
Journal of Machine Learning Research 21 (2020) 1-67 Submitted 1/20; Published 5/20

A General Framework for Consistent Structured Prediction
with Implicit Loss Embeddings

Carlo Ciliberto c.ciliberto@imperial.ac.uk
Department of Electrical and Electronic Engineering,
Imperial College
London, UK

Lorenzo Rosasco lrosasco@mit.edu
University of Genova, Italy and
Istituto Italiano di Tecnologia, Genova, Italy
Massachusetts Institute of Technology, Cambridge, MA, USA

Alessandro Rudi alessandro.rudi@inria.fr
INRIA, Paris, France,
École Normale Supérieure, Paris, France
PSL Research, France

Editor: Sebastian Nowozin

Abstract
We propose and analyze a novel theoretical and algorithmic framework for structured
prediction. While so far the term has referred to discrete output spaces, here we consider
more general settings, such as manifolds or spaces of probability measures. We define
structured prediction as a problem where the output space lacks a vectorial structure. We
identify and study a large class of loss functions that implicitly defines a suitable geometry
on the problem. The latter is the key to develop an algorithmic framework amenable to a
sharp statistical analysis and yielding efficient computations. When dealing with output
spaces with infinite cardinality, a suitable implicit formulation of the estimator is shown to
be crucial.
Keywords: Structured Prediction, Statistical Learning Theory, Kernel Methods.

1. Introduction

Statistical learning theory offers a number of methods to deal with supervised problems when
the output space is linear (e.g. scalar values or vectors). However, applications involving
more general output spaces are becoming increasingly common. Examples include image
segmentation (Alahari et al., 2008) or captioning (Karpathy and Fei-Fei, 2015), speech
recognition (Bahl et al., 1986; Sutton et al., 2012), manifold regression (Steinke et al., 2010),
trajectory planning (Ratliff et al., 2006), protein folding (Joachims et al., 2009), prediction
of probability distributions (Frogner et al., 2015), ordinal regression (Pedregosa et al., 2017),
information retrieval or ranking (Duchi et al., 2010) to name a few (see Bakir et al., 2007;
Nowozin et al., 2011, for more examples). When considering discrete output spaces, these
settings are often referred to as structured prediction problems, since they require dealing
with output spaces that have a specific structure, such as strings, graphs or sequences.
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Standard machine learning methods like empirical risk minimization are faced with both
modeling and computational challenges in these settings. Therefore, in practice, either
one of the following two main strategies are often considered. On the one hand, surrogate
methods (Bartlett et al., 2006; Mroueh et al., 2012) that design ad-hoc algorithms and theory
for different learning settings on a case-by-case basis. While this allows to prove strong
theoretical guarantees, it makes it difficult to extend previous results to new settings. On the
other hand methods such as SVM-struct Tsochantaridis et al. (2005) or Max-Margin Markov
Networks Taskar et al. (2004), to which we refer here as auxiliary function maximization
methods, have broad applicability (Lafferty et al., 2001; Bakir et al., 2007; Nowozin et al.,
2011) but typically poor theoretical guarantees (Tewari and Bartlett, 2007).

In this work, we propose a novel structured prediction framework combining the best
of both worlds. Our approach extends structured prediction beyond discrete outputs, to
include problems such as manifold regression. The lack of linear structure in the output
space is the common feature of the different problems we consider. The key observation
is that for a very wide range of problems, the associated loss function carries implicitly a
natural corresponding geometry. More precisely it admits an Implicit Loss Embedding (ILE)
into a linear (albeit possibly infinite dimensional) space. Exploiting such a geometry allows
us to derive a consistent least squares algorithmic framework. The latter is related to the
Output Kernel Regression (OKR) framework (Geurts et al., 2006, 2007; Brouard et al., 2011;
Kadri et al., 2013; Brouard et al., 2016), which encompasses several methods, including
Kernel Dependency Estimation (KDE) (Weston et al., 2002; Cortes et al., 2005). OKR
approaches lift the output set into a latent Hilbert space via vector-valued kernel embeddings
and coincide to learning with a specific loss function corresponding to the distance induced
by a positive definite kernel. In this work we consider loss functions that admit a bi-linear
representation on a latent Hilbert space, covering a wide range of loss functions used in
practice, such as any loss on discrete spaces, divergences, geodesic distances on Riemannian
manifolds or smooth functions in Rd. Like KDE and OKR for the case of kernel losses, we
derive an implicit formulation of the proposed estimator depending only on the loss function.
This is crucial when considering structured prediction problems beyond the discrete case.

This paper is the extended version of Ciliberto et al. (2016), which has initiated a recent
stream of works where this method has been equivalently referred to as either the Structured
Encoding Loss Function (SELF) approach or the Quadratic Surrogate framework (Osokin
et al., 2017; Ciliberto et al., 2017; Korba et al., 2018; Rudi et al., 2018; Struminsky et al.,
2018; Luise et al., 2018; Nowak-Vila et al., 2018; Djerrab et al., 2018; Luise et al., 2019;
Blondel, 2019; Ciliberto et al., 2019). In this paper we refine the analysis in Ciliberto et al.
(2016), providing novel insights and estimators for structured prediction. More precisely, the
novel contributions of the current work are: (a) we propose a number of novel estimators for
structure prediction (Sec. 3). (b) We study the generalization properties of the proposed
estimators, proving consistency and learning rates (Sec. 5). (c) We show that the learning
rates and computational costs of the proposed methods are adaptive to the regularity of the
learning problem (Sec. 5.4), potentially reducing the complexity of the learning process. (d)
We provide a number of sufficient conditions to determine whether a loss admits an ILE,
which are easy to verify in practice (Sec. 6). We leverage the latter results to show that most
loss functions used in machine learning applications satisfy the ILE definition and therefore
that our framework is suited to a large number of settings and applications.
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The paper is organized as follows: Sec. 2 introduces structured prediction within the
framework of statistical learning theory for supervised problems. In Sec. 3 we present the
ILE framework and the novel estimators. In Sec. 4 we draw extensive connections with
previous work. Sec. 5 is devoted to study the statistical and computational properties of the
proposed estimators. Sec. 6 studies sufficient conditions for a loss function to satisfy the
ILE definition. Finally, Sec. 7 concludes the work discussing relevant future directions.

2. Problem Setting and Background

We denote by X ,Y and Z respectively the input space, label space and output space of a
learning problem. We let ρ be a probability measure on X × Y and 4 : Z × Y → R be a
loss function measuring prediction errors between a label y ∈ Y and an output z ∈ Z. The
distinction between Y and Z allows to consider applications where labels do not necessarily
correspond to the desired outputs (e.g. ranking/information retrieval, see below).

Supervised Learning. In supervised learning problems, the goal is to estimate a function
f∗ : X → Z minimizing the expected risk

min
f :X→Z

E(f), with E(f) =
∫
4(f(x), y) dρ(x, y), (1)

over the set of measurable functions f : X → Z. In practice, the distribution ρ is given
but unknown and only n examples (xi, yi)ni=1 independently distributed according to ρ are
provided. Given a training set, a learning algorithm needs to find a good approximation
fn : X → Z to f∗ such that the corresponding excess risk E(fn) is close to E(f∗) and tends
to it as the number n of training points increases.

Empirical Risk Minimization. A standard learning approach is Empirical Risk Min-
imization (ERM) (see e.g. Devroye et al., 2013). This method consists in obtaining the
estimator fn : X → Z as

fn = argmin
f∈H

1
n

n∑
i=1
4(f(xi), yi), (2)

by minimizing the empirical version of the expected risk over a suitable space H of functions
f : X → Z. The idea underlying ERM is to use the empirical risk as an approximation of
the expected risk, so that the estimation of f∗ via fn should become increasingly accurate
as the number of training samples grows.

From a statistical perspective, it is sufficient for the loss 4 to satisfy very general
conditions (e.g. Lipschitz, bounded, etc.) in order for the ERM strategy to enjoy strong
statistical guarantees. In particular, a number of results are available proving universal
consistency and learning rates (in terms of generalization or excess risk bounds) for the
empirical risk estimator fn, and a variety of hypotheses spaces H (see for instance Shalev-
Shwartz and Ben-David, 2014, and references therein).

From a computational perspective, a central question is whether the ERM problem can
be solved efficiently. When the output space is linear, such as Z = R, and the loss 4 is
convex, ERM becomes an efficient strategy for a large family of hypotheses spaces. For
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instance, a standard approach is to consider linear parametrization of functions f : X → R
in a Hilbert space H of the form f(x) = 〈w, φ(x)〉H with w ∈ H and φ : X → H a feature
map. Following this approach, the resulting ERM problem in (2) can solved efficiently
leveraging convex optimization techniques. This same strategy can be naturally extended to
the general linear case Z = RM .

Structured Prediction and Limitations of ERM. When the space Z does not have a
linear structure, applying ERM poses concrete challenges to both modeling and computations:

• Modeling. If the output space is non-linear, it is not clear how to design a suitable
hypotheses space H of candidate estimators. In particular, linear parametrizations
of the form f(x) = 〈w, φ(x)〉 introduced above are not possible. For instance, given
f1, f2 : X → Z, it is not guaranteed that f1 + f2 takes values in Z as well.

• Computations. If the hypotheses space is non-linear or the loss is non-convex (e.g.
integer-valued), solving ERM can be extremely challenging. Often, approaches based
on the regularity of the loss function and the optimization domain, such as gradient
methods, cannot be adopted. Hence, it is not clear how to obtain fn in practice.

Next we describe a number of problems falling in the above setting.

2.1. Examples of Structured Prediction Problems

Below we provide some examples of structured prediction problems according to our definition,
that is problems where the output space lacks a linear structure. We refer to (Bakir et al.,
2007; Nowozin et al., 2011) for more examples.

• Classification, Multi-class, Multi-labeling. In these settings Z = Y = {1, . . . , T}
is a collection of classes that can be associated to inputs from X .

• Ranking, Ordinal Regression, Information Retrieval. The goal is to predict
an ordered list of documents (Bakir et al., 2007; Pedregosa et al., 2017; Duchi et al.,
2010). For instance x ∈ X can be a query in a search engine and Z is the space of all
permutations (ordering) over the documents in a database. The label space Y 6= Z
typically contains a set of scalar scores representing the individual relevance of each
document to the input query.

• Sequence Prediction. The goal is to predict sequences such as time series for
financial applications or planning trajectories (Ratliff et al., 2006). Loss functions such
as the Dynamic Time Warping (Cuturi and Blondel, 2017) can be used to measure
the similarity between two sequences.

• Predicting Probability Distributions / Histograms. In these settings, the
output Z corresponds to a space of probability distributions (Frogner et al., 2015;
Luise et al., 2018; Mensch et al., 2019). The loss 4 is a metric comparing probabilities,
such as the Kullback-Libler divergence or the Hellinger, χ2 or Wasserstein distance.
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• Manifold Regression. Problems where the outputs belong to a smooth Riemannian
manifold Z (Steinke et al., 2010; Rudi et al., 2018). A natural choice for the loss 4 is
the squared geodesic distance of the manifold. This setting generalizes the standard
regression problem with least-squares loss and Z = RM , to the manifold scenario.

3. A General Framework for Structured Prediction

In this section, we introduce and motivate our structured prediction framework. Our
discussion starts from a useful characterization of f∗ : X → Z the minimizer of the expected
risk in (1). Assume that ρ can be factorized as ρ(x, y) = ρ(y|x)ρX (x) with ρ(·|x) the
conditional distribution over Y given x ∈ X and ρX the marginal distribution of ρ over X .
It can be shown that

f∗(x) = argmin
z∈Z

∫
Y
4(z, y) dρ(y|x), (3)

that is, the value f∗ at any given x ∈ X corresponds to the minimizer, over the output
set Z, of the conditional expectation Ey|x 4 (z, y). Indeed, it is possible to show that if 4
is measurable, then such a point-wise estimate defines a measurable function. This latter
result requires some care and follows from Berge maximum theorem (Aliprantis and Border,
2006) (see also Aumann’s principle (Steinwart and Christmann, 2008)). We refer the reader
to Appendix A for a detailed discussion.

In the following, we leverage this characterization of f∗ to develop our approach to
structured prediction. First, we consider the case where both output and label spaces are
discrete and finite. As noted, this is relevant, since most previous work focused on this
setting (Bakir et al., 2007). Additionally, for our presentation, it allows a self-contained
introduction of key ideas, deferring the technical details to the general discussion in Sec. 3.2.

3.1. Motivating Analysis: Finite Output Spaces

We begin by discussing how loss functions define a geometry on finite output spaces, and
how it can be used to define an estimator. Then, we can consider linear estimators and show
how for this class of estimators a useful implicit formulation can be derived.

Geometry of Structured Loss Functions. Let X = Rd and assume Z = Y = {1, . . . , T}
for T ∈ N. In this setting, any loss function 4 : Z × Y → R can be characterized in terms
of a matrix V ∈ RT×T such that

4(z, y) = e>z V ey, ∀ z ∈ Z, y ∈ Y, (4)

where ey ∈ RT denotes the y-th element of the canonical basis of RT , namely the vector
with y-th entry equal to 1 and the rest equal to 0. Combining this observation with the
characterization of f∗ in (3) and using linearity of the integral, we have

f∗(x) = argmin
z∈Z

e>z V g∗(x), g∗(x) =
∫
Y
ey dρ(y|x), (5)

for any x ∈ X . In particular, note that the function g∗ : X → RT is given by

g∗(x) =
(
ρ
(
1|x
)
, . . . , ρ

(
T |x

) )> ∈ RT , (6)
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the vector whose y-th entry is equal to the probability of observing y, given x. This
observation is crucial, since it allows to identify g∗ with the regression function, that is the
minimizer of the expected least squares error (see Thm. 3 for a formal statement)

g∗ = argmin
g:X→RT

∫
‖ey − g(x)‖2RT dρ(x, y).

The above discussion suggests the following approach. Given given n training points
(xi, yi)ni=1, we could approximate g∗ by a least squares estimate gn minimizing

gn = argmin
g∈G

1
n

n∑
i=1
‖eyi − g(xi)‖2RT

over some function space G. Then we obtain the estimator fn : X → Z for any x ∈ X as

fn(x) = argmin
z∈Z

e>z V gn(x). (7)

The advantage of this strategy is that approximating g∗ corresponds to a standard vector-
valued regression problem, since the output space is now RT and not the “structured” Z.
As we discuss next, for linearly parameterized estimators, we can develop a useful implicit
formulation. We first add two remarks pointing out connections to related ideas.

Remark 1 (Conditional mean embedding) By construction, g∗(x) defined in (5) cor-
responds to the definition of conditional mean embedding of ρ(·|x) in RT (Song et al., 2009;
Grünewälder et al., 2012; Singh et al., 2019). In Sec. 4.4, this connection will provide relevant
insights on the structured prediction estimator we propose and its statistical properties.

Example 1 (Classification) For classification, the estimator fn in (7), recovers the least-
squares classifier in (Yao et al., 2007; Mroueh et al., 2012). To see this, let Z = Y =
{1, . . . , T} be a finite set of class labels and let 4 be the 0-1 (or mis-classification) loss,
namely 4(z, y) = 1 if z 6= y and 0 otherwise. It is easy to see that 4 is of the form of (4)
with matrix V = 11

> − I, where I is the T × T identity matrix and 1 is the T -dimensional
vector with all entries equal to 1. For any y ∈ Y, the y-th entry of gn(x) ∈ RT is interpreted
as the likelihood of observing a the class y given the input x ∈ X . Therefore, the classifier
cn : X → Y acts by predicting the index of gn(x) with higher likelihood. Direct comparison
with our approach leads to

cn(x) = argmax
t=1,...,T

(
gn(x)

)
t
, fn(x) = argmin

t=1,...,T

(
V gn(x)

)
t
. (8)

Since V = 11
> − I, it is straightforward to see that the two methods coincide, namely

cn(x) = fn(x) for all x ∈ X .

We next describe a useful representation for linear estimators.

Implicit formulation for linear estimators. A possible approach to learn gn is by linear
ridge regression, namely

gn(x) = Wn x, Wn = argmin
W∈RT×d

1
n

n∑
i=1
‖eyi −Wxi‖2 + λ‖W‖2F , (9)
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where λ > 0 is a hyperparmeter and ‖ · ‖2F denotes the squared Frobenius norm of a matrix
(sum of the squared entries). The solution of (9) can be obtained in closed form as

Wn = Y >X (X>X + nλI)−1 (10)

with I ∈ Rd×d the identity matrix and X ∈ Rn×d and Y ∈ Rn×T the matrices with i-th row
corresponding to xi and eyi respectively. Plugging this solution in (7) leads to an explicit
approach to obtain the estimator fn. We next discuss a useful observation that will be key
to extend our discussion to Y and Z that are neither finite nor discrete. Specifically, we
will show that it is possible to obtain a characterization for fn that is equivalent to (7) but
in which gn does not appear explicitly. To see this, first notice that for any x ∈ X we can
leverage the closed-form solution for the estimator gn to have

gn(x) = Wnx = Y >α(x) =
n∑
i=1

αi(x) eyi , (11)

where the weights α : X → Rn are such that

α(x) = (α1(x), . . . , αn(x))> = [X(X>X + nλI)−1] x ∈ Rn. (12)

We now plug this characterization of gn in the definition of fn in (7). Thanks to the linearity
of the sum and the matrix-vector product, we have

fn(x) = argmin
z∈Z

n∑
i=1

αi(x) e>z V eyi = argmin
z∈Z

n∑
i=1

αi(x) 4 (z, yi), (13)

where the last equality follows from the fact that the loss 4 is identified by the matrix V
according to (4). Intuitively, for any i = 1, . . . , n, we can interpret each αi(x) as a relevance
score encouraging the candidate prediction z ∈ Z to be “similar” to the observed training
label yi, according to 4(z, yi).

The key observation in (13) is that the estimator fn can be characterized exclusively in
terms of the weights α and the observed labels yi. This implies that we do not have to learn
the vector-valued estimator gn explicitly. In Sec. 3.2 we will leverage this observation to
extend the same learning strategy to the case where Y and Z are not finite or discrete.

Extension to generic X . We conclude this section by observing that the construction of
fn can be naturally extended to the case where X is a generic set. In particular, consider
k : X × X → R a positive definite kernel (Aronszajn, 1950). Then, according to standard
practice from the kernel methods literature (see e.g. Shawe-Taylor and Cristianini, 2004) we
can derive a “dual” formulation for the relevance scores α. In particular, given the input
(xi)ni=1 in training, (12) can be equivalently rewritten as

α(x) = (α1(x), . . . , αn(x))> = (K + nλI)−1 v(x) ∈ Rn, (14)

for any x ∈ X , where K ∈ Rn×n is the empirical kernel matrix with entries Kij = k(xi, xj)
and v(x) ∈ Rn is the evaluation vector, with entries v(x)i = k(x, xi), for any i, j = 1, . . . , n.
In the following, we will denote κ2 = supx∈X k(x, x). We will always assume κ < +∞ (e.g.
by using a normalized kernel or by requiring X to be a compact set). It is easy to see that
this strategy corresponds indeed to learn the estimator gn by solving the empirical risk
minimization problem in (9) over the reproducing kernel Hilbert space (RKHS) associated
to k (Aronszajn, 1950). We discuss this in more detail in the following.
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3.2. General Structured Prediction: Beyond Finite Output Spaces

In this section, we generalize the discussion of Sec. 3.1 to structured prediction problems
where Y or Z are not necessarily finite (or discrete). Also in this case, we show how a
relevant geometry can be defined by a corresponding loss function. Further we extend the
analysis of linearly parameterized estimators, and show how in this general setting the
implicit formulation becomes essential.

Implicit Loss Embeddings. The extension to non finite output spaces hinges on a key
assumption on the loss that generalizes the observation of (4). We refer to functions satisfying
this condition as admitting an Implicit Loss Embedding.

Definition 2 (ILE) A continuous map 4 : Z × Y → R is said to admit an Implicit Loss
Embedding (ILE) if there exists a separable Hilbert space H and two measurable bounded
maps ψ : Z → H and ϕ : Y → H, such that for any z ∈ Z and y ∈ Y we have

4(z, y) =
〈
ψ(z) , ϕ(y)

〉
H, (15)

and ‖ϕ(y)‖H ≤ 1. Additionally, we define c4 = supz∈Z ‖ψ(z)‖H.

The definition of ILE is similar to the characterization of positive definite kernels in terms
of feature maps (and indeed it recovers such definition when Z = Y and ψ = ϕ), but is
significantly more general in that it allows also to consider functions that are not positive
definite (for example, distances) or even not symmetric (such as divergences). It is clear
that any loss function on finite sets Z and Y admits an ILE. For instance, in the setting
of Sec. 3.1 it is sufficient to choose H = RT , with maps ϕ(y) = ey and ψ(z) = V >ez, to
recover the ILE definition. Note that the requirement supy∈Y ‖ϕ(y)‖ ≤ 1 is introduced to
simplify the notation but does not limit the generality of the assumption (see Thm. C.2 in
the Appendix for more details). We note that in Ciliberto et al. (2016), a variant of the ILE
property was introduced (see Asm 1 in such paper). In this work we opted for Thm. 2 since
it allows for a more clear notation in the following. However, in Thm. C.1 in the Appendix
we provide more details on this point and show that the two notions are actually equivalent.

While the definition of ILE is abstract, it is satisfied by many loss functions often used
in structured prediction applications and more generally in machine learning. In Sec. 6 we
present a wide range of sufficient conditions to guarantee a function to admit an ILE, which
are easier to interpret and verify in practice.

Under the assumption that 4 admits an ILE, we can easily retrace the reasoning in
Sec. 3.1 to derive the structured prediction estimator. In particular, we have the following
result to which we refer to as Fisher consistency, a term borrowed from the literature of
surrogate methods (see discussion in Sec. 4.1).

Lemma 3 (Fisher Consistency) Let Z be compact, 4 : Z × Y → R admit an ILE and
let f∗ : X → Z be the solution of (1). Then,

f∗(x) = argmin
z∈Z

〈 ψ(z) , g∗(x) 〉H , g∗(x) =
∫
Y
ϕ(y) dρ(y|x) (16)

almost surely with respect to ρX . Moreover, g∗ : X → H is the minimizer of

R(g) =
∫
Y×X

‖ϕ(y)− g(x)‖2H dρ(x, y). (17)
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The result above provides a characterization of f∗ in terms of the conditional expectation
of ϕ(y) with respect to x ∈ X . It generalizes (5) to the case where Y and Z are not finite.
Analogously to (3), the proof of Thm. 3 is reported in Appendix A and leverages Berge’s
Maximum theorem. In particular, the compactness of Z is a technical requirement to
guarantee f∗(x) to be well-defined. Analogously to the derivation in Sec. 3.1, the result of
Thm. 3 motivates us to design a structured prediction estimator by first learning a gn to
approximate g∗ via least squares over a space G of functions g : X → H

gn = argmin
g∈G

1
n

n∑
i=1
‖ϕ(yi)− g(xi)‖2H,

and then plug gn in (16) to obtain an approximation fn of f∗ characterized by

fn(x) = argmin
z∈Z

〈 ψ(z) , gn(x) 〉H ,

for all x ∈ X . Learning gn corresponds to solving a vector-valued regression problem on a
(possibly) infinite dimensional output space H (Caponnetto and De Vito, 2007). We next
discuss in detail the case of linearly parameterized estimators.

Linearly parameterized estimators and implicit formulation. For simplicity, instead
of directly minimizing the emprical square loss over H, we consider again the ridge regression
estimator gn : X → H defined as the minimizer of the regularized empirical risk

gn = argmin
g∈G

1
n

n∑
i=1
‖ϕ(yi)− g(xi)‖2H + λ‖g‖2G , (18)

over a normed space G of vector-valued functions from X to H. A viable choice for G is,
given a kernel k : X ×X → R with associated reproducing kernel Hilbert space (RKHS) F , to
consider G = H⊗F , which corresponds to the RKHS of vector-valued functions (see (Micchelli
and Pontil, 2004; Alvarez et al., 2012)) with operator-valued kernel Γ(x, x′) = k(x, x′)IH
and IH : H → H the identity operator on H. This approach is a direct generalization of the
strategy introduced in the finite setting. Indeed, we have already observed that, when Y = Z
is a finite set, we can choose H = RT to satisfy the ILE definition. Moreover, for the linear
kernel k(x, x′) = 〈x, x′〉 on X = Rd, the associated RKHS F is isometric to Rd. Therefore,
we have H⊗F ∼= RT ⊗Rd ∼= RT×d. Consequently, any gn ∈ H⊗F can be parametrized by
a matrix Wn ∈ RT×d and the ERM problem in (18) becomes equivalent to the one in (9).

The solution of the ridge regression problem can be obtained in closed form. In particular,
it is easy to prove that analogously to (11) in the finite setting, for any x ∈ X we have

gn(x) =
n∑
i=1

αi(x) ϕ(yi), (19)

with the weights α(x) = (K + λnI)−1 v(x) as in (14). By replacing gn to g∗ in Thm. 3 we
recover the estimator fn of (20), as desired. As we will discuss in more detail in Sec. 4.2,
this strategy is related to the Kernel Dependency Estimator (KDE) (Weston et al., 2002)
and Input Output Kernel Regression (IOKR) Brouard et al. (2011, 2016) for the case of loss
functions corresponding to distances induced by a reproducing kernel.
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The above reasoning can be applied to any function gn expressed as a linear combination
of (embedded) output points ϕ(yi). The following result summarizes this property, which
allows to consider a family of novel estimators fn paramterized by the weighting function α.

Lemma 4 Let 4 : Z × Y → R admit an ILE, (yi)ni=1 a set of points in Y and α : X → Rn
a weighting function. Let gn : X → H be such that gn(x) =

∑n
i=1 αi(x)ϕ(yi) for any x ∈ X .

Then, the function fn : X → Z such that ∀x ∈ X

fn(x) = argmin
z∈Z

〈 ψ(z) , gn(x) 〉H = argmin
z∈Z

n∑
i=1

αi(x) 4 (z, yi). (20)

From the observation above, we see that the reasoning in Sec. 3.1 can indeed be generalized
to the setting where Z and Y are not finite and 4 admits an ILE. For any x ∈ X , the
weights α(x) are learned from training data according to (14) and only the loss function
appears in the form of the estimator. We expand on this in the following remark.

Remark 5 (“Loss Trick”) In practice, learning and evaluating fn does not require explicit
knowledge of the space H or the embeddings ψ and ϕ (see (20)), which are implicitly encoded
within the definition of ILE and are only required for theoretical purposes (derivation and
characterization of generalization properties of fn as discussed in Sec. 5). This effect was
originally referred to as “loss trick” (Ciliberto et al., 2016) in analogy to the “kernel trick”
on the output space, originally introduced in Geurts et al. (2006); Brouard et al. (2011, 2016)
for Output Kernel Regression.

3.3. Additional ILE-induced Algorithms and Estimators

In this section we discuss alternative approaches to learn the weighting functions α : X → Rn
defining the estimator fn. These strategies are derived by replacing kernel ridge-regression
with a different approximation of g∗ that still satisfies the hypotheses of Thm. 4, namely
can be written as the linear combination of training outputs. As already observed in
the literature of standard regression settings (see e.g. Rosasco et al., 2005, and references
therein), these alternative approaches can offer significant computational advantages over
kernel ridge regression while guaranteeing the same generalization performance from the
statistical standpoint.

“Exact” Kernel methods. A wide family of algorithms that can be used to estimate g∗
are based on spectral filtering regularization strategies (Rosasco et al., 2005; Bauer et al.,
2007). In particular we consider:

• L2-Boosting (L2B). By considering gn the t-th iterate of gradient descent of the
(non-regularized) empirical risk minimization problem in (18), we have

α(x) = Ct v(x) with Ct = (I − ν/n K) Ct−1 + ν/n I, (21)

with Ct ∈ Rn×n defined recursively starting from any C0 ∈ Rn×n and ν/n the gradient
descent step size with ν > 0. We recall that v(x) ∈ Rn denotes the evaluation vector
in x, with entries v(x)i = k(x, xi) for any i = 1, . . . , n. The number of steps t ∈ N acts
as regularization parameter. Accelerated and stochastic versions can be considered. In
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the case of loss functions induced by a normalized kernel (e.g. KDE and OKR, see
also Sec. 4.2), this estimator corresponds to the one introduced in Geurts et al. (2007).

• Principal Component Regression (PCR). Take gn to be the estimator obtained
by filtering out the eigenvalues of the kernel matrix K below a threshold λ > 0 and
inverting the eigenvalues that are above. We have

α(x) = UΣ†λU
>v(x), (22)

where K = UΣU> is the singular value decomposition of K and Σ†λ is the pseudoinverse
of the matrix corresponding to Σ with all eigenvalues smaller than λ set to 0.

Random Projections. Methods leveraging random projections achieve optimal general-
ization performance while being significantly more efficient computationally.

• Random Features (RF). Let (Ω, π) be a probability space and ζ : X × Ω→ R be
a map such that k(x, x′) =

∫
Ω ζ(x, ω)ζ(x′, ω)dπ(ω) (Rahimi and Recht, 2008) 1. Let

M ∈ N and ω1, . . . , ωM be independently sampled from π. Denote by v̂M : X → RM ,
the map

v̂M (x) = 1√
M

(ζ(x, ω1), . . . , ζ(x, ωM )). (23)

By definition v̂M (x)>v̂M (x′) is a discretization of the integral defining k(x, x′). The
scores α are learned according to this new feature map

α(x) = W v̂M (x), W = QM (Q>MQM + nλI)−1, (24)

with QM ∈ Rn×M , QM = (v̂M (x1), . . . , v̂M (xn))>. This approach is significantly faster
than ridge-regression when M � n.

• Nystrom Approximation (NY). Sample M ≤ n points x̃1, . . . , x̃M from the input
dataset. Denote KMM ∈ RM×M be the matrix with (KMM )i,j = k(x̃i, x̃j) and
KnM ∈ Rn×M the matrix with elements (KnM )ij = k(xi, x̃j) (see Smola and Schölkopf,
2000). The scores α are defined as

α(x) = W ṽM (x), W = KnM (K>nMKnM + nλKMM )†, (25)

with ṽM (x) = (k(x̃1, x), . . . , k(x̃M , x)) ∈ RM , for any x ∈ X . These operations are
significantly faster than solving ridge-regression when M � n.

Nadaraya-Watson (NW). gn can be obtained via the Nadardaya-Watson (NW) strategy
(Nadaraya, 1964). In this case we have

α(x) = 1
1> v(x) v(x), (26)

1. E.g. for the Gaussian kernel and X = Rd, d ∈ N, we have Ω = Rd × [0, 1], and for (w, b) =: ω ∈
Ω, π((w, b)) = N (w)U(b), with N (·) standard normal distribution U(·) uniform distribution, and
ζ(x, (w, b)) = cos(w>x+ b) (see Rahimi and Recht, 2008, for more details).

11
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resulting in the estimator

fn(x) = argmin
z∈Z

n∑
i=1

k(x, xi)∑n
j=1 k(xj , xi)

4 (z, yi) (27)

Computation of the NW estimator does not involve the kernel matrix K. This can be
beneficial in large-scale scenarios where the kernel matrix can be large. However, the NW
estimator is often less adaptive than ridge-regression to the smoothness properties of the
learning problem (Györfi et al., 2006). As a consequence, the learning rates of NW are
usually slower than kernel ridge regression in non-worst-case settings.

Nearest Neighbors (NN). Given a measure of similarity on the input set (e.g. a kernel),
for any test point x ∈ X , the Nearest Neighbor (NN) estimator (Friedman et al., 2001) corre-
sponds to the average, on the space H of output training points ϕ(yi) whose corresponding
inputs xi are among the first q most similar (or closest) to x. This corresponds to return
the binary scores α(x) ∈ {0, 1}n

α(x)i =
{

1 if xi is a q-nearest-neighbor
0 otherwise . (28)

NN does not rely on a training phase (except for a possible pre-processing such as kd-trees
to allow for a faster search of neighbors at test time). Interestingly, at test time, the cost of
the optimization over Z in (20) depends also on the number q of neighbors selected, which
is a hyperparamter of the estimator.

So far we have introduced a novel family of estimators for structured prediction and discussed
how they can be derived from the notion of Implicit Loss Embedding. We are left with two
critical questions that will be addressed in the following: on one hand we need to characterize
how the approximation of gn can lead to good estimations of f∗. A second, more concrete
question is whether the ILE definition is sufficiently flexible to encompass relevant structured
prediction problems or, in other words, which functions admit an ILE. We will address the
first question in Sec. 5 and the second one in Sec. 6. Before doing so, in Sec. 4 we draw some
connections with previous work. These observations will prove useful to better situate our
framework within the literature on structured prediction. We conclude this section with a
comment on evaluating the ILE in practice.

3.4. Evaluating the ILE Estimator

According to (20), evaluating fn on a test point x ∈ X consists in solving an optimization
problem over the output space Z. This design of the test phase is standard in structured
prediction settings and in particular for auxiliary function maximization methods (see
Sec. 4.3), where a corresponding optimization protocol is derived on a case-by-case basis
depending on the loss and the space Z, (see Nowozin et al., 2011, and references therein). The
objective functional in our setting can be interpreted as estimating the weighted barycenter
(or Frechet mean) of the training output points with respect to the “distance” induced by

12
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the loss 4. This perspective can be particularly advantageous when efficient methods for
barycenter computation are available for the given loss.

Example 2 (Distributional Regression with Optimal Transport) Luise et al. (2018)
addressed the problem of learning to predict probability distributions with respect to optimal
transport-based loss. Here Z corresponds to the set of probability distributions over a discrete
set and 4 is the Sinkhorn loss (Cuturi, 2013). The Sinkhorn loss is an entropic regularization
of the well-known Wasserstein distance, which enjoyes better computational properties and
for which it was shown that the ILE property applies (Luise et al., 2018). Efficient methods
exists to compute the barycenter with respect to the Sinkhorn loss (Cuturi and Doucet, 2014;
Benamou et al., 2015) that can be readily applied to solve (20) in practice.

When Z is locally diffeomorphic to a linear space, the objective functional in our setting
allows also to suggest a general stochastic meta-algorithm. In particular, (20) can interpreted
as the problem of minimizing an expectation

fn(x) = argmin
z∈Z

Ei∼α(x) hi(z, x) with hi(z, x) = sign(αi(x))
a(x) 4 (z, yi) (29)

where i ∈ {1, . . . , n} is a random variable sampled according to the relevance weights αi(x)
and a(x) =

∑n
i=1 αi(x). Thus, when 4 is (sub)differentiable in the first variable, problems of

the form of (29) can be directly addressed addressed by stochastic gradient methods (SGM).

Example 3 (Manifold Regression) If Z is a Riemannian manifold, the optimization
problem in (29) can be addressed by methods such as stochastic Riemannian descent (Sra
and Hosseini, 2016). This strategy was adopted in (Rudi et al., 2018) for the case of Z the
space of positive semidefinite matrices, the discrete probability simplex and the manifold
of orientations of a 2D vector. More recently Marconi et al. (2020) proposed a taxonomy
generalization approach for relational data representation, which hinges on solving a manifold
structured prediction problem over the hyperbolic space Z. In all the above settings, the loss
4 was chosen to be the squared geodesic distance on Z.

We conclude this section with a remark on the computational complexity in the discrete
setting. In particular we comment on the comparison between the inference problem in (20)
related to the overall supervised problem of structured prediction.

Remark 6 (On the Complexity of Inference) In general, given the scores αi(x), solv-
ing the inference problem to obtain fn(x) requires solving a possibly hard optimization problem.
However, in most settings, this approach can be more favorable than ERM. Indeed, consider
for simplicity the case where both X and Z are finite spaces with cardinality |X | and |Z|
respectively. ERM would require solving an optimization problem on the space of all functions
from X to Z, which has cardinality |Z||X |. On the other hand, the ILE approach acts by
first learning the scores αi(x), which is done efficiently by solving a linear system and then
finding the best output f(x) over the space Z. This amounts to solving an optimization over
a space of cardinality |Z|, which is significantly smaller than |Z||X |.

13



Ciliberto, Rosasco, Rudi

4. Connections with Previous Work

In this section we highlight some relevant connections between our framework and previous
literature. As mentioned in Sec. 2 we show that, although starting from a different perspective,
our method can be interpreted as a synthesis of the two main structured prediction strategies
considered in the literature, namely surrogate frameworks and auxiliary function maximization
methods. In this sense, our approach represents the best of both worlds, since it is theoretically
sound (as we will show in Sec. 5) but it is also applicable to a large family of learning
problems. We also draw a connection with the conditional mean embeddings literature, which
will offer relevant insights on the theoretical analysis of Sec. 5.

4.1. Surrogate Frameworks

Surrogate approaches are designed to address specific structured prediction problems such
as classification (Bartlett et al., 2006; Mroueh et al., 2012), multi-labeling (Gao and Zhou,
2013), ranking (Duchi et al., 2010) or quantile regression (Steinwart et al., 2011) to name a
few. The core idea underlying these methods is to deal with the structure of the problem by:
1) finding an embedding (or encoding) of the output variables into a linear space where, 2) a
surrogate learning problem can be solved efficiently and finally, 3) map back the surrogate
solution by means of a suitable decoding.

More formally, given a training dataset (xi, yi)ni=1 , a surrogate approach consists in the
following three steps:

1. Encoding. Choose a coding c : Y → H into a surrogate space H.
Map (xi, yi)ni=1 to the surrogate dataset (xi, c(yi))ni=1.

2. Learning. Define a surrogate loss L : H×H → R.
Learn gn : X → H minimizing L on (xi, c(yi))ni=1.

3. Decoding. Choose a decoding d : H → Z and define fn = d ◦ gn : X → Y.

A prototypical example of this strategy is represented by binary classification.

Example 4 (Binary Classification) In binary classification the goal is to learn a binary-
valued function f : X → Z = {−1, 1}. The prototypical approach to address this problem
is to consider c : Y = {−1, 1} → H = R the identity map and then learn gn : X → R by
minimizing a suitable loss L : R× R→ R (e.g. least-squares, hinge, logistic, etc.). The final
classifier is then obtained as fn(x) = sign(gn(x)), with decoding d = sign : R→ {−1, 1}.

Surrogate frameworks critically hinge on identifying a suitable candidate for the loss function
L : H × H → R. Indeed, while on one hand L should allow to compute the estimator
gn : X → H efficiently, on the other hand the surrogate learning process induced by L
needs to be related to the original structured prediction problem. The requirement for
efficiency is typically satisfied by choosing L to be a convex loss (e.g. least-squares, hinge or
logistic in binary classification, see Example 4). The connection with structured prediction
is investigated by studying the ideal learning problem induced by the surrogate risk

R(g) =
∫
L(g(x), c(y)) dρ(x, y), (30)
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with g : X → H. Intuitively, for a “good” surrogate framework, the global minimizer
g∗ : X → H of the risk R should allow to recover the original solution f∗ : X → Z by means
of the decoding, for instance f∗ = d ◦ g∗. Moreover, ideally, as the number n of training
points increases and the estimator gn provides a better approximation to g∗, we would like
the predictor fn to converge to f∗ as well.

Formalizing the observations above, the following two conditions are typically required
by Surrogate Frameworks:

• Fisher Consistency. E(f∗) = E(d ◦ g∗),

• Comparison Inequality. E(d ◦ g)− E(f∗) ≤ γ(R(g)−R(g∗)) for any g : X → H,
with γ : R+ → R+ continuous, non-decreasing and such that γ(0) = 0.

The Fisher consistency establishes the validity of the surrogate framework in terms of
the original problem. It guarantees that we can always recover the ideal f∗ from the
surrogate solution g∗. The comparison inequality allows to automatically extend any result
characterizing the learning rates of the surrogate estimator to obtain explicit excess risk
bounds for the structured prediction one (possibly accelerated or slowed down by a factor
depending on the function γ). We refer to Mroueh et al. (2012) and references therein for
concrete examples of this strategy in a variety of structured prediction settings.

Surrogate Frameworks and ILE. While surrogate methods are typically designed on a
case-by-case basis for each learning problem, the structured prediction framework proposed
in this work can be interpreted as a general form of surrogate approach. In particular, it is
natural to choose the encoding map as the ILE feature map on the label space Y, namely
c = ϕ. Moreover, we have observed how any ILE loss function is directly associated to a
suitable surrogate output space H via the ILE definition itself. In particular, in Thm. 3 we
have shown how the corresponding structured prediction problem is naturally associated
to the surrogate risk R with surrogate loss L(η1, η2) = ‖η1 − η2‖2H the square loss on H. It
follows that we can choose as decoding the map d : H → Z such that

d(η) = argmin
z∈Z

〈 ψ(z) , η 〉H (31)

for any η ∈ H. Indeed, with the notation of Sec. 3, we have fn = d ◦ gn according to (20)
that recovers our structured prediction estimators. Note in particular that Thm. 3 shows
that our framework is Fisher consistent, by proving that indeed f∗ = d ◦ g∗ as required.

The connection with surrogate methods will be completed by our theoretical analysis of
Sec. 5. Indeed, analogously to surrogate approaches, our proof strategy hinges on proving a
comparison inequality, which allows to study the generalization properties on the surrogate
problem to control the excess risk of the structured prediction estimator. In particular, in
Thm. 7 we provide a comparison inequality for our framework with γ corresponding to the
square root function.

4.2. Output Kernel Regression

Output Kernel Regression (OKR) (Geurts et al., 2006, 2007; Brouard et al., 2011; Kadri
et al., 2013; Brouard et al., 2016) is a general framework to address supervised learning
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problems where the loss function corresponds to the canonical Euclidean distance induced
by a reproducing kernel on the output space. OKR recovers the method originally proposed
in Kernel Dependency Estimation (KDE) (Weston et al., 2002; Cortes et al., 2005) as a
special case. In these settings we need to assume Y = Z. Consider h : Y × Y → R a
reproducing kernel on the output space. Let H be the RKHS associated to h, with feature
map ϕ : Y → H, namely h(y, y′) = 〈ϕ(y), ϕ(y′)〉H for any y, y′ ∈ Y. OKR methods address
the problem of learning a function f : X → Y by minimizing the least-squares loss on H,

4(f(x), y) = ‖ϕ(f(x))− ϕ(y)‖2H, (32)

for x ∈ X and y ∈ Y. Given a dataset (xi, yi)ni=1, learning fn directly might be challenging
because of the structure of Y. Alternatively, it might be possible to leverage the linear
structure of H to learn a function gn : X → H. Whenever a test point x ∈ X is provided,
the prediction fn(x) is then obtained by finding the y ∈ Y for which ϕ(y) is closest to gn(x)
according to the canonical distance on H. This phase, akin to the decoding of surrogate
methods, is referred to as the preimage problem. When gn(x) =

∑n
i=1 αi(x)ϕ(yi), given the

score functions α, this problem can be cast as the optimization

fn(x) = argmin
y∈Y

‖ϕ(y)− gn(x)‖2H = argmin
y∈Y

h(y, y)− 2
n∑
i=1

αi(x)h(y, yi). (33)

Indeed, thanks to the reproducing property of the kernel h we have for every y, y′ ∈ Y

‖ϕ(y)− ϕ(y′)‖2H = h(y, y)− 2h(y, y′) + h(y′, y′). (34)

Recently, OKR settings with other loss functions have been considered (hinge (Brouard
et al., 2016) or e.g. Huber, ε-insensitive (Laforgue et al., 2019)).

Output Kernel Regression and ILE. There is a clear connection between OKR (and
KDE) approaches and the ILE framework considered in this work. Indeed, as we show in
Sec. 6 (Thm. 13), the loss function considered by OKR satisfies the ILE definition. Moreover,
if the output kernel h is such that h(y, y) = η for any y ∈ Y, with η > 0 a constant, then
the ILE estimator in (20) corresponds exactly to OKR (assuming same scores α). The latter
observation implies that the theoretical analysis reported in Sec. 5 applies also to OKR
and KDE. Therefore, a further byproduct of our work is the theoretical analysis of these
strategies, which to our knowledge is a novel contribution on its own.

We conclude this section by highlighting two critical differences between our framework
and the methods above:

• KDE was designed to address structured prediction problems by substituting the
original structured loss with the least-squares induced by a kernel on the output.
There is no guarantee in general that the KDE estimator is in any way solving the
structured prediction. In this sense KDE could be interpreted as a form of surrogate
method for which the surrogate problem does not satisfy neither Fisher consistency
nor Comparison Inequality.

• If the condition h(y, y) = η does not hold, the OKR (or KDE) and ILE estimators do
not coincide. This means that there is no guarantee that the former approaches will
enjoy the same generalization properties of ILE methods studied in Sec. 5 below.
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4.3. Auxiliary Function Maximization Methods

In contrast to surrogate approaches, auxiliary function maximization methods (Bakir et al.,
2007) have been designed to address a wide range of structured prediction problems within
a single, general framework. Given a training dataset (xi, yi)ni=1, these methods learn a score
function Fn : Z × X → R that measures the likelihood of observing a given input-output
pair (z, x). In these settings, the structured prediction estimator fn : Z → X is defined in
terms of an optimization problem, namely as the function selecting the “most likely” output
according to the score function Fn. This amounts to solving the maximization problem

fn(x) = argmax
z∈Z

Fn(z, x), (35)

for any input x ∈ X provided at test time.
Auxiliary function maximization methods are identified by the approach used to learn

the score function Fn. A general strategy, adopted for instance by Structured Support Vector
Machines (SVMStruct) (Tsochantaridis et al., 2005) is to consider a model of the form

Fn(z, x) = 〈 Φ(z, x) , wn 〉G (36)

for x ∈ X and z ∈ Z, where G is a suitable feature space and Φ : Z ×X → G a joint feature
map on the input-output set. The function Fn is therefore parametrized by the vector
wn ∈ G, which is learned during the training phase. For instance, wn can be learned by
minimizing an upper bound of the empirical risk by extending the strategy used in binary
classification settings for the standard SVM approach (Tsochantaridis et al., 2005; Cortes
et al., 2016).

Other approaches follow more adherently the interpretation of Fn as measuring the
likelihood of input-output pairs and thus consider models of the form

Fn(z, x) = p(z|x) = e−〈Φ(z,x),wn〉∑
z′∈Z e

−〈Φ(z′,x),wn〉
, (37)

where Fn(·, x) is a probability distribution over Z. These methods consider a similar
parametrization of the target function to SVMStruct approaches. However, they differ
from the latter methods in that during training the aim to approximate the underlying
input-output distribution. This model is often adopted by structured prediction approaches
based on Conditional Random Fields (CRF) (Vishwanathan et al., 2006; Morency et al.,
2007). For an in-depth introduction on auxiliary function maximization methods we refer
the reader to Nowozin et al. (2011) and references therein.

We care to point out that, in general, although the approaches above consider models
that can be applied to arbitrary output spaces Z, these algorithms typically require Z to be
finite. In this sense, a fundamental advantage of the ILE framework considered in this work
is to go beyond the finite setting.

Auxiliary function maximization and ILE. The structured prediction framework dis-
cussed in this work has a natural interpretation as an auxiliary function maximization
approach. To see this, consider

Fn(z, x) = −
n∑
i=1

αi(x) 4 (z, yi) (38)
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for x ∈ X and z ∈ Z. If 4 admits an ILE, our method corresponds to parametrizing Fn
as in (36) above, with G = H⊗F and Φ(z, x) = ψ(z)⊗ φ(x), where F is a RKHS on the
input set X with associated kernel φ : X × X → R and the map φ(x) = k(x, ·) ∈ F can
be interpreted as a feature map from X to F . By leveraging the properties of the tensor
product operation, we have

Fn(x, z) = 〈 Φ(x, z) , wn 〉G = 〈 ψ(z) , Wn φ(x) 〉H = 〈 ψ(z) , gn(x) 〉H , (39)

where we have defined gn : X → H as the function such that gn(x) = Wn φ(x) for any x ∈ X
and Wn : F → H is the operator corresponding to wn given by the canonical isomorphism
between H⊗F and the space HS(F ,H) of Hilbert-Schmidt operators from F to H.

In Sec. 3 we have discussed a number of algorithms to learn Wn (or, equivalently wn),
whose theoretical properties have then been studied in Sec. 5. This connection opens two
relevant questions for future investigation: 1) study approaches to learn the parameters Wn

that do not necessarily converge to the conditional mean (but for which it is still possible to
prove the consistency of the resulting structured prediction); 2) While the ILE assumption
seem to require a “separable” representation of the form Φ(x, z) = ψ(z) ⊗ φ(x), it would
be interesting to consider joint input-output feature maps, which could prove beneficial
in settings where structural relations between input and outputs could be leveraged. A
potential promising approach to address this question would be to borrow ideas from the
literature on vector-valued and multi-task learning with RKHS for vector-valued functions
(see for instance Alvarez et al., 2012, and references therein).

4.4. Conditional Mean Embeddings

In this section we highlight the relation between our structured prediction framework and
conditional mean embeddings (Song et al., 2009). This connection is particularly useful to
understand the role played by the surrogate function g∗ within the analysis of Sec. 5.

Let H be a RKHS of functions from Y to R with associated positive definite kernel
h : Y × Y → R. We recall that the conditional mean embedding in H of ρ(·|x) given x ∈ X
is defined as

µy|x =
∫
Y
h(y, ·) dρ(y|x). (40)

A key aspect of conditional mean embeddings is that, thanks to the reproducing property of
the RKHS, for any f ∈ H we have〈

f, µy|x
〉
H

= Ey|x f(y). (41)

This allows to evaluate the conditional expectation with respect to ρ(·|x) of any function
f ∈ H by directly performing an inner product with µy|x.

It was observed in Sriperumbudur et al. (2011) that for a wide family of RKHS, called
characteristic, the kernel mean embedding operator is injective. In other words, two
distributions have same embedding in H if and only if they coincide. This implies that kernel
mean embeddings, and in particular conditional mean embeddings, encode rich information
about the associated distribution within a single vector in H.
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Conditional Mean Embeddings and ILE. Let 4 : Z × Y → R admit an ILE. Under
the same notation of Thm. 2, assume the corresponding surrogate space H to be a RKHS
and that ϕ : Y → H is an associated feature map, namely such that h(y, y′) = 〈ϕ(y), ϕ(y′)〉H
is the reproducing kernel associated to H. Then, according to the characterization of g∗
in (16), for any x ∈ X we have that g∗(x) = µy|x corresponds to the conditional mean
embedding of ρ(·|x) Song et al. (2009). Moreover, by denoting ψ(z) = 4(z, ·) and leveraging
the reproducing property of the mean embedding, we have

〈 ψ(z) , g∗(x) 〉H =
〈
4 (z, ·) , µy|x

〉
H

= Ey|x 4 (z, y). (42)

Interestingly, this observation recovers directly the Fisher consistency result of Thm. 3 when H
is an RKHS. Indeed, we have observed in (3) that the solution f∗ of the structured prediction
expected risk corresponds to the minimizer of the conditional expectation Ey|x 4 (z, y).
The equation above implies that this is equivalent to have f∗(·) = argminz∈Z 〈ψ(z), g∗(·)〉.

In Sec. 5.3 we will see that in order to prove learning rates for the structured prediction
estimator we will need to impose assumptions on g∗. These could be interpreted as requiring
the learning problem to satisfy regularity conditions. Indeed, the connection above between
the ILE definition and conditional mean embeddings shows that g∗ is implicitly encoding
key properties of the data generating distribution ρ and, consequently, of the structured
prediction problem itself. For more details on the topic, we refer the interested reader to
(Muandet et al., 2017) for an in-depth introduction on kernel mean embeddings and to (Song
et al., 2009; Grünewälder et al., 2012; Singh et al., 2019) for the special case of conditional
mean embeddings.

5. Theoretical Analysis

This section is devoted to characterize the statistical properties of the structured prediction
estimators introduced in this work. In particular we will prove that under standard hypotheses
from the statistical learning literature our approach is universally consistent and enjoys
optimal learning rates.

5.1. Comparison Inequality

The key result of our analysis, discussed in this section, is to show how the approximation
of g∗ via an estimator gn (such as those discussed in Sec. 3) allows to characterize the
behavior of the corresponding estimator fn = d ◦ gn with respect to the ideal solution f∗.
The following result provides such characterization to any function g : X → H.

Theorem 7 (Comparison Inequality) Let Z be a compact set and 4 : Z × Y → R
admit an ILE. Let f∗, g∗ and the risk R(·) be defined as in Thm. 3. Let g : X → H be
measurable and let f : X → Z be such that

f(x) = argmin
z∈Z

〈 ψ(z) , g(x) 〉H , (43)

for any x ∈ X . Then,

E(f)− E(f∗) ≤ 2 c4
√
R(g)−R(g∗) (44)
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The result in Thm. 7 states that we can control the structured prediction excess risk in
terms of the least-squares risk R in approximating g∗. The theorem holds for any function
g : X → H that is measurable, a technical requirement satisfied in particular by every
regression estimator gn introduced in Sec. 3.

Thm. 7 shifts the problem of studying the generalization properties of fn to that of
characterizing the learning rates of the vector-valued estimator gn, for which more well-
established tools from statistical learning theory can be leveraged. Throughout this work
we will refer to (44) as the comparison inequality of our structured prediction framework.
This notation is borrowed from the literature on surrogate methods, as discussed in more
detail in Sec. 4.1. An result analogous to Thm. 7 was shown originally in Ciliberto et al.
(2016) for functions satisfying a similar property to ILE. For completeness, in Appendix A
we prove it for ILE functions.

5.2. Universal Consistency

The comparison inequality in Thm. 7 is instrumental to study the generalization properties
of the estimator considered in this work. In particular, the results reported in the rest of
this section are obtained by characterizing the statistical properties of the estimator gn and
then extending them to fn by means of the inequality in (44).

We start from the result proving the universal consistency of fn. This is a fundamental
requirement for a valid learning algorithm, stating that E(fn) converges to the minimum
possible risk E(f∗) as the number n of training points grows to infinity. A key assumption
in this setting will be that the kernel k : X × X → R on the input space, introduced
to learn the coefficients αi characterizing the solution fn in (20), is universal. This is a
standard assumption in statistical learning theory (Steinwart and Christmann, 2008, see
e.g.) and corresponds to requiring the RKHS F associated to k to be dense in the space
of continuous function on X . Typical examples of universal kernels on X ⊆ Rd are the
Gaussian k(x, x′) = e−‖x−x

′‖2/σ2 or the Laplacian k(x, x′) = e−‖x−x
′‖/σ kernels.

Theorem 8 (Universal Consistency) Let Z be a compact set and 4 : Z×Y → R admit
an ILE. Let k : X × X → R be a bounded universal reproducing kernel. For any n ∈ N and
any distribution ρ on X × Y let fn : X → Z be the estimator in (20) trained on (xi, yi)ni=1
points independently sampled from ρ and with weights α defined as:

(a) (Ridge Regression) in (14) with λn = n−1/2, or

(b) (L2-Boosting) in (21) with step-size ν < 1/κ2 and tn = n1/2, or

(c) (PCR) in (22) with λn = n−1/2.

Then,

lim
n→+∞

E(fn) = E(f∗) with probability 1 (45)

The proof of Thm. 8 is reported in Appendix B. The main technical step is to show that
the estimator gn is universally consistent. Then universal consistency of fnn follows by
combining the latter result with the comparison inequality of Thm. 7. We point out that
since gn is a vector-valued least-squares estimator, the corresponding result in the case where

20



Structured Prediction with Implicit Loss Embeddings

H is a finite space has been extensively studied in previous work (see e.g. (Caponnetto and
De Vito, 2007)). However, to prove Thm. 8 in the general setting, we extended the work
in (Caponnetto and De Vito, 2007) to the case where H is infinite dimensional, which was
considered an open question (Grünewälder et al., 2012).

5.3. Finite Sample Bounds

In order to prove finite sample bounds for structured prediction we need to impose regularity
assumptions on the learning problem. This is a standard approach in learning theory (related
to the No-Free-Lunch Theorem (Devroye et al., 2013)). In particular, we will require the
target function g∗ to belong to H⊗F . This is a standard assumption in learning theory in
the context of ridge regression (Caponnetto and De Vito, 2007; Steinwart and Christmann,
2008). In Sec. 4.4 we observed that g∗ is strongly related to the concept of conditional
mean embedding of the distribution ρ(·|x) (Song et al., 2009). Therefore, by imposing it to
belong to H⊗F or imposing additional regularity requirements, implicitly corresponds to
controlling the regularity of the data generating distribution ρ.

Below we report the learning rates of the algorithms considered in this work.

Theorem 9 (Learning Rates) Let Z be a compact set and 4 : Z ×Y → R admit an ILE
with associated Hilbert space H. Let k : X × X → R be a continuous reproducing kernel on
X with associated RKHS F such that κ2 := supx∈X k(x, x) < +∞. Let ρ be a distribution
on X ×Y and let the corresponding g∗ defined in (16) be such that g∗ ∈ H⊗F . Let δ ∈ (0, 1]
and n0 sufficiently large such that n−1/2

0 ≥ 9κ2

n0
log n0

δ . Then, for any n ∈ N, the following
estimators fn : X → Z trained on n points independently sampled from ρ are such that, with
probability at least 1− δ

E(fn)− E(f∗) ≤ c4 m q log(4/δ) n−1/4, (46)

with

m = 16
(
κ(1 + κ ‖g∗‖) + κ

√
1 + ‖g∗‖2 + ‖g∗‖

)
, (47)

and q defined as follows. This holds for estimators fn of the form (20) with corresponding
weights α defined as:

(a) (Ridge Regression) in (14) with λn = n−1/2. With constant q ≤ 3.

(b) (L2-Boosting) in (21) with ν < 1/κ2 and tn = n1/2. With constant q ≤ 2 + 2γ + eγ−1/γ.

(c) (Principal Component Regression) in (22) with λn = n−1/2. With constant q ≤ 5.

Thm. 9 is obtained as a specialization of Thm. 11 below. This result represents a direct
extension of the learning rates known for binary classification (see e.g. (Yao et al., 2007)) to
all structured prediction problems with ILE 4. This shows that up to constants, structured
prediction problems are in general as challenging as classification, from the statistical
perspective. See the next result for more details.
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Algorithm Train time Train memory Eval. time Eval. memory

ILE + RR O(n3 + n2cX) O(n2) O(ncX) O(n)
ILE + L2B O(n2√n+ n2cX) O(n2) O(ncX) O(n)
ILE + PCR O(n2√n+ n2cX) O(n2) O(ncX) O(n)

Table 1: Computational complexity for training and evaluation of fn in (20) with weights
trained respectively according to (14) (RR), (21) (L2B), (22) (PCR). Hyperparam-
eters chosen according to Thm. 9 to achieve the corresponding learning rate. The
term cX denotes cost of evaluating the kernel function.

Remark 10 (Adaptive ILE constants) We comment on the constants c4 and m in the
bound above (the constant q depends exclusively on the chosen algorithm). Note that the ILE
characterization of a function 4 is not unique in terms of the space H and feature maps
ϕ,ψ. Moreover, as observed in Sec. 3, computing the estimator fn does not require explicit
knowledge of such objects and therefore Thm. 9 holds for any (H, ϕ, ψ) such that 4 admits
an ILE and g∗ ∈ H ⊗ F . As a consequence, the bound in (46) implicitly applies for the
infimum value of c4m over the set of such triplets.

Explicitly estimating this constant is in general an open problem. When Z and Y have
finite cardinality, Nowak-Vila et al. (2018) showed that for a large family of widely used loss
functions, such constant is at most polylogarithmic in the cardinality of the sets.

The result in Thm. 9 provides the suitable hyperparameters for different ILE estimators to
achieve same statistical performance. Interestingly, depending on the method, this leads to
different computational costs, as reported in Table 1.

5.4. Refined Sample Bounds

Now we refine the analysis above considering additional regularity conditions for the learning
problem. In particular we will introduce two standard assumptions in the context of non-
parametric regression / conditional mean estimation (Caponnetto and De Vito, 2007). Let
F be the reproducing kernel Hilbert space associated to the kernel k on the input space X ,
and C : F → F be the linear operator defined as

〈f, Cg〉F =
∫
f(x)g(x)dρX (x), ∀ f, g ∈ F . (48)

See the notation paragraph in the appendices and Appendix B for more details on the
existence and properties of F , k, C. Now we can introduce the first condition.

Assumption 1 (Source condition) There exists r ≥ 0 and h ∈ H ⊗F for which

g∗ = (Cr ⊗ I) h. (49)

The norm of ‖h‖H⊗F will be denoted by R := ‖h‖H⊗F .
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The condition above measures the regularity of g∗ in terms of the eigenspectrum of C. Note
that the assumption is always verified for r = 0 (in that case h = g∗ and R = ‖g∗‖H⊗F ).
Moreover, since F is separable and C is trace class (Caponnetto and De Vito, 2007), then
C can be characterized in terms of a non-increasing sequence (σj)j∈N of eigenvalues with
associated eigenvectors (uj)j∈N. For simplicity, let H = R. We have g∗ =

∑
j βjuj , with

βj = 〈g∗, uj〉F . Then, Assumption 1 is equivalent to require that
∑
j β

2
j /σ

2r
j ≤ R. Hence,

the source condition corresponds to require g∗ to have rapidly decaying coefficients, when
expressed in terms of the basis of C. More generally, when H is a separable Hilbert space,
we have g∗ =

∑
j βj ⊗ uj , with βj ∈ H defined as βj = (uj ⊗ I)g∗. Then, Assumption 1 is

equivalent to require that
∑
j ‖βj‖

2 /σ2r
j ≤ R.

The second assumption is expressed with respect to the so called effective dimension,
defined as

deff(λ) = Tr(C(C + λI)−1), ∀λ > 0, (50)

and characterizes the interaction between the measure ρX and the kernel k on X .

Assumption 2 (Capacity condition) There exists γ ∈ [0, 1] and Q > 0 for which

deff(λ) ≤ Qλ−γ , ∀ λ > 0. (51)

The condition above is always satisfied with γ = 1 when the kernel is bounded. Indeed
let κ2 := supx k(x, x), then deff(λ) ≤ κ2/λ. Moreover when the eigenvalues of C decay
as σj(C) ≤ Aj−β, for A > 0, β > 1 and j ∈ N, then the assumption above is satisfied
with Q = A and γ = 1/β (Caponnetto and De Vito, 2007; Rudi et al., 2015; Blanchard
and Krämer, 2016). In particular note that: (i) since C is trace class, the sequence of
eigenvalues is summable therefore β > 1; (ii) the eigenvalue decay is characterized by the
choice of the kernel and the marginal probability distribution ρX . For example, when
X = [−B,B]d, d ∈ N for B > 0, k : X × X → R is a Sobolev-kernel of smoothness s > d/2
and ρX is a density bounded from above and away from zero (i.e. there exists A ≥ a > 0
such that a ≤ ρX (x) ≤ A for x ∈ X), then there exists Q depending on B, s, d for which
σj(C) ≤ Qj−2s/d and so deff(λ) ≤ Qλ−d/(2s) (see Wendland, 2004). We can now state the
refined version of Thm. 9.

Theorem 11 (Refined Learning Rates) Under the same notation and assumptions of
Thm. 9 and under the additional Assumptions 1 and 2, let δ ∈ (0, 1] and n0 sufficiently large
such that n−1/(1+2r+γ)

0 ≥ 9κ2

n0
log n0

δ . For any n ≥ n0, the following estimators fn : X → Z
trained on n points independently sampled from ρ are such that, with probability at least 1− δ

E(fn)− E(f∗) ≤ c4 m q log(4/δ) n−
r+1/2

2r+γ+1 , (52)

with

m = 16
(
κ(1 + κR) + κ

√
Q+R2 +R

)
, (53)

and q defined as follows. This holds for estimators fn of the form (20) with corresponding
weights α defined as:
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Algorithm Train time Train memory Eval. time Eval. memory

ILE + RR O(n3 + n2cX) O(n2) O(ncX) O(n)
ILE + L2B O(n2+ 1

2r+γ+1 + n2cX) O(n2) O(ncX) O(n)
ILE + PCR O(n2+ γ

2r+γ+1 + n2cX) O(n2) O(ncX) O(n)

Table 2: Computational complexity for training and evaluation of fn in (20) with weights
trained respectively according to (14) (RR), (21) (L2B), (22) (PCR). Hyperparam-
eters chosen according to Thm. 11 to achieve the corresponding learning rate. The
term cX denotes cost of evaluating the kernel function.

(a) (Ridge Regression) in (14) with λn = n
− 1

2r+γ+1 . With q ≤ 3.

(b) (L2-Boosting) in (21) with ν < 1/κ2 and tn = n
1

2r+γ+1 . With q ≤ 2 + 2ν + eν−1/ν.

(c) (Principal Component Regression) in (22) with λn = n
− 1

2r+γ+1 . With q ≤ 5.

The theorem above shows that the proposed estimator for structured prediction in (20) has
learning rates that are adaptive to the source and capacity condition, when the coefficients
are computed according to the algorithms considered in the theorem. Similarly to (45)
and Thm. 9, the result is obtained by studying the generalization properties of gn and
combining such analysis with the comparison inequality. As already pointed out in the
commentary of (45), our results in this section generalize those of (Caponnetto and De Vito,
2007) to the case of infinite dimensional output spaces H. Interestingly, the result in Thm. 11
refine Thm. 9. In particular, in the worst case r = 0, γ = 1 we recover the learning rate
O(n−1/4) in Thm. 9, while for stronger regularity assumptions (namely r >> 1 or γ ≈ 0)
the proposed algorithms attain a significantly faster rate close to O(n−1/2).

When Y and Z have finite cardinality and the data distribution satisfies additional
regularity hypotheses, such as the Tsybakov condition (see Tsybakov et al., 2004; Yao et al.,
2007), it is possible to achieve rates of up to O(n−1), as shown in (Nowak-Vila et al., 2018).
A relevant question is whether an analogous notion of the Tsybakov condition could be
identified in the case where Y and Z are not finite. Note that the O(n−1) rate is optimal in
the case of binary classification (Bartlett et al., 2006; Tsybakov et al., 2004). This implies that
such rate is optimal also for the larger family of structured prediction problems satisfying the
ILE assumption. In this sense, a natural question is whether it may be possible to perform
a more refined analysis by studying specific structured prediction problems individually.

To conclude, note that the algorithms considered in this work are not only adaptive from
the statistical viewpoint but also from a computational perspective. In particular, Table 2
reports the computational costs of running the algorithms described in this work for the
choice of hyperparameters reported by Thm. 11 depending on the Assumptions 1 and 2.
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6. Sufficient Conditions for ILE

In this section we focus our attention to the definition of Implicit Loss Embedding (ILE)
introduced in Thm. 2. In particular, we provide a number of sufficient conditions that
guarantee a loss function to admit an ILE, which are more interpretable and easy to verify
than the original definition. We will show that most loss functions used in machine learning
and structured prediction settings indeed satisfy the ILE property and therefore that the
learning framework proposed in this work applies to a wide family of relevant problems.

Bounding c4. As a byproduct of our analysis, the results in the following provide also
upper bounds for the constant c4 for a number of loss functions. As observed in Thm. 9
and 11, such constant plays a role in characterizing the learning rates of the ILE estimators.
Following the discussion of Thm. 10, it is important to note that the estimates for c4
reported in this section have been derived for a single parametrization of the ILE definition
for 4 (namely the space H and the feature maps ψ and ϕ). Obtaining sharp bounds for such
constants is outside the scope of this work. We refer to (Osokin et al., 2017; Nowak-Vila
et al., 2018) for refined analysis in the case where Z and Y are finite.

6.1. ILE on finite Output or Label Spaces

In Sec. 3.1 we provided a preliminary analysis of structured prediction for the case where
label and output spaces coincide and are finite, namely Y = Z = {1, . . . , T}. This discussion
was key in that it motivated the definition of ILE. Indeed, as already mentioned, the ILE
definition is satisfied by any loss function acting on finite output and label spaces. The
following proposition shows that it is sufficient that only one of the two spaces Y or Z is
finite to guarantee the loss function to admit an ILE.

Theorem 12 (ILE & finite Y or Z) The function 4 : Z ×Y → R admits an ILE if one
of the following conditions hold:

(a) Z and Y are finite sets. In this case c4 ≤ ‖4 ‖ the operator norm
of the matrix 4 ∈ R|Z|×|Y| with entries 4z,y = 4(z, y).

(b) Z is finite, Y is compact and 4(z, ·) is continuous on Y for any z ∈ Z.
In this case c4 ≤ supy∈Y

√∑
z∈Z | 4 (z, y)|2.

(c) Z is compact, Y is finite and 4(·, y) is continuous on Z for any y ∈ Y.
In this case c4 ≤ supz∈Z

√∑
y∈Y | 4 (z, y)|2.

The result above shows that most loss functions used in typical structured prediction
applications admit an ILE. Indeed, previous literature on the topic has been focused on
problems where either the output or the label space (or both) are finite, albeit possibly
very large (Bakir et al., 2007; Nowozin et al., 2011). In this setting, relevant examples
of applications range from computer vision, such as segmentation (Alahari et al., 2008),
localization (Blaschko and Lampert, 2008; Lampert et al., 2009), labeling (Karpathy and
Fei-Fei, 2015), pixel-wise classification (Szummer et al., 2008)), speech recognition (Bahl
et al., 1986; Sutton et al., 2012), natural language processing (Tsochantaridis et al., 2005),
trajectory planing (Ratliff et al., 2006) or hierarchical classification (Tuia et al., 2011).
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The major implication of Thm. 12 is that it justifies the application of the estimator
proposed and studied in this paper to address a variety of structured prediction problems
previously considered in the literature. Indeed, our analysis in Sec. 5 automatically guarantees
that the corresponding estimator has strong theoretical guarantees when applied to these
settings.

In the rest of this section we focus on the case where Y and Z are not necessarily finite,
showing that the definition of ILE encompasses a significantly wider family of settings
compared to the classic structured prediction literature.

6.2. ILE and Reproducing Kernel Hilbert Spaces

We already highlighted the relation between the definition of ILE and the notion of positive
definite kernel. The following result provides a more refined characterization of this relation,
showing in particular how it is possible to leverage kernels to “build” ILE functions.

Theorem 13 (ILE & RKHS) Let Z = Y be a compact set and h : Y × Y → R a contin-
uous bounded reproducing kernel on Y with associated RKHS H. Let η2 = supy∈Y h(y, y).
Then, 4 : Y × Y → R admits an ILE if one of the following holds:

(a) (Kernels). 4(z, y) = h(z, y) for any y, z ∈ Y. In this case c4 ≤ η2.

(b) (Kernel Dependency Estimation (KDE)). 4(z, y) = h(z, z) + h(y, y)− 2h(z, y) for any
y, z ∈ Y. In this case c4 = 2(2η4 + 1).

(c) For every y ∈ Y the functions 4(·, y) ∈ H belong to a bounded set of H, namely
supy∈Y ‖ 4 (·, y)‖H = D < +∞. In this case c4 ≤ ηD. The same holds if the family of
functions 4(z, ·) parametrized by z ∈ Z belong to a bounded set of H.

(d) 4 belongs to H ⊗ H the RKHS with associated kernel h̄ : Y2 × Y2 → R such that
h̄((z, y), (z′, y′)) = h(z, z′)h(y, y′) for any z, z′, y, y′ ∈ Y. In this case c4 ≤ η2‖ 4 ‖H⊗H

Thm. 13 provides four interesting results. First, as already mentioned, the definition of ILE
function recovers and is more general than that of positive definite kernel. Second, we see
that our framework recovers the Kernel Dependency Estimation (KDE) approach (Weston
et al., 2002; Cortes et al., 2005), which corresponds to a structured prediction setting with
loss function 4(z, y) = ‖h(z, ·)− h(y, ·)‖2H = h(z, z) + h(y, y)− 2h(z, y).

Point (c) shows that4 admits an ILE if the family of functions {4(·, y)}y∈Y parametrized
by y ∈ Y, is uniformly contained in a ball in H. Finally, point (d) of Thm. 13 reports a
more general result, showing that all functions that belong to the RKHS obtained as the
tensor product of H with itself admit an ILE. This recovers a large family of loss functions
as discussed in the example below.

Example 5 (Smooth Functions on Y × Y with Y = [−B,B]d admit an ILE) Let4 ∈
C∞(Y × Y), where C∞(Y) denotes the space of smooth functions over Y. Let H = W d,2(Y)
be the Sobolev space of functions over Y with up to order d square integrable weak derivatives
(Adams and Fournier, 2003). We have C∞(Y × Y) = C∞(Y) ⊗ C∞(Y) ⊂ H ⊗H. Then,
Thm. 13 (d) guarantees that 4 admits an ILE. For more details see (Luise et al., 2018).
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6.3. ILE and Regularity

The connection between ILE and RKHSs suggest the definition of ILE to be somewhat
related to the concept of smoothness or regularity of a function. The following result goes
beyond RKHSs and investigates this question in further detail.
Theorem 14 (ILE & Regularity) Let Z = Y = [−B,B]d, B > 0. A function 4 :
Y × Y → R admits an ILE when at least one of the following conditions hold:
(a) d = 1 and 4 is α-Hölder continuous with α > 1/2 or it is of bounded variation and

α-Hölder continuous with α > 0.

(b) 4(z, y) = v(z − y), where v is a function such that c4 =
∫
|v̂(ω)|dω <∞ and v̂ is the

Fourier transform of v.

(c) The mixed partial derivative 4y1,...,yd : Y → R of 4 exists almost everywhere and
4y1,...,yd ∈ Lp(Y) with p > 1.

Thm. 14 shows that any function that is sufficiently regular admits an ILE. This allows to
recover most loss functions used in machine learning and robust estimation as special cases.

Example 6 (Robust Estimation) We have already observed that smooth functions such
as the least-squares and logistic loss admit an ILE according to the discussion in Example 5.
Here we observe that also the hinge loss, used in binary classification, and most loss functions
used for scalar regression on Y = [0, 1] admit an ILE, albeit being not smooth. Indeed, most
common loss functions used in these contexts are Lipschitz continuous and therefore satisfy
Thm. 14 (a). Notable examples are loss functions used for robust estimation such as the
absolute value, Huber, Cauchy, German-McLure, “Fair” and L2 − L1 (Huber and Ronchetti,
2011). All these functions are differentiable almost everywhere, with uniformly bounded
derivatives and thus satisfy Thm. 14 (c).

6.4. Composition Rules for ILE

A natural question is whether some operations over ILE functions preserve the characteriza-
tion introduced in Thm. 2. Below we provide a set of rules that allow to “build” new ILE
functions from known ones.

Theorem 15 Let Z and Y be compact sets. Then 4 : Z ×Y → R admits an ILE if one of
the following holds:
(a) (Restriction) There exist two sets Z̄ ⊇ Z, Ȳ ⊇ Y and 4̄ : Z̄ × Ȳ → R such that 4̄

admits an ILE and its restriction to Z × Y corresponds to 4, namely

4 = 4̄|Z×Y . (54)

In this case c4 ≤ c4̄.

(b) (Right Composition) There exits Z̄, Ȳ and a ILE 4̄ : Z̄ × Ȳ → R, such that

4(z, y) = α(z)4̄(A(z), B(y))β(y), (55)

with A : Z → Z̄, B : Y → Ȳ, α : Z → R and β : Y → R continuous function, with
supz∈Z |α(z)| ≤ ᾱ and supy∈Y |β(y)| ≤ β̄ with ᾱ, β̄ ∈ R. Then c4 ≤ ᾱβ̄c4̄.
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(c) (Left Composition) There exist P ∈ N, spaces (Zp)Pp=1, (Yp)Pp=1 and corresponding ILE
4p : Zp × Yp → R such that Z = Z1 × · · · × ZP , Y = Y1 × · · · × YP and

4(z, y) = Γ
(
41 (z1, y1), . . . ,4P (zP , yP )

)
, (56)

for any z = (z1, . . . , zP ) ∈ Z and y = (y1, . . . , yP ) ∈ Y, where Γ : RP → R is an analytic
function (e.g. a polynomial).

The result above provides us several tools to build new ILE functions. In particular, Thm. 15
(a) shows that we can always restrict a ILE function on a smaller pair of output-label sets
and still enjoy the same properties of the original loss, also in terms of universal consistency
and rates of the resulting structured prediction estimator. Thm. 15 (b) allows to extend a
ILE function 4̄ to other output-label pairs by means of the embeddings A and B and the
weighting functions α and β in (55).

Example 7 (Restriction of Smooth functions on compact sets admit an ILE) Let
4 be a smooth function over [−B,B]d with B > 0. Then, by Thm. 15 (a), 4 admits an
ILE on every compact set Y ⊆ [−B,B]d.

Finally, Thm. 15 (c) shows that any combination (namely sum and multiplications) of ILE
functions is still ILE. To highlight the importance of this result we clarify it in the following.

Corollary 16 Let 41 : Z1 × Y1 → R and 42 : Z2 × Y2 → R admit an ILE. Then
4 : (Z1 ×Z2)× (Y1 ×Y2)→ R if, for any zi ∈ Zi, yi ∈ Yi and i = 1, 2, one of the following
conditions hold:

(a) 4((z1, z2), (y1, y2)) = 41(z1, y2) +42(z2, y2),

(b) 4((z1, z2), (y1, y2)) = 41(z1, y2)42 (z2, y2).

The result above allows to consider general combinations of loss functions within the
framework considered in this work. In particular, the following remark shows how multitask
learning problems (possibly with structure on the output) can be recovered in this setting.

Example 8 (Multitask Learning) In multitask learning (MTL) settings the goal is to
solve multiple separate supervised problems simultaneously (Evgeniou and Pontil, 2004;
Alvarez et al., 2012). The loss functions used in MTL typically consist in the sum of
“single task” loss functions over the separate tasks, such as least-squares for regression or
logistic/hinge for classification. Since according to Thm. 16 the sum of ILE functions is still
ILE, we see that multitask learning is naturally recovered by the framework considered in
this work. This fact was observed in (Ciliberto et al., 2017), where the structured prediction
perspective on the MTL problem allowed to address the question of how to impose non-linear
relations among multiple tasks by introducing the constraint output set Z ⊂ Y = RT .
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7. Conclusions

In this work we have presented a general framework for structured prediction. Our work
revolves around the key notion of Implicit Loss Embedding (ILE), which allows us to study
structured prediction applications where the output space is not finite, differently from
most previous work on the topic. This work significantly expanded upon Ciliberto et al.
(2016), providing novel insights on the ILE property as well as new algorithms for structured
prediction and their corresponding theoretical analysis. Among the main contributions of
this work: (a) we showed that the proposed framework can be applied to a wide range
of structured prediction problems, providing a systematic approach to derive estimators
with strong theoretical guarantees. In particular, we showed that it is possible to leverage
existing algorithms from the vector-valued regression literature to obtain novel structured
prediction estimators that enjoy equivalent statistical properties of the original method, but
with reduced computational requirements. (b) We performed a refined analysis of the excess
risk bounds, showing that the statistical rates and computational cost of the considered
algorithms are adaptive to standard regularity properties of the learning problem. (c) We
provided a number of sufficient conditions to verify whether a given loss admits an ILE.
These conditions are significantly easier to verify in practice in comparison to the general
definition. Leveraging these conditions we proved that most loss functions used in machine
learning indeed admit an ILE and are therefore suited to our framework.

Relevant directions for future work will involve: (a) considering alternative estimators
within the ILE framework not necessarily minimizing the square loss in the surrogate space;
(b) learning the structure of the output space when it is not fully known a-priori (for instance
in manifold regression settings where the output manifold is only accessible via examples).
This could be addressed by parametrizing a family of candidate output spaces and finding the
optimal parameters while simultaneously fitting the structured prediction model. Finally, (c)
an interesting question is to leverage further additional knowledge on the problem structure
to improve the overall learning rates of the estimator. This direction has been recently
preliminarily investigated in Cortes et al. (2016); Ciliberto et al. (2019), where an explicit
factorization of the loss function was used to design problem-specific algorithms and perform
a refined analysis of their generalization properties.
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Appendix
The appendix are organized in three main parts:

• Appendix A focuses on the general ILE framework, proving the results in Section 3
and the Comparison Inequality of Theorem 7.

• Appendix B covers the details of the theoretical analysis reported in Section 5.

• Appendix C provides the proofs of the results in Sec. 6, offering sufficient conditions
to guarantee a loss function to admit an ILE.

Contributions and connection with previous work. We recall that this paper is the
longer version of (Ciliberto et al., 2016). Therefore, the results reported in Appendix A
contain significant overlaps with the original work. We still prove each of the results in
detail for the sake of completeness and since in the current work we have extended the
framework in (Ciliberto et al., 2016) to the case where 4 : Z × Y → H with output space
Z not necessarily corresponding to the label space Y. The results in Appendix B and in
particular Appendix C are novel for the most part.

Setting and Notation. We assume input, label and output spaces X , Y and Z to be Polish
spaces, namely separable complete metrizable spaces, equipped with the associated Borel
sigma-algebra. When referring to the data distribution ρ on X × Y we will always assume
it to be a Borel probability measure, with ρX the marginal distribution on X and ρ(·|x)
the conditional measure on Y given x ∈ X . We recall that ρ(y|x) is a regular conditional
distribution (Dudley, 2002). Its domain Dρ|X is a measurable set contained in the support
of ρX and corresponds to the support of ρX up to a set of measure zero.

For a Hilbert space H we denote with 〈·, ·〉H and ‖ · ‖H the associated inner product
and corresponding norm. Given two Hilbert spaces H1 and H2 we denote by H1 ⊕H2 and
H1⊗H2 respectively their direct sum and tensor product. In particular, for any h1, h

′
1 ∈ H1

and h2, h
′
2 ∈ H2, we have

〈
h1 ⊕ h2, h

′
1 ⊕ h′2

〉
H1⊕H2

=
〈
h1, h

′
1
〉
H1

+
〈
h2, h

′
2
〉
H2

(57)〈
h1 ⊗ h2, h

′
1 ⊗ h′2

〉
H1⊗H2

=
〈
h1, h

′
1
〉
H1
·
〈
h2, h

′
2
〉
H2
. (58)

Given a linear operator V : H1 → H2, we denote by Tr(V ) the trace of V and by V ∗ :
H2 → H1 the adjoint of V , namely such that 〈V h1, h2〉H2

= 〈h1, V
∗h2〉H1

for every h1 ∈ H1,
h2 ∈ H2. Moreover, we denote by ‖V ‖ = sup‖h‖H1≤1 ‖V h‖H2 the operator norm and
‖V ‖HS =

√
Tr(V ∗V ) the Hilbert-Schmidt norm of V . In particular, we recall that the tensor

product H1 ⊗H2 is isometric to the space of Hilbert-Schmidt operators.
We denote with L2(X , ρX ,H) the Lebesgue space of square integrable functions on X

with respect to a measure ρX and with values in a separable Hilbert space H. For simplicity
we denote with L2(X , ρX ) the space L2(X , ρX ,R). We denote with 〈f, g〉ρX the inner product∫
〈f(x), g(x)〉H dρX (x), for all f, g ∈ L2(X , ρX ,H).
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On the Argmin. In the main paper we denoted the minimizer of (20) as

fn(x) = argmin
y∈Y

n∑
i=1

αi(x)4 (y, yi). (59)

Clearly, the rigorous notation should be

fn(x) ∈ argmin
y∈Y

n∑
i=1

αi(x)4 (y, yi) (60)

since it is not guaranteed in general to have one single minimizer for any given x ∈ X . As
we will discuss in the following, existence of a measurable function fn that satisfies such
inclusions requirement for any x ∈ X can be guaranteed under mild assumptions.

Appendix A. The ILE Framework

This section is devoted to characterize the theoretical properties of the ILE framework
introduced in Sec. 3. In particular we prove the results in Theorem 3 (Fischer Consistency)
and Theorem 7 (Comparison Inequality), which relate the “surrogate” risk to the original
structured prediction one.

We begin by proving that both the structured risk E and R admit measurable minimizers
under very mild conditions.

Lemma A.1 (Existence of a minimizer for E) Let 4 : Z × Y → R be a continuous
function and Z a compact set. Then, the expected risk E in (1) admits a measurable
minimizer f∗ : X → Z such that

f∗(x) ∈ argmin
z∈Z

∫
Y
4(z, y)dρ(y|x) (A.1)

almost everywhere on Dρ|X . Moreover, the function m : X → R such that

m(x) = inf
z∈Z

r(x, z), with r(x, z) =
{ ∫

Y 4(z, y)dρ(y|x) if x ∈ Dρ|X
0 otherwise (A.2)

for any x ∈ X , is measurable.

Proof Since 4 is continuous and ρ(y|x) is a regular conditional distribution, then r is
a Carathéodory function (see Definition 4.50 (pp. 153) in Aliprantis and Border, 2006),
namely continuous in z for each x ∈ X and measurable in x for each z ∈ Z. Thus, by
(Theorem 18.19 pp. 605 in Aliprantis and Border, 2006) (or Aumann’s measurable selection
principle (Steinwart and Christmann, 2008; Castaing and Valadier, 2006)), we have that m
is measurable and that there exists a measurable f∗ : X → Z such that r(x, f∗(x)) = m(x)
for all x ∈ X . Moreover, by definition of m, given any measurable f : X → Z, we have
m(x) ≤ r(x, f(x)). Therefore,

E(f∗) =
∫
X
r(x, f∗(x))dρX (x) =

∫
X
m(x)dρX (x) ≤

∫
X
r(x, f(x))dρX (x) = E(f). (A.3)
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We conclude E(f∗) ≤ inff :X→Z E(f) and, since f∗ is measurable, E(f∗) = minf :X→Y E(f)
and f∗ is a global minimizer.

In the following we will assume 4 : Z × Y → R to admit an ILE, with associated Hilbert
space H and feature maps ψ : Z → H and ϕ : Y → H. We recall that the surrogate risk
associated is defined as

R(g) =
∫
X×Y

‖g(x)− ϕ(y)‖2H dρ(x, y) (A.4)

for any g : X → H. Below we show that the global minimizer of R corresponds to the
conditional expectation of ϕ(y).

Lemma A.2 (Existence of a minimizer for R) Let H a separable Hilbert space and
ϕ : Y → H measurable and bounded with supy∈Y ‖ϕ(y)‖H ≤ Φ. Then, the function
g∗ : X → H such that

g∗(x) =
∫
Y
ϕ(y)dρ(y|x) ∀x ∈ Dρ|X (A.5)

and g∗(x) = 0 otherwise, belongs to L2(X , ρX ,H) and is a minimizer of the surrogate risk
R. Moreover, for any g ∈ L2(X , ρX ,H),

R(g)−R(g∗) =
∫
X
‖g(x)− g∗(x)‖2H dρX (x) (A.6)

Hence, any minimizer of R is equal to g∗ almost everywhere on the domain of ρX .

Proof By hypothesis, ‖ψ‖H is measurable and bounded. Therefore, since ρ(y|x) is a regular
conditional probability, we have that g∗ is measurable on X (see for instance Steinwart and
Christmann (2008)). Moreover, the norm of g∗ is dominated by the constant function of value
Φ, thus g∗ is integrable on X with respect to ρX and in particular it is in L2(X , ρX ,H) since
ρX is a finite regular measure. Recall that since ρ(y|x) is a regular conditional distribution,
for any measurable g : X → H we have

R(g) =
∫
X×Y

‖g(x)− ψ(y)‖2Hdρ(x, y) =
∫
X

∫
Y
‖g(x)− ψ(y)‖2Hdρ(y|x)dρX (x). (A.7)

Notice that g∗(x) = argminh∈H
∫
Y ‖h− ψ(y)‖2Hdρ(y|x) almost everywhere on Dρ|X . Indeed,∫

Y
‖h− ψ(y)‖2Hdρ(y|x) = ‖h‖2H − 2

〈
h,

(∫
Y
ψ(y)dρ(y|x)

)〉
+
∫
Y
‖ψ(y)‖2Hdρ(y|x) (A.8)

= ‖h‖2H − 2 〈h, g∗(x)〉H + const. (A.9)

for all x ∈ Dρ|X , which is minimized by h = g∗(x) for all x ∈ Dρ|X . Therefore, since
Dρ|X is equal to the support of ρX up to a set of measure zero, we conclude that R(g∗) ≤
infg:X→HR(g) and, since g∗ is measurable, R(g∗) = ming:X→HR(g) and g∗ is a global
minimizer as required.
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Finally, notice that for any g : X → H we have

R(g)−R(g∗) =
∫
X×Y

‖g(x)− ψ(y)‖2H − ‖g∗(x)− ψ(y)‖2H dρ(x, y) (A.10)

=
∫
X
‖g(x)‖2H − 2

〈
g(x),

(∫
Y
ψ(y)dρ(y|x)

)〉
H

+ ‖g∗(x)‖2H dρX (x) (A.11)

=
∫
X
‖g(x)‖2H − 2 〈g(x), g∗(x)〉H + ‖g∗(x)‖2H dρX (x) (A.12)

=
∫
X
‖g(x)− g∗(x)‖2H dρX (x), (A.13)

which proves (A.6). Therefore, for any measurable minimizer g′ : X → H of the surrogate
expected risk, we have R(g′)−R(g∗) = 0 which, by the relation above, implies g′(x) = g∗(x)
a.e. on Dρ|X .

Combining the characterizations of the global minimizers of the two risks E and R we can
now prove the following.

Lemma A.3 (Fisher Consistency) Let Z be compact, 4 : Z × Y → R admit an ILE
and let f∗ : X → Z be the solution of (1). Then,

f∗(x) = argmin
z∈Z

〈 ψ(z) , g∗(x) 〉H , g∗(x) =
∫
Y
ϕ(y) dρ(y|x) (16)

almost surely with respect to ρX . Moreover, g∗ : X → H is the minimizer of

R(g) =
∫
Y×X

‖ϕ(y)− g(x)‖2H dρ(x, y). (17)

Proof By Theorem A.2 we know that g∗(x) =
∫
Y ϕ(y)dρ(y|x) almost everywhere on Dρ|X

and is the minimizer of R. Therefore, for every z ∈ Z we have

〈ψ(z), g∗(x)〉H =
〈
ψ(z),

∫
Y
ϕ(y)dρ(y|x)

〉
H

(A.14)

=
∫
Y
〈ψ(z), ϕ(y)〉H dρ(y|x) =

∫
Y
4(z, y)dρ(y|x) (A.15)

almost everywhere on Dρ|X . Thus, for any measurable function f : X → Z we have

E(f) =
∫
X×Y

4(f(x), y)dρ(x, y) =
∫
X

∫
Y
4(f(x), y)dρ(y|x)dρX (x) (A.16)

=
∫
X
〈ψ(f(x)), g∗(x)〉H dρX (x). (A.17)

We conclude that a minimizer f∗ : X → Z of E can be characterized as a function minimizing
pointwise the integral above, namely

f∗(x) ∈ argmin
z∈Z

〈ψ(f(x)), g∗(x)〉H (A.18)
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almost everywhere on Dρ|X .

We now prove Theorem 7, characterizing the relation between the excess risks associated to
R and E .

Theorem 7 (Comparison Inequality) Let Z be a compact set and 4 : Z × Y → R
admit an ILE. Let f∗, g∗ and the risk R(·) be defined as in Theorem 3. Let g : X → H be
measurable and let f : X → Z be such that

f(x) = argmin
z∈Z

〈 ψ(z) , g(x) 〉H , (43)

for any x ∈ X . Then,

E(f)− E(f∗) ≤ 2 c4
√
R(g)−R(g∗) (44)

Proof By applying Thm. 3, we have

E(f)− E(f∗) =
∫
X×Y

4(f(x), y)−4(f∗(x), y) dρ(x, y) (A.19)

=
∫
X×Y

〈ψ(f(x))− ψ(f∗(x)), ϕ(y)〉H dρ(x, y) (A.20)

=
∫
X

〈
ψ(f(x))− ψ(f∗(x)),

(∫
Y
ϕ(y) dρ(y|x)

)〉
H
dρX (x) (A.21)

=
∫
X
〈ψ(f(x))− ψ(f∗(x)), g∗(x)〉H dρX (x) (A.22)

= A+B. (A.23)

where in the last equation we have removed and added a term
∫
X 〈ψ(f(x)), g(x))〉H dρX (x)

leading to

A =
∫
X
〈ψ(f(x)), (g∗(x)− g(x))〉H dρX (x) (A.24)

B =
∫
X
〈ψ(f(x)), g(x)〉H − 〈ψ(f∗(x)), g∗(x)〉H dρX (x) (A.25)

Now, the term A can be minimized by taking the supremum over Z so that

A ≤
∫
X

sup
z∈Z

∣∣∣ 〈ψ(z), g∗(x)− g(x))〉H
∣∣∣ dρX (x). (A.26)

For B, we observe that from the characterization of f in the hypothesis and of f∗ by
Theorem 3, we have

〈ψ(f∗(x)), g∗(x)〉H = inf
z∈Z
〈ψ(z), g∗(x)〉H , (A.27)

〈ψ(f(x)), g(x)〉H = inf
z∈Z
〈ψ(z), g(x)〉H , (A.28)
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for all x ∈ X . Therefore,

B =
∫
X

inf
z∈Z
〈ψ(z), g(x)〉H − inf

z∈Z
〈ψ(z), g∗(x)〉H dρX (x) (A.29)

≤
∫
X

sup
z∈Z

∣∣∣ 〈ψ(z), (g(x)− g∗(x))〉H
∣∣∣dρX (x) (A.30)

where we have used the fact that for any given two functions η, ζ : Z → R we have∣∣∣∣ inf
z∈Z

η(z)− inf
z∈Z

ζ(z)
∣∣∣∣ ≤ sup

z∈Z
|η(z)− ζ(y)|. (A.31)

Therefore, by combining the bounds on A and B we have

E(f)− E(f∗) ≤ 2
∫
X

sup
z∈Z

∣∣∣ 〈ψ(z), g∗(x)− g(x)〉H
∣∣∣ dρX (x) (A.32)

≤ 2
∫
X

sup
z∈Z
‖ψ(z)‖H‖g∗(x)− g(x)‖H dρX (x) (A.33)

≤ 2c4
∫
X
‖g∗(x)− g(x)‖H dρX (x) (A.34)

≤ 2c4

√∫
X
‖g∗(x)− g(x)‖2H dρX (x), (A.35)

(A.36)

where for the last inequality we have used the Jensen’s inequality. The proof is concluded
recalling that, by Theorem A.2

R(g)−R(g∗) =
∫
X
‖g(x)− g∗(x)‖2H dρX (x) (A.37)

We conclude proving the result in Theorem 4, which is a direct consequence of the linearity
induced by the ILE definition.

Lemma A.4 Let 4 : Z×Y → R admit an ILE, (yi)ni=1 a set of points in Y and α : X → Rn
a weighting function. Let gn : X → H be such that gn(x) =

∑n
i=1 αi(x)ϕ(yi) for any x ∈ X .

Then, the function fn : X → Z such that ∀x ∈ X

fn(x) = argmin
z∈Z

〈 ψ(z) , gn(x) 〉H = argmin
z∈Z

n∑
i=1

αi(x) 4 (z, yi). (20)

Proof For any z ∈ Z and x ∈ X we have

〈ψ(z), gn(x)〉H =
〈
ψ(z),

n∑
i=1

αi(x)ϕ(yi)
〉
H

(A.38)

=
n∑
i=1

αi(x) 〈ψ(z), ϕ(yi)〉H (A.39)

=
n∑
i=1

αi(x)4 (z, yi). (A.40)
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Therefore, substituting the above equation in the definition of fn concludes the proof.

Appendix B. Universal Consistency and Learning Bounds

Additional Notation. Let k : X × X → R a positive semidefinite function on X . We
denote F the Hilbert space obtained by the completion

F = span{k(x, ·) | x ∈ X} (B.1)

according to the norm induced by the inner product 〈k(x, ·), k(x′, ·)〉F = k(x, x′). Spaces
F constructed in this way are known as reproducing kernel Hilbert spaces and there is a
one-to-one relation between a kernel k and its associated RKHS. For more details on RKHS
we refer the reader to Berlinet and Thomas-Agnan (2011). Given a kernel k, in the following
we will denote with φ : X → F the feature map φ(x) = k(x, ·) ∈ F for all x ∈ X . We say
that a kernel is bounded if ‖φ(x)‖F ≤ κ with κ > 0. Note that k is bounded if and only if
k(x, x′) = 〈φ(x), φ(x′)〉F ≤ ‖φ(x)‖F‖φ(x′)‖F ≤ κ2 for every x, x′ ∈ X . In the following we
will always assume k to be continuous and bounded by κ > 0. The continuity of k with the
fact that X is Polish implies F to be separable Berlinet and Thomas-Agnan (2011).

We introduce here the ideal and empirical operators that we will use in the following to
prove the main results of this work.

• S : F → L2(X , ρX ) s.t. f ∈ F 7→ 〈f, φ(·)〉F ∈ L2(X , ρX ), with adjoint

• S∗ : L2(X , ρX )→ F s.t. h ∈ L2(X , ρX ) 7→
∫
X h(x)φ(x)dρX (x) ∈ F ,

• Z : H → L2(X , ρX ) s.t. h ∈ H 7→ 〈h, g∗(·)〉H ∈ L2(X , ρX ), with adjoint

• Z∗ : L2(X , ρX )→ H s.t. h ∈ L2(X , ρX ) 7→
∫
X h(x)g∗(x)dρX (x) ∈ H,

• C = S∗S : F → F and L = SS∗ : L2(X , ρX )→ L2(X , ρX ),

with g∗(x) =
∫
Y ψ(y)dρ(y|x) defined according to (A.5), (see Theorem A.2).

Given a set of input-output pairs {(xi, yi)}ni=1 with (xi, yi) ∈ X × Y independently
sampled according to ρ on X ×Y , we define the empirical counterparts of the operators just
defined as

• Ŝ : F → Rn s.t. f ∈ F 7→ 1√
n

(〈φ(xi), f〉F )ni=1 ∈ Rn, with adjoint

• Ŝ∗ : Rn → F s.t. v = (vi)ni=1 ∈ Rn 7→ 1√
n

∑n
i=1 viφ(xi),

• Ẑ : H → Rn s.t. h ∈ H 7→ 1√
n

(〈ψ(yi), h〉H)ni=1 ∈ Rn, with adjoint

• Ẑ∗ : Rn → H s.t. v = (vi)ni=1 ∈ Rn 7→ 1√
n

∑n
i=1 viψ(yi),

• Ĉ = Ŝ∗Ŝ : F → F and K = nŜŜ∗ ∈ Rn×n is the empirical kernel matrix.

In the rest of this section we denote with A+ λ, the operator A+ λI, for any symmetric
linear operator A, λ ∈ R and I the identity operator.
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B.1. Preliminary results

We recall here a basic result characterizing the operators introduced above.

Proposition B.1 With the notation introduced above,

C =
∫
X
φ(x)⊗ φ(x)dρX (x) and Z∗S =

∫
X×Y

ψ(y)⊗ φ(x)dρ(x, y) (B.2)

where ⊗ denotes the tensor product. Moreover, when φ and ψ are bounded by respectively κ
and Q, we have the following facts

(i) Tr(L) = Tr(C) = ‖S‖2HS =
∫
X ‖φ(x)‖2FdρX (x) ≤ κ2

(ii) ‖Z‖2HS =
∫
X ‖g∗(x)‖2dρX (x) = ‖g∗‖2ρX < +∞.

Proof By definition of C = S∗S, for each h, h′ ∈ F we have

〈
h,Ch′

〉
F =

〈
Sh, Sh′

〉
ρX

=
∫
X
〈h, φ(x)〉F

〈
φ(x), h′

〉
F dρX (x) (B.3)

=
∫
X

〈
h,
(
φ(x)

〈
φ(x), h′

〉
F

)〉
F
dρX (x) (B.4)

=
∫
X

〈
h,
(
φ(x)⊗ φ(x)

)
h′
〉
dρX (x) (B.5)

=
〈
h,
( ∫
X
φ(x)⊗ φ(x)dρX (x)

)
h′
〉
F

(B.6)

since φ(x) ⊗ φ(x) : F → F is the operator such that h ∈ F 7→ φ(x) 〈φ(x), h〉F . The
characterization for Z∗S is analogous.

Now, (i). The relation Tr(L) = Tr(C) = Tr(S∗S) = ‖S‖2HS holds by definition. Moreover

Tr(C) =
∫
X
Tr(φ(x)⊗ φ(x)) dρX (x) =

∫
X
‖φ(x)‖2F dρX (x) (B.7)

by linearity of the trace. (ii) is analogous. Note that ‖g∗‖2ρX < +∞. by Theorem A.2 since
ψ is bounded by hypothesis.

Lemma B.2 Let gn(x) = Ĝ∗φ(x) with Ĝ : H → F a bounded linear operator, then

R(gn)−R(g∗) = ‖SĜ− Z‖2HS, (B.8)

where ‖A‖2HS := Tr(A∗A), for a linear operator A, is the Hilbert-Schmidt norm.

Proof By Theorem A.2, we know that g∗(x) =
∫
Y ψ(y)dρ(y|x) almost everywhere on the

support of ρX , moreover by Theorem B.5 gn. Therefore, a direct application of Theorem B.1
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leads to

R(gn)−R(g∗) =
∫
‖gn(x)− g∗(x)‖2HdρX (x) = (B.9)

=
∫
X
‖Ĝ∗φ(x)‖2H − 2

〈
Ĝ∗φ(x), g∗(x)

〉
H

+ ‖g∗(x)‖2HdρX (x) (B.10)

=
∫
X
Tr
(
Ĝ∗
(
φ(x)⊗ φ(x)

)
Ĝ
)
− 2Tr

(
Ĝ∗
(
φ(x)⊗ g∗(x)

))
+ Tr(g∗(x)⊗ g∗(x))dρX (x)

(B.11)
= Tr(Ĝ∗S∗SĜ)− 2Tr(Ĝ∗S∗Z) + Tr(Z∗Z) (B.12)
= ‖SĜ− Z‖2HS (B.13)

B.2. Analytic Decomposition for Spectral Filters

To study the various estimators considered in this paper, we need to introduce the notion of
spectral filter.

Definition B.3 (spectral filters (Engl et al., 1996)) Let κ > 0. Then ηλ : (0, κ2]→ R
is a spectral filter if there exist q1, q2 > 0 s.t. for σ ∈ (0, κ2] and λ > 0

(σ + λ)ηλ(σ) ≤ q1, (1− σηλ(σ))(σ + λ) ≤ q2λ. (B.14)

In this work we have considered a simplified definition of spectral filters with respect to the
standard notion. In particular, we do not make a distinction between filters with qualification
larger than 1 (see e.g. (Engl et al., 1996; Bauer et al., 2007)). The following result gives
three concrete examples of spectral filters that will be useful to characterize the estimators
ĝ studied in this work.

Lemma B.4 The following functions are spectral filters:

1. (Ridge Regression) ηλ(σ) = (σ + λ)−1, with q1 = q2 = 1

2. (L2-Boosting) ηλ(σ) = ν
∑t
j=0(1− νσ)j, with step-size 0 < ν < 1/κ2 and λ = 1/t.

With constants q1 = 1 + 2ν and q2 = eν−1/ν.

3. (PCR) ηλ(σ) = 1
σ1σ>λ, where 1σ>λ = 1 when σ ≥ λ and 0 otherwise.

With constants q1 = q2 = 2.

Proof (Ridge Regression). It is easy to show that

• (σ + λ)ηλ(σ) = (σ + λ)(σ + λ)−1 = 1 = q1,

• 1
λ

(1− σηλ)(σ + λ) = 1
λ

(
1− σ

σ + λ

)
(σ + λ) = 1 = q2.
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(L2-Boosting). Let λ = 1/t. Recall that since ν < 1/κ2 and σ ∈ (0, κ2], we have νσ < 1.
Therefore,

∑+∞
j=0(1− νσ)j = 1/(νσ) and we have

ηλ(σ) = ν
t∑

j=0
(1− νσ)j = 1

σ

(
1− (1− νσ)t+1

)
. (B.15)

Now (σ + λ)ηλ(σ) = σηλ(σ) + ληλ(σ). Then,

σηλ(σ) = σ
1
σ

(
1− (1− νσ)t+1

)
< 1, (B.16)

since νσ > 0. Moreover, since νσ < 1,

ληλ(σ) = 1
t
ν

t∑
j=0

(1− νσ)j ≤ (t+ 1)ν
t

< 2ν. (B.17)

Hence we have

(σ + λ)ηλ(σ) ≤ 1 + 2ν = q1. (B.18)

Now, since (1− z) ≤ e−z and defining x = (t+ 1)σ, we have

1
λ

(1− σηλ(σ))(σ + λ) = t(1− νσ)t+1(σ + 1/t) (B.19)

≤ te−νσ(t+1)(σ + 1/t) (B.20)
= e−νσ(t+1) + tσe−νσ(t+1) (B.21)
≤ e−νσ(t+1) + (t+ 1)σe−νσ(t+1) (B.22)
= e−νx + xe−νx (B.23)
≤ eν−1/ν = q2. (B.24)

(PCR). Let σ < λ, then ηλ(σ) = 0 and

• (σ + λ)ηλ(σ) = 0 < 2 = q1,

• 1
λ

(1− σηλ)(σ + λ) = 1
λ

(σ + λ) < 2λ
λ

= 2 = q2.

If σ ≥ λ, we have ηλ(σ) = 1/σ and

• (σ + λ)ηλ(σ) = σ + λ

σ
<

2σ
σ

= 2 = q1,

• 1
λ

(1− σηλ)(σ + λ) = 0 < 2 = q2.

We will be applying filters ηλ to the specturm of an operator as follows. Let M : H1 → H2
be a compact linear operator between two separable Hilbert spaces H1,H2. Let M =
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∑+∞
i=1 σi ui ⊗ vi be the singular value decomposition of M , with (ui)i∈N and (vi)i∈N a

suitable pair of orthonormal bases of H1 and H2 respectively and σi ≥ 0 for every i ∈ N.
We denote the application of ηλ to M as

ηλ(M) =
+∞∑
i=1

ηλ(σi) ui ⊗ vi. (B.25)

The following results shows that several estimators described in Section 3.3 can be formulated
in terms of spectral filters.

Lemma B.5 The following algorithms can be represented as

ĝλ(x) = Ĝ∗λφ(x), Ĝλ = ηλ(Ĉ)Ŝ∗Ẑ, (B.26)

where ηλ is a spectral filter, in particular

1. (Kernel Ridge Regression) ηλ(σ) = (σ + λ)−1

2. (Kernel L2-Boosting) ηλ(σ) = ν
∑t
j=0(1− νσ)j, with step-size ν and λ = 1/t,

3. (Kernel PCR) ηλ(σ) = 1
σ1σ>λ, where 1σ>λ = 1 when σ ≥ λ and 0 otherwise.

Proof Recall that, according to (19) the estimator ĝ is such that, for any x ∈ X

ĝλ(x) =
n∑
i=1

αi(x)ϕ(yi). (B.27)

It follows by the definition of the three methods considered to learn the vector-valued
function α that, for any x ∈ X

α(x) = 1
n
ηλ

(
K

n

)
v(x) (B.28)

where ηλ is the corresponding spectral filter function given in the thesis of this Lemma. Recall
that v(x) = (k(x1, x), . . . , k(xn, x)). By definition of Ŝ and Ẑ, we have v(x) =

√
nŜφ(x) and∑n

i=1 αi(x)ϕ(yi) = 1√
n
Ẑ∗α(x). Then

ĝλ(x) = 1√
n
Ẑα(x) = 1√

n
Ẑ∗ηλ

(
K

n

)
v(x) = Ẑ∗ηλ

(
K

n

)
Ŝφ(x). (B.29)

Since K = nŜŜ∗ , then

ηλ

(
K

n

)
Ŝ = ηλ(ŜŜ∗)Ŝ = Ŝηλ(Ŝ∗Ŝ) = Ŝηλ(Ĉ), (B.30)

from which it follows

ĝλ(x) = Ẑ∗Ŝηλ(Ĉ)φ(x), (B.31)

as required.

With the characterization provided by the result above, we now proceed in deriving an upper
bound for the risk of estimators obtained via spectral filtering methods.
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Theorem B.6 Let ĝ be characterized as in Theorem B.5 in terms of a spectral filter ηλ
with constants q1, q2 > 0. Let β = ‖Ĉ−1/2

λ Cλ
1/2‖2, with Gλ = S∗L−1

λ Z. Then,

|R(gnλ)−R(g∗)|1/2 ≤ q1β‖Cλ−1/2(Ŝ∗Ẑ − ĈGλ)‖HS + 2(1 + q2)β λ‖L−1
λ Z‖HS, (B.32)

Proof From Theorem B.5 we know that ĝλ(x) = Ĝ∗λφ(x) with Ĝλ = ηλ(Ĉ)Ŝ∗Ẑ. From
Theorem B.2 we know that R(gnλ)−R(g∗) = ‖SĜλ − Z‖2HS. We add and remove the term
Sηλ(Ĉ)Ŝ∗ŜGλ, with Gλ = S∗L−1

λ Z and Lλ = L+ λI, namely

SĜλ − Z = Sηλ(Ĉ)Ŝ∗(Ẑ − ŜGλ) + Sηλ(Ĉ)Ŝ∗ŜGλ − Z. (B.33)

We decompose the first term in the sum above as

Sηλ(Ĉ)Ŝ∗(Ẑ − ŜGλ) = (SĈ−1/2
λ )(Ĉ1/2

λ ηλ(Ĉ)Ĉ1/2
λ )(Ĉ−1/2

λ Cλ
1/2)[Cλ−1/2Ŝ∗(Ẑ − ŜGλ)].

(B.34)

Hence, we have

‖Sηλ(Ĉ)Ŝ∗(Ẑ − ŜGλ)‖HS (B.35)

= ‖SĈ−1/2
λ ‖‖Ĉ1/2

λ ηλ(Ĉ)Ĉ1/2
λ ‖‖Ĉ

−1/2
λ Cλ

1/2‖‖Cλ−1/2Ŝ∗(Ẑ − ŜGλ)‖HS.
(B.36)

Note that since ηλ is a filter and Ĉ and Ĉ1/2
λ have same spectral decomposition,

‖Ĉ1/2
λ ηλ(Ĉ)Ĉ1/2

λ ‖ ≤ sup
σ∈(0,κ2]

(σ + λ)ηλ(σ) ≤ q1. (B.37)

Moreover, since Ĉ = Ŝ∗Ŝ, then

Cλ
−1/2Ŝ∗(Ẑ − ŜGλ) = Cλ

−1/2(Ŝ∗Ẑ − ĈGλ). (B.38)

We now focus on the second term of the sum in (B.33). Let rλ(σ) = 1 − σηλ(σ). Since
Ĉ = Ŝ∗Ŝ, we have

Sηλ(Ĉ)Ŝ∗ŜGλ − Z = (SGλ − Z)− Srλ(Ĉ)Gλ. (B.39)

In particular, since L = SS∗ and by definition of Gλ we have

SGλ − Z = −(I − SS∗L−1
λ )Z = −(I − LL−1

λ )Z = −λL−1
λ Z, (B.40)

since (I − LL−1
λ ) = (Lλ − L)L−1

λ = (L+ λ− L)L−1
λ = λL−1

λ . Moreover

Srλ(Ĉ)Gλ = (SĈ−1/2
λ )(Ĉ1/2

λ rλ(Ĉ)Ĉ1/2
λ )(Ĉ−1/2

λ S∗)(L−1
λ Z). (B.41)

Now note that by definition of rλ we have

‖Ĉ1/2
λ rλ(Ĉ)Ĉ1/2

λ ‖ ≤ sup
σ∈(0,κ2)

(1− σηλ(σ))(σ + λ) ≤ q2λ. (B.42)

To conclude, since ‖SĈ−1/2
λ ‖ ≤ ‖Cλ1/2Ĉ

−1/2
λ ‖ (see e.g. Rudi et al., 2015), we have

‖Sηλ(Ĉ)Ŝ∗ŜGλ − Z‖HS ≤ 2(1 + q2)λ‖Ĉ−1/2
λ Cλ

1/2‖2‖L−1
λ Z‖HS. (B.43)
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B.3. Statistical Analysis

In this section we use the decomposition in Theorem B.6 to derive statistical learning rates
for the estimators ĝ. To this end, we recall the following result.

Lemma B.7 (Carratino et al. (2018), Lemma 3) Let δ ∈ (0, 1). When λ ≥ 9κ2

n log n
δ

then the following holds with probability at least 1− δ

‖Ĉ−1/2
λ Cλ

1/2‖2 ≤ 2. (B.44)

Proof Apply Lemma 3 of Carratino et al. (2018) with R = n and ζi = φ(xi).

We now prove an intermediate result that will be instrumental in proving the excess risk
bounds of the estimators ĝ. We recall the definition of effective dimension given in (50), that
will be useful in the following, namely

deff(λ) = Tr(C(C + λI)−1), ∀λ > 0. (B.45)

Proposition B.8 Let δ ∈ (0, 1) and λ > 0. The following holds with probability at least
1− δ,

‖Cλ−1/2(Ŝ∗Ẑ − ĈGλ)‖HS ≤ λ‖L−1
λ Z‖HS +

4κ log 2
δ√

λn
(κ‖L−1/2

λ Z‖) (B.46)

+

√
16(deff(λ) + κ2λ‖L−1

λ Z‖2HS) log 2
δ

n
. (B.47)

Proof For any i = 1, . . . , n we consider the random linear operator

ζi = Cλ
−1/2

(
φ(xi)⊗ ϕ(yi)−

(
φ(xi)⊗ φ(xi)

)
Gλ
)
, (B.48)

as a vector in the space of Hilbert-Schmidt operators. Hence, taking the expectation with
respect to a random sample of training points (xi, yi)ni=1 from ρ,

Eζi = Cλ(S∗Z − CGλ), (B.49)

since E[ϕ(y)|xi] = g∗(xi). Moreover, since ‖Cλ−1/2S∗‖ = ‖Cλ−1/2C1/2‖ ≤ 1, following the
same reasoning in the proof of Theorem B.6 to obtain (B.40), we have

‖Eζi‖HS = ‖Cλ−1/2(S∗Z − CGλ)‖HS ≤ ‖Cλ−1/2S∗‖‖Z − SGλ‖HS ≤ λ‖L−1
λ Z‖HS. (B.50)

Now we need to study the moments of Zi to obtain the final result. First note that

‖Gλ‖ ≤ ‖S∗L
−1/2
λ ‖‖L−1/2

λ Z‖ ≤ ‖L−1/2
λ Z‖, (B.51)

since ‖S∗L−1/2
λ ‖ = ‖L−1/2L

−1/2
λ ‖ ≤ 1. Recall that supy∈Y ‖ϕ(y)‖ ≤ 1. Then, we have

‖ζi‖HS ≤ ‖Cλ−1/2‖‖φ(xi)‖
(
‖ϕ(yi)‖+ ‖Gλ‖‖φ(xi)‖

)
≤ λ−1/2κ

(
1 + κ‖L−1/2

λ Z‖
)
.

(B.52)
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Hence, for any p ≥ 2

E‖ζi − Eζi‖pHS ≤ E‖ζi − ζ ′i‖
p
HS ≤ 2p E‖ζi‖pHS (B.53)

≤ 4
(
2λ−1/2κ

(
1 + κ‖L−1/2

λ Z‖
))p−2

E‖ζi‖2HS. (B.54)

Moreover, denote by σ2(x) the conditional variance σ2(x) = Eyi [‖ϕ(yi)− g∗(xi)‖2|xi]. Since
g∗(x) = E[ϕ(y)|x] for any x in the domain of ρX , we have σ(x) ≤ 1. Hence,

E‖ζi‖2HS = E‖ϕ(yi)− gλ(xi)‖2‖Cλ−1/2φ(xi)‖2 (B.55)
= Exi‖Cλ−1/2φ(xi)‖2Eyi [‖ϕ(yi)− gλ(xi)‖2|xi] (B.56)
= Exi‖Cλ−1/2φ(xi)‖2

(
σ(x)2 + ‖g∗(x)− gλ(x)‖2

)
(B.57)

≤ deff(λ) + κ2/λ E‖g∗(x)− gλ(x)‖2, (B.58)

where the last inequality follows by observing that

E‖Cλ−1/2φ(x)‖2 = E Tr(Cλ−1 φ(x)⊗ φ(x)) = Tr(Cλ−1C) = deff(λ), (B.59)

and also

deff(λ) = E ‖Cλ−1/2φ(x)‖2 ≤ E ‖Cλ−1/2‖2 ‖φ(x)‖2 ≤ λ−1κ2. (B.60)

Recall from Theorem A.2 that R(g) − R(g∗) = E‖g(x) − g∗(x)‖2. Then, by applying
Theorem B.2, we have

E‖g∗(x)− gλ(x)‖2 = ‖gλ − g∗‖2L2(X,ρ) (B.61)

= ‖SGλ − Z‖2HS (B.62)
= ‖(SS∗L−1

λ − I)Z‖2HS (B.63)
= λ2‖L−1

λ Z‖2HS. (B.64)

Finally, we have for any p ≥ 2

E‖ζi − Eζi‖pHS ≤
1
2p!
(
8deff(λ) + 8κ2λ‖L−1

λ Z‖2HS

)( 2κ√
λ

(1 + κ‖L−1/2
λ Z‖)

)p−2
. (B.65)

We can now apply Bernstein inequality as in (Rudi and Rosasco (2017) Proposition 2). We
have∥∥∥∥∥ 1

n

n∑
i=1

ζi − Eζi

∥∥∥∥∥
HS
≤

4κ log 2
δ√

λn
(1 + κ‖L−1/2

λ Z‖) +

√
16(deff(λ) + κ2λ‖L−1

λ Z‖2HS) log 2
δ

n

(B.66)

holds with probability 1− δ.
The proof is concluded by observing that

‖Cλ−1/2(Ŝ∗Ẑ − ĈGλ)‖HS =
∥∥∥∥∥ 1
n

n∑
i=1

ζi

∥∥∥∥∥
HS
≤

∥∥∥∥∥ 1
n

n∑
i=1

ζi − Eζi

∥∥∥∥∥
HS

+ ‖Eζ‖HS . (B.67)
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Theorem B.9 Under the assumptions of Theorem B.6, let δ ∈ (0, 1). Then, for λ ≥
9κ2

n log n
δ the following holds with probability at least 1− δ

|R(gnλ)−R(g∗)|1/2 ≤
8q1κ log 2

δ√
λn

(1 + κ‖L−1/2
λ Z‖) (B.68)

+

√
64q2

1(deff(λ) + κ2λ‖L−1
λ Z‖2HS) log 4

δ

n
(B.69)

+ 2(2 + q1 + 2q2) λ‖L−1
λ Z‖HS (B.70)

Proof The result is obtained by decomposing the risk with Theorem B.6, and controlling
in high probability both terms β = ‖Ĉ−1/2

λ Cλ
1/2‖2 and ‖Cλ−1/2(Ŝ∗Ẑ − ĈGλ)‖HS and then

taking the intersection bound of the two events.

B.4. Universal Consistency

Now we are ready to give the universal consistency result.

Theorem 8 (Universal Consistency) Let Z be a compact set and 4 : Z×Y → R admit
an ILE. Let k : X × X → R be a bounded universal reproducing kernel. For any n ∈ N and
any distribution ρ on X × Y let fn : X → Z be the estimator in (20) trained on (xi, yi)ni=1
points independently sampled from ρ and with weights α defined as:

(a) (Ridge Regression) in (14) with λn = n−1/2, or

(b) (L2-Boosting) in (21) with step-size ν < 1/κ2 and tn = n1/2, or

(c) (PCR) in (22) with λn = n−1/2.

Then,

lim
n→+∞

E(fn) = E(f∗) with probability 1 (45)

Proof Recall that by Theorem B.8, for any λ ≥ 9κ2

n log n
δ the following holds with probability

at least 1− δ

|R(gnλ)−R(g∗)|1/2 ≤
8q1κ log 4

δ√
λn

(1 + κ‖L−1/2
λ Z‖) (B.71)

+

√
64q2

1(deff(λ) + κ2λ‖L−1
λ Z‖2HS) log 4

δ

n
(B.72)

+ 2(2 + q1 + 2q2) λ‖L−1
λ Z‖HS. (B.73)

In particular, let n0 be sufficiently large, such that n−1/2
0 ≥ 9κ2

n0
log n0

δ . For any n ∈ N
with n ≥ n0, let λn = n−1/2. Recall that deff(λ) ≤ κ2/λ (see (B.60)) and note that
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‖L−1/2
λ Z‖ ≤ λ−1/2‖Z‖, ‖L−1

λ Z‖HS ≤ λ−1‖Z‖HS and ‖Z‖ ≤ ‖Z‖HS. Applying Theorem B.8
guarantees that the inequality

|R(gnλ)−R(g∗)|1/2 ≤ [8q1κ(1 + κ‖Z‖)] n−1/2 log(4/δ)
+ [64q2

1κ
2(1 + ‖Z‖2HS)]1/2 n−1/4 (log(4/δ))1/2

+ 2(2 + q1 + 2q2) λ‖L−1
λ Z‖HS,

(B.74)

holds with probability at least 1− δ. We denote this event by En,δ.
Recall that L is a compact operator (actually Hilbert-Schmidt), hence it admits an

eigendecomposition L =
∑
i∈N σi ui ⊗ ui, with σi ≥ σj > 0 for 1 ≤ i ≤ j ∈ N and (ui)i∈N

is a set of orthonormal functions in L2(X , ρX ). Note that (ui)i∈N is an orthonormal basis
of L2(X , ρX ). To show this, consider W ⊆ X the support of ρX . Note that W is compact
and Polish since it is a closed subset of the compact Polish space X . Let L be the RKHS
L = span{k(x, ·) | x ∈W}, with same inner product of F . Note that L is separable since it
is the image of a compact space via a continuous function. By definition of universality for
the kernel k, the set L is dense in C(W ). Additionally, by Corollary 5 in (Micchelli et al.,
2006) we have C(W ) = span{ui | i ∈ N}. Thus, since C(W ) is dense in L2(X , ρX ), we can
conclude that (ui)i∈N is a basis of L2(X , ρX ).

We now focus on λ‖L−1
λ Z‖HS. In particular, we want to express ‖L−1

λ Z‖2HS in terms of
the basis (ui)i∈N associated to L. In particular, since (ui)i∈N is a basis for L2(X , ρX ) and
(L+ λI)−1ui = (σi + λ)−1ui for any i ∈ N, we have

λ2
n‖(L+ λn)−1Z‖2HS = λ2

nTr((L+ λn)−1ZZ∗(L+ λn)−1) = λ2
n

∑
i∈N

〈ui, ZZ∗ui〉L2

(σi + λ)2 . (B.75)

Now let tn = n−1/4, and Tn = {i ∈ N | σi ≥ tn} ⊂ N. Denote by w2
i := 〈ui, ZZ∗ui〉L2 and

note that (wi)i∈N is square summable and
∑
i∈Nw

2
i = ‖Z‖2HS <∞. For any n ∈ N, we have

λ2
n‖(L+ λn)−1Z‖2HS =

∑
i∈Tn

λ2
nw

2
i

(σi + λn)2 +
∑

i∈N\Tn

λ2
nw

2
i

(σi + λn)2 (B.76)

≤ λ2
n

t2n

∑
i∈Tn

w2
i +

∑
i∈N\Tn

w2
i ≤ ‖Z‖2HS n

−1/4 +
∑

i∈N\Tn

w2
i (B.77)

since λn/tn = n−1/2/n−1/4 = n−1/4. Since the series
∑
i∈Nw

2
i is convergent, we have∑

i∈N\Tn w
2
i → 0 as n→ +∞. We conclude that

0 ≤ lim
n→∞

λ2
n‖(L+ λn)−1Z‖2HS ≤ lim

n→∞
‖Z‖2HSn

−1/4 +
∑

i∈N\Tn

w2
i = 0. (B.78)

Now, let δn = n−2 and An = Ecn,δn be the complementary event to En,δn characterized by
(B.74). For any n ≥ n0 := 200(1 + κ2) we have λn ≥ 9κ2

n logn3 and the event En,δn holds
with probability at least 1− δn. Equivalently, the probability of An is upper bounded by δn.
Since

∑+∞
n=n0+1 δn < +∞, we can apply the Borel-Cantelli lemma (Theorem 8.3.4. pag 263

of Dudley (2002)) on the sequence (En,δn)n∈N and conclude that the statement

lim
n→∞

R(gnλn)−R(g∗) > 0, (B.79)
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holds with probability 0. Thus, the converse statement

lim
n→∞

R(gnλn)−R(g∗) = 0. (B.80)

holds with probability 1. The final result is obtained by applying the comparison inequality
between the surrogate problem and the original excess risk from Theorem 7.

B.5. Learning Rates

In this section we study the generalization properties of the proposed estimators. We address
this question by considering the special case where the solution g∗ of the expected surrogate
risk belongs to the same hypotheses space H⊗F where our estimator belongs to. We start
this analysis by recalling that in this case, g∗ admits a closed form solution.

Lemma B.10 Let 4 : Z ×Y → R satisfy Theorem 2 for suitable ψ,ϕ and H. Assume that
the surrogate expected risk minimization of R at (17) attains a minimum on H⊗F . Then
the minimizer g∗ ∈ H ⊗F of R with minimal norm ‖ · ‖H⊗F is of the form

g∗(x) = G∗φ(x), ∀x ∈ X with G∗ = C†S∗Z : F → H. (B.81)

Proof Let g ∈ H⊗F such that g(x) = Gφ(x),∀x ∈ X for some linear operator G ∈ H⊗F .
We have

R(g) =
∫
X×Y

‖Gφ(x)− ψ(y)‖2Hdρ(x, y) (B.82)

=
∫
X×Y

Tr(G(φ(x)⊗ φ(x))G∗)− 2Tr(G(φ(x)⊗ ψ(y))) + ‖ψ(y)‖2H dρX (x, y) (B.83)

= Tr(GCG∗)− 2Tr(GS∗Z) + const, (B.84)

where we have used Theorem B.1 and the linearity of the trace. The derivation above
implies that R is a convex quadratic functional since C is positive semidefinite. Hence, R
attains a minimum on H ⊗ F if and only if the range of S∗Z is contained in the range
of C, namely Ran(S∗Z) ⊆ Ran(C) ⊂ F (see Engl et al. (1996) Chap. 2). In this case
G = C†S∗Z : F → H exists and is the minimum norm minimizer for R, as desired.

We recall here the two main assumptions required in the following.

Assumption 1 (Source condition) There exists r ≥ 0 and h ∈ H ⊗F for which

g∗ = (Cr ⊗ I) h. (49)

The norm of ‖h‖H⊗F will be denoted by R := ‖h‖H⊗F .

Assumption 2 (Capacity condition) There exists γ ∈ [0, 1] and Q > 0 for which

deff(λ) ≤ Qλ−γ , ∀ λ > 0. (51)
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We are ready to prove the main result characterizing the learning rates of the proposed
estimators.

Theorem B.11 Let H be a Hilbert space and let ϕ : Y → H a continuous map from Y to
H. Let k : X × X → R be a continuous reproducing kernel on X with associated RKHS
F such that κ2 := supx∈X k(x, x) < +∞. Let ρ be a distribution on X × Y and let the
corresponding g∗ defined in (16) satisfy Assumption 1. Let also Assumption 2 hold. Let
δ ∈ (0, 1] and n0 sufficiently large such that n−1/(1+2r+γ)

0 ≥ 9κ2

n0
log n0

δ . Let n ∈ N, n ≥ n0

and λ ≥ 9κ2

n log n
δ . Let gn : X → H be a spectral filtering estimator of the form introduced in

Theorem B.5 trained on n points randomly sampled from ρ. Then, the following holds with
probability at least 1− δ,

|R(gn)−R(g∗)|1/2 ≤ M n
− r+1/2

2r+1+γ (B.85)

Where the constant M is

M = M(Q, ‖H‖ , δ, q1, q2) =8q1

[
κ(1 + κ‖H‖HS) +

√
(Q+ κ2‖H‖2HS)

]
log 4

δ
(B.86)

+ 2(2 + q1 + 2q2)‖H‖HS. (B.87)

Proof According to the excess risk bound in Theorem B.9 we have that the following holds
with probability at least 1− δ

|R(gnλ)−R(g∗)|1/2 ≤
8q1κ log 4

δ√
λn

(1 + κ‖L−1/2
λ Z‖) (B.88)

+

√
64 q2

1(deff(λ) + κ2λ‖L−1
λ Z‖2HS) log 4

δ

n
(B.89)

+ 2(2 + q1 + 2q2) λ‖L−1
λ Z‖HS. (B.90)

From Assumption 1, we have g∗(x) = (Cr⊗ I) h φ(x) = H∗Crφ(x) for any x ∈ X , where H :
F → H is the Hilbert-Schmidt operator corresponding to h under the canonical isomorphism
between HS(F ,H) andH⊗F . In particular, ‖H‖HS = ‖h‖H⊗F . By Assumption 1 ‖h‖H⊗F =
R. Therefore, we can characterize Z = SCrH. Indeed, recall that for any w ∈ H, by
definition of Z, we have

(Zw)(·) = 〈w, g∗(·)〉H = 〈w,H∗Crφ(·)〉H = 〈CrHw,φ(·)〉H = (SCrHw)(·) (B.91)

Then, denote by (1/2− r)+ = max(0, 1/2− r), we have

‖L−1
λ Z‖HS = ‖L−1

λ SCr‖‖H‖HS ≤ λ−(1/2−r)+R, (B.92)

and, analogously,

‖L−1/2
λ Z‖HS ≤ R. (B.93)
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Then, let λ = n−1/(1+2r+γ) and n ≥ n0 with n0 such that n−1/(1+2r+γ)
0 ≥ 9κ2

n0
log n0

δ . From
Assumption 2, we have deff(λ) ≤ Qλ−γ . Therefore,

|R(gnλ)−R(g∗) ≤ 8q1

[
κ(1 + κR) +

√
(Q+ κ2R2)

]
n
− r+1/2

2r+1+γ log 4
δ

(B.94)

+ 2(2 + q1 + 2q2)R n
− r+1/2

2r+1+γ , (B.95)

with probability at least 1− δ.

Theorem 11 from the main paper is a direct consequence the result above when considering
specific spectral filters.

Theorem 11 (Refined Learning Rates) Under the same notation and assumptions of
Thm. 9 and under the additional Assumptions 1 and 2, let δ ∈ (0, 1] and n0 sufficiently large
such that n−1/(1+2r+γ)

0 ≥ 9κ2

n0
log n0

δ . For any n ≥ n0, the following estimators fn : X → Z
trained on n points independently sampled from ρ are such that, with probability at least 1− δ

E(fn)− E(f∗) ≤ c4 m q log(4/δ) n−
r+1/2

2r+γ+1 , (52)

with

m = 16
(
κ(1 + κR) + κ

√
Q+R2 +R

)
, (53)

and q defined as follows. This holds for estimators fn of the form (20) with corresponding
weights α defined as:

(a) (Ridge Regression) in (14) with λn = n
− 1

2r+γ+1 . With q ≤ 3.

(b) (L2-Boosting) in (21) with ν < 1/κ2 and tn = n
1

2r+γ+1 . With q ≤ 2 + 2ν + eν−1/ν.

(c) (Principal Component Regression) in (22) with λn = n
− 1

2r+γ+1 . With q ≤ 5.

Proof Let gn : X → H be an estimator satisfying the hypotheses of Theorem B.11 and let
fn : X → Z be such that for any x ∈ X , fn(x) = argminz∈Z 〈ψ(z), gn(x)〉H. By applying
the comparison inequality from Theorem 7, we have that

E(fn)− E(f∗) ≤ 2c4|R(gn)−R(g∗)|1/2 ≤ 2c4M n
− r+1/2

2r+1+γ , (B.96)

holds with probability at least 1− δ. Now, note that log(4/δ) > 1 since δ ≤ 1, we have that
the constant M is upper bounded by

M ≤
(

8q1

[
κ(1 + κ‖H‖HS) +

√
(Q+ κ2‖H‖2HS)

]
+ 2(2 + q1 + 2q2)‖H‖HS

)
log 4

δ
. (B.97)

Replacing the quantities q1 and q2 from Theorem B.4 associated to the corresponding
estimators we obtain the required upper bounds for m stated in the thesis of the theorem.

We note that Theorem 9 is a corollary of Theorem 11 as shown below.
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Theorem 9 (Learning Rates) Let Z be a compact set and 4 : Z ×Y → R admit an ILE
with associated Hilbert space H. Let k : X × X → R be a continuous reproducing kernel on
X with associated RKHS F such that κ2 := supx∈X k(x, x) < +∞. Let ρ be a distribution
on X ×Y and let the corresponding g∗ defined in (16) be such that g∗ ∈ H⊗F . Let δ ∈ (0, 1]
and n0 sufficiently large such that n−1/2

0 ≥ 9κ2

n0
log n0

δ . Then, for any n ∈ N, the following
estimators fn : X → Z trained on n points independently sampled from ρ are such that, with
probability at least 1− δ

E(fn)− E(f∗) ≤ c4 m q log(4/δ) n−1/4, (46)

with

m = 16
(
κ(1 + κ ‖g∗‖) + κ

√
1 + ‖g∗‖2 + ‖g∗‖

)
, (47)

and q defined as follows. This holds for estimators fn of the form (20) with corresponding
weights α defined as:

(a) (Ridge Regression) in (14) with λn = n−1/2. With constant q ≤ 3.

(b) (L2-Boosting) in (21) with ν < 1/κ2 and tn = n1/2. With constant q ≤ 2 + 2γ + eγ−1/γ.

(c) (Principal Component Regression) in (22) with λn = n−1/2. With constant q ≤ 5.

Proof The result is a corollary of the theorem above, by considering that Assumption 2
is always satisfied with Q = κ2 and γ = 1 and that when g∗ is in G, then Assumption 1 is
satisfied with r = 0 and h = g.

Appendix C. Sufficient Conditions for ILE

In this section we provide more details related to the ILE definition introduced in Theorem 2.
In particular we discuss the connection with the original framework considered in (Ciliberto
et al., 2016) and prove the results reported in Section 6 providing sufficient conditions to
determine whether a function admits an ILE.

C.1. Relations with the “ILE” definition in (Ciliberto et al., 2016)

In Ciliberto et al. (2016), the ILE definition was introduced as the following assumption in
the case Z = Y (see Assumption 1 in Ciliberto et al., 2016).

Assumption 3 There exists a separable Hilbert space H with inner product 〈·, ·〉H, a con-
tinuous embedding ζ : Y → H and a bounded linear operator such that

4(z, y) = 〈ζ(z), V ζ(y)〉H ∀z, y ∈ Y (C.1)

It can be noticed that the two definitions are quite similar one to the other. Both require
the existence of a separable Hilbert space H where the function 4 assumes a “bilinear”
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structure. However the definition above requires Z = Y and the existence of a linear operator
combining a single feature map ζ.

Despite these differences, the following result shows that the above assumption is
equivalent to the ILE definition (Theorem 2) in the main paper.

Proposition C.1 (Equivalence of ILE Definitions) A loss 4 : Y × Y → R admits an
ILE if and only if it satisfies Assumption 3.

Proof (⇒). Let 4 satisfy the ILE definition with Hilbert space H and feature maps
ψ,ϕ : Y → H. We define H = H ⊕ H and consider the map ζ : Y → H such that
ζ(y) = (ψ(y), ϕ(y))> ∈ H for any y ∈ Y . Moreover, we define V : H → H the linear operator
such that V (h1, h2) = (h2, 0) for any h = (h1, h2) ∈ H. It is easy to see that V is bounded,
and actually it has operator norm ‖V ‖ = 1. Therefore, we have

〈ζ(z), V ζ(y)〉H = 〈(ψ(z), ϕ(z)), (ϕ(y), 0)〉H = 〈ψ(z), ϕ(y)〉H + 〈ϕ(z), 0〉H = 4(z, y) (C.2)

for any y, z ∈ Y as desired. Hence 4 satisfies Assumption 3 with associated Hilbert space
H. Note that ζ is continuous since both ψ and ϕ are continuous by the ILE definiton and V
is linear and bounded by construction.

(⇐). Let 4 satisfy Assumption 3 with Hilbert space H, feature map ζ : Y → H and linear
operator V : H → H. Let Φ = supy∈Y ‖ζ(y)‖H. Then we take ψ,ϕ : Y → H the functions
such that ψ(z) = Φ V ϕ(z) and ϕ(y) = ζ(y)/Φ for any z, y ∈ Y. Clearly, we have

〈ψ(z), ϕ(y)〉H = 〈ζ(z), V ζ(y)〉H = 4(z, y). (C.3)

By construction, we have supy∈Y ‖ϕ(y)‖ ≤ 1 and c4 = supz∈Z ‖ψ(z)‖H ≤ Φ2‖V ‖.

C.2. ILE definition without “normalization” of ϕ

We point out that the requirement for supy∈Y ‖ϕ(y)‖H ≤ 1 is not necessary but was
introduced for the sake of exposition. We formalize this in the following.

Lemma C.2 (“Unnormalized” ILE) Let 4 : Z × Y → R be such that there exists a
separable Hilbert space H and two continuous bounded maps ψ̄ : Z → H and ϕ̄ : Y → H,
such that supz∈Z ‖ψ̄(z)‖H ≤ ψ4 and supy∈Y ‖ϕ̄(y)‖H ≤ Φ4, with ψ4 > 0, Φ4 > 0 and

4(z, y) =
〈
ψ̄(z), ϕ̄(y)

〉
H
, (C.4)

for every z ∈ Z and y ∈ Y. Then 4 admits an ILE with c4 ≤ ψ4Φ4.

Proof The result is easy to prove by taking ψ : Z → H and ϕ : Y → H such that
ψ(z) = supy′∈Y Φ4 ψ̄(z) for any z ∈ Z and ϕ(y) = ϕ̄(y)/Φ4 for any y ∈ Y. In-
deed it is straightforward to see that the characterization of 4 in terms of the inner
product between ψ and ϕ still holds and, by construction, supy∈Y ‖ϕ(y)‖H ≤ 1 and
c4 = supz∈Z ‖ψ(z)‖H ≤ ψ4Φ4.
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C.3. Finite Y or Z

We now focus on proving the sufficient conditions to guarantee 4 to admit an ILE. We
begin from the case where either the label set Y or the output set Z are finite.

Theorem 12 (ILE & finite Y or Z) The function 4 : Z ×Y → R admits an ILE if one
of the following conditions hold:

(a) Z and Y are finite sets. In this case c4 ≤ ‖4 ‖ the operator norm
of the matrix 4 ∈ R|Z|×|Y| with entries 4z,y = 4(z, y).

(b) Z is finite, Y is compact and 4(z, ·) is continuous on Y for any z ∈ Z.
In this case c4 ≤ supy∈Y

√∑
z∈Z | 4 (z, y)|2.

(c) Z is compact, Y is finite and 4(·, y) is continuous on Z for any y ∈ Y.
In this case c4 ≤ supz∈Z

√∑
y∈Y | 4 (z, y)|2.

Proof (a). The proof of point (a) has been already given in the discussion after Theorem 2.
We recall it here for completeness. By hypothesis we have Z = {z1, . . . , zp} and Y =
{y1, . . . , yq} for some p, q ∈ N. Let V ∈ Rp×q be the matrix whose entries correspond to the
values of 4 on pairs of points in Z × Y. More precisely

Vij = 4(zi, yj) ∀i = 1, . . . , p, j = 1, . . . , q. (C.5)

It is easy to prove that the ILE definition holds for H = Rq and feature maps ψ : Z → H
and ϕ : Y → H corresponding to

ψ(zi) = V >e
(p)
i ϕ(yj) = e

(q)
j (C.6)

for any i = 1, . . . , p and any j = 1, . . . , q, with e(p)
i ∈ Rp denoting the i-th element of the

canonical basis of Rp, namely the p-dimensional vector with i-th entry equal to 1 and all
others equal to 0. Indeed, by construction we have

〈ψ(zi), ϕ(yj)〉H =
〈
e

(p)
i , V e

(q)
j

〉
= Vij = 4(zi, yj). (C.7)

Finally, we have

c4 = sup
z∈Z
‖ψ(z)‖H = sup

i=1,...,p
‖V e(p)

i ‖ ≤ ‖V ‖, (C.8)

as required.
(b). Z = {z1, . . . , zp} with p ∈ N. We choose H = Rp and the feature maps ψ̄ : Z → H and
ϕ̄ : Y → H such that ψ(zi) = e

(p)
i for every i = 1, . . . , p and

ϕ(y) = (4(z1, y), . . . ,4(zp, y))> ∈ Rp, (C.9)

for any y ∈ Y. Now, let

r = sup
y∈Y
‖ϕ(y)‖H = sup

y∈Y

√∑
z∈Z
4(z, y)2 (C.10)
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we can define ψ = rψ̄ and ϕ/r. We have that the ILE definition is satisfied, since

〈ψ(zi), ϕ(y)〉H =
〈
e

(p)
i , ϕ(y)

〉
= 4(zi, y), (C.11)

for every i = 1, . . . , p. Moreover, since ‖ψ(z)‖ = 1 for every z ∈ Z, we conclude that c4 = r
as required.

(c). The proof of point (c) is analogous to (b) with the difference that for Y = {y1, . . . , yq}
with q ∈ N we choose H = Rq, and feature maps ϕ(yj) = e

(q)
j for any j = 1, . . . , q and

ψ(z) = (4(z, y1), . . . ,4(z, yq))> ∈ Rq, (C.12)

for any z ∈ Z. The proof follows identically to (b).

C.4. ILE and Reproducing Kernel Hilbert Spaces

We now focus on the relation between ILE and reproducing kernel Hilbert spaces.

Theorem 13 (ILE & RKHS) Let Z = Y be a compact set and h : Y × Y → R a contin-
uous bounded reproducing kernel on Y with associated RKHS H. Let η2 = supy∈Y h(y, y).
Then, 4 : Y × Y → R admits an ILE if one of the following holds:

(a) (Kernels). 4(z, y) = h(z, y) for any y, z ∈ Y. In this case c4 ≤ η2.

(b) (Kernel Dependency Estimation (KDE)). 4(z, y) = h(z, z) + h(y, y)− 2h(z, y) for any
y, z ∈ Y. In this case c4 = 2(2η4 + 1).

(c) For every y ∈ Y the functions 4(·, y) ∈ H belong to a bounded set of H, namely
supy∈Y ‖ 4 (·, y)‖H = D < +∞. In this case c4 ≤ ηD. The same holds if the family of
functions 4(z, ·) parametrized by z ∈ Z belong to a bounded set of H.

(d) 4 belongs to H ⊗ H the RKHS with associated kernel h̄ : Y2 × Y2 → R such that
h̄((z, y), (z′, y′)) = h(z, z′)h(y, y′) for any z, z′, y, y′ ∈ Y. In this case c4 ≤ η2‖ 4 ‖H⊗H

Proof (a). Follows directly from point (c). Indeed h(z, ·) ∈ H and supz∈Y ‖h(z, ·)‖ ≤ η by
hypothesis.

(b). We note that point (b) follows directly from Theorem 16, which guarantees the finite
sums and products of ILE functions to be ILE as well. Here we give a more direct proof for
completeness.

Let H = R⊕H⊕R equipped with the canonical inner product of the direct sum and let
V : H → H the linear operator such that

V (α, h, β) = (β,−2h, α) (C.13)

for any h ∈ H and α, β ∈ R. Let ζ : Y → H be such that

ζ(y) = (h(y, y), h(y, ·), 1)>, (C.14)
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for any y ∈ Y. Let

r = sup
y∈Y
‖ζ(y)‖H = sup

y∈Y

√
h(y, y)2 + ‖h(y, ·)‖2 + 1 ≤

√
2η4 + 1. (C.15)

We choose ψ,ϕ : Y → H as

ψ(z) = r V ζ(z) ϕ(y) = 1
r
ζ(y), (C.16)

for any z, y ∈ Y. Then, by construction

〈ψ(z), ϕ(y)〉H =
〈

(1,−2h(z, ·), h(z, z))>, (h(y, y), h(y, ·), 1)>
〉
H

(C.17)

= h(y, y)− 2h(z, y) + h(z, z) (C.18)
= 4(z, y), (C.19)

as desired. Moreover,

c4 = sup
z∈Z

ψ(z) = r sup
z∈Z
‖V ζ(z)‖ ≤ r2‖V ‖ ≤ 2r2 = 2(2η4 + 1), (C.20)

as desired, with ‖V ‖ = 2 denoting the operator norm of V .

(c). We prove the statement for the case supz∈Z ‖ 4 (z, ·)‖ = D < +∞. We consider the
feature maps ψ,ϕ : Y → H such that

ψ(z) = η 4 (z, ·) and ϕ(y) = 1
η
h(y, ·), (C.21)

for any z, y ∈ Y. Then, by construction we have

〈ψ(z), ϕ(y)〉H = 〈4(z, ·), h(y, ·)〉H = 4(z, y), (C.22)

where the last inequality follows from the reproducing property of the kernel h and the fact
that 4(z, ·) ∈ H. Moreover we have c4 = supz∈Z ‖ψ(z)‖H = η supz∈Z ‖ 4 (z, ·)‖ = ηD.
The case supy∈Y ‖ 4 (·, y)‖ ≤ D follows from an analogous reasoning.

(d). Note that the kernel h̄ has feature map (z, y) 7→ h(z, ·)⊗ h(y, ·) for any z, y ∈ Y . Since
by hypothesis 4 ∈ H⊗H, the reproducing property for h̄ implies

4(z, y) = 〈4, h(z, ·)⊗ h(y, ·)〉 . (C.23)

Since H ⊗ H is isometric to the space of Hilbert-Schmidt operators from H to H, there
exists an operator V : H → H such that ‖V ‖HS = ‖ 4 ‖H⊗H and

〈4, h(z, ·)⊗ h(y, ·)〉 = 〈V, h(z, ·)⊗ h(y, ·)〉HS = 〈V h(z, ·), h(y, ·)〉H , (C.24)

where the last inequality follows from the standard properties of tensor products. We can
therefore choose ψ,ϕ : Y → H such that

ψ(z) = η V h(z, ·) and ϕ(y) = 1
η
h(y, ·), (C.25)
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for any y ∈ Y to guarantee the ILE definition to hold. Moreover, by construction c4 =
supz∈Z ‖ψ(z)‖H ≤ η‖V ‖HS supz∈Z ‖h(z, ·)‖H ≤ η2‖V ‖HS which concludes the proof since
‖V ‖HS = ‖ 4 ‖H⊗H by construction.

We now report the result relating general notions of regularity for the loss and the ILE
definiton. Before proving the main result in Theorem 14 we need the following two Lemmas.

Lemma C.3 (Multiple Fourier Series) Let Y = [−B,B]d with d ∈ N and B > 0. Let
(f̂h)h∈Zd ∈ C and f : Y → C defined as

f(y) =
∑
h∈Zd

f̂he
2πih>y, ∀y ∈ Y, with

∑
h∈Zd

|f̂h| ≤M, (C.26)

for 0 < M <∞ and i =
√
−1. Then the function f is continuous and

sup
y∈Y
|f(y)| ≤M. (C.27)

Proof The continuity of f follows from (Kahane, 1995), pag. 129 and Example 2. To show
that f is uniformly bounded on Y it is sufficent to see that

sup
y∈Y
|f(y)| ≤ sup

y∈Y

∑
h∈Zd

|f̂h||e2πih>y| ≤
∑
h∈Zd

|f̂h| ≤M. (C.28)

Lemma C.4 Let Y = [−B,B]d with d ∈ N and B > 0. Let 4 : Y × Y → R be such that

4(y, z) =
∑

h,k∈Zd
4̂h,k eh(y) ek(z), ∀y, z ∈ Y, (C.29)

with eh(y) = e2πih>y for any y ∈ Y, i =
√
−1 and 4̂h,k ∈ C for any h, k ∈ Zd. If

c4 =
∑

h,k∈Zd
|4̂h,k| <∞, (C.30)

then 4 admits an ILE.

Proof We start by applying Theorem C.3 for the input domain Y × Y, which guarantees
that the function 4 is bounded continuous. We introduce the following sequences

αh =
∑
k∈Zd
|4̂h,k|, fh(z) = 1

αh

∑
h∈Zd

4̂hkek(z) ∀h ∈ Zd, z ∈ Y. (C.31)

For any p > 0, let `p(Zd) denote the set of sequences (ak)k∈Zd such that
∑
h∈Zd |ak|p < +∞.

Note that by hypothesis (αh)h∈Zd ∈ `1(Zd). Moreover, by applying again Theorem C.3, we
have that the functions fh are continuous and bounded by 1 for any h ∈ Zd.
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Denote A2 = ‖(αh)h∈Zd‖`1(Zd) =
∑
h,k∈Zd |4̂h,k|. Let H = `2(Zd) and let ψ,ϕ : Y → H

be such that

ψ(z) = A
(√

αhfh(z)
)
h∈Zd

and ϕ(y) = 1
A

(√
αheh(y)

)
h∈Zd

, (C.32)

for all z, y ∈ Y. By construction, we have

〈ψ(z), ϕ(y)〉H =
∑
h∈Zd

αh eh(y) fh(z) =
∑

h,k∈Zd
4̂h,k eh(y) eh(z) = 4(y, z). (C.33)

Moreover, by construction we also have ‖ϕ(y)‖H ≤ 1 and c4 = supz∈Z ‖ψ(z)‖ ≤ A2.
To conclude the proof, we need to show that the two feature maps are continuous. Define

ζ1(y, z) = 〈ϕ(y), ϕ(z)〉H and ζ2(y, z) = 〈ψ(y), ψ(z)〉H0
for all y, z ∈ Y. We have

ζ1(y, z) =
∑
h∈Zd

αheh(y)eh(z), (C.34)

ζ2(y, z) =
∑
h∈Zd

αhfh(y)fh(z) =
∑
k,l∈Zd

βk,lek(y)el(z) (C.35)

with βk,l =
∑
h∈Zd

4̂h,k4̂h,l
αh

, for k, l ∈ Zd, therefore ζ1, ζ2 are bounded and continuous by
Theorem C.3, since

∑
h∈Zd αh <∞ and

∑
k,l∈Zd |βk,l| <∞. Note that ψ and ϕ are bounded,

since ζ1 and ζ2 are. Moreover for any y, z ∈ Y, we have

‖ϕ(y)− ϕ(z)‖2H = 〈ϕ(z), ϕ(z)〉H + 〈ϕ(y), ϕ(y)〉H − 2 〈ϕ(z), ϕ(y)〉H (C.36)
= ζ1(z, z) + ζ1(y, y)− 2ζ1(z, y) (C.37)
≤ |ζ1(z, z)− ζ1(z, y)|+ |ζ1(z, y)− ζ1(y, y)|, (C.38)

and the same holds for ψ with respect to ζ2. Thus the continuity of ϕ is ensured by the
continuity of ζ1 and the same for ψ with respect to ζ2.

We are ready to prove the following result.

Theorem 14 (ILE & Regularity) Let Z = Y = [−B,B]d, B > 0. A function 4 :
Y × Y → R admits an ILE when at least one of the following conditions hold:

(a) d = 1 and 4 is α-Hölder continuous with α > 1/2 or it is of bounded variation and
α-Hölder continuous with α > 0.

(b) 4(z, y) = v(z − y), where v is a function such that c4 =
∫
|v̂(ω)|dω <∞ and v̂ is the

Fourier transform of v.

(c) The mixed partial derivative 4y1,...,yd : Y → R of 4 exists almost everywhere and
4y1,...,yd ∈ Lp(Y) with p > 1.

Proof (a-b). Either hypotheses in (a) or (b) are sufficient to guarantee that the Fourier
expansion of 4 is absolutely summable (see Theorem 5′ and Theorem 6′ pag. 291 of Móricz
and Veres, 2007). By Theorem C.4 we can conclude that 4 admits an ILE.
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(c). Let γ2 =
∫+∞
−∞ |v̂(ω)| < +∞ we have that for any z, y ∈ Y , the anti-Fouier transform

of v̂(ω) in z − y is

v(z − y) =
∫ +∞

−∞
v̂(ω)ei〈ω,z−y〉 dω =

∫ +∞

−∞
v̂(ω)ei〈ω,z〉e−i〈ω,y〉 dω. (C.39)

Let now H = L2(R,C) the space of square integrable functions from R to C with respect to
the Lebesgue measure and let ψ,ϕ : Y → H be such that

ψ(z) = γ
√
v̂(·)ei〈·,z〉 and ϕ(y) = 1

γ

√
v̂(·)e−i〈·,y〉. (C.40)

By the anti-Fourier transform we have

〈ψ(z), ϕ(y)〉H = v(z − y) = 4(z, y) (C.41)

for every z, y ∈ Y. Moreover, by construction ‖ϕ(y)‖H = 1 and c4 = supz∈Z ‖ψ(z)‖H = γ2

as required.

C.5. Composition Rules for ILE

We conclude with the result characterizing composition rules for the ILE property.

Theorem 15 Let Z and Y be compact sets. Then 4 : Z ×Y → R admits an ILE if one of
the following holds:

(a) (Restriction) There exist two sets Z̄ ⊇ Z, Ȳ ⊇ Y and 4̄ : Z̄ × Ȳ → R such that 4̄
admits an ILE and its restriction to Z × Y corresponds to 4, namely

4 = 4̄|Z×Y . (54)

In this case c4 ≤ c4̄.

(b) (Right Composition) There exits Z̄, Ȳ and a ILE 4̄ : Z̄ × Ȳ → R, such that

4(z, y) = α(z)4̄(A(z), B(y))β(y), (55)

with A : Z → Z̄, B : Y → Ȳ, α : Z → R and β : Y → R continuous function, with
supz∈Z |α(z)| ≤ ᾱ and supy∈Y |β(y)| ≤ β̄ with ᾱ, β̄ ∈ R. Then c4 ≤ ᾱβ̄c4̄.

(c) (Left Composition) There exist P ∈ N, spaces (Zp)Pp=1, (Yp)Pp=1 and corresponding ILE
4p : Zp × Yp → R such that Z = Z1 × · · · × ZP , Y = Y1 × · · · × YP and

4(z, y) = Γ
(
41 (z1, y1), . . . ,4P (zP , yP )

)
, (56)

for any z = (z1, . . . , zP ) ∈ Z and y = (y1, . . . , yP ) ∈ Y, where Γ : RP → R is an analytic
function (e.g. a polynomial).
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Proof (a). Let4 admit an ILE with H separable Hilbert space and feature maps ψ : Z → H
and ϕ : Y → H. Clearly, for any Y ⊆ Y, Z ⊆ Z, we have that the restriction of the feature
maps ψ = ψ|Z and ϕ = ϕ|Y are such that

〈ψ(z), ϕ(y)〉H =
〈
ψ(z), ϕ(y)

〉
H

= 4(z, y) = 4|Z×Y = 4(z, y), (C.42)

for any z ∈ Z and y ∈ Y. The proof is concluded by observing that supy∈Y ‖ϕ(y)‖H ≤
supy∈Y ‖ϕ(y)‖H ≤ 1 and c4 = supz∈Z ‖ψ(z)‖H ≤ supz∈Z ‖ψ(y)‖H = c4.

(b). Let 4 admit an ILE with H separable Hilbert space and feature maps ψ : Z → H
and ϕ : Y → H. Let β̄ = supy∈Y |β(y)|. We consider the feature maps ψ : Z → H and
ϕ : Y → H such that

ψ(z) = β̄ α(z) ψ(A(z)) and ϕ(y) = β(z)
β̄

ψ(B(z)), (C.43)

for all z ∈ Z and y ∈ Y. By construction we have

〈ψ(z), ϕ(y)〉 = α(z)
〈
ψ̄(A(z)), ϕ̄(B(y))

〉
β(y) = α(z)4(A(z), B(y))β(y). (C.44)

Moreover, we have supy∈Y ‖ϕ(y)‖H = 1
β̄

supy∈Y β(y)‖ϕ̄(y)‖H ≤ 1 and c4 = supz∈Z ‖ψ(z)‖H =
β̄ supz∈Z α(z)‖ψ̄(z)‖H ≤ ᾱβ̄c4̄ as required.

(c). By definiton of analytic functions, we have that Γ has form

Γ(r1, . . . , rP ) =
∑
t∈NP

αt

P∏
p=1

rtpp ∀r = (r1, . . . , rP )> ∈ RP , (C.45)

for some scalar weights αt with t ∈ NP . Therefore, for any z = (z1, . . . , zP ) ∈ Z and
y = (y1, . . . , yP ) ∈ Y, we have

4(z, y) = Γ
(
41 (z1, y1), . . . ,4P (zP , yP )

)
=
∑
t∈NP

αt

P∏
p=1
4p(zp, yp)tp . (C.46)

Recall that for any to Hilbert spaces H and H′, by definiton of direct sum H⊕H′ and tensor
product H⊗H′, we have〈

h1 ⊕ h′1, h2 ⊕ h′2
〉
H⊕H′ = 〈h1, h2〉H +

〈
h′1, h

′
2
〉
H′ , (C.47)〈

h1 ⊗ h′1, h2 ⊗ h′2
〉
H⊗H′ = 〈h1, h2〉H ·

〈
h′1, h

′
2
〉
H′ (C.48)

for any h1, h2 ∈ H and h′1, h′2 ∈ H′. Moreover, for any p ∈ N, we denote H⊗p the tensor
product of H with itself p times (with H⊗0 = R) and denote h⊗p ∈ H⊗p the tensor product
of h with itself p times, for any h ∈ H (with h⊗0 = 1). This implies in particular that for
any t ∈ NP we have

P∏
p=1
4p(zp, yp)tp =

〈
P⊗
p=1

ψp(zp)⊗tp ,
P⊗
p=1

ϕp(yp)⊗tp
〉
Ht

, (C.49)
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Ht =
⊗P
p=1H

⊗tp
p and we have denoted with ψp(zp)⊗tp the tensor product of ψp(zp) with

itself tp times.
For any t ∈ NP , let βt = sign(αt)

√
|αt| and γt =

√
|αt|. Then, we have

∑
t∈NP

αt

P∏
p=1
4p(zp, yp)tp =

∑
t∈NP

αt

〈
P⊗
p=1

ψp(zp)⊗tp ,
P⊗
p=1

ϕp(yp)⊗tp
〉
Ht

(C.50)

=
〈⊕
t∈NP

βt

 P⊗
p=1

ψp(zp)⊗tp
, ⊕

t∈NP
γt

 P⊗
p=1

ϕp(yp)⊗tp
〉
H

(C.51)

= 〈ψ(z), ϕ(y)〉H . (C.52)

where H =
⊕

t∈NP Ht and we ψ : Z → H and ϕ : Y → H are feature maps such that

ψ(z) =
⊕
t∈NP

βt

 P⊗
p=1

ψp(zp)⊗tp
 and ϕ(y) =

⊕
t∈NP

γt

 P⊗
p=1

ϕp(yp)⊗tp
 , (C.53)

for any z = (z1, . . . , zP ) ∈ Z and y = (y1, . . . , yP ) ∈ Y. First note that such feature maps
are well defined, namely that they indeed take value in H. In particular, we have

‖ϕ(y)‖H =

∥∥∥∥∥∥
⊕
t∈NP

γt

 P⊗
p=1

ϕp(yp)⊗tp
∥∥∥∥∥∥

2

H

(C.54)

=
∑
t∈NP

|αt|

∥∥∥∥∥∥
P⊗
p=1

ϕp(yp)⊗tp
∥∥∥∥∥∥

2

Ht

(C.55)

=
∑
t∈NP

|αt|
P∏
p=1

(
‖ϕp(yp)‖2Hp

)tp
. (C.56)

To show that the above series is finite, recall that the power series defining Γ is absolutely
convergent for any r = (r1, . . . , rP ) ∈ RP . Indeed, let r̄ = (r̄1, . . . , r̄P ) ∈ RP such that
|rp| < |̄rp| for any p = 1, . . . , P . Since Γ is analytic also in r̄, the associated power series is
convergent and therefore, for ‖t‖ → +∞ we have at

∏P
p=1 r̄

tp
p → 0. This implies that there

exists Q > 0 such that, for any t ∈ NP with ‖t‖ > Q,

|αt|
P∏
p=1
|r̄p|tp ≤ 1. (C.57)

By multiplying both sides of the inequality above by
∏P
p=1 |rp/r̄p|tp , we have

|αt|
P∏
p=1
|rp|tp <

P∏
p=1

∣∣∣∣∣rpr̄p
∣∣∣∣∣
tp

. (C.58)

Since |rp/r̄p| < 1 for p = 1, . . . , P by construction, we can conclude that

∑
t∈NP

∣∣∣∣∣∣αt
P∏
p=1

rtpp

∣∣∣∣∣∣ < +∞. (C.59)
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In particular, we have that the domain of the function Γ : RP → R, such that

Γ(r1, . . . , rP ) =
∑
t∈NP

∣∣∣∣∣∣αt
P∏
p=1

rtpp

∣∣∣∣∣∣ (C.60)

corresponds to RP , namely Γ(r1, . . . , rP ) < +∞ for any r = (r1, . . . , rP )> ∈ RP .
Therefore, using the fact that supyp∈Yp ‖ϕp(yp)‖ ≤ 1 for any p = 1, . . . , P , we have

‖ϕ(y)‖H ≤
√

Γ(1, . . . , 1) < +∞, (C.61)

for any y = (y1, . . . , yP ) ∈ Y. By following an analogous reasoning for ψ, we have

‖ψ(z)‖H ≤
√

Γ(c2
41
, . . . , c2

4P ) < +∞, (C.62)

for any z = (z1, . . . , zP ) ∈ Z.
We need to show that the maps ψ and ϕ are continuous. To see this it is sufficient to

prove that they are the uniform limit of continuous functions. In particular for any Q ∈ R,
let ϕ(Q) : Y → H be such that

ϕ(Q)(y) =

 ⊕
t∈NP ,‖t‖≤Q

γt

 P⊗
p=1

ϕp(yp)⊗tp
⊕

 ⊕
t∈NP ,‖t‖>Q

0

 , (C.63)

for any y = (y1, . . . , yP ) ∈ Y. Note that ϕ(Q)(y) ∈ H, since by construction H =(⊕
‖t‖≤QHt

)
⊕
(⊕

‖t‖>QHt
)
. Moreover, ϕ(Q) : Y → H is continuous for any Q ∈ R

since it is the direct sum of a finite number of continuous functions.
Therefore, for any y ∈ Y, we have

∥∥∥ϕ(y)− ϕ(Q)(y)
∥∥∥2

H
=

∥∥∥∥∥∥
⊕

t∈NP ,‖t‖>Q

γt

 P⊗
p=1

ϕp(yp)⊗tp
∥∥∥∥∥∥

2

(C.64)

=
∑

t∈NP ,‖t‖>Q
|αt|

P∏
p=1

(
‖ϕp(yp)‖2Hp

)tp
(C.65)

≤
∑

t∈NP ,‖t‖>Q
|αt|, (C.66)

where we have made use of the fact that supyp∈Yp ‖ϕp(yp)‖Hp ≤ 1 for any p = 1, . . . , P .
Since

∑
t∈NP ,‖t‖∈NP |αt| < +∞, we have that for Q → +∞, the residual

∑
t∈NP ,‖t‖>Q |αt|

will tend to zero. We conclude that

lim
Q→+∞

∥∥∥ϕ(y)− ϕ(Q)(y)
∥∥∥
H
→ 0, (C.67)

showing that ϕ is uniform limit of continuous functions and hence continuous itself, as
desired. The exact same argument holds for ψ : Z → H.

Clearly, ϕ is not necessarily taking values in the ball of radius 1 in H. To this end we
can invoke Theorem C.2 by replacing ϕ(y) with ϕ(y) = ϕ(y)/

√
Γ(1, . . . , 1) and ψ(z) with
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ψ(z) =
√

Γ(1, . . . , 1)ψ(z). In this way the ILE definition in Theorem 2 is satisfied, with
c4 ≤

√
Γ(1, . . . , 1)Γ(c2

c41
, . . . , c2

c4P
).
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