
Journal of Machine Learning Research 21 (2020) 1-6 Submitted 1/20; Revised 4/20; Published 4/20

Tslearn, A Machine Learning Toolkit for Time Series Data

Romain Tavenard romain.tavenard@univ-rennes2.fr
Université de Rennes, CNRS, LETG-Rennes, IRISA-Obelix, Rennes, France

Johann Faouzi johann.faouzi@icm-institute.org
Aramis Lab, INRIA Paris, Paris Brain Institute, Paris, France

Gilles Vandewiele gilles.vandewiele@ugent.be
IDLab, Ghent University – imec, Ghent, Belgium

Felix Divo felix.divo@stud.tu-darmstadt.de
Technische Universität Darmstadt, Darmstadt, Germany

Guillaume Androz guillaume.androz@icentia.com
Icentia Inc., Québec, Canada

Chester Holtz chholtz@eng.ucsd.edu
Department of Computer Science and Engineering, University of California, San Diego,
La Jolla, CA, USA

Marie Payne marie.payne@mail.mcgill.ca
McGill University, Montreal, Québec, Canada

Roman Yurchak roman.yurchak@symerio.com
Symerio, Paris, France

Marc Rußwurm marc.russwurm@tum.de
Technical University of Munich, Chair of Remote Sensing Technology, Munich, Germany

Kushal Kolar kushalkolar@gmail.com
Sars International Centre for Marine Molecular Biology, University of Bergen, Norway

Eli Woods eli@eaze.com

Eaze Technologies, Inc., San Francisco, CA, USA

Editor: Alexandre Gramfort

Abstract

tslearn is a general-purpose Python machine learning library for time series that offers
tools for pre-processing and feature extraction as well as dedicated models for clustering,
classification and regression. It follows scikit-learn’s Application Programming Interface
for transformers and estimators, allowing the use of standard pipelines and model selection
tools on top of tslearn objects. It is distributed under the BSD-2-Clause license, and its
source code is available at https://github.com/tslearn-team/tslearn.

Keywords: time series, clustering, classification, pre-processing, data mining

1. Introduction

Temporal data are ubiquitous in many application domains, such as medicine, robotics,
or videos. Dealing with such data requires dedicated methods that take into account the

c©2020 Romain Tavenard, Johann Faouzi, Gilles Vandewiele, Felix Divo, Guillaume Androz, Chester Holtz, Marie
Payne, Roman Yurchak, Marc Rußwurm, Kushal Kolar and Eli Woods.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v21/20-091.html.

https://github.com/tslearn-team/tslearn
https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v21/20-091.html

Tavenard, Faouzi, Vandewiele, Divo, Androz, Holtz, Payne, Yurchak, Rußwurm et al.

high correlation between consecutive samples in a time series. Moreover, in many cases, one
would like a time series approach to encode invariance to small time shifts, which once again
implies using specific methodologies. tslearn is a Python package that provides tools to fit
relevant models to time series data. In the following, time series data is understood as series
of features collected over time. It includes pre-processing routines, feature extractors, and
machine learning models for classification (Bagnall et al., 2017; Fawaz et al., 2019), regres-
sion and clustering (Aghabozorgi et al., 2015). Both univariate and multivariate time series
can be handled in tslearn. Further, data sets can contain time series of variable-length,
as discussed below. tslearn follows scikit-learn’s API for transformers and estima-
tors, allowing the use of scikit-learn’s pipelines and model selection tools on tslearn

objects. We use continuous integration tools to test each contribution to the library and
target a coverage of at least 90% to detect bugs as early as possible. Online documentation
is available at https://tslearn.readthedocs.io/ and semantic versioning is used (this
document describes version 0.3.1). tslearn is distributed under the BSD-2-Clause license.
In the following, we present basic usage of the library, an overview of the implemented
algorithms and a comparison to other related software.

2. Implementation Description

tslearn v0.3.1 is a cross-platform software package for Python 3.5+. It depends on
numpy (Van Der Walt et al., 2011) & scipy (Virtanen et al., 2020) packages for basic array
manipulations and standard linear algebra routines and on scikit-learn (Pedregosa et al.,
2011) for its API and utilities. It also utilizes Cython (Behnel et al., 2011), numba (Lam et al.,
2015) and joblib (Varoquaux et al., 2010) for efficient computation. Finally, keras (Chol-
let et al., 2015) with tensorflow (Abadi et al., 2016) backend is an optional dependency
that is necessary to use the shapelets module in tslearn that provides an efficient imple-
mentation of the shapelet model by Grabocka et al. (2014).

In tslearn, a time series data set can be represented through a three-dimensional numpy
array of shape (n, T, d) where n is the number of time series in the set, T their length, and d
their dimensionality. If time series from the set are not equal-sized, NaN values are appended
to the shorter ones and T is hence the maximum of sizes for time series in the set:

from tslearn.utils import to_time_series_dataset

my_first_time_series = [1, 3, 4, 2]

my_second_time_series = [1, 2, 4, 2, 1]

formatted_dataset = to_time_series_dataset([my_first_time_series,

my_second_time_series])

formatted_dataset.shape is then (2, 5, 1)

Then, data can be fed to transformers that are available in the preprocessing and
piecewise modules and/or estimators that follow the scikit-learn API1. Note that
scikit-learn’s pipelines and model-selection tools can be used in conjunction with tslearn

transformers and estimators, as shown in the code snippet below:

1. One noticeable difference when compared with scikit-learn estimators and transformers, though, is
that tslearn ones expect 3-dimensional arrays which can contain NaN values, as this is the basic format
for tslearn data sets.

2

https://tslearn.readthedocs.io/

Tslearn, A Machine Learning Toolkit for Time Series Data

from sklearn.model_selection import KFold, GridSearchCV

from tslearn.neighbors import KNeighborsTimeSeriesClassifier

knn = KNeighborsTimeSeriesClassifier(metric="dtw")

p_grid = {"n_neighbors": [1, 5]}

cv = KFold(n_splits=2, shuffle=True, random_state=0)

clf = GridSearchCV(estimator=knn, param_grid=p_grid, cv=cv)

clf.fit(X, y)

3. Contents

Our package first offers basic utilities to format data sets for use with tslearn transformers
and estimators, and to cast time series data sets from and to other Python time series
toolkit formats. It also provides standard pre-processing techniques and feature extraction
methods, implemented as scikit-learn-compatible transformers.

Many of our learning algorithms rely on the use of time series specific metrics that are
themselves made available in a dedicated metrics module.

In terms of machine learning methods, we provide implementations of clustering algo-
rithms (some of which rely on barycenter computation routines that are also part of our
public API) specifically tailored for temporal data. Supervised learning methods (for re-
gression and classification) are also provided. All these are implemented as scikit-learn-
compatible estimators.

The importance of providing time-series specific methods for machine learning is illus-
trated in the example below and the corresponding Figure 1, where standard Euclidean
k-means fails while DTW-based ones (Sakoe and Chiba, 1978; Petitjean et al., 2011; Cuturi
and Blondel, 2017) can distinguish between different time series profiles:

from tslearn.clustering import TimeSeriesKMeans

from tslearn.datasets import CachedDatasets

Load the ’Trace’ data set

X_train = CachedDatasets().load_dataset(’Trace’)[0]

Define parameters for each metric

euclidean_params = {’metric’: ’euclidean’}

dba_params = {’metric’: ’dtw’}

sdtw_params = {’metric’: ’softdtw’, ’metric_params’: {’gamma’: .01}}

Perform clustering for each metric

y_preds = []

for params in (euclidean_params, dba_params, sdtw_params):

km = TimeSeriesKMeans(n_clusters=3, random_state=0, **params)

y_preds.append(km.fit_predict(X_train))

4. Comparison to Related Software

tslearn is not the only Python package to focus on machine learning for time series.
Some packages, like cesium-ml2 and seglearn (Burns and Whyne, 2018) focus on pre-

2. The cesium-ml package can be found here: http://cesium-ml.org.

3

http://cesium-ml.org

Tavenard, Faouzi, Vandewiele, Divo, Androz, Holtz, Payne, Yurchak, Rußwurm et al.

0 50 100 150 200 250
−4

−2

0

2

4
Cluster 1

0 50 100 150 200 250
−4

−2

0

2

4
Cluster 2

Euclidean k-means

0 50 100 150 200 250
−4

−2

0

2

4
Cluster 3

0 50 100 150 200 250
−4

−2

0

2

4
Cluster 1

0 50 100 150 200 250
−4

−2

0

2

4
Cluster 2

DTW Barycenter Averaging k-means

0 50 100 150 200 250
−4

−2

0

2

4
Cluster 3

0 50 100 150 200 250
−4

−2

0

2

4
Cluster 1

0 50 100 150 200 250
−4

−2

0

2

4
Cluster 2

Soft-DTW k-means

0 50 100 150 200 250
−4

−2

0

2

4
Cluster 3

Figure 1: k-means clustering (k = 3) using different base metrics. Each graph represents a
cluster (i.e. a different y preds value), with its centroid plotted in bold red.

processing time series data to feed scikit-learn models. Similarly, tsfresh (Christ et al.,
2018) specializes in feature extraction from time series. pyts (Faouzi and Janati, 2020)
and sktime (Löning et al., 2019), on the other hand, focus on supervised learning. Other
packages focus on some families of methods, such as statsmodel (Seabold and Perktold,
2010) that provides standard statistical models for time series analysis, hmmlearn3 that
focuses on Hidden Markov Models, stumpy (Law, 2019) that relies on the matrix profile
data structure (Yeh et al., 2016), or pyflux (Taylor, 2016), which offers a large panel of
probabilistic models aimed at forecasting.

Compared to these packages, tslearn is a general-purpose machine learning library
for time series that offers pre-processing and feature extraction tools as well as dedicated
models for clustering, classification and regression. Note however that, since the packages
listed above are more focused than tslearn, they tend to incorporate a wider range of
algorithms for their task of interest than our library. This is why we have included utilities
to cast data sets between tslearn format and the ones used by these libraries, in order to
help facilitate interoperability.

5. Conclusion

tslearn is a general-purpose Python machine learning library for time series. It implements
several standard estimators for time series for problems such as clustering, classification and
regression. It is under active development with aim at the integration of additional methods.

3. The hmmlearn package can be found here: https://github.com/hmmlearn/hmmlearn.

4

https://github.com/hmmlearn/hmmlearn

Tslearn, A Machine Learning Toolkit for Time Series Data

Specific attention will be paid to keep tslearn’s genericity rather than focus, for example,
on supervised settings for which other tools exist.

Acknowledgments

Romain Tavenard would like to acknowledge support for this project from the Agence
Nationale de la Recherche (ANR grant ANR-18-CE23-0006).

References

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, et al. Tensorflow: A system for large-scale machine learning. In Pro-
ceedings of the USENIX Symposium on Operating Systems Design and Implementation,
pages 265–283, 2016.

S. Aghabozorgi, A. S. Shirkhorshidi, and T. Y. Wah. Time-series clustering–a decade review.
Information Systems, 53:16–38, 2015.

A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh. The great time series classification
bake off: a review and experimental evaluation of recent algorithmic advances. Data
Mining and Knowledge Discovery, 31(3):606–660, 2017.

S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn, and K. Smith. Cython: The
best of both worlds. Computing in Science & Engineering, 13(2):31–39, 2011.

D. M. Burns and C. M. Whyne. Seglearn: A Python package for learning sequences and
time series. Journal of Machine Learning Research, 19(83):1–7, 2018.

F. Chollet et al. Keras. https://github.com/fchollet/keras, 2015.

M. Christ, N. Braun, J. Neuffer, and A. W. Kempa-Liehr. Time series FeatuRe extraction
on basis of scalable hypothesis tests. Neurocomputing, 307:72–77, 2018.

M. Cuturi and M. Blondel. Soft-DTW: a differentiable loss function for time-series. In
Proceedings of the International Conference on Machine Learning, pages 894–903, 2017.

J. Faouzi and H. Janati. pyts: A python package for time series classification. Journal of
Machine Learning Research, 21(46):1–6, 2020.

H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller. Deep learning for
time series classification: a review. Data Mining and Knowledge Discovery, 33(4):917–
963, 2019.

J. Grabocka, N. Schilling, M. Wistuba, and L. Schmidt-Thieme. Learning time-series
shapelets. In Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 392–401, 2014.

5

https://github.com/fchollet/keras

Tavenard, Faouzi, Vandewiele, Divo, Androz, Holtz, Payne, Yurchak, Rußwurm et al.

S. K. Lam, A. Pitrou, and S. Seibert. Numba: A LLVM-based Python JIT compiler.
In Proceedings of the Workshop on the LLVM Compiler Infrastructure in HPC, pages
7:1–7:6. ACM, 2015.

S. M. Law. STUMPY: A powerful and scalable Python library for time series data mining.
Journal of Open Source Software, 4(39):1504–1505, 2019.

M. Löning, A. Bagnall, S. Ganesh, V. Kazakov, J. Lines, and F. J. Király. sktime: A
Unified Interface for Machine Learning with Time Series. In Proceedings of the NeurIPS
Workshop on Systems for Machine Learning, 2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, et al. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12(Oct):2825–2830, 2011.

F. Petitjean, A. Ketterlin, and P. Gançarski. A global averaging method for dynamic time
warping, with applications to clustering. Pattern Recognition, 44(3):678–693, 2011.

H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spoken word
recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 26(1):43–
49, 1978.

S. Seabold and J. Perktold. statsmodels: Econometric and statistical modeling with python.
In Python in Science Conference, 2010.

R. Taylor. PyFlux: An open source time series library for Python, 2016.

S. Van Der Walt, S. C. Colbert, and G. Varoquaux. The NumPy array: a structure for
efficient numerical computation. Computing in Science & Engineering, 13(2):22–30, 2011.

G. Varoquaux et al. Joblib: running Python functions as pipeline jobs. https://github.

com/joblib/joblib, 2010.

P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson,
K. Jarrod Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. Carey,
İ. Polat, Y. Feng, E. W. Moore, J. Vand erPlas, D. Laxalde, J. Perktold, R. Cimrman,
I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa,
P. van Mulbregt, and S. . . Contributors. SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods, 17:261–272, 2020.

C. M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding, H. A. Dau, D. F. Silva, A. Mueen, and
E. Keogh. Matrix Profile I: All pairs similarity joins for time series: A unifying view that
includes motifs, discords and shapelets. In Proceedings of the International Conference
on Data Mining, pages 1317–1322, Dec 2016.

6

https://github.com/joblib/joblib
https://github.com/joblib/joblib

	Introduction
	Implementation Description
	Contents
	Comparison to Related Software
	Conclusion

