remains challenging to consistently estimate the asymptotic variance of η4.

2.3. Subsample Aggregation and Sample-Split Estimation

We use a shorthand and write ψi(d) = ψi(d, π, h) for any i ∈ {0, 1, . . . , n} and d(·). To obtain
valid CI for the optimal value function, we apply sample-split estimation with subagging.
More specifically, we estimate V0 by averaging across all single sample-splitting estimators
from subsamples of size sn, i.e,

V̂ ∗∞ =
1(
n
sn

) ∑
I⊆I0
|I|=sn

(
1

n− sn

∑
i∈Ic

ψi(d̂I)

)
,

where sn is some diverging sequence. Compared to the single sample-splitting estimator
|Ic∗|−1

∑
i∈Ic∗ ψi(d̂I∗), such aggregation helps reduce variance in the nonregular cases (see

Section 3.1 for detailed explanation).
Let I(−i) = I0 − {i}, we can rewrite V̂ ∗∞ as

V̂ ∗∞ =
1

(n− sn)
(
n
sn

) n∑
i=1

∑
I∈I(−i)
|I|=sn

ψi(d̂I) =
1

n

n∑
i=1

1(
n−1
sn

) ∑
I∈I(−i)
|I|=sn

ψi(d̂I).

Notice that ψi(d) is linear in d. Consider the aggregated OTR

d̂(−i)
sn,∞(x) =

(
n− 1

sn

)−1 ∑
I∈I(−i)
|I|=sn

d̂I(x). (3)

It follows that V̂ ∗∞ =
∑n

i=1 ψi(d̂
(−i)
sn,∞)/n. Based on the ANOVA decomposition (see Section

C.1 for details), we can show that

E|d̂(−i)
sn,∞(x)− dsn(x)|2 = O(sn/n), (4)

where the big-O term is uniform in x, and dsn(x) = Ed̂{1,2,...,sn}(x). When sn = o(n), d̂
(−i)
sn,∞

is consistent to dsn and we might expect that

V̂ ∗∞
P→ 1

n

n∑
i=1

ψi(dsn) ≡ η5. (5)

With a more refined analysis, we show in Theorem 2 that V̂ ∗∞ = η5 + op(n
−1/2). Notice

that η5 corresponds to the estimated value function under the smoothed decision rule dsn(·)
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B-spline KRR tree-based RF

κ0
2m

(2m+1)
4
5

log(n) log(p)
k

3
3+4S log(2)

κ∗ m(α+2)
(2m+1)(α+1)

4(α+2)
5(2α+2)

(2α+1) log(n) log(p)
k(2α+2)

3(2α+1)
(α+1){6+8S log(2)}

notations or X = [0, 1], h belongs to k = minimum leaf size, S = number of
conditions h m-th differentiable certain RKHS p =dimension of covariates important variables

references
Equation (8), Equations (10)-(14), Equation (8), Corollary 6,

Zhou et al. (1998) Zhang et al. (2013b) Wager and Walther (2015) Biau (2012)

Table 1: Values of κ0 and κ∗ for various methods.

which is a deterministic function of x. As a result,
√
nV̂ ∗∞ is asymptotically equivalent to a

sum of i.i.d mean zero random variables and can be used to construct the CI for V0. Below,
we formally establish these results. Let I(j) = {1, 2, . . . , j} for any j. We need the following
conditions.

(A3) Assume there exists some positive constant c0 such that infx∈X,a=0,1 π(a,x) ≥ c0.
(A4) Assume there exists some constant κ∗ > 1/2 such that

EV (d̂I(j)) = V0 +O(|I(j)|−κ
∗
).

Condition (A4) requires the value function under an estimated OTR to satisfy certain
convergence rates. When the plug-in classifier I(τ̂I(·) > 0) is used, (A4) can be replaced by
the following two conditions.

(A5) Assume there exist some positive constants c̄, α and δ0 such that

Pr(0 < |τ(X0)| < t) ≤ c̄tα, ∀0 < t ≤ δ0.

(A6) Assume there exists some constant κ0 > (α+ 2)/(2α+ 2) such that

E|τ̂I(j)(X0)− τ(X0)|2 = O(|I(j)|−κ0).

Condition (A5) is very similar to the margin assumption from Audibert and Tsybakov
(2007). It holds with α = 1 when τ(X0) has a bounded probability density function near 0.
In (A6), we assume the estimated contrast function shall satisfy certain convergence rates.
These rates are available for most often used nonparametric approaches including spline
methods (Zhou et al., 1998), kernel ridge regression (KRR, Steinwart and Christmann,
2008; Zhang et al., 2013b), tree-based methods (Wager and Walther, 2015) and random
forests (RF, Biau, 2012). See Table 1 for details. When (A5) and (A6) hold, we can show
that (A4) holds with κ∗ = κ0(1 +α)/(2 +α) (see Theorem 3.1 in Qian and Murphy, 2011).

We present our main results below. For any two sequences {an}, {bn}, we write an � bn
if there exist some universal constants c, C > 0 such that cbn ≤ an ≤ Cbn. The notation
an � bn means limn bn/an = 0.

Theorem 2 Assume (A1)-(A4) hold, maxa∈{0,1} E{Y ∗0 (a)}2 < ∞, and sn satisfies sn =

o(n) and sn � n1/(2κ∗). Then, we have

V̂ ∗∞ = η5 + op(n
−1/2) and V0 = Eη5 + o(n−1/2),

where η5 is defined in Equation (5).
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Suppose we set sn � n/ log(n). The condition sn � n1/(2κ∗) in Theorem 2 is then
automatically satisfied. Theorem 2 implies that

√
n(V̂ ∗∞− V0) =

√
n(η5−Eη5) + op(1). Let

σ2
sn = Var{ψ0(sn)}. Assume lim infn σsn > 0. By the central limit theorem, we have

√
n(V̂ ∗∞ − V0)

σsn

d→ N(0, 1).

For any z1, . . . , zn ∈ R, let ŝ.e2({zi}ni=1) denote the sample variance estimator, i.e, ŝ.e2({zi}ni=1) =∑n
i=1(zi−z̄)2/(n−1) where z̄ =

∑n
i=1 zi/n. The asymptotic variance σ2

sn can be consistently
estimated by

σ̂∗2∞ = ŝ.e2
({
ψi(d̂

(−i)
sn,∞)

}n
i=1

)
,

where d
(−i)
sn,∞ is defined in Equation (3).

Notice that it is intractable to compute d̂I over all possible size sn subsamples of the
training data. In practice, we can estimate V̂ ∗∞ based on Monte Carlo approximations. More
specifically, for a sufficiently large integer B, set

V̂ ∗B =
1

B

B∑
b=1

1

|Icb |
∑
i∈Icb

ψi(d̂Ib), (6)

where the subsets I1, . . . , IB are drawn uniformly from the set

SN0,sn =

{
I ⊆ I0 : |I| = sn, N0 ≤

∑
i∈I

Ai ≤ sn −N0

}
,

for some positive integer N0. Here, the constraints N0 ≤
∑

i∈I Ai ≤ sn−N0 guarantee that
the function τ(·) is estimable based on the sub-dataset {Oi}i∈I . Define

σ̂∗2B = ŝ.e2
({
ψi(d̂

(−i)
sn,B

)
}n
i=1

)
, (7)

where

d̂
(−i)
sn,B

(Xi) =
1

n(i)

∑
b:{i/∈Ib}

d̂Ib(Xi),

and n(i) =
∑B

b=1 I(i /∈ Ib). The corresponding two-sided CI for V0 is given by[
V̂ ∗B −

2zα/2σ̂
∗
B√

n
, V̂ ∗B +

2zα/2σ̂
∗
B√

n

]
.

2.4. Unknown propensity score and conditional mean functions

In practice, the conditional mean function h(·, ·) is unknown to us. In observational studies,
the propensity score function π(·, ·) also needs to be estimated from the data. Parametric
models are commonly used to estimate these functions. The resulting value estimator is
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consistent when either h(·, ·) or π(·, ·) is correctly specified. To avoid model misspecification
and gain efficiency, we propose to estimate these function nonparametrically and use a
sample-splitting method to construct AIPWE. The use of sample-splitting helps reduce the
bias of AIPWE resulting from the biases of the estimated propensity score and conditional
mean functions.

For any I ⊆ I0, denote by ĥI and π̂I the corresponding estimators for h and π, based
on the sub-dataset {Oi}i∈I . For simplicity, assume n − sn = 2tn for some integer tn > 0.
We detail our procedure in the following algorithm.

Step 1. Input observations {Oi}i=1,...,n, 0 < α < 1, and integers sn, N0, B.

Step 2. For b = 1, . . . , B,

(i) Draw a subset Ib from SN0,sn uniformly at random.

(ii) Randomly partition Icb into 2 disjoint subsets Ic(1)
b and Ic(2)

b of equal sizes tn.

(iii) For j = 1, 2, let I(j)
b = Ib ∪ I

c(j)
b . Obtain the estimators d̂Ib , π̂I(1)b

, π̂I(2)b

, ĥI(1)b

and ĥI(2)b

.

Step 3. Compute

V̂B =
1

2B

B∑
b=1

 1

tn

∑
i∈Ic(2)b

ψi(d̂Ib ; π̂I(1)b

, ĥI(1)b

) +
1

tn

∑
i∈Ic(1)b

ψi(d̂Ib ; π̂I(2)b

, ĥI(2)b

)

 ,

and

σ̂2
B = ŝ.e2

 1

n(i)

B∑
b=1

2∑
j=1

ψi(d̂Ib ; π̂I(j)b
, ĥI(j)b

)I(i /∈ I(j)
b )


n

i=1

 ,

where n(i) =
∑B

b=1 I(i /∈ Ib).

Step 4. Output [
V̂B −

zα/2σ̂B√
n

, V̂B +
zα/2σ̂B√

n

]
. (8)

Notice that we apply a two-fold cross-validation procedure in Step 2 and Step 3. More
generally, one can use K-fold cross-validation to construct the estimators V̂B and σ̂2

B, for any
fixed integer K ≥ 2. The following theorem establishes the validity of the CI in Equation
(8).

Theorem 3 Assume B � n, lim infn σsn > 0,

Pr

(
inf

I∈I0,x∈X,a=0,1
π̂I(a,x) ≥ c∗

)
= 1, (9)
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for some constant c∗ > 0. In addition, assume

max
a=0,1

E|π̂I(j)(a,X0)− π(a,X0)|2 = o(|I(j)|−1/2), (10)

max
a=0,1

E|ĥI(j)(a,X0)− h(a,X0)|2 = o(|I(j)|−1/2). (11)

Then, under the conditions in Theorem 2, we have
√
n(V̂B − V0)

σ̂B

d→ N(0, 1).

In Equation (10) and (11), we require the estimated propensity score and conditional
mean functions to satisfy certain convergence rates. These conditions guarantee that V̂B
and σ̂2

B are asymptotically equivalent to V̂ ∗B and σ̂∗2B , defined in Equation (6) and (7),
respectively.

Theorem 3 shows the asymptotic normality of
√
n(V̂B − V0)/σ̂B. As a result, the two-

sided CI defined in Equation (8) has asymptotically nominal coverage probabilities. More-
over, it also implies that V̂B − zασ̂B/

√
n is an asymptotic 1−α lower confidence bound for

V0.

2.5. Practical Guidance

The proposed algorithm requires selection of some hyperparameters sn, N0 and B. In
practice, we recommend to set N0 to a small integer such as 5 or 10. In our numerical
studies, we find the resulting confidence intervals are not sensitive to this hyperparameter.

The selection of sn is critical to our proposed method. A smaller sn might result in
a biased value estimator. However, we require sn = o(n) to guarantee its asymptotic
normality. In practice, we recommend to set sn = bK0n/ log(n)c for some K0 ∈ [2, 5]
to guarantee sn is sufficiently large such that the bias of the proposed value estimator is
o(n−1/2). Here, bzc denotes the largest integer smaller than or equal to z. We find such a
choice of sn works well in our simulations.

The number of subsamples B represents a trade-off. In theory, B shall be as large as
possible to guarantee the validity of our CI. Yet, the computation complexity increases
linearly in B. In practice, we recommend using B = 4000 as a good balance between
computational load and inference accuracy. Such a choice of B is also being used by Efron
(2014) for quantifying the uncertainty of regression parameters after model selection.

As shown in Theorem 2, the proposed value estimator corresponds to a nearly unbiased
estimates of the value under the “smoothed” decision rule dsn . To implement precision
medicine, we recommend to adopt the decision rule d̂I0 learned based on all samples instead
of dsn . This is because dsn might not be a deterministic rule. As such, it will cause some
additional complexity in practice. Under condition (A4), the difference between values
under d̂I0 and V0 is op(n

−1/2). Consequently, the proposed confidence interval is also valid

for the value under d̂I0 .

3. Asymptotic Optimality

This section discusses the optimality of the proposed method. The length of the proposed
CI (see (8)) is given by L(V̂B, α) = 2zα/2σ̂B/

√
n. Under the given conditions in Theorem

10
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3, the estimator σ̂B is consistent to σsn and we can show
√
nL(V̂B, α) = 2zα/2σsn + op(1), (12)

and
√
nEL(V̂B, α) = 2zα/2σsn + o(1). (13)

For illustration purposes, we focus on the class of plug-in classifiers d̂I(·) = I{τ̂I(·) > 0}
throughout this section. Before presenting our main results, we introduce the following
condition.

(A7) For any x ∈ X with τ(x) = 0, assume the following holds:

Pr (τ̂I(x) > 0)→ p0(x), as |I| → ∞,

for some function p0(·). In addition, assume there exists some 0 < d∗ ≤ 1/2 such that
d∗ ≤ p0(x) ≤ 1− d∗ for any x that satisfies τ(x) = 0.

Suppose τ̂I(x)− Eτ̂I(x) is asymptotically normal, i.e,

τ̂I(x)− Eτ̂I(x)

σ∗|I|(x)

d→ N(0, 1), (14)

for some sequence σ∗n(x)→ 0. Moreover, suppose the bias term satisfies

Eτ̂I(x)− τ(x)

σ∗|I|(x)
→ r0(x), (15)

for some bounded function r0(·). Then for any x that satisfies τ(x) = 0, it follows from the
definition of weak convergence that

Pr (τ̂I(x) > 0) = Pr (τ̂I(x)− τ(x) > 0) = Pr

(
τ̂I(x)− τ(x)

σ∗|I|(x)
> 0

)

= Pr

(
τ̂I(x)− Eτ̂I(x)

σ∗|I|(x)
>
τ(x)− Eτ̂I(x)

σ∗|I|(x)

)
→ Pr(N(0, 1) > −r0(x)).

Condition (A7) is thus satisfied.
Notice that the condition (14) holds for a wide variety of nonparametric estimators τ̂I

computed by kernel smoothing methods (Härdle, 1990), spline methods (Zhou et al., 1998),
kernel ridge regression (Zhao et al., 2016), random forests (Wager and Athey, 2018), etc.
All these estimating procedures require tuning parameter selection. In Condition (15), we
assume the tuning parameter is chosen such that the bias-variance ratio stabilizes. When
undersmoothing is employed, we have r0(x) = 0 and hence

Pr(τ̂I(x) > 0)→ 1

2
, ∀x with τ(x) = 0. (16)

For simplicity, throughout this section, we assume the following semiparametric regres-
sion model for Y0:

Y0 = h(0,X0) +A0τ(X0) + e0, (17)

where e0 is a mean zero random error term independent of X0, A0. Let σ2
0 = Var(e0) > 0.

11
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3.1. Comparison with the Single Sample-Splitting Estimator

Consider the single sample-splitting estimator,

V̂ ss ≡ 1

|Ic∗|
∑
i∈Ic∗

ψi(d̂I∗ , π̂I∗ , ĥI∗), (18)

where I∗ is a random subset of I0 with size `n. Based on such an estimator, the associated
CI for V0 is given by

V̂ ss ±
zα/2√
n− `n

ŝ.e({ψi(d̂I∗ , π̂I∗ , ĥI∗)}i∈Ic∗). (19)

In this section, we focus on comparing the mean squared error of the proposed value esti-
mator with that of (18). Assume `n = o(n). According to the bias-variance decomposition,
we have

nMSE(V̂ ss) =
n

n− `n
EVar[ψ0(d̂I∗ , π̂I∗ , ĥI∗)|{Oi}i∈I∗ ] + n{Eψ0(d̂I∗ , π̂I∗ , ĥI∗)− V0}2

= EVar[ψ0(d̂I∗ , π̂I∗ , ĥI∗)|{Oi}i∈I∗ ] + n{Eψ0(d̂I∗ , π̂I∗ , ĥI∗)− V0}2 + o(1).

When π̂I∗ and ĥI∗ satisfy certain convergence rates, we have

nMSE(V̂ ss) = EVar[ψ0(d̂I∗)|{Oi}i∈I∗ ] + n{Eψ0(d̂I∗)− V0}2 + o(1).

Under (A5) and (A6), we have Eψ0(d̂I∗) = V0 + o(n−1/2) and hence

nMSE(V̂ ss) = EVar[ψ0(d̂I∗)|{Oi}i∈I∗ ] + o(1). (20)

Similarly, we can show

nMSE(V̂B) = σ2
sn + o(1). (21)

Theorem 4 Assume (17), (20), (21), (A1)-(A3), (A5)-(A7) hold, sn, `n → ∞. Then, we
have

nMSE(V̂ ss)− nMSE(V̂B) ≥ σ2
0(d∗)2

c2
0

Pr{τ(X0) = 0}+ o(1),

where c0 is defined in (A3), d∗ is defined in (A7) and σ2
0 is defined in Equation (17).

Theorem 4 suggests that the proposed estimator is more efficient compared to (18) in the
nonregular cases. As such, the proposed confidence interval is strictly narrower than (19).
In the regular cases, the two estimators are asymptotically equivalent in theory. In finite
samples, however, the proposed estimator could be more efficient due to that V̂ ss only uses
n− `n samples to construct the value estimates.

12
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3.2. Comparison with the Online One-Step Estimator

Let {`n}n be a sequence of nonnegative integer with `n < n. The online one-step estimator
is defined as

V̂ on =

n−1∑
j=`n

σ̃−1
I(j)

−1n−1∑
j=`n

σ̃−1
I(j)ψj+1(d̂I(j) ; π̂I(j) , ĥI(j))

 ,

where σ̃2
I(j) stands for some consistent estimator of

σ̃2
0(d̂I(j) ; π̂I(j) , ĥI(j)) = Var

(
ψj+1(d̂I(j) ; π̂I(j) , ĥI(j))

∣∣∣ {Oi}i∈I(j)) ,
computed based on the observations {Oi}i∈I(j) . Under the conditions in Theorem 2 of
Luedtke and van der Laan (2016), it follows from the martingale central limit theorem that

√
n− `n(V̂ on − V0)

σ̂on
d→ N(0, 1),

where σ̂on = {
∑n−1

j=`n
σ̃−1
I(j)/(n− `n)}−1. The corresponding two-sided CI for V0 is given by[
V̂ on − zα/2

σ̂on√
n− `n

, V̂ on + zα/2
σ̂on√
n− `n

]
. (22)

Assume `n →∞, under the same conditions as Theorem 3, we can show that

σ̂on =

(∑n−1
j=`n

σ̃−1
0 (d̂I(j) ;π, h)

n− `n

)−1

+ op(1). (23)

The first term on the RHS of the above expression is a random variable depending on
{Oi}i∈I(n−1)

. Therefore, we focus on comparing the average length of (22) with that of our
proposed CI.

When {σ̃I(j)}j=`n,...,n−1 and {σ̃0(d̂I(j) ;π, h)}j=`n,...,n−1 are uniformly bounded from above,
it follows from (23) that

Eσ̂on = E

(∑n−1
j=`n

σ̃−1
0 (d̂I(j) ;π, h)

n− `n

)−1

+ o(1).

When `n = o(n), the length of (22) satisfies

√
nEL(V̂ on, α) = 2zα/2E

(∑n−1
j=`n

σ̃−1
0 (d̂I(j) ;π, h)

n− `n

)−1

+ o(1). (24)

The first term on the RHS of (24) is very challenging to analyze. We consider approximating
it by

E

(∑n−1
j=`n

σ̃−1
0 (d̂I(j) ;π, h)

n− `n

)−1

=

(∑n−1
j=`n
{Eσ̃2

0(d̂I(j) ;π, h)}−1/2

n− `n

)−1

+ o(1). (25)

13
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In Appendix D, we provide sufficient conditions on the estimated contrast function that
ensure the approximation in Equation (25) is satisfied and use the kernel smoother as an
example to show Equation (25) holds. Combining (24) with (25), we obtain

√
nEL(V̂ on, α) = 2zα/2

(∑n−1
j=`n
{Eσ̃2

0(d̂I(j) ;π, h)}−1/2

n− `n

)−1

+ o(1). (26)

Theorem 5 Assume (13), (17), (26), (A1)-(A3), (A5)-(A7) hold, sn, `n → ∞. Then, we
have

√
nEL(V̂ on, α)−

√
nEL(V̂B, α) ≥

zα/2(d∗)2σ2
0

c2
0

√
c̃+ σ2

0c
−1
0

Pr{τ(X0) = 0}+ o(1),

where c0 is defined in Condition (A3), d∗ is defined in Condition (A7), and c̃ = Var{h(dopt,0(X0),X0)}.

Theorem 5 implies that the expected length of (22) is asymptotically larger than that
of the proposed CI in the nonregular cases. The difference depends on Pr{τ(X0) = 0},
which measures the degree of nonregularity. In the regular cases, we have V̂B = V̂ on +
op(n

−1/2). By Corollary 3 of Luedtke and van der Laan (2016), our proposed value estimator
is asymptotically efficient.

In the following, we sketch a few lines to see why our proposed CI is narrower on average.
Under the given conditions, Eσ̃2

0(d̂I(j) ;π, h) converges to a fixed function as j → ∞. Since
sn, `n →∞, we have(∑n−1

j=`n
{Eσ̃2

0(d̂I(j) ;π, h)}−1/2

n− `n

)−1

= {Eσ̃2
0(d̂I(sn)

;π, h)}1/2 + o(1).

By definition, we have σ2
sn = σ̃2

0(dsn ;π, h) and dsn(x) = Ed̂I(sn)
(x). The function σ̃2

0(d;π, h)
is convex in d. Therefore, it follows from Jensen’s inequality that

Eσ̃2
0(d̂I(sn)

;π, h) ≥ σ̃2
0(Ed̂I(sn)

;π, h).

This together with (13) and (26) yields that
√
nEL(V̂ on, α) ≥

√
nEL(V̂B, α) + o(1).

However, it is worth mentioning that the theoretical guarantees for our proposed method
make a stronger condition on the tuning parameter sn than do the theoretical guarantees
for the online one-step estimator. Specifically, we require sn/n→ 0 and sn � n1/(2κ∗). On
the contrary, the validity of the CI in Equation 22 only requires `n/n to be bounded away
from 1. As long as (A4) holds, the bias of V̂ on is of the order Op(n

−κ∗) = op(n
−1/2), which

is independent of `n.

3.3. Beyond Oracle Property

In this section, we compare the proposed CI with the CI based on the oracle method.
The oracle knew the set of optimal treatment regimes Dopt ahead of time and picked a
single OTR dopt from Dopt. When functions π and h are known, we can estimate V0

by
∑n

i=1 ψi(d
opt;π, h)/n for an arbitrary dopt ∈ Dopt. To deal with unknown propensity

score and conditional mean functions, the oracle can construct the estimator based on the
following cross-validation procedure:
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Step 1 Input observations {Oi}i∈I0 , 0 < α < 1.

Step 2 Randomly partition I0 into 2 disjoint subsets I1 and I2 of equal sizes, assuming
the sample size n is an even integer.

Step 3 Obtain the estimators π̂Ij and ĥIj for j = 1, 2. Compute

V̂ or(dopt) =
1

2|I1|
∑
i∈I1

ψi(d
opt; π̂I2 , ĥI2) +

1

2|I2|
∑
i∈I2

ψi(d
opt; π̂I1 , ĥI1),

σ̂or(dopt) =

 1

n− 1

2∑
j=1

∑
i∈Ij

(
ψi(d

opt; π̂Icj , ĥIcj )− V̂
or(dopt)

)2


1/2

.

Step 4 Output [
V̂ or(dopt)−

zα/2σ̂
or(dopt)
√
n

, V̂ or(dopt) +
zα/2σ̂

or(dopt)
√
n

]
. (27)

The CI in Equation (27) is valid. Under conditions (9), (10) and (11), we can show that

{σ̂or(dopt)}2 = Var{ψ0(dopt)}+ op(1).

Thus, the length of (27) satisfies

√
nL{V̂ or(dopt), α} = 2zα/2

√
Var{ψ0(dopt)}+ op(1). (28)

Theorem 6 Assume (12), (17), (28), (A1)-(A3), (A5)-(A7) hold and sn → ∞. Assume
mina=0,1 π(a,x) ≥ (1− d∗)2, ∀x ∈ X with τ(x) = 0. Then,

inf
dopt∈Dopt

nL2{V̂ or(dopt), α} − nL2(V̂B, α) ≥ c∗∗z2
α/2σ

2
0Pr{τ(X0) = 0}+ o(1),

where

c∗∗ ≡ inf
a=0,1

x∈X:τ(x)=0

(
d∗(2− d∗)
π(a,x)

− (1− d∗)2

π(1− a,x)

)
≥ 0.

In randomized studies, we usually have π(1,x) = 1 − π(0,x) = π∗ for some constant
π∗ > 0. The condition mina=0,1 π(a,x) ≥ (1−d∗)2 thus holds if (1−d∗)2 ≤ π∗ ≤ d∗(2−d∗).
When (16) holds, this condition is further reduced to 1/4 ≤ π∗ ≤ 3/4. Theorem 6 implies
that the proposed CI is asymptotically narrower than (27) in the nonregular cases. As
discussed in the introduction, this is due to the subagging procedure, which averages over
estimated OTRs in the nonregular cases, resulting in a smoothed treatment regime dsn(·).
To give a more formal explanation, let’s assume τ(x) = 0 and π(1,x) = π∗ for any x. In
addition, we assume we know the true propensity score and conditional mean functions and
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set π̂I = π∗ and ĥI = h. Then it follows from Lemma 1 that EV̂I0(d) = V0 for any regime
d. By (17), we have

nVar{V̂ or(d)} = nVar{V̂I0(d)} = σ2
0E

(
d2(X0)

π∗
+
{1− d(X0)}2

1− π∗

)
+ Var{h(0,X0)}

= σ2
0E

(
d(X0)

π∗
+

1− d(X0)

1− π∗

)
+ Var{h(0,X0)} ≥ σ2

0 min

(
1

π∗
,

1

1− π∗

)
+ Var{h(0,X0)}.

As for our proposed value estimator, it follows from (A7) that

nVar{V̂B} ≈ σ2
sn = σ2

0E

(
d2
sn(X0)

π∗
+
{1− dsn(X0)}2

1− π∗

)
+ Var{h(0,X0)}

≤ σ2
0

(
(1− d∗)2

π∗
+

(1− d∗)2

1− π∗

)
+ Var{h(0,X0)}+ o(1).

When (1−d∗)2 ≤ π∗ ≤ d∗(2−d∗), we have (1−d∗)2/π∗+(1−d∗)2/(1−π∗) ≤ min{1/π∗, 1/(1−
π∗)}. This implies that our proposed estimator is more efficient than the oracle estimator.

In the regular cases where Pr{τ(X0) = 0} = 0, we can show V̂B = V̂ or(dopt) + op(n
−1/2)

and σ̂B = σ̂or(dopt)+op(1) for any dopt ∈ Dopt. This means the proposed CI is asymptotically
equivalent to the CI of the oracle method in the regular cases.

To summarize, we have proven that the proposed method outperforms the single sample-
splitting method, the online one-step method and the “oracle” method in nonregular cases
and is equivalent to these methods in regular cases. However, an unavoidable consequence
of subagging is longer computational time. Specifically, the single sample-splitting method
only requires to estimate the OTR once. The online on-step method requires to estimate
the OTR n− sn times. The proposed method requires to estimate the OTR B many times
while B shall be chosen to be much larger than n. This is a potential drawback of our
method. In Section 7.2, we provide some suggestions to facilitate the computation.

4. Multiple Time Point Study

4.1. Optimal Dynamic Treatment Regime

In this section, we consider a multistage study where the treatment decisions are made at
a finite number of time points t1, . . . , tK . The data for a subject can be summarized as

(X
(1)
0 , A

(1)
0 ,X

(2)
0 , A

(2)
0 , . . . ,X

(K)
0 , A

(K)
0 , Y0),

where Y0 denotes the outcome of interest, X
(1)
0 stands for the set of covariates obtained

prior to the time point t1, A
(1)
0 denotes the treatment received at t1. For k = 2, . . . ,K,

X
(k)
0 denotes some additional covariates collected between time points tk−1 and tk, and A

(k)
0

denotes the treatment given at tk. For simplicity, we assume A
(1)
0 , . . . , A

(K)
0 are all binary

treatments. For k = 1, . . . ,K, let

X̄
(k)
0 = (X

(1)
0 , . . . ,X

(k)
0 ) ∈ X̄(k) and Ā

(k)
0 = (A

(1)
0 , . . . , A

(k)
0 ) ∈ {0, 1}k,
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denote a patient’s covariates and treatment history. For any a1, . . . , aK ∈ {0, 1}, denote by
āk = (a1, . . . , ak) for k = 1, . . . ,K. The set of all potential outcomes is given by

W =
{(
X

(2)∗
0 (a1),X

(3)∗
0 (ā2), . . . ,X

(K)∗
0 (āK−1), Y ∗0 (āK)

)
: ∀āK ∈ {0, 1}K

}
, (29)

where X
(k)∗
0 (āk−1) denotes the potential time-dependent covariates of a patient that would

occur between tk−1 and tk assuming he/she receives treatments (a1, . . . , ak−1) at decision
points (t1, . . . , tk−1) and Y ∗0 (āK) denotes the potential outcome that would result assuming
he/she receives treatments (a1, . . . , aK).

A dynamic treatment regime d = {dk}Kk=1 is a set of decision rules that treats a patient
over time. For k = 1, . . . ,K, dk = dk(āk−1, x̄k) corresponds to the kth decision rule that
takes as input a patient’s realized covariate and treatment history and outputs a treatment
option ak ∈ {0, 1}. Let d̄k = {dj}kj=1 for k = 1, . . . ,K− 1, the potential outcome associated
with d is given by (

X
(2)∗
0 (d1),X

(3)∗
0 (d̄2), . . . ,X

(K)∗
0 (d̄K−1), Y ∗0 (d)

)
,

where X
(k)∗
0 (d̄k−1) stands for the potential covariates of a patient between tk−1 and tk as-

suming he/she receives the treatments sequentially according to the decision rules (d1, . . . , dk−1)
and Y ∗0 (d) stands for the potential outcome assuming the treatments he/she receives are de-
termined by the treatment regime d. An optimal dynamic treatment regime dopt is defined
to maximize the average potential outcome, i.e,

dopt = arg max
d

EY ∗0 (d).

For any āK ∈ {0, 1}K and x̄K ∈ X̄(K), let hK(āK , x̄K) = E(Y0|X̄(K)
0 = x̄K , Ā

(K)
0 = āK)

and τK(āK−1, x̄K) = hK{(āK−1, 1), x̄K} − hK{(āK−1, 0), x̄K}. In addition, for k = K −
1, · · · , 2, we sequentially define

hk(āk, x̄k) = E

(
arg max
ak+1∈{0,1}

hk+1{(āk, ak+1), X̄
(k+1)
0 }

∣∣∣∣∣ X̄(k)
0 = x̄k, Ā

(k)
0 = āk

)
,

and τk(āk−1, x̄k) = hk{(āk−1, 1), x̄k} − hk{(āk−1, 0), x̄k}, for any āk ∈ {0, 1}k and x̄k ∈
X̄(k). For k = 1, let

h1(a1,x1) = E

(
arg max
a2∈{0,1}

h2{(a1, a2), X̄
(2)
0 }

∣∣∣∣∣X(1)
0 = x1, A

(1)
0 = a1

)

and τ1(x1) = h1(1,x1) − h1(0,x1) for any a1 ∈ {0, 1},x1 ∈ X̄1. Under the following two
conditions,

(C1.) X
(k)
0 =

∑
āk−1∈{0,1}k−1X

(k)∗
0 (āk−1)I(Ā(k−1)

0 = āk−1) and

Y0 =
∑
āK∈{0,1}K Y

∗
0 (āK)I(Ā(K)

0 = āK), ∀k = 2, . . . ,K and āK ∈ {0, 1},
(C2.) A

(k)
0 ⊥⊥W |X̄(k)

0 , Ā
(k−1)
0 , ∀k = 1, . . . ,K where W is defined in Equation (29),
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we can show

h(āK , x̄K) = E{Y ∗0 (āK)|X̄(K)∗
0 (āK−1) = x̄K}, (30)

and for 2 ≤ k ≤ K − 1,

h(āk, x̄k) = E[V
(k+1)

0 {āk, X̄
(k+1)∗
0 (āk)}|X̄

(k)∗
0 (āk−1) = x̄k], (31)

and

h(a1,x1) = E[V
(2)

0 {a1, X̄
(2)∗
0 (a1)}|X(1)

0 = x1], (32)

where

V
(K)

0 (āK−1, x̄K) = max
aK∈{0,1}

E{Y ∗0 (āK)|X̄(K)∗
0 (āK−1) = x̄K},

V
(k)

0 (āk−1, x̄k) = max
ak∈{0,1}

E[V
(k+1)

0 {āk, X̄
(k+1)∗
0 (āk)}|X̄

(k)∗
0 (āk−1) = x̄k],

X̄
(k)∗
0 (āk−1) = {X(1)

0 ,X
(2)∗
0 (a1), . . . ,X

(k)∗
0 (āk−1)}.

Here, Condition (C2) automatically holds in sequentially randomized studies (Murphy,
2005).

Define the set of dynamic treatment regimes Dopt such that any d = {dk}Kk=1 ∈ Dopt
shall satisfy

dK(āk−1, x̄k) ∈ arg max
a∈{0,1}

aτk(āk−1, x̄k), k = 2, . . . ,K, (33)

and d1(x1) ∈ arg max
a∈{0,1}

aτ1(x1),

for any x̄K ∈ X̄(K), . . . , x̄2 ∈ X̄(2),x1 ∈ X̄(1) and āK−1 ∈ {0, 1}K−1, . . . , ā2 ∈ {0, 1}2, a1 ∈
{0, 1}. By (30)-(32) and backward induction, we can show that

Dopt ⊆ arg max
d

EY ∗0 (d).

Notice that the argmax in Equation 33 is not unique when τk(āk−1, x̄k) = 0 or τ1(x1) = 0.
Therefore, the optimal dynamic treatment regime may not be unique.

4.2. Confidence Interval for the Optimal Value Function

In this section, we focus on constructing CIs for the optimal value function V0 = maxd EY ∗0 (d),
based on the observed dataset:{

Oi =
(
X

(1)
i , A

(1)
i ,X

(2)
i , A

(2)
i , . . . ,X

(K)
i , A

(K)
i , Yi

)
: i = 1, . . . , n

}
.

For k = 1, . . . ,K, i = 0, 1, . . . , n, let

X̄
(k)
i = (X

(1)
i , . . . ,X

(k)
i ) and Ā

(k)
i = (A

(1)
i , . . . , A

(k)
i ).
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Define the propensity score function πk(āk, x̄k) = Pr(A
(k)
0 = ak|X̄

(k)
0 = x̄k, Ā

(k−1)
0 = āk−1)

for k = 2, . . . ,K and π1(a1,x1) = Pr(A
(1)
0 = ak|X

(1)
0 = x1). For any dynamic treatment

regime d = {dk}Kk=1, let V̂
(K+1)
i = Yi and recursively define

V̂
(k)
i (d;π∗, h∗) =

g{A(k)
i , dk(Ā

(k−1)
i , X̄

(k)
i )}

π∗k(Ā
(k)
i , X̄

(k)
i )

{V̂ (k+1)
i (d;π∗, h∗)− h∗k(Ā

(k)
i , X̄

(k)
i )}

+ h∗k[{Ā
(k−1)
i , dk(Ā

(k−1)
i , X̄

(k)
i )}, X̄(k)

i ],

for k = K − 1, . . . , 2, 1, i = 0, 1, . . . , n, where Ā
(0)
i = ∅, π∗ ≡ {π∗k}Kk=1 and h∗ ≡ {h∗k}Kk=1

denote the estimated propensity score and conditional mean functions, and the function
g(a, z) = az+ (1− a)(1− z) for a, z ∈ R. For any I ⊆ I0, consider the following augmented
inverse propensity-score weighted estimator for EY ∗0 (d),

1

|I|
∑
i∈I

V̂
(1)
i (d;π∗, h∗).

Notice that it is unbiased when either π∗ = π or h∗ = h.
For any I ⊆ I0, let {ĥI,k}Kk=1, {π̂I,k}Kk=1 denote some consistent estimators for {hk}Kk=1

and {πk}Kk=1, computed based on the sub-dataset {Oi}i∈I . Consider the estimated treat-

ment regime d̂I,k(·, ·), k = 2, . . . ,K and d̂I,1(·). Define the set

SN0,sn =

{
I ⊆ I0 : |I| = sn, min

a1,...,aK∈{0,1}

∑
i∈I

I(A(1)
i = a1, . . . , A

(K)
i = aK) ≥ N0

}
,

for some integers sn > N0 > 0. We summarize our procedure in the following algorithm.

Step 1 Input observations {Oi}i∈I0 , 0 < α < 1 and integers sn, N0 and B.

Step 2 For b = 1, . . . , B,

(i) Draw a subset Ib uniformly from SN0,sn .
(ii) Randomly partition Icb into 2 disjoint subsets Ic(1)

b and Ic(2)
b of equal sizes tn.

(iii) For j = 1, 2, let I(j)
b = Ib∪I

c(j)
b . Obtain the estimators d̂Ib = {d̂Ib,k}Kk=1, π̂I(1)b

=

{π̂I(1)b ,k
}Kk=1, π̂I(2)b

= {π̂I(2)b ,k
}Kk=1, ĥI(1)b

= {ĥI(1)b ,k
}Kk=1 and ĥI(2)b

= {π̂I(2)b ,k
}Kk=1.

Step 3 Compute

V̂B =
1

2Btn

B∑
b=1

 ∑
i∈Ic(2)b

V̂
(1)
i (d̂Ib ; π̂I(1)b

, ĥI(1)b

) +
∑

i∈Ic(1)b

V̂
(1)
i (d̂Ib ; π̂I(2)b

, ĥI(2)b

)

 ,

and

σ̂2
B = ŝ.e2

 1

n(i)

2∑
j=1

B∑
b=1

V̂
(1)
i (d̂Ib ; π̂I(j)b

, ĥI(j)b
)I(i /∈ I(j)

b )


n

i=1

 ,

where n(i) =
∑B

b=1 I(i /∈ Ib).
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(A) (B) (C) (D) (E) (F)

Φ(x1, x2) 0.3 0.3 x2
2 x2

2 x2
2 x2

2

τ(x1, x2) 0.4I(x1 = 0) 0.4 x1x
2
2 x2

2 − 4/3 2x1 cos(πx2/4) 2 cos(πx2/4)− 4/π

V0 0.5 0.7 2 1.85 1.97 1.60

Table 2: Simulation setting

Step 4 Output [
V̂B −

zα/2σ̂B√
n

, V̂B +
zα/2σ̂B√

n

]
. (34)

In Appendix A, we prove the CI in Equation (34) achieves nominal coverage.

5. Simulations

5.1. Point Treatment Study

We consider simulation studies based on the following model:

Y0 = Φ(X0,1, X0,2) +A0τ(X0,1, X0,2) + e0,

where the covariate X0,1 and the treatment A0 are generated from Ber(0.5) and Ber(0.5 +
0.1X0,1), respectively, where Ber(p0) stands for the Bernoulli distribution with probability
of success p0. The random error term e0 satisfies E(e0|A0, X0,1, X0,2) = 0. We consider six
scenarios. In Scenario (A) and (B), X0,2 is generated from Ber(0.5), and

e0 ∼ Ber{Φ(X0,1, X0,2) +A0τ(X0,1, X0,2)} − Φ(X0,1, X0,2)−A0τ(X0,1, X0,2).

In Scenario (C)-(F), X0,2 follows a uniform distribution on the interval [−2, 2], and e0 ∼
N(0, 0.25) is independent of A0, X0,1 and X0,2. In addition, X0,1 and X0,2 are independently
generated in all scenarios. Table 2 summarizes the information of the baseline function, the
contrast function and the optimal value V0 under different scenarios. In all scenarios, V0

can be explicitly calculated. The OTR is not uniquely defined in Scenario (A), (C) and (E),
since the contrast functions in these scenarios satisfy

Pr{τ(X0,1, X0,2) = 0} = Pr(X0,1 = 0) = 0.5.

On the contrary, we have Pr{τ(X0,1, X0,2) = 0} = 0 in the remaining three scenarios. For
each scenario, we further consider two different sample sizes, n = 500 and n = 1000. This
yields a total of 12 settings.

Comparison is made among the following four methods:

(i) The proposed CI in Equation (8).
(ii) The CI constructed by the online one-step method in Equation (22).
(iii) The CI constructed by the oracle method in Equation 27 with dopt = dopt,0 (see Equation
2). (Notice that dopt,0 is unknown in practice, we implement this method for comparison
purposes only.)
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(A) Proposed sn = 3n/ log(n) Online Oracle SSS

n ECP(%) AL*100 ECP(%) AL*100 ECP(%) AL*100 ECP(%) AL*100

500 93.6 (0.8) 11.2 (0.02) 94.1 (0.7) 12.8 (0.02) 94.0 (0.8) 13.1 (0.02) 93.7 (0.8) 17.1 (0.03)

1000 93.7 (0.8) 7.8 (0.01) 93.9 (0.8) 8.8 (0.01) 94.1 (0.7) 9.0 (0.01) 94.2 (0.7) 11.4 (0.02)

(B) Proposed sn = 3n/ log(n) Online Oracle SSS

n ECP(%) AL*100 ECP(%) AL*100 ECP(%) AL*100 ECP(%) AL*100

500 95.3 (0.7) 11.1 (0.01) 93.9 (0.8) 11.5 (0.02) 95.4 (0.7) 11.2 (0.01) 94.7 (0.7) 15.4 (0.03)

1000 95.3 (0.7) 7.8 (0.01) 95.5 (0.7) 7.9 (0.01) 95.3 (0.7) 7.8 (0.01) 95.1 (0.7) 10.3 (0.01)

(C) Proposed sn = 3n/ log(n) Online Oracle SSS

n ECP(%) AL*100 ECP(%) AL*100 ECP(%) AL*100 ECP(%) AL*100

500 94.7 (0.7) 36.8 (0.04) 92.7 (0.8) 41.1 (0.06) 94.3 (0.7) 38.0 (0.08) 93.9 (0.8) 52.9 (0.09)

1000 95.0 (0.7) 25.9 (0.02) 93.4 (0.8) 27.4 (0.03) 94.5 (0.7) 26.3 (0.02) 95.3 (0.7) 34.9 (0.04)

(D) Proposed sn = 3n/ log(n) Online Oracle SSS

n ECP(%) AL*100 ECP(%) AL*100 ECP(%) AL*100 ECP(%) AL*100

500 95.3 (0.7) 36.6 (0.04) 93.2 (0.8) 40.6 (0.05) 93.7 (0.8) 38.0 (0.20) 94.1 (0.7) 51.4 (0.09)

1000 94.3 (0.7) 25.7 (0.02) 93.1 (0.8) 27.1 (0.02) 94.2 (0.7) 25.9 (0.02) 95.1 (0.7) 34.3 (0.03)

(E) Proposed sn = 3n/ log(n) Online Oracle SSS

n ECP(%) AL*100 ECP(%) AL*100 ECP(%) AL*100 ECP(%) AL*100

500 94.4 (0.7) 22.7 (0.02) 88.2 (1.0) 25.8 (0.03) 94.0 (0.8) 24.6 (0.09) 95.2 (0.7) 33.3 (0.12)

1000 95.4 (0.7) 15.9 (0.01) 91.9 (0.9) 17.2 (0.01) 95.3 (0.7) 16.7 (0.02) 95.0 (0.7) 21.9 (0.02)

(F) Proposed sn = 3n/ log(n) Online Oracle SSS

n ECP(%) AL*100 ECP(%) AL*100 ECP(%) AL*100 ECP(%) AL*100

500 92.9 (0.8) 21.4 (0.04) 87.5 (1.0) 23.3 (0.03) 93.8 (0.8) 24.3 (0.36) 94.5 (0.7) 31.1 (0.14)

1000 94.4 (0.7) 14.9 (0.01) 90.8 (0.9) 15.6 (0.01) 94.1 (0.7) 15.3 (0.03) 93.4 (0.8) 20.0 (0.03)

Table 3: ECP and AL of the CIs with standard errors in parenthesis

(iv) The CI constructed by the single sample-splitting method in Equation (19) (Denote by
SSS).

All these methods require estimation of the propensity score and conditional mean func-
tions. For scenario (A) and (B), we use the nonparametric maximum likelihood estimator
to estimate these functions. For scenario (C)-(F), we estimate these functions using cubic
B-splines. More specifically, for a = 0, 1, define

ξ̂π,aI = arg min
ξ

∑
i∈I

Ai − K+4∑
j=1

Nj(Xi,2)ξj

2

I(Xi,1 = a),

and

ξ̂h1,aI = arg min
ξ

∑
i∈I

(
Yi −

K+4∑
j=1

Nj(Xi,2)ξj

)2
I(Ai = 1, Xi,1 = a),

ξ̂h0,aI = arg min
ξ

∑
i∈I

Yi − K+4∑
j=1

Nj(Xi,2)ξj

2

I(Ai = 0, Xi,1 = a),

where N1(·), . . . , NK+4(·) stand for the cubic B-spline basis, and K denotes the number of
interior knots. Given K, the interior knots are placed at equally spaced sample quantiles of
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{Xi,2}i∈I0 . The hyperparameter K is selected via 5-fold cross-validation. After computing

ξ̂π,aI , ξ̂h1,aI and ξ̂h0,aI , we set

π̂I(1,x1) = min
( ∑

a={0,1}
1≤j≤K+4

I(x1,1 = a)Nj(x1,2)ξ̂π,aI,j , 0.05
)
, (35)

π̂I(0,x1) = min{1− π̂I(1,x1), 0.05}, (36)

ĥI(1,x1) =
∑
a=0,1

I(x1,1 = a)
K+4∑
j=1

Nj(x1,2)ξ̂h1,aI,j ,

ĥI(0,x1) =
∑
a=0,1

I(x1,1 = a)
K+4∑
j=1

Nj(x1,2)ξ̂h0,aI,j ,

where x1 = (x1,1, x1,2). Truncation is used in Equations (35) and (36) to avoid extreme
weights, resulting in a more “stabilized” value estimator. The estimated contrast function
is defined as

τ̂I(x1) = ĥI(1,x1)− ĥI(0,x1).

To calculate the CI in Equation (8), we set sn = bK0n/ log nc with K0 = 3. To
implement the online one-step and single sample-splitting method, we need to specify `n. In
general, the lengths of CIs in Equations (22) and (19) increase as `n increases. Nonetheless,
`n should be large enough to guarantee that biases of the resulting value estimates are
negligible. For the single sample-splitting method, we set `n = b3n/ log nc. For the online
one-step method, in Scenarios (A) and (B), we set `n = 50. In Scenarios (C)-(F), we find
that when `n = 50, the resulting CIs have very poor coverage probabilities. Therefore, we
set `n = 100 in these scenarios. The variance estimator σ̃2

I(j) is computed by

σ̃2
I(j) = ŝ.e2

({
ψi(d̂I(j) ; π̂I(j) , ĥI(j))

}j
i=1

)
.

We implement the simulation program in R. Some subroutines are written in C with the
GNU Scientific Library (Galassi et al., 2015) to facilitate the computation.

Reported in Table 3 are the empirical coverage probability (ECP) and average length
(AL) of the CIs in (i)-(iv). Results are aggregated over 1000 replications. It can be seen
that all four CIs achieve nominal coverage in Scenario (A)-(D). However, the CIs based on
the online one-step method, the oracle method and the single sample-splitting method are
wider than the proposed CIs in all cases. Take Scenario (A) as an example. ALs of our
proposed method are at least 13% smaller than other competing methods. In Scenarios
(E) and (F), ECPs of the online one-step method are smaller than 90% when n = 500. In
contrast, ECPs of the proposed CIs are close to the nominal level in all cases. In addition,
the proposed CIs achieve smaller ALs in these scenarios.

Notice that in Scenarios (B), (D) and (F), the contrast function is almost surely nonzero.
In theory, when `n = o(n), the lengths of all four CIs should be asymptotically the same.
However, it can been seen from Table 3 that in finite samples, ALs of the CIs based on our
proposed method are always smaller than other competing methods.
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Figure 1: ECP and AL of the proposed confidence interval with difference choices of K0 under
Settings (A)-(F). n = 1000 in all cases.

(G) (H) (I)

Φ(x1,1, x1,2, a1, x2) x2
1,1 − a1(0.25 + x2

1,1) x2
2 0

τ(x1,1, x1,2, a1, x2) a1x
2
2 0 x2

2

V0 1.33 1.58 1.58

Table 4: Simulation setting

We next investigate the robustness of our method to the choice of K0. We fix n = 1000.
Figure 1 depicts the empirical coverage probabilities (ECP) and average lengths (AL) of
the proposed confidence intervals with different choices of K0 under Settings (A)-(F). It can
be seen from Figure 1 that the ECPs of the proposed CIs are close to the nominal level for
any K0 under most settings. In addition, for each setting, ALs of our CIs are roughly the
same across different K0. This shows the robustness of our procedure to the choice of K0.

5.2. Multiple Time Point Study

Consider the following model:

Y0 = Φ(X
(1)
0,1 , X

(1)
0,2 , A

(1)
0 , X

(2)
0 ) +A

(2)
0 τ(X

(1)
0,1 , X

(1)
0,2 , A

(1)
0 , X

(2)
0 ) + e

(2)
0 , X

(2)
0 = A

(1)
0 X

(1)
0,1 + e

(1)
0 ,

where X
(1)
0,1 and X

(1)
0,2 are the baseline covariates, A

(1)
0 and A

(2)
0 denote the first and second

treatment a patient receives at t1 and t2, X
(2)
0 stands for the intermediate covariate collected

between t1 and t2. Variables A
(1)
0 , A

(2)
0 , X

(1)
0,1 , X

(1)
0,2 , e

(1)
0 and e

(2)
0 are all independent. In ad-

dition, we assume A
(1)
0 , A

(2)
0 ∼ Ber(0.5), e

(1)
0 , e

(2)
0 ∼ N(0, 0.25) and X

(1)
0,1 , X

(1)
0,2 ∼ Unif[−2, 2]

where Unif[a, b] denotes the uniform distribution on the interval [a, b].

We consider three scenarios. The functional forms of Φ and τ and the optimal value
function V0 under these scenarios are reported in Table 4.
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In Scenario (G), we have

h1(a1,x1) = E{A(1)
0 X

(2)
0 + Φ(X

(1)
0,1 , X

(1)
0,2 , A

(1)
0 , X

(2)
0 )|X(1)

0,1 = x1,1, X
(1)
0,2 = x1,2,

A
(1)
0 = a1} = a1(0.25 + x2

1,1) + x2
1,1 − a1(0.25 + x2

1,1) = x2
1,1,

where x1 = (x1,1, x1,2). Therefore, the first stage contrast function τ1(·) equals zero.
In Scenario (H), the second stage contrast function τ2(·, ·) equals zero. Hence, the ODTR

is not unique in these two scenarios.
In the last scenario, we have

h2(ā2, x̄2) = x2
2, h1(a1,x1) = E{(X(2)

0,2 )2|X̄(1)
0 = x1, A

(1)
0 = a1} = a1x

2
1,1 + 0.25,

where x̄2 = (x1,1, x1,2, x2). In this scenario, the ODTR is uniquely defined and we have
dopt1 (x1) = 1, dopt2 (a1, x̄2) = 1.

We compare our proposed CI (see (34)) with the CI based on the online one-step method,
defined as [V̂ on − zα/2σ̂on/

√
n− `n, V̂ on + zα/2σ̂

on/
√
n− `n] where

V̂ on =

n−1∑
j=`n

σ̃−1
I(j)

−1n−1∑
j=`n

σ̃−1
I(j)ψj+1(d̂I(j) ; π̂I(j) , ĥI(j))

 ,

σ̃2
I(j) = ŝ.e2

({
ψi(d̂I(j) ; π̂I(j) , ĥI(j))

}j
i=1

)
,

σ̂on =

n−1∑
j=`n

σ̃−1
I(j)/(n− `n)

−1

,

for some divergent sequence `n. Notice that both methods require to calculate ĥI =
{ĥI,k}2k=1, π̂I = {π̂I,k}2k=1, d̂I = {d̂I,k}2k=1. These estimators are computed based on
cubic B-spline methods. To save space, we present the detailed estimating procedure in
Appendix B.

We consider two sample sizes, n = 600 and n = 1200. In Table 5, we report the ECP
and AL of the proposed CI with sn = 3n/ log(n), and the CI based on online one-step
method with `n = 200 and `n = 400. In Appendix E, we report the ECP and AL of the
proposed CI with sn = 3.5n/ log(n) and sn = 4n/ log(n). It can be seen that the proposed
CIs are not sensitive to the choice of K0. ECPs of our CIs are close to the nominal level in
almost all cases. In contrast, ECPs of the CIs based on the online one-step method are well
below the nominal level in Scenarios (G) and (H). Moreover, CIs based on our proposed
method are much shorter than those based on the online one-step method.

6. Real Data Analysis

In this section, we apply the proposed method to a data from AIDS Clinical Trials Group
Protocol 175 (ACTG175). We focus on a subset of the data which consists of 1046 patients
that were treated with either ZDV + zalcitabine (zal) (A = 0) or ZDV + didanosine (ddI)
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Setting (G) Proposed sn = 3n/ log(n) Online (`n = 200) Online (`n = 400)

n ECP(%) AL*100 ECP(%) AL*100 ECP(%) AL*100

600 93.6 (0.8) 27.7 (0.15) 82.1 (1.2) 38.3 (0.12) 90.8 (0.9) 54.0 (0.18)

1200 93.3 (0.8) 18.3 (0.05) 87.9 (1.0) 24.2 (0.06) 90.7 (0.9) 27.0 (0.07)

Setting (H) Proposed sn = 3n/ log(n) Online (`n = 200) Online (`n = 400)

n ECP(%) AL*100 ECP(%) AL*100 ECP(%) AL*100

600 92.7 (0.8) 37.3 (0.09) 84.1 (1.2) 45.3 (0.10) 91.4 (0.9) 64.0 (0.13)

1200 93.8 (0.8) 25.5 (0.04) 89.5 (1.0) 28.6 (0.05) 92.8 (0.8) 32.0 (0.05)

Setting (I) Proposed sn = 3n/ log(n) Online (`n = 200) Online (`n = 400)

n ECP(%) AL*100 ECP(%) AL*100 ECP(%) AL*100

600 93.5 (0.8) 39.4 (0.14) 84.5 (1.2) 44.5 (0.10) 90.1 (0.9) 63.1 (0.13)

1200 94.2 (0.7) 26.4 (0.04) 90.5 (0.9) 28.4 (0.05) 92.5 (0.8) 31.8 (0.05)

Table 5: ECP and AL of the CIs with standard errors in parenthesis

Method Estimated value function 95% CI Length of CI

Proposed (K0 = 3) 399.6 [387.9, 411.3] 23.4

Proposed (K0 = 3.5) 399.6 [387.8, 411.4] 23.6

Proposed (K0 = 4) 399.5 [387.6, 411.4] 23.8

Online (`n = 50) 399.2 [385.6, 412.7] 27.1

Online (`n = 100) 398.3 [384.4, 412.2] 27.7

Online (`n = 200) 403.9 [389.5, 418.4] 28.9

Table 6: Estimated value functions and confidence intervals

(A = 1). The outcome of interests were CD4 count (cells/mm3) at 20 ± 5 weeks after
receiving the treatment. Fan et al. (2017) found that patient’s age is the only variable that
has significant interaction with the treatment. Therefore, in the following, we use age to
construct the OTR. Since ACTG175 is a randomized trial, the no unmeasured confounders
assumption (A2) automatically holds.

In Table 6, we report the estimated optimal value function and its 95% CI based on
our proposed method and the online one-step method with `n = 50, 100 and 200. To
construct these CIs, we set π̂I = 0.5 for any I ⊆ I0. The conditional mean functions are
estimated using cubic B-splines. The detailed estimating procedure is very similar to that
in Section 5.1 and is hence omitted for brevity. In addition, we set sn = bK0n/ log(n)c with
K0 ∈ {3, 3.5, 4}.

It can be seen from Table 6 that all methods yield similar estimated optimal value
functions. These estimated values are larger than those based on linear decision rules (see
Section 4 in Fan et al., 2017). Besides, we notice that our proposed CI is at least 14% shorter
compared to those based on the online one-step method. Such phenomenon is consistent
with our theoretical findings and simulation results.
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7. Discussion

7.1. Inference via Subagging and Refitted Cross-Validation

In this paper, we propose to construct the confidence interval for the optimal value function
based on subsample aggregating and refitted cross-validation. Such an inference method
can be applied to some other non-regular problems as well. Variation of this approach has
been used by Wang et al. (2020) for inference of the treatment effect in high-dimensional
models.

7.2. Inference with Moderate or High-Dimensional Covariates

In this paper, we investigate the empirical performance of our method under settings with
only a few covariates. Modern machine learning algorithms are well-suited to estimating the
outcome regression functions in moderate or high-dimensions. Using these plug-in decision
rules, the proposed method can handle high-dimensional covariates in theory. However,
the major challenge lies in efficiently applying these machine learning algorithms B many
times. Next, we provide some suggestions to facilitate the computation.

First, we note that most machine learning procedures use cross-validation for hyperpa-
rameter selection. Cross-validation could be very computationally expensive in practice. To
compute the proposed confidence interval, there is no need to implement cross-validations
on all B subsamples. It suffices to apply cross-validation for tuning parameter selection to
the data set in the first subsample and then use the same tuning parameters in the rest
B− 1 subsamples. This could greatly simplify the computation. Second, we note that Step
2 of our algorithm can be naturally implemented in parallel. This could further reduce the
computational cost.
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Appendix A. Validity of the Proposed Confidence Interval in (4.6)

To provide more interpretable conditions, we focus on the class of plug-in estimators
d̂I,k(·, ·) = I{τ̂I,k(·, ·) > 0}, k = 2, . . . ,K and d̂I,1(·) = I{τ̂I,1(·) > 0}, where τ̂I,k denotes
the estimated contrast function at the kth stage. We introduce the following conditions.

(C3) Assume there exists some positive constant c0 such that

min
k=2,...,K

inf
x̄k∈X̄(k)

āk∈{0,1}k

πk(āk, x̄k) ≥ c0 and inf
x1∈X̄(1)

a1=0,1

π1(a1,x1) ≥ c0.
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(C4) Assume there exist some positive constants c̄, α and δ0 such that

max
k=2,...,K

Pr(0 < |τk(Ā
(k−1)
0 , X̄

(k)
0 )| < t) ≤ c̄tα and Pr(0 < |τ1(X

(1)
0 )| < t) ≤ c̄tα,

for any 0 < t ≤ δ0.

(C5) Assume there exists some constant κ0 > (α+ 2)/(2α+ 2) such that

max
k=2,...,K

E|τ̂I,k(Ā
(k−1)
0 , X̄

(k)
0 )− τk(Ā

(k−1)
0 , X̄

(k)
0 )|2 = O(|I|−κ0),

E|τ̂I,1(X
(1)
0 )− τ1(X

(1)
0 )|2 = O(|I|−κ0),

for any I ⊆ I0.

Notice that Conditions (C3)-(C5) are very similar to (A3), (A5) and (A6) in single-
stage studies. In (C4), we assume the contrast function at each stage satisfies the margin
assumption. In (C5), the estimated contrast function at each stage is required to satisfy
certain convergence rates.

For any I ⊆ I0 with |I| = sn, define

σ2
sn = Var

{
E

(
g{A(1)

0 , d̂I,1(X̄
(1)
0 )}

π1(A
(1)
0 , X̄

(1)
0 )

{V̂ (2)
0 (d̂I ;π, h)− h1(A

(1)
0 , X̄

(1)
0 )}+ h1{d̂I,1(X̄

(1)
0 ), X̄

(1)
0 } |O0

)}
,

where O0 = (Ā
(K)
0 , X̄

(K)
0 , Y0). We have the following results.

Theorem 7 Assume (C1)-(C6) hold, sn satisfies sn � n(2α+2)/{(α+2)κ0}, and
maxāK∈{0,1}K E{Y ∗0 (āK)}2 < +∞. Assume B � n, lim infn σsn > 0,

Pr
(

min
k=2,...,K
I⊆I0

inf
x̄k∈X̄(k)

āk∈{0,1}k

π̂I,k(āk, x̄k) ≥ c∗
)

= 1, (37)

Pr
(

inf
I⊆I0

x1∈X̄(1),a1=0,1

π̂I,1(a1,x1) ≥ c∗
)

= 1, (38)

for some constant c∗ > 0. In addition, assume

E|π̂I(j),k{(Ā
(k−1)
0 , a), X̄

(k)
0 } − πk{(Ā

(k−1)
0 , a), X̄

(k)
0 }|

2 = o(|I(j)|−1/2), (39)

E|ĥI(j),k{(Ā
(k−1)
0 , a), X̄

(k)
0 } − hk{(Ā

(k−1)
0 , a), X̄

(k)
0 }|

2 = o(|I(j)|−1/2), (40)

for any a = 0, 1, k = 1, . . . ,K, where Ā
(0)
0 = ∅. Then, we have

√
n(V̂B − V0)

σ̂B

d→ N(0, 1).
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Appendix B. Detailed Estimating Procedure in Section 5.2

For any a1 ∈ {0, 1}, we calculate

ξ̂π2,a1I = arg min
ξ∈R3(K+4)

∑
i∈I

A(2)
i −

K+4∑
j=1

Nj(X
(2)
i )ξj −

K+4∑
j=1

2∑
k=1

Nj(X
(1)
i,k )ξj+k(K+4)

2

×I(A(1)
i = a1),

ξ̂
h2,1,a1
I = arg min

ξ∈R3(K+4)

∑
i∈I

Yi − K+4∑
j=1

Nj(X
(2)
i )ξj −

K+4∑
j=1

2∑
k=1

Nj(X
(1)
i,k )ξj+k(K+4)

2

×I(A(2)
i = 1, A

(1)
i = a1),

ξ̂
h2,0,a1
I = arg min

ξ∈R3(K+4)

∑
i∈I

Yi − K+4∑
j=1

Nj(X
(2)
i )ξj −

K+4∑
j=1

2∑
k=1

Nj(X
(1)
i,k )ξj+k(K+4)

2

×I(A(2)
i = 0, A

(1)
i = a1),

and compute

π̂I,2((a1, 1), x̄2) = min

K+4∑
j=1

Nj(x2)ξ̂π2,1I,j +
K+4∑
j=1

2∑
k=1

Nj(x1,k)ξ̂
π2,1
I,j+k(K+4), 0.05


×I(A(1)

i = a1),

π̂I,2((a1, 0), x̄2) = min{1− π̂I,2((a1, 1), x̄2), 0.05},

ĥI,2((a1, a2), x̄2) =

K+4∑
j=1

Nj(x2)ξ̂
h2,a2 ,a1
I,j +

K+4∑
j=1

2∑
k=1

Nj(x1,k)ξ̂
h2,a2 ,a1
I,j+k(K+4)


×I(A(1)

i = a1),

d̂I,2(a1, x̄2) = I[ĥI,2{(a1, 1), x̄2} > ĥI,2{(a1, 0), x̄2}].

Then we construct the pseudo outcome

V̂i,I =
g{A(2)

i , d̂I,2(A
(1)
i , X̄

(2)
i )}

π̂I,2(Ā
(2)
i , X̄

(2)
i )

{Yi − ĥI,2(Ā
(2)
i , X̄

(2)
i )}

+ ĥI,2[{A(1)
i , d̂I,2(A

(1)
i , X̄

(2)
i )}, X̄(2)

i ],

for any i ∈ I0, and compute

ξ̂π1I = arg min
ξ∈R2(K+4)

∑
i∈I

A(1)
i −

K+4∑
j=1

2∑
k=1

Nj(X
(1)
i,k )ξj+(k−1)(K+4)

2

,

ξ̂
ha1
I = arg min

ξ∈R2(K+4)

∑
i∈I

V̂i,I − K+4∑
j=1

2∑
k=1

Nj(X
(1)
i,k )ξj+(k−1)(K+4)

2

I(A(1)
i = a1),
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for a1 = {0, 1}. Finally, we set

π̂I(1,x1) = min

K+4∑
j=1

2∑
k=1

Nj(x1,k)ξ̂
π1
I,j+(k−1)(K+4), 0.05

 ,

π̂I(0,x1) = min{1− π̂I(1,x1), 0.05},

and

ĥI(1,x1) =

K+4∑
j=1

2∑
k=1

Nj(x1,k)ξ̂
h1
I,j+(k−1)(K+4),

ĥI(0,x1) =
K+4∑
j=1

2∑
k=1

Nj(x1,k)ξ̂
h0
I,j+(k−1)(K+4),

d̂I(x1) = I{ĥI(1,x1) > ĥI(0,x1)}.

Similar to Section 5.1, we select the number of interior knots K via 5-folded cross-validation.

Appendix C. Proofs

C.1. Proof of Theorem 2

For any I = {i1, i2, . . . , is} ⊆ I0, the estimated treatment regime |d̂I(·)| is upper bounded
by 1. It follows from the ANOVA decomposition of Efron and Stein (1981) that

d̂I(x) = ds(x) +
∑
i∈I

ds,1(Oi;x) +
∑
i,j∈I
i 6=j

ds,2(Oi, Oj ;x) (41)

+
∑
i,j,k∈I

i 6=j,i6=k,j 6=k

ds,3(Oi, Oj , Ok;x) + · · ·+ ds,s(Oi1 , Oi2 , . . . , Ois ;x), ∀x,

where ds(x) = Ed̂I(x) = Pr(d̂I(x) = 1), is the grand mean; ds,1(o;x) = E{d̂I(x)|Oi1 =
o} − ds(x), is the main effect;

ds,2(o1, o2;x) = E{d̂I(x)|Oi1 = o1, Oi2 = o2}
− E{d̂I(x)|Oi1 = o1} − E{d̂I(x)|Oi2 = o2}+ ds(x),

is the second-order interaction; etc.

All the 2s random variables on the right-hand side (RHS) of (41) are uncorrelated.
Therefore,

s∑
k=1

(
s

k

)
Ed2

s,k(Oi1 , Oi2 , . . . , Oik ;x) = Var{d̂I(x)} ≤ Ed̂2
I(x) ≤ 1. (42)
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Let η6 = V̂ ∗∞ − η5. In the following, we show η6 = op(n
−1/2). With some calculations,

we can show that

η6 =
1

(n− sn)
(
n
sn

) ∑
I⊆I0
|I|=sn

∑
i∈Ic

(2Ai − 1)RI(Xi)

π(Ai,Xi)
{Yi − h(Ai,Xi)}

︸ ︷︷ ︸
η7

+
1

(n− sn)
(
n
sn

) ∑
I⊆I0
|I|=sn

∑
i∈Ic

τ(Xi)RI(Xi)

︸ ︷︷ ︸
η8

,

where RI(x) = d̂I(x)− dsn(x).
Below, we break the proof into two steps. In the first step, we show η7 = op(n

−1/2). In
the second step, we prove η8 = op(n

−1/2).

Step 1: For i = 0, 1, . . . , n, let ω0,i = (1 − Ai){Yi − h(0,Xi)}/π(0,Xi) and ω1,i =
Ai{Yi − h(1,Xi)}/π(1,Xi). We have

η7 = − 1

(n− sn)
(
n
sn

) ∑
I⊆I0
|I|=sn

∑
i∈Ic

ω0,iRI(Xi) +
1

(n− sn)
(
n
sn

) ∑
I⊆I0
|I|=sn

∑
i∈Ic

ω1,iRI(Xi).

Below, we show

η
(1)
7 ≡ 1

(n− sn)
(
n
sn

) ∑
I⊆I0
|I|=sn

∑
i∈Ic

ω0,iRI(Xi) = op(n
−1/2). (43)

It follows from Equation 41 that

η
(1)
7 =

1(
n
sn

)
(n− sn)

∑
I⊆I0
|I|=sn

∑
i∈Ic

ω0,i

 sn∑
k=1

∑
{j1,...,jk}⊆I

dsn,k(Oj1 , . . . , Ojk ;Xi)

 .

Notice that (n− sn)
(
n
sn

)
= (n− sn)

(
n

n−sn
)

= n
(

n−1
n−sn−1

)
= n

(
n−1
sn

)
. With some calculations,

we have

η
(1)
7 =

1

n

n∑
i=1

ω0,i

sn∑
k=1

(
n−1−k
sn−k

)(
n−1
sn

) ∑
{j1,...,jk}⊆I(−i)

dsn,k(Oj1 , . . . , Ojk ;Xi).

By (A1) and (A2), we have for any i = 1, . . . , n,

E(ω0,i|Xi) = E

(
1−Ai
π(0,Xi)

{Y ∗i (0)− h(0,Xi)}|Xi

)
= E[{Y ∗i (0)− h(0,Xi)}|Xi] = 0.

Moreover, dsn,k1(O
j
(1)
1

, · · · , O
j
(1)
k1

;x) and dsn,k2(O
j
(2)
1

, · · · , O
j
(2)
k2

;x) are uncorrelated for

any {j(1)
1 , . . . , j

(1)
k1
} 6= {j(2)

1 , . . . , j
(2)
k2
}. Therefore, for any 1 ≤ i1, i2 ≤ n, {j(1)

1 , . . . , j
(1)
k } ∈

I(−i1), {j
(2)
1 , . . . , j

(2)
k } ∈ I(−i2),

Eω0,i1ω0,i2dsn,k1(O
j
(1)
1

, · · · , O
j
(1)
k1

;Xi1)dsn,k2(O
j
(2)
1

, · · · , O
j
(2)
k2

;Xi2) 6= 0,
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only when k1 = k2 and {i1, j(1)
1 , . . . , j

(1)
k } = {i2, j(2)

1 , . . . , j
(2)
k }. This occurs when either i1 =

i2, {j(1)
1 , . . . , j

(1)
k } = {j(2)

1 , . . . , j
(2)
k } or i2 = j

(1)
k0

for some 1 ≤ k0 ≤ k and {i1, j(1)
1 , . . . , j

(1)
k }−

{j(1)
k0
} = {j(2)

1 , . . . , j
(2)
k }. As a result, we have by Cauchy-Schwarz inequality and (42) that

nE(η
(1)
7 )2 =

1

n

sn∑
k=1

(
n−1−k
sn−k

)2(
n−1
sn

)2 ∑
{i1,j(1)1 ,...,j

(1)
k }

={i2,j(2)1 ,...,j
(2)
k }

E
∏

a∈{1,2}

{ω0,iadsn,k(Oj(a)1

, · · · , O
j
(a)
k

;Xia)}

≤ 2

n

sn∑
k=1

(
n−1−k
sn−k

)2(
n−1
sn

)2 ∑
i∈{1,...,n}

{j1,...,jk}⊆I(−i)

(k + 1)Eω2
0,id

2
sn,k(Oj1 , · · · , Ojk ;Xi)

= 2

sn∑
k=1

(
n−1−k
sn−k

)2(
n−1
sn

)2 (
n− 1

k

)
(k + 1)Eω2

0,0d
2
sn,k(O1, · · · , Ok;X0)

= 2

sn∑
k=1

(
n−1−k
sn−k

)2(
n−1
sn

)2 (
n− 1

k

)
(k + 1)E[{EX0ω2

0,0}{EX0d2
sn,k(O1, · · · , Ok;X0)}]

≤ 2 max
k∈{1,...,sn}

(
n−1−k
sn−k

)2(
n−1
sn

)2 (
n− 1

k

)
k + 1(
sn
k

) E{EX0ω2
0,0},

where the expectation EX0 is taken conditional on the covariates X0. With some calcula-
tions, we have for any 1 ≤ k ≤ sn,(

n−1−k
sn−k

)(
n−1
sn

) =

(
sn
k

)(
n−1
k

) and

(
n−1−k
sn−k

)(
n−1
sn

) ≤ skn
(n− 1)k

.

It follows that

nE(η
(1)
7 )2 ≤ 2 max

k∈{1,...,sn}

(k + 1)skn
(n− 1)k

Eω2
0,0. (44)

Since sn/(n− 1)→ 0, we have for sufficiently large n that

(k + 2)sk+1
n

(n− 1)k+1
≤ (k + 1)skn

(n− 1)k
,

for any k ≥ 1. Therefore,

max
k∈{1,...,sn}

(k + 1)skn
(n− 1)k

≤ sn
n− 1

→ 0. (45)

By (A3) and the condition maxa∈{0,1} E{Y ∗0 (a)}2 < +∞, we have

Eω2
0,0 ≤ E

{Y ∗0 (0)− h(0,X0)}2

π2(0,X0)
≤ 1

c2
0

E{Y ∗0 (0)− h(0,X0)}2

=
1

c2
0

Var{Y ∗0 (0)}2 ≤ 1

c2
0

E{Y ∗0 (0)}2 = O(1). (46)
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Combining this together with (44) and (45) yields nE(η
(1)
7 )2 = o(1). Consequently, we

obtain η
(1)
7 = op(n

−1/2), by Markov’s inequality. Similarly, we can show

1

(n− sn)
(
n
sn

) ∑
I⊆I0
|I|=sn

∑
i∈Ic

ω1,iRI(Xi) = op(n
−1/2).

Thus, we obtain η7 = op(n
−1/2).

Step 2: Notice that

η8 =
1(

n
sn

)
(n− sn)

∑
I⊆I0,|I|=sn

∑
i∈Ic

τ(Xi)[d̂I(Xi)− dsn(Xi)]

=
1(

n
sn

)
(n− sn)

∑
I⊆I0,|I|=sn

∑
i∈Ic

τ(Xi)[d̂I(Xi)− I{τ(Xi) > 0}]

︸ ︷︷ ︸
η
(1)
8

− 1(
n
sn

)
(n− sn)

∑
I⊆I0,|I|=sn

∑
i∈Ic

τ(Xi)[dsn(Xi)− I{τ(Xi) > 0}]

︸ ︷︷ ︸
η
(2)
8

.

To prove η8 = op(n
−1/2), it suffices to show η

(1)
8 , η

(2)
8 = op(n

−1/2).

Notice that η
(1)
8 and η

(2)
8 are non-positive, we have

E|η(1)
8 | =

1(
n
sn

)
(n− sn)

∑
I⊆I0,|I|=sn

∑
i∈Ic

Eτ(Xi)[I{τ(Xi) > 0} − d̂I(Xi)],

E|η(2)
8 | =

1(
n
sn

)
(n− sn)

∑
I⊆I0,|I|=sn

∑
i∈Ic

Eτ(Xi)[I{τ(Xi) > 0} − dsn(Xi)].

Moreover, since E(d̂I(Xi)|Xi) = dsn(Xi), we obtain that E|η(1)
8 | = E|η(2)

8 |. By Markov’s

inequality, it suffices to show E|η(1)
8 | = o(n−1/2). This is immediate to see by noting that

1(
n
sn

)
(n− sn)

∑
I⊆I0,|I|=sn

∑
i∈Ic

Eτ(Xi)[I{τ(Xi) > 0} − d̂I(Xi)]

=
1(

n
sn

)
(n− sn)

∑
I⊆I0,|I|=sn

∑
i∈Ic
{V (dopt,0)− EV (d̂I)} = V (dopt,0)− EV (d̂I) = O(s−κ

∗
n ) = o(n−1/2),

where the last two equalities are due to (A4) and the condition that sn � n−1/(2κ∗). This
proves η8 = op(n

−1/2).

32



Breaking the Curse of Nonregularity with Subagging

To summarize, we’ve shown η6 = op(n
−1/2). Next, we show V0 = Eη5 + o(n−1/2). It

follows from the definitions of V0, ψi and η5 that

V0 −
1

n

n∑
i=1

Eψi(dsn) = V0 − Eψ0(dsn) (47)

= V0 − E[dsn(X0)h(1,X0) + {1− dsn(X0)}h(0,X0)]

= E[h(0,X0) + τ(X0)I{τ(X0) > 0}]− E[dsn(X0)h(1,X0)

+ {1− dsn(X0)}h(0,X0)] = Eτ(X0)[I{τ(X0) > 0} − dsn(X0)].

Using similar arguments in bounding E|η(1)
8 |, we can show

E|τ(X0)||dsn(X0)− I{τ(X0 > 0)}| = o(n−1/2).

In view of (47), this yields V0 = Eη5 + o(n−1/2). The proof is hence completed. �

C.2. Proof of Theorem 3

For any functions d(·), π∗(·, ·) and h∗(·, ·), define V (d;π∗, h∗) = Eψ0(d, π∗, h∗). It is imme-
diate to see that V0 = V (dopt;π, h) for any dopt ∈ Dopt. Let nS = |SN0,sn |. Before proving
Theorem 3, we present the following lemma whose proof is given in Section C.7.

Lemma 8 Under the conditions in Theorem 3, there exist some constants c1, c2, c3 > 0 and
0 < p∗ < 1, β0 > 0 such that

Pr

((
n
sn

)
− nS(
n
sn

) ≤ c1p
c2nβ0
∗

)
≥ 1− 2 exp(−c3n). (48)

In addition, we have

max
i∈{1,...,n}

Pr

(∣∣∣∣∣n(i)

B
− n− sn

n

∣∣∣∣∣ ≤
√

log n√
n

)
≥ 1− 4 exp(−c4n)− 2

B
, (49)

for some constant c4 > 0, where n(i) =
∑B

b=1 I(i ∈ Icb ).

Theorem 2 implies that V̂ ∗∞−V0 = η5−Eη5 +op(n
−1/2). Under (A3) and the conditions

maxa∈{0,1} E{Y ∗0 (a)}2 = O(1), lim infn σsn > 0, it follows from the central limit theorem
that

√
n(V̂ ∗∞ − V0)

σsn

d→ N(0, 1). (50)

Assume for now, we’ve shown

V̂B = V̂ ∗∞ + op(n
−1/2), (51)

and

σ̂2
B = σ2

sn + op(1). (52)
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In view of (50), we have

√
n(V̂B − V0)

σ̂B

d→ N(0, 1),

by Slutsky’s theorem and the condition that lim infn σsn > 0. Therefore, it suffices to show
(51) and (52).

In the following, we break the proof into three steps. In the first step, we show V̂B =
V̂ ∗B + op(n

−1/2) where

V̂ ∗B ≡
1

B

B∑
b=1

1

|Icb |
∑
i∈Icb

ψi(d̂Ib ;π, h) =
1

2B

{ 1

tn

∑
i∈Ic(2)b

ψi(d̂Ib ;π, h) +
1

tn

∑
i∈Ic(1)b

ψi(d̂Ib ;π, h)
}
.(53)

Next, we show V̂ ∗B = V̂ ∗∞ + op(n
−1/2). In the last step, we show (52) hold.

Step 1: Recall that V̂B is defined as

V̂B =
1

2B

B∑
b=1

{ 1

tn

∑
i∈Ic(2)b

ψi(d̂Ib ; π̂I(1)b

, ĥI(1)b

) +
1

tn

∑
i∈Ic(1)b

ψi(d̂Ib ; π̂I(2)b

, ĥ
(2)
Ib )
}
.

In view of (53), it suffices to show

1

Btn

B∑
b=1

∑
i∈Ic(2)b

(
ψi(d̂Ib ; π̂I(1)b

, ĥI(1)b

)− ψi(d̂Ib ;π, h)
)

= op(n
−1/2), (54)

1

Btn

B∑
b=1

∑
i∈Ic(1)b

(
ψi(d̂Ib ; π̂I(2)b

, ĥI(2)b

)− ψi(d̂Ib ;π, h)
)

= op(n
−1/2). (55)

In the following, we prove (54). Let A0 denote the event defined in Equation 48. On the
set A0, we have

nS ≥
1

2

(
n

sn

)
, (56)

for sufficiently large n. Notice that A0 depends only on the data subset {Oi}i∈I0 . By
Lemma 8, we have Pr(A0)→ 1.

For any I ⊆ I0 with |I| = sn, let P(I) denote the set of partitions, i.e,

P(I) ≡
{

(Ic(1), Ic(2)) : Ic(1) ∪ Ic(2) = Ic, Ic(1) ∩ Ic(2) = ∅, |Ic(1)| = |Ic(2)| = tn

}
.
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Notice that |P(I1)| = |P(I2)| for any subsets I1, I2 such that |I1| = |I2|. Define P0 = |P(I)|
for any I ⊆ I0 such that |I| = sn. For j = 1, 2, let I(j) = I ∪ Ic(j), we have

E

∣∣∣∣∣∣∣
1

Btn

B∑
b=1

∑
i∈Ic(2)b

{ψi(d̂Ib ; π̂I(1)b

, ĥI(1)b

)− ψi(d̂Ib ;π, h)}

∣∣∣∣∣∣∣ I(A0)

≤ 1

Btn

B∑
b=1

E

∣∣∣∣∣∣∣
∑

i∈Ic(2)b

{ψi(d̂Ib ; π̂I(1)b

, ĥI(1)b

)− ψi(d̂Ib ;π, h)}

∣∣∣∣∣∣∣ I(A0)

=
1

tn
E

∣∣∣∣∣∣∣
∑

i∈Ic(2)1

{ψi(d̂I1 ; π̂I(1)1

, ĥI(1)1

)− ψi(d̂I1 ;π, h)}

∣∣∣∣∣∣∣ I(A0)

= E
1

tnnSP0

∑
I∈SN0,sn

(Ic(1),Ic(2))∈P(I)

∣∣∣∣∣∣
∑

i∈Ic(2)
{ψi(d̂I ; π̂I(1) , ĥI(1))− ψi(d̂I ;π, h)}

∣∣∣∣∣∣ I(A0),

where the first equality is due to the fact that (I1, Ic(1)
1 , Ic(2)

1 ), . . . , (IB, Ic(1)
B , Ic(2)

B ) are
independent and identically distributed conditional on {Oi}i∈I0 , the second equality is due
to the fact that

E{Oi}i∈I1

∣∣∣∣∣∣∣
∑

i∈Ic(2)1

{ψi(d̂I1 ; π̂I(1) , ĥI(1)1

)− ψi(d̂I1 ;π, h)}

∣∣∣∣∣∣∣
=

1

nSP0

∑
I∈SN0,sn

(Ic(1),Ic(2))∈P(I)

∣∣∣∣∣∣
∑

i∈Ic(2)
{ψi(d̂I ; π̂I(1) , ĥI(1))− ψi(d̂I ;π, h)}

∣∣∣∣∣∣ ,
where E{Oi}i∈I1 denotes the conditional expectation given {Oi}i∈I1 . It follows from (56)
that

E

∣∣∣∣∣∣∣
1

Btn

B∑
b=1

∑
i∈Ic(2)b

{ψi(d̂Ib ; π̂I(1)b

, ĥI(1)b

)− ψi(d̂Ib ;π, h)}

∣∣∣∣∣∣∣ I(A0) (57)

≤ 2

tn
(
n
sn

)
P0

E
∑

I∈SN0,sn

(Ic(1),Ic(2))∈P(I)

∣∣∣∣∣∣
∑

i∈Ic(2)
{ψi(d̂I ; π̂I(1) , ĥI(1))− ψi(d̂I ;π, h)}

∣∣∣∣∣∣
≤ 2

tn
(
n
sn

)
P0

E
∑

I⊆I0,|I|=sn
(Ic(1),Ic(2))∈P(I)

∣∣∣∣∣∣
∑

i∈Ic(2)
{ψi(d̂I ; π̂I(1) , ĥI(1))− ψi(d̂I ;π, h)}

∣∣∣∣∣∣ .
Let I∗ be a random subset uniformly sampled from {I ⊆ I0 : |I| = sn}, independent of

{Oi}i∈I0 . Given I∗, let Ic(1)
∗ and Ic(2)

∗ denote the random partition of Ic∗ generated by the
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algorithm in Section 2.4. Notice that (I∗, Ic(1)
∗ , Ic(2)

∗ ) is independent of {Oi}i∈I0 . So far, we
have shown

1

2
E

∣∣∣∣∣∣∣
1

tnB

B∑
b=1

∑
i∈Ic(2)b

{ψi(d̂Ib ; π̂I(1)b

, ĥI(1)b

)− ψi(d̂Ib ;π, h)}

∣∣∣∣∣∣∣ I(A0)

≤ 1

tn
E

∣∣∣∣∣∣∣
∑

i∈Ic(2)∗

{ψi(d̂I∗ ; π̂I(1)∗ , ĥI(1)∗
)− ψi(d̂I∗ ;π, h)}

∣∣∣∣∣∣∣ .
It follows from triangle inequality that

1

2
E

∣∣∣∣∣∣∣
1

tnB

B∑
b=1

∑
i∈Ic(2)b

{ψi(d̂Ib ; π̂I(1)b

, ĥI(1)b

)− ψi(d̂Ib ;π, h)}

∣∣∣∣∣∣∣ I(A0) (58)

≤ E

∣∣∣∣∣∣∣
1

tn

∑
i∈Ic(2)∗

{ψi(d̂I∗ ;π, h)− ψi(d̂I∗ ; π̂I(1)∗ , ĥI(1)∗
)− V (d̂I∗ ;π, h) + V (d̂I∗ ; π̂I(1)∗

, ĥI(1)∗
)}

∣∣∣∣∣∣∣︸ ︷︷ ︸
η9

+ E
∣∣∣V (d̂I∗ ;π, h)− V (d̂I∗ ; π̂I(1)∗

, ĥI(1)∗
)
∣∣∣︸ ︷︷ ︸

η10

.

Below, we prove η9, η10 = o(n−1/2). This implies for any ε > 0,

Pr


∣∣∣∣∣∣∣
B∑
b=1

∑
i∈Ic(2)b

{ψi(d̂Ib ; π̂I(1)b

, ĥI(1)b

)− ψi(d̂Ib ;π, h)}

∣∣∣∣∣∣∣ >
Btnε√
n

 (59)

≤ Pr



∣∣∣∣∣∣∣
B∑
b=1

∑
i∈Ic(2)b

{ψi(d̂Ib ; π̂I(1)b

, ĥI(1)b

)− ψi(d̂Ib ;π, h)}

∣∣∣∣∣∣∣ >
Btnε√
n

 ∩ A0

+ Pr(Ac0)

≤
√
n

ε
E

∣∣∣∣∣∣∣
1

Btn

B∑
b=1

∑
i∈Ic(2)b

{ψi(d̂Ib ; π̂I(1)b

, ĥI(1)b

)− ψi(d̂Ib ;π, h)}

∣∣∣∣∣∣∣ I(A0) + Pr(Ac0) = o(1).

Hence, (54) is proven.

By Cauchy-Schwarz inequality, we have

η2
9 ≤ E

∣∣∣∣∣∣∣
1

tn

∑
i∈Ic(2)∗

{ψi(d̂I∗ ;π, h)− ψi(d̂I∗ ; π̂I(1)∗ , ĥI(1)∗
)− V (d̂I∗ ;π, h) + V (d̂I∗ ; π̂I(1)∗

, ĥI(1)∗
)}

∣∣∣∣∣∣∣
2

.
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Conditional on {Oi}i∈I(1)∗ , I∗ and I(1)
∗ ,

∑
i∈Ic(2)∗

{ψi(d̂I∗ ;π, h)− ψi(d̂I∗ ; π̂I(1)∗ , ĥI(1)∗
)− V (d̂I∗ ;π, h) + V (d̂I∗ ; π̂I(1)∗

, ĥI(1)∗
)}

corresponds to a sum of i.i.d mean zero random variables. Therefore, we have

η2
9 ≤

1

tn
EVar

(
ψ0(d̂I∗ ;π, h)− ψ0(d̂I∗ ; π̂I(1)∗

, ĥI(1)∗
)
∣∣∣ {Oi}(1)

i∈I∗ , I∗, I
(1)
∗

)
. (60)

Notice that tn = (n− sn)/2. Under the condition that sn = o(n), we have

|tn| � n. (61)

It thus follows from (60) that

η2
9 ≤

C

n
EVar

(
ψ0(d̂I∗ ;π, h)− ψ0(d̂I∗ ; π̂I(1)∗

, ĥI(1)∗
)
∣∣∣ {Oi}(1)

i∈I∗ , I∗, I
(1)
∗

)
,

for some constant C > 0. For any random variable Z, we have Var(Z) ≤ EZ2. Hence, we
have

C−1nη2
9 � E

∣∣∣ψ0(d̂I∗ ;π, h)− ψ0(d̂I∗ ; π̂I(1)∗
, ĥI(1)∗

)
∣∣∣2 . (62)

By Cauchy-Schwarz inequality, the right-hand side (RHS) of (62) can be upper bounded by

3 E

∣∣∣∣∣I{A0 = d̂I∗(X0)}
π̂I(1)∗

(A0,X0)
Y0 −

I{A0 = d̂I∗(X0)}
π(A0,X0)

Y0

∣∣∣∣∣
2

︸ ︷︷ ︸
η
(1)
9

(63)

+3 E

∣∣∣∣∣I{A0 = d̂I∗(X0)}
π̂I(1)∗

(A0,X0)
ĥIc(1)∗

(A0,X0)− I{A0 = d̂I∗(X0)}
π(A0,X0)

h(A0,X0)

∣∣∣∣∣
2

︸ ︷︷ ︸
η
(2)
9

+3 E|d̂I∗(X0){ĥI(1)∗ (1,X0)− h(1,X0)}+ {1− d̂I∗(X0)}{ĥIc(1)∗
(0,X0)− h(0,X0)}|2︸ ︷︷ ︸

η
(3)
9

.

In the following, we show η
(1)
9 , η

(2)
9 , η

(3)
9 = o(1). This together with (62) implies η9 =

o(n−1/2).

By Condition (A1), we have |Y0|2 ≤ A0|Y ∗0 (1)|2+(1−A0)|Y ∗0 (0)|2. Since maxa∈{0,1} E|Y ∗0 (a)|2 <
∞, we obtain E|Y0|2 <∞. As a result,

E|Y0|2I(|Y0| > n1/4)→ 0. (64)
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Notice that

η
(1)
9 = E

Y 2
0 |π̂I(1)∗ (A0,X0)− π(A0,X0)|2

π̂2

I(1)∗
(A0,X0)π2(A0,X0)

≤ 1

c2
0(c∗)2

EY 2
0 |π̂I(1)∗ (A0,X0)− π(A0,X0)|2

≤ 1

c2
0(c∗)2

EY 2
0 |π̂I(1)∗ (A0,X0)− π(A0,X0)|2I(|Y0 > n−1/4|)

+
n1/2

c2
0(c∗)2

E|π̂I(1)∗ (A0,X0)− π(A0,X0)|2 = o(1),

where the first inequality is due to (9) and (A3), the last equality is due to (10) and (64).
By Cauchy-Schwarz inequality, we have

η
(2)
9 ≤ 2 E

∣∣∣∣∣I{A0 = d̂I∗(X0)}
π̂I(1)∗

(A0,X0)
h(A0,X0)− I{A0 = d̂I∗(X0)}

π(A0,X0)
h(A0,X0)

∣∣∣∣∣
2

︸ ︷︷ ︸
η
(4)
9

+ 2 E

∣∣∣∣∣I{A0 = d̂I∗(X0)}
π̂I(1)∗

(A0,X0)
ĥIc(1)∗

(A0,X0)− I{A0 = d̂I∗(X0)}
π̂I(1)∗

(A0,X0)
h(A0,X0)

∣∣∣∣∣
2

︸ ︷︷ ︸
η
(5)
9

.

Using similar arguments in showing η
(1)
9 = o(1), we can show η

(4)
9 = o(1). Besides, under

the conditions in Equations 9 and 11, we have

η
(5)
9 ≤ 1

c∗
E|ĥIc(1)∗

(A0,X0)− h(A0,X0)|2 = o(1).

This shows η
(2)
9 = o(1). Under the condition that maxa=0,1 E|ĥI(a,X0) − h(a,X0)|2 =

o(|I|−1/2), we have η
(3)
9 = o(1). In view of Equations (62) and (63), we’ve shown

η9 = o(n−1/2). (65)

We next show η10 = o(n−1/2). Note that for any regime d and functions π∗, h∗,

V (d;π∗, h∗) = E

(
I{A0 = d(X0)}
π∗(A0,X0)

{Y − h∗(A0,X0)}+ h∗(d(X0),X0)

)
= Eh(d(X0),X0) + E

(
π(1,X0)

π∗(1,X0)
− 1

)
d(X0){h(1,X0)− h∗(1,X0)}

+ E

(
π(0,X0)

π∗(0,X0)
− 1

)
{1− d(X0)}{h(0,X0)− h∗(0,X0)}.

Therefore,

|V (d;π∗, h∗)− V (d;π, h)| ≤
∑
a=0,1

E

∣∣∣∣( π(a,X0)

π∗(a,X0)
− 1

)
{h(a,X0)− h∗(a,X0)}

∣∣∣∣
≤ 1

infa=0,1,x∈X π∗(a,x)

∑
a=0,1

E|π(a,X0)− π∗(a,X0)||h(a,X0)− h∗(a,X0)|

≤ 1

infa=0,1,x∈X π∗(a,x)

∑
a=0,1

1

2
E
(
|π(a,X0)− π∗(a,X0)|2 + |h(a,X0)− h∗(a,X0)|2

)
,
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where the last inequality follows by Cauchy-Schwarz inequality. Hence, under the conditions
in Equations (9), (10) and (11), we have

η10 = E|V (d̂I∗ ; π̂I(1)∗
, ĥI(1)∗

)− V (d̂I∗ ;π, h)|

≤ 1

2c∗

∑
a=0,1

E
(
|π(a,X0)− π̂I(1)∗ (a,X0)|2 + |h(a,X0)− ĥI(1)∗ (a,X0)|2

)
≤ 1

c∗
max
a=0,1

E
(
|π(a,X0)− π̂I(1)∗ (a,X0)|2 + |h(a,X0)− ĥI(1)∗ (a,X0)|2

)
= o(|I(1)

∗ |−1/2).

Besides, similar to Equation 61, we can show |I(1)
∗ | � n. Hence, we obtain η10 = o(n−1/2).

By Markov’s inequality, this together with (65) yields (54). Similarly, we can show (55)
holds. Therefore, we have V̂B = V̂ ∗B + op(n

−1/2).

Step 2: Recall that V̂ ∗B is defined as

V̂ ∗B =
1

B

B∑
b=1

1

n− sn

∑
i∈Icb

ψi(d̂Ib ;π, h).

The expectation and variance of V̂ ∗B conditional on {Oi}i∈I0 are given by

E(V̂ ∗B|{Oi}i∈I0) =
1

nS

∑
I∈SN0,sn

1

n− sn

∑
i∈Ic

ψi(d̂I ;π, h),

Var(V̂ ∗B|{Oi}i∈I0) =
nS − 1

nSB
ŝ.e2

{ 1

n− sn

∑
i∈Ic

ψi(d̂I ;π, h)

}
I∈SN0,sn

 .

For any ε > 0, we have

Pr(
√
n|V̂ ∗B − V̂ ∗∞| > 2ε) ≤ Pr

(√
n|E(V̂ ∗B|{Oi}i∈I0)− V̂ ∗∞| > ε

)
+ Pr

(√
n|V̂ ∗B − E(V̂ ∗B|{Oi}i∈I0)| > ε

)
≤ Pr

({√
n|E(V̂ ∗B|{Oi}i∈I0)− V̂ ∗∞| > ε

}
∩ A0

)
+ Pr

(√
n|V̂ ∗B − E(V̂ ∗B|{Oi}i∈I0)| > ε

)
+ Pr(Ac0) ≤

√
n

ε
E|E(V̂ ∗B|{Oi}i∈I0)− V̂ ∗∞|I(A0)︸ ︷︷ ︸

ζ1

+
n

ε2
EVar(V̂ ∗B|{Oi}i∈I0)︸ ︷︷ ︸

ζ2

+Pr(Ac0),

where the first inequality follows by Bonferroni’s inequality and the last inequality is due
to Markov’s inequality.
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By Lemma 8, to prove V̂ ∗B − V̂ ∗∞ = op(n
−1/2), it suffices to show ζ1 = o(n−1/2) and

ζ2 = o(n−1). We first show ζ1 = o(n−1/2). It follows from triangle inequality that

ζ1 ≤ E

∣∣∣∣∣∣∣∣
1

nS

∑
I∈SN0,sn

1

n− sn

∑
i∈Ic

ψi(d̂I ;π, h)− 1

nS

∑
I⊆I0
|I|=sn

1

n− sn

∑
i∈Ic

ψi(d̂I ;π, h)

∣∣∣∣∣∣∣∣ I(A0)

︸ ︷︷ ︸
ζ
(1)
1

+ E

∣∣∣∣∣∣∣∣
1

nS

∑
I⊆I0
|I|=sn

1

n− sn

∑
i∈Ic

ψi(d̂I ;π, h)− 1(
n
sn

) ∑
I⊆I0
|I|=sn

1

n− sn

∑
i∈Ic

ψi(d̂I ;π, h)

∣∣∣∣∣∣∣∣ I(A0)

︸ ︷︷ ︸
ζ
(2)
1

Recall that for any regime d and any I ⊆ I0,
∑

i∈Ic ψi(d;π, h)/(n− sn) is defined as

1

|Ic|
∑
i∈Ic

(
I{Ai = d(Xi)}
π(Ai,Xi)

{Yi − h(Ai,Xi)}+ h(d(Xi),Xi)

)
.

By Condition (A1) and (A3), we have∣∣∣∣∣ 1

n− sn

∑
i∈Ic

ψi(d;π, h)

∣∣∣∣∣ ≤ 1 + (c∗)−1

|Ic|

n∑
i=1

∑
a∈{0,1}

{|Y ∗i (a)|+ |h(a,Xi)|}. (66)

Notice that EY ∗i (a) = h(a,Xi). By Jensen’s inequality, Cauchy-Schwarz inequality and the
conditions sn = o(n), maxa∈{0,1} E{Y ∗(a)}2 < +∞, we obtain

E

∣∣∣∣∣ 1

n− sn

∑
i∈Ic

ψi(d;π, h)

∣∣∣∣∣ ≤ 2n+ 2n(c∗)−1

n− sn
max
a∈{0,1}

E{|Y ∗0 (a)|+ |h(a,X0)|}

≤ 4n+ 4n(c∗)−1

n− sn
max
a∈{0,1}

E{|Y ∗0 (a)|} ≤ 4n+ 4n(c∗)−1

n− sn

√
max
a∈{0,1}

E2{|Y ∗0 (a)|} = O(1).

Combining this together with (56) and the definition of A0, we have

ζ
(1)
1 = E

∣∣∣∣∣∣∣∣∣
1

nS

∑
I∈ScN0,sn

|I|=sn

1

n− sn

∑
i∈Ic

ψi(d̂I ;π, h)

∣∣∣∣∣∣∣∣∣ I(A0)

≤
2
((

n
sn

)
− |SN0,sn |

)
(
n
sn

) E max
I⊆Ic0
|I|=sn

∣∣∣∣∣ 1

n− sn

∑
i∈Ic

ψi(d̂I ;π, h)

∣∣∣∣∣ I(A0)

≤ 2c1p
c2nβ0
∗ E max

I⊆Ic0
|I|=sn

∣∣∣∣∣ 1

n− sn

∑
i∈Ic

ψi(d̂I ;π, h)

∣∣∣∣∣ = O
(

(p∗)c2n
β0
)
.
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Since 0 < p∗ < 1, β0 > 0 and c2 > 0, we have ζ
(1)
1 = o(n−1/2). Similarly, we can show

ζ
(2)
1 = o(n−1/2). Therefore, we have ζ1 = o(n−1/2).

Next we show ζ2 = o(n−1). Recall that

Var(V̂ ∗B|{Oi}i∈I) =
nS − 1

nSB
ŝ.e2

{ 1

n− sn

∑
i∈Ic

ψi(d̂I ;π, h)

}
I∈SN0,sn

 ,

we have

Var(V̂ ∗B|{Oi}i∈I) ≤
1

nSB

∑
I∈SN0,sn

∣∣∣∣∣ 1

n− sn

∑
i∈Ic

ψi(d̂I ;π, h)

∣∣∣∣∣
2

. (67)

Besides, it follows from (66) and Cauchy-Schwarz inequality that∣∣∣∣∣ 1

n− sn

∑
i∈Ic

ψi(d;π, h)

∣∣∣∣∣
2

≤ {1 + (c∗)−1}2

(n− sn)2

 n∑
i=1

∑
a∈{0,1}

{Y ∗i (a) + |h(a,Xi)|}

2

≤ 4n{1 + (c∗)−1}2

(n− sn)2

n∑
i=1

∑
a∈{0,1}

{|Y ∗i (a)|2 + |h(a,Xi)|2}.

By Jensen’s inequality and the conditions sn = o(n), maxa∈{0,1} E{Y ∗(a)}2 < +∞, we have

E

∣∣∣∣∣ 1

n− sn

∑
i∈Ic

ψi(d;π, h)

∣∣∣∣∣
2

≤ 16n2{1 + (c∗)−1}2

(n− sn)2
E|Y ∗0 (a)|2 = O(1).

Combining this together with (67) yields

ζ2 = EVar(V̂ ∗B|{Oi}i∈I) ≤ E
1

nSB

∑
I∈SN0,sn

∣∣∣∣∣ 1

n− sn

∑
i∈Ic

ψi(d̂I ;π, h)

∣∣∣∣∣
2

= O(B−1).

Notice that we require B � n. It follows that

ζ2 = O(B−1) = o(n−1).

Therefore, we’ve shown V̂ ∗B − V̂ ∗∞ = op(n
−1/2).

Step 3: Recall that σ̂2
B is defined as

σ̂2
B =

1

n− 1

n∑
i=1

{ψ(i)}2 − n

n− 1
(ψ̄)2,

where

ψ(i) =
1

n(i)

B∑
b=1

(
ψi(d̂Ib ; π̂I(1)b

, ĥI(1)b

)I(i /∈ I(1)
b ) + ψi(d̂Ib ; π̂I(2)b

, ĥI(2)b

)I(i /∈ I(2)
b )
)
,
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and ψ̄ =
∑n

i=1 ψ
(i)/n. Let A(i) denote the event defined in Equation 49. Since sn = o(n),

when A(i) holds, we have for sufficiently large n,

n(i) ≥ B

2
. (68)

For any i ∈ I0, define

ψ∗(i) =
1

n(i)

B∑
b=1

ψi(d̂Ib ;π, h)I(i /∈ Ib).

Using similar arguments in Step 1 of the proof, we can show

max
i∈I0

E|ψ(i) − ψ∗(i)|2I(A(i) ∩ A0) = o(1). (69)

In addition, using similar arguments in bounding ζ2 in Step 2 of the proof, we can show

max
i∈I0

E|ψ∗(i)|2 = O(1). (70)

This together with (69) yields

max
i∈I0

E|ψ(i) + ψ∗(i)|2I(A(i) ∩ A0) = max
i∈I0

E|ψ(i) − ψ∗(i) + 2ψ∗(i)|2I(A(i) ∩ A0)

≤ 2 max
i∈I0

E|ψ(i) − ψ∗(i)|2I(A(i) ∩ A0) + 8 max
i∈I0

E|ψ∗(i)|2 = O(1). (71)

In view of (69) and (71), it follows from Cauchy-Schwarz inequality that

max
i∈I0

E|(ψ(i))2 − (ψ∗(i))2|I(A(i) ∩ A0) = max
i∈I0

E|ψ(i) − ψ∗(i)||ψ(i) + ψ∗(i)|I(A(i) ∩ A0)

≤
√

max
i∈I0

E|ψ(i) + ψ∗(i)|2I(A(i) ∩ A0) max
i∈I0

E|ψ(i) − ψ∗(i)|2I(A(i) ∩ A0) = o(1).

Hence,

E

∣∣∣∣∣ 1

n− 1

n∑
i=1

{ψ(i)}2 − 1

n− 1

n∑
i=1

{ψ∗(i)}2
∣∣∣∣∣ I(A0)I(∩ni=1A(i))

≤ n

n− 1
max
i∈I0

E|(ψ(i))2 − (ψ∗(i))2|I(A(i) ∩ A0) = o(1). (72)

Notice that B � n. By Lemma 8 and Bonferroni’s inequality, we have

Pr
{
Ac0 ∪

(
∪ni=1A(i)c

)}
≤ Pr(Ac0) +

n∑
i=1

Pr(A(i)c)

≤ n

B
+ 4n exp(−c4n) + 2 exp(−c3n)→ 0. (73)

This together with (72) implies that

Pr

(∣∣∣∣∣ 1

n− 1

n∑
i=1

{ψ(i)}2 − 1

n− 1

n∑
i=1

{ψ∗(i)}2
∣∣∣∣∣ > ε

)
≤ Pr

{
Ac0 ∪

(
∪ni=1A(i)c

)}
+

1

ε
E

∣∣∣∣∣ 1

n− 1

n∑
i=1

{ψ(i)}2 − 1

n− 1

n∑
i=1

{ψ∗(i)}2
∣∣∣∣∣ I(A0)I(∩ni=1A(i))→ 0,
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for any ε > 0. Therefore, we’ve shown

1

n− 1

n∑
i=1

{ψ(i)}2 =
1

n− 1

n∑
i=1

{ψ∗(i)}2 + op(1). (74)

Conditional on the event defined in A(i), we have

n− sn
n

−
√

log n√
n︸ ︷︷ ︸

pL

≤ n(i)

B
≤ n− sn

n
+

√
log n√
n︸ ︷︷ ︸

pU

.

Let

ψ
∗(i)
L =

1

BpU

B∑
b=1

ψi(d̂Ib ;π, h)I(i /∈ Ib) and ψ
∗(i)
U =

1

BpL

B∑
b=1

ψi(d̂Ib ;π, h)I(i /∈ Ib),

we have

{ψ∗(i)L }
2 ≤ {ψ∗(i)}2 ≤ {ψ∗(i)U }

2.

Define

ψ∗(i)∞ =
1(
n−1
sn

) ∑
I⊆I0
|I|=sn

ψi(d̂I ;π, h)I(i /∈ I) =
1(
n−1
sn

) ∑
I⊆I(−i)
|I|=sn

ψi(d̂I ;π, h).

We now claim

max
i∈I0

E|{ψ∗(i)∞ }2 − {ψ∗(i)}2|I(A0 ∩ A(i)) = o(1). (75)

To prove this, it suffices to show

max
i∈I0

E|{ψ∗(i)∞ }2 − {ψ
∗(i)
L }

2|I(A0 ∩ A(i)) = o(1), (76)

and

max
i∈I0

E|{ψ∗(i)∞ }2 − {ψ
∗(i)
U }

2|I(A0 ∩ A(i)) = o(1). (77)

(76) and (77) can be similarly proven as (74). We omit the technical details for brevity.
Under (75), we have

E

∣∣∣∣∣ 1

n− 1

n∑
i=1

{ψ∗(i)}2 − 1

n− 1

n∑
i=1

{ψ∗(i)∞ }2
∣∣∣∣∣ I(A0 ∩ (∩nj=1A(j))

)
= o(1).

It thus follows from (73) and Markov’s inequality that

Pr

(∣∣∣∣∣ 1

n− 1

n∑
i=1

{ψ∗(i)}2 − 1

n− 1

n∑
i=1

{ψ∗(i)∞ }2
∣∣∣∣∣ > ε

)
≤ Pr

(
Ac0 ∪ (∪nj=1A(i)c)

)
+E

∣∣∣∣∣ 1

n− 1

n∑
i=1

{ψ∗(i)}2 − 1

n− 1

n∑
i=1

{ψ∗(i)∞ }2
∣∣∣∣∣ I(A0 ∩ (∩nj=1A(j))

)
→ 0,
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for any ε > 0. This implies

1

n− 1

n∑
i=1

{ψ∗(i)}2 − 1

n− 1

n∑
i=1

{ψ∗(i)∞ }2 = op(1). (78)

Notice that we have ψ
∗(i)
∞ = ψi(d̂

(−i)
sn ;π, h). Based on the ANOVA decomposition (see

(41)), we have

d̂(−i)
sn (·) = dsn(·) +

sn∑
k=1

(
n−1−k
sn−k

)(
n−1
sn

) ∑
{j1,...,jk}⊆I(−i)

dsn,k(Oj1 , . . . , Ojk ; ·).

Using similar arguments in bounding η
(2)
3 and η

(3)
3 in the proof of Theorem 2, we can show

max
i∈I0

E|d̂(−i)
sn (Xi)− dsn(Xi)|2 = o(1), (79)

and hence |d̂(−i)
sn (Xi)− dsn(Xi)|2 = op(1). By dominated convergence theorem, we obtain

E|ψi(d̂(−i)
sn ;π, h)− ψi(dsn ;π, h)|2 ≤ 4E

Ai|d̂(−i)
sn (Xi)− dsn(Xi)|2

π2(1,Xi)
|Y ∗i (1)− h(1,Xi)|2

+ 4E
(1−Ai)|d̂(−i)

sn (Xi)− dsn(Xi)|2

π2(0,Xi)
|Y ∗i (0)− h(0,Xi)|2

+ 4Eh2(0,Xi)|d̂(−i)
sn (Xi)− dsn(Xi)|2 + 4Eh2(1,Xi)|d̂(−i)

sn (Xi)− dsn(Xi)|2 = o(1).

Since ψ1(d̂
(−i)
sn ;π, h), ψ2(d̂

(−i)
sn ;π, h), · · · , ψn(d̂

(−n)
sn ;π, h) are exchangeable, we obtain

max
i∈I0

E|ψi(d̂(−i)
sn ;π, h)− ψi(dsn ;π, h)|2 = o(1). (80)

By Markov’s inequality, we obtain

1

n− 1

n∑
i=1

{ψ∗(i)∞ }2 −
1

n− 1

n∑
i=1

ψ2
i (dsn ;π, h) = op(1).

Combining this with (74) and (78), we’ve shown

1

n− 1

n∑
i=1

{ψ(i)}2 =
1

n− 1

n∑
i=1

ψ2
i (dsn ;π, h) + op(1). (81)

Similarly, we can show(
1

n

n∑
i=1

ψ(i)

)2

=

(
1

n

n∑
i=1

ψi(dsn ;π, h)

)2

+ op(1) = η2
5 + op(1).

Combining this together with (81), we have

σ̂2
B =

1

n− 1

n∑
i=1

ψ2
i (dsn ;π, h)− n

n− 1
η2

5 + op(1).
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Under the given conditions, it follows from law of larger numbers that

1

n

n∑
i=1

ψ2
i (dsn ;π, h) = Eψ2

0(dsn ;π, h) + op(1),

and η5 = {Eψ0(dsn ;π, h)}2 + op(1). Therefore, we have σ̂2
B = σ2

sn + op(1). The proof is
hence completed. �

C.3. Proof of Theorem 5

We first study the asymptotic property of σ̃2
0(d̂I(j) ;π, h). Next, we study the asymptotic

property of σ2
sn = σ̃2

0(dsn ;π, h). Finally, we bound the difference between the average
lengths of the two CIs.

Let ν0 = Pr{τ(X0) = 0} and d0 = d(X0) for any function d. Since e0 is independent of
A0 and X0, we have

σ̃2
0(d̂I(j) ;π, h) = Var

(
g(A0, d̂I(j),0)

π(A0,X0)
e0 + h(d̂I(j),0,X0)

∣∣∣∣∣ {Oi}i∈I(j)
)

= Var

(
g(A0, d̂I(j),0)

π(A0,X0)
e0

∣∣∣∣∣ {Oi}i∈I(j)
)

+ Var{h(d̂I(j),0,X0)|{Oi}i∈I(j)}.

(82)

By definition, we have

h(d̂I(j),0,X0) = d̂I(j),0h(1,X0) + (1− d̂I(j),0)h(0,X0) = h(0,X0) + τ(X0)I{τ̂I(j)(X0) > 0}.

For any dopt ∈ Dopt and ε > 0, it follows from Markov’s inequality that

Pr
{

E
(
|h(d̂I(j),0,X0)− h(dopt0 ,X0)|2|{Oi}i∈I(j)

)
> ε
}

≤ 1

ε2
E|h(d̂I(j),0,X0)− h(dopt0 ,X0)|2 =

1

ε2
Eτ2(X0)|I{τ̂I(j)(X0) > 0} − I{τ(X0) > 0}|.

Here, h(dopt0 ,X0) = h(0,X0) + max{τ(X0), 0} is independent of dopt.

Since |I{τ̂I(j)(X0) > 0}−I{τ(X0) > 0}| ≤ I{|τ̂I(j)(X0)−τ(X0)| ≥ τ(X0)}, by Condition
(A6) and Markov’s inequality, we have

Eτ2(X0)|I{τ̂I(j)(X0) > 0} − I{τ(X0) > 0}| ≤ EI{|τ̂I(j)(X0)− τ(X0)| ≥ τ(X0)}
≤ E|τ̂I(j)(X0)− τ(X0)|2 → 0,

as j →∞. This implies that as j →∞,

E
(
|h(d̂I(j),0,X0)− h(dopt0 ,X0)|2|{Oi}i∈I(j)

)
P→ 0. (83)

Under the given conditions, we can show as j →∞ that,

E
∣∣∣Var{h(d̂I(j),0,X0)|{Oi}i∈I(j)} −Var{h(dopt0 ,X0)}

∣∣∣→ 0. (84)
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Consequently, the second term on the second line of (82) is equivalent to Var{h(dopt0 ,X0)}.
Consider the first term. With some calculations, we have

Var

(
g(A0, d̂I(j),0)

π(A0,X0)
e0

∣∣∣∣∣ {Oi}i∈I(j)
)

= σ2
0E

(
g2{A0, d̂I(j),0}
π2(A0,X0)

∣∣∣∣∣ {Oi}i∈I(j)
)

= σ2
0E

 d̂2
I(j),0

π(1,X0)
+

(1− d̂I(j),0)2

π(0,X0)

∣∣∣∣∣∣ {Oi}i∈I(j)
 = σ2

0E

(
d̂I(j),0

π(1,X0)
+

1− d̂I(j),0
π(0,X0)

∣∣∣∣∣ {Oi}i∈I(j)
)
,(85)

where the last equality is due to that d̂I(j)(X0) ∈ {0, 1}.
In the following, we show

lim
j

E

∣∣∣∣∣ d̂I(j)(X0)I{τ(X0) > 0}
π(1,X0)

− I{τ(X0) > 0}
π(1,X0)

∣∣∣∣∣ = 0. (86)

Notice that

E

∣∣∣∣∣ d̂I(j)(X0)I{τ(X0) > 0}
π(1,X0)

− I{τ(X0) > 0}
π(1,X0)

∣∣∣∣∣ (87)

≤ E

∣∣∣∣∣ d̂I(j)(X0)I{τ(X0) > 0}
π(1,X0)

− I{τ(X0) > 0}
π(1,X0)

∣∣∣∣∣ I{0 < τ(X0) ≤ j−1/4}︸ ︷︷ ︸
ζ3

+ E

∣∣∣∣∣ d̂I(j)(X0)I{τ(X0) > 0}
π(1,X0)

− I{τ(X0) > 0}
π(1,X0)

∣∣∣∣∣ I{τ(X0) > j−1/4}︸ ︷︷ ︸
ζ4

.

It follows from Condition (A3) and (A5) that

ζ3 ≤
1

c0
EI{0 < τ(X0) ≤ j−1/4} ≤ c̄

c0
j−1/(4α) → 0, as j →∞.

In addition, notice that d̂Ij (x) 6= I{τ(x) > 0} only when |τ̂I(j)(x) − τ(x)| ≥ |τ(x)|. It
follows that

ζ4 ≤
1

c0
E|d̂I(j)(X0)− I{τ(X0) > 0}|I{τ(X0) > j−1/4}

≤ 1

c0
E
|τ̂I(j)(X0)− τ(X0)|2

|τ(X0)|2
I{τ(X0) > j−1/4}

≤ j1/2

c0
E|τ̂I(j)(X0)− τ(X0)|2 = O(j−κ0+1/2)→ 0, as j →∞,

the last inequality is due to the relation that κ0 > (α+ 2)/(2α+ 2) > 1/2. By (87), we’ve
shown (86) holds. By Jensen’s inequality, this further implies

lim
j

E

∣∣∣∣∣E
(
d̂I(j)(X0)I{τ(X0) > 0}

π(1,X0)
− I{τ(X0) > 0}

π(1,X0)

∣∣∣∣∣ {Oi}i∈Ij
)∣∣∣∣∣ = 0. (88)
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Similarly, we can show

lim
j

E

∣∣∣∣∣E
(
{1− d̂I(j)(X0)}I{τ(X0) < 0}

π(0,X0)
− I{τ(X0) < 0}

π(0,X0)

∣∣∣∣∣ {Oi}i∈I(j)
)∣∣∣∣∣ = 0,

lim
j

E

∣∣∣∣∣E
(
d̂I(j)(X0)I{τ(X0) < 0}

π(1,X0)

∣∣∣∣∣ {Oi}i∈I(j)
)∣∣∣∣∣ = 0,

lim
j

E

∣∣∣∣∣E
(
{1− d̂I(j)(X0)}I{τ(X0) > 0}

π(0,X0)

∣∣∣∣∣ {Oi}i∈I(j)
)∣∣∣∣∣ = 0.

Combining these together with (88) yields

E

∣∣∣∣∣E
(

d̂I(j),0

π(1,X0)
+

1− d̂I(j),0
π(0,X0)

∣∣∣∣∣ {Oi}i∈I(j)
)
− E

(
I{τ(X0) > 0}
π(1,X0)

+
I{τ(X0) < 0}
π(0,X0)

)

−EI{τ(X0) = 0}

(
d̂I(j),0

π(1,X0)
+

1− d̂I(j),0
π(0,X0)

∣∣∣∣∣ {Oi}i∈I(j)
)∣∣∣∣∣ = o(1), as j →∞.

Since `n →∞, we have

max
j≥`n

E

∣∣∣∣∣E
(

d̂I(j),0

π(1,X0)
+

1− d̂I(j),0
π(0,X0)

∣∣∣∣∣ {Oi}i∈I(j)
)
− E

I{τ(X0) > 0}
π(1,X0)

− E
I{τ(X0) < 0}
π(0,X0)

− EI{τ(X0) = 0}

(
d̂I(j),0

π(1,X0)
+

1− d̂I(j),0
π(0,X0)

∣∣∣∣∣ {Oi}i∈I(j)
)∣∣∣∣∣ = o(1).

This together with (84) and (85) yields

sup
j≥`n

E

∣∣∣∣∣∣∣∣∣∣
σ̃2

0(d̂I(j) ;π, h)− ν1 − σ2
0

∫
x∈X

(
d̂I(j)(x)

π(1,x)
+

1− d̂I(j)(x)

π(0,x)

)
dFX(x)︸ ︷︷ ︸

κj

∣∣∣∣∣∣∣∣∣∣
= o(1), (89)

where X = {x ∈ X : τ(x) = 0}, FX(·) denotes the cumulative distribution function of X0,
and

ν1 = Var{h(dopt0 ,X0)}+ σ2
0E

(
I{τ(X0) > 0}
π(1,X0)

+
I{τ(X0) < 0}
π(0,X0)

)
.

This further implies

sup
j≥`n
|Eσ̃2

0(d̂I(j) ;π, h)− ν1 − σ2
0Eκj | = o(1). (90)

Consider the expectation Eκj . Let

κj(x) =
d̂I(j)(x)

π(1,x)
+

1− d̂I(j)(x)

π(0,x)
,
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we have

Eκj =

∫
x∈X

Eκj(x)dFX(x).

Under the conditions in (A7), we have

Eκj(x) =
Pr{τ̂I(j)(x) > 0}

π(1,x)
+

1− Pr{τ̂I(j)(x) > 0}
π(0,x)

→ p0(x)

π(1,x)
+

1− p0(x)

π(0,x)
.

By (A3), |κj(x)| is uniformly bounded for any j and x. It follows from dominated conver-
gence theorem that

Eκj → E

(
p0(X0)

π(1,X0)
+

1− p0(X0)

π(0,X0)

)
I(X0 ∈ X), as j →∞,

and hence

sup
j≥`n

∣∣∣∣Eκj − E

(
p0(X0)

π(1,X0)
+

1− p0(X0)

π(0,X0)

)
I(X0 ∈ X)

∣∣∣∣ = o(1).

Let

ν2 = ν1 + σ2
0E

(
p0(X0)

π(1,X0)
+

1− p0(X0)

π(0,X0)

)
I(X0 ∈ X).

This together with (90) yields that

sup
j≥`n
|Eσ̃2

0(d̂I(j) ;π, h)− ν2| = o(1). (91)

By Condition (A3) and that maxa∈{0,1} E|Y ∗(a)|2 < +∞, ν2 is bounded away from 0 and
∞. It follows from (91) that

n− ln∑n−1
j=ln
{Eσ̃2

0(d̂I(j) ;π, h)}−1/2
=
√
ν2 + o(1). (92)

This establishes the asymptotic length of the CI obtained by the one-step online estimator.
Now, let’s consider

σ2
sn = σ̃2

0(dsn ;π, h) = Var

(
g(A0, dsn,0)

π(A0,X0)
e0

)
+ Var{h(dsn,0,X0)}. (93)

Similar to (84), we can show

Var{h(dsn ,X0)} = Var{h(dopt0 ,X0)}+ o(1). (94)

With some calculations, we have

Var

(
g(A0, dsn,0)

π(A0,X0)
e0

)
= σ2

0E
g2(A0, dsn,0)

π2(A0,X0)
= σ2

0E

(
A0d

2
sn(X0)

π2(1,X0)
+

(1−A0){1− dsn(X0)}2

π2(0,X0)

)
= σ2

0E

(
d2
sn(X0)

π(1,X0)
+
{1− dsn(X0)}2

π(0,X0)

)
.
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Using similar arguments in Equation 90, we can show

E
d2
sn(X0)I{τ(X0) > 0}

π(1,X0)
= E

I{τ(X0) > 0}
π(1,X0)

+ o(1),

E
{1− dsn(X0)}2I{τ(X0) < 0}

π(0,X0)
= E

I{τ(X0) < 0}
π(0,X0)

+ o(1),

E
d2
sn(X0)I{τ(X0) < 0}

π(1,X0)
= o(1) and E

{1− dsn(X0)}2I{τ(X0) > 0}
π(1,X0)

= o(1).

In addition, by Condition (A7), we have

E
d2
sn(X0)I{τ(X0) = 0}

π(1,X0)
= E

p2
0(X0)I{τ(X0) = 0}

π(1,X0)
+ o(1),

E
{1− dsn(X0)}2I{τ(X0) = 0}

π(0,X0)
= E
{1− p0(X0)}2I{τ(X0) = 0}

π(0,X0)
+ o(1).

Therefore,

Var

(
g(A0, psn,0)

π(A0,X0)
e0

)
= σ2

0E

(
I{τ(X0) > 0}
π(1,X0)

+
I{τ(X0) < 0}
π(0,X0)

)
+ σ2

0E
p2

0(X0)I{τ(X0) = 0}
π(1,X0)

+ σ2
0E
{1− p0(X0)}2I{τ(X0) = 0}

π(0,X0)
+ o(1).

Combining this together with (93) and (94) yields

σ̃2
0(dsn ;π, h)→ ν1 + σ2

0E

(
p2

0(X0)

π(0,X0)
+
{1− p0(X0)}2

π(1,X0)

)
I{τ(X0) = 0} ≡ ν3. (95)

Notice that

ν2 − ν3 = σ2
0E

(
p0(X0)− p2

0(X0)

π(0,X0)
+

1− p0(X0)− {1− p0(X0)}2

π(1,X0)

)
I{τ(X0) = 0} (96)

= σ2
0E
p0(X0){1− p0(X0)}
π(0,X0)π(1,X0)

I{τ(X0) = 0} ≥ σ2
0(d∗)2

c2
0

EI{τ(X0) = 0} =
σ2

0(d∗)2ν0

c2
0

,

where the last inequality is due to Condition (A3) and (A7). It follows that

√
ν2 −

√
ν3 =

ν2 − ν3√
ν2 +

√
ν3
≥ σ2

0(d∗)2ν0

2
√
ν2c2

0

. (97)

By the definition of ν2 and Condition (A3), we have

ν2 ≤ c̃+ σ2
0c
−1
0 E[I{τ(X0) 6= 0}+ I{τ(X0) = 0}] = c̃+ σ2

0c
−1
0 .

This together with (97) yields

√
ν2 −

√
ν3 ≥

σ2
0(d∗)2ν0

2
√
c̃+ c−1

0 σ2
0c

2
0

.
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In view of (13) and (26), we’ve shown

√
nEL(V̂ on, α)−

√
nEL(V̂B, α) ≥

zα/2σ
2
0(d∗)2ν0

c2
0

√
c̃+ c−1

0 σ2
0

+ o(1).

This completes the proof. �

C.4. Proof of Theorem 4

Similar to (91), we can show that

EVar[ψ0(d̂I∗)|{Oi}i∈I∗ ] = ν2 + o(1),

where the definition of ν2 is given in the proof of Theorem 5. This together with (20) yields
that

MSE(V̂ ss) = ν2 + o(1).

By (95) and (21), we obtain

MSE(V̂B) = ν3 + o(1),

where the definition of ν3 is given in the proof of Theorem 5. In view of (96), it is immediate
to see the assertion in Theorem 4 holds. �

C.5. Proof of Theorem 6

Recall that ν0 = Pr{τ(X0) = 0}. By (13), (17) and (28), it suffices to show

inf
dopt∈Dopt

Var{ψ0(dopt)} ≥ Var{ψ0(dsn)}+ c∗∗σ2
0ν0 + o(1). (98)

Similar to (82) and (85), we have

Var{ψ0(dopt)} = Var

(
g{A0, d

opt(X0)}
π(A0,X0)

e0

)
+ Var{h(dopt(X0),X0)}

= Var{h(dopt(X0),X0)}+ σ2
0E

(
dopt(X0)

π(1,X0)
+

1− dopt(X0)

π(0,X0)

)
. (99)

By Lemma 1, we have

E

(
dopt(X0)

π(1,X0)
+

1− dopt(X0)

π(0,X0)

)
= E

(
dopt(X0)

π(1,X0)
+

1− dopt(X0)

π(0,X0)

)
I{τ(X0) = 0}

+E

(
dopt(X0)I{τ(X0 > 0)}

π(1,X0)
+
{1− dopt(X0)}I{τ(X0) < 0}

π(0,X0)

)
.

This together with (99) gives

Var{ψ0(dopt)} = ν1 + σ2
0E

(
dopt(X0)

π(1,X0)
+

1− dopt(X0)

π(0,X0)

)
I{τ(X0) = 0}
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In view of (95) and Condition (A7), we have

σ2
sn ≤ ν1 + σ2

0E

(
(1− d∗)2

π(0,X0)
+

(1− d∗)2

π(1,X0)

)
I{τ(X0) = 0}.

To prove (98), it suffices to show

inf
dopt∈Dopt

E

(
dopt(X0)

π(1,X0)
+

1− dopt(X0)

π(0,X0)

)
I{τ(X0) = 0} ≥ (1− d∗)2E

∑
a=0,1

I{τ(X0) = 0}
π(a,X0)

+ c∗∗ν0.

Notice that dopt(X0) ∈ {0, 1}. For any x ∈ X, we have

dopt(x)

π(1,x)
+

1− dopt(x)

π(0,x)
− (1− d∗)2

(
1

π(0,x)
+

1

π(1,x)

)
≥ min

a=0,1

1

π(a,x)
− (1− d∗)2

(
1

π(0,x)
+

1

π(1,x)

)
≥ c∗∗.

Thus, for any dopt ∈ Dopt, we have

E

dopt(X0)

π(1,X0)
+

1− dopt(X0)

π(0,X0)
−
∑
a=0,1

(1− d∗)2

π(a,X0)

 I{τ(X0) = 0} ≥ c∗∗EI{τ(X0) = 0} = c∗∗ν0.

The proof is hence completed. �

C.6. Proof of Theorem 7

For notational convenience, we use a shorthand and write V̂
(k)
i (d;π, h) as V̂

(k)
i (d) for any

k = 2, . . . ,K, i = 0, 1, . . . , n and any dynamic treatment regime d. In addition, for any

d = {dk}Kk=1, π∗ = {π∗k}Kk=1, h∗ = {h∗k}Kk=1 and i = 0, 1, . . . , n, let dk,i = dk(Ā
(k−1)
i , X̄

(k)
i ),

π∗k,i = π∗k(Ā
(k)
i , X̄

(k)
i ), h∗k,i = h∗k(Ā

(k)
i , X̄

(k)
i ), ∀k = 2, . . . ,K and d1,i = d1(X

(1)
i ), π∗1,i =

π∗1(X
(1)
i ), h∗1,i = h∗1(X

(i)
i ). When π∗ = π and h∗ = h, we write V̂

(k)
i (d;π, h) as V̂

(k)
i (d) for

any dynamic treatment regime d.
To prove Theorem 7, we break the proof into four steps. In the first step, we show

V̂B = V̂ ∗B + op(n
−1/2) where

V̂ ∗B =
1

B

B∑
b=1

1

n− sn

∑
i∈Ic

V̂
(1)
i (d̂I).

In the second step, we show V̂ ∗B = V̂ ∗∞ + op(n
−1/2) where

V̂ ∗∞ =
1(
n
sn

) ∑
I⊆I0,|I|=sn

1

n− sn

∑
i∈Ic

V̂
(1)
i (d̂I).

In the third step, we show
√
n(V̂ ∗∞ − V0)/σsn

d→ N(0, 1). In the last step, we show σ̂2
B =

σ2
sn + op(1). The proof is hence completed.
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Step 1: By the definitions of V̂B and V̂ ∗B, we need to show

1

tnB

B∑
b=1

∑
i∈Ic(2)b

(
V̂

(1)
i (d̂Ib ; π̂I(1)b

, ĥI(1)b

)− V̂ (1)
i (d̂Ib)

)
= op(n

−1/2),

1

tnB

B∑
b=1

∑
i∈Ic(1)b

(
V̂

(1)
i (d̂Ib ; π̂I(1)b

, ĥI(1)b

)− V̂ (1)
i (d̂Ib)

)
= op(n

−1/2).

For any d = {dk}Kk=1, π∗ = {π∗k}Kk=1 and h∗ = {h∗k}Kk=1, define V (d;π∗, h∗) = EV̂
(1)

0 (d;π∗, h∗).
Using similar arguments in Equations 57—59, it suffices to show η11, η12 = o(n−1/2) where

η11 = E

∣∣∣∣∣∣∣
1

tn

∑
i∈Ic(2)∗

{V̂ (1)
i (d̂I∗ ;π, h)− V̂ (1)

i (d̂I∗ ; π̂I(1)∗
, ĥI(1)∗

)− V (d̂I∗ ;π, h) + V (d̂I∗ ; π̂I(1)∗
, ĥI(1)∗

)}

∣∣∣∣∣∣∣ ,
η12 = E

∣∣∣V (d̂I∗ ;π, h)− V (d̂I∗ ; π̂I(1)∗
, ĥI(1)∗

)
∣∣∣ ,

where I∗ denotes a random subset uniformly sampled from the set {I ⊆ I0 : |I| = sn}, Ic(1)
∗

and Ic(2)
∗ correspond to a random partition of Ic∗ with |Ic(1)

∗ | = |Ic(2)
∗ | = tn = (n − sn)/2,

and I(j)
∗ = Ic(j)∗ ∪ I∗ for j = 1, 2.

Define the functions π̂
(l)

I(1)∗
= {π̂(l)

I(1)∗ ,k
}Kk=1, ĥ

(l)

I(1)∗
= {ĥ(l)

I(1)∗ ,k
}Kk=1 as follows:

π̂
(l)

I(1)∗ ,k
= πkI(l < k) + π̂I(1)∗ ,k

I(l ≥ k) and ĥ
(l)

I(1)∗ ,k
= hkI(l < k) + ĥI(1)∗ ,k

I(l ≥ k),

for any k = 1, . . . ,K, l = 0, . . . ,K. Notice that for l = 0, 1, 2, . . . ,K−1, V̂
(1)
i (d̂I∗ ; π̂

(l+1)

I(1)∗
, ĥ

(l+1)

I(1)∗
)−

V̂
(1)
i (d̂I∗ ; π̂

(l)

I(1)∗
, ĥ

(l)

I(1)∗
) equals

l∏
j=1

g(A
(j)
i , d̂I∗,j,i)

πj,i

(
g(A

(l+1)
i , d̂I∗,l+1,i)

π̂I∗,l+1,i
{V̂ (l+2)

i (d̂I∗)− ĥI(1)∗ ,l+1,i
}

+ ĥI(1)∗ ,l+1
{(Ā(l)

i , d̂I∗,l+1,i), X̄
(l+1)
i } −

g(A
(l+1)
i , d̂I∗,l+1,i)

πl+1,i
{V̂ (l+2)

i (d̂I∗)− hl+1,i}

− hl+1{(Ā
(l)
i , d̂I∗,l+1,i), X̄

(l+1)
i }

)
,

where V̂
(K+1)
i (d̂I∗ ;π, h) = Yi and Ā

(0)
i = ∅, for i = 0, 1, . . . , n.

Using similar arguments in bounding η9 in the proof of Theorem 3, we can show

max
l=0,...,K−1

E

∣∣∣∣∣∣∣
1

tn

∑
i∈Ic(2)∗

{V̂i(d̂I∗ ; π̂
(l+1)

I(1)∗
, ĥ

(l+1)

I(1)∗
)− V̂i(d̂I∗ ; π̂

(l)

I(1)∗
, ĥ

(l)

I(1)∗
)

−V (d̂I∗ ; π̂
(l+1)

I(1)∗
, ĥ

(l+1)

I(1)∗
) + V (d̂I∗ ; π̂

(l)

I(1)∗
, ĥ

(l)

I(1)∗
)}
∣∣∣∣ = o(n−1/2),
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for any l. An application of triangle inequality yields η11 = o(n−1/2).

Next we show η12 = o(n−1/2). Notice that

E{V̂ (K)
0 (d̂I)|d̂I , Ā(K)

0 , X̄
(K)
0 } = hK{(Ā(K−1)

0 , d̂I,K,0), X̄
(K)
0 },

for any I ⊆ I0 with |I| = sn. Therefore, we have for any dopt ∈ Dopt,

E
∣∣∣E( V̂ (K)

0 (d̂I)− V̂ (K)
0 (dopt)

∣∣∣ d̂I , Ā(K)
0 , X̄

(K)
0

)∣∣∣
= E

∣∣∣τK(Ā
(K−1)
0 , X̄

(K)
0 )

∣∣∣ ∣∣∣d̂I,K,0 − I{τK(Ā
(K−1)
0 , X̄

(K)
0 ) > 0}

∣∣∣ .
Under Condition (C4) and (C5), using similar arguments in bounding η

(1)
8 in the proof of

Theorem 2, we have

E
∣∣∣E( V̂ (K)

0 (d̂I)− V̂ (K)
0 (dopt)

∣∣∣ d̂I , Ā(K)
0 , X̄

(K)
0

)∣∣∣ = o(n−1/2). (100)

Assume for now, we’ve shown

E
∣∣∣E( V̂ (k+1)

0 (d̂I)− V̂ (k+1)
0 (dopt)

∣∣∣ d̂I , Ā(k+1)
0 , X̄

(k+1)
0

)∣∣∣ = o(n−1/2). (101)

We aim to show the above expression holds with the superscript (k + 1) replaced by (k) as

well. By the definition of V̂
(k)

0 (d), we have

V̂
(k)

0 (d) =
g(A

(k)
0 , dk,0)

πk,0
{V̂ (k+1)

0 (d)− hk,0}+ hk{(Ā
(k−1)
0 , dk,0), X̄

(k)
0 }.

Therefore,

E
∣∣∣E( V̂ (k)

0 (d̂I)− V̂ (k)
0 (dopt)

∣∣∣ d̂I , Ā(k)
0 , X̄

(k)
0

)∣∣∣
≤ E

∣∣∣∣∣E
{

g(A
(k)
0 , d̂I,k,0)

πk,0

(
V̂

(k+1)
0 (d̂I)− V̂ (k+1)

0 (dopt)
)∣∣∣∣∣ d̂I , Ā(k)

0 , X̄
(k)
0

}∣∣∣∣∣︸ ︷︷ ︸
η13

+ E
∣∣∣hk{(Ā(k−1)

0 , d̂I,k,0), X̄
(k)
0 , } − hk{(Ā

(k−1)
0 , doptk,0), X̄

(k)
0 }

∣∣∣︸ ︷︷ ︸
η14

.

By Condition (C3) and (101), we have

η13 ≤ E

∣∣∣∣∣E
{

g(A
(k)
0 , d̂I,k,0)

πk,0

(
V̂

(k+1)
0 (d̂I)− V̂ (k+1)

0 (dopt)
)∣∣∣∣∣ d̂I , Ā(k+1)

0 , X̄
(k+1)
0

}∣∣∣∣∣
= E

g(A
(k)
0 , d̂I,k,0)

πk,0

∣∣∣E{(V̂ (k+1)
0 (d̂I)− V̂ (k+1)

0 (dopt)
)∣∣∣ d̂I , Ā(k+1)

0 , X̄
(k+1)
0

}∣∣∣
≤ 1

c0
E
∣∣∣E{(V̂ (k+1)

0 (d̂I)− V̂ (k+1)
0 (dopt)

)∣∣∣ d̂I , Ā(k+1)
0 , X̄

(k+1)
0

}∣∣∣ = o(n−1/2).
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Under Condition (C4) and (C5), using similar arguments in bounding η
(1)
8 in the proof of

Theorem 2, we can show

η14 = o(n−1/2). (102)

Thus, we’ve shown

E
∣∣∣E( V̂ (k)

0 (d̂I)− V̂ (k)
0 (dopt)

∣∣∣ d̂I , Ā(k)
0 , X̄

(k)
0

)∣∣∣ = o(n−1/2).

Since K is a fixed constant, we have

max
k=2,...,K

E
∣∣∣E( V̂ (k)

0 (d̂I)− V̂ (k)
0 (dopt)

∣∣∣ d̂I , Ā(k)
0 , X̄

(k)
0

)∣∣∣ = o(n−1/2). (103)

Let E
I(1)∗ ,I∗,{Oi}

i∈I(1)∗ denote the conditional expectation given I(1)
∗ , I∗, {Oi}i∈I(1)∗ , we have

V (d̂I∗ ; π̂
(l+1)

I(1)∗
, ĥ

(l+1)

I(1)∗
)− V (d̂I∗ ; π̂

(l)

I(1)∗
, ĥ

(l)

I(1)∗
)

= E
I(1)∗ ,I∗,{Oi}

i∈I(1)∗

l∏
j=1

g(A
(j)
0 , d̂I∗,j,0)

πj,0

(
V̂

(l+1)
0 (d̂I∗ ; π̂

(l+1)

I(1)∗
, ĥ

(l+1)

I(1)∗
)− V̂ (l+1)

0 (d̂I∗ ; π̂
(l)

I(1)∗
, ĥ

(l)

I(1)∗
)

)

= E
I(1)∗ ,I∗,{Oi}

i∈I(1)∗

l∏
j=1

g(A
(j)
0 , d̂I∗,j,0)

πj,0

(
g(A

(l+1)
0 , d̂I∗,l+1,0)

π̂I(1)∗ ,l+1,0

{V̂ (l+2)
0 (d̂I∗)− ĥI(1)∗ ,l+1,0

}

+ ĥI(1)∗ ,l+1
{(Ā(l)

0 , d̂I∗,l+1,0), X̄
(l+1)
0 } −

g(A
(l+1)
0 , d̂I∗,l+1,0)

πl+1,0
{V̂ (l+2)

0 (d̂I∗)− hl+1,0}

− hl+1{(Ā
(l)
0 , d̂I∗,l+1,0), X̄

(l+1)
0 }

)
.

By Condition (C3), (37) and (103), we have

(104)

E

∣∣∣∣∣∣EI
(1)
∗ ,I∗,{Oi}

i∈I(1)∗

l∏
j=1

g(A
(j)
0 , d̂I∗,j,0)

πj,0

g(A
(l+1)
0 , d̂I∗,l+1,0)

π̂I(1)∗ ,l+1,0

{V̂ (l+2)
0 (d̂I∗)− V̂

(l+2)
0 (dopt)}

∣∣∣∣∣∣
≤ E

∣∣∣∣∣∣EI
(1)
∗ ,I∗,{Oi}

i∈I(1)∗
,Ā

(l+2)
0 ,X̄

(l+2)
0

l∏
j=1

g(A
(j)
0 , d̂I∗,j,0)

πj,0

g(A
(l+1)
0 , d̂I∗,l+1,0)

π̂I(1)∗ ,l+1,0

× {V̂ (l+2)
0 (d̂I∗)− V̂

(l+2)
0 (dopt)}

∣∣∣ ≤ 1

c∗cl0
E
∣∣∣EI∗,d̂I∗ ,Ā(l+2)

0 ,X̄
(l+2)
0 {V̂ (l+2)

0 (d̂I∗)− V̂
(l+2)

0 (dopt)}
∣∣∣

= o(n−1/2),

where EI∗,d̂I∗ ,Ā
(l+2)
0 ,X̄

(l+2)
0 denotes the expectation conditional on I∗, d̂I∗ , Ā

(l+2)
0 , X̄

(l+2)
0 .

Similarly, we can show

E

∣∣∣∣∣∣EI
(1)
∗ ,I∗,{Oi}

i∈I(1)∗

l+1∏
j=1

g(A
(j)
0 , d̂I∗,j,0)

πj,0
{V̂ (l+2)

0 (d̂I∗)− V̂
(l+2)

0 (dopt)}

∣∣∣∣∣∣ = o(n−1/2). (105)

54



Breaking the Curse of Nonregularity with Subagging

Besides, using similar arguments in bounding η10 in the proof of Theorem 3, we have

E

∣∣∣∣∣∣EI
(1)
∗ ,I∗,{Oi}

i∈I(1)∗

l∏
j=1

g(A
(j)
0 , d̂I∗,j,0)

πj,0

(
g(A

(l+1)
0 , d̂I∗,l+1,0)

π̂I(1)∗ ,l+1,0

{V̂ (l+2)
0 (dopt)− ĥI(1)∗ ,l+1,0

}

+ ĥI(1)∗ ,l+1
{(Ā(l)

0 , d̂I∗,l+1,0), X̄
(l+1)
0 } −

g(A
(l+1)
0 , d̂I∗,l+1,0)

πl+1,0
{V̂ (l+2)

0 (dopt)− hl+1,0}

− hl+1{(Ā
(l)
0 , d̂I∗,l+1,0), X̄

(l+1)
0 }

)∣∣∣ = o(n−1/2).

Combining this together with (104) and (105) yields

E

∣∣∣∣V (d̂I∗ ; π̂
(l+1)

I(1)∗
, ĥ

(l+1)

I(1)∗
)− V (d̂I∗ ; π̂

(l)

I(1)∗
, ĥ

(l)

I(1)∗
)

∣∣∣∣ = o(n−1/2),

for all l = 0, . . . ,K − 1. Since K is a fixed integer, we have

max
l=0,...,K−1

E

∣∣∣∣V (d̂I∗ ; π̂
(l+1)

I(1)∗
, ĥ

(l+1)

I(1)∗
)− V (d̂I∗ ; π̂

(l)

I(1)∗
, ĥ

(l)

I(1)∗
)

∣∣∣∣ = o(n−1/2).

By triangle inequality, we obtain

η8 ≤
∑

l=0,...,K−1

E

∣∣∣∣V (d̂I∗ ; π̂
(l+1)

I(1)∗
, ĥ

(l+1)

I(1)∗
)− V (d̂I∗ ; π̂

(l)

I(1)∗
, ĥ

(l)

I(1)∗
)

∣∣∣∣
≤ K max

l=0,...,K−1
E

∣∣∣∣V (d̂I∗ ; π̂
(l+1)

I(1)∗
, ĥ

(l+1)

I(1)∗
)− V (d̂I∗ ; π̂

(l)

I(1)∗
, ĥ

(l)

I(1)∗
)

∣∣∣∣ = o(n−1/2).

This implies V̂B = V̂ ∗B + op(n
−1/2).

Step 2: The assertion V̂ ∗B = V̂ ∗∞ + op(n
−1/2) can be proven using similar arguments in

the second step of the proof of Theorem 3. We omit the details for brevity.

Step 3: For any i ∈ I0, I ⊆ I(−i) with |I| = sn, define

Qi = E
(
V̂

(1)
i (d̂I)|Oi

)
.

Notice that Q1, . . . , Qn are i.i.d random variables with Var(Qi) = σ2
sn . We first show

V̂ ∗∞ =
1

n

n∑
i=1

Qi + op(n
−1/2). (106)

Recall that

V̂
(K)
i (d̂I) =

g(A
(K)
i , d̂I,K,i)

πK,i
(Yi − hK,i) + hK{(Ā(K−1)

i , d̂I,K,i), X̄
(K)
i }, (107)

for any i ∈ I0, I ⊆ I(−i) with |I| = sn. Let

T
(K)
i (I) = (Yi − hK,i)

K∏
k=1

g(A
(k)
i , d̂I,k,i)

πk,i
and T

(K)
i = E{T (K)

i (I)|Oi}.
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Using similar arguments in bounding |η7| in the proof of Theorem 2, we can show that

1

n
(
n−1
sn

) ∑
i∈I0

∑
I⊆I(−i)
|I|=sn

(
T

(K)
i (I)− T (K)

i

)
= op(n

−1/2). (108)

Besides, by Condition (C3) and (100), we have

E

∣∣∣∣∣∣∣∣∣
1

n
(
n−1
sn

) ∑
i∈I0

∑
I⊆I(−i)
|I|=sn

K−1∏
k=1

g(A
(k)
i , d̂I,k,i)

πk,i
[hK{(Ā(K−1)

i , d̂I,K,i), X̄
(K)
i } − hK{(Ā(K−1)

i , doptK,i), X̄
(K)
i }]

∣∣∣∣∣∣∣∣∣
≤ 1

cK−1
0

max
I⊆I0
|I|=sn

E
∣∣∣hK{(Ā(K−1)

i , d̂I,K,i), X̄
(K)
i } − hK{(Ā(K−1)

i , doptK,i), X̄
(K)
i }

∣∣∣ = o(n−1/2),

for any dopt ∈ Dopt. By Markov’s inequality, we obtain

1

n
(
n−1
sn

) ∑
i∈I0

∑
I⊆I(−i)
|I|=sn

K−1∏
k=1

g(A
(k)
i , d̂I,k,i)

πk,i
hK{(Ā(K−1)

i , d̂I,K,i), X̄
(K)
i }

=
1

n
(
n−1
sn

) ∑
i∈I0

∑
I⊆I(−i)
|I|=sn

K−1∏
k=1

g(A
(k)
i , d̂I,k,i)

πk,i
hK{(Ā(K−1)

i , doptK,i), X̄
(K)
i }+ op(n

−1/2).

Combining this together with (107) and (108) yields

1

n
(
n−1
sn

) ∑
i∈I0

∑
I⊆I(−i)
|I|=sn

K−1∏
k=1

g(A
(k)
i , d̂I,k,i)

πk,i
V̂

(K)
i (d̂I) (109)

=
1

n
(
n−1
sn

) ∑
i∈I0

∑
I⊆I(−i)
|I|=sn

(
T

(K)
i (I) +

K−1∏
k=1

g(A
(k)
i , d̂I,k,i)

πk,i
hK{(Ā(K−1)

i , doptK,i), X̄
(K)
i }

)

+ op(n
−1/2) =

1

n

n∑
i=1

T
(K)
i + op(n

−1/2)

+
1

n
(
n−1
sn

) ∑
i∈I0

∑
I⊆I(−i)
|I|=sn

K−1∏
k=1

g(A
(k)
i , d̂I,k,i)

πk,i
hK{(Ā(K−1)

i , doptK,i), X̄
(K)
i }.
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Let ε
(j)
i = hj{(Ā(j−1)

i , doptj,i ), X̄
(j)
i } − hj−1,i. Similarly, we can show for all j = 2, . . . ,K − 1,

1

n
(
n−1
sn

) ∑
i∈I0

∑
I⊆I(−i)
|I|=sn

j−2∏
k=1

g(A
(k)
i , d̂I,k,i)

πk,i

(
g(A

(j−1)
i , d̂I,j−1,i)

πj−1,i
ε

(j)
i + hj−1{(Ā(j−2)

i , d̂I,j−1,i), X̄
(j−1)
i }

)

=
1

n

n∑
i=1

T
(j)
i +

1

n
(
n−1
sn

) ∑
i∈I0

∑
I⊆I(−i)
|I|=sn

j−2∏
k=1

g(A
(k)
i , d̂I,k,i)

πk,i
hj−1{(Ā(j−2)

i , doptj−1,i), X̄
(j−1)
i }+ op(n

−1/2),

where

T
(j)
i = E

(
j−1∏
k=1

g(A
(k)
i , d̂I,k,i)

πk,i
ε

(j)
i

∣∣∣∣∣Oi
)
,

for any I ⊆ I(−i) with |I| = sn. This together with (109) yields

V̂ ∗∞ =
1

n
(
n−1
sn

) ∑
i∈I0

∑
I⊆I(−i)
|I|=sn

{
K−1∏
k=1

g(A
(k)
i , d̂I,ki)

πk,i
V̂

(K)
i (d̂I) (110)

−
K−1∑
j=1

j−1∏
k=1

g(A
(k)
i , d̂I,ki)

πk,i

(
g(A

(j)
i , d̂I,j,i)

πj,i
hj,i − hj−1{(Ā(j−2)

i , d̂I,j−1,i), X̄
(j−1)
i }

)
=

1

n

K∑
k=2

T
(k)
i +

1

n

n∑
i=1

h1(dopt1,i ,X
(1)
i ) + op(n

−1/2).

Define

T̄
(j)
i = E

(
j−1∏
k=1

g(A
(k)
i , d̂I,k,i)

πk,i
{hj{(Ā(j−1)

i , d̂I,j,i), X̄
(j)
i } − hj−1,i}

∣∣∣∣∣Oi
)
.

By Condition (C3) and (102), we have

E
∣∣∣T (j)
i − T̄

(j)
i

∣∣∣ ≤ 1

cj−1
0

E
∣∣∣hj{(Ā(j−1)

i , d̂I,j,i), X̄
(j)
i } − hj{(Ā

(j−1)
i , doptj,i ), X̄

(j)
i }
∣∣∣ = o(n−

1
2 ).(111)

In addition, let

T̄
(1)
i = E

(
h1(d̂I,1,i,X

(1)
i )
∣∣∣Oi) ,

for any I ⊆ I(−i) with |I| = sn. Similar to the proof of Theorem (2), we can show

max
i∈I0

E
∣∣∣h1(dopt1,i , X̄i)− T̄ (1)

i

∣∣∣ = o(n−1/2). (112)
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Combining this together with (111) and (110), we have

V̂ ∗∞ =
1

n

n∑
i=1

K∑
j=1

T̄
(j)
i + op(n

−1/2).

Notice that Qi =
∑K

j=1 T̄
(j)
i ,∀i ∈ I0. Thus, we’ve shown (106).

Moreover, it follows from (111) and (112) that

max
i∈I0

E

∣∣∣∣∣∣Qi −
K∑
j=2

T
(j)
i − h1(dopt1,i ,X

(1)
i )

∣∣∣∣∣∣ = o(n−1/2).

Therefore, we have

EQi = E

 K∑
j=2

T
(j)
i + h1(dopt1,i ,X

(1)
i )

+ o(n−1/2) = Eh1(dopt1,i ,X
(1)
i ) + o(n−1/2). (113)

Notice that Eh1(dopt1,i ,X
(1)
i ) = V0. Under the condition that lim infn σn > 0, it follows from

(106) and (113) that

√
n

σsn
(V̂ ∗∞ − V0)

d→ N(0, 1).

Step 4: For i = 0, 1, . . . , n, define

ψ(i) =
1

n(i)

2∑
j=1

B∑
b=1

V̂
(1)
i (d̂Ib ; π̂I(j)b

, ĥI(j)b
)I(i /∈ I(j)

b ).

Using similar arguments in Step 3 of the proof of Theorem 3, we can show

1

n− 1

n∑
i=1

{ψ(i)}2 =
1

n− 1

n∑
i=1

{ψ∗(i)∞ }2 + op(1),

and (
1

n

n∑
i=1

ψ(i)

)2

=

(
1

n

n∑
i=1

ψ∗(i)∞

)2

+ op(1),

where

ψ∗(i)∞ =
1(
n−1
sn

) ∑
I⊆I(−i)
|I|=sn

V̂
(1)
i (d̂I).

This implies that

σ̂2
B =

1

n− 1

n∑
i=1

{ψ∗(i)∞ }2 −
n

n− 1

(
1

n

n∑
i=1

ψ∗(i)∞

)2

+ op(1). (114)
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Since sn = o(n), by the ANOVA decomposition (Efron and Stein, 1981), we have

max
i∈I0

E
∣∣∣ψ∗(i)∞ −Qi

∣∣∣2 = o(1).

In addition, under the condition that maxāK∈{0,1}K E{Y ∗0 (āK)}2 < +∞, we can show

max
i∈I0

E
∣∣∣ψ∗(i)∞ +Qi

∣∣∣2 = O(1).

By Cauchy-Schwarz inequality, we obtain

E

∣∣∣∣∣ 1

n− 1

n∑
i=1

{ψ∗(i)∞ }2 −
1

n− 1

n∑
i=1

Q2
i

∣∣∣∣∣ ≤ max
i∈I0

E
∣∣∣{ψ∗(i)∞ }2 −Q2

i

∣∣∣
≤

√
max
i∈I0

E
∣∣∣ψ∗(i)∞ −Qi

∣∣∣2 max
i∈I0

E
∣∣∣ψ∗(i)∞ +Qi

∣∣∣2 = o(1).

It follows from Markov’s inequality that

1

n− 1

n∑
i=1

{ψ∗(i)∞ }2 −
1

n− 1

n∑
i=1

Q2
i = op(1).

Similarly, we can show (
1

n

n∑
i=1

ψ∗(i)∞

)2

=

(
1

n

n∑
i=1

Qi

)2

+ op(1).

In view of (114), we’ve shown

σ̂2
B =

1

n− 1

n∑
i=1

Q2
i −

n

n− 1

(
1

n

n∑
i=1

Qi

)2

+ op(1).

In addition, it follows from the law of large numbers that

1

n− 1

n∑
i=1

Q2
i −

n

n− 1

(
1

n

n∑
i=1

Qi

)2

= σ2
sn + op(1).

Thus, we have σ̂2
B = σ2

sn + op(1). The proof is hence completed. �

C.7. Proof of Lemma 8

Let p0 = Pr(A0 = 1). By Condition (A3), we have

0 < c0 ≤ p0 ≤ 1− c0 < 1. (115)

Consider the event

A∗ = {c0n/2 < nA < (1− c0/2)n},
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where nA =
∑n

i=1Ai. It follows from Hoeffding’s inequality (Hoeffding, 1963) that

Pr(Ac∗) ≤ Pr (|nA − np0| ≤ c0n/3) ≤ 2 exp

(
−18n

c2
0

)
→ 0. (116)

Note that the random variable nS is completely determined by nA. For sn < nA < n−sn,
we have (

n
sn

)
− nS(
n
sn

) =

∑N0−1
k=0

(
nA
sn−k

)(
n−nA
k

)
+
∑N0−1

k=0

(
nA
k

)(
n−nA
sn−k

)(
n
sn

) . (117)

Let m(s) = m(m − 1) · · · (m − s + 1) for any integers m ≥ s > 0, we have for any 0 ≤ k ≤
N0 − 1 ≤ sn,(

nA
sn−k

)(
n−nA
k

)(
n
sn

) =

(
sn
k

)
n

(sn−k)
A (n− nA)(k)

n(sn)
≤
n

(sn−k)
A (n− nA)(k)

n(sn)
≤
nsn−kA (n− nA)k

(n− sn + 1)sn
.

Since sn = o(n), for sufficiently large n, we have n− sn + 1 ≥ (1− c0/3)n. Thus, under the
event defined in A∗, we have(

nA
sn−k

)(
n−nA
k

)(
n
sn

) ≤
(

1− c0/2

1− c0/3

)sn
, ∀0 ≤ k ≤ N0 − 1 ≤ sn.

Similarly, we can show(
nA
k

)(
n−nA
sn−k

)(
n
sn

) ≤
(

1− c0/2

1− c0/3

)sn
, ∀0 ≤ k ≤ N0 − 1 ≤ sn,

under the event defined in A∗.
By (117), we obtain (

n
sn

)
− nS(
n
sn

) ≤ 2N0p
sn
∗ ,

under the event defined in A∗, where p∗ = (1 − c0/2)/(1 − c0/3). Notice that N0 is a
fixed constant. Under the given conditions, we have sn � n1/(2κ∗). Set c3 = 18c−2

0 and
β0 = 1/(2κ∗), it follows from (116) that

Pr

((
n
sn

)
− nS(
n
sn

) ≤ c1p
c2nβ0
∗

)
≥ Pr(A∗) ≥ 1− 2 exp(−c3n)→ 1,

for some constants c1, c2 > 0. This completes the proof of (48).

For any i ∈ {1, . . . , n}, define S(i)
N0,sn

= {I ∈ SN0,sn : i /∈ I} and n
(i)
S = |S(i)

N0,sn
|. Similar

to (48), there exist some constants c∗1, c
∗
2, c
∗
3 > 0 and 0 < p∗∗ < 1 such that

Pr

((
n−1
sn

)
− n(i)

S(
n−1
sn

) ≤ c∗1p
c∗2n

β0

∗∗

)
≥ 1− 2 exp(−c∗3n). (118)
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Let A(i) be the event defined in Equation 118. Set c4 = min(c∗3, c3), it follows from Bonfer-
roni’s inequality that

Pr(A(i) ∩ A∗) ≥ 1− Pr(A(i))− Pr(A∗) ≥ 1− 4 exp(−c4n).

Under the events defined in A(i) and A∗, we have∣∣∣∣∣n
(i)
S
nS
−
(
n−1
sn

)(
n
sn

) ∣∣∣∣∣ =

(
n−1
sn

)(
n
sn

) ∣∣∣∣∣n
(i)
S /
(
n−1
sn

)
− nS/

(
n
sn

)
nS/

(
n
sn

) ∣∣∣∣∣ =
n− sn
n

∣∣∣∣∣n
(i)
S /
(
n−1
sn

)
− nS/

(
n
sn

)
nS/

(
n
sn

) ∣∣∣∣∣
≤ 2(n− sn)

n

∣∣∣∣∣ n
(i)
S(

n−1
sn

) − nS(
n
sn

)∣∣∣∣∣ ≤ 2(n− sn)

n

(∣∣∣∣∣ n
(i)
S(

n−1
sn

) − 1

∣∣∣∣∣+

∣∣∣∣∣ nS( n
sn

) − 1

∣∣∣∣∣
)

≤ 2(c1p
c2nβ0
∗ + c∗1p

c∗2n
β0

∗∗ )�
√

log n√
n

,

where the first inequality is due to (56), the third inequality follows by the definitions of
A(i) and A∗.

Conditional on {Oi}i∈I0 , the random variables I(i /∈ I1), . . . , I(i /∈ IB) are independent

Bernoulli random variables with mean Pr(i /∈ Ib|{Oi}i∈I0) = n
(i)
S /nS . Hence, it follows

from Hoeffding’s inequality that

Pr

(∣∣∣∣∣n(i)

B
−
n

(i)
S
nS

∣∣∣∣∣ ≤
√

logB√
2B

∣∣∣∣∣ {Oi}i∈I0
)
≥ 1− 2 exp (−2 logB/2) = 1− 2

B
.

Therefore, we have

Pr

(∣∣∣∣∣n(i)

B
−
n

(i)
S
nS

∣∣∣∣∣ ≤
√

logB√
2B

)
≥ 1− 2

B
. (119)

Since B � n, we have
√

logB/
√

2B ≤
√

log n/
√

2n. Under the events defined (119), A(i)

and A∗, we have∣∣∣∣∣n(i)

B
− n− sn

n

∣∣∣∣∣ =

∣∣∣∣∣n(i)

B
−
(
n−1
sn

)(
n
sn

) ∣∣∣∣∣ ≤
∣∣∣∣∣n(i)

B
−
n

(i)
S
nS

∣∣∣∣∣+

∣∣∣∣∣n
(i)
S
nS
−
(
n−1
sn

)(
n
sn

) ∣∣∣∣∣ ≤
√

log n√
n

.

The proof is hence completed by noting that

Pr

(∣∣∣∣∣n(i)

B
− n− sn

n

∣∣∣∣∣ >
√

log n√
n

)
≤ Pr

(∣∣∣∣∣n(i)

B
−
n

(i)
S
nS

∣∣∣∣∣ ≤
√

logB√
2B

)
+ Pr

(
Ac∗ ∪ (A(i))c

)
≤ 2

B
+ 4 exp(−c4n). �

Appendix D. Additional Details Regarding (25)

In this section, we show the approximation in Equation 25 holds if kernel smoothers is used
to estimate the contrast function. For simplicity, we assume all covariates are continuous
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on
∏p
j=1[aj , bj ] for some 0 < aj < bj < +∞, with a strictly positive density function fX(·).

More generally, we can show (25) holds when at least one of the covariates is continuous.
Although d̂I(j) might not converge to a deterministic function, we will show that σ̃2

0(d̂I(j) ;π, h)
converges as j → ∞. Under the given conditions, we can show there exists some constant
C̄ ≥ 1 such that the following holds with probability 1,

C̄−1 ≤ σ̃2
0(d̂I(j) ;π, h) ≤ C̄, ∀j ≥ 1. (120)

For any two positive sequences {yi}i, {zi}i, it follows from a first-order Taylor expansion
that

m∑m
i=1 y

−1/2
i

=
m∑m

i=1 z
−1/2
i

+
m
∑m

i=1(z∗i )−3/2(yi − zi)
{
∑m

i=1(z∗i )−1/2}2
.

Set yi = σ̃2
0(d̂I(i+`n−1)

;π, h) and zi = Eσ̃2
0(d̂I(i+`n−1)

;π, h), it follows from (120) that∣∣∣∣∣ n− `n∑n−1
j=`n

σ̃−1
0 (d̂I(j) ;π, h)

− n− `n∑n−1
j=`n
{Eσ̃2

0(d̂I(j) ;π, h)}−1/2

∣∣∣∣∣ ≤ C̄2/5

n− `n

n−1∑
j=`n

|σ̃2
0(d̂I(j) ;π, h)− Eσ̃2

0(d̂I(j) ;π, h)|.

Thus, the approximation in Equation 25 holds as long as

E|σ̃2
0(d̂I(j) ;π, h)− Eσ̃2

0(d̂I(j) ;π, h)| → 0.

By (89), it suffices to show E|κj −Eκj | → 0, or Var(κj)→ 0, as j →∞, where κj is defined
in the proof of Theorem 5.

With some calculations, we have

Var(κj) =

∫
x1,x2∈X

{π(0,x1)− π(1,x1)}{π(0,x2)− π(1,x2)}
π(0,x1)π(1,x1)π(0,x2)π(1,x2)

cov(d̂I(j)(x1), d̂I(j)(x2))dFX(x1)dFX(x2).

It follows from Condition (C3) that

Var(κj) ≤
1

c4
0

∫
x1,x2∈X

cov(d̂I(j)(x1), d̂I(j)(x2))dFX(x1)dFX(x2).

Under the conditions in (A7), the estimator {τ̂I(j)(x) − τ(x0)}/σ∗j (x) is asymptotically
normal for each x. Suppose for now, there exists a non-increasing sequence {hj}j that
satisfies hj > 0, hj → 0 as j →∞ such that

∀‖x1 − x2‖∞ > hj ,x1,x2 ∈ X, (121)(
τ̂I(j)(x1)− Eτ̂I(j)(x1)

σ∗j (x1)
,
τ̂I(j)(x2)− Eτ̂I(j)(x2)

σ∗j (x2)

)
d→ N(0, I2),

where I2 denotes a 2× 2 identity matrix.
Condition (121) essentially requires τ̂I(j)(x1) and τ̂I(j)(x2) to be asymptotically inde-

pendent for any ‖x1 − x2‖∞ > hj . As we will see below, hj can be set as the bandwidth
parameter when kernel smoothers are used to estimate the contrast.
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Notice that

c4
0Var(κj) ≤

∫
x1,x2∈X

‖x1−x2‖∞≤hj

cov(d̂I(j)(x1), d̂I(j)(x2))dFX(x1)dFX(x2)

︸ ︷︷ ︸
ζ5

+

∫
x1,x2∈X

‖x1−x2‖∞>hj

cov(d̂I(j)(x1), d̂I(j)(x2))dFX(x1)dFX(x2)

︸ ︷︷ ︸
ζ6

.

Suppose fX(·) is uniformly bounded. Since |cov(d̂I(j)(x1), d̂I(j)(x2))| ≤ 1, we have

ζ5 ≤
∫

x1∈X
‖x1−x2‖∞≤hj

dFX(x1)fX(x2)dx2 = O(hpj ) = o(1). (122)

In addition, it follows from (121) that

∣∣∣cov(d̂I(j)(x1), d̂I(j)(x2))
∣∣∣ =

∣∣∣∣∣Pr

(
τ̂I(j)(x1)− Eτ̂I(j)(x1)

σ∗j (x1)
> 0,

τ̂I(j)(x2)− Eτ̂I(j)(x2)

σ∗j (x2)
> 0

)

− Pr

(
τ̂I(j)(x1)− Eτ̂I(j)(x1)

σ∗j (x1)
> 0

)
Pr

(
τ̂I(j)(x2)− Eτ̂I(j)(x2)

σ∗j (x2)
> 0

)∣∣∣∣∣ = o(1).

By the dominated convergence theorem, we obtains ζ6 = o(1). This together with (122)
yields that Var(κj)→ 0, as j →∞.

In the following, we show (25) holds when kernel smoothers are used. Let K(·) be a
p-dimensional multivariate kernel with bounded support [−1/2, 1/2]p. Given a bandwidth
parameter hj > 0, consider the following nonparametric estimator for m(x) = τ(x)f(x):

m̂j(x) =
1

jhpj

j∑
i=1

(
Ai

π(1,Xi)
− 1−Ai
π(0,Xi)

)
YiK

(
x−Xi

hj

)
. (123)

It is consistent when the bandwidth satisfies hj → 0 and jhpj →∞. An augmented version
of (123) can be similarly derived.

Since I{m(x) > 0} = I{τ(x) > 0}, we may set d̂Ij (x) = I{m̂j(x) > 0}. Let m̂j(·) =
m̂I(j)(·). For any x1,x2 with ‖x1 − x2‖∞ > hj , we have

K

(
x1 −Xi

hj

)
K

(
x2 −Xi

hj

)
= 0.

As a result, for any x1,x2 that satisfy ‖x1 − x2‖∞ > hj and x1,x2 ∈ X,

cov(m̂j(x1), m̂j(x2)) = Em̂j(x1)Em̂j(x2) = o(1),

where the last equality is due to that the bias Em̂j(x)−mj(x) = Em̂j(x) will converge to
zero for any x ∈ X. Now we can similarly show Var(κj)→ 0 as j →∞.
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Setting (G) sn = 3.5n/ log(n) sn = 4n/ log(n)

n ECP(%) AL*100 ECP(%) AL*100

600 93.3 (0.8) 28.1 (0.17) 93.2 (8.0) 28.5 (0.18)

1200 92.8 (0.8) 18.6 (0.05) 92.3 (0.8) 18.8 (0.06)

Setting (H) sn = 3.5n/ log(n) sn = 4n/ log(n)

n ECP(%) AL*100 ECP(%) AL*100

600 92.5 (0.8) 37.4 (0.09) 92.8 (0.8) 37.6 (0.10)

1200 93.8 (0.8) 25.6 (0.04) 93.6 (0.9) 25.6 (0.04)

Setting (I) sn = 3.5n/ log(n) sn = 4n/ log(n)

n ECP(%) AL*100 ECP(%) AL*100

600 93.8 (0.8) 39.4 (0.14) 94.0 (0.8) 39.4 (0.15)

1200 94.4 (0.7) 26.5 (0.04) 94.2 (0.7) 26.5 (0.04)

Table 7: ECP and AL of the CIs with standard errors in parenthesis

Appendix E. Additional Tables

In this section, we attach a table that reports the performance of our method in Scenarios
(G)-(I) where K0 is set to 3.5 or 4.
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