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Abstract

We consider the problem of identifying significant predictors in large data bases, where the
response variable depends on the linear combination of explanatory variables through an
unknown monotonic link function, corrupted with the noise from the unknown distribution.
We utilize the natural, robust and efficient approach, which relies on replacing values of
the response variables by their ranks and then identifying significant predictors by using
well known Lasso. We provide new consistency results for the proposed procedure (called
,,RankLasso”) and extend the scope of its applications by proposing its thresholded and
adaptive versions. Our theoretical results show that these modifications can identify the set
of relevant predictors under a wide range of data generating scenarios. Theoretical results
are supported by the simulation study and the real data analysis, which show that our
methods can properly identify relevant predictors, even when the error terms come from
the Cauchy distribution and the link function is nonlinear. They also demonstrate the
superiority of the modified versions of RankLasso over its regular version in the case when
predictors are substantially correlated. The numerical study shows also that RankLasso
performs substantially better in model selection than LADLasso, which is a well established
methodology for robust model selection.

Keywords: Lasso, Model Selection, Ranks, Single Index Model, Sparsity, U -statistics

1. Introduction

Model selection is a fundamental challenge when working with large-scale data sets, where
the number of predictors exceeds significantly the number of observations. In many practical
problems finding a small set of significant predictors is at least as important as accurate
estimation or prediction. Among many approaches to high-dimensional model selection one
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can distinguish a large group of methods based on penalized estimation (Hastie et al., 2001;
Bühlmann and van de Geer, 2011). Under the linear regression model

Yi = β′Xi + εi, i = 1, . . . , n,

where Yi ∈ R is a response variable, Xi ∈ Rp is a vector of predictors, β ∈ Rp is the vector
of model parameters and εi is a random error, the penalized model selection approaches
usually recommend estimating the vector of regression coefficients β by

β̂ = arg min
β∈Rp

n∑
i=1

(Yi − β′Xi)
2 + Pen(β), (1)

where
∑n

i=1(Yi− β′Xi)
2 is the quadratic loss function measuring the model fit and Pen(β)

is the penalty on the model complexity. The main representative of these methods is Lasso
(Tibshirani, 1996), which uses the l1-norm penalty. The properties of Lasso in model selec-
tion, estimation and prediction are deeply investigated, e.g. in Meinshausen and Bühlmann
(2006); Zhao and Yu (2006); Zou (2006); van de Geer (2008); Bickel et al. (2009); Ye and
Zhang (2010); Bühlmann and van de Geer (2011); Huang and Zhang (2012); Su et al. (2017);
Tardivel and Bogdan (2018). These articles discuss the properties of Lasso in the context
of linear or generalized linear models and their results hold under specific assumptions on
the relationship between the response and explanatory variables and/or the distribution of
the random errors. However, it is quite common that a complex data set does not satisfy
these assumptions or they are difficult to verify. In such cases it is advised to use ,,robust”
methods of model selection.

In this paper we consider the single index model

Yi = g(β′Xi, εi), i = 1, . . . , n, (2)

where g is unknown monotonic link function. Thus, we suppose that predictors influence
the response variable through the link function g of the scalar product β′Xi. However, we
make no assumptions on the form of the link function g (except being monotonic) nor on
the distribution of the error term εi. Specifically, we do not assume the existence of the
expected value of εi.

The goal of model selection is the identification of the set of relevant predictors

T = {1 ≤ j ≤ p : βj 6= 0}. (3)

The literature on the topic of robust model selection is quite considerable and the com-
prehensive review can be found e.g. in Wu and Ma (2015). Many of the existing methods
suppose that the linear model assumption is satisfied and consider the robustness with re-
spect to the noise. Here the most popular approaches rely on replacing the regular quadratic
loss function with the loss function, which is more robust with respect to outliers, like e.g.
the absolute value or Huber loss functions (Huber, 1964). Model selection properties of the
penalized regression procedures with such robust loss functions were investigated, among
others, in Wang et al. (2007); Gao and Huang (2010); Belloni and Chernozhukov (2011);
Wang et al. (2012); Wang (2013); Fan et al. (2014); Peng and Wang (2015); Zhong et al.
(2016); Avella-Medina and Ronchetti (2018). Among these methods one can mention the
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approach of Johnson and Peng (2008); Johnson (2009), where the loss function is expressed
in terms of residual ranks. On the other hand, the issues of model selection in misspecified
models were discussed in e.g. Lu et al. (2012); Lv and Liu (2014), while robustness with
respect to the unknown link function g in the single index model (2) was discussed, for
instance, in Kong and Xia (2007); Zeng et al. (2012); Alquier and Biau (2013); Plan and
Vershynin (2016); Cheng et al. (2017). In particular, Plan and Vershynin (2016) proposed
a procedure, which can estimate the parameter β with accuracy to the multiplicative con-
stant, when predictors X are Gaussian and EY 2 < ∞. Their approach was extended to
incorporate different loss functions (Genzel, 2017), non-Gaussian predictors (Yang et al.,
2017a,b; Wei et al., 2019) and to high-dimensional varying index coefficient models (Na
et al., 2019). The extensions in (Yang et al., 2017a,b; Wei et al., 2019; Na et al., 2019)
are based on Stein’s lemma (Stein, 1972; Stein et al., 2004) and the proposed solutions
depend on the distribution of predictors, which is assumed to be known. Additionally, all
these works require some moment assumptions on Y , which precludes application of this
methodology, when the errors have a heavy-tailed distribution, like e.g., Cauchy or some
cases of log-normal distribution.

Penalized robust model selection procedures for single-index models with heavy tailed
errors were developed e.g. in Zhu and Zhu (2009); Song and Ma (2010); Wang and Zhu
(2015); Zhong et al. (2016); Rejchel (2017b,a), where their desired statistical properties
are confirmed. However, the application of procedures based on robust loss functions (e.g.
piecewise-linear) in the context of the analysis of large data sets is often limited due to their
computational complexity and/or the need of the development of dedicated optimization
algorithms. For instance, in Sections 3 and 4 we consider the Least Absolute Deviation
Lasso (LADLasso) estimator (Wang et al., 2007; Belloni and Chernozhukov, 2011; Fan
et al., 2014), which turns out to be computationally very slow even for moderate dimension
experiments.

In the current paper we consider an alternative approach for identifying important pre-
dictors in the single index model. Our method does not require knowledge of the distribution
of predictors or any moment assumptions on the error distribution. Moreover, it is com-
putationally fast and can work efficiently with complex high-dimensional data sets. Our
procedure is very simple and relies on replacing actual values of the response variables Yi
by their centred ranks. Ranks Ri are defined as

Ri =
n∑
j=1

I(Yj ≤ Yi), i = 1, . . . , n, (4)

where I(·) is the indicator function. Next, we identify significant predictors by simply solving
the following Lasso problem;

RankLasso: θ̂ = arg min
θ∈Rp

Q(θ) + λ |θ|1 , (5)

where

Q(θ) =
1

2n

n∑
i=1

(
Ri/n− 0.5− θ′Xi

)2
. (6)

This procedure does not require any dedicated algorithm and can be executed using efficient
implementations of Lasso in ,,R” (R Development Core Team, 2017) packages: ,,lars” (Efron
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et al., 2004) or ,,glmnet” (Friedman et al., 2010). Technically, RankLasso was introduced
before in Zhu and Zhu (2009); Wang and Zhu (2015), who used a slightly more complicated
definition, which makes it difficult to notice the relationship with ranks.

Replacing values of response variables by their ranks is a well-known approach in non-
parametric statistics and leads to robust procedures. The premier examples of a rank
approach are the Wilcoxon test, that is a widely used alternative to the Student’s t-test, or
the Kruskall-Wallis ANOVA test. While the rank tests often have a low power for a small
number of observations, they can achieve high efficiency for large sample sizes. As shown in
Żak et al. (2007); Bogdan et al. (2008), this carries over to the high efficiency of identifying
important predictors in the sparse high-dimensional regression models, where the number
of true nonzero regression coefficients is much smaller than the sample size n.

The methodology proposed in Żak et al. (2007); Bogdan et al. (2008) relies on minimiza-
tion of the rank version of the Bayesian Information Criterion, which in principle is N-P
hard. While the heuristics based on the greedy search algorithms can in some cases identify
approximately optimal models, they are not reliable in the case when predictors are highly
correlated. Instead, RankLasso is based on a convex optimization algorithm, which can be
easily solved even when p >> n and the explanatory variables are highly correlated.

One of the disadvantages of the rank approach is the loss of information about the
shape of the link function. Therefore, RankLasso cannot be directly used to build the
predictive model for the response variable. In the case when errors are subgaussian, such
predictive models can be constructed using e.g. the estimation method for the single-index
model proposed in Balabdaoui et al. (2019), which can be also extended to the general
error distribution by replacing the L2-loss with the robust loss functions (say, the L1 or the
Huber loss functions). However, this method can handle only a small number of predictors.
In this article we demonstrate that significant predictors can be appropriately fished out
from the large data base by simple modifications of RankLasso.

Specifically, in Subsection 2.2 we provide the definition of the parameter θ0, that is
estimated by RankLasso, and discuss its relationship to the true vector of regression coeffi-
cients β. It turns out that under certain standard assumptions, the support of θ0 coincides
with the support of β and the methods based on ranks can identify the set of relevant pre-
dictors. However, similarly as in the case of regular Lasso, RankLasso can identify the true
model only under very restrictive ”irrepresentable conditions” on the correlations between
predictors and the sparsity of the vector of regression coefficients, see e.g. Zhao and Yu
(2006); van de Geer and Bühlmann (2009); Wang and Zhu (2015). An intuitive explanation
of these problems with model selection relates to the role of a tuning parameter λ. Namely,
to obtain good model selection properties the parameter λ needs to be sufficiently large to
discard irrelevant predictors. However, large λ leads to a large bias of Lasso estimators.
In the result a non-explained effect of relevant predictors is intercepted by even slightly
correlated variables, which leads to early false discoveries along the Lasso path and sub-
stantial difficulties with identification of the true model, see e.g. Su et al. (2017). This
problem can be solved by using smaller value of the tuning parameter. An illustration of
this phenomenon can be found in Weinstein et al. (2020), where it is shown that the or-
dering of estimated regression coefficients does not remain constant along the Lasso path.
It turns out that the small mean squared error of Lasso estimates is typically obtained
for a relatively small value of λ, where the coefficients corresponding to true discoveries
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become larger than the ones for false discoveries, which appeared earlier on the Lasso path
(Weinstein et al., 2020). Therefore, while regular Lasso usually cannot identify the true
model for any selection of the tuning parameter λ, there often exists a range of λ values,
which provide a good separation between the estimated regression coefficients of true and
false predictors, see e.g. Ye and Zhang (2010); Bühlmann and van de Geer (2011); Tardivel
and Bogdan (2018); Weinstein et al. (2020). In Weinstein et al. (2020) a detailed power
comparison of two model selection procedures:

• Lasso: select j : β̂Lassoj (λ) 6= 0,

• Thresholded Lasso: select j : |β̂Lassoj (λ)| > t for some threshold t > 0

is performed in the situation when the covariates are independent gaussian variables. This
analysis shows that appropriately thresholded Lasso with the tuning parameter selected
by cross-validation yields much higher power than regular Lasso for the same expected
number of false discoveries and can identify the true model under much weaker regularity
assumptions. Also, cross-validated Lasso estimators are often good candidates for the first
step estimates for adaptive Lasso (Zou, 2006).

In this paper we use the above ideas and extend the scope of applications of RankLasso
by proposing its thresholded and adaptive versions. In the case of standard Lasso similar
modifications were introduced and discussed e.g. in Zou (2006); Candès et al. (2008); Zhou
(2009); Tardivel and Bogdan (2018); Weinstein et al. (2020). We prove that the proposed
modifications of RankLasso are model selection consistent in the model (2) under much
weaker conditions than the ones provided in Wang and Zhu (2015) for regular RankLasso.
More specifically, our results show that the modifications of RankLasso can identify the
true model for any unknown monotonic link function and any unknown distribution of the
error term and under much weaker restrictions on the design matrix and the signal sparsity
than in the case of regular RankLasso. These theoretical results require a substantial mod-
ification of the proof techniques as compared to the similar results for regular Lasso. It is
related to the fact that ranks are dependent, so (6) is a sum of dependent random variables.
In Subsection 2.4 we describe how this problem can be overcome with the application of
the theory of U -statistics. We also present extensive numerical results illustrating that the
modifications of RankLasso can indeed properly identify relevant predictors, when the link
function is not linear, error terms come from, say, the Cauchy distribution and predictors
are substantially correlated. Specifically, it can be observed that, contrary to regular Ran-
kLasso, the proposed modifications can control the number of false discoveries and achieve
a high power under strongly correlated designs. These results also show that RankLasso
compares favorably with LADLasso, which is a well established methodology for robust
model selection (Wang et al., 2007; Belloni and Chernozhukov, 2011; Fan et al., 2014).

The paper is organized as follows: in Section 2 we present theoretical results on the model
selection consistency of RankLasso and its modifications. In Subsection 2.2 we discuss the
relationship between β and the parameter estimated by RankLasso. We show that our
approach is able to identify the support of β in the single index model. In Subsection 2.3
we consider properties of estimators in the high-dimensional scenario, where the number of
predictors can be much larger than the sample size. We establish nonasymptotic bounds
on the estimation error and separability of RankLasso. We use these results to prove model
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selection consistency of thresholded and weighted RankLasso. In Subsection 2.4 we briefly
draw a road map to the proofs of main results. Sections 3 and 4 are devoted to experiments
that illustrate the properties of rank-based estimators on simulated and real data sets,
respectively. The paper is concluded in Section 5. The proofs of main and auxiliary results
are relegated to the appendix. We also place in the appendix results for the low-dimensional
case, where the number of predictors is fixed and the sample size diverges to infinity. In
this case we provide the necessary and sufficient conditions for model selection consistency
of RankLasso and much weaker sufficient conditions for thresholded and weighted versions
of RankLasso.

2. Model selection properties of RankLasso and its modifications

In this section we provide theoretical results concerning model selection as well as estimation
properties of RankLasso and its thresholded and weighted versions. We start with specifying
the assumptions on our model.

2.1 Assumptions and notation

Consider the single index model (2). In this paper we assume that the design matrix X and
the vector of the error terms ε satisfy the following assumptions.

Assumption 1 We assume that (X1, ε1), . . . , (Xn, εn) are i.i.d. random vectors such that
the distribution of X1 is absolutely continuous and X1 is independent of the noise variable ε1.
Additionally, we assume that EX1 = 0, H = EX1X

′
1 is positive definite and Hjj = 1 for

j = 1, . . . , p.

The single index model (2) does not allow to estimate an intercept and can identify
β only up to a multiplicative constant, because any shift or scale change in β′Xi can be
absorbed by g. However, in many situations RankLasso can properly identify the support
T of β. In this paper we will prove this fact under the following assumption.

Assumption 2 We assume that for each θ ∈ Rp the conditional expectation E(θ′X1|β′X1)
exists and

E(θ′X1|β′X1) = dθβ
′X1

for a real number dθ ∈ R.

Assumption 2 is a standard condition in the literature on the single index model or on
the model misspecification, see e.g. Brillinger (1983); Ruud (1983); Li and Duan (1989);
Zhu and Zhu (2009); Wang and Zhu (2015); Zhong et al. (2016); Kubkowski and Mielniczuk
(2017). It is always satisfied in the simple regression models (i.e. when X1 ∈ R), which
are often used for initial screening of explanatory variables, see e.g. Fan and Lv (2008).
It is also satisfied whenever X1 comes from the elliptical distribution, like the multivariate
normal distribution or multivariate t-distribution. The interesting paper Hall and Li (1993)
advocates that Assumption 2 is a nonrestrictive condition when the number of predictors
is large, which is the case that we focus on in the paper. In the experimental section of this
article we show that RankLasso, proposed here, is able to identify the support of β also
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when the columns of the design matrix contain genotypes of independent Single Nucleotide
Polymorphisms, whose distribution is not symmetric and clearly does not belong to the
elliptical distribution.

The identifiability of the support of β by the rank procedure requires also the assump-
tions on the monotonicity of the link function g and the cumulative distribution function of
Y1. The following Assumption 3, which combines Assumptions 1 and 2 and the monotonicity
assumptions, will be used in most of theoretical results in this article.

Assumption 3 We assume that the design matrix and the error term satisfy Assumptions
1 and 2, the cumulative distribution function F of the response variable Y1 is increasing
and g in (2) is increasing with respect to the first argument.

In this paper we will use the following notation:
- X = (X1, X2, . . . , Xn)′ is the (n× p)-matrix of predictors,
- X̄ = 1

n

∑n
i=1Xi,

- Zi = (Xi, Yi), i = 1, . . . , n,
- T ′ = {1, . . . , p} \ T is a complement of T ,
- XT is a submatrix of X, with columns whose indices belong to the support T of β, see (3),
- θT is a restriction of a vector θ ∈ Rp to the indices from T,
- p0 is the number of elements in T,

- the lq-norm of a vector is defined as |θ|q =
(∑p

j=1 |θj |q
)1/q

for q ∈ [1,∞].

2.2 Identifying the support of β

RankLasso does not estimate β, but the vector

θ0 = arg min
θ∈Rp

EQ(θ), (7)

where Q(θ) is defined in (6). Since H is positive definite, the minimizer θ0 is unique and is
given by the formula

θ0 =
1

n2
H−1

(
E

n∑
i=1

RiXi

)
. (8)

Now, using the facts that

n∑
i=1

RiXi =
n∑
i=1

n∑
j=1

I(Yj ≤ Yi)Xi =
∑
i 6=j

I(Yj ≤ Yi)Xi +
n∑
i=1

Xi (9)

and that EXi = 0, we can write

θ0 =
n− 1

n
H−1µ, (10)

where µ = E [I(Y2 ≤ Y1)X1] is the expected value of the U -statistic

A =
1

n(n− 1)

∑
i 6=j

I(Yj ≤ Yi)Xi . (11)

In the next theorem we state the relation between θ0 and β.
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Theorem 1 Consider the model (2). If Assumptions 1 and 2 are satisfied, then

θ0 = γββ

with

γβ =
n−1
n β′µ

β′Hβ
=

n−1
n Cov(F (Y1), β′X1)

β′Hβ
, (12)

where F is a cumulative distribution function of a response variable Y1.
Additionally, if F is increasing and g is increasing with respect to the first argument,

then γβ > 0, so the signs of β coincide with the signs of θ0 and

T = {j : βj 6= 0} = {j : θ0
j 6= 0}. (13)

We can apply Theorem 1 to the additive model Yi = g1(β′Xi) + εi with an increasing
function g1. Then, under Assumptions 1 and 2, θ0 = γββ with γβ > 0 if, for example, the
support of the noise variable is a real line. Moreover, since the procedure based on ranks is
invariant with respect to increasing transformations of response variables the same applies
to the model Yi = g2(β′Xi + εi) with an increasing function g2.

2.3 High-dimensional scenario

In this subsection we consider properties of the RankLasso estimator and its modifications
in the case where the number of predictors can be much larger than the sample size. To
obtain the results of this subsection we need the additional condition:

Assumption 4 We suppose that the vector of significant predictors (X1)T is subgaussian
with the coefficient τ0 > 0, i.e. for each u ∈ Rp0 we have E exp(u′(X1)T ) ≤ exp(τ2

0u
′u/2).

Moreover, the irrelevant predictors are univariate subgaussian, i.e. for each a ∈ R and
j /∈ T we have E exp(aX1j) ≤ exp(τ2

j a
2/2) for positive numbers τj . Finally, we denote

τ = max(τ0, τj , j /∈ T ).

We need subgaussianity of the vector of predictors to obtain exponential inequalities in
the proofs of the main results in this subsection. This condition is a standard assumption
while working with random predictors (Raskutti et al., 2010; Huang et al., 2013; Bühlmann
and van de Geer, 2015) in high-dimensional models.

2.3.1 Estimation error and separability of RankLasso

Model selection consistency of RankLasso in the high-dimensional case was proved in Wang
and Zhu (2015, Theorem 2.1). However, this result requires the stringent irrepresentable
condition. Moreover, it is obtained under the polynomial upper bound on the dependency
of p on n and provides only a rough guidance of selection of the tuning parameter λ. In
our article we concentrate on estimation consistency of RankLasso, which paves the way
for model selection consistency of the weighted and thresholded versions of this method.
Compared to the asymptotic results of Wang and Zhu (2015) our results are stated in
the form of non-asymptotic inequalities, they do not require the irrepresentable condition,
allow for the exponential increase of p as a function of n and provide a precise guidance on
selection of regularization parameter λ.
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We start with introducing the cone invertibility factor (CIF), that plays an important
role in investigating properties of estimators based on the Lasso penalty (Ye and Zhang,
2010). In the case n > p one usually uses the minimal eigenvalue of the matrix X ′X/n to
express the strength of correlations between predictors. Obviously, in the high-dimensional
scenario this value is equal to zero and the minimal eigenvalue needs to be replaced by
some other measure of predictors interdependency, which would describe the potential of
consistent estimation of model parameters.

Let T be the set of indices corresponding to the support of the true vector β and let θT
and θT ′ be the restrictions of the vector θ ∈ Rp to the indices from T and T ′, respectively.
Now, for ξ > 1 we consider a cone

C(ξ) = {θ ∈ Rp : |θT ′ |1 ≤ ξ|θT |1} .

In the case when p >> n three different characteristics measuring the potential for con-
sistent estimation of the model parameters have been introduced:
- the restricted eigenvalue (Bickel et al., 2009):

RE(ξ) = inf
0 6=θ∈C(ξ)

θ′X ′Xθ/n

|θ|22
,

- the compatibility factor (van de Geer, 2008):

K(ξ) = inf
06=θ∈C(ξ)

p0θ
′X ′Xθ/n

|θT |21
,

- the cone invertibility factor (CIF, (Ye and Zhang, 2010)): for q ≥ 1

F̄q(ξ) = inf
06=θ∈C(ξ)

p
1/q
0 |X ′Xθ/n|∞

|θ|q
.

Relations between the above quantities are discussed, for instance, in van de Geer and
Bühlmann (2009); Ye and Zhang (2010); Huang et al. (2013). The fact that these conditions
are much weaker than irrepresentable conditions is also established there.

In this article we will use CIF, since this factor allows for a sharp formulation of con-
vergency results for all lq norms with q ≥ 1, see Ye and Zhang (2010, Section 3.2). The
population (non-random) version of CIF is given by

Fq(ξ) = inf
06=θ∈C(ξ)

p
1/q
0 |Hθ|∞
|θ|q

,

where H = EX1X
′
1. The key property of the random and the population versions of CIF,

F̄q(ξ) and Fq(ξ), is that, in contrast to the smallest eigenvalues of matrices X ′X/n and H,
they can be close to each other in the high-dimensional setting, see Huang et al. (2013,
Lemma 4.1) or van de Geer and Bühlmann (2009, Corollary 10.1). This fact is used in the
proof of Theorem 2 (given below).

In the simulation study in Section 3 we consider predictors, which are independent or
equi-correlated, i.e. Hjj = 1 and Hjk = b for j 6= k and b ∈ [0, 1). In this case the smallest
eigenvalue of H is 1− b. For ξ > 1 and q ≥ 2 we can bound CIF from below by

Fq(ξ) ≥ (1 + ξ)−1p
1/q−1/2
0 (1− b) ,

9
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which illustrates that CIF diminishes with the increase of p0 and b. Also, in the case when
H = I and q =∞, Fq(ξ) = 1, independently of ξ or p0.

The next result describes the estimation accuracy of RankLasso.

Theorem 2 Let a ∈ (0, 1), q ≥ 1 and ξ > 1 be arbitrary. Suppose that Assumptions 3 and 4
are satisfied. Moreover, suppose that

n ≥ K1p
2
0τ

4(1 + ξ)2 log(p/a)

F 2
q (ξ)

(14)

and

λ ≥ K2
ξ + 1

ξ − 1
τ2

√
log(p/a)

κn
, (15)

where K1,K2 are universal constants and κ is the smallest eigenvalue of the correlation
matrix between the true predictors HT = (Hjk)j,k∈T . Then there exists a universal constant
K3 > 0 such that with probability at least 1−K3a we have

|θ̂ − θ0|q ≤
4ξp

1/q
0 λ

(ξ + 1)Fq(ξ)
. (16)

Besides, if X1 has a normal distribution N(0, H), then κ and τ can be dropped in (14) and (15).

In Theorem 2 we provide the bound for the estimation error of RankLasso. This result
also provides the conditions for the estimation consistency of RankLasso, which can be
obtained by replacing a with a sequence an, that decreases not too fast and selecting the
minimal λ = λn satisfying the condition (15). The consistency holds in the high-dimensional
scenario, i.e. the number of predictors can be significantly greater than the sample size.
Indeed, the consistency in the l∞-norm holds e.g. when p = exp(nα1), p0 = nα2 , a =
exp(−nα1), where α1 +2α2 < 1, and λ is equal to the right-hand side of the inequality (15),
provided that F∞(ξ) and κ are bounded from below (or slowly converging to 0) and τ is
bounded from above (or slowly diverging to ∞).

Theorem 2 is an analog of Theorem 3 in Ye and Zhang (2010), which refers to the linear
model with noise variables having a finite variance. Similar results for quantile regression,
among others for LADLasso, can be found in Belloni and Chernozhukov (2011, Theorem 2)
and Wang (2013, Theorem 1). These results do not require existence of the noise variance,
but impose some restrictions on the conditional distribution of Y1 given X1, cf. Belloni and
Chernozhukov (2011, Assumption D.1) or Wang (2013, the condition (13)).

In Alquier and Biau (2013); Plan and Vershynin (2016); Yang et al. (2017a,b); Wei
et al. (2019) the results similar to Theorem 2 were obtained also in the context of the single
index model. However, all these articles impose some moment restrictions on Y and thus
cannot handle heavy-tailed noise distributions. Besides, in Alquier and Biau (2013) the link
function are predictors are assumed to be bounded, while the methods analyzed in Plan
and Vershynin (2016); Yang et al. (2017a,b); Wei et al. (2019) require the knowledge of the
predictors’ distribution. In the case of RankLasso we were able to prove Theorem 2 under
a non-restrictive Assumption 2 on the distribution of predictors and without assumptions
on existence of moments of Y or the noise variable ε.

10



Rank-based Lasso

The following corollary is an easy consequence of Theorem 2. It states that under
assumptions of Theorem 2 RankLasso can assymptotically separate relevant and irrelevant
predictors.

Corollary 3 Suppose that conditions of Theorem 2 are satisfied for q = ∞. Let θ0
min =

min
j∈T
|θ0
j |. If θ0

min ≥
8ξλ

(ξ+1)F∞(ξ) , then

P
(
∀j∈T,k/∈T |θ̂j | > |θ̂k|

)
≥ 1−K3a .

The separation of predictors by RankLasso given in Corollary 3 is a very important
property. It will be used to prove model selection consistency of the thresholded and
weighted RankLasso in the next part of the paper.

Finally, we discuss the condition of Corollary 3 that θ0
min cannot be too small, i.e.

θ0
min ≥

8ξλ
(ξ+1)F∞(ξ) . Using Theorem 1 we know that θ0 = γββ and γβ > 0, so this condition

refers to the strength of the true parameter β and requires that

min
j∈T
|βj | ≥

8ξλ

γβ(ξ + 1)F∞(ξ)
. (17)

Compared to the similar condition for regular Lasso in the linear model, the denominator
contains an additional factor γβ. This number is usually smaller than one, so RankLasso
needs larger sample size to work well. This phenomenon is typical for the single-index
model, where the similar restrictions hold for competitive methods like e.g. LADLasso.

Below we provide a simplified version of Theorem 2, formulated under the assumption
that F∞(ξ) and κ are lower bounded and τ is upper bounded. This formulation will be used
in the following subsection to increase the transparency of the results on model selection
consistency of weighted and thresholded RankLasso.

Corollary 4 Let a ∈ (0, 1) be arbitrary. Suppose that Assumptions 3 and 4 are satisfied.
Moreover, assume that there exist ξ0 > 1 and constants C1 > 0 and C2 < ∞ such that
κ ≥ C1, F∞(ξ0) ≥ C1 and τ ≤ C2. If

n ≥ K1p
2
0 log(p/a)

and

λ ≥ K2

√
log(p/a)

n
,

then

P
(
|θ̂ − θ0|∞ ≤ 4λ/C1

)
≥ 1−K3a , (18)

where the constants K1 and K2 depend only on ξ0, C1, C2 and K3 is a universal constant
provided in Theorem 2.
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2.3.2 Modifications of RankLasso

The main drawback of RankLasso considered in Subsection 2.3.1 is that it can recover the
true model only if the restrictive irrepresentable condition is satisfied. If this condition does
not hold, then RankLasso can achieve a high power only by including a large number of
irrelevant predictors. In Theorems 5 and 7 we state that this problem can be overcome
by the application of weighted or thresholded versions of RankLasso. In both cases we
rely on the initial RankLasso estimator θ̂ of θ0, which is estimation consistent under the
assumptions of Theorem 2 or Corollary 4. Theorems 5 and 7 are stated under simplified
assumptions of Corollary 4. We have decided to establish them in these versions to make
this subsection more communicable.

First, we consider thresholded RankLasso, which is denoted by θ̂th and defined as

θ̂thj = θ̂jI(|θ̂j | ≥ δ), j = 1, . . . , p, (19)

where θ̂ is the RankLasso estimator given in (5) and δ > 0 is a threshold. Theorem 5
provides the conditions under which this procedure is model selection consistent.

Theorem 5 We assume that Corollary 4 holds and that the sample size and the tuning
parameter λ for RankLasso are selected according to Corollary 4. Moreover, suppose that
θ0
min = min

j∈T
|θ0
j | is such that it is possible to select the threshold δ so as

θ0
min/2 ≥ δ > K4λ,

where K4 = 4/C1 is the constant from (18). Then it holds

P
(
T̂ th = T

)
≥ 1−K3a,

where K3 is the universal constant from Theorem 2 and T̂ th = {1 ≤ j ≤ p : θ̂thj 6= 0} is the
estimated set of relevant predictors by thresholded RankLasso.

Remark 6 Theorem 5 illustrates that thresholded RankLasso has the potential for identi-
fying the support of β under rather mild regularity conditions. This means that under these
conditions the sequence of nested models based on the ranking provided by RankLasso esti-
mates contains the true model. In the simulation study in Section 3 we select the threshold
such that thresholded RankLasso returns the same number nonzero coefficients as weighted
RankLasso, whose consistency is proved in Theorem 7 (below). However, there exists a
variety of other methods, which could be used to select one of these nested models, includ-
ing e.g. the rank version of the modified Bayesian Information Criterion proposed and
discussed in Żak et al. (2007); Bogdan et al. (2008). Another plausible approach for iden-
tifying true predictors while controlling the false discovery rate at any given level could rely
on the application of the knockoffs methodology of Barber and Candès (2015); Candès et al.
(2018), based on the RankLasso Coefficient Difference statistics. Concerning the selection
of the value of the tuning parameter λ, the results of Weinstein et al. (2020) for regular
Lasso and our simulations for RankLasso, suggest that selection of the tuning parameter λ
by cross-validation usually leads to the satisfactory performance of thresholded versions of
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Lasso. Here one could also mention the work of Pokarowski and Mielniczuk (2015) in the
context of regular multiple regression, who suggest selecting λ such that the related sequence
of nested regression models allows to obtain a minimal value of the respective information
criterion.

Next, we consider the weighted RankLasso that minimizes

Q(θ) + λa

p∑
j=1

wj |θj |, (20)

where λa > 0 and weights are chosen in the following way: for arbitrary number K > 0 and
the RankLasso estimator θ̂ from the previous subsection we have wj = |θ̂j |−1 for |θ̂j | ≤ λa,
and wj ≤ K, otherwise.

The next result describes properties of the weighted RankLasso estimator.

Theorem 7 We assume that Corollary 4 holds and that the sample size and the tuning
parameter λ for RankLasso are selected according to Corollary 4. Let λa = K4λ, where
K4 = 4/C1 is from (18). Additionally, we suppose that the signal strength and sparsity
satisfy θ0

min/2 > λa and p0λ ≤ K5, where K5 is sufficiently small constant. Then with
probability at least 1−K6a there exists a global minimizer θ̂a of (20) such that θ̂aT ′ = 0 and

|θ̂aT − θ0
T |1 ≤ K7p0λ , (21)

where K6 and K7 are the constants depending only on K1, . . . ,K5 and the constant K, that
is used in the definition of weights.

In Fan et al. (2014, Corollary 1) the authors considered weighted Lasso with the absolute
value loss function in the linear model. Thus, this procedure is robust with repect to the
distribution of the noise variable. However, working with the absolute value loss function
they need that, basically, the density of the noise is Lipschitz in a neighbourhood of zero
(Fan et al., 2014, Condition 1). Our thresholded and weighted RankLasso does not require
such restrictions. Besides, Theorems 5 and 7 confirm that the proposed procedures works
well in model selection in the single index model (2).

It can be seen in the proof of Theorem 7 that K7 is an increasing function of K, that
occurs in the construction of weights. It is intuitively clear, because weights wj ≤ K
usually correspond (by Corollary 3) to significant predictors. Therefore, increasing K we
shrink coordinates of the estimator, so the bias increases. This fact is described in (21).

2.4 Road map to proofs of main results

In the paper we study properties of the RankLasso estimator and its thresholded and
weighted modifications. These estimators are obtained by minimization of the risk Q(θ)
defined in (6) and the penalty. Therefore, the analysis of model selection properties of
rank-based estimators is based on investigating these two terms. The penalty term can be
handled using standard methods for regular Lasso. However, the analysis of the risk Q(θ)
is different, because it is the sum of dependent variables. In this subsection we show that
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the theory of U -statistics (Hoeffding, 1948; Serfling, 1980; de la Peña and Giné, 1999) plays
a prominent role in studying properties of the risk Q(θ).

Consider the key object that is the derivative of the risk at the true point θ0

∇Q(θ0) = − 1

n2

n∑
i=1

RiXi +
1

2n

n∑
i=1

Xi +
1

n

n∑
i=1

XiX
′
iθ

0. (22)

The second and third terms in (22) are sums of independent random variables, but the first
one is a sum of dependent random variables. Using (9) we can express (22) as

−n− 1

n
A+

n− 2

2n2

n∑
i=1

Xi +
1

n

n∑
i=1

XiX
′
iθ

0 (23)

where a U -statistic A is defined in (11) and has the kernel

f(zi, zj) =
1

2
[I(yj ≤ yi)xi + I(yi ≤ yj)xj ] . (24)

To handle (23) we will use tools for sums of independent random variables as well as the
U -statistics theory. Namely, we use exponential inequalities for sums of independent and
unbounded random variables from van de Geer (2016, Corollary 8.2) and its version for
U -statistics given in Lemma 14 in the appendix.

3. Simulation study

In this section we present results of the comparative simulation study verifying the properties
of RankLasso and its thresholded and adaptive versions in model selection.

We consider the moderate dimension setup, where the number of explanatory variables
p increases with n according to the formula p = 0.01n2. More specifically, we consider the
following pairs (n, p) : (100, 100), (200, 400), (300, 900), (400, 1600). For each of these
combinations we consider three different values of the sparsity parameter p0 = #{j : βj 6=
0} ∈ {3, 10, 20}.

In three of our simulation scenarios the rows of the design matrix are generated as
independent random vectors from the multivariate normal distribution with the covariance
matrix Σ defined as follows
- for the independent case Σ = I,
- for the correlated case Σii = 1 and Σij = 0.3 for i 6= j.

In one of the scenarios the design matrix is created by simulating the genotypes of p in-
dependent Single Nucleotide Polymorphisms (SNPs). In this case the explanatory variables
can take only three values: 0 for the homozygote for the minor allele (genotype {a,a}),
1 for the heterozygote (genotype {a,A}) and 2 for the homozygote for the major allele
(genotype {A,A}). The frequencies of the minor allele for each SNP are independently
drawn from the uniform distribution on the interval (0.1, 0.5). Then, given the frequency
πj for j-th SNP, the explanatory variable Xij has the distribution: P (Xij = 0) = π2

j ,

P (Xij = 1) = 2πj(1− πj) and P (Xij = 2) = (1− πj)2.
The full description of the simulation scenarios is provided below:

- Scenario 1
Y = Xβ + ε,
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where X matrix is generated according to the independent case, β1 = . . . = βp0 = 3 and the
elements of ε = (ε1, . . . , εn) are independently drawn from the standard Cauchy distribu-
tion,
- Scenario 2 - the regression model, values of regression coefficients and ε are as in Sce-
nario 1, design matrix contains standardized versions of genotypes of p independent SNPs,
- Scenario 3 - the regression model, values of regression coefficients and ε are as in Sce-
nario 1 and the design matrix X is generated according to the correlated case,
- Scenario 4 - the design matrix X is generated according to the correlated case and the
relationship between Yi and β′Xi is non-linear:

Yi = exp(4 + 0.05β′Xi) + εi

and ε1, . . . , εn are independent random variables from the standard Cauchy distribution.
In our simulation study we compare five different statistical methods:

- rL: RankLasso defined in (5) with λ := λrL and

λrL = 0.3

√
log p

n
. (25)

- arL: adaptive RankLasso (20), with λa = 2λrL and weights

wj =

{
0.1λrL
|θ̂j |

when |θ̂j | > 0.1λrL,

|θ̂j |−1 otherwise,

where θ̂ is the RankLasso estimator computed above. If θ̂j = 0, then |θ̂j |−1 = ∞ and
jth explanatory variable is removed from the list of predictors before running weighted
RankLasso,
- thrL: thresholded RankLasso, where the tuning parameter for RankLasso is selected by
cross-validation and the threshold is selected in such a way that the number of selected
predictors coincides with the number of predictors selected by adaptive RankLasso,
- LAD: LADLasso, defined as

arg min
θ

1

n

n∑
i=1

|Yi − θ′Xi|+ λLAD

p∑
j=1

|θj |

with λLAD = 1.5
√

log p
n ,

- cv: regular Lasso with the tuning parameter selected by cross-validation.
The values of the tuning parameters for RankLasso and LADLasso were selected empir-

ically so that both methods perform comparatively well for p0 = 3 and n = 200, p = 400.
We compare the quality of the above methods by performing 200 replicates of the ex-

periment, where in each replicate we generate the new realization of the design matrix X
and the vector of random noise ε. We calculate the following statistical characteristics:
- FDR: the average value of FDP = V

max(R,1) , where R is the total number of selected
predictors and V is the number of selected irrelevant predictors,
- Power: the average value of TPP = S

p0
, where S = R − V is the number of properly

identified relevant predictors,
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- NMP: the average value of Numbers of Misclassified Predictors, i.e false positives or false
negatives, which equals V + p0 − S.

In Table 1 we compare the average times needed to invoke RankLasso using the glmnet
package (Friedman et al., 2010) in the R software (R Development Core Team, 2017) and
robust LADLasso using the R package MTE (Qin et al., 2017). It can be seen that LADLasso
becomes prohibitively slow, when the number of columns of the design matrix exceeds 1000.
For p = 1600 computing the LADLasso estimator takes more than 30 seconds and is over
3000 times slower than calculating RankLasso.

Table 1: Ratio of times needed to perform LADLasso (in MTE) and RankLasso (in glmnet)

dimension t(LAD)/t(rL)

n = 100, p = 100 5.32
n = 200, p = 400 95.2
n = 300, p = 900 655
n = 400, p = 1600 3087

Figure 1 illustrates the average number of falsely classified predictors for different meth-
ods and under different simulation scenarios. In the case when predictors are independent,
RankLasso satisfies assumptions of Wang and Zhu (2015, Theorem 2.1) and its NMP de-
creases with p = 0.01n2. The same is true for LADLasso. As shown in plots of FDR and
Power (Figures 3 and 4 in the appendix), LADLasso becomes more conservative than Ran-
kLasso for larger values of p0, which leads to slightly larger values of NMP. We can also
observe that for independent predictors, the adaptive and thresholded versions perform
similarly to the standard version of RankLasso. As expected, regular cross-validated Lasso
performs very badly, when the error terms come from the Cauchy distribution. If suffers
both from the loss of power and large FDR values. Also, it is interesting to observe that the
first two rows in Figure 1 do not differ significantly, which shows that the performance of
RankLasso for the realistic independent SNP data is very similar to its performance when
the elements of the design matrix are drawn from the Gaussian distribution.

The behaviour of RankLasso changes significantly in the case when predictors are cor-
related. Namely, NMP of RankLasso increases with p. On the other hand, NMP of both
adaptive and thresholded versions of RankLasso decrease with p, so these two methods are
able to find the true model consistently. In the case when the relationship between the
median value of the response variable and the predictors is linear, LADLasso has a larger
power and a similar FDR to RankLasso (see Figures 3 and 4 in the appendix). In the result
it returns substantially more of false positives and its NMP is slightly larger than the NMP
of RankLasso. In the last row of Figure 1 we can observe that the lack of linearity has a
negligible influence on the performance of RankLasso but substantially affects LADLasso,
which now has a smaller power and larger FDR than RankLasso.

As shown in Figure 1, in the case of correlated predictors thresholded RankLasso is
systematically better than adaptive RankLasso, even though both methods always select
the same number of predictors. To explain this phenomenon, in Figure 2 we present the
relationship between the number of false discoveries (FD) and the number of true positives
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Figure 1: Plots of NMP (average number of misclassified predictors) as the function of p.
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Figure 2: Plots of the number of false discoveries (FD) vs the number of true positives (TP).

(TP) along the decreasingly ordered sequence of absolute values of RankLasso estimates
for one realization of the experiment. We consider RankLasso with the value of the tuning
parameter selected as in (25) and by cross-validation (denoted by ,,cvrL”) and the adaptive
RankLasso.

Figure 2 illustrates substantial problems with the ordering of predictors by the estimates
provided by RankLasso with the relatively large value of λ from equation (25). Among three
predictors with the largest absolute values of estimates of regression coefficiens, 2 are false
positives. The final estimate of RankLasso identifies 15 true predictors and returns 25
false discoveries. Adaptive RankLasso does not provide a substantially better ordering of
estimates of regression coefficients but stops at the point when the number of false discoveries
drastically increases. In the result, adaptive RankLasso returns 7 true positives and 3 false
discoveries. Comparing cross-validated RankLasso to its more conservative version, we can
observe that it selects many more regressors - it identifies all 20 of true predictors and
returns 40 false discoveries. However, we can also observe that cross-validated RankLasso
provides a much better ordering of the estimates of regression coefficients. The FD-TP
curve of cross-validated RankLasso is substantially below the FD-TP curve corresponding
to RankLasso with larger value of λ. Among 14 regressors with the largest absolute values of
regression coefficient provided by cross-validated RankLasso there is only one false positive.
Thus, when selection is stopped by matching the adaptive RankLasso, we identify 9 true
positives and only 1 false discovery.

4. Analysis of real data

In this section we apply rank methods and their competitors for identifying relationships
between expressions of different genes. Variations in gene expression levels may be re-
lated to phenotypic variations such as susceptibility to diseases and response to drugs.
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Identifying the relationships between these gene expressions facilitates understanding the
genetic-pathways and identifying regulatory genes influencing the disease processes. In the
considered data set gene expression was interrogated in lymphoblastoid cell lines of 210
unrelated HapMap individuals The International HapMap Consortium (2005) from four
populations (60 Utah residents with ancestry from northern and western Europe, 45 Han
Chinese in Beijing, 45 Japanese in Tokyo, 60 Yoruba in Ibadan, Nigeria) Stranger et al.
(2007). The data set can be found at ftp://ftp.sanger.ac.uk/pub/genevar/ and was pre-
viously studied e.g. in Bradic et al. (2011); Fan et al. (2014). In our analysis we will
concentrate on four genes. First of them is the gene CCT8, which was analyzed previously
in Bradic et al. (2011). This gene is within the Down syndrome critical region on human
chromosomen 21, on the minus strand. The over-expression of CCT8 may be associated
with Down syndrome phenotypes. We also consider gene CHRNA6, which was previously
investigated in Fan et al. (2014) and is thought to be related to activation of dopamine
releasing neurons with nicotine. Since the data on expression levels of these two genes
contained only few relatively small outliers, we additionally considered genes PRAME and
Hs.444277-S, where the influence of outliers is more pronounced. The boxplots of these gene
expressions can be found in Figure 5 in the appendix.

We start with preparing the data set using three pre-processing steps as in Wang et al.
(2012): we remove each probe for which the maximum expression among 210 individuals is
smaller than the 25-th percentile of the entire expression values, we remove any probe for
which the range of the expression among 210 individuals is smaller than 2 and finally we
select 300 genes, whose expressions are the most correlated to the expression level of the
analyzed gene.

Next, the data set is divided into two parts: the training set with randomly selected
180 individuals and the test set with remaining 30 individuals. Five procedures from Sub-
section 3 are used to select important predictors using the training set and their accuracy
is evaluated using the test set. As a measure of accuracy we cannot use the standard
mean square prediction error, because in the single index model (2) the link funcion g is
unknown. Since the link g is increasing wrt the first variable, we can expect that the or-
dering between values of the response variables Yi should be well predicted by the ordering
between scalar products β′Xi. Moreover, from Theorem 1 we know that θ0 = γββ for the
positive multiplicative number γβ, so the ordering between Yi should be also well predicted
by the ordering between (θ0)′Xi. Therefore, as a accuracy measure of estimators we use the
ordering prediction quality (OPQ), which is defined as follows: let T = nt(nt − 1)/2 be the
number of different two-element subsets from the test set. The subset {i, j} from the test
set is properly ordered, if the sign of Y test

i −Y test
j coincides with the sign of θ̂′Xtest

i − θ̂′Xtest
j ,

where θ̂ is some estimator of θ0 based on the training set. Let P denote the number of
two-element subsets from the test-set, that are properly ordered. The ordering prediction
quality is defined as

OPQ =
P

T
. (26)

Tables 2 and 3 report the average number of selected predictors and the average values
of OPQ over 200 random splits into the training and the test sets. These values were
calculated for all five model selection methods considered in the simulation study.
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Table 2: Average number of selected predictors (SP)

SP rL arL rLth LADLasso cv

CCT8 16 6 6 14 25
CHRNA6 19 7 7 8 52
PRAME 16 6 6 6 0

Hs.444277-S 4 2 2 0 0

Table 3: Average values of the Ordering Prediction Quality (OPQ, (26))

OPQ rL arL rLth LADLasso cv

CCT8 0.74 0.73 0.74 0.73 0.76
CHRNA6 0.68 0.66 0.64 0.66 0.71
PRAME 0.65 0.62 0.61 0.60 0.08

Hs.444277-S 0.59 0.59 0.58 0.07 0.03

We can observe that for CCT8 the numbers of selected predictors and the prediction
accuracy of RankLasso and LADLasso are similar. The thresholded and adaptive RankLasso
provide a similar prediction accuracy with much smaller number of predictors. Interestingly,
regular cross-validated Lasso yields the best Ordering Prediction Quality, which however
requires 4 times as many predictors as thresholded or adaptive RankLasso. For CHRNA6
we see that the support of RankLasso is substantialy larger than for LADLasso and adaptive
and thresholded RankLasso, which results in slightly better prediction accuracy. Again, the
best prediction is obtained from regular cross-validated Lasso, which however uses much
larger number of predictors.

The performance of regular Lasso drastically deteriorates for the remaining two genes,
whose expressions contain substantially larger outliers. Here regular cross-validated Lasso
in most of the cases is not capable of identifying any predictors. In the case of the gene
Hs.444277-S the same is true about LADLasso. In the case of the PRAME gene, the highest
prediction accuracy is provided by regular RankLasso, which however requires almost three
times as many predictors as adaptive or thresholded Lasso. In the case of Hs.444277-S
RankLasso identifies 4 predictors, while its modified versions select only 2 genes. These
simple models still allow to predict the ordering of gene expressions of Hs.444277-S with
accuracy close to 60%.

5. Discussion

Lasso is a well established method for estimation of parameters in the high dimensional
regression models. It is also well understood that it can recover the support of the vector of
regression coefficients only under very stringent conditions relating the sparsity of this vector
and the structure of correlations between columns in the design matrix. This phenomenon
can be well explained using the theory of Approximate Message Algorithms (AMP), see
e.g. Bayati and Montanari (2012); Su et al. (2017); Wang et al. (2017); Weinstein et al.
(2020), which allows to predict the mean squared error of Lasso estimators as the function
of the tuning parameter λ. Interestingly, this error tends to take very large values for large
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values of λ, which leads to early false discoveries on the Lasso path, see Su et al. (2017).
Smaller values of λ typically yield smaller mean squared error and better ordering of Lasso
estimates, so the estimated regression coefficients of these early false discoveries can get
smaller values than those by true discoveries. Therefore, thresholded and adaptive Lasso
can recover the true model under much weaker assumptions than regular Lasso.

In this article we show that the similar phenomenon holds for RankLasso, which can
be used to identify predictors in the single-index model, with unknown monotonic link
function and unknown error distribution. Our theoretical and empirical results illustrate
that the thresholded and adaptive versions of RankLasso can properly identify the predictors
even when the link function is non-linear, predictors are highly correlated and the error
comes from the Cauchy distribution. When the identified model contains a small number
of predictors, the link function can be further estimated using the estimation method of
Balabdaoui et al. (2019) and its extensions based on the robust loss functions.

While our results demonstrate clearly a potential of the modified versions of RankLasso,
there still remain open questions related e.g. to the choice of the optimal tuning parameter
λ and the optimal threshold for the thresholded version or the optimal selection of weights
in the weighted version. In the future we plan to extend our method by exploring different
approaches to threshold selection, including modifications of the knockoff methodology of
Barber and Candès (2015) and Candès et al. (2018). Moreover, combining the rank-based
approach with the choice of the threshold based on the information criterion as in Bogdan
et al. (2008) or Pokarowski and Mielniczuk (2015) seems also to be an interesting problem
to investigate.

The theoretical analysis of RankLasso provided in this paper and the results of Kos
and Bogdan (2020) on the asymptotic FDR control of the Sorted L-One Penalized Esti-
mator (SLOPE, Bogdan et al. (2015)) for the regular multiple regression, pave the way for
construction of the rank version of SLOPE, so as to obtain the asymptotic FDR control
in the single index model in the case when regressors are independent random variables.
Concerning the adaptive version of RankLasso or RankSLOPE, it would be of interest to
develop an adaptive selection of weights in the spirit of Spike and Slab Lasso (Ročková and
George, 2018) or the adaptive Bayesian version of SLOPE (Jiang et al., 2019).

Finally, a single index model (2), which is studied in the paper, can be generalized to

Yi = g(β′1Xi, . . . , β
′
dXi, εi),

where β1, β2, . . . , βd are p-dimensional vectors and d < p. Such model was studied, for in-
stance, in Cohen et al. (2012). The question arises whether the rank-based approach can
properly identify true predictors also for the case d > 1. A similar problem in the context of
misspecified binary regression was considered in Kubkowski and Mielniczuk (2018), where
it is shown that the vector of parameters estimated by logistic regression can be expressed
as a linear combination of vectors β1, . . . , βd under a natural extension of our Assumption
2. The analysis from Kubkowski and Mielniczuk (2018) seems to be a good starting point
in establishing a similar relation for our parameter θ0 given in (7). If this holds, then
the theoretical results concerned with the identification of significant predictors by Ran-
kLasso should be possible to obtain by a relatively straightforward extension of our proof
techniques.
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Appendix

In Section A of the appendix we provide results for Rank-Lasso and its modifications in
the low-dimensional scenario. Besides, additional results of numerical experiments are in
Section E. The proofs of results obtained in the main paper are given in Sections B and C.
Finally, proofs of results from Section A in the appendix are given in Section D.

Appendix A. Low-dimensional scenario

In this section we consider properties of rank estimators in the case where the number of
predictors is fixed. In the first part we focus on RankLasso and in the second part we study
thresholded and weighted RankLasso.

We assume, without loss of generality, that T = {1, . . . , p0} for some 0 < p0 < p, so the
response variable Y depends on first p0 predictors. RankLasso estimates the set T by

T̂ = {1 ≤ j ≤ p : θ̂j 6= 0}.

The results, that we obtain in this subsection, are asymptotic, so we can replace the
true parameter θ0 in (10) by

θ∗ =
n

n− 1
θ0 = H−1µ. (27)

Obviously, it does not change the set of relevant predictors T. We also decompose the matrix
H = EX1X

′
1 as

H =

 p0×p0︷︸︸︷
H1

p0×(p−p0)︷︸︸︷
H2

H ′2 H3

 ,

so the matrix H1 describes correlations between relevant predictors and the matrix H2

contains correlations between relevant and irrelevant predictors.

A.0.1 Model selection consistency of RankLasso

The next result provides sufficient and necessary conditions for RankLasso to be model
selection consistent. They are similar to the results proved in Zou (2006, Theorem 1)
and Zhao and Yu (2006, Theorem 1), which concern model selection in the linear model.
Theorem 8 extends these results to the single index model (2), which does not require any
assumptions on the form of the link function (except being monotonic) nor the distribution
of the noise variable.
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Theorem 8 Suppose that Assumption 3 is satisfied, E|X1|4 <∞ and λ→ 0,
√
nλ→∞.

(a) If limn→∞ P (T̂ = T )→ 1, then∣∣H ′2H−1
1 sign(θ∗T )

∣∣
∞ ≤ 1, (28)

where θ∗ is defined in (27).
(b) If the inequality ∣∣H ′2H−1

1 sign(θ∗T )
∣∣
∞ < 1 (29)

holds, then limn→∞ P (T̂ = T )→ 1.

The sufficiency of (29) for model selection consistency of RankLasso was established in
Wang and Zhu (2015, Corollary 2.1). In Theorem 8 we strenghten this result by showing that
it is almost the necessary condition. The condition (29), called the irrepresentable condition
(Zhao and Yu, 2006), is restrictive and satisfied only in some very special cases, like when
predictors are independent or when the correlations between ,,neighboring” variables decay
exponentially with their distance. Therefore, RankLasso usually is not consistent in model
selection. However, as shown in the following Lemma 9, it can consistently estimate θ∗

under much weaker assumptions. This result will be crucial for Subsection A.0.2, where we
establish model selection consistency of the thresholded and weighted versions of RankLasso
under such weaker assumptions. The next fact is a generalization of Knight and Fu (2000,
Theorem 2).

Lemma 9 Suppose that Assumption 1 is satisfied and E|X1|4 < ∞. Let an be a sequence
such that an → 0, 1

an
√
n
→ b ∈ [0,∞), λ

an
→ c ∈ [0,∞). Then the RankLasso estimator θ̂

in (5) satisfies
1

an

(
θ̂ − θ∗

)
→d arg min

θ
V (θ),

where

V (θ) =
1

2
θ′Hθ + b θ′W + c

∑
j∈T

θjsign(θ∗j ) + c
∑
j /∈T

|θj |

and W has a normal N(0, D) distribution with the matrix D given in Lemma 17 in Sec-
tion D.

A.0.2 Modifications of RankLasso

In this subsection we introduce two modifications of RankLasso and study their properties
in the low-dimensional case.

First of these modifications, the weighted RankLasso estimator, is an analogue of the
adaptive Lasso, which was proposed in Zou (2006). The main idea of this approach relies
on the application of different weights for different predictors, depending on the value of
some initial estimator θ̃ of θ∗. This estimator needs to be

√
n-consistent, i.e. it satisfies

√
n
(
θ̃ − θ∗

)
= OP (1) . (30)
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In particular, according to Lemma 9, θ̃ can be chosen as the RankLasso estimator with
the regularization parameter that behaves as O(1/

√
n). Then, the weighted RankLasso

estimator θ̂a is obtained as

θ̂a = arg min
θ∈Rp

Q(θ) + λ

p∑
j=1

wj |θj | , (31)

where wj = |θ̃j |−1, j = 1, . . . , p and Q(θ) is given in (6).

Let T̂ a denote a set {j ∈ {1, . . . , p} : θ̂aj 6= 0}. The properties of θ̂a are described in the
next theorem.

Theorem 10 Consider the weighted RankLasso estimator (31) with θ̃ satisfying (30). Sup-
pose that Assumption 3 is satisfied and E|X1|4 < ∞. If nλ → ∞ and

√
nλ → c ∈ [0,∞),

then
(a) lim

n→∞
P
(

sign(θ̂a) = sign(β)
)

= 1, where the equality of signs of two vectors is understood

componentwise,

(b)
√
n
(
θ̂aT − θ∗T

)
→d N

(
−H−1

1 c̄, H−1
1 D1H

−1
1

)
, where c̄ = c

(
1
θ∗1
, . . . , 1

θ∗p0

)
, θ∗ is defined

in (27) and the matrix D1 is the (p0 × p0) upper-left submatrix of the matrix D defined in
Lemma 17 in Section D.

Now, we introduce the second modification, which is thresholded RankLasso. This
estimator is denoted by θ̂th and defined in (19).

Theorem 11 Suppose that Assumption 3 is satisfied and E|X1|4 <∞. If
√
nλ→ 0, δ → 0

and
√
nδ →∞, then

(a) lim
n→∞

P
(

sign(θ̂th) = sign(β)
)

= 1, where the equality of signs of two vectors is understood

componentwise,

(b)
√
n
(
θ̂thT − θ∗T

)
→d N

(
0,
(
H−1DH−1

)
1

)
, where θ∗ is defined in (27) and

(
H−1DH−1

)
1

is the (p0 × p0) upper-left submatrix of H−1DH−1.

Theorems 10 and 11 state that weighted and thresholded RankLasso behave almost like
the oracle. They are asymptotically able to identify the support and recognize the signs
of coordinates of the true parameter β. Moreover, they estimate nonzero coordinates of
θ∗ with the standard

√
n-rate. The crucial fact is that these theorems hold even when the

irrepresentable condition is not satisfied. Thus, both modifications of RankLasso allow to
identify the true model under much weaker assumptions than vanilla RankLasso.

Theorems 10 and 11 work in the single index model (2) and they do not require any
assumptions on the distribution of the noise variables or the form of the increasing link
function g. Comparing to other theoretical results concerning model selection with the
robust loss functions, like Wang et al. (2007, Theorem) , Johnson and Peng (2008, Theorem
2.1), Song and Ma (2010, Theorem 4.2), Rejchel (2017b, Theorem 4.1), Avella-Medina and
Ronchetti (2018, Theorem 2), the assumptions of Theorems 10 and 11 are slightly stronger.
Specifically, in Theorems 10 and 11 the standard condition on the existence of the second
moment of predictors is replaced by the assumption on the existence of the fourth moment.
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This results from the fact that we work with the nonlinear model and the quadratic loss
function. Apart from computational efficiency, application of the quadratic loss function
allows us to solve the theoretical issues related to the dependency between ranks. The
stronger assumption on the moments of predictors seems to be a relatively small prize for
the gain in computational complexity, which allows to handle large data sets. Moreover,
according to the simulation study reported in Section 3 of the main paper, for such large
data sets our method has substantially better statistical properties than LADLasso, which
is a popular methodology for robust model selection.

Appendix B. Results from Subsection 2.2

Notice that for Q(θ) defined in (6) we have

Q(θ) =
1

2n

n∑
i=1

(
Ri/n− θ′Xi

)2
+ θ′X̄/2− n+ 1

4n
+ 1/8.

Therefore, due to the fact that predictors Xi are centred we will consider Q(θ) without
subtracting 0.5, that is

Q(θ) =
1

2n

n∑
i=1

(
Ri/n− θ′Xi

)2
in all proofs in this appendix. It will simplify notations.
Proof [Proof of Theorem 1] We start with proving the first part of the theorem. Argumenta-
tion is similar to the proof of Li and Duan (1989, Theorem 2.1), but it has to be adjusted to
ranks, which are not independent random variables (as distinct from Y1, . . . , Yn). Obviously,
we have

EQ(θ) =
1

2n3

n∑
i=1

ER2
i −

1

n2

n∑
i=1

ERiθ′Xi +
1

2n

n∑
i=1

E
(
θ′Xi

)2
.

Vectors (X1, Y1), . . . , (Xn, Yn) are i.i.d. and Xi are centred, so for all i 6= 1

ERiθ′Xi = EI(Y1 ≤ Yi)θ′Xi +
∑

j 6={1,i}

EI(Yj ≤ Yi)θ′Xi

= EI(Yi ≤ Y1)θ′X1 +
∑

j 6={1,i}

EI(Yj ≤ Y1)θ′X1 = ER1θ
′X1.

Moreover, ranks R1, . . . , Rn have the same distribution, so
∑n

i=1 ER2
i = nER2

1. Therefore,

we obtain that EQ(θ) = 1
2E
(
R1
n − θ

′X1

)2
. Using Jensen’s inequality and Assumption 2 we

have

EQ(θ) =
1

2
EE

[(
R1

n
− θ′X1

)2

|β′Xi, εi, i = 1, . . . , n

]

≥ 1

2
E
[
E
(
R1

n
− θ′X1|β′Xi, εi, i = 1, . . . , n

)]2

=
1

2
E
[
R1

n
− E

(
θ′X1|β′X1

)]2

=
1

2
E
(
R1

n
− dθβ′X1

)2

≥ min
d∈R

EQ(dβ).
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Obviously, we have mind EQ(dβ) = EQ(γββ), where γβ is defined in (12). Since θ0 is the
unique minimizer of EQ(θ), we obtain the first part of the theorem.

Next, we establish the second part of the theorem. Denote Z = β′X1 and ε = ε1. It is
clear that γβ > 0 is equivalent to Cov(Z,F (g(Z, ε))) > 0. This covariance can be expressed
as

EZF (g(Z, ε)) = Eh(ε), (32)

where h(a) = E [ZF (g(Z, ε))|ε = a] = EZF (g(Z, a)) for arbitrary a. This fact simply fol-
lows from EZ = 0 and independence between Z and ε. If F is increasing and g is increasing
with respect to the first variable, then h(a) > 0 for arbitrary a by Lemma 12 given below.
Obviously, it implies that (32) is positive.

The following result was used in the proof of Theorem 1. It is a simple and convenient
adaptation of a well-known fact concerning covariance of nondecreasing functions (Thoris-
son, 1995). Its proof follows Kubkowski (2019, Lemma A.44).

Lemma 12 Let U be a random variable that is not concentrated at one point, i.e. P (U =
u) < 1 for each u ∈ R. Moreover, let f, h : R → R be increasing functions. Then
Cov(f(U), h(U)) > 0.

Proof For all real a 6= b we have [f(a)− f(b)][h(a)−h(b)] > 0, because f, h are increasing.
Let V be an independent copy of U. Then P (U 6= V ) > 0 and we obtain

0 < E[f(U)− f(V )][h(U)− h(V )] I(U 6= V )

= E[f(U)− f(V )][h(U)− h(V )]

= 2Ef(U)h(U)− 2Ef(U)Eh(U)

= 2Cov(f(U), h(U)).

Appendix C. Results from Subsection 2.3

To prove Theorem 2 we need three auxiliary results: Lemma 13, Lemma 14 and Lemma
15. The first one is borrowed from van de Geer (2016, Corollary 8.2), while the second one
is its adaptation to U -statistics.

Lemma 13 Suppose that Z1, . . . , Zn are i.i.d. random variables and there exists L > 0
such that C2 = E exp (|Z1|/L) is finite. Then for arbitrary u > 0

P

(
1

n

n∑
i=1

(Zi − EZi) > 2L

(
C

√
2u

n
+
u

n

))
≤ exp(−u).

Lemma 14 Consider a U -statistic

U =
1

n(n− 1)

∑
i 6=j

h(Zi, Zj)
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with a kernel h based on i.i.d. random variables Z1, . . . , Zn. Suppose that there exists L > 0
such that C2 = E exp (|h(Z1, Z2)|/L) is finite. Then for arbitrary u > 0

P

(
U − EU > 2L

(
C

√
6u

n
+

3u

n

))
≤ exp(−u).

Proof Let g(z1, z2) = h(z1, z2)−Eh(Z1, Z2) and Ũ be a U -statistic with a kernel g. Using
Hoeffding’s decomposition we can represent every U -statistic as an average of (dependent)
averages of independent random variables (Serfling, 1980), i.e.

Ũ =
1

n!

∑
π

1

N

N∑
i=1

g
(
Zπ(i), Zπ(N+i)

)
, (33)

whereN =
⌊
n
2

⌋
and the first sum on the right-hand side of (33) is taken over all permutations

π of a set {1, . . . , n}. Take arbitrary s > 0. Then using Jensen’s inequality and the fact that
Z1, . . . , Zn are i.i.d. we obtain

E exp(sŨ) ≤ 1

n!

∑
π

E exp

[
s

N

N∑
i=1

g
(
Zπ(i), Zπ(N+i)

)]

= E exp

[
s

N

N∑
i=1

g (Zi, ZN+i)

]
. (34)

We have the average of N -i.i.d. random variables in (34), so we can repeat argumentation
from the proof of van de Geer (2016, Corollary 8.2). Finally, we use the simple inequality
N ≥ n/3 for n ≥ 2.

Lemma 15 Suppose Assumptions 3 and 4 are satisfied. For arbitrary j = 1, . . . , p and
u > 0 we have

P

(
1

n

n∑
i=1

XijX
′
iθ

0 − n− 1

n
µj > 5

τ2

√
κ

(
2

√
2u

n
+
u

n

))
≤ exp(−u). (35)

Besides, if X1 has a normal distribution N(0, H), then we can drop τ and κ in (35).

Proof Fix j = 1, . . . , p and u > 0. Recall that Hθ0 = n−1
n µ by (10). We work with an

average of i.i.d. random variables, so we can use Lemma 13. We only have to find L,C > 0
such that

E exp
(
|X1jX

′
1θ

0|/L
)
≤ C2.

For each positive number a, b, s we have the inequality ab ≤ a2

2s2
+ b2s2

2 . Applying this fact
and the Schwarz inequality we obtain

E exp
(
|X1jX

′
1θ

0|/L
)
≤

√√√√E exp

(
X2

1j

s2L

)
E exp

(
s2(X ′1θ

0)2

L

)
(36)
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and the number s will be chosen later. The variable X1j is subgaussian, so using Baraniuk

et al. (2011, Lemma 7.4) we can bound the first expectation in (36) by
(

1− 2τ2

s2L

)−1/2
pro-

vided that s2L > 2τ2. The second expectation in (36) can be bounded using subgaussianity
of the vector X1 in the following way

E exp

(
s2(X ′1θ

0)2

L

)
≤
(

1− 2s2τ2|θ0|22
L

)−1/2

,

provided that 2s2τ2|θ0|22 < L. From Theorem 1 we obtain two equalities θ0 = γββ and

γβ =
n−1
n

E I(Y2≤Y1)β′X1

β′Hβ . Recall that κ is the smallest eigenvalue of the matrix HT . Therefore,
we obtain a bound

|θ0|22 = γ2
β|βT |22 ≤ κ−1,

because

E I(Y2 ≤ Y1)β′X1 ≤
√
β′THTβT .

Taking L = 2.2τ2/
√
κ and s2 =

√
κ we obtain C ≤ 2, that finishes the proof of the first

part of the lemma.
Next, we assume thatX1 ∼ N(0, H). Therefore, X1j ∼ N(0, 1) and (θ0)′X1 ∼ N(0, (θ0)′Hθ0).

The argumentation is as above with s2 = 1. We only use the inequality (θ0)′Hθ0 ≤ 1 and
the equality

E exp
(
(X ′1θ

0)2/L
)

=
(
1− 2(θ0)′Hθ0/L

)−1/2
,

provided that L > 2(θ0)′Hθ0. Therefore, we can take L = 2.2.

Lemma 16 Suppose that Assumption 4 and (14) are satisfied. Then for arbitrary a ∈
(0, 1), q ≥ 1, ξ > 1 with probability at least 1− 2a we have F̄q(ξ) ≥ Fq(ξ)/2.

Proof
Fix a ∈ (0, 1), q ≥ 1, ξ > 1. We start with considering the l∞-norm of the matrix∣∣∣∣ 1nX ′X −H

∣∣∣∣
∞

= max
j,k=1,...,p

∣∣∣∣∣ 1n
n∑
i=1

XijXik − EX1jX1k

∣∣∣∣∣ .
Fix j, k ∈ {1, . . . , p}. Using subgaussianity of predictors, Lemma 13 and argumentation
similar to the proof of Lemma 15 we have for u = log(p2/a)

P

(∣∣∣∣∣ 1n
n∑
i=1

XijXik − EX1jX1k

∣∣∣∣∣ > K2τ
2

√
log(p2/a)

n

)
≤ 2a

p2
,

where K2 is an universal constant.
Therefore, using union bounds we obtain

P

(∣∣∣∣ 1nX ′X −H
∣∣∣∣
∞
> K2τ

2

√
log(p2/a)

n

)
≤ 2a. (37)
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Obviously, we have |(X ′X/n−H)θ|∞ ≤ |X ′X/n−H|∞|θ|1 and for each θ ∈ C(ξ) and q > 1

we obtain |θ|1 ≤ (1 + ξ)|θT |1 ≤ (1 + ξ)p
1−1/q
0 |θT |q ≤ (1 + ξ)p

1−1/q
0 |θ|q. Therefore, for each

θ ∈ C(ξ)

p
1/q
0 |X ′Xθ/n|∞

|θ|q
≥ p

1/q
0 |Hθ|∞
|θ|q

− p
1/q
0 |X ′X/n−H|∞|θ|1

|θ|q

≥ p
1/q
0 |Hθ|∞
|θ|q

− (1 + ξ)p0|X ′X/n−H|∞.

Taking infimum and using (37), we have the following probabilistic inequality

F̄q(ξ) ≥ Fq(ξ)−K2(1 + ξ)p0τ
2

√
log(p2/a)

n
.

To finish the proof we use (14) with K1 being sufficiently large.

Proof [Proof of Theorem 2]

Let a ∈ (0, 1) be arbitrary. The main part of the proof is to show that with high
probability

|θ̂ − θ0|q ≤
2ξp

1/q
0 λ

(ξ + 1)F̄q(ξ)
. (38)

Then we apply Lemma 16 to obtain (16).

Thus, we focus on proving (38). Denote Ω = {|∇Q(θ0)|∞ ≤ ξ−1
ξ+1λ}. We start with lower

bounding probability of Ω. For A defined in (11) and every j = 1, . . . , p we obtain

∇jQ(θ0) =

[
1

n

n∑
i=1

XijX
′
iθ

0 − n− 1

n
µj

]
+
n− 1

n

[
µj −Aj

]
− 1

n2

n∑
i=1

Xij , (39)

so if we find probabilistic bounds for each term on the right-hand side of (39), then using
union bounds we get the bound for |∇Q(θ0)|∞. Consider the middle term in (39). By (24)
we apply Lemma 14 with h(z1, z2) = 1

2 [I(y2 ≤ y1)x1j + I(y1 ≤ y2)x2j ] . Variables X1j and
X2j are i.i.d., so for arbitrary L > 0 we have

E exp (|h(Z1, Z2|/L) ≤ [E exp (|X1j |/(2L))]2 . (40)

Using the fact that the variable X1j is subgaussian we bound (40) by 4 exp
(
τ2

4L2

)
. Taking

L = τ and u = log(p/a) in Lemma 14 we obtain for some universal constant K1

P

(
Aj − µj > K1τ

√
log(p/a)

n

)
≤ a

p
.

The third term in (39) can be handled similarly using Lemma 13. To obtain the bound
for the first term in (39) we apply Lemma 15. Taking these results together and using union
bounds we obtain that P (Ω) ≥ 1−K2a provided that λ satisfies (15).
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In further argumentation we consider only the event Ω. Besides, we denote θ̃ = θ̂ − θ0,
where θ̂ is a minimizer of a convex function (5), that is equivalent to{

∇jQ(θ̂) = −λsign(θ̂j) for θ̂j 6= 0,

|∇jQ(θ̂)| ≤ λ for θ̂j = 0,
(41)

where j = 1, . . . , p.
First, we prove that θ̃ ∈ C(ξ). Here our argumentation is standard (Ye and Zhang, 2010).

From (41) and the fact that |θ̃|1 = |θ̃T |1 + |θ̃T ′ |1 we can calculate

0 ≤ θ̃′X ′Xθ̃/n = θ̃′
[
∇Q(θ̂)−∇Q(θ0)

]
=
∑
j∈T

θ̃j∇jQ(θ̂) +
∑
j∈T ′

θ̂j∇jQ(θ̂)− θ̃′∇Q(θ0)

≤ λ
∑
j∈T
|θ̃j | − λ

∑
j∈T ′
|θ̂j |+ |θ̃|1|∇Q(θ0)|∞

=
[
λ+ |∇Q(θ0)|∞

]
|θ̃T |1 +

[
|∇Q(θ0)|∞ − λ

]
|θ̃T ′ |1 .

Thus, using the fact that we consider the event Ω we get

|θ̃T ′ |1 ≤
λ+ |∇Q(θ0)|∞
λ− |∇Q(θ0)|∞

|θ̃T |1 ≤ ξ|θ̃T |1 .

Therefore, from the definition of F̄q(ξ) we have

|θ̂ − θ0|q ≤
p

1/q
0 |X ′X(θ̂ − θ0)/n|∞

F̄q(ξ)
≤ p1/q

0

|∇Q(θ̂)|∞ + |∇Q(θ0)|∞
F̄q(ξ)

.

Using (41) and the fact, that we are on Ω, we obtain (38).
The case X1 ∼ N(0, H) is a consequence of the analogous part of Lemma 15.

Proof [Proof of Corollary 3] The proof is a simple consequence of the bound (16) with
q =∞ obtained in Theorem 2. Indeed, for arbitrary predictors j ∈ T and k /∈ T we obtain

|θ̂j | ≥ |θ0
j | − |θ̂j − θ0

j | ≥ θ0
min − |θ̂ − θ0|∞ >

4ξλ

(ξ + 1)F∞(ξ)
≥ |θ̂k − θ0

k| = |θ̂k|.

Proof [Proof of Theorem 5] The proof is a simple consequence of the uniform bound (18)
from Corollary 4. Indeed, for an arbitrary j /∈ T we obtain

|θ̂j | = |θ̂j − θ0
j | ≤ K4λ < δ ,

so j /∈ T̂ th. Analogously, if j ∈ T, then

|θ̂j | ≥ |θ0
j | − |θ̂j − θ0

j | ≥ 2δ −K4λ > δ .
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Proof [Proof of Theorem 7] First, we define a function

Γa(θ) = Q(θ) + λa

p∑
j=1

wj |θj |. (42)

Next, we fix a ∈ (0, 1) and set, for simplicity, ξ0 = 3. Consider the event Ω = {|∇Q(θ0)|∞ ≤
λ/2}. We know from the proof of Theorem 2 that P (Ω) ≥ 1−K3a and the inequality (18)
is satisfied. The proof of Theorem 7 consists of two steps. In the first one we show that
with high probability there exists a minimizer of the function

g(θT ) = Γa(θT , 0)

that is close to θ0
T in the l1 norm. We denote this minimizer by θ̂aT . In the second part of the

proof we obtain that the vector (θ̂aT , 0), that is θ̂aT augmented by (p− p0) zeros, minimizes
the function (42).

First, consider vectors v ∈ Rp0 having a fixed common l1-norm and a sphere

{θT = θ0
T + p0λv}. (43)

Suppose that |v|1 is sufficiently large. We take arbitrary θT from the sphere (43) and
calculate that

Q(θT , 0)−Q(θ0) =
1

2
p2

0λ
2v′

1

n
X ′TXT v + p0λv

′[∇Q(θ0)]T .

Let κ̂ be the minimal eigenvalue of the matrix 1
nX
′
TXT . Then we have v′ 1nX

′
TXT v ≥

κ̂|v|21/p0. Besides, on the event Ω we obtain

|v′[∇Q(θ0)]T | ≤ |v|1|[∇Q(θ0)]T |∞ ≤ λ|v|1/2.

Proceeding analogously to the proof of Lemma 16 we can show that κ̂ ≥ κ/2 with probability
close to one. Therefore, we obtain

Q(θT , 0)−Q(θ0) ≥ κp0λ
2|v|21/4− p0λ

2|v|1/2. (44)

Next, we work with the penalty term and obtain∣∣∣∣∣∣λa
p0∑
j=1

wj
[
|θ0
j + p0λvj | − |θ0

j |
]∣∣∣∣∣∣ ≤ λap0λ

p0∑
j=1

wj |vj |. (45)

Moreover, for j ∈ T we have from Corollary 4 that

|θ̂j | ≥ |θ0
j | − |θ̂j − θ0

j | ≥ θ0
min −K4λ > λa,

so wj ≤ K. Therefore, the right-hand side of(45) is bounded by Kλλap0|v|1. Combining it
with (44) we get

g(θT )− g(θ0
T ) ≥ p0λ

2|v|1 (κ|v|1/4− 1/2−K4K) . (46)
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The right-hand side of (46) is positive, because the norm |v|1 can be taken sufficiently large,
K,K4 are constants and κ is lower bounded by a constant. Therefore, the convex function
g(θT ) takes on a sphere (43) values larger than in the center θ0

T . So, there exists a minimizer
inside this sphere.

Next, we show that the random vector (θ̂aT , 0) minimizes (42) with high probability, so
we have to prove that the event

{|∇jQ(θ̂aT , 0)| ≤ wjλa for every j /∈ T} (47)

has probability close to one. By Corollary 4 we have for j /∈ T

|θ̂j | = |θ̂j − θ0
j | ≤ K4λ.

Therefore, the corresponding weight wj ≥ λ−1
a . We can also calculate that

∇Q(θT , 0) =
1

n
X ′XT θT −

[
n− 1

n
A+

1

n2

n∑
i=1

Xi

]
,

so we obtain the inequality

∣∣∣[∇Q(θ̂aT , 0)
]
T ′

∣∣∣
∞
≤
∣∣∣∣ 1nX ′T ′XT (θ̂aT − θ0

T )

∣∣∣∣
∞

+
∣∣[∇Q(θ0)

]
T ′

∣∣
∞ . (48)

Consider the event Ω = {|∇Q(θ0)|∞ ≤ λ/2} that has probability close to one by the proof
of Theorem 2. Then the second term on the right-hand side of (48) can be bounded by λ/2.
The former one can be decomposed as∣∣∣∣ 1nX ′T ′XT (θ̂aT − θ0

T )

∣∣∣∣
∞
≤

∣∣∣∣( 1

n
X ′T ′XT −H ′2

)
(θ̂aT − θ0

T )

∣∣∣∣
∞

+
∣∣∣H ′2(θ̂aT − θ0

T )
∣∣∣
∞

≤
∣∣∣∣ 1nX ′T ′XT −H ′2

∣∣∣∣
∞

∣∣∣θ̂aT − θ0
T

∣∣∣
1

+
∣∣H ′2∣∣∞ ∣∣∣θ̂aT − θ0

T

∣∣∣
1
. (49)

The expression |H2|∞ is bounded by one, so from the first part of the proof we can bound,
with high probability, the second term in (49) by K6p0λ. The l∞-norm in the former ex-

pression can be bounded, with probability close to one, by K7

√
log(p/a)

n as in the proof of
Lemma 16. Therefore, we have just proven that with probability close to one∣∣∣[∇Q(θ̂aT , 0)

]
T ′

∣∣∣
∞
≤ K8p0λ.

Combining it with the fact that wj ≥ λ−1
a we obtain that the event (47) has probability

close to one, because from assumptions of the theorem p0λ ≤ K5 for K5 small enough.
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Appendix D. Results from Section A

We start with the proof of Lemma 9. Then we state Lemma 17 that is also needed in proofs
of Theorems 8, 10 and 11. We will use the following notation

Γ(θ) = Q(θ) + λ|θ|1. (50)

Proof [Proof of Lemma 9] Let a := an be a fixed sequence such that a → 0. We can
calculate that for every θ

Q(θ∗ + aθ)−Q(θ∗) = − a

n2
θ′

(
n∑
i=1

RiXi

)
+ aθ′

(
X ′X

n

)
θ∗ +

a2

2
θ′
(
X ′X

n

)
θ. (51)

Using (9) we obtain that the right-hand side of (51) is

a2

2
θ′
(
X ′X

n

)
θ − aθ′

[
n− 1

n
A+ X̄/n−

(
X ′X

n

)
θ∗
]
,

where A is defined in (11). Therefore, we have

1

a2
[Q(θ∗ + aθ)−Q(θ∗)] =

1

2
θ′
(
X ′X

n

)
θ

− θ′√
na

[
n− 1

n

√
nA+ X̄/

√
n−

(
X ′X√
n

)
θ∗
]
.

Using LLN, Lemma 17 (given below) and Slutsky’s theorem we get that

1

a2
[Q(θ∗ + aθ)−Q(θ∗)]→f−d

1

2
θTHθ + bθ′W, (52)

where →f−d is the finite-dimensional convergence in distribution and W ∼ N(0, D). Next,
we consider the penalty term and notice that

λ

a2

p∑
j=1

(
|θ∗j + aθj | −

∣∣θ∗j ∣∣)→ c
∑
j∈T

θjsign(θ∗j ) + c
∑
j /∈T

|θj |. (53)

Thus, from (52) and (53) we have the convergence of convex functions

1

a2
[Γ(θ∗ + aθ)− Γ(θ∗)]→f−d V (θ), (54)

where the function Γ(θ) is defined in (50). The function on the left-hand side of (54) is min-

imized by 1
a

(
θ̂ − θ∗

)
and the convex function on the right-hand side of (54) has a unique

minimizer. Thus 1
a

(
θ̂ − θ∗

)
→d arg min

θ
V (θ), see Geyer (1996).

Lemma 17 Suppose that Assumption 1 is satisfied and E|X1|4 <∞. Then

√
n [A− µ]−

√
n

[
X ′X

n
θ∗ − µ

]
→d N(0, D),

where D is stated precisely in the proof below.
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Proof Consider two U -statistics. The first one is A that is defined in (11). The second
U -statistic is

B =
1

n

n∑
i=1

XiX
′
iθ
∗

and is of the order one. Besides, we have EB = Hθ∗ = µ by (27). Using Hoeffding (1948,
Theorem 7.1) we obtain convergence in distribution in R2p

√
n

[
A− µ
B − µ

]
→d N(0,Σ)

for the matrix

Σ =

 p×p︷︸︸︷
Σ1

p×p︷︸︸︷
Σ2

Σ2 Σ3

 ,

where for j, k = 1, . . . , p and the function f in (24) we have

(Σ1)jk = 4Cov(f̃j(Z1), f̃k(Z1)),

where f̃(z1) = E [f(Z1, Z2)|Z1 = z1] and f̃j(z1) is its j-th coordinate. The entries of the
matrix Σ3 are

(Σ3)jk = Cov(X1jX
′
1θ
∗, X1kX

′
1θ
∗)

and

(Σ2)jk = 2Cov(f̃j(Z1), X1kX
′
1θ
∗).

Next, define (p × 2p)-dimensional matrix M in the following way: for j = 1, . . . , p put
Mj,j = 1 and Mj,p+j = −1, and zeros elsewhere. Then

√
n [A− µ]−

√
n

[
X ′X

n
θ∗ − µ

]
= M

√
n

[
A− µ
B − µ

]
→d N(0,MΣM ′).

Now we prove main results of Section A.

Proof [Proof of Theorem 8] From Lemma 9 for a = λ we obtain

λ−1
(
θ̂ − θ∗

)
→d arg min

θ
V2(θ), (55)

where

V2(θ) =
1

2
θ′Hθ +

∑
j∈T

θjsign(θ∗j ) +
∑
j /∈T

|θj |. (56)

We start with the case (b). Let η = arg minθ V2(θ). We know that η is nonrandom and the
function V2(θ) is strictly convex. Therefore, using (29) we have

η =
(
−H−1

1 sign(θ∗T ), 0
)
. (57)
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For fixed j ∈ T we have

λ−1
(
θ̂j − θ∗j

)
→P ηj ,

so P(j /∈ T̂ ) = P(θ̂j = 0) → 0. Thus, P(T ⊂ T̂ ) → 1. Next, we show that P(T̂ ⊂ T ) ≥
1−

∑
j /∈T

P(j ∈ T̂ )→ 1. Consider fixed j /∈ T and an event {j ∈ T̂}. Recall that θ̂ minimizes

the convex function Γ, so 0 ∈ ∂Γ(θ̂), where ∂Γ denotes a subgradient of the convex function
Γ. The function Q(θ) is differentiable, so ∂Γ(θ̂) = ∇Q(θ̂) + λ∂|θ̂|. Therefore, we have

0 = ∇jQ(θ̂) + λ sign(θ̂j), (58)

where ∇jQ(θ̂) is the j-th partial derivative Q(θ) at θ̂. From (58) we have

λ−1
∣∣∣∇jQ(θ̂)

∣∣∣ = 1. (59)

We can calculate that

∇Q(θ̂) = −n− 1

n
A− X̄/n+

X ′X

n

(
θ̂ − θ∗

)
+
X ′X

n
θ∗,

that gives us

λ−1∇Q(θ̂) = − 1√
nλ

[
n− 1

n

√
nA+ X̄/

√
n−
√
n
X ′X

n
θ∗
]

+ λ−1X
′X

n
(θ̂ − θ∗). (60)

Therefore, using LLN, Lemma 17, (55) and Slutsky’s theorem the left-hand side of (59)

tends in probability to
∣∣∣(Hη)j

∣∣∣ . Recall that we consider the event {j ∈ T̂} for j /∈ T, so we

have the inequality

lim sup
n→∞

P
(
θ̂j 6= 0

)
≤ I

(∣∣∣(Hη)j

∣∣∣ = 1
)
,

since η is not random. However, from (29) and (57) we obtain∣∣∣(Hη)j

∣∣∣ =
∣∣∣(HT

2 H
−1
1 sign (θ∗A)

)
j

∣∣∣ < 1.

Therefore, probability P
(
θ̂j 6= 0

)
tends to zero that finishes the proof of consistency in

model selection.
The proof of the claim (a) is similar to the proof of Zou (2006, Theorem 1, scenario

(3)) and uses properties of the function V2(θ) in (56). We state it here for completeness
of the paper. For each j /∈ T we have λ−1θ̂j →p ηj , so using model selection consistency

of the estimator θ̂ we obtain ηT ′ = 0. Moreover, the function V2(θ) is convex and η is its
minimizer, so 0 ∈ ∂V2(η). Thus, if j ∈ T we have 0 = (Hη)j + sign(θ∗j ). Therefore, we get

ηT = −H−1
1 sign(θ∗T ), (61)

because ηT ′ = 0. While for j /∈ T we obtain that |(Hη)j | ≤ 1, so component-wise

|H ′2ηT | ≤ 1. (62)
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Claim (a) follows from combination of (61) and (62).

In the next result we use epi-convergence in distribution, which is an useful tool in the
optimization theory. The following definitions are borrowed from Geyer (1994) and Pflug
(1995).

Definition 1 (Epi-convergence) A sequence fn of lower semicontinuous (lsc) functions
from Rp to R̄ epi-converges to a lsc function f, if for all x and xn → x the following inequality
holds lim infn fn(xn) ≥ f(x) and there exists xn → x such that lim supn fn(xn) ≤ f(x).

Definition 1 is equivalent to the following one, which is useful to define epi-convergence
in distribution.

Definition 2 (Epi-convergence) A sequence fn of lower semicontinuous (lsc) functions
from Rp to R̄ epi-converges to a lsc function f, if for each compact set K the follow-
ing inequality holds lim infn infx∈K fn(x) ≥ infx∈K f(x) and for each open set O we have
lim supn infx∈O fn(x) ≤ infx∈O f(x).

Definition 3 (Epi-convergence in distribution) Let Zn and Z be random processes,
which are lsc on Rp. We say that Zn epi-converges in distribution to Z, if for all k, all
closed rectangles R1, . . . , Rk with open interiors Ro1, . . . , R

o
k and any real numbers a1, . . . , ak

we have

P

(
inf
u∈R1

Z(u) > a1, . . . , inf
u∈Rk

Z(u) > ak

)
≤ lim inf

n
P

(
inf
u∈R1

Zn(u) > a1, . . . , inf
u∈Rk

Zn(u) > ak

)
≤ lim sup

n
P

(
inf
u∈Ro

1

Zn(u) ≥ a1, . . . , inf
u∈Ro

k

Zn(u) ≥ ak
)

≤ P

(
inf
u∈Ro

1

Z(u) ≥ a1, . . . , inf
u∈Ro

k

Z(u) ≥ ak
)
.

Proof [Proof of Theorem 10] We define a function

Γa(θ) = Q(θ) + λ

p∑
j=1

|θj |
|θ̃j |

.

Let us start with the claim (b). Repeating the same arguments as in the proof of Lemma 9
(for a = 1√

n
) we obtain for every θ

nQ

(
θ∗ +

θ√
n

)
− nQ(θ∗)→f−d

1

2
θ′Hθ + θ′W,

which using convexity implies weak convergence of the stochastic process{
nQ

(
θ∗ +

θ√
n

)
− nQ(θ∗) : θ ∈ K

}
→d

{
1

2
θ′Hθ + θ′W : θ ∈ K

}
(63)
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for every compact set K in Rp, see Arcones (1998). Now consider the penalty term and use
similar arguments to that in the proof of Zou (2006, Theorem 2) to obtain that if θ∗j 6= 0,
then

nλ


∣∣∣θ∗j +

θj√
n

∣∣∣− |θ∗j |
|θ̃j |

 =
√
nλ
√
n


∣∣∣θ∗j +

θj√
n

∣∣∣− |θ∗j |
|θ̃j |

→P c
θj
θ∗j
,

because
√
nλ → c, θ̃j →P θ∗j and

√
n
[∣∣∣θ∗j +

θj√
n

∣∣∣− |θ∗j |] → sign(θ∗j )θj . However, if θ∗j = 0,

then

nλ


∣∣∣θ∗j +

θj√
n

∣∣∣− |θ∗j |
|θ̃j |

 =
√
nλ
|θj |
|θ̃j |
→P

{
0, θj = 0
∞, θj 6= 0,

since
√
nθ̃j = OP (1) and nλ→∞. Therefore, we obtain that for every θ

nλ

p∑
j=1

∣∣∣θ∗j +
θj√
n

∣∣∣− |θ∗j |
|θ̃j |

→P

{
c
∑

j∈T
θj
θ∗j
, θ = (θ1, . . . , θp0 , 0, . . . , 0)

∞, otherwise.

Since we have infinity in the last limit we cannot use arguments based on uniform con-
vergence on compacts as we have done in the proof of Lemma 9. Here we should follow
epi-convergence results (Geyer, 1994; Pflug, 1995; Zou, 2006) that combined with conver-
gence (63) give us that

nQ

(
θ∗ +

θ√
n

)
− nQ(θ∗) + nλ

p∑
j=1

∣∣∣θ∗j +
θj√
n

∣∣∣− |θ∗j |
|θ̃j |

(64)

epi-converges in distribution (see Definition 3) to V3(θ), where

V3(θ) =

{
1
2θ
′
TH1θT + θ′T (WT + c̄), (θ1, . . . , θp0 , 0, . . . , 0)

∞, otherwise

and WT ∼ N(0, D1). Furthermore,
[
−H−1

1 (WT + c̄), 0
]′

is the unique minimizer of the
function V3, so epi-convergence in (64) implies convergence of minimizers (Geyer, 1994)

√
n
(
θ̂aT − θ∗T

)
→d −H−1

1 (WT + c̄) and
√
n
(
θ̂aT ′ − θ∗T ′

)
→d 0, (65)

where T ′ = {p0 + 1, . . . , p} is the complement of T. It finishes the proof of the second claim.
Next, we go to the claim (a). We prove only that

lim
n→∞

P
(
T̂ a = T

)
= 1,

because the equality of the signs of relevant predictors follows simply from Theorem 1 and
estimation consistency stated in the claim (b) of this theorem. The reasoning is similar to
the proof of Theorem 8(b). Let us start with fixed j ∈ T, then P(j /∈ T̂ a) = P(θ̂aj = 0)→ 0

by the second claim of the theorem. Next recall that θ̂a minimizes the convex function
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Γa(θ), so 0 ∈ ∂Γa(θ̂a) and ∂Γa(θ̂a) = ∇Q(θ̂a) + ∂

(
λ
∑p

j=1

|θ̂aj |
|θ̃j |

)
. If we consider fixed j /∈ T

and an event {j ∈ T̂ a}, then we have

0 = ∇jQ(θ̂a) + λ
sign(θ̂aj )

|θ̃j |
. (66)

From (66) we have
√
n
∣∣∣∇jQ(θ̂a)

∣∣∣ =
nλ
√
n|θ̃j |

. (67)

The right-hand side of (67) tends to infinity in probability, because nλ→∞ and its denom-
inator is bounded in probability. If we can show that the left-hand side of (67) is bounded in
probability, then probability of the considered event {j ∈ T̂ a} tends to zero and it finishes
the proof. Notice that

√
n∇Q(θ̂a) = −

[
n− 1

n

√
nA+ X̄/

√
n−
√
n
X ′X

n
θ∗
]

(68)

+
X ′X

n

√
n(θ̂a − θ∗). (69)

The term on the right-hand side of (68) is bounded in probability by Lemma 17. Using
LLN, (65) and Slutsky’s theorem we can also bound (69) in probability.

Proof [Proof of Theorem 11] Using Lemma 9 with a = 1/
√
n we obtain

√
n
(
θ̂ − θ∗

)
→d −H−1W, (70)

because
√
nλ → 0. Fix j /∈ T, so θ∗j = 0. Then we have from (70) and

√
nδ → ∞ that

δ−1θ̂j →P 0, so P (θ̂thj = 0) = P (|θ̂j | < δ)→ 1.

Similarly, take j ∈ T such that θ∗j > 0. From (70) we know that θ̂j is a consistent estima-

tor of θ∗j . Therefore, P (θ̂thj > 0) = P (θ̂j > δ) tends to one, because δ → 0. Argumentation
for j ∈ T such that θ∗j < 0 is analogous. Using Theorem 1 we finish the proof of the claim
(a) of the theorem.

From (70) we have
√
n
(
θ̂T − θ∗T

)
→d −(H−1W )T . Moreover, we have just proved that

P (θ̂thT = θ̂T )→ 1. It finishes the proof of the claim (b).

Appendix E. Additional simulation results

In Figures 3 and 4 we show plots of FDR and Power for estimators considered in Section 3.
In Figure 5 we have boxplots for gene expressions from Section 4.
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Figure 3: Plots of FDR for different simulation scenarios
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Figure 4: Plots of Power for different simulation scenarios
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