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Abstract
How can we effectively exploit the collected samples when solving a continuous control task
with Reinforcement Learning? Recent results have empirically demonstrated that multiple
policy optimization steps can be performed with the same batch by using off–distribution
techniques based on importance sampling. However, when dealing with off–distribution
optimization, it is essential to take into account the uncertainty introduced by the importance
sampling process. In this paper, we propose and analyze a class of model-free, policy search
algorithms that extend the recent Policy Optimization via Importance Sampling (Metelli
et al., 2018) by incorporating two advanced variance reduction techniques: per–decision
and multiple importance sampling. For both of them, we derive a high–probability bound,
of independent interest, and then we show how to employ it to define a suitable surrogate
objective function that can be used for both action–based and parameter–based settings.
The resulting algorithms are finally evaluated on a set of continuous control tasks, using
both linear and deep policies, and compared with modern policy optimization methods.
Keywords: Reinforcement Learning, Policy Optimization, Importance Sampling, Per–
Decision Importance Sampling, Multiple Importance Sampling

1. Introduction

In recent years, policy search methods (Deisenroth et al., 2013) have proved to be valuable
Reinforcement Learning (RL, Sutton and Barto, 1998) approaches thanks to their achieve-
ments in continuous control tasks (e.g., Lillicrap et al., 2015; Schulman et al., 2015a,b,
2017), robotic locomotion (e.g., Tedrake et al., 2004; Kober et al., 2013; Heess et al., 2017)
and manipulation (e.g., OpenAI et al., 2018, 2019), videogames (e.g., OpenAI, 2018) and
partially observable environments (e.g., Ng and Jordan, 2000). These algorithms can be
roughly classified into two categories: action–based methods (Sutton et al., 2000; Peters and
Schaal, 2008b) and parameter–based methods (Sehnke et al., 2008). The former, usually
known as policy gradient (PG) methods, perform a search in a parametric policy space by
following the gradient of the utility function estimated by means of a batch of trajectories
collected from the environment (Sutton and Barto, 1998). In contrast, in parameter–based
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methods, the search over the space of policy parameters is carried out in a black–box fashion
by exploiting global optimizers (e.g., Rubinstein, 1999; Hansen and Ostermeier, 2001; Stanley
and Miikkulainen, 2002; Szita and Lörincz, 2006) or following a proper gradient direction
like in Policy Gradients with Parameter–based Exploration (PGPE, Sehnke et al., 2008;
Wierstra et al., 2008; Sehnke et al., 2010). A major question in policy search methods is:
“how should we use a batch of trajectories in order to exploit its information in the most
efficient way?”

On the one hand, on–policy methods leverage the batch to perform a single gradient
step, after which new trajectories are collected with the updated policy (e.g., Williams, 1992;
Baxter and Bartlett, 2001; Schulman et al., 2015a). However, these methods rarely exploit
the available trajectories efficiently, since each batch is discarded after just one gradient
update. On the other hand, off–policy methods maintain a behavioral policy, used to explore
the environment and to collect samples, and a target policy which is optimized. The concept
of off–policy learning is rooted in value–based RL (Watkins and Dayan, 1992; Peng and
Williams, 1994; Munos et al., 2016) and was first adapted to PG in Degris et al. (2012),
using an actor–critic architecture.

While on–policy algorithms are, by their nature, on–line, as they need to be fed with
fresh samples whenever the policy is updated, off–policy methods can benefit from mixing
on–line and off–line optimization. This can be done by alternately sampling trajectories
and performing optimization epochs with the collected data. A prime example of this
alternating procedure is Proximal Policy Optimization (PPO, Schulman et al., 2017), which
has displayed remarkable performance in continuous control tasks. Off–line optimization,
however, introduces further sources of approximation, as the gradient w.r.t. the target policy
needs to be estimated (off–policy) with samples collected with a behavioral policy. A common
choice is to adopt an importance sampling (IS, Owen, 2013; Hesterberg, 1988) estimator in
which each sample is weighted proportionally to the likelihood of being generated by the
target policy. However, direct optimization of this utility function is impractical since it likely
displays a wide variance (Owen, 2013). Intuitively, the variance increases proportionally to
the distance between the behavioral and the target policy; thus, the estimate is reliable as
long as the two policies are close enough.

In this paper, we extend Policy Optimization via Importance Sampling (POIS) presented
in (Metelli et al., 2018) from the theoretical, algorithmic, and experimental viewpoint. POIS
is a model–free, actor–only, policy optimization algorithm that mixes on–line and off–line
optimization to efficiently leverage the information contained in the collected trajectories. It
explicitly accounts for the uncertainty introduced by the importance weighting procedure by
optimizing a surrogate objective function that captures the trade–off between the estimated
performance improvement and the uncertainty injected by the importance sampling. However,
this uncertainty remains a crucial challenge when performing off–policy optimization. The
main contributions of this paper over Metelli et al. (2018) are essentially directed to address
this latter issue and can be summarized as follows:

1. We introduce the Multiple Importance Sampling technique (MIS, Veach and Guibas,
1995; Owen, 2013) in the POIS framework. MIS allows exploiting trajectories collected
with multiple behavioral policies, as opposed to the simple IS in which all the trajectories
come from a single behavioral policy. Thus, MIS can bring a significant benefit in
terms of sample complexity as, compared to IS, it allows using a larger number of
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samples in estimating the performance while collecting the same number of trajectories
(Section 3.2).

2. We adapt action–based POIS (A-POIS) to use Per–Decision Importance Sampling
(PDIS, Precup et al., 2000), a technique that allows reducing the variance of IS while
preserving the unbiasedness of the estimator. PDIS exploits the fact that a reward
collected at time t does not depend on the actions and states visited after t to define
an importance weight for each trajectory prefix, instead of a single one for the whole
trajectory, as in vanilla IS (Section 5.3).1

For both techniques, we first derive a bound on the variance of the estimator, then we
apply it to derive a suitable concentration inequality that embeds the trade–off between the
performance estimator and the dissimilarity between the target policy and the behavioral
policy/policies. Finally, we empirically evaluate their performance, comparing the results
with those presented in (Metelli et al., 2018).

The paper is organized as follows. We start in Section 2 by introducing the notation and
basics about RL policy search. After revising some notions about IS and MIS (Section 3),
we propose a concentration inequality, of independent interest, for the high–confidence
“off–distribution” optimization of objective functions estimated via IS and MIS (Section 4).
Then we show how this bound can be customized into a surrogate objective function in
order to either search in the space of policies (Action–based POIS, A-POIS) or to search in
the space of parameters (Parameter–based POIS, P-POIS). For the former case, we show
how to adapt the algorithm to embed the PDIS technique, deriving a new objective function
and algorithm (per–Decision action–based POIS, D-POIS). The resulting algorithms (in
both the action–based and the parameter–based flavor) collect, at each iteration, a set of
trajectories that are used to perform the off–line optimization of the surrogate objective via
gradient ascent, after which a new batch of trajectories is collected using the optimized policy
(Section 5). Then, in Section 6, we present a comparative discussion of related works. Finally,
we provide an experimental evaluation with both linear policies and deep neural policies to
illustrate the advantages and limitations of our approach compared to the state–of–the–art
algorithms (Section 7) on classical control tasks (Duan et al., 2016; Todorov et al., 2012).
The implementation of POIS can be found at https://github.com/T3p/baselines.

2. Preliminaries

In this section, we provide the background and the notation that will be employed in the
following sections.

Notation Let pX ,F q be a measurable space, where X is a set and F is a σ–algebra
over X . Given a probability measure P over pX ,F q, we denote with the corresponding
lower case letter p the probability density function (p.d.f.) of P w.r.t. the Lebesgue measure,
if it exists. We will assume that the probability density function of any probability measure
exists, whenever needed. We denote with δx the Dirac measure on the given point x P X .
With little abuse of notation, we will replace the probability measure from the expectation
Ex„P with the corresponding density function Ex„p, whenever clear from the context. Given

1. This is the very same observation used in deriving G(PO)MDP (Baxter and Bartlett, 2001) from
REINFORCE (Williams, 1992).
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a probability measure P , with p.d.f. p, and a measurable function f , we define the LαpP q–
norm as }f}αα,P “

ş

X |fpxq|
α ppxqdx for any α ě 1, whereas the L8–norm is defined as

}f}8 “ supxPX fpxq.
Markov Decision Processes A discrete–time Markov Decision Process (MDP, Puterman,

2014) is defined as a tuple M “ pS,A, P,R, γ,Dq where S is the state space, A is the
action space, P p¨|s, aq is a Markovian transition model that assigns for each state–action
pair ps, aq the probability of reaching the next state s1, γ P r0, 1s is the discount factor,
Rps, aq P r´Rmax, Rmaxs assigns the expected reward for performing action a in state
s which is uniformly bounded by Rmax ă `8 and D is the distribution of the initial
state. The behavior of an agent is described by a policy πp¨|sq that assigns for each
state s the probability of performing action a. A trajectory τ P T is a sequence of
state–action pairs τ “ psτ,0, aτ,0, . . . , sτ,H´1, aτ,H´1, sτ,Hq, where H is the actual trajectory
horizon. The performance of an agent is evaluated in terms of the expected return, i.e., the
expected discounted sum of the rewards collected along the trajectory: Eτ rRpτqs, where
Rpτq “

řH´1
t“0 γtRpsτ,t, aτ,tq is the trajectory return.2

Policy Search We focus on the case in which the policy belongs to a parametric policy
space ΠΘ “ tπθ : θ P Θ Ď Rpu. In parameter–based approaches, the agent is equipped with
a hyperpolicy ν used to sample the policy parameters at the beginning of each episode. The
hyperpolicy belongs itself to a parametric hyperpolicy space NP “ tνρ : ρ P P Ď Rru. The
expected return can be expressed, in the parameter–based case, as a double expectation:
one over the policy parameter space Θ and one over the trajectory space T :

JMpρq “ E
θ„νρ

τ„pp¨|θq

rRpτqs “

ż

Θ

ż

T
νρpθqppτ |θqRpτq dτ dθ, (1)

where ppτ |θq “ Dpsτ,0q
śH´1
t“0 πθpaτ,t|sτ,tqP psτ,t`1|sτ,t, aτ,tq is the trajectory density function.

The goal3 of a parameter–based learning agent is to determine the hyperparameters ρ˚ so
as to maximize JMpρq. If νρ is stochastic and differentiable, the hyperparameters can be
learned according to the gradient ascent update: ρ1 “ ρ` α∇ρJMpρq, where α ą 0 is the
step size and:

∇ρJMpρq “ E
θ„νρ

τ„pp¨|θq

r∇ρ log νρpθqRpτqs “
ż

Θ

ż

T
νρpθqppτ |θq∇ρ log νρpθqRpτq dτ dθ.

Since the stochasticity of the hyperpolicy is a sufficient source of exploration, deterministic
action policies of the kind πθpa|sq “ δuθpsqpaq are typically considered, where uθ is a deter-
ministic mapping from S to A. In what we call the action–based case, on the contrary, the
hyperpolicy νρ is a deterministic distribution νρpθq “ δgpρqpθq, where gpρq is a deterministic

2. Provided H ě 1
1´γ log Rmax

εp1´γq , the expected return is ε–close to the infinite–horizon case (Kearns and
Singh, 2002).

3. Policy optimization solves a different (typically easier) problem than classic RL, since the set of possible
policies is restricted to ΠΘ. The parameter–based approach further modifies the objective function
by searching for optimal hyperparameters instead of directly for policy parameters. The possibility of
recovering an optimal policy for the original, unconstrained problem depends on the nature of ΠΘ and
NP . The bias on the performance of the learned policy induced by parametrization is discussed, e.g.,
by Agarwal et al. (2019).
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mapping from P to Θ. For this reason, the dependence on ρ is typically not represented
and the expected return expression simplifies into a single expectation over the trajectory
space T :4

JMpθq “ E
τ„pp¨|θq

rRpτqs “

ż

T
ppτ |θqRpτq dτ. (2)

An action–based learning agent aims to find the policy parameters θ˚ that maximize JMpθq.
In this case, we need to enforce exploration at the action level by means of the stochasticity
of πθ. For stochastic and differentiable policies, learning can be performed via gradient
ascent θ1 “ θ ` α∇θJDpθq, where:

∇θJMpθq “ E
τ„pp¨|θq

r∇θ log ppτ |θqRpτqs “
ż

T
ppτ |θq∇θ log ppτ |θqRpτq dτ.

3. Evaluation via Importance Sampling

In off–policy evaluation (Thomas et al., 2015b; Thomas and Brunskill, 2016), we aim to
estimate the performance of a target policy πT (or hyperpolicy νT ) given episodes collected
with a set of J behavioral policies tπBjuJj“1 (or hyperpolicies tνBjuJj“1). More generally, we
face the problem of estimating the expected value of a deterministic function f of random
variable x taking values in X under a target distribution P , having at our disposal data sets
of samples collected with J behavioral distributions Q1:J “ tQju

J
j“1.

3.1. Importance Sampling

When the available samples are drawn from a single distribution Q, i.e., J “ 1, the
importance sampling estimator (IS, Cochran, 2007; Owen, 2013) corrects the distribution
with the importance weight (or Radon–Nikodym derivative or likelihood ratio) defined as
wP {Qpxq “

ppxq
qpxq and leading to the estimator:

pµP {Q “
1
N

N
ÿ

i“1

ppxiq

qpxiq
fpxiq “

1
N

N
ÿ

i“1
wP {Qpxiqfpxiq, (3)

where x “ px1, x2, . . . , xN q
T are sampled from Q independently and we assume qpxq ą 0

whenever fpxqppxq ‰ 0. This estimator is unbiased, i.e., Ex„QrpµP {Qs “ Ex„P rfpxqs, but
it may exhibit an undesirable behavior due to the variability of the importance weights,
showing, in some cases, infinite variance. Intuitively, the magnitude of the importance weights
provides an indication of how much the probability measures P and Q are dissimilar. This
notion can be formalized by the Rényi divergence (Rényi, 1961; Van Erven and Harremos,
2014), an information–theoretic dissimilarity index between probability measures.

Remark 1 (Rényi divergence) Let P and Q be two probability measures on a
measurable space pX ,F q such that P ! Q (P is absolutely continuous w.r.t. Q) and Q
is σ–finite. Let P and Q admit p and q as Lebesgue probability density functions (p.d.f.),

4. For notational convenience, and with little abuse, we keep the conditioning on θ in pp¨|θq, although in
the action–based case θ is no longer a random variable.
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respectively. The α–Rényi divergence between P and Q is defined as:

DαpP }Qq “
1

α´ 1 log
ż

X

ˆ

dP
dQ

˙α

dQ “ 1
α´ 1 log

ż

X
qpxq

ˆ

ppxq

qpxq

˙α

dx, (4)

where dP {dQ is the Radon–Nikodym derivative of P w.r.t. Q and α P r0,8s. Some
remarkable cases, defined as limits, are: α “ 1 when D1pP }Qq “ DKLpP }Qq and α “ 8
yielding D8pP }Qq “ log ess supX

!

dP
dQ

)

.5 Importing the notation from Cortes et al. (2010),
we denote the exponentiated α–Rényi divergence as dαpP }Qq “ exp tDαpP }Qqu. With little
abuse of notation, we will replace DαpP }Qq with Dαpp}qq whenever possible within the
context. When P and Q are (multivariate) Gaussian distributions, i.e., P „ N pµP ,ΣP q and
Q „ N pµQ,ΣQq, the Rényi divergence admits a closed–form for α P r0,8q (Burbea, 1984):

DαpP }Qq “
α

2 pµP ´ µQq
TΣ´1

α pµP ´ µQq ´
1

2pα´ 1q log detpΣαq

detpΣP q
1´α detpΣQq

α
, (5)

where Σα “ αΣQ`p1´αqΣP under the assumption that Σα is positive–definite. The Rényi
divergence can be computed in closed form also for several widely used distributions (Gil
et al., 2013).

The Rényi divergence provides a convenient expression for the moments of the importance
weights: Ex„Q

“

wP {Qpxq
α
‰

“ dαpP }Qq
α´1. Moreover, we can relate the Rényi divergence

with the variance and the essential supremum of the importance weights (Cortes et al.,
2010):

Var
x„Q

“

wP {Qpxq
‰

“ d2pP }Qq ´ 1

ess sup
x„Q

 

wP {Qpxq
(

“ d8pP }Qq.

Remark 2 (Self–Normalized Importance Sampling) A commonly used approach
to mitigate the variance problem of the IS estimator, is to resort to the self–normalized
importance sampling estimator (SN, Cochran, 2007):

rµP {Q “

řN
i“1wP {Qpxiqfpxiq
řN
i“1wP {Qpxiq

“

N
ÿ

i“1
rwP {Qpxiqfpxiq, (6)

where rwP {Qpxq “ wP {Qpxq{
řN
i“1wP {Qpxiq is the self–normalized importance weight. Dif-

ferently from pµP {Q, rµP {Q is biased but consistent (Owen, 2013) and it typically displays
a more desirable behavior because of its smaller variance.6 A more detailed analysis of
the SN estimator can be found in Appendix D. Given the realization x1, x2, . . . , xN we
can interpret the SN estimator as the expected value of f under an approximation of the
distribution P made by N deltas, i.e., rppxq “

řN
i“1 rwP {Qpxqδxipxq. The problem of assessing

the quality of the SN estimator has been extensively studied by the simulation community,

5. ess sup is the essential supremum of a measurable function f , i.e., the smallest M such that fpxq ďM
almost everywhere.

6. Note that
ˇ

ˇ

rµP {Q
ˇ

ˇ ď }f}8. Therefore, its variance is always finite.
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producing several diagnostic indexes to detect when the weights might display problematic
behavior (Owen, 2013). The effective sample size (ESS) was introduced by Kong (1992) as
the number of samples drawn from P so that the variance of the Monte Carlo estimator
rµP {P (i.e., the sample mean) is approximately equal to the variance of the SN estimator
rµP {Q computed with N samples. Here we report the original definition and its most common
estimate:

ESSpP }Qq “ N

Varx„Q
“

wP {Qpxq
‰

` 1
“

N

d2pP }Qq
,

yESSpP }Qq “ 1
řN
i“1 rwP {Qpxiq2

.
(7)

The ESS has an interesting interpretation: if d2pP }Qq “ 1, i.e., P “ Q almost everywhere,
then ESS “ N since we are performing Monte Carlo estimation. Otherwise, the ESS
decreases as the dissimilarity between the two distributions increases. In the literature, other
ESS–like diagnostics have been proposed that also account for the nature of f (Martino
et al., 2017).

3.2. Multiple Importance Sampling

The IS estimator can be extended to the case in which we have samples collected with
multiple behavioral distributions Qj , i.e., when J ą 1. In multiple importance sampling
frameworks (MIS, Veach and Guibas, 1995; Owen, 2013) we have a set of J ě 1 behavioral
distributions Q1:J “ tQju

J
j“1 and a data set xj “ px1j , x2j , ..., xNj jq of Nj samples collected

independently with Qj , j “ 1, 2, ..., J . We denote with N “
řK
j“1Nj the total number of

samples. The resulting estimator is given by:

pµβP {Q1:J
“

J
ÿ

j“1

1
Nj

Nj
ÿ

i“1
βjpxijq

ppxijq

qjpxijq
fpxijq “

J
ÿ

j“1

1
Nj

Nj
ÿ

i“1
βjpxijqwP {Qjfpxijq, (8)

where we assume that qjpxq ą 0 whenever βjpxqppxqfpxq “ 0 and βjpxq is a partition of
the unity, i.e., a collection of weight functions for which βjpxq ě 0 for all j “ 1, 2, ..., J
and

řJ
j“1 βjpxq “ 1 for all x P X . Several choices for the coefficients βj (Owen, 2013) are

possible. A straightforward, but inefficient, choice is to select βjpxq “ Nj
N , so as to give equal

importance to all the samples. Among all the possible choices for βj (e.g., cutoff, maximum,
power heuristics, see Owen, 2013), the most studied, thanks to its desirable theoretical
properties, is the balance heuristic (BH, Veach and Guibas, 1995), defined as follows:

βBH
j pxq “

Njqjpxq
řJ
k“1Nkqkpxq

. (9)

This particular choice has the advantage of canceling out the qj in the estimator. In this
way, the weight of a given sample xij does not depend on which component of the mixture
it comes from. The resulting estimator has the following form:

pµBH
P {Q1:J

“
1
N

J
ÿ

j“1

Nj
ÿ

i“1

ppxijq
řJ
k“1

Nk
N qkpxijq

fpxijq “
1
N

J
ÿ

j“1

Nj
ÿ

i“1
wBH
P {Q1:J

pxijqfpxijq, (10)

7
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Behavioral
distributions Number of samples Evaluation

complexity

IS Q N O pNq
MIS with BH Q1:J “ tQju

J
j“1 N “

řJ
j“1 Nj O pNJq

Table 1: Comparison between importance sampling (IS) and multiple importance sampling
with balance heuristics (MIS with BH) in terms of computational complexity for the
evaluation of the corresponding estimators, with the same number of samples. We
assume that the evaluations of the density functions p and qj and of the function
f have complexity Op1q.

which can be interpreted as an importance sampling estimator using the mixture of behavioral
distributions with mixture weights Nk

N , i.e., Φ “
řK
k“1

Nk
N Qk. Furthermore, this choice of

coefficient functions is nearly optimal (Veach and Guibas, 1995, Theorem 1) in terms
of variance of the estimator pµP {Q1:J . Although the variance problem is less crucial in
the MIS, compared to the IS case, it is possible to combine the MIS estimator with the
self–normalization technique. This can be done in two ways: by normalizing the weights
separately for each behavioral distribution:

rµBH
P {Q1:J

“
1
J

J
ÿ

j“1

Nj
ÿ

i“1

wBH
P {Q1:J

pxijq
řNj
k“1w

BH
P {Q1:J

pxkjq
fpxijq, (11)

or by normalizing each weight over all available samples:

r

rµBH
P {Q1:J

“

J
ÿ

j“1

Nj
ÿ

i“1

wBH
P {Q1:J

pxijq
řJ
h“1

řNh
k“1w

BH
P {Q1:J

pxkhq
fpxijq. (12)

Both reduce to the classic SN when J “ 1. However, the first normalization at Equation (11)
degenerates under unit batch sizes, setting all the normalized weights to one. For this reason,
we will adopt the second version at Equation (12) in our experiments.

In the policy optimization framework, the major advantage of the MIS estimation,
over the standard IS, is the higher sample–efficiency. Indeed, using MIS we can reuse
the trajectories generated by all past policies tπBjuJj“1 to estimate the performance of the
target policy πT . Differently, with the IS estimator we just reuse the trajectories generated
by a single policy πB, usually the last one. This advantage comes at the cost of higher
computational complexity, as we need to evaluate the density function induced by each
policy for all the collected trajectories (Table 1).

4. Optimization via Importance Sampling

The off–policy optimization problem (Thomas et al., 2015a) can be formulated as finding the
best target policy πT (or hyperpolicy νT ), i.e., the one that maximizes the expected return,
having access to a set of samples collected with a set of behavioral policies tπBjuJj“1 (or
hyperpolicies tνBuJj“1). In a more abstract sense, we aim to determine the target distribution
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P that maximizes Ex„P rfpxqs by having data sets of samples collected with J behavioral
distributions Q1:J “ tQju

J
j“1. In this section, we analyze the problem of defining an objective

function suitable for this purpose.
The naïve approach would be to directly optimize the estimator pµβP {Q1:J

with the data
sampled from Q1, . . . , QJ . This approach has a fundamental problem (even when using the
BH). As shown in Section 3, the IS estimate is less reliable (i.e., displays a larger variance)
for target distributions very different from the behavioral one. With enough freedom in
choosing P , the optimal solution would assign as much probability mass as possible to the
maximum value among fpxiq. Since the IS estimator is clearly unreliable for such an extreme
distribution, this kind of optimization is ill–informed and overconfident. For this reason,
we adopt a risk–averse approach and we decide to optimize a statistical lower bound of the
expected value Ex„P rfpxqs which holds with high confidence. We start by analyzing the
behavior of the IS estimator, i.e., J “ 1 and we provide the following result that bounds the
variance of pµP {Q in terms of the Rényi divergence.

Lemma 1 Let P and Q be two probability measures on the measurable space pX ,F q such
that P ! Q. Let α P r1,`8s, x “ px1, x2, . . . , xN q

T be i.i.d. random variables sampled from
Q and f : X Ñ R be a function with bounded 2α

α´1–moment under Q (}f}Q, 2α
α´1

ă `8).
Then, for any N ą 0, the variance of the IS estimator pµP {Q can be upper bounded as:

Var
x„Q

“

pµP {Q
‰

ď
1
N
}f}2

Q, 2α
α´1

d2α pP }Qq
2´ 1

α , (13)

where we used the abbreviation x „ Q for denoting xi „ Q for all i “ 1, 2, ..., N all
independent.

Proof We consider the following derivation:

Var
x„Q

“

pµP {Q
‰

“
1
N

Var
x1„Q

„

ppx1q

qpx1q
fpx1q



(P.1)

ď
1
N

E
x1„Q

«

ˆ

ppx1q

qpx1q
fpx1q

˙2
ff

(P.2)

ď
1
N

E
x1„Q

«

ˇ

ˇ

ˇ

ˇ

ppx1q

qpx1q

ˇ

ˇ

ˇ

ˇ

2α
ff

1
α

E
x1„Q

”

|fpx1q|
2α
α´1

ı
α´1
α (P.3)

“
1
N
}f}2

Q, 2α
α´1

d2α pP }Qq
2´ 1

α ,

where the line (P.1) follows form the fact that the random variables xi are i.i.d., line (P.2)
follows from bounding the variance with the second moment, and line (P.3) is derived by
applying Hölder’s inequality with p “ α and q “ α

α´1 . Finally, we exploit the definition of
dα and }¨}Q,p.

This result generalizes Lemma 4.1 of Metelli et al. (2018), that can be recovered by
setting α “ 1 under the condition that }f}8 ă `8:

Var
x„Q

“

pµP {Q
‰

ď
1
N
}f}28d2 pP }Qq . (14)

9
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When P “ Q almost everywhere, we get Varx„Q
“

pµQ{Q
‰

ď 1
N }f}

2
8, a well–known

upper bound to the variance of a Monte Carlo estimator. Recalling the definition of ESS
(Equation 7) we can rewrite the previous bound as:

Var
x„Q

“

pµP {Q
‰

ď
}f}28

ESSpP }Qq . (15)

Thus, the variance scales with ESS instead of N , justifying the definition of ESS. While
pµP {Q can have an unbounded variance even if f is bounded, the SN estimator rµP {Q is
always bounded by }f}8 and therefore it always has finite variance. Since the normalization
term makes all the samples rwP {Qpxiqfpxiq interdependent, an exact analysis of its bias and
variance is more challenging. Several works adopted approximate methods for providing an
expression for its variance (Hesterberg, 1988). We propose an analysis of bias and variance
of the SN estimator in Appendix D.

When considering the MIS estimator with BH, a similar bound for the variance was
derived by Papini et al. (2019, Lemma 1):

Lemma 2 Let P and tQjuJj“1 be probability measures on the measurable space pX ,F q such
that P ! Qj for j “ 1, . . . , J . Let xj “ px1j , x2j , . . . , xNj jq

T be i.i.d. random variables
sampled from Qj for j “ 1, . . . , J . Let x “ px1,x2, . . . ,xJqT and Φ “

řJ
k“1

Nk
N Qk be a finite

mixture. Let α P r1,`8s and f : X Ñ R be a function with bounded 2α
α´1–moment under Φ

(}f}Φ, 2α
α´1

ă `8). Then, the variance of the multiple importance sampling estimator can be
upper bounded as:

Var
x„Q1:J

”

pµBH
P {Q1:J

ı

ď
1
N
}f}2Φ, 2α

α´1
d2α pP }Φq2´

1
α , (16)

where we used the abbreviation x „ Q1:J for denoting xj „ Qj for all j “ 1, 2, ..., J all
independent.

Proof Consider the following derivation:

Var
x„Q1:J

”

pµBH
P {Q1:J

ı

“ Var
x„Q1:J

«

1
N

J
ÿ

j“1

Nj
ÿ

i“1

ppxijq
řK
k“1

Nk
N qkpxijq

fpxijq

ff

“
1
N2

J
ÿ

j“1

Nj
ÿ

i“1
Var
xij„Qj

«

ppxijq
řJ
k“1

Nk
N qkpxijq

fpxijq

ff

(P.4)

ď
1
N2

J
ÿ

j“1

Nj
ÿ

i“1
E

xij„Qj

»

–

˜

ppxijq
řJ
k“1

Nk
N qkpxijq

fpxijq

¸2
fi

fl (P.5)

“
1
N

E
x„Φ

»

–

˜

ppxq
řJ
k“1

Nk
N qkpxq

fpxq

¸2
fi

fl (P.6)

ď
1
N

E
x„Φ

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

ppxq
řJ
k“1

Nk
N qkpxq

ˇ

ˇ

ˇ

ˇ

ˇ

2α
fi

fl

1
α

E
x„Φ

”

|fpxq|
2α
α´1

ı
α´1
α (P.7)

10
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“
1
N
}f}2Φ, 2α

α´1
d2α pP }Φq2´

1
α ,

where line (P.4) follows from the fact that all xij are i.i.d., line (P.5) derives from bounding
the variance with the second moment, line (P.6) is obtained from observing that, for a
generic function g we have:

1
N

J
ÿ

j“1

Nj
ÿ

i“1
E

xij„Qj
rgpxijqs “

J
ÿ

j“1

Nj

N
E

x1j„Qj
rgpx1jqs “ E

x„Φ
rgpxqs.

Then, line (P.7) is obtained by Hölder’s inequality with p “ α and q “ α
α´1 .

Similarly to the single–IS case, an interesting case is obtained when setting α “ 2 and,
consequently, requiring }f}8 ă `8:

Var
x„Q1:J

”

pµBH
P {Q1:J

ı

ď
1
N
}f}28d2 pP }Φq . (17)

While for Gaussian distributions the Rényi divergence can be computed in closed–
form (Equation 5), when passing to the MIS case we need to evaluate the dα between a
Gaussian distribution and a mixture of Gaussians, which does not admit a closed form.
A straightforward approach consists in exploiting the convexity of dα w.r.t. to the second
argument, when α ě 1, to obtain the loose bound:

dαpP }Φq ď
K
ÿ

k“1

Nk

N
dαpP }Qkq.

However, this bound would be vacuous when at least one of the terms dαpP }Qkq is infinite,
while, clearly, the variance of the estimator would be finite as long as at least one of the
terms dαpP }Qkq is finite. This intuition is captured by a tighter bound that resorts to the
harmonic mean of the terms dαpP }Qkq, as presented in Papini et al. (2019), which we report
here using our notation.

Theorem 1 (Papini et al., 2019, Theorem 5) Let P and tQjuJj“1 be probability measures on
the measurable space pX ,F q such that P ! Qj for j “ 1, . . . , J . Let Φ “

řJ
j“1 ζjQj, with

ζj ě 0 for all j “ 1, 2, ..., J and
řJ
j“1 ζj “ 1 be a finite mixture. Then, for any α P r1,8s,

the exponentiated α–Rényi divergence can be bounded as:

dαpP }Φq ď
1

řJ
j“1

ζj
dαpP }Qjq

. (18)

We just need to set ζj “ Nj
N in Theorem 1 to obtain the case of our interest. It is worth

noting that Theorem 1 shows that the bound on the variance of the MIS estimator pµP {Q1:J
with BH is never worse than the bound on the variance of the IS estimator pµP {Qj˚ that uses
the distribution Qj˚ which is the closest to P among the Q1:J . Indeed, we can easily obtain
the following inequality:

d2pP }Φq
N

ď
1

řJ
j“1

Nj
d2pP }Qjq

ď min
jPt1,...,Ju

d2pP }Qjq

Nj
.
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4.1. Concentration Inequality

The problem of finding a suitable concentration inequality for off–policy learning was studied
by Thomas et al. (2015b) for off–line policy evaluation and subsequently by Thomas et al.
(2015a) for optimization. On the one hand, fully empirical concentration inequalities, like
Student–T, besides the asymptotic approximation, are not suitable in this case since the
empirical variance needs to be estimated with importance sampling as well, injecting further
uncertainty (Owen, 2013). On the other hand, several distribution–free inequalities, like
Hoeffding, require knowing the maximum of the estimator, which might not exist for the
IS estimator when d8pP }Qq “ 8. Constraining d8pP }Qq to be finite often introduces
unacceptable limitations. For instance, consider the case of univariate Gaussian distributions
of the form N pµ, σ2q, where the standard deviation σ is one of the parameters that must be
learned. The constraint on d8pP }Qq prevents a step that selects a target policy variance
σ2 larger than the behavioral one.7 Even Bernstein inequalities (Bercu et al., 2015), are
hardly applicable since, for instance, in the case of univariate Gaussian distributions, the
importance weights display a heavy–tail behavior. For a detailed analysis of the properties
of the IS estimator for Gaussian distributions refer to Appendix C. We believe that a
reasonable trade–off should require the variance of the importance weights to be finite, which
is equivalent to require d2pP }Qq ă 8, i.e., σP ă 2σQ for univariate Gaussians. For this
reason, we resort to Chebyshev–like inequalities and we propose the following concentration
bound derived from Cantelli’s inequality and customized for the IS estimator.

Theorem 2 Let P and Q be two probability measures on the measurable space pX ,F q such
that P ! Q and d2pP }Qq ă `8. Let x1, x2, . . . , xN be i.i.d. random variables sampled from
Q, and f : X Ñ R be a bounded function (}f}8 ă `8). Then, for any 0 ă δ ď 1 and
N ą 0, with probability at least 1´ δ, it holds that:

E
x„P

rfpxqs ě
1
N

N
ÿ

i“1
wP {Qpxiqfpxiq

pµP {Q

´}f}8

c

p1´ δqd2pP }Qq

δN
. (19)

Proof We start from Cantelli’s inequality (Cantelli, 1929) applied on the random variable
pµP {Q “

1
N

řN
i“1wP {Qpxiqfpxiq:

Pr
´

pµP {Q ´ E
x„P

rfpxqs ě λ
¯

ď
1

1` λ2

Varx„QrpµP {Qs

. (P.8)

By renaming δ “ 1
1` λ2

Varx„QrpµP {Qs

and considering the complementary event, we get that with

probability at least 1´ δ we have:

E
x„P

rfpxqs ě pµP {Q ´

d

1´ δ
δ

Var
x„Q

“

pµP {Q
‰

. (P.9)

7. Although the policy variance tends to be reduced during the learning process, there might be cases in
which it needs to be increased (e.g., suppose we start with a behavioral policy with small variance, it
might be beneficial to increase the variance to enforce exploration). See (Ahmed et al., 2019; Papini
et al., 2020) on this topic.
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By replacing the variance with the bound in Lemma 1 (setting α “ 1) we get the result.

The bound highlights the interesting trade–off between the estimated performance and the
uncertainty introduced by changing the distribution. The latter enters in the bound as the
2–Rényi divergence between the target distribution P and the behavioral distribution Q.
Intuitively, we should trust the estimator pµP {Q as long as P is not too far from Q. For the SN
estimator, accounting for the bias, we are able to obtain a bound (reported in Appendix D),
with a similar dependence on P as in Theorem 2, albeit with different constants. The same
result is also applicable to the multiple importance sampling estimator, by just swapping
pµP {Q with pµBH

P {Q1:J
and using the variance bound from Lemma 2.

Corollary 1 Let P and tQjuJj“1 be probability measures on the measurable space pX ,F q
such that P ! Qj for j “ 1, . . . , J . Let x1j , x2j , . . . , xNj j be i.i.d. random variables sampled
from Qj with j “ 1, 2, ..., J , let Φ “

řJ
k“1

Nk
N Qk be a finite mixture such that d2pP }Φq ă `8

and f : X Ñ R be a bounded function (}f}8 ă `8). Then, for any 0 ă δ ď 1 and N ą 0,
with probability at least 1´ δ, it holds that:

E
x„P

rfpxqs ě
1
N

J
ÿ

j“1

Nj
ÿ

i“1
wBH
P {Q1:J

pxijqfpxijq

pµBH
P {Q1:J

´}f}8

c

p1´ δqd2pP }Φq
δN

. (20)

By renaming the constants involved in the bound of Theorem 2 as λ “ }f}8
a

p1´ δq{δ,
we get a surrogate objective function. In the following sections, we will denote it with L and
particularize it for the action–based and parameter–based frameworks. Bound optimization
can be carried out in different ways. Section 4.2 shows why using the natural gradient
could be a successful choice in case P and Q can be expressed as differentiable parametric
distributions.

Remark 3 (On Importance Weight Clipping) In Section 4.1, we have seen that
one of the main challenges in employing importance sampling is the undesirable heavy–
tailed behavior. A common technique for overcoming this problem is weight clipping (or
truncation) (Ionides, 2008). More specifically, given a clipping threshold M ă 8, we define
the clipped weight as qωP {Qpxq “ mintM,ωP {Qpxqu, leading to the estimator:

qµP {Q “
1
N

N
ÿ

i“1
qωP {Qpxiqfpxiq “

1
N

N
ÿ

i“1
mintM,ωP {Qpxiqufpxiq. (21)

Clearly, truncating the weights introduces a bias that, under certain conditions (e.g., fpxq ě 0
for all x P X ), can be neglected to derive one–sided concentration inequalities (Thomas
et al., 2015b). In any case, the bias and the variance of qµP {Q can be bounded as a function
of the Rényi divergence and the clipping threshold (Papini et al., 2019, see also Lemma 3):

ˇ

ˇ

ˇ

ˇ

E
x„Q

“

qµP {Q
‰

´ E
x„P

rfpxqs

ˇ

ˇ

ˇ

ˇ

ď }f}8
d2pP }Qq

M
,

Var
x„Q

“

qµP {Q
‰

ď }f}28
d2pP }Qq

N
.
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As also supported by intuition, the form of the bias and the variance suggests that the
clipping threshold should be adaptive and a function of the number of samples N . The
following result adapts Theorem 1 by Papini et al. (2019) showing that, by making the
threshold M dependent on the number of samples N and on the probability δ, we are able to
achieve exponential concentration, compared to the polynomial concentration of Theorem 2.

Theorem 3 Let P and Q be two probability measures on the measurable space pX ,F q such
that P ! Q and d2pP }Qq ă `8. Let x1, x2, . . . , xN be i.i.d. random variables sampled from
Q, and f : X Ñ R be a bounded function (}f}8 ă `8). Then, for any 0 ă δ ď 1 and

N ą 0, using a clipping threshold MpN, δq “
c

3Nd2pP }Qq

2 log 1
δ

, with probability at least 1´ δ it

holds that:

E
x„P

rfpxqs ě
1
N

N
ÿ

i“1
qwP {Qpxiqfpxiq

qµP {Q

´}f}8p2`
?

3q

d

2d2pP }Qq log 1
δ

3N . (22)

Despite the more convenient dependence on δ, we believe that weight clipping is unsuited
for our purposes. First, in order to set the clipping threshold MpN, δq, it is necessary to
know in advance the confidence δ. Second, and most importantly, weight clipping makes
the objective function non–differentiable w.r.t. the policy/hyperpolicy parameters, due to
the presence of minimum mintM,ωP {Qpxqu, preventing gradient–based optimization. Thus,
while clipping is a viable alternative in the case of off–distribution evaluation, it introduces
significant challenges when it comes to off–distribution optimization. Indeed, in (Papini
et al., 2019) the optimization of the clipped estimator is carried out, only approximately, by
discretizing the space of hyperpolicy parameters. For these reasons, in this work, we will
not deepen the study of weight clipping.

4.2. Importance Sampling and Natural Gradient

We can look at a parametric distribution Pω, having pω as a density function, as a point on
a probability manifold with coordinates ω P Ω. If pω is differentiable, the Fisher Information
Matrix (FIM, Rao, 1992; Amari, 2012) is defined as:

Fpωq “
ż

X
pωpxq∇ω log pωpxq∇ω log pωpxqT dx.

This matrix is, up to a scale, an invariant metric (Amari, 1998) on parameter space Ω, i.e.,
pω1 ´ ωqTFpωqpω1 ´ ωq is independent from the specific parameterization and provides a
second–order approximation of the distance between pω and pω1 on the probability manifold
up to a scale factor. Given a loss function Lpωq, we define the natural gradient (Amari,
1998; Kakade, 2002) as r∇ωLpωq “ Fpωq´1∇ωLpωq, whenever Fpωq is non–singular, which
represents the steepest ascent direction in the probability manifold. Thanks to the invariance
property, there is a tight connection between the geometry induced by the Rényi divergence
and the Fisher information metric (Amari and Cichocki, 2010).
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Theorem 4 Let pω be a p.d.f. differentiable w.r.t. ω P Ω. Then, it holds that, for the Rényi
divergence:

Dαppω1}pωq “
α

2
`

ω1 ´ ω
˘T Fpωq

`

ω1 ´ ω
˘

` op}ω1 ´ ω}22q,

and for the exponentiated Rényi divergence:

dαppω1}pωq “ 1` α

2
`

ω1 ´ ω
˘T Fpωq

`

ω1 ´ ω
˘

` op}ω1 ´ ω}22q.

This result provides an approximate expression for the variance of the importance weights:

Var
x„pω

“

wω1{ωpxq
‰

“ d2ppω1}pωq ´ 1 »
`

ω1 ´ ω
˘T Fpωq

`

ω1 ´ ω
˘

, (23)

which can be used to justify the use of natural gradients in off–distribution optimization. Say
we want to find the steepest descent update for ω that keeps the variance of the importance
weights under control:

max
∆ω

∇ωLpωqT∆ω

subject to Var
x„pω

“

wω1{ωpxq
‰

ď ε2,

for some small ε ą 0. By approximating the variance with Equation (23) and solving the
resulting constrained optimization problem we obtain:

∆ω “ ε
a

∇ωLpωqTFpωq´1∇ωLpωq
Fpωq´1∇ωLpωq, (24)

which is precisely the natural gradient update with adaptive step size (Amari, 1998; Mat-
subara et al., 2010).

5. Policy Optimization via Importance Sampling

In this section, we discuss how to customize the bound provided in Theorem 2 (and
Corollary 1) for policy optimization. We start with presenting Policy Optimization via
Importance Sampling (POIS, Metelli et al., 2018), a model–free actor–only policy search
algorithm in its two flavors: Parameter–based POIS (P-POIS, Section 5.1), which adopts
the PGPE framework, and Action–based POIS (A-POIS, Section 5.2), which is based on
a policy gradient approach. Then, we show how to extend these algorithms to the MIS
framework. Finally, for the action–based case, we introduce the PDIS, proposing a new
algorithm called per–Decision action–based POIS (D-POIS, Section 5.3). A more detailed
description of the implementation aspects is reported in Appendix G.

5.1. Parameter–based POIS

In the Parameter–based POIS (P-POIS, Figure 1) we consider a parametrized policy space
ΠΘ “ tπθ : θ P Θ Ď Rpu, with πθ not necessarily differentiable nor stochastic. The policy
parameters θ are sampled at the beginning of each episode from a parametric hyperpolicy
νρ selected in a parametric space NP “ tνρ : ρ P P Ď Rru, which needs to be stochastic and
differentiable in ρ. The goal is to learn the hyperparameters ρ so as to maximize JMpρq
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as in Equation (1). In this setting, the distributions Q and P of Section 4 correspond to
the behavioral νρ and target νρ1 hyperpolicies, while f is the trajectory return Rpτq. The
importance weights must take into account all sources of randomness, derived from sampling
a policy parameter θ and a trajectory τ (Zhao et al., 2013):

wρ1{ρpθq “
νρ1pθqppτ |θq

νρpθqppτ |θq
“
νρ1pθq

νρpθq
.

Notice that, from the uniform bound on the immediate reward, it follows that the trajectory
return is bounded by Rmax

1´γH
1´γ if γ ă 1 and RmaxH if γ “ 1. We can now rephrase

Theorem 2 for P-POIS, getting to the surrogate objective function:

LP´POIS
λ pρ1{ρq “

1
N

N
ÿ

i“1
wρ1{ρpθiqRpτiq

pJP´POIS
M pρ1{ρq

´λ

d

d2
`

νρ1}νρ
˘

N
, (25)

where λ is a regularization parameter8 and each trajectory τi is obtained by running an
episode with action policy πθi , and the corresponding policy parameters θi are sampled
independently from hyperpolicy νρ at the beginning of each episode i “ 1, 2, ..., N .

When moving to the MIS framework with balance heuristic, we need to redefine the
importance weight accounting for the several behavioral hyperpolicies considered, having
hyperparameters ρ1:J “ tρju

J
j“1:

wBH
ρ1{ρ1:J

pθq “
νρ1pθqppτ |θq

řJ
k“1

Nk
N νρkpθqppτ |θq

“
νρ1pθq

řJ
k“1

Nk
N νρkpθq

.

Therefore, by employing Corollary 1 together with the bound on the Rényi divergence
(Theorem 1), we are able to formulate the new objective function:

LP´POIS
λ pρ1{ρ1:Jq “

1
N

J
ÿ

j“1

Nj
ÿ

i“1
wBH
ρ1{ρ1:J

pθijqRpτijq

pJP´POIS
M pρ1{ρ1:J q

´
λ

c

řJ
j“1

Nj
d2pνρ1}νρj q

, (26)

where each θij is sampled independently from νρj and the corresponding trajectory τj is
obtained by running policy πθij in the environment with i “ 1, 2, ..., Nj and j “ 1, 2, ..., J .
Clearly, the objective function in Equation (26) reduces to Equation (25) when setting J “ 1,
i.e., when considering a single behavioral hyperpolicy.

To derive a practical algorithm, we use as behavioral hyperpolicies the J most recent
hyperpolicies and we denote them with ρ1:J . At each on–line iteration h “ 1, 2, ...,Mon-line,
we sample NJ parameters tθhi u

NJ
i“1 independently from νρh0

. For each of the θhi , we collect a
single trajectory τhi by running policy πθhi in the environment and we observe its return Rpτhi q.
We now employ this return and all the ones previously collected to optimize the objective
function LP´POIS

λ off–line. In particular, for each off–line iteration k “ 1, 2, ...,Moff-line, we

8. Formally, from Theorem 2, λ “ Rmax
1´γH

1´γ

b

1´δ
δ

for γ ă 1 and λ “ RmaxH
b

1´δ
δ

for γ “ 1.
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πθ

νρ′

νρ

θ

s a

Figure 1: Graphical representation of P-POIS.

compute the gradient ∇ρh
k
LP´POIS
λ pρhk{ρ

h
1:Jq of the objective function and we determine a

step size αk using a line search procedure (see Appendix G.1). We employ them to update
the hyperpolicy parameters, via gradient ascent:

ρhk`1 “ ρ
h
k ` αk∇ρh

k
LP´POIS
λ pρhk{ρ

h
1:Jq.

Finally, when the off–line optimization is performed, we update the set of behavioral
hyperpolicies by removing the oldest parametrization ρh´J0 and inserting the most recent
ρh`1

0 . Clearly, the removal of the oldest one needs to be performed only if we have performed
at least J on–line iterations, i.e., if h ě J . Refer to Algorithm 1 for the complete pseudo–code
of P-POIS.

Remark 4 (How to choose the hyperpolicy model?) The choice of the hyperpolicy
model influences the computation of the objective function. Often a Gaussian hyperpolicy
νρ with diagonal covariance matrix is used, i.e., θ „ N pµρ,diagpσ2

ρqq with hyperparameters
ρ. The policy is typically chosen as deterministic: πθpa|sq “ δuθpsqpaq, where uθ is a
deterministic function of the state s (e.g., Sehnke et al., 2010; Grüttner et al., 2010). This
particular setting has an advantage over the action–based setting (Section 5.2), since the
distribution of the importance weights is entirely known, being the ratio between two
Gaussians, and the Rényi divergence d2pνρ1}νρq can be computed exactly (Burbea, 1984, ,
see Equation 5). The parameter–based approach has another key advantage. Indeed the
FIM can be computed exactly, and it is diagonal in the case of a Gaussian hyperpolicy with
a diagonal covariance matrix:

Fpρq “
ˆ

diag pσρq´2 0
0 2I

˙

.

The FIM is block–diagonal in the more general case of a Gaussian hyperpolicy, as observed
in Miyamae et al. (2010). This makes the natural gradient much more enticing for P-POIS.
The natural gradient can be obtained by simply premultiplying the gradient of the objective
function by the inverse of the FIM: Fpρhkq´1∇ρh

k
LP´POIS
λ pρhk{ρ

h
1:Jq.

5.2. Action–based POIS

In Action–based POIS (A-POIS, Figure 2) we search for a policy that maximizes the per-
formance index JMpθq within a parametric space ΠΘ “ tπθ : θ P Θ Ď Rpu of stochastic
differentiable policies. In this context, the behavioral (resp. target) distribution Q (resp. P )
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Algorithm 1 Parameter–based POIS.
Input: J number of behavioral hyperpolicies

NJ number of samples to collect for each hyperpolicy
Mon-line maximum number of on–line iterations
Moff-line maximum number of off–line iterations
λ ě 0 regularization parameter

Output: ρMon-line
0 final hyperpolicy parametrization

Initialize the behavioral hyperpolicy ρ0
0 arbitrarily

Initialize the behavioral hyperpolicy set ρ0
1:J “ tρ

0
0u

for h “ 0, 1, ...,Mon-line ´ 1 do
Sample NJ policy parameters tθhi u

NJ
i“1 independently from νρh

0

Sample NJ trajectories tτhi u
NJ
i“1 independently with each tπθh

i
u
NJ
i“1

for k “ 0, 1, ...,Moff-line ´ 1 do
Compute the objective function gradient ∇ρh

k
LP´POIS
λ pρhk{ρ

h
1:Jq

Find the step size αhk using line search
Update the hyperpolicy parameters ρhk`1 “ ρ

h
k ` α

h
k∇ρh

k
LP´POIS
λ pρhk{ρ

h
1:Jq

end for
Update the last behavioral hyperpolicy ρh`1

0 “ ρhMoff-line

Update the behavioral hyperpolicy set ρh`1
1:J “

#

`

ρh1:Jztρ
h´J
0 u

˘

Y tρh`1
0 u if h ě J

ρh1:J Y tρ
h`1
0 u otherwise

end for

On–line optimization

Off–line optimization

becomes the distribution over trajectories pp¨|θq (resp. pp¨|θ1q) induced by the behavioral
policy πθ (resp. target policy πθ1) and f is again the trajectory return Rpτq. The corre-
sponding importance weight is defined in terms of trajectory density functions, and reduces
to a product of policy ratios:

wθ1{θpτq “
ppτ |θ1q

ppτ |θq
“

H´1
ź

t“0

πθ1paτ,t|sτ,tq

πθpaτ,t|sτ,tq
.

The Rényi divergence has to be computed between the distributions over trajectories induced
by the policies, leading to the surrogate objective function:

LA´POIS
λ pθ1{θq “

1
N

N
ÿ

i“1
wθ1{θpτiqRpτiq

pJA´POIS
M pθ1{θq

´λ

d

d2
`

pp¨|θ1q}pp¨|θq
˘

N
, (27)

Differently from P-POIS, the surrogate objective function cannot be directly optimized
via gradient ascent since computing d2

`

pp¨|θ1q}pp¨|θq
˘

requires the approximation of an
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integral over the trajectory space, even for well–known policy models (like Gaussian policies).
Furthermore, for stochastic environments, we need to know the functional form of the
transition model P :

d2
`

pp¨|θ1q}pp¨|θq
˘

“

ż

T
ppτ |θq

ˆ

ppτ |θ1q

ppτ |θq

˙2
dτ “

ż

T
ppτ |θq

˜

H´1
ź

t“0

πθ1paτ,t|sτ,tq

πθpaτ,t|sτ,tq

¸2

dτ. (28)

Nevertheless, we can upper bound d2
`

pp¨|θ1q}pp¨|θq
˘

with the Rényi divergence between the
policies, as provided by the following result.

Proposition 1 Let pp¨|θq and pp¨|θ1q be the behavioral and target trajectory probability
density functions. If pp¨|θ1q ! pp¨|θq and H ă `8, then, for any α P r0,`8s it holds that:

dα
`

pp¨|θ1q}pp¨|θq
˘

ď sup
sPS

tdα pπθ1p¨|sq}πθp¨|sqqu
H .

However, this bound, besides being hard to compute due to the presence of the supremum,
is extremely conservative since the Rényi divergence is raised to the horizon H. For these
reasons, in practice, we resort to Rényi divergence estimators that will be presented and
discussed in Remark 6.

The multiple importance sampling extension is straightforward, provided that we redefine
the importance weight according to the balance heuristic, considering the set of behavioral
policies induced by the corresponding parameters θ1:J “ tθju

J
j“1:

wBH
θ1{θ1:J

pτq “
ppτ |θ1q

řJ
k“1

Nk
N ppτ |θjq

“

śH´1
t“0 πθ1paτ,t|sτ,tq

řJ
k“1

śH´1
t“0

Nk
N πθj paτ,t|sτ,tq

.

Given the importance weights, we can apply Corollary 1 and Theorem 1 in order to define
the surrogate objective function:

LA´POIS
λ pθ1{θ1:Jq “

1
N

J
ÿ

j“1

Nj
ÿ

i“1
wBH
θ1{θ1:J

pτijqRpτijq

pJA´POIS
M pθ1{θ1:J q

´
λ

c

řJ
j“1

Nj
d2ppp¨|θ1q}pp¨|θjqq

, (29)

where each τij is obtained by running policy πθj in the environment with i “ 1, 2, ..., Nj and
j “ 1, 2, ..., J .

The learning process proceeds in a way similar to P-POIS. We consider the J most
recent policies θ1:J as behavioral policies. At each on–line iteration h “ 1, 2, ...,Mon-line, we
collect NJ trajectories tθhi u

NJ
i“1 independently from πθh0

and we observe their return Rpτhi q.
These trajectories are then used to perform off–line optimization of the objective function
LA´POIS
λ . More specifically, for each off–line iteration k “ 1, 2, ...,Moff-line, we compute the

gradient ∇θhkL
A´POIS
λ pθhk{θ

h
1:Jq of the objective function and we determine a step size using

a line search procedure (see Appendix G.1). The policy parametrization is then updated via
gradient ascent:

θhk`1 “ θ
h
k ` αk∇θhkL

A´POIS
λ pθhk{θ

h
1:Jq.
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πθ′

πθ
as

Figure 2: Graphical representation of A-POIS.

Finally, we update the set of behavioral policies by inserting the new parametrization
θh`1

0 and, if h ě J , removing the oldest one θh´J0 . Refer to Algorithm 2 for the complete
pseudo–code of A-POIS.

Remark 5 (How to choose the policy model?) Typically, we consider a policy
πθp¨|sq defined as a Gaussian distribution over actions whose mean depends on the state
and whose covariance is state–independent and diagonal, i.e., a „ N pµθpsq, diagpσ2

θqq, where
θ are the parameters we need to optimize. However, even in this case, we cannot exactly
compute the exponentiated Rényi divergence between the trajectory probability distributions
(Equation 28). Furthermore, w.r.t. P-POIS, the usage of natural gradient becomes less
appealing for A-POIS. Indeed, the FIM needs to be estimated off–policy from samples,
possibly injecting further uncertainty and betraying its original goal. For instance, in the
single–IS setting, we can employ the estimator:

pFpθ1{θq “ 1
N

N
ÿ

i“1
wθ1{θpτiq

˜

H´1
ÿ

t“0
∇θ1 log πθ1paτi,t|sτi,tq

¸T ˜H´1
ÿ

t“0
∇θ1 log πθ1paτi,t|sτi,tq

¸

.

The SN estimator is obtained by replacing wθ1{θpτiq with rwθ1{θpτiq. These estimators become
very unreliable when θ1 is far from θ, making them difficult to use in practice.

Remark 6 (Estimating the Rényi Divergence) Since the exponentiated Rényi
divergence d2

`

pp¨|θ1q}pp¨|θq
˘

between distributions over trajectories, as in Equation (28),
cannot be computed exactly in A-POIS, we address the problem of how to estimate it.
For brevity, we denote with Dα “ supsPS tdα pπθ1p¨|sq}πθp¨|sqqu

α´1 for α P r0,`8s.9 The
simplest and most natural estimator can be obtained by computing the second sample
moment of the importance weights, i.e., rephrasing Equation (28) in a sample–based version:

pd2
`

pp¨|θ1q}pp¨|θq
˘

“
1
N

N
ÿ

i“1
wθ1{θpτiq

2 “
1
N

N
ÿ

i“1

H´1
ź

t“0

ˆ

πθ1paτi,t|sτi,tq

πθpaτi,t|sτi,tq

˙2
. (30)

This estimator is clearly unbiased, but it tends to display high variance. In particular, it is
affected by a very undesirable property: when all the importance weights wθ1{θpτq are close
to zero we get a significant underestimation of the divergence. This is a symptom of the
fact that the two distributions, pp¨|θ1q and pp¨|θq, are quite far away. Thus, their divergence
should be large, but we estimate a value close to zero.

9. Dα represents the supremum over the state space S of the α–moment of the policy ratio πθ1 p¨|sq

πθp¨|sq
.
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Algorithm 2 Action–based POIS.
Input: J number of behavioral policies

NJ number of samples to collect for each policy
Mon-line maximum number of on–line iterations
Moff-line maximum number of off–line iterations
λ ě 0 regularization parameter

Output: θMon-line
0 final policy parametrization

Initialize the behavioral policy θ0
0 arbitrarily

Initialize the behavioral policy set θ0
1:J “ tθ

0
0u

for h “ 0, 1, ...,Mon-line ´ 1 do
Sample NJ trajectories tτhi u

NJ
i“1 independently from πθh

0

for k “ 0, 1, ...,Moff-line ´ 1 do
Compute the objective function gradient ∇θh

k
LA´POIS
λ pθhk{θ

h
1:Jq

Find the step size αhk using line search

Update the hyperpolicy parameters θhk`1 “ θ
h
k ` αk∇θh

k
LA´POIS
λ pθhk{θ

h
1:Jq

end for
Update the last behavioral policy θh`1

0 “ θhMoff-line

Update the behavioral policy set θh`1
1:J “

#

´

θh1:Jztθ
h´J
0 u

¯

Y tθh`1
0 u if h ě J

θh1:J Y tθ
h`1
0 u otherwise

end for

On–line optimization

Off–line optimization

We can mitigate this problem by incorporating the fact that the mean of the importance
weights is known to be 1. This observation leads to the estimator:

qd2
`

pp¨|θ1q}pp¨|θq
˘

“ 1` 1
N

N
ÿ

i“1

´

wθ1{θpτiq ´ 1
¯2
. (31)

Like the previous one, this estimator remains unbiased, but its minimum value is now 1
(notice that the divergence is never lower than 1). Indeed, when all the importance weights
are close to zero, the estimated value is close to 2, instead of zero.10 For both these estimators,
the variance is proportional to the fourth moment of the importance weight distribution,
i.e., O

` 1
NDH

4
˘

. Recalling the spirit behind the concentration inequality of Theorem 2, this
fact is undesirable since the 4–Rényi divergence of the importance weights might not exist.
This implies that the variance of the estimators pd2 and qd2 might be infinite, even when the
true d2 is finite.

To overcome this problem, we can sacrifice unbiasedness and observe that, under certain
policy models (like Gaussians) we can exactly compute the Rényi divergence at single
trajectory steps, with a possible benefit in terms of injected uncertainty. Therefore, we

10. Nevertheless, in these cases, 2 can be a crude underestimation of the true value of the divergence.
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Estimator Min Value Max Value Bias Variance

pd2 Equation (30) 0 D8 0 O
ˆ

1
N

DH
4

˙

qd2 Equation (31) 1 D8 0 O
ˆ

1
N

DH
4

˙

rd2 Equation (32) 1 D2 O
`

DH
2
˘

O
ˆ

1
N

D2H
2

˙

Table 2: Comparison of the three estimators for the exponentiated 2–Rényi divergence in
terms of minimum value, maximum value, bias, and variance of the estimators.
For brevity, we denote with Dα “ supsPS tdα pπθ1p¨|sq}πθp¨|sqqu

α´1 for α P r0,`8s.
Recall that, from Jensen inequality, D2

2 ď D4.

propose the following estimator that computes the product of the (exact) Rényi divergences
for the trajectory steps:

rd2
`

pp¨|θ1q}pp¨|θq
˘

“
1
N

N
ÿ

i“1

H´1
ź

t“0
d2 pπθ1p¨|sτi,tq}πθp¨|sτi,tqq . (32)

The main advantage of this estimator is that its variance is proportional to the second
moment of the importance weight distribution, i.e., O

` 1
ND2H

2
˘

. This comes at the price
of a bias term that is proportional to the same quantity as well. Nevertheless, the biased
estimator rd2 should be preferred over pd2 and qd2 as long as

`

1` 1
N

˘

D2H
2 À 1

NDH
4 . Table 2

compares the properties of the three estimators; the complete analysis of these estimators
can be found in Appendix E.

5.3. per–Decision action–based POIS

In the previous section, we introduced A-POIS by defining a unique importance weight
wθ1{θpτq for a whole trajectory τ . However, we can refine the estimator pJA´POIS

M pθ1{θq by
observing that, given a time step t P t0, 1, ...,H ´ 1u, the corresponding reward Rpsτ,t, aτ,tq
does not depend on actions and states visited after t. Thus, to reweigh the reward at time t,
we can limit the importance weight to consider the products of policy ratios up to t. This is
the rationale behind the introduction of Per–Decision Importance Sampling (PDIS, Precup
et al., 2000). Let us define the probability density functions of the trajectory prefixes up to
step t P t0, 1, ...,H ´ 1u as:

ppτ |θ, tq “ Dpsτ,0q
t
ź

t1“0
πθpaτ,t1 |sτ,t1qP psτ,t1`1|sτ,t1 , aτ,t1q. (33)

Now, we introduce the per–decision importance weight, defined for each time step as:

wθ1{θpτ, tq “
ppτ |θ1, tq

ppτ |θ, tq
“

t
ź

t1“0

πθ1paτ,t1 |sτ,t1q

πθpaτ,t1 |sτ,t1q
, t P t0, 1, ...,H ´ 1u. (34)
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By using the weights defined in Equation (34), we can provide the following estimator for
the expected return:

pJD´POIS
M pθ1{θq “

1
N

N
ÿ

i“1

H´1
ÿ

t“0
γtwθ1{θpτi, tqRpsτi,t, aτi,tq. (35)

PDIS preserves the unbiasedness of the estimator, indeed Eτ„pp¨|θqrwθ1{θpτ, tqRpsτ,t, aτ,tqs “
Eτ„pp¨|θqrwθ1{θpτqRpsτ,t, aτ,tqs for all t P t0, 1, ...,H ´ 1u. It is worth noting that the impor-
tance weight employed in A-POIS is obtained by setting t “ H ´ 1 in Equation (34), i.e.,
wθ1{θpτq “ wθ1{θpτ,H ´ 1q. Intuitively, by considering a product made up of fewer policy
ratios, we might gain an advantage in terms of injected uncertainty. We now provide a
bound for the variance of the estimator pJD´POIS

M pθ1{θq.

Theorem 5 Let pJD´POIS
M pθ1{θq be the PDIS estimator of the expected return Jpθ1q com-

puted with N i.i.d. trajectories τ “ pτ1, τ2, . . . , τN q collected running πθ, as defined in
Equation (35). If ppτ |θ1, tq ! ppτ |θ, tq for all t P t0, 1, ...,H ´ 1u, then, the variance of
pJD´POIS
M pθ1{θq can be upper bounded as:

Var
τ„pp¨|θq

”

pJD´POIS
M pθ1{θq

ı

ď
R2

max
N

H´1
ÿ

t“0
ctd2

`

pp¨|θ1, tq}pp¨|θ, tq
˘

, (36)

where ct is defined as:

ct “

$

&

%

γt
`

γt ` γt`1 ´ 2γH
˘

1´ γ if γ ă 1

2H ´ 2t´ 1 if γ “ 1
.

Proof

Var
τ„pp¨|θq

”

pJD´POIS
M pθ1{θq

ı

“
1
N

Var
τ1„pp¨|θq

«

H´1
ÿ

t“0
γtwθ1{θpτ1, tqRpsτ1,t, aτ1,tq

ff

(P.10)

ď
1
N

E
τ1„pp¨|θq

»

–

˜

H´1
ÿ

t“0
γtwθ1{θpτ1, tqRpsτ1,t, aτ1,tq

¸2
fi

fl (P.11)

ď
R2

max
N

E
τ1„pp¨|θq

»

–

˜

H´1
ÿ

t“0
γtwθ1{θpτ1, tq

¸2
fi

fl (P.12)

“
R2

max
N

E
τ1„pp¨|θq

«

H´1
ÿ

t“0
γ2twθ1{θpτ1, tq

2 ` 2
H´2
ÿ

t“0

H´1
ÿ

t1“t`1
γt`t

1

wθ1{θpτ1, tqwθ1{θpτ1, t
1q

ff

“
R2

max
N

#

H´1
ÿ

t“0
γ2t E

τ1„pp¨|θq

”

wθ1{θpτ1, tq
2
ı

` 2
H´2
ÿ

t“0
E

τ1„pp¨|θq

”

wθ1{θpτ1, tq
2
ı
H´1
ÿ

t1“t`1
γt`t

1

+

(P.13)

“
R2

max
N

H´1
ÿ

t“0

ˆ

γ2t `
2γtpγt`1 ´ γHq

1´ γ

˙

E
τ1„pp¨|θq

”

wθ1{θpτ1, tq
2
ı

(P.14)
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“
R2

max
N

H´1
ÿ

t“0

γt
`

γt ` γt`1 ´ 2γH
˘

1´ γ d2
`

pp¨|θ1, tq}pp¨|θ, tq
˘

, (P.15)

where line (P.10) follows from the fact that the trajectories τi are i.i.d., line (P.11) is obtained
by bounding the variance with the second moment, line (P.12) derives from the fact that
the immediate reward is uniformly bounded, line (P.13) is obtained by observing that
Eτ1„pp¨|θq

”

wθ1{θpτ1, tqwθ1{θpτ1, t
1q

ı

“ Eτ1„pp¨|θq
”

wθ1{θpτ1, tq
2
ı

as t1 ą t, line (P.14) follows
from the properties of the geometric sum and finally line (P.15) is obtained from the
definition of d2 and pp¨|θ, tq. By taking the limit we get the expression for γ “ 1:

lim
γÑ1

γt
`

γt ` γt`1 ´ 2γH
˘

1´ γ “ 2H ´ 2t´ 1. (P.16)

Using the estimator defined in Equation (35) and the bound on the variance given in
Theorem 5, we can define the objective function for the new per–Decision action–based POIS
(D-POIS):

LD´POIS
λ pθ1{θq “

1
N

N
ÿ

i“1

H´1
ÿ

t“0
γtwθ1{θpτi, tqRpsτi,t, aτi,tq

pJD´POIS
M pθ1{θq

´ λ

g

f

f

e

1
N

H´1
ÿ

t“0
ctd2

`

pp¨|θ1, tq}pp¨|θ, tq
˘

,

(37)

where λ “ Rmax

b

1´δ
δ is the regularization parameter and ct is defined in Theorem 5. As in

the action–based setting, we make use of an estimator for the exponentiated Rényi divergence,
as a direct computation of d2

`

pp¨|θ1, tq}pp¨|θ, tq
˘

is also not possible in this setting as it
requires to compute an integral over the space of trajectories:

d2
`

pp¨|θ1, tq}pp¨|θ, tq
˘

“

ż

T
ppτ |θ, tq

ˆ

ppτ |θ1, tq

ppτ |θ, tq

˙2
dτ “

ż

T
ppτ |θ, tq

˜

t
ź

t1“0

πθ1paτ,t1 |sτ,t1q

πθpaτ,t1 |sτ,t1q

¸2

dτ.

Since we need to estimate this term for each timestep t, we can use the estimators presented
in Remark 6 simply by limiting the product to time t instead of H ´ 1.

Similarly to A-POIS, we can derive a multiple importance sampling extension based on
the balance heuristic for each time step t P t0, . . . ,H ´ 1u. Let θ1:J “ tθju

J
j“1 be the set of

behavioral policy parameters, we have:

wBH
θ1{θ1:J

pτ, tq “
ppτ |θ1, tq

řJ
k“1

Nk
N ppτ |θj , tq

“

śt
t1“0 πθ1paτ,t1 |sτ,t1q

řJ
k“1

śt
t1“0

Nk
N πθj paτ,t1 |sτ,t1q

.
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Consequently, by applying Corollary 1 we obtain the objective function:

LD´POIS
λ pθ1{θ1:Jq “

1
N

J
ÿ

j“1

N
ÿ

i“1

H´1
ÿ

t“0
γtwBH

θ1{θ1:J
pτij , tqRpsτij ,t, aτij ,tq

pJD´POIS
M pθ1{θ1:J q

´ λ

g

f

f

f

e

1
N

H´1
ÿ

t“0

ct
řJ
j“1

Nj
d2ppp¨|θ1,tq}pp¨|θj ,tqq

,

(38)

where each τij is obtained by running policy πθj in the environment with i “ 1, 2, ..., Nj and
j “ 1, 2, ..., J . The learning process is analogous to that of A-POIS with the only foresight
to employ objective function at Equation (38).

Remark 7 (Analysis of the Variance of D-POIS) We now discuss in more detail
the intuition behind the possible uncertainty reduction granted by the PDIS. We will prove
that the reduction in variance actually holds for the importance weights (Proposition 2) but
not, in general, for the expected return estimator (Fact 1).

Proposition 2 Let wθ1{θpτq be the importance weight of trajectory τ and wθ1{θpτ, tq be the
per–decision importance weight of trajectory τ up to time t P t0, 1, ...,H ´ 1u. Then, it holds
that:

Var
τ„pp¨|θq

”

wθ1{θpτ, tq
ı

ď Var
τ„pp¨|θq

”

wθ1{θpτq
ı

.

While we are able to prove the lower variance of the PDIS weights compared to IS, we are
unable to do the same for the variance of the expected return estimator itself. We provide
in the following a counter–example where the variance of the PDIS estimator pJD´POIS

M is
greater than the variance of the vanilla IS estimator pJA´POIS

M :

Fact 1 Let pJA´POIS
M pθ1{θq and pJD´POIS

M pθ1{θq the estimators of the expected return using
IS and PDIS respectively. Then, there exists an MDPM and a pair of behavioral and target
policies pπθ, πθ1q such that:

Var
τ„pp¨|θq

”

pJD´POIS
M pθ1{θq

ı

ą Var
τ„pp¨|θq

”

pJA´POIS
M pθ1{θq

ı

.

Proof Consider an MDP M with three states S “ ts1, s2, s3u, where s3 is an absorbing
state. In state s1, only one action is available, a, which transitions deterministically to s2
and provides a reward of Rps1, aq “ 1. In state s2, there are two actions available, a1 and a2,
both of which transition deterministically to s3 (thus ending the episode). The rewards are
Rps2, a1q “ 0 and Rps2, a2q “ ´1. The episode starts in state s1, and the discount factor is
γ “ 1. The behavioral policy is uniform over the actions, i.e., πpa1|s1q “ πpa2|s1q “ 1{2. The
target policy assigns probability q P r0, 1s to action a1, i.e., π1pa1|s1q “ q and π1pa2|s1q “ 1´q
(Figure 3). We are going to find a proper value of q such that the claim holds. Without loss
of generality, we consider trajectories of length 2. There are two possible trajectories in this
environment, τ1 “ ps1, a, s2, a1, s3q and τ2 “ ps1, a, s2, a2, s3q, which differ only in the action
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s1 s2 s3
pa,1,1,1q

pa1,0, 12 ,qq

pa2,´1, 12 ,1´qq
1

pta1,a2u,0,1,1q

Figure 3: The MDP considered in the proof. Each arrow connecting two states s and s1 is
labeled with a 4–tuple (a, Rps, aq, P ps1|s, aq, πpa|sq).

taken in state s2, and they both have probability 1{2 under the behavioral policy. Since
both estimators are unbiased, we compare the second moments:

E
τ„pp¨|θq

„

´

pJA´POIS
M pθ1{θq

¯2


“ ppτ1q

ˆ

π1pa|s1qπ
1pa1|s2q

πpa|s1qπpa1|s2q
Rpτ1q

˙2

` ppτ2q

ˆ

π1pa|s1qπ
1pa2|s2q

πpa|s1qπpa2|s2q
Rpτ2q

˙2
“ 2q2.

E
τ„pp¨|θq

„

´

pJD´POIS
M pθ1{θq

¯2


“ ppτ1q

ˆ

π1pa|s1q

πpa|s1q
Rps1, aq `

π1pa|s1qπ
1pa1|s2q

πpa|s1qπpa1|s2q
Rps2, a1q

˙2

` ppτ2q

ˆ

π1pa|s1q

πpa|s1q
Rps1, aq `

π1pa|s1qπ
1pa2|s2q

πpa|s1qπpa2|s2q
Rps2, a2q

˙2
“ 2q2 ´ 2q ` 1.

Finally, we find a value of q to satisfy the claim:

2q2 ă 2q2 ´ 2q ` 1 ùñ q ă
1
2 .

This fact is explained by considering that we are not only lowering the variance of the
weights in the per–decision setting, but we are also considering the immediate reward instead
of the episode return. The latter can be highly correlated with the importance weight,
leading to a larger variance. Therefore, the actual benefit of PDIS over IS is, in general,
task–dependent. Similar analyses have recently been proposed highlighting these features of
the PDIS estimator (Rowland et al., 2020; Liu et al., 2019a).

Remark 8 (Asymptotic Analysis for the Variance of A-POIS and D-POIS)
We now discuss how the penalty term in the objective function optimized by A-POIS and
D-POIS changes as the horizon H of the task and the discount factor γ change. To simplify
the analysis, we will resort to the upper bound on the exponentiated Rényi divergence
d2

`

pp¨|θ1, tq}pp¨|θ, tq
˘

ď Dt
2. We are interested in analyzing the growth rate of the variance

term as a function of the horizonH of the task. Table 3 reports the asymptotic approximation
of the variance of A-POIS and D-POIS estimators when H Ñ `8 for (a) γ ă 1 and (b) γ “ 1.
In the discounted case (γ ă 1), we notice that the variance of A-POIS is finite, independent
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A-POIS D-POIS

D2 “ 1 1
p1´γq2

1 ă D2 ă γ´2

DH
2

p1´γq2

1`γ
p1´γqp1´D2γ2q

D2 “ γ´2 1`γ
1´γH

D2 ą γ´2
pγ2D2q

H
pD2γ`1q

pD2γ2´1qpD2γ´1q

(a) γ ă 1

A-POIS D-POIS

D2 “ 1 H2

D2 ą 1 H2DH
2 DH

2
D2`1
pD2´1q2

(b) γ “ 1

Table 3: Asymptotic growth rate of the variance upper bound for A-POIS and D-POIS. We
omitted the factor Rmax

N , which is common to all cases, for clarity.

from H only when D2 “ 1, i.e., in the on–policy setting, while it grows exponentially in H
for D2 ą 1. Instead, the variance of D-POIS is finite as long as D2 ă

1
γ2 . Intuitively, in

the per–decision weighting scheme, the importance weights are discounted by γ and this
allows keeping the variance finite even in the off–policy setting, provided that D2 is small
enough. When D2 “

1
γ2 we have a linear growth rate in H, which becomes exponential as

D2 ą
1
γ2 . In the undiscounted setting (γ “ 1), we do not experience a significant advantage

of the per–decision weights, as the discounting effect on the importance weights disappears.
Indeed, for both A-POIS and D-POIS the variance becomes exponential in H when D2 ą 1.
The complete analysis is available in Appendix F.

Remark 9 (Risk–Averse vs Risk–Seeking Objectives) The perspective that we
have adopted in this paper is to employ off–distribution techniques in order to estimate
the performance of target distributions and, consequently, being able to perform multiple
gradient steps using the same data, possibly collected with multiple behavioral distributions.
Specifically, the objective functions we optimize are risk–averse, penalizing distributions that
are far from the behavioral ones. This is justified by the fact that, as we move away from
the behavioral distribution, we likely experience larger uncertainty. As a consequence, our
approach can be defined as “pessimistic” and might lead to an over–conservative behavior,
preventing the exploration of certain regions of the parameter space. Nevertheless, we can
prove that, under the same learning rate schedule, our off–distribution optimization “moves”
in the parameter space at least as the (on–policy) policy gradient methods. Limiting the
reasoning for simplicity to the action–based setting11 and assuming a single behavioral
distribution (i.e., J “ 1) we have that when θ1 “ θ (i.e., in the first step of the off–policy
optimization), we take a step identical to the standard policy gradient. Specifically, for
A-POIS we take a step equivalent to REINFORCE (Williams, 1992):

∇θ1LA´POIS
λ pθ1{θq

∣∣∣
θ1“θ

“
1
N

N
ÿ

i“1
∇θ log ppτi|θqRpτiq “ p∇REINFORCE

θ JMpθq,

11. The same rationale holds for the parameter–based setting.
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while for the D-POIS case, we reduce to G(PO)MDP (Baxter and Bartlett, 2001):

∇θ1LP´POIS
λ pθ1{θq

∣∣∣
θ1“θ

“
1
N

N
ÿ

i“1

H´1
ÿ

t“0
γt∇θ log ppτi|θ, tqRpsτi,t, aτi,tq “ p∇GpPOqMDP

θ JMpθq.

This effect is justified by the fact that the gradient of the Rényi divergence, and consequently
the gradient of the penalization, is zero when θ1 “ θ (see the proof of Theorem 4).

A perspective more focused on exploration could employ a risk–seeking objective, in which
distributions that are far from the behavioral ones are rewarded. In principle, obtaining
such an “optimistic” objective just amounts to switch the sign of the penalization and make
it a bonus. This idea is at the basis of OPTIMIST (Papini et al., 2019). However, the naïve
switch of sign is typically unsatisfactory both theoretically and empirically. If we allow
the weights to get any value, they likely degenerate towards an infinite Rényi divergence.
For this reason, in OPTIMIST weight truncation (coming with additional challenges in the
optimization phase) is employed to limit the values of the importance weights.

To make the most of the data, we should consider the long–term advantages of exploration
while retaining a conservative approach. This problem has been addressed with a meta–
gradient technique by Papini et al. (2020) in the narrower scope of on–policy policy gradient
with Gaussian policies. The proposed algorithms are very conservative since they are
motivated by safety constraints. The development of conservative exploration strategies
more oriented towards sample efficiency is an interesting research direction.

6. Related Works

Policy optimization algorithms can be classified according to different dimensions (see also
Table 8). Online PG methods are likely the most popular policy search approaches: starting
from the traditional algorithms based on stochastic policy gradient (Sutton et al., 2000),
like REINFORCE (Williams, 1992) and G(PO)MDP (Baxter and Bartlett, 2001), moving
toward more modern methods, such as Trust Region Policy Optimization (TRPO, Schulman
et al., 2015a) and its extensions (e.g., Schulman et al., 2017). It is by now established, in
the policy–based RL community, that effective algorithms, either on–policy or off–policy,
should account for the variance of the gradient estimate. Early attempts, in the class of
action–based algorithms, are the usage of a baseline to reduce the estimated gradient variance
without introducing bias (Baxter and Bartlett, 2001; Peters and Schaal, 2008b). A similar
rationale underlies actor–critic architectures (Konda and Tsitsiklis, 2000; Sutton et al., 2000;
Peters and Schaal, 2008a), in which an estimate of the value function is used to reduce
uncertainty. Baselines are typically constant (REINFORCE), time–dependent (G(PO)MDP),
or state–dependent (actor–critic), but these approaches have recently been extended to take
action–dependent baselines (Tucker et al., 2018; Wu et al., 2018) into account. Another
line of work tries to reduce the gradient–estimation variance by exploiting the correlation
between consecutive estimates (Papini et al., 2018; Xu et al., 2019a; Shen et al., 2019; Xu
et al., 2019b). Off–policy optimization has been also used in conjunction with deterministic
policies in Deterministic Policy Gradient (DPG, Silver et al., 2014), where data are collected
with a noisy version of the target policy. This allows decoupling exploration from gradient
estimation, freeing the latter from an unnecessary source of variance. More recently, an
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efficient version of DPG coupled with a deep neural network to represent the policy has
been proposed, named Deep Deterministic Policy Gradient (DDPG, Lillicrap et al., 2015).
Expected Policy Gradients (Ciosek and Whiteson, 2018) apply the same variance–reduction
technique to stochastic policies by employing tractable critics. In the parameter–based
framework, even though the original formulation (Sehnke et al., 2008) introduces an on–line
algorithm, an extension has been proposed to efficiently reuse the trajectories in an off–line
scenario (Zhao et al., 2013). Furthermore, PGPE–like approaches allow overcoming several
limitations of classical PG, such as the need for a stochastic policy and the high variance
of the gradient estimates. Even though parameter–based algorithms are, by their nature,
affected by less variance than action–based ones, it is possible to derive baselines similar to
those of the action–based case (Zhao et al., 2011).

A first dichotomy in the policy optimization landscape comes when considering the
minimal unit used to compute the gradient. Episode–based (or episodic) approaches (e.g.,
Williams, 1992; Baxter and Bartlett, 2001) estimate the gradient by averaging the gradients
of each episode which, in some cases, needs to have a finite horizon. On the contrary,
step–based approaches (e.g., Schulman et al., 2015a, 2017; Lillicrap et al., 2015), derived
from the Policy Gradient Theorem (Sutton et al., 2000), can estimate the gradient by
averaging over timesteps. The latter requires a function approximator (a critic) to estimate
the Q–function, or directly the advantage function (Schulman et al., 2015b). When coming
to the on/off–policy dichotomy, the previous distinction has a significant impact. Indeed,
episode–based approaches need to perform importance sampling on trajectories, thus the
importance weights are the products of policy ratios for all executed actions within a
trajectory. The longer the horizon, the more the variance injected by the single policy ratios
is amplified. Instead, step–based algorithms need just a single density ratio per sample,
which helps to keep the value of the importance weights closer to one. On the other hand,
these step–based weights must also account for the mismatch between the state–occupancy
measures induced by the two policies, i.e., wθ1{θps, aq “

dθ
1

D psqπθ1 pa|sq

dθDpsqπθpa|sq
, where dθD denotes the

(discounted) probability of ending up in state s under policy πθ.12 Unfortunately, unlike
policy and trajectory–probability ratios, state–occupancy ratios cannot be computed in closed
form. Simply ignoring them, as sometimes done in the policy gradient literature (e.g., Degris
et al., 2012; Silver et al., 2014), can result in poor performance (Liu et al., 2019b). Recent
work provides ways to estimate these state occupancy ratios (Hallak and Mannor, 2017; Liu
et al., 2018; Gelada and Bellemare, 2019; Liu et al., 2019b), possibly paving the way for a
step–based version of POIS. However, computing the Rényi distance between state–action
distributions is another difficult problem. Furthermore, these step–based methods typically
employ a critic, which prevents a complete analysis of the uncertainty, as the bias/variance
injected by the critic is hard to compute (Konda and Tsitsiklis, 2000).

Preventing uncontrolled updates in the policy parameter space is at the core of natu-
ral gradient approaches (Amari, 1998) applied effectively both on PG methods (Kakade
and Langford, 2002; Peters and Schaal, 2008a; Wierstra et al., 2008) and on PGPE meth-
ods (Miyamae et al., 2010). More recently, this idea has been exploited by TRPO (Schulman
et al., 2015a), which optimizes a surrogate objective function via (approximate) natural
gradient, derived from safe RL (Kakade and Langford, 2002; Pirotta et al., 2013), subject to

12. More formally, dθDpsq “ p1´ γq
ř8

t“0 γ
t Prpst “ s|s0 „ D, ah „ πθp¨|shq, sh`1 „ P p¨|sh, ahq for all h ă tq.
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a constraint on the Kullback–Leibler divergence between the behavioral and target policy.13
The actual algorithm employs several approximations, some of which can be removed (Pa-
jarinen et al., 2019). According to recent works (Neu et al., 2017; Shani et al., 2020),
TRPO should be understood as an approximate version of mirror descent rather than a
conservative method. Like TRPO, PPO truncates the importance weights to discourage
the optimization process from going too far. Although TRPO and PPO, together with
DDPG, represent the state–of–the–art policy optimization methods in RL for continuous
control, they do not explicitly encode in their objective function the uncertainty injected
by the importance sampling procedure. Indeed, the step size in TRPO and the truncation
range ε in PPO are just hyperparameters and have a limited statistical meaning. On the
contrary, other actor–critic architectures have been proposed including also experience replay
methods, like Wang et al. (2016), in which the importance weights are truncated, but the
method is able to account for the injected bias. The authors propose to keep a running
mean of the best policies seen so far to avoid a hard constraint on the policy dissimilarity.
A more theoretically grounded analysis has been provided for policy selection (Doroudi
et al., 2017), model–free (Thomas et al., 2015b) and model–based (Thomas and Brunskill,
2016) policy evaluation (also accounting for samples collected with multiple behavioral
policies), and combined with options (Guo et al., 2017). Subsequently, in Thomas et al.
(2015a), these methods have been extended for policy improvement, deriving a suitable
concentration inequality for the case of truncated importance weights. Unfortunately, these
methods are hardly scalable to complex control tasks. The recent Policy–on Policy–off Policy
Optimization (P3O, Fakoor et al., 2019) algorithm is another way to interleave on–policy
and off–policy gradient updates via importance sampling. Unlike POIS, the two kinds of
gradients are combined into a single update. In addition, a KL penalty is used to control
the deviation of the target policy from the behavioral, while a 2–Rényi divergence would be
more appropriate.

Unlike these methods, POIS directly models the uncertainty due to the importance
sampling procedure. The bound in Theorem 2 introduces the unique hyperparameter δ,
which has a precise statistical meaning as a confidence level. The optimal value of δ (like
the step size in TRPO and ε in PPO) is task–dependent and may vary during the learning
procedure. Furthermore, the use of PDIS, apart from the variance reduction benefit, allows
performing importance weighting on trajectory prefixes and, therefore, assigning partial
credit to valuable subtrajectories.

7. Experimental Evaluation

In this section, we present the experimental evaluation of POIS in its different flavors
(parameter–based, action–based, action–based per–decision). We first provide a set of
empirical comparisons on classical continuous control tasks with linearly parametrized
policies (Section 7.1); we then show how POIS can be adopted for learning deep neural
policies (Section 7.2). We also study the effects of employing per–decision importance
weights and multiple importance weights (Section 7.3). In all experiments, for A-POIS and

13. Note that this regularization term appears in the performance improvement bound, which contains exact
quantities only. Thus, it does not actually account for the uncertainty derived from the importance
sampling.
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D-POIS we used the IS estimator, while for P-POIS we employed the SN estimator. All
experimental details are provided in Appendix H.14

7.1. Linear Policies

Linearly parametrized Gaussian policies proved their ability to scale to complex control
tasks (Rajeswaran et al., 2017). In this section, we compare the learning performance of
A-POIS, D-POIS, and P-POIS against TRPO (Schulman et al., 2015a) and PPO (Schulman
et al., 2017) on some classical continuous control benchmarks (Duan et al., 2016). The
hyperparameters of the individual algorithms are reported in Table 4. In the Cartpole
environment, as we can see from Figure 4, all the POIS variants outperform significantly
the performance of TRPO and PPO, showing not only the convergence to the optimum but
also a faster convergence speed. This is particularly true of P-POIS and D-POIS, where the
optimum is reached in very few iterations. Indeed, in this case, we can appreciate the benefit
of the PDIS technique over the simple IS. For the Inverted Double Pendulum environment,
we have a less consistent behavior: A-POIS has similar performance w.r.t. TRPO and PPO,
while P-POIS learns the optimal policy at a remarkable pace; D-POIS stays somewhere in
the middle, still reaching the optimum but at a slower rate. In the acrobot task, we see
how, once again, P-POIS outperforms both TRPO and PPO, while A-POIS and D-POIS
get stuck in what could be a local optimum. The mountain–car environment shows a very
similar behavior among all the benchmarked algorithms, with A-POIS and D-POIS having
a slightly slower convergence speed. Lastly, the inverted–pendulum setting is the only
environment in which no version of POIS can keep up with the TRPO and PPO baselines.
Overall, POIS displays a performance comparable with TRPO and PPO across the tasks.
In particular, P-POIS displays better performance w.r.t. A-POIS. Furthermore, apart from
the peculiar case of the inverted pendulum, D-POIS performs at least as good as A-POIS,
empirically supporting the intuition that the PDIS technique helps to reduce the variance of
the performance estimation and, thus, allows faster learning.

In Figure 5 we show, for several metrics, the behavior of A-POIS when changing the δ
parameter in the Cartpole environment. We can see that when δ is small (e.g., 0.2), the
Effective Sample Size (ESS) remains large and, consequently, the variance of the importance
weights (Varrws) is small. This means that the penalty term in the objective function
discourages the optimization process from selecting policies that are far from the behavioral
policy. As a consequence, the displayed behavior is very conservative, preventing the policy
from reaching the optimum. On the contrary, when δ approaches 1, the ESS is smaller and
the variance of the weights tends to increase significantly. Again, the performance remains
suboptimal as the penalty term in the objective function is too light. The best behavior is
obtained with an intermediate value of δ, specifically 0.4.

14. For all experiments, we plot the confidence intervals among the performances of the individual runs. Albeit
common in the RL literature (Henderson et al., 2018), this kind of visualization does not fully capture
the inherent variability of the algorithm’s performance over different random seeds. In Appendix H.6, we
report tolerance intervals for the experiments with linear policies and MIS, while in Appendix H.7, we
plot the individual runs for the experiments with deep neural policies.
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Task P-POIS A-POIS D-POIS TRPO PPO
(δ) (δ) (δ) (step size) (step size)

Cartpole 0.4 0.4 0.99 0.1 0.01
Inverted Double Pendulum 0.1 0.1 0.4 0.1 1
Acrobot 0.2 0.7 0.7 1 1
Mountain Car 1 0.9 0.9 0.01 1
Inverted Pendulum 0.8 0.9 0.9999 0.01 0.01

Table 4: Hyperparameter value of the individual algorithms employed in the experiments
shown in Figure 4. For all versions of POIS we report the value of δ, while for
TRPO (Schulman et al., 2015a) and PPO (Schulman et al., 2017) the value of the
step size.
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Figure 4: Average return as a function of the number of trajectories for P-POIS, A-POIS,
D-POIS, TRPO, and PPO with linear policy (20 runs, 95% c.i.).

7.2. Deep Neural Policies

In this section, we adopt a deep neural network (3 layers: 100, 50, 25 neurons each) to
represent the policy. The experiment setup is fully compatible with the classical bench-
mark (Duan et al., 2016). The value of the hyperparameters is reported in Table 5. While
A-POIS and D-POIS can be directly applied to deep neural networks, P-POIS exhibits some
critical issues. A high–dimensional hyperpolicy (like a Gaussian from which the weights of
an MLP policy are sampled) can make d2pνρ1}νρq extremely sensitive to small parameter
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Figure 5: Average return, Effective Sample Size (ESS), and variance of the importance
weights (Varrws) as a function of the number of trajectories for A-POIS for
different values of the parameter δ in the Cartpole environment (20 runs, 95%
c.i.).

Task P-POIS A-POIS D-POIS
(δ) (δ) (δ)

Inverted Double Pendulum 0.8 0.99 0.4
Cartpole 0.6 0.99 0.99
Mountain Car 0.3 0.99 0.99
Swimmer 0.6 0.99 0.99

Table 5: Hyperparameter value of the individual algorithms employed in the experiments
shown in Figure 6. For all versions of POIS we report the value of δ.

changes, which leads to over–conservative updates.15 A first practical variant comes from the
insight that d2pνρ1}νρq{N is the inverse of the effective sample size, as reported in Equation
7. We can obtain a less conservative (although approximate) surrogate function by replacing
it with 1{yESSpνρ1}νρq. Another trick is to model the hyperpolicy as a set of independent
Gaussians, each defined over a disjoint subspace of Θ (implementation details are provided
in Appendix G.3). In Table 6, we augmented the results provided in (Duan et al., 2016); in
Figure 6, we also provide performance plots during training, as we did in the previous section.
We can see that A-POIS and D-POIS are able to achieve an overall behavior similar to
the best of the action–based algorithms, approaching TRPO and beating DDPG. Similarly,
P-POIS exhibits performance similar to CEM (Szita and Lörincz, 2006), the best performing
among the parameter–based methods.

7.3. Multiple P-POIS

We also present some results related to the multiple importance sampling extension we
introduced in Section 3.2. While this extension can be applied to every flavor of POIS we
have introduced before, we only focus on the P-POIS setting with a linear policy, in order to

15. This curse of dimensionality, related to dimpθq, has some similarities with the dependence of the Rényi
divergence on the actual horizon H in the action–based case.
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Figure 6: Average return as a function of the number of trajectories for A-POIS, P-POIS
with deep neural policies (5 runs, 95% c.i.).

briefly present the pros and cons of this particular strategy. The hyperparameter values are
reported in Table 7. To highlight the benefits of multiple importance weights on the effective
sample size, we set the batch size to one. In the original P-POIS, this means that our agent
collects a single trajectory per (on–line) iteration. With MIS, in principle, we could employ
all the previous trajectories at each iteration, provided that we store all the past behavioral
hyper–policies, together with their sampled policy parameters and the resulting returns. For
computational reasons (see Table 1), we employ a finite memory, managed as a simple FIFO
queue. The capacity of this queue is the number of most recent behavioral hyper–policies
it can store (corresponding to J in Equation 10). We use weight normalization whenever
possible. For MIS, we employ the self–normalized weights from Equation (12). In Figure 7
we compare, on the usual benchmark tasks, P-POIS with single importance sampling (i.e.,
J “ 1) to its MIS counterpart for different values of the capacity. We also report single–IS
P-POIS with a batch size of 10. The latter allows appreciating the difference between having
10 “fresh” samples from the current behavioral hyper–policy and re–using old ones with MIS
instead.
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Cart-Pole Double Inverted
Algorithm Balancing Mountain Car Pendulum Swimmer

Random 77.1˘ 0.0 ´415.4˘ 0.0 149.7˘ 0.1 ´1.7˘ 0.1
REINFORCE 4693.7˘ 14.0 ´67.1˘ 1.0 4116.5˘ 65.2 92.3˘ 0.1
TNPG 3986.4˘ 748.9 ´66.5˘ 4.5 4455.4˘ 37.6 96.0˘ 0.2
RWR 4861.5˘ 12.3 ´79.4˘ 1.1 3614.8˘ 368.1 60.7˘ 5.5
REPS 565.6˘ 137.6 ´275.6˘ 166.3 446.7˘ 114.8 3.8˘ 3.3
TRPO 4869.8˘ 37.6 ´61.7˘ 0.9 4412.4˘ 50.4 96.0˘ 0.2
DDPG 4634.4˘ 87.6 ´288.4˘ 170.3 2863.4˘ 154.0 85.8˘ 1.8
A-POIS 4842.8˘ 13.0 ´63.7˘ 0.5 4232.1˘ 189.5 88.7˘ 0.55
D-POIS 4819.3˘ 59.3 ´61.0˘ 0.5 4333.8˘ 115.4 88.2˘ 1.49
CEM 4815.4˘ 4.8 ´66.0˘ 2.4 2566.2˘ 178.9 68.8˘ 2.4
CMA-ES 2440.4˘ 568.3 ´85.0˘ 7.7 1576.1˘ 51.3 64.9˘ 1.4
P-POIS 4428.1˘ 138.6 ´78.9˘ 2.5 3161.4˘ 959.2 76.8˘ 1.6

Table 6: Performance of POIS compared with Duan et al. (2016) on deep neural policies (5
runs, 95% c.i.). In bold, the performances that are not statistically significantly
different from the best algorithm in each task.

Environment N “ 1, J “ 1 N “ 1, J “ 10 N “ 1, J “ 50 N “ 10, J “ 1

Cartpole 0.0001 0.0001 0.001 0.1
Inverted Double Pendulum 0.001 0.001 0.0005 0.05
Acrobot 0.99 0.01 0.05 0.6
Mountain Car 0.6 0.0005 0.0005 0.05
Inverted Pendulum 0.99 0.2 0.1 0.1

Table 7: Hyperparameter value of the individual algorithms employed in the experiments
shown in Figure 7. For all versions of POIS we report the value of δ.

In all the considered tasks, single P-POIS with unit batch size fails miserably, except in
Mountain Car, in which all the tested variants show comparable behavior.16 We can see that
MIS is able to remedy this lack of samples, at least partially. In Cartpole, a capacity of 10 is
enough to achieve optimal performance. The results in the Inverted Double Pendulum task
are the most aligned with the intuition: a capacity of 10 yields a significant improvement
compared to the single–IS case, but the latter becomes superior once equipped with a batch
size of 10 fresh samples. In addition, a larger capacity (J “ 50) is beneficial. Acrobot yields
similar, though less clear, results. The outcomes in the Inverted Pendulum task are more
surprising: a capacity of 10 is better than both a capacity of 50 and the large–batch variant.
This could be explained by the paramount importance of exploration in this task if we
consider the variance of the objective function estimate as a passive form of exploration.
Another possibility is that adding more behavioral hyper–policies makes it harder to optimize
the objective function. Both aspects should be further inquired by future work.

16. Note, however, that different values of the hyper–parameter δ have been selected, via grid search, for the
different variants of P-POIS. Typically, larger capacities come with larger values of δ (see Appendix H).
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Figure 7: Average return as a function of the number of trajectories for P-POIS with linear
policy for different values of the batch size N and the MIS capacity J (20 runs,
95% c.i.).

8. Conclusion

In this paper, we presented a new actor–only policy optimization algorithm, POIS, which
alternates on–line and off–line optimization in order to efficiently exploit the collected
trajectories, and can be used in combination with action–based and parameter–based
exploration. In contrast to the state–of–the–art algorithms, POIS has a strong theoretical
grounding, since its surrogate objective function derives from a statistical bound on the
estimated performance, capable of capturing the uncertainty induced by importance sampling.
Since POIS makes fewer compromises towards practicality compared to more popular deep RL
algorithms, the latter are still expected to perform better overall. However, the experimental
evaluation showed that POIS, in both its versions (action–based and parameter–based), is
able to achieve a performance comparable with TRPO, PPO, and other classical algorithms
on continuous control tasks of moderate size. We have proposed two extensions to the
original POIS algorithm (Metelli et al., 2018), both intended to make an even more efficient
use of the samples: per–decision importance weighting and multiple importance weighting.
The pros and cons of these variants have been studied both theoretically and empirically. We
believe that this work contributes to a deeper understanding of modern policy optimization
and to the development of effective and scalable policy search methods. There is still room
to reduce the gap between theory and practice, especially w.r.t. scalability to complex
control tasks. Scalability issues manifest themselves differently in the action–based and in
the parameter–based frameworks, as mentioned in Section 5. In the former, long–horizon
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tasks are the main challenge and step–based approaches should be developed to overcome
this curse of horizon (Liu et al., 2018). In the parameter–based case, the task length is
irrelevant and the main challenge is to learn policies with many parameters, which may
be necessary for complex control tasks, e.g., vision–based ones. We expect compact policy
representations, such as fingerprinting (Harb et al., 2020) to play an important role in making
parameter based–algorithms scalable. Finally, additional future–work directions include
finding a compromise between risk–aversion and exploration and a better understanding of
the role of the batch–size hyper–parameter and of the optimization challenges introduced by
importance–weighted objectives.
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Index of the Appendix

In the following, we briefly recap the contents of the Appendix.

– Appendix A provides, in Table 8, a more detailed comparison of POIS with the policy–
search algorithms, summarizing some features of the considered methods.

– Appendix B reports all proofs and derivations.

– Appendix C provides an analysis of the distribution of the importance weights in the case
of univariate Gaussian behavioral and target distributions.

– Appendix D shows some bounds on bias and variance for the self–normalized importance
sampling estimator and provides a high-confidence bound.

– Appendix E reports some details about the estimation of the Rényi divergence.

– Appendix F provides the complete asymptotic analysis of the variance of A-POIS and
D-POIS.

– Appendix G illustrates some implementation details of POIS, in particular line search
algorithms and practical versions of P-POIS.

– Appendix H provides the hyperparameters used in the experiments and further results.
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Appendix B. Additional Proofs and Derivations

In this appendix, we report the proofs that are omitted in the main paper.

B.1. Proofs of Section 4

Lemma 3 Let P and Q be two probability measures on the measurable space pX ,F q such
that P ! Q and d2pP }Qq ă `8. Let x1, x2, . . . , xN be i.i.d. random variables sampled from
Q, and f : X Ñ R be a bounded function (}f}8 ă `8). Then, for any clipping threshold
M ă `8 and N ą 0, the bias and the variance of the estimator qµP {Q can be upper bounded
as:

ˇ

ˇ

ˇ

ˇ

E
x„Q

“

qµP {Q
‰

´ E
x„P

rfpxqs

ˇ

ˇ

ˇ

ˇ

ď }f}8
d2pP }Qq

M
,

Var
x„Q

“

qµP {Q
‰

ď }f}28
d2pP }Qq

N
.

Proof Concerning the bias, we need to extend the proof of Lemma 2 of Papini et al. (2019)
since we are looking for a double–sided result:

ˇ

ˇ

ˇ

ˇ

E
x„Q

“

qµP {Q
‰

´ E
x„P

rfpxqs

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

E
x„Q

“

qµP {Q
‰

´ E
x„Q

“

pµP {Q
‰

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

E
x„Q

“`

ωP {Qpxq ´min
 

M,ωP {Qpxq
˘

fpxq
˘‰

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

E
x„Q

“

pωP {Qpxq ´Mqfpxq1
 

ωP {Qpxq ąM
(‰

ˇ

ˇ

ˇ

ˇ

(P.17)

ď }f}8 E
x„Q

“
ˇ

ˇωP {Qpxq ´M
ˇ

ˇ1
 

ωP {Qpxq ąM
(‰

(P.18)

ď }f}8 E
x„Q

“

ωP {Qpxq1
 

ωP {Qpxq ąM
(‰

(P.19)

ď }f}8 E
x„Q

“

ωP {Qpxq
2ωP {Qpxq

´11
 

ωP {Qpxq ąM
(‰

ď }f}8 E
x„Q

“

ωP {Qpxq
2‰M´1 (P.20)

ď }f}8d2pP }QqM
´1,

where line (P.17) follows from observing that the weight difference is either zero or ωP {Qpxq´
M based on whether ωP {Qpxq ą M , line (P.18) is an application of Hölder’s inequality,
line (P.19) is obtained by observing that under the indicator function we have that ωP {Qpxq ą
M , and line (P.20) comes from observing that if ωP {Qpxq ąM , we have ωP {Qpxq´1 ăM´1.

Concerning the variance, the derivation is analogous to that of Lemma 2 of Papini et al.
(2019), by setting ε “ 1.

Theorem 3 Let P and Q be two probability measures on the measurable space pX ,F q such
that P ! Q and d2pP }Qq ă `8. Let x1, x2, . . . , xN be i.i.d. random variables sampled from
Q, and f : X Ñ R be a bounded function (}f}8 ă `8). Then, for any 0 ă δ ď 1 and
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N ą 0, using a clipping threshold MpN, δq “
c

3Nd2pP }Qq

2 log 1
δ

, with probability at least 1´ δ it

holds that:

E
x„P

rfpxqs ě
1
N

N
ÿ

i“1
qwP {Qpxiqfpxiq

qµP {Q

´}f}8p2`
?

3q

d

2d2pP }Qq log 1
δ

3N . (22)

Proof We start from the version of Bernstein’s inequality of Theorem 2.8 by Chung and
Lu (2006) applied to the random variable qµP {Q “ 1

N

řN
i“1 qwP {Qpxiqfpxiq and let qλ “

λ´
ˇ

ˇEx„P rfpxqs ´ Ex„Q
“

qµP {Q
‰ˇ

ˇ:

Pr
´

qµP {Q ´ E
x„P

rfpxqs ě λ
¯

“ Pr
ˆ

qµP {Q ´ E
x„Q
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qµP {Q
‰

ě E
x„P

rfpxqs ´ E
x„Q
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qµP {Q
‰

` λ

˙

ď Pr
ˆ

qµP {Q ´ E
x„Q

“

qµP {Q
‰

ě λ´

ˇ

ˇ

ˇ

ˇ

E
x„P
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x„Q
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qµP {Q
‰

ˇ

ˇ

ˇ

ˇ

˙

“ Pr
ˆ

qµP {Q ´ E
x„Q

“

qµP {Q
‰

ě qλ

˙

.

Now we apply Bernstein’s inequality:

Pr
´

qµP {Q ´ E
x„P

rfpxqs ě λ
¯

ď Pr
ˆ

qµP {Q ´ E
x„Q

“

qµP {Q
‰

ě qλ

˙

ď exp

¨
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qλ2N

2
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Ex„QrqωP {Qpxq2fpxq2s `
qλ
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¯
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‚

ď exp

¨

˝´
qλ2N

2
´

}f}28d2pP }Qq `
qλ
3M}f}8

¯

˛

‚,

where we applied }qωP {Qpxqfpxq}8 ď }f}8M and Ex„QrqωP {Qpxq2fpxq2s ď }f}28d2pP }Qq.

By calling δ “ exp
˜

´
qλ2N

2
´

}f}28d2pP }Qq`
qλ
3M}f}8

¯

¸

and solving for qλ, retaining the positive

solution only, we obtain:

qλ “
M}f}8 log 1

δ

3N `
1

3N

d

18}f}28d2pP }QqN log 1
δ
`M2}f}28

ˆ

log 1
δ

˙2

ď
2}f}8M log 1

δ

3N ` }f}8

d

2d2pP }Qq log 1
δ

N
,

where we applied the subadditivity of the square root. Now, we consider the general
expression of the truncation M “ ζ

c

d2pP }QqN

log 1
δ

where ζ ą 0 is a parameter whose value will

be determined later. We now substitute the expression of M and the bound on the bias:

λ ď

ˇ

ˇ

ˇ

ˇ

E
x„P

rfpxqs ´ E
x„Q

“

qµP {Q
‰

ˇ

ˇ

ˇ

ˇ

`
2}f}8M log 1

δ

3N ` }f}8

d

2d2pP }Qq log 1
δ

N
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ď }f}8

ˆ

1
ζ
`

2
3ζ `

?
2
˙

d

d2pP }Qq log 1
δ

N
.

The result is obtained by minimizing the expression depending on ζ, which yields the value
ζ “

b

3
2 .

Theorem 4 Let pω be a p.d.f. differentiable w.r.t. ω P Ω. Then, it holds that, for the Rényi
divergence:

Dαppω1}pωq “
α

2
`

ω1 ´ ω
˘T Fpωq

`

ω1 ´ ω
˘

` op}ω1 ´ ω}22q,

and for the exponentiated Rényi divergence:

dαppω1}pωq “ 1` α

2
`

ω1 ´ ω
˘T Fpωq

`

ω1 ´ ω
˘

` op}ω1 ´ ω}22q.

Proof We need to compute the second–order Taylor expansion of the α–Rényi divergence.
We start considering the term:

Ipω1q “

ż

X

ˆ

pω1pxq

pωpxq

˙α

pωpxqdx “
ż

X
pω1pxq

αpωpxq
1´α dx. (P.21)

The gradient is given by:

∇ω1Ipω1q “
ż

X
∇ω1pω1pxqαpωpxq1´α dx “ α

ż

X
pω1pxq

α´1pωpxq
1´α∇ω1pω1pxqdx.

Thus, ∇ω1Ipω1q|ω1“ω “ 0. We now compute the Hessian:

Hω1Ipω1q “ ∇ω1∇Tω1Ipω1q

“ α∇ω1
ż

X
pω1pxq

α´1pωpxq
1´α∇Tω1pω1pxq dx

“ α

ż

X

´

pα´ 1qpω1pxqα´2pωpxq
1´α∇ω1pω1pxq∇Tω1pω1pxq

` pω1pxq
α´1pωpxq

1´αHω1pω1pxq
¯

dx.

Evaluating the Hessian in ω we have:

Hω1Ipω1q|ω1“ω “ αpα´ 1q
ż

X
pωpxq

´1∇ωpωpxq∇Tωpωpxq dx

“ αpα´ 1q
ż

X
pωpxq∇ω log pωpxq∇Tω log pωpxq dx “ αpα´ 1qFpωq.

Now, Dαppω1}pωq “
1

α´1 log Ipω1q. Thus:

∇ω1Dαppω1}pωq|ω1“ω “
1

α´ 1
∇ω1Ipω1q
Ipω1q

∣∣∣∣
ω1“ω

“ 0,
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Hω1Dαppω1}pωq|ω1“ω “
1

α´ 1
Ipω1qHω1Ipω1q `∇ω1Ipω1q∇Tω1Ipω1q

pIpω1qq2

∣∣∣∣
ω1“ω

“
1

α´ 1Hω
1Ipω1q|ω1“ω “ αFpωq,

having observed that Ipωq “ 1. For what concerns the dαppω1}pωq, we have:

∇ω1dαppω1}pωq|ω1“ω “ ∇ω1 exp pDαppω1}pωqq|ω1“ω
“ exp pDαppω1}pωqq∇ω1Dαppω1}pωq|ω1“ω “ 0,

Hω1dαppω1}pωq|ω1“ω “ Hω1 exp pDαppω1}pωqq|ω1“ω
“ exp pDαppω1}pωqq

`

Hω1Dαppω1}pωq `∇ω1Dαppω1}pωq∇Tω1Dαppω1}pωq
˘

|ω1“ω
“ αFpωq.

B.2. Proofs of Section 5

Proposition 1 Let pp¨|θq and pp¨|θ1q be the behavioral and target trajectory probability
density functions. If pp¨|θ1q ! pp¨|θq and H ă `8, then, for any α P r0,`8s it holds that:

dα
`

pp¨|θ1q}pp¨|θq
˘

ď sup
sPS

tdα pπθ1p¨|sq}πθp¨|sqqu
H .

Proof We prove the proposition by induction on the horizon H. We define dα,H as the
α–Rényi divergence at horizon H. For H “ 1 we have:

dα,1
`

pp¨|θ1q}pp¨|θq
˘

“

ż

S
Dps0q

ż

A
πθpa0|s0q

ˆ

πθ1pa0|s0q

πθpa0|s0q

˙α ż

S
P ps1|s0, a0q ds1 da0 ds0

“

ż

S
Dps0q

ż

A
πθpa0|s0q

ˆ

πθ1pa0|s0q

πθpa0|s0q

˙α

da0 ds0

ď

ż

S
Dps0q ds0 sup

sPS

ż

A
πθpa0|sq

ˆ

πθ1pa0|sq

πθpa0|sq

˙α

da0

ď sup
sPS

dα pπθ1p¨|sq}πθp¨|sqq ,

where the last but one passage follows from Holder’s inequality. Suppose that the proposition
holds for any H 1 ă H, let us prove the proposition for H.

dα,H

´

pp¨|θ1q}pp¨|θq
¯

“

ż

S
Dps0q . . .

ż

A
πθpaH´2|sH´2q

ˆ

πθ1paH´2|sH´2q

πθpaH´2|sH´2q

˙α

ˆ

ż

S
P psH´1|sH´2, aH´2q

ż

A
πθpaH´1|sH´1q

ˆ

πθ1paH´1|sH´1q

πθpaH´1|sH´1q

˙α

ˆ

ż

S
P psH |sH´1, aH´1q ds0 . . . dsH´1 daH´2 dsH´1 daH´1 dsH
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“

ż

S
Dps0q . . .

ż

A
πθpaH´2|sH´2q

ˆ

πθ1paH´2|sH´2q

πθpaH´2|sH´2q

˙α ż

S
P psH´1|sH´2, aH´2q

ˆ

ż

A
πθpaH´1|sH´1q

ˆ

πθ1paH´1|sH´1q

πθpaH´1|sH´1q

˙α

ds0 . . . dsH´1 daH´2 dsH´1 daH´1

ď

ż

S
Dps0q . . .

ż

A
πθpaH´2|sH´2q

ˆ

πθ1paH´2|sH´2q

πθpaH´2|sH´2q

˙α ż

S
P psH´1|sH´2, aH´2q

ˆ ds0 . . . dsH´1 daH´2 dsH´1 ˆ sup
sPS

ż

A
πθpaH´1|sq

ˆ

πθ1paH´1|sq

πθpaH´1|sq

˙α

daH´1

ď dα,H´1
`

pp¨|θ1q}pp¨|θq
˘

sup
sPS

dα pπθ1p¨|sq}πθp¨|sqq

ď

ˆ

sup
sPS

dα pπθ1p¨|sq}πθp¨|sqq

˙H

,

where we applied Holder’s inequality again and the last passage is obtained for the inductive
hypothesis.

Proposition 2 Let wθ1{θpτq be the importance weight of trajectory τ and wθ1{θpτ, tq be the
per–decision importance weight of trajectory τ up to time t P t0, 1, ...,H ´ 1u. Then, it holds
that:

Var
τ„pp¨|θq

”

wθ1{θpτ, tq
ı

ď Var
τ„pp¨|θq

”

wθ1{θpτq
ı

.

Proof First, recall that wθ1{θpτq “ wθ1{θpτ,H ´ 1q. Thus, given that t P t1, 2, ...,H ´ 1u by
definition, we can reduce the proof to Varτ„pp¨|θq

”

wθ1{θpτ, t´ 1q
ı

ď Varτ„pp¨|θq
”

wθ1{θpτ, tq
ı

.

Recalling that Eτ„pp¨|θq
”

wθ1{θpτ, tq
ı

“ 1 for all t, we can just compare the second moments.
Thus, we prove:

E
τ„pp¨|θq

”

wθ1{θpτ, t´ 1q2
ı

ď E
τ„pp¨|θq

”

wθ1{θpτ, tq
2
ı

.

We start by unrolling the trajectory probability,

E
τ„pp¨|θq

”

wθ1{θpτ, tq
2
ı

“

ż

ppτ |θq

˜

t
ź

t1“0

πθ1paτ,t1 |sτ,t1q

πθpaτ,t1 |sτ,t1q

¸2

dτ

“

ż

µpsτ,0qπθpaτ,0|sτ,0qP psτ,1|sτ,0, aτ,0q . . . πθpaτ,H´1|sτ,H´1q

ˆ P psτ,H |aτ,H´1, sτ,H´1q

˜

t
ź

t1“0

πθ1paτ,t1 |sτ,t1q

πθpaτ,t1 |sτ,t1q

¸2

ˆ dsτ,0daτ,0dsτ,1 . . . dsτ,H´1daτ,H´1dsτ,H .

Considering that the squared importance weight is dependent only on t1 ď t, we can integrate
away all the terms with t1 ě t, i.e.

ż

P psτ,t`1|sτ,t, aτ,tqπθpaτ,t`1|sτ,t`1q . . .
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ˆ πθpaτ,H´1|sτ,H´1qP psτ,H |aτ,H´1, sτ,H´1q

ˆ dsτ,t`1daτ,t`1 . . . dsτ,H´1daτ,H´1dsτ,H “ 1.

Therefore, we have:

E
τ„pp¨|θq

”

wθ1{θpτ, tq
2
ı

“

ż

µpsτ,0qπθpaτ,0|sτ,0qP psτ,1|sτ,0, aτ,0q . . . πθpaτ,t|sτ,tq

ˆ

˜

t
ź

t1“0

πθ1paτ,t1 |sτ,t1q

πθpaτ,t1 |sτ,t1q

¸2

dsτ,0daτ,0dsτ,1 . . . dsτ,t´1daτ,t´1

“

ż

µpsτ,0qπθpaτ,0|sτ,0q

ˆ

πθ1paτ,0|sτ,0q

πθpaτ,0|sτ,0q

˙2
P psτ,1|sτ,0, aτ,0q . . .

ˆ πθpaτ,t´1|sτ,t´1q

ˆ

πθ1paτ,t´1|sτ,t´1q

πθpaτ,t´1|sτ,t´1q

˙2

ˆ P psτ,t|sτ,t´1, aτ,t´1qπθpaτ,t|sτ,tq

ˆ

πθ1paτ,t|sτ,tq

πθpaτ,t|sτ,tq

˙2

ˆ dsτ,0daτ,0dsτ,1 . . . dsτ,t´1daτ,t´1dsτ,tdaτ,t.

Now, using the fact that
ş

πθpaτ,t|sτ,tq
´

πθ1 paτ,t|sτ,tq
πθpaτ,t|sτ,tq

¯2
daτ,t “ d2pπθ1p¨|sτ,tq}πθp¨|sτ,tqq ě 1 and

that
ş

P psτ,t|sτ,t´1, aτ,t´1qdsτ,t “ 1, we can finally obtain:

E
τ„pp¨|θq

”

wθ1{θpτ, tq
2
ı

ě

ż

µpsτ,0qπθpaτ,0|sτ,0q

ˆ

πθ1paτ,0|sτ,0q

πθpaτ,0|sτ,0q

˙2
P psτ,1|sτ,0, aτ,0q . . .

ˆ πθpaτ,t´1|sτ,t´1q

ˆ

πθ1paτ,t´1|sτ,t´1q

πθpaτ,t´1|sτ,t´1q

˙2
dsτ,0daτ,0dsτ,1 . . . dsτ,t´1daτ,t´1

“ E
τ„pp¨|θq

”

wθ1{θpτ, t´ 1q2
ı

.

Appendix C. Analysis of the IS estimator for Gaussian distributions

In this appendix, we analyze the behavior of the importance weights when the behavioral
and target distributions are Gaussians. We start by providing a closed–form expression
for the Rényi divergence between multivariate Gaussian distributions (Burbea, 1984). Let
P „ N pµP ,ΣP q, Q „ N pµQ,ΣQq and α P r0,8s:

DαpP }Qq “
α

2 pµP ´ µQq
TΣ´1

α pµP ´ µQq ´
1

2pα´ 1q log detpΣαq

detpΣP q
1´α detpΣQq

α
, (39)

where Σα “ αΣQ ` p1´ αqΣP under the assumption that Σα is positive–definite.
From now on, we will focus on univariate Gaussian distributions and we provide a

closed–form expression for the importance weights and their probability density function
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fw. We consider Q „ N pµQ, σ2
Qq as behavioral distribution and P „ N pµP , σ2

P q as target
distribution. We assume that σ2

Q, σ
2
P ą 0 and we consider the two cases: unequal variances

and equal variances. For brevity, we will indicate with wpxq the weight wP {Qpxq.

C.1. Unequal variances

When σ2
Q ‰ σ2

P , the expression of the importance weights is given by:

wpxq “
σQ
σP

exp
˜

1
2
pµP ´ µQq

2

σ2
Q ´ σ

2
P

¸

exp

¨

˝´
1
2
σ2
Q ´ σ

2
P

σ2
Qσ

2
P

˜

x´
σ2
QµP ´ σ

2
PµQ

σ2
Q ´ σ

2
P

¸2
˛

‚, (40)

for x „ Q. Let us first notice two distinct situations: if σ2
Q ´ σ2

P ą 0 the weight wpxq is

upper bounded by A “ σQ
σP

exp
ˆ

1
2
pµP´µQq

2

σ2
Q´σ

2
P

˙

, whereas if σ2
Q ´ σ

2
P ă 0, wpxq is unbounded

but it admits a minimum of value A. Let us investigate the probability density function.

Proposition 3 Let Q „ N pµQ, σ2
Qq be the behavioral distribution and P „ N pµP , σ2

P q be
the target distribution, with σ2

Q ‰ σ2
P . The probability density function of wpxq “ ppxq{qpxq

is given by:

fwpyq “

$

’

&

’

%

σ

y
b

π log A
y

exp
`

´1
2µ

2˘ ` y
A

˘σ2
cosh

´

µσ
b

2 log A
y

¯

, if σ2
Q ą σ2

P , y P r0, As,

σ
y
?
π log y

A

exp
`

´1
2µ

2˘
´

A
y

¯σ2

cosh
`

µσ
a

2 log y
A

˘

, if σ2
Q ă σ2

P , y P rA,8q,

where µ “ σQ
σ2
Q´σ

2
P
pµP ´ µQq and σ2 “

σ2
P

ˇ

ˇ

ˇ
σ2
Q´σ

2
P

ˇ

ˇ

ˇ

.

Proof We look at wpxq as a function of random variable x „ Q. We introduce the following
symbols:

m “
σ2
QµP ´ σ

2
PµQ

σ2
Q ´ σ

2
P

, τ “
σ2
Q ´ σ

2
P

σ2
Qσ

2
P

.

Let us start computing the c.d.f.:

Fwpyq “ Pr pwpxq ď yq

“ Pr
ˆ

A exp
ˆ

´
1
2τpx´mq

2
˙

ď y

˙

“ Pr
´

τpx´mq2 ě ´2 log y

A

¯

.

We distinguish the two cases according to the sign of τ and we observe that x “ µQ ` σQz
where z „ N p0, 1q. τ ą 0:

Fwpyq “ Pr
ˆ

px´mq2 ě
2
τ

log A
y

˙

“ Pr
˜

x ď m´

d

2
τ

log A
y

¸

` Pr
˜

x ě m`

d

2
τ

log A
y

¸
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“ Pr
˜

z ď
m´ µQ
σQ

´

d

2
τσ2

Q

log A
y

¸

` Pr
˜

z ě
m´ µQ
σQ

`

d

2
τσ2

Q

log A
y

¸

.

We call µ “ m´µQ
σQ

“
σQ

σ2
Q´σ

2
P
pµP ´ µQq and σ2 “ 1

τσ2
Q
“

σ2
P

σ2
Q´σ

2
P
, thus we have:

Fwpyq “ Pr
˜

z ď µ´

d

2σ2 log A
y

¸

` Pr
˜

z ě µ`

d

2σ2 log A
y

¸

“ Φ
˜

µ´

d

2σ2 log A
y

¸

` 1´ Φ
˜

µ`

d

2σ2 log A
y

¸

,

where Φ is the c.d.f. of a normal standard distribution. By taking the derivative w.r.t. y we
get the p.d.f.:

fwpyq “
BFwpyq

By

“ ´
?

2σ2 1

2
b

log A
y

y

A

´A

y2

˜

φ

˜

µ´

d

2σ2 log A
y

¸

` φ

˜

µ`

d

2σ2 log A
y

¸¸

“

?
2σ

2y
b

log A
y

˜

φ

˜

µ´

d

2σ2 log A
y

¸

` φ

˜

µ`

d

2σ2 log A
y

¸¸

“

?
2σ

2y
b

log A
y

1
?

2π

˜

exp

¨

˝´
1
2

˜

µ´

d

2σ2 log A
y

¸2˛

‚

` exp

¨

˝´
1
2

˜

µ`

d

2σ2 log A
y

¸2˛

‚

¸

“
σ

y
b

π log A
y

exp
ˆ

´
1
2µ

2
˙

exp
ˆ

´σ2 log A
y

˙

ˆ
exp

´

µσ
b

2 log A
y

¯

` exp
´

´µσ
b

2 log A
y

¯

2

“
σ

y
b

π log A
y

exp
ˆ

´
1
2µ

2
˙

´ y

A

¯σ2

cosh
˜

µσ

d

2 log A
y

¸

,

where φ is the p.d.f. of a normal standard distribution. τ ă 0: The derivation takes similar
steps, all it takes is to call σ2 “ ´ 1

τσ2
Q
“

σ2
P

σ2
P´σ

2
Q
, then the c.d.f. becomes:

Fwpyq “ Φ
ˆ

µ`

c

2σ2 log y

A

˙

´ Φ
ˆ

µ´

c

2σ2 log y

A

˙

,
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and the p.d.f. is:

fwpxq “
σ

y
a

π log y
A

exp
ˆ

´
1
2µ

2
˙ˆ

A

y

˙σ2

cosh
ˆ

µσ

c

2 log y

A

˙

.

To unify the two cases we set σ2 “
σ2
P

ˇ

ˇ

ˇ
σ2
Q´σ

2
P

ˇ

ˇ

ˇ

.

It is interesting to investigate the properties of the tail of the distribution when w is
unbounded. Indeed, we discover that the distribution displays a fat–tail behavior.

Proposition 4 If σ2
P ą σ2

Q then there exists c ą 0 and y0 ą 0 such that for any y ě y0, the
p.d.f. fw can be lower bounded as fwpyq ě cy´1´σ2

plog yq´
1
2 .

Proof Let us call z “ y{A and let a ą 0 be a constant, then it holds that for sufficiently
large y we have:

fwpyq ě az´1´σ2
plog zq´1{2 exp

´

a

log z
¯

?
2µσ

. (P.22)

To get the result, we observe that for z ą 1 we have exp
`?

log z
˘

ě 1. Now, by replacing z
with y{A we just need to change the constant a into c ą 0.

As a consequence, the α–th moment of wpxq does not exist for α´1´σ2 ě ´1 ùñ α ě

σ2 “
σ2
P

σ2
P´σ

2
Q
, this prevents from using Bernstein–like inequalities for bounding in probability

the importance weights. The non–existence of finite moments is confirmed by the α–Rényi
divergence. Indeed, the α–Rényi divergence is defined when σ2

α “ ασ2
Q ` p1´ αqσ2

P ą 0, i.e.,
α ă

σ2
P

σ2
P´σ

2
Q
.

C.2. Equal variances

If σ2
Q “ σ2

P “ σ2, the importance weights have the following expression:

wpxq “ exp
ˆ

µP ´ µQ
σ2

ˆ

x´
µP ` µQ

2

˙˙

, (41)

for x „ Q. The weight wpxq is clearly unbounded and has 0 as infimum value. Let us
investigate its probability density function.

Proposition 5 Let Q „ N pµQ, σ2q be the behavioral distribution and P „ N pµP , σ2q be
the target distribution. The probability density function of wpxq “ qpxq{ppxq is given by:

fwpyq “
|rσ|

?
2πy

3
2

exp
ˆ

´
1
2

´

rµ2 ` rσ2 plog yq2
¯

˙

, (42)

where rµ “
µP´µQ

2σ and rσ “ σ
µP´µQ

.
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Proof We start computing the c.d.f.:

Fwpyq “ Pr
ˆ

exp
"

µP ´ µQ
σ2

ˆ

x´
µP ` µQ

2

˙*

ď y

˙

“ Pr
ˆ

µP ´ µQ
σ2

ˆ

x´
µP ` µQ

2

˙

ď log y
˙

.

First, we consider the case µP ´ µQ ą 0 and observe that x “ µQ ` σz, where z „ N p0, 1q:

Fwpyq “ Pr
ˆ

x ď
µP ` µQ

2 `
σ2

µP ´ µQ
log y

˙

“ Pr
ˆ

z ď
µP ´ µQ

2σ `
σ

µP ´ µQ
log y

˙

.

We call rµ “ µP´µQ
2σ and rσ “ σ

µP´µQ
and we have:

Fwpyq “ Pr pz ď rµ` rσ log yq “ Φ prµ` rσ log yq .

We take the derivative in order to get the density function:

fwpyq “
BFwpyq

By
“

rσ

y

1
?

2π
exp

ˆ

´
1
2 prµ` rσ log yq2

˙

“
rσ

?
2πyrµrσ`1 exp

ˆ

´
1
2

´

rµ2 ` rσ2 plog yq2
¯

˙

.

For the case µP ´ µQ ă 0 the derivation is symmetric and the p.d.f. differs only by a minus
sign. We account for this fact by considering |rσ| in the final formula.

In the case of equal variances, the tail behavior is different.

Proposition 6 If σ2
P “ σ2

Q then for any α ą 0 there exist c ą 0 and y0 ą 0 such that for
any y ě y0, the p.d.f. can be upper bounded as fwpyq ď cy´α.

Proof Condensing all the constants in c, the p.d.f. can be written as:

fwpyq “ cy´3{2 exp
´

plog yq2
¯´ rσ2

2
. (P.23)

For any α ą 0, let us solve the following inequality:

y3{2 exp
´

plog yq2
¯

rσ2
2
ě yα ùñ y ě exp

ˆ

2
rσ2

ˆ

α´
3
2

˙˙

. (P.24)

Thus, for y ě exp
` 2
rσ2

`

α´ 3
2
˘˘

we have that fwpyq ď cy´α.

This is sufficient to ensure the existence of the moments of any order, indeed the
corresponding Rényi divergence is: αpµP´µQq

2

2σ2 . By the way, the distribution of wpxq remains

subexponential, as exp
´

plog yq2
¯´ rσ2

2
ě e´ηy for sufficiently large y.

Figure 8 reports the p.d.f. of the importance weights for different values of mean and
variance of the target distribution.
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Figure 8: Probability density function of the importance weights when the behavioral
distribution is N p0, 1q and the mean is changed keeping the variance equal to 1
(a) or the variance is changed keeping the target mean equal to 1 (b).

Appendix D. Analysis of the SN Estimator

In this appendix, we provide some results regarding bias and variance of the self–normalized
importance sampling estimator. Let us start with the following result, derived from (Cortes
et al., 2010), that bounds the expected squared difference between non–self–normalized
weight wpxq and self–normalized weight rwpxq.

Lemma 4 Let P and Q be two probability measures on the measurable space pX ,Fq such
that P ! Q and d2pP }Qq ă `8. Let x1, x2, . . . , xN i.i.d. random variables sampled from Q.
Then, for N ą 0 and for any i “ 1, 2, . . . , N it holds that:

E
x„Q

«

ˆ

rwP {Qpxiq ´
wP {Qpxiq

N

˙2ff

ď
d2pP }Qq ´ 1

N
. (43)

Proof The result derives from simple algebraic manipulations and from the fact that
Varx„Q

“

wP {Qpxq
‰

“ d2pP }Qq ´ 1.

E
x„Q

«

ˆ

rwP {Qpxiq ´
wP {Qpxiq

N

˙2ff

“ E
x„Q

»

–

˜

wP {Qpxiq
řN
j“1wP {Qpxjq

¸2 ˜

1´
řN
j“1wP {Qpxjq

N

¸2
fi

fl

ď E
x„Q

»

–

˜

1´
řN
j“1wP {Qpxjq

N

¸2
fi

fl “ Var
x„Q

«

řN
j“1wP {Qpxjq

N

ff

“
1
N

Var
x1„Q

“

wP {Qpx1q
‰

“
d2pP }Qq ´ 1

N
.

A similar argument can be used to derive a bound on the bias of the SN estimator.
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Proposition 7 Let P and Q be two probability measures on the measurable space pX ,Fq
such that P ! Q and d2pP }Qq ă `8. Let x1, x2, . . . , xN i.i.d. random variables sampled
from Q and f : X Ñ R be a bounded function (}f}8 ă 8). Then, the bias of the SN
estimator can be bounded as:

ˇ

ˇ

ˇ

ˇ

E
x„Q

”

rµP {Q ´ E
x„P

rfpxqs
ı

ˇ

ˇ

ˇ

ˇ

ď }f}8min
#

2,
c

d2pP }Qq ´ 1
N

+

. (44)

Proof Since it holds that |rµP {Q| ď }f}8 the bias cannot be larger than 2}f}8. We now
derive a bound for the bias that vanishes as N Ñ 8. We exploit the fact that the IS
estimator is unbiased, i.e., Ex„Q

“

pµP {Q
‰

“ Ex„P rfpxqs.
ˇ

ˇ

ˇ

ˇ

E
x„Q

”

rµP {Q ´ E
x„P

rfpxqs
ı

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

E
x„Q

„

rµP {Q ´ E
x„Q

“

pµP {Q
‰

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

E
x„Q

“

rµP {Q ´ pµP {Q
‰

ˇ

ˇ

ˇ

ˇ

ď E
x„Q

“ˇ

ˇ

rµP {Q ´ pµP {Q
ˇ

ˇ

‰

“

“ E
x„Q

«ˇ

ˇ

ˇ

ˇ

ˇ

řN
i“1wP {Qpxiqfpxiq
řN
i“1wP {Qpxiq

´

řN
i“1wP {Qpxiqfpxiq

N

ˇ

ˇ

ˇ

ˇ

ˇ

ff

“ E
x„Q

«ˇ

ˇ

ˇ

ˇ

ˇ

řN
i“1wP {Qpxiqfpxiq
řN
i“1wP {Qpxiq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1´
řN
i“1wP {Qpxiq

N

ˇ

ˇ

ˇ

ˇ

ˇ

ff

(P.25)

ď E
x„Q

»

–

˜

řN
i“1wP {Qpxiqfpxiq
řN
i“1wP {Qpxiq

¸2
fi

fl

1
2

E
x„Q

»

–

˜

1´
řN
i“1wP {Qpxiq

N

¸2
fi

fl

1
2

(P.26)

ď }f}8

c

d2pP }Qq ´ 1
N

, (P.27)

where (P.26) follows from (P.25) by applying Cauchy–Schwartz inequality and (P.27) is

obtained by observing that
ˆ

řN
i“1 wP {Qpxiqfpxiq
řN
i“1 wP {Qpxiq

˙2
ď }f}28.

Bounding the variance of the SN estimator is non–trivial since the the normalization
term makes all the samples interdependent. Exploiting the boundedness of rµP {Q we can
derive trivial bounds like: Varx„Q

“

rµP {Q
‰

ď }f}28. However, this bound does not shrink
with the number of samples N . Several approximations of the variance have been proposed,
like the following derived using the delta method (Ver Hoef, 2012; Owen, 2013):

Var
x„Q

“

rµP {Q
‰

“
1
N

E
x1„Q

„

w2
P {Qpx1q

´

fpx1q ´ E
x„P

rfpxqs
¯2


` opN´2q. (45)

We will not use the approximate expression for the variance, but we will directly bound
the Mean Squared Error (MSE) of the SN estimator, which is the sum of the variance and
the bias squared.

Proposition 8 Let P and Q be two probability measures on the measurable space pX ,Fq
such that P ! Q and d2pP }Qq ă `8. Let x1, x2, . . . , xN i.i.d. random variables sampled
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from Q and f : X Ñ R be a bounded function (}f}8 ă `8). Then, the MSE of the SN
estimator can be bounded as:

MSEx„Q
“

rµP {Q
‰

ď 2}f}28min
"

2, 2d2pP }Qq ´ 1
N

*

. (46)

Proof First, recall that rµP {Q is bounded by }f}8 thus its MSE cannot be larger than 4}f}28.
The idea of the proof is to sum and subtract the IS estimator pµP {Q:

MSEx„Q
“

rµP {Q
‰

“ E
x„Q

„

´

rµP {Q ´ E
x„P

rfpxqs
¯2


“ E
x„Q

„

´

rµP {Q ´ E
x„P

rfpxqs ˘ pµP {Q

¯2


(P.28)

ď 2 E
x„Q

”

`

rµP {Q ´ pµP {Q
˘2
ı

` 2 E
x„Q

„

´

pµP {Q ´ E
x„P

rfpxqs
¯2


(P.29)

ď 2 E
x„Q

»

–

˜

řN
i“1wP {Qpxiqfpxiq
řN
i“1wP {Qpxiq

¸2 ˜

1´
řN
i“1wP {Qpxiq

N

¸2
fi

fl` 2 Var
x„Q

“

pµP {Q
‰

(P.30)

ď 2}f}28 E
x„Q

»

–

˜

1´
řN
i“1wP {Qpxiq

N

¸2
fi

fl` 2 Var
x„Q

“

pµP {Q
‰

(P.31)

ď 2}f}28 Var
x„Q

«

řN
i“1wP {Qpxiq

N

ff

` 2 Var
x„Q

“

pµP {Q
‰

ď 2}f}28
d2pP }Qq ´ 1

N
` 2}f}28

d2pP }Qq

N
“ 2}f}28

2d2pP }Qq ´ 1
N

,

where line (P.29) follows from line (P.28) by applying the inequality pa` bq2 ď 2pa2 ` b2q,

(P.31) follows from (P.30) by observing that
ˆ

řN
i“1 wP {Qpxiqfpxiq
řN
i“1 wP {Qpxiq

˙2
ď }f}28.

We can use this result to provide a high confidence bound for the SN estimator.

Proposition 9 Let P and Q be two probability measures on the measurable space pX ,Fq
such that P ! Q and d2pP }Qq ă `8. Let x1, x2, . . . , xN i.i.d. random variables sampled
from Q and f : X Ñ R be a bounded function (}f}8 ă `8). Then, for any 0 ă δ ď 1 and
N ą 0 with probability at least 1´ δ:

E
x„P

rfpxqs ě
1
N

N
ÿ

i“1
rwP {Qpxiqfpxiq ´ 2}f}8min

#

1,
c

d2pP }Qqp4´ 3δq
δN

+

.

Proof The result is obtained by applying Cantelli’s inequality and accounting for the
bias. Consider the random variable rµP {Q “ 1

N

řN
i“1 rwP {Qpxiqfpxiq and let rλ “ λ ´

ˇ

ˇEx„P rfpxqs ´ Ex„P
“

rµP {Q
‰
ˇ

ˇ:

Pr
´

rµP {Q ´ E
x„P

rfpxqs ě λ
¯

“ Pr
´

rµP {Q ´ E
x„P

“

rµP {Q
‰

ě λ` E
x„P

rfpxqs ´ E
x„P

“

rµP {Q
‰

¯
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ď Pr
´

rµP {Q ´ E
x„P

“

rµP {Q
‰

ě λ´
ˇ

ˇ

ˇ
E
x„P

rfpxqs ´ E
x„P

“

rµP {Q
‰

ˇ

ˇ

ˇ

¯

“ Pr
´

rµP {Q ´ E
x„P

“

rµP {Q
‰

ě rλ
¯

.

Now we apply Cantelli’s inequality:

Pr
´

rµP {Q ´ E
x„P

rfpxqs ě λ
¯

ď Pr
´

rµP {Q ´ E
x„P

“

rµP {Q
‰

ě rλ
¯

ď
1

1` rλ2

Varx„QrrµP {Qs

“
1

1` pλ´|Ex„P rfpxqs´Ex„P rrµP {Qs|q
2

Varx„QrrµP {Qs

. (P.32)

By calling δ “ 1

1`p
λ´|Ex„P rfpxqs´Ex„P rrµP {Qs|q

2

Varx„QrrµP {Qs

and considering the complementary event, we

get that with probability at least 1´ δ we have:

E
x„P

rfpxqs ě rµP {Q ´
ˇ

ˇ

ˇ
E
x„P

rfpxqs ´ E
x„P

“

rµP {Q
‰

ˇ

ˇ

ˇ
´

d

1´ δ
δ

Var
x„Q

“

rµP {Q
‰

. (P.33)

Then we bound the bias term
ˇ

ˇEx„P rfpxqs ´ Ex„P
“

rµP {Q
‰ˇ

ˇ with Equation (44) and the
variance term with the MSE in Equation (46). With some simple algebraic manipulations
we have:

E
x„P

rfpxqs ě rµP {Q ´ }f}8

c

d2pP }Qq ´ 1
N

´ }f}8

c

1´ δ
δ

2p2d2pP }Qq ´ 1q
N

ě rµP {Q ´ }f}8

c

d2pP }Qq

N
´ }f}8

c

1´ δ
δ

4d2pP }Qq

N

“ rµP {Q ´ }f}8

c

d2pP }Qq

N

˜

1` 2
c

1´ δ
δ

¸

ě rµP {Q ´ 2}f}8

c

d2pP }Qq

N

c

1` 4p1´ δq
δ

ě rµP {Q ´ 2}f}8

c

d2pP }Qqp4´ 3δq
δN

,

where the last line follows from the fact that
?
a`

?
b ď 2

?
a` b for any a, b ě 0. Finally,

recalling that the range of the SN estimator is 2}f}8 we get the result.

It is worth noting that, apart for the constants, the bound has the same dependence on
d2 as in Theorem 2. Thus, by suitably redefining the hyperparameter λ we can optimize the
same surrogate objective function for both IS and SN estimators.

Appendix E. Estimation of the Rényi divergence

In this appendix, we provide the derivations related to the results presented in Remark 6.
Whenever possible, we will provide derivations for a generic α–Rényi divergence.
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The first estimator is obtained by simply rephrasing the definition at Equation (4) into
a sample–based version:

pdα pP }Qq “
1
N

N
ÿ

i“1

ˆ

ppxiq

qpxiq

˙α

“
1
N

N
ÿ

i“1
wαP {Qpxiq, (47)

where xi „ Q. This estimator is clearly unbiased and applies to any pair of probability
distributions. We now upper bound its variance when P “ pp¨|θ1q and Q “ pp¨|θq.

Proposition 10 The variance of the Rényi Divergence pdα
`

pp¨|θ1q}pp¨|θq
˘

can be upper
bounded as:

Var
τ„pp¨|θq

”

pdα
`

pp¨|θ1q}pp¨|θq
˘

ı

ď
1
N
d2α

`

pp¨|θ1q}pp¨|θq
˘2α´1

Proof

Var
τ„pp¨|θq

”

pdα
`

pp¨|θ1q}pp¨|θq
˘

ı

“
1
N

Var
τ„pp¨|θq

„ˆ

ppτ |θ1q

ppτ |θq

˙α

ď
1
N

E
τ„pp¨|θq

«

ˆ

ppτ |θ1q

ppτ |θq

˙2α
ff

“
1
N
d2α

`

pp¨|θ1q}pp¨|θq
˘2α´1

.

It follows from Proposition 1 that d2α
`

pp¨|θ1q}pp¨|θq
˘

ď supsPS td2α pπθ1p¨|sq}πθp¨|sqqu
H

and, consequently:

Var
τ„pp¨|θq

”

pdα
`

pp¨|θ1q}pp¨|θq
˘

ı

ď
1
N

sup
sPS

!

d2α pπθ1p¨|sq}πθp¨|squ
2α´1

¯H
“ O

ˆ

1
N

DH
4

˙

.

Concerning the estimator at Equation (31), we can derive the following bound.

Proposition 11 The variance of the Rényi Divergence qd2
`

pp¨|θ1q}pp¨|θq
˘

can be upper
bounded as:

Var
τ„pp¨|θq

”

qd2
`

pp¨|θ1q}pp¨|θq
˘

ı

ď
1
N

ˆ

d4
`

pp¨|θ1q}pp¨|θq
˘3
´ 4d3

`

pp¨|θ1q}pp¨|θq
˘2

` 6d2
`

pp¨|θ1q}pp¨|θq
˘

´ 3
˙

.

Proof

Var
τ„pp¨|θq

”

qd2
`

pp¨|θ1q}pp¨|θq
˘

ı

“ Var
τ„pp¨|θq

«

1` 1
N

N
ÿ

i“1

´

wθ1{θpτq ´ 1
¯2
ff

“
1
N

Var
τ„pp¨|θq

„

´

wθ1{θpτq ´ 1
¯2

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ď
1
N

E
τ„pp¨|θq

„

´

wθ1{θpτq ´ 1
¯4


“
1
N

´

d4
`

pp¨|θ1q}pp¨|θq
˘3
´ 4d3

`

pp¨|θ1q}pp¨|θq
˘2
` 6d2

`

pp¨|θ1q}pp¨|θq
˘

´ 3
¯

.

We can further simplify the expression by applying Proposition 1, getting the order
O
` 1
NDH

4
˘

.
Finally, we consider the estimator at Equation (32):

rdα
`

pp¨|θ1q}pp¨|θq
˘

“
1
N

N
ÿ

i“1

H´1
ź

t“0
dα pπθ1p¨|sτi,tq}πθp¨|sτi,tqq . (48)

This estimator is biased, however it enjoys a better Mean Squared Error bound.

Proposition 12 The MSE of the Rényi Divergence rdα
`

pp¨|θ1q}pp¨|θq
˘

can be upper bounded
as:

MSEτ„pp¨|θq
”

rdα
`

pp¨|θ1q}pp¨|θq
˘

ı

ď

ˆ

1` 1
N

˙

sup
sPS

tdα pπθ1p¨|sq}πθp¨|sqqu
2H . (49)

Proof First of all, we decompose the MSE in bias and variance. Concerning the bias,
we know that it cannot be larger than the maximum difference between the true value
dα

`

pp¨|θ1q}pp¨|θq
˘

and the estimate rdα
`

pp¨|θ1q}pp¨|θq
˘

, i.e., supsPS tdα pπθ1p¨|sq}πθp¨|sqqu
H .

Concerning the variance, we have:

Var
τ„pp¨|θq

”

rdα
`

pp¨|θ1q}pp¨|θq
˘

ı

“
1
N

Var
τ„pp¨|θq

«

H´1
ź

t“0
dα pπθ1p¨|stq}πθp¨|stqq

ff

ď
1
N

E
τ„pp¨|θq

«

H´1
ź

t“0
dα pπθ1p¨|stq}πθp¨|stqq

2

ff

ď
1
N

sup
sPS

tdα pπθ1p¨|sq}πθp¨|sqqu
2H .

By summing the variance and the bias squared, we get the result.

Finally, it is worth noting that dαpP }Qq2 ď d2αpP }Qq
2α´1
α´1 . Indeed, from Jensen inequal-

ity:

dαpP }Qq
2 “

ˆ

E
x„Q

„ˆ

ppxq

qpxq

˙α˙ 2
α´1

ď E
x„Q

«

ˆ

ppxq

qpxq

˙2α
ff

1
α´1 ¨

2α´1
2α´1

“ d2αpP }Qq
2α´1
α´1 . (50)

Appendix F. Asymptotic analysis for the Variance of A-POIS and
D-POIS

In this appendix, we report the proofs of the asymptotic analysis of the variance for A-POIS
and D-POIS. We will refer to Equation (14) for A-POIS and Equation (36) for P-POIS.
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If D2 “ 1, we have that all d2ppp¨|θ
1q}pp¨|θqq “ 1 and thus, for A-POIS:

Var
τ„pp¨|θq

”

pJA-POIS
M pθ1{θq

ı

ď
R2

max
N

$

&

%

´

1´γH
1´γ

¯2
if γ ă 1

H2 if γ “ 1
ď
R2

max
N

#

1
p1´γq2 if γ ă 1
H2 if γ “ 1

.

Analogously, for D-POIS we have:

Var
τ„pp¨|θq

”

pJD-POIS
M pθ1{θq

ı

ď
R2

max
N

H´1
ÿ

t“0
ct

“
R2

max
N

#

´

1´γH
1´γ

¯

if γ ă 1
H2 if γ “ 1

ď
R2

max
N

#

1
p1´γq2 if γ ă 1
H2 if γ “ 1

.

We now focus on A-POIS and consider the case D2 ą 1. In such case, we have from
Proposition 1 that d2

`

pp¨|θ1q}pp¨|θq
˘

ď DH
2 . Consequently:

Var
τ„pp¨|θq

”

pJA-POIS
M pθ1{θq

ı

ď
R2

max
N

DH
2

$

&

%

´

1´γH
1´γ

¯2
if γ ă 1

H2 if γ “ 1
ď
R2

max
N

DH
2

#

1
p1´γq2 if γ ă 1
H2 if γ “ 1

.

(51)
Let us now consider D-POIS. For γ “ 1, we proceed as follows, recalling the inequality

d2
`

pp¨|θ1, tq}pp¨|θ, tq
˘

ď Dt
2:

Var
τ„pp¨|θq

”

pJD-POIS
M pθ1{θq

ı

ď
R2

max
N

H´1
ÿ

t“0
p2H ´ 2t´ 1qd2

`

pp¨|θ1, tq}pp¨|θ, tq
˘

ď
R2

max
N

H´1
ÿ

t“0
p2H ´ 2t´ 1qDt

2

“
R2

max
N

DH`1
2 `DH

2 ´ 1´ 2HpD2 ´ 1q ´D2
pD2 ´ 1q2 ď

R2
max
N

DH
2

D2 ` 1
pD2 ´ 1q2 .

In the case γ ă 1, we first derive a general expression and then we particularize it for
specific ranges of γ:

Var
τ„pp¨|θq

”

pJD-POIS
M pθ1{θq

ı

ď
R2

max
N

H´1
ÿ

t“0

γtpγt ` γt`1 ´ 2γHq
1´ γ d2

`

pp¨|θ1, tq}pp¨|θ, tq
˘

ď
R2

max
N

H´1
ÿ

t“0

γtpγt ` γt`1 ´ 2γHq
1´ γ Dt

2.

By solving the summation using the properties of the geometric sum and omitting the term
R2

max
N for conciseness, we get to the result:

1` γ ´ γ2H`2DH`1
2 ` γ2HDH

2 ` pD2 ´ 1qγ2H`1DH
2 ´ γ

2D2 ´ γD2 ` 2γH`2D2 ´ 2γH

p1´ γqpγD2 ´ 1q pγ2D2 ´ 1q (52)
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For D2 ą
1
γ2 , we have that the leading term in the bound for H Ñ8 is given by:

γ2H`2DH`1
2 ` γ2HDH

2 ` pD2 ´ 1qγ2H`1DH
2

p1´ γqpγD2 ´ 1q pγ2D2 ´ 1q “
pγ2D2q

H pγD2 ` 1q
pγD2 ´ 1q pγ2D2 ´ 1q .

Instead, for D2 ă
1
γ2 , all terms at the numerator go to zero as H Ñ8 except the following

ones:
1` γ ´ γ2D2 ´ γD2

p1´ γqpγD2 ´ 1q pγ2D2 ´ 1q “
1` γ

p1´ γD2q p1´ γ2D2q
. (53)

The case D2 “
1
γ2 needs to be treated separately, leading to the result:

H´1
ÿ

t“0

γtpγt ` γt`1 ´ 2γHq
γ2tp1´ γq “

`

1´ γ2˘H ´ 2γ
`

1´ γH
˘

p1´ γq2 ď
1` γ
1´ γH.

Appendix G. Implementation details

In this appendix, we provide some aspects about our implementation of POIS.

G.1. Line Search

At each offline iteration k the parameter update is performed in the direction defined by
Gpθhkq´1∇

θj
h
Lpθjk{θ

h
1:Jq with a step size αk determined in order to maximize the improvement.

In this update rule, G is a positive definite matrix that define the Riemann manifold of
interest. G is the identity matrix in the vanilla gradient and the FIM in the case of natural
gradient. For brevity, we will remove subscripts and the dependence on θh1:J from the
involved quantities. The rationale behind our line search is the following. Suppose that our
objective function Lpθq, restricted to the gradient direction G´1pθq∇θLpθq, represents a
concave parabola in the Riemann manifold having Gpθq as Riemann metric tensor. Suppose
we know a point θ0, the Riemann gradient in that point Gpθ0q

´1∇θLpθ0q and another
point: θl “ θ0`αlGpθ0q

´1∇θLpθ0q. For both points we know the value of the loss function:
L0 “ Lpθ0q and Ll “ Lpθlq, and we indicate with ∆Ll “ Ll ´ L0 the objective function
improvement. Having this information, we can compute the vertex of that parabola, which
is its global maximum. Let us call lpαq “ L

`

θ0 ` αG´1pθ0q∇θLpθ0q
˘

´ Lpθ0q. Being a
parabola it can be expressed as lpαq “ aα2 ` bα` c. Clearly, c “ 0 by definition of lpαq; a
and b can be determined by enforcing the conditions:

b “
Bl

Bα

∣∣∣∣
α“0

“
B

Bα
L
`

θ0 ` αG´1pθ0q∇θLpθ0q
˘

´ Lpθ0q|α“0 “

“ ∇θLpθ0q
TG´1pθ0q∇θLpθ0q “

“ }∇θLpθ0q}
2
G´1pθ0q

,

lpαlq “ aα2
l ` bαl “ aα2

l ` }∇θLpθ0q}
2
G´1pθ0q

αl “ ∆Ll ùñ

ùñ a “
∆Ll ´ }∇θLpθ0q}

2
G´1pθ0q

αl

α2
l

.
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Therefore, the parabola has the form:

lpαq “
∆Ll ´ }∇θLpθ0q}

2
G´1pθ0q

αl

α2
l

α2 ` }∇θLpθ0q}
2
G´1pθ0q

α. (54)

Clearly, the parabola is concave only if ∆Ll ă }∇θLpθ0q}
2
G´1pθ0q

αl. The vertex is located at:

αl`1 “
}∇θLpθ0q}

2
G´1pθ0q

α2
l

2
´

}∇θLpθ0q}2G´1pθ0q
αl ´∆Ll

¯ . (55)

To simplify the expression, like in (Matsubara et al., 2010) we define the quantity αl “
εl{}∇θLpθ0q}

2
G´1pθ0q

. Thus, we get:

εl`1 “
ε2l

2pεl ´∆Llq
. (56)

Of course, we need also to manage the case in which the parabola is convex, i.e., ∆Ll ě
}∇θLpθ0q}

2
G´1pθ0q

αl. Since our objective function is not really a parabola we reinterpret
the two cases: i) ∆Ll ą }∇θLpθ0q}

2
G´1pθ0q

αl, the function is sublinear and in this case
we use Equation (56) to determine the new step size αl`1 “ εl`1{}∇θLpθ0q}

2
G´1pθ0q

; ii)
∆Ll ě }∇θLpθ0q}

2
G´1pθ0q

αl, the function is superlinear, in this case we increase the step size
multiplying it by η ą 1, i.e., αl`1 “ ηαl. Finally, the update rule becomes:

εl`1 “

#

ηεl if ∆Ll ą εlp2η´1q
2η

ε2l
2pεl´∆Llq otherwise

. (57)

The procedure is iterated until a maximum number of attempts is reached (say 30) or the
objective function improvement is too small (say 1e-4). The pseudocode of the line search is
reported in Algorithm 3.
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Algorithm 3 Parabolic Line Search
Input: tol∆L “ 1e´ 4, Mls “ 30, L0
Output : α˚

α0 “ 0
ε1 “ 1
∆Lk´1 “ ´8

for l “ 1, 2, . . . ,Mls do
αl “ εl{}∇θLpθ0q}

2
G´1pθ0q

θl “ αlG´1pθ0q∇θLpθ0q

∆Ll “ Ll ´ L0

if ∆Ll ă ∆Ll´1 ` tol∆L then
return αl´1

end if

εl`1 “

#

ηεl if ∆Ll ą εlp1´2ηq
2η

ε2l
2pεl´∆Llq otherwise

end for

G.2. Practical surrogate objective functions

In practice, the Rényi divergence term d2 in the surrogate objective functions presented so
far, either exact in P-POIS or approximate in A-POIS, tends to be overly-conservative. To
mitigate this problem, by observing that d2pP }Qq{N “ 1{ESSpP }Qq from Equation (7) we
can replace the whole quantity with an estimator like yESSpP }Qq, as presented in Equation (7).
This leads to the following approximated surrogate objective functions:

rLA´POIS
λ pθ1{θq “

1
N

N
ÿ

i“1
wθ1{θpτiqRpτiq ´

λ
b

yESS
`

pp¨|θ1q}pp¨|θq
˘

,

rLP´POIS
λ pρ1{ρq “

1
N

N
ÿ

i“1
wρ1{ρpθiqRpτiq ´

λ
b

yESS
`

νρ1}νρ
˘

.

Moreover, in all the experiments, we use the empirical maximum reward in place of the true
Rmax.

G.3. Practical P-POIS for Deep Neural Policies (N-POIS)

As mentioned in Section 7.2, P-POIS applied to deep neural policies suffers from a curse
of dimensionality due to the high number of (scalar) parameters (which are „ 103 for
the network used in the experiments). The corresponding hyperpolicy is a multi–variate
Gaussian (diagonal covariance) with a very high dimensionality. As a result, the Rényi
divergence, used as a penalty, is extremely sensitive even to small perturbations, causing
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an overly–conservative behavior. First, we give up the exact Rényi computation and
use the practical surrogate objective function rLP´POIS

λ proposed in Appendix G.2. This,
however, is not enough. The importance weights, being the products of thousands of
probability densities, can easily become zero, preventing any learning. Hence, we decide to
group the policy parameters in smaller blocks, and independently learn the corresponding
hyperparameters. In general, we can define a family of M orthogonal policy–parameter
subspaces tΘm ď ΘuMm“1, where V ď W reads “V is a subspace of W”. For each Θm, we
consider a multi–variate diagonal–covariance Gaussian with Θm as support, obtaining a
corresponding hyperparameter subspace Pm ď P . Then, for each Pm, we compute a separate
surrogate objective (where we employ self–normalized importance weights):

rLN´POIS
λ pρ1m{ρmq “

1
N

N
ÿ

i“1
rwρ1m{ρmpθ

i
mqRpτiq ´

λ
b

yESS
`

νρ1m}νρm
˘

,

where ρm,ρ1m P Pm,θm P Θm. Each objective is independently optimized via natural
gradient ascent, where the step size is found via a line search as usual. It remains to define a
meaningful grouping for the policy parameters, i.e., for the weights of the deep neural policy.
We choose to group them by network unit, or neuron (counting output units but not input
units). More precisely, let denote a network unit as a function:

Uipx|θmq “ gpxTθmq,

where x is the vector of the inputs to the unit (including a 1 that multiplies the bias
parameter) and gp¨q is an activation function. To each unit Um we associate a block Θm

such that θm P Θm. In more connectivist–friendly terms, we group connections by the
neuron they go into. For the network we used in the experiments, this reduces the order
of the multivariate Gaussian hyperpolicies from „ 103 to „ 102. We call this practical
variant of our algorithm Neuron–Based POIS (N-POIS). Although some design choices
seem rather arbitrary, and independently optimizing hyperparameter blocks clearly neglects
some potentially meaningful interactions, the practical results of N-POIS are promising, as
reported in Section 7.2. Figure 9 is an ablation study showing the performance of P-POIS
variants on Cartpole. Only using both the tricks discussed in this section, we are able to
solve the task (this experiment is on 50 iterations only).

Appendix H. Experiments Details

In this Appendix, we report the hyperparameter values used in the experimental evaluation
and some additional plots and experiments. We adopted different criteria to decide the
batch size: for linear policies at each iteration 100 episodes are collected regardless of their
length, whereas for deep neural policies, in order to be fully comparable with (Duan et al.,
2016), 50000 timesteps are collected at each iteration regardless of the resulting number of
episodes (the last episode is cut so that the number of timesteps sums up exactly to 50000).
Clearly, this difference is relevant only for episodic tasks.
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Figure 9: Ablation study for N-POIS (5 runs, 95% c.i.).

H.1. Linear policies

In the following we report the hyperparameters shared by all tasks and algorithms for the
experiments with linear policies:

• Policy architecture: Normal distribution N puMpsq, e2Ωq, where the mean uMpsq “ Ms
is a linear function in the state variables with no bias, and the variance is state–
independent and parametrized as e2Ω, with diagonal Ω.

• Number of runs: 20 (95% c.i.)

• seeds: 10, 109, 904, 160, 570, 662, 963, 100, 746, 236, 247, 689, 153, 947, 307, 42, 950,
315, 545, 178

• Policy initialization: mean parameters sampled from N p0, 0.012q, variance initialized
to 1

• Task horizon: 500

• Number of iterations: 500

• Maximum number of line search attempts (POIS only): 30

• Maximum number of offline iterations (POIS only): 10

• Episodes per iteration: 100

• Importance weight estimator (POIS only): IS for A-POIS and D-POIS, SN for P-POIS

• Natural gradient (POIS only): No for A-POIS and D-POIS, Yes for P-POIS
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Table 9 reports the hyperparameters that have been tuned specifically for each task selecting
the best combination based on the runs corresponding to the first 5 seeds.

Environment A-POIS (δ) P-POIS (δ)

Cart-Pole Balancing 0.1, 0.2, 0.3, 0.4, 0.5 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 1
Inverted Pendulum 0.8, 0.9, 0.99, 1 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 1
Mountain Car 0.8, 0.9, 0.99, 1 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1
Acrobot 0.1, 0.3, 0.5, 0.7, 0.9 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 1
Double Inverted Pendulum 0.1, 0.2, 0.3, 0.4, 0.5 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 1

Environment D-POIS (δ)

Cart–Pole Balancing 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99
Inverted Pendulum 0.6, 0.8, 0.9, 0.99, 0.9999, 1
Mountain Car 0.5, 0.7, 0.9, 0.99
Acrobot 0.1, 0.3, 0.5, 0.7, 0.9
Double Inverted Pendulum 0.1, 0.2, 0.3, 0.4, 0.5

Environment TRPO (step size) PPO (step size)

Cart–Pole Balancing 0.001, 0.01, 0.1, 1 0.001, 0.01, 0.1 , 1
Inverted Pendulum 0.001, 0.01, 0.1, 1 0.001, 0.01, 0.1, 1
Mountain Car 0.001, 0.01, 0.1, 1 0.001, 0.01, 0.1, 1
Acrobot 0.001, 0.01, 0.1, 1 0.001, 0.01, 0.1, 1
Double Inverted Pendulum 0.001, 0.01, 0.1, 1 0.001, 0.01, 0.1, 1

Table 9: Task–specific hyperparameters for the experiments with linear policy. δ is the
significance level for POIS while we report the step size for TRPO and PPO. In
bold, the best hyperparameters found.

H.2. Deep neural policies

In the following we report the hyperparameters shared by all tasks and algorithms for the
experiments with deep neural policies:

• Policy architecture: Normal distribution N puMpsq, e2Ωq, where the mean uMpsq is a
3–layers MLP (100, 50, 25) with bias (activation functions: tanh for hidden–layers,
linear for output layer), the variance is state–independent and parametrized as e2Ω

with diagonal Ω.

• Number of runs: 5 (95% c.i.)

• seeds: 10, 109, 904, 160, 570

• Policy initialization: uniform Xavier initialization (Glorot and Bengio, 2010), variance
initialized to 1

• Task horizon: 500

• Number of iterations: 500
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• Maximum number of line search attempts (POIS only): 30

• Maximum number of offline iterations (POIS only): 20

• Timesteps per iteration: 50000

• Importance weight estimator (POIS only): IS for A-POIS and D-POIS, SN for P-POIS

• Natural gradient (POIS only): No for A-POIS and D-POIS, Yes for P-POIS

Table 10 reports the hyperparameters that have been tuned specifically for each task selecting
the best combination based on the runs corresponding to the 5 seeds.

Environment A-POIS (δ) P-POIS (δ)

Cart–Pole Balancing 0.9, 0.99, 0.999 0.4, 0.5, 0.6, 0.7, 0.8
Mountain Car 0.9, 0.99, 0.999 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8
Double Inverted Pendulum 0.9, 0.99, 0.999 0.4, 0.5, 0.6, 0.7, 0.8
Swimmer 0.9, 0.99, 0.999 0.4, 0.5, 0.6, 0.7, 0.8

Environment D-POIS (δ)

Cart–Pole Balancing 0.9, 0.99, 0.999
Mountain Car 0.9, 0.99, 0.999
Double Inverted Pendulum 0.2, 0.4, 0.6, 0.8, 0.9
Swimmer 0.9, 0.99, 0.999

Table 10: Task–specific hyperparameters for the experiments with deep neural policies. δ is
the significance level for POIS. In bold, the best hyperparameters found.

H.3. MIS Experiments

The setting used for the MIS experiments presented in Section 7.3 is the same as Sec-
tion H.1, but with variable batch size N and MIS capacity J . The hyper–parameter
values reported in Table 7 are obtained via grid search among candidate values: δ “
0.99, 0.9, 0.8, 0.6, 0.4, 0.2, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001 for all the settings. The
hyper–parameter tuning was performed on five random seeds (10, 109, 904, 160, 570), and
the final results reported in Figure 7 were averaged over twenty separate ones (749, 728, 524,
215, 455, 920, 635, 930, 402, 705, 938, 563, 925, 29, 173, 542, 899, 175, 152, 210).

H.4. Additional Results about Figure 10

In Figure 10 we report additional plots w.r.t. Figure 5 for A-POIS when changing the δ
parameter in the Cartpole environment. It is worth noting that the value of δ has also an
effect on the speed with which the variance of the policy approaches zero. Indeed, smaller
policy variances induce a larger Rényi divergence and thus with a higher penalization (small
δ) reducing the policy variance is discouraged. Moreover, we can see the values of the
bound before and after the optimization. Clearly, the higher the value of δ, the higher the
value of the bound after the optimization process, as the penalization term is weaker. It is
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interesting to notice that when δ “ 1 the bound after the optimization reaches values that
are impossible to reach for any policy and this is a consequence of the high uncertainty in
the importance sampling estimator.
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Figure 10: Standard Deviation of the policy (σ), value of the bound before and after the
optimization as a function of the number of trajectories for A-POIS in the
Cartpole environment for different values of δ (5 runs, 95% c.i.).

H.5. D-POIS Variance

In this section, we present empirical results to validate the properties described in Section 5.3.
To underline the difference in the variance of A-POIS and D-POIS, we try to force a variance
increase by lowering the batch size of episodes at each iteration, making the variance difference
more noticeable. We first tested this idea on the Cartpole environment (Figure 11a), which
has a quite trivial reward structure, assigning the same reward at each timestep. We can
notice how A-POIS struggles more when the batch size is reduced, not even reaching the
optimal solution, while D-POIS still reaches the top in a very short time. We also need to
remind that by reducing the batch size but keeping the same number of iterations, we are
effectively using less total samples (in the example, one fifth); this suggest that, in many
cases, D-POIS can be more sample efficient than A-POIS. We can also observe how the
variability in the performances, i.e., the confidence bound in the plot, is much larger in the
A-POIS setting, which indicates that the optimization is less restricted and this results in a
more explorative behavior.

This particular fact is what most probably influences the performances in the Inverted–
Pendulum environment, shown in Figure 11b: we can see how D-POIS struggles to escape
a sub–optimal solution, and how reducing the batch size (which increases the variance),
actually improves the performance. The better results of A-POIS may similarly suggest that
the higher variance helps in escaping the sub–optimal solution, even more with the reduced
batch size.

To further inspect the variance in the weights and in the estimator, we also measure
directly their sample variance during the experiment. To have comparable measures in
A-POIS and D-POIS, we need to align them, i.e., we perform the updates following D-POIS
but also estimate the weights and the Ĵ of the A-POIS setting. In Figure 12 we show the
relative increase in standard deviation of A-POIS w.r.t. D-POIS, defined as σAPOIS´σDPOIS

σDPOIS
.
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Figure 11: Performance comparison of A-POIS and D-POIS, changing the batch size to
increase the variance in the estimator.
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Figure 12: Relative increase in importance–weights and estimator standard deviation under
the per–decision setting.

The always positive value of this measure shows how the variance of both the weights and
the estimator is lower in the per–decision setting, accordingly to the previous theoretical
analysis and experimental results, in both the presented environments.

H.6. Tolerance Intervals of Linear Policies and MIS Experiments

In this appendix, we report tolerance intervals for the experiments with linear policies
(Figure 13) and with MIS (Figure 14). The problem with confidence intervals is that they
enclose a deterministic quantity (the mean of the population), only accounting for the
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Figure 13: Average return as a function of the number of trajectories for P-POIS, A-POIS,
D-POIS, TRPO, and PPO with linear policy (20 runs, mean and 90%/80%
non–parametric tolerance intervals).

sampling error due to the finite number of samples. If the performance of the algorithm
varies drastically with the random seed (e.g., if the algorithm either performs very well or
very bad), the mean–performance curve may be of little relevance, if not misleading, and
so is the related confidence region. On the contrary, tolerance intervals (Hahn and Meeker,
2011) enclose, with the desired confidence, a specific portion of the population. We employ
the non–parametric Hahn–Meeker method to compute the intervals (Hahn and Meeker,
2011). A 100p1´ αq%

L

100p% interval is one that includes a proportion p of the population
with probability at least 1´ α.

H.7. Individual Runs of Deep Neural Policies Experiments

In this appendix, we report for the experiments with deep neural policies the learning curves
of the individual runs (Figure 15). This allows to fully appreciate the variability of the
algorithms’ performance w.r.t. the random seed.
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Figure 15: Average return of the individual runs as a function of the number of trajectories
for A-POIS, P-POIS with deep neural policies.
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