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Abstract

We consider estimation of a total causal effect from observational data via covariate adjust-
ment. Ideally, adjustment sets are selected based on a given causal graph, reflecting knowl-
edge of the underlying causal structure. Valid adjustment sets are, however, not unique.
Recent research has introduced a graphical criterion for an ‘optimal’ valid adjustment set
(O-set). For a given graph, adjustment by the O-set yields the smallest asymptotic vari-
ance compared to other adjustment sets in certain parametric and non-parametric models.
In this paper, we provide three new results on the O-set. First, we give a novel, more intu-
itive graphical characterisation: We show that the O-set is the parent set of the outcome
node(s) in a suitable latent projection graph, which we call the forbidden projection. An
important property is that the forbidden projection preserves all information relevant to
total causal effect estimation via covariate adjustment, making it a useful methodological
tool in its own right. Second, we extend the existing IDA algorithm to use the O-set, and
argue that the algorithm remains semi-local. This is implemented in the R-package pcalg.
Third, we present assumptions under which the O-set can be viewed as the target set of
popular non-graphical variable selection algorithms such as stepwise backward selection.
Keywords: causal discovery, causal inference, confounder selection, confounding, effi-
ciency, graphical models, IDA algorithm, model selection, sufficient adjustment set

1. Introduction

In typical analyses of observational data, we wish to estimate the total causal effect of a
(possibly multivariate) treatment or exposure X on a (possibly multivariate) outcome Y.
Ideally, we can fully specify the underlying causal directed acyclic graph (DAG). We can
then use a graphical adjustment criterion, e.g. Pearl’s back-door criterion (Pearl, 2009) or
the generalised adjustment criterion (Perkovié¢ et al., 2015, 2018; Shpitser et al., 2010), to
check whether a set of covariates is valid for adjustment. However, there may be more
than one valid adjustment set. Although all resulting estimators are then consistent, their
variances may differ considerably.
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There are several approaches to choose an adjustment set among all valid adjustment
sets. For example, one can pick a minimal adjustment set (de Luna et al., 2011; Textor
and Liskiewicz, 2011). An alternative strategy is to aim at decreasing the causal effect
estimator’s variance by including variables associated with the outcome (e.g. Brookhart
et al., 2006; Lunceford and Davidian, 2004; Shortreed and Ertefaie, 2017). Witte and
Didelez (2019) referred to this strategy as the ‘outcome-oriented’ approach. It is especially
popular when little graphical knowledge is available. A major advancement for the outcome-
oriented approach was the graphical characterisation of the ‘optimal’ adjustment set (O-set)
by Henckel et al. (2019) (HPM19). They showed that under a linear model, adjusting for the
O-set yields the smallest asymptotic variance for the causal effect estimator compared to all
other valid adjustment sets, under assumptions detailed below. Strengthening this result,
Rotnitzky and Smucler (2020) (RS20) recently showed that the minimal variance property
of the O-set is retained for a class of non-parametric estimators. All these results apply to
DAGs, as well as so-called amenable completed partially directed acyclic graphs (CPDAGs;
see e.g. Andersson et al., 1997) and amenable maximally oriented partially directed acyclic
graphs (maxPDAGs; see Perkovié et al., 2017). These are larger classes of graphs allowing
for undirected edges where the direction cannot be decided. Amenability implies that
despite the undirected edges, an adjustment set can be identified from the CPDAG (or
maxPDAG) so that this set is valid for adjustment in all DAGs in the equivalence class.
If a CPDAG (or maxPDAG) is not amenable, no common adjustment set for all DAGs in
the equivalence class exists (Perkovi¢ et al., 2018), and hence different DAGs may imply
different true causal effects of X on Y. However, it is then still possible to estimate a
multiset of possible causal effects (meaning that all effects in the multiset are compatible
with the non-amenable graph) using the IDA algorithm by Maathuis et al. (2009, 2010).

In this paper, we provide three new results on efficient causal effect estimation. First,
after briefly reviewing the results of HPM19 and RS20 (Section 2), we provide an alternative,
intuitive characterisation of the O-set. This is based on the new concept of a forbidden
projection, which has many interesting properties regarding adjustment for confounding
(Section 3). Second, we extend the application of the O-set to non-amenable CPDAGs
and maxPDAGs, by incorporating optimal adjustment into the IDA algorithm (Section 4).
Third, we discuss how and under what assumptions the O-set can be viewed as the target
set of data-driven variable selection methods such as backward model selection (Section 5).

2. Optimal Adjustment for Known Causal Structure

We begin by clarifying our setting and defining the O-set, before proposing an alterna-
tive definition in Section 3. We defer most of the terminology and formal definitions to
Appendix A; here we only state some key concepts.

(Possibly) causal nodes and forbidden nodes. Let G be a causal DAG, CPDAG
or maxPDAG. A path (V1,...,V,,) in G is called causal from Vi to V,, if V; — Vi for
all i € {1,...,m — 1}. It is called possibly causal if there are no 7,5 € {1,...,m}, i < j,
such that V; < V;. Otherwise it is called non-causal from Vi to Vj,,. A path from X to
Y is proper if only its first node is in X. If there is a causal path from Vj to V,, in G,
then V,, is called a descendant of V; in G. Analogously, if there is a possibly causal path
from V; to V,, in G, then V,, is called a possible descendant of V7 in G. The set of all
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descendants of V; in G is denoted by de(V7,G), and the set of all possible descendants by
possde(V1,G). The causal nodes with respect to (X, Y) in G, denoted by en(X,Y,G), are
the nodes on proper causal paths from X to Y, excluding X itself. The possibly causal nodes
posscn(X, Y, G) are defined analogously. The forbidden set with respect to (X, Y) and G
is defined as forb(X,Y,G) = possde(possen(X,Y,G),G) UX. In a DAG, this simplifies to
forb(X,Y,G) = de(en(X,Y,G),G)UX. The nodes in the forbidden set are called forbidden
nodes. It can be shown that valid adjustment sets never contain forbidden nodes (Perkovié
et al., 2018).

Valid adjustment sets. We consider a set of treatments X and a set of outcomes Y.
A (possibly empty) set Z is a valid adjustment set relative to (X,Y) if the interventional
distribution f(y | do(x)) of Y, given we set X to x by intervention, factorises as follows:

fly [x) if Z =0,
fz f(y | x,2)f(z)dz otherwise.

Valid adjustment sets can be read off from a given causal DAG, CPDAG or maxPDAG
G using the generalised adjustment criterion (Perkovié¢ et al., 2017, 2018; Shpitser et al.,
2010), which generalises Pearl’s back-door criterion (Pearl, 2009): Z is a valid adjustment
set relative to (X,Y) in G if and only if the following three conditions hold: (a) every
proper possibly causal path from (X to Y) starts with a directed edge out of X, (b)
Z N forb(X,Y,G) = 0, (c) all proper non-causal definite-status paths from X to Y are
blocked by Z. Property (a) is called amenability. See Appendix A for the definition of a
definite-status path. In a DAG, all paths are of definite status.

We consider two model classes and corresponding strategies for estimating causal effects
when a valid adjustment set is available: (i) the causal linear model with possibly non-
Gaussian error terms, where causal effects are estimated using linear regression (HPM19),
and (ii) the more general non-parametric causal model, where estimation proceeds non-
parametrically (RS20). In both settings, we assume an underlying causal DAG, and that
we observe all variables displayed as nodes in the DAG, i.e. there are no latent variables.

Causal linear models (HPM19). A causal linear model is a causal DAG where every
edge represents a linear causal effect. In a causal linear model, the (joint) causal effect of
X={X1,...,Xp, }on Y = {Y1,..., Y%, } is defined as the matrix 7y, with elements

0
(Tyx)jvi - %E(YE ‘ dO(.%'l, s 7‘731%))

1

=E(Yj |do(z1,...,zi+1,...,2,)) — EYj | do(z1,...,zk,)),

[y [ do(x)) = {

where element (Tyx);; corresponds to the controlled direct effect (Robins and Greenland,
1992; Pearl, 2001) of X; on Y; relative to X. In other words, (Tyx); is the difference in
E(Y;) when X is set to (z1,--- ,2z;+1,...,2,) by intervention, compared to when X is set
to (z1,...,xk,) by intervention. We can compute the effect of more general interventions
as functions of the elements of 7yx; for example, the sum of the first row corresponds to the
effect on Y] of increasing all elements of (z1, ..., xy,) by one. Given a valid adjustment set Z
for the effect of X on Y, 7yx can be rewritten as a matrix of regression coefficients as follows:
Denote by By, the (ky X k;)-matrix whose (j,i)-th element is the regression coefficient
By,z:.x_sz of Xi in a linear regression of Y; on X; and ZUX_;, where X_; = X\ {X;}. Then
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Tyx = Byx,- The ordinary least squares (OLS) estimator Byx‘z is a consistent estimator of
Byx.z- We denote the asymptotic variance of @jxi.xqz by a.var(Byjmi‘xfiz).

Non-parametric estimation of causal effects (RS20). In the more general setting
of a causal DAG without linearity or other assumptions on the functional form, we define
the causal effect of X on Y as follows. Let X be the set of values that X can take. For a
pair of vectors x,x’ € X, the causal effect of intervening to set X to x vs. x’ is the vector
Ay yx with elements

(Aysx)j = B(Yj | do(x)) = E(Y] | do(x)).

Note that in the non-parametric case, it is not possible to compactly represent the causal
effect of X on Y in a (k, x k;)-matrix. RS20 considered the class of regular asymptot-
ically linear estimators for the non-parametric estimation of Ayy,.. This class includes
inverse probability weighting by a non-parametrically estimated propensity score (Hirano
et al., 2003), non-parametric outcome regression (Hahn, 1998), and double machine learning
(Chernozhukov et al., 2018; Smucler et al., 2019). We use Ayxx/z to denote an estimator
from this class that estimates Ayxy adjusting for a valid adjustment set Z. Under a causal
DAG model and certain smoothness and complexity restrictions, Ayxx’.z is a consistent es-
timator of Ayxy. For given y, x and x/, the asymptotic distribution of estimators from this
class depends only on Z, therefore we df) not furthey distinguish betwgen the estimators.

We denote the asymptotic variance of (Ayxx.z)j = Ayxx/.z by a.var(Ayxx z). See RS20
and the references therein for more details on regular asymptotically linear estimators.

Definition 1 (O-set; HPM19 Definition 3.8) Let X and Y be disjoint node sets in a
DAG, CPDAG or mazPDAG G. Then O(X,Y,G) is defined as:

0(X,Y,G) = pa(en(X,Y,G),G) \ forb(X, Y, G).

An example is given in Figure 1. It shows the causal relations between 12 symptoms
of prodromal schizophrenia as measured by the Schizotypic Syndrome Questionnaire (van
Kampen, 2006). The DAG was constructed using a combination of expert knowledge and
data-driven structure learning (van Kampen, 2014). For illustration, we here take this given
DAG as ground truth. Suppose we are interested in the causal effect of Alienation (ALN)
on Delusional Thinking (DET). The bold edges indicate the causal paths with causal nodes
{PER, SUS, FTW, DET} (circles). The parents of the causal nodes are {ALN, PER, SUS,
FTW, AIS, CDR}, the forbidden set is {ALN, PER, SUS, FTW, DET, HOS, EGC} and
the O-set is {ALN, PER, SUS, FTW, AIS, CDR} \ {ALN, PER, SUS, FTW, DET, HOS,
EGC}={AIS, CDR} (shown in boxes). Other valid adjustment sets are, for example, {AFF,
SAN}, {AIS, CDR, AFF} and {AFF, APA, AIS, CDR, SAN}. This can be checked using
the generalised adjustment criterion stated above.

Note that in many applications it might be possible to augment a causal graph e.g.
with further parents of Y that are marginally independent of all other non-descendants of
Y. This induces a different O-set illustrating that this set depends on what variables are
included in the graph. Note also that the O-set is defined even if no valid adjustment set
exists, but this case will rarely be of interest.
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AFF » CDR

Figure 1: DAG from van Kampen (2014) illustrating the assumed causal relations be-
tween 12 prodromal symptoms of schizophrenia: AFF=Affective Flattening,
AIS=Active Isolation, ALN=Alienation, APA=Apathy, CDR=Cognitive Derail-
ment, DET=Delusional Thinking, EGC=Egocentrism, FTW=Living in a Fan-
tasy World, HOS=Hostility, PER=Perceptual Aberrations, SAN=Social Anxiety,
SUS=Suspiciousness. We are interested in the causal effect of ALN on DET, both
shown in grey circles. Bold arrows show the causal paths from ALN to DET. The
forbidden nodes are shown as circles, nodes in the O-set are shown as boxes.

Proposition 2 (HPM19 Theorem 3.10 (1)) Let X and Y be disjoint subsets of the
node set V of a causal DAG, CPDAG or marPDAG G. The set O(X,Y,G) is a valid
adjustment set relative to (X,Y) in G if (i) Y C possde(X,G) and (ii) a valid adjustment
set relative to (X,Y) in G exists.

Condition (i) can be checked using a simple query on G. If Y ¢ possde(X, G), we know
that the causal effect of X on Y \ possde(X, G) is zero. Hence, without loss of generality, we
can consider the set of outcome variables Y N possde(X, G) instead of Y. Condition (ii) is
satisfied if O(X,Y,G) or any other subset of V \ {X, Y} fulfils the generalised adjustment
criterion stated above. For the DAG in Figure 1, it can easily be seen that DET € de(ALN),
hence condition (i) is satisfied. Under condition (i), condition (ii) is always satisfied for
univariate treatment and outcome in a DAG, because the parents of treatment then form
a valid adjustment set (see Pearl, 2009, p. 72f.).
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The following proposition, which builds on earlier work by Kuroki and Miyakawa (2003)
and Kuroki and Cai (2004), establishes the optimality of the O-set in terms of the asymptotic
variance in the linear and in the non-parametric setting.

Proposition 3 Let X andY be disjoint subsets of the node set' V of a causal DAG, CPDAG
or maxPDAG G, such that Y C possde(X,G). Let Z be a valid adjustment set relative to
(X,Y) in G and let O = O(X,Y,G).

(a) (HPM19 Theorem 3.10 (2)) If the variables V follow a linear causal model compatible
with G, then, for every X; € X and Y; € Y, a.var(By,z; x_0) < a.var(By,z;x_a)-

(b) (RS20 Theorem 2) For every Y; € Y and pair of vectors x,x' € X,

a.var(Ayxx'.o) < a.var(Ayxx z)-

In other words, for a given causal linear model, the O-set yields the smallest asymptotic
variance for the OLS estimator among all valid adjustment sets. If linearity cannot be
assumed, the O-set yields the smallest variance for regular asymptotically linear estimators.
Thus, assume that Figure 1 represents a causal linear model. Proposition 3 then implies
that if we estimate the effect of ALN on DET by linearly regressing DET on ALN and
the O-set {AIS, CDRY}, then the estimator will have a smaller asymptotic variance than if
we regress DET on ALN and a different valid adjustment set, say the parent set of ALN,
which equals {AFF, SAN}. Moreover, when we relax linearity, non-parametric adjustment
for the O-set {AIS, CDR} is more efficient than non-parametric adjustment for any other
valid adjustment set, provided the estimator is in the class of regular asymptotically linear
estimators.

3. The O-Set via Forbidden Projection

In this section we provide an alternative, intuitive construction of the O-set. For the sake
of clarity, we restrict ourselves to DAGs; generalisations to amenable maxPDAGs are given
in Appendix C.

To motivate our alternative construction, we posit that a useful adjustment set should be
i) valid, ii) easy to compute, and iii) efficient. Consider singleton treatment X and outcome
Y, where the latter is not an ancestor of X. The parents of X are easy to determine and
guaranteed to be valid (see Pearl, 2009, p. 72f.). However, it is well-known that adjusting
for variables strongly associated with treatment tends to reduce the efficiency of OLS and
other estimators of the treatment effect. Hence, adjusting for the parents of treatment is
typically inefficient compared to other valid adjustment sets. In contrast, it is also well-
known that regression adjustment for variables strongly associated with the outcome tends
to improve the efficiency of OLS and other estimators. Hence, the parents of the outcome
would appear a natural, easy to determine and more efficient alternative for adjustment.
However, the parents of Y are not guaranteed to be a valid adjustment set; they may contain
forbidden nodes, specifically mediators between treatment and outcome. For example, in
Figure 1, FTW is a parent of the outcome DET, but a descendant of the treatment ALN
and hence cannot be used for adjustment. Simply omitting such nodes from the parents of
Y does not generally lead to a valid adjustment set either. For example, CDR alone does
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not form a valid adjustment set in Figure 1, since there are open confounding paths, e.g.
ALN < SAN — AIS - SUS — FTW — DET.

Nonetheless, the intuition of using the parents of Y is correct if applied to a modified
graph. As we show below, marginalising out, i.e. projecting over, the forbidden nodes results
in a graph where the parent set of Y indeed coincides with the O-set, and is thus guaranteed
to yield an estimator with minimal asymptotic variance in the settings we consider, see
Proposition 3. This characterization of the O-set thus combines validity, graphical simplicity
and efficiency. We will now explain this formally.

Consider again the case of a DAG D containing sets X and Y. We first need the concept
of latent projection, used to marginalise or collapse over latent, i.e. unobserved nodes, while
preserving the remaining causal relations and (in)dependencies between the observed nodes.

Definition 4 (Latent projection; Verma and Pearl, 1990; Shpitser et al., 2014)
Let D be a DAG with node set W UL and W NL = (. The latent projection D(W) over
L on W is a graph with node set W and edges as follows: For distinct nodes W;, W; € W,

1. D(W) contains a directed edge W; — W; if and only if D contains a directed path
Wi — -+ — W; on which all non-endpoint nodes are in L,

2. D(W) contains a bi-directed edge W; <+ W; if and only if D contains a path, with at
least one non-endpoint node, of the form Wi < --- — W; on which all non-endpoint
nodes are non-colliders and in L.

In the latent projection D(W), two nodes may be connected by a directed and a bi-
directed edge at the same time. (In)dependence relations can be read off from a latent
projection using the m-separation criterion (Richardson, 2003). For disjoint A,B,C C W,
A and B are d-separated given C in D if and only if A and B are m-separated given C in
D(W) (Richardson et al., 2017).

For our definition of the O-set, we project over the forbidden nodes, save X and Y,
which motivates the following definition:

Definition 5 (Forbidden projection) Let D be a DAG with node set V and let X and
Y be disjoint subsets of V. We call the graph DXY = D((V \ forb(X,Y,D)) UX UY) the
forbidden projection of D with respect to (X,Y).

Figures 2 and 3 show some examples, where the forbidden nodes are shown as circles.
In panels A and B of Figure 2, the forbidden sets only contain nodes in X U Y, hence
nothing is projected over. Panels E and F show DAGs where the forbidden projection has
bi-directed edges, which will become relevant in Proposition 6.

While we primarily introduce the forbidden projection to provide an alternative charac-
terisation of the O-set, it is a useful tool in its own right. In particular, as we show next, the
forbidden projection of a causal DAG preserves all information relevant to the estimation
of a causal effect via adjustment. All proofs are given in Appendix B and generalised to
maxPDAGs in Appendix C.
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Figure 2: Example DAGs with their forbidden projections. The forbidden nodes are shown
as circles, nodes in the O-set are shown as boxes. The bold arrows show the causal
paths from X to Y. In panels A and B, the original DAGs and their forbidden
projections are identical. In panel E, the empty set is a valid adjustment set and
also the O-set. In panel F, the bi-directed edge between X5 and Y indicates that
the effect of X = {X7, X2} on Y is not identified via adjustment.
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AFF » CDR
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Figure 3: Forbidden projection of the DAG in Figure 1 with respect to X = {ALN} and
Y = {DET}. The forbidden nodes are shown as circles, nodes in the O-set

(parents of DET) are shown as boxes. The bold arrow shows the causal path
from ALN to DET.

First, the forbidden projection can be used to check whether a valid adjustment set
exists relative to given sets of nodes X and Y:

Proposition 6 Let X and Y be disjoint node sets in a causal DAG D such that Y C
de(X, D). Then a valid adjustment set relative to (X,Y) in D exists if and only if there is
no bi-directed edge between any X € X andY € Y in DXY.

In Figure 2, valid adjustment sets with respect to X and Y exist in all panels except
for panel F. The effect of X = {X;, X2} on Y in panel F is, however, identified e.g. by the
more general G-formula (Robins, 1986; Dawid and Didelez, 2010), the algorithm in Tian and
Pearl (2003), or the methods in Nandy et al. (2017). See Guo and Perkovié¢ (2020) and RS20
for results on efficient adjustment in the linear and non-parametric case, respectively. The
bi-directed edge between Y7 and Y5 in panel E has no relevance in defining or determining
a valid adjustment set.

For singleton Y such that a valid adjustment set with respect to (X,Y) exists, the
forbidden projection is particularly easy to interpret, as it is itself a causal DAG.

Proposition 7 Let X and {Y} be disjoint node sets in a causal DAG D such that Y €
de(X, D). Then DXY is a causal DAG if and only if there exists a valid adjustment set
relative to (X,Y) in D.

Further, an adjustment set that is valid in the original graph is also valid in the forbidden
projection and vice versa:

Proposition 8 Let X, Y and Z be disjoint node sets in a causal DAG D. Then Z is a
valid adjustment set relative to (X,Y) in D if and only if Z is also a valid adjustment set
relative to (X,Y) in DXY.

Using the forbidden projection, we now define the O*-set and prove that it is equal to
the O-set.
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Definition 9 (O*-set) Let X and Y be disjoint node sets in a DAG D. We define
0*(X,Y,D) as:
O*(X,Y,D) = pa(Y,D*¥) \ (XUY).

In words, the O*-set is the set of parents of Y in the forbidden projection DXY, excluding
treatment nodes and outcome nodes. The next proposition states our key result.

Proposition 10 Let X and Y be disjoint subsets of the node set V of a DAG D such that
Y Cde(X,D). Then O(X,Y,D) = 0*(X,Y,D).

It now follows trivially that the statements about the O-set in Proposition 3 are true
for the O*-set as well.

Again, Y C de(X,D) in Proposition 10 is not a severe restriction, because if Y ¢
de(X, D), we can instead consider the effect on Y N de(X, D), as we know that the effect
on Y \ de(X, D) is zero.

Figure 3 shows the forbidden projection with respect to ALN and DET of the DAG
in Figure 1. The O-set {AIS, CDR} (in boxes) is the parent set of DET. All other valid
adjustment sets are less efficient, for example the afore-mentioned sets {AFF, SAN}, {AIS,
CDR, AFF} and {AFF, APA, AIS, CDR, SAN}. Due to Proposition 8, the validity of all
of these sets can be confirmed by using the generalised adjustment criterion stated above
on either the original DAG (Figure 1) or its forbidden projection (Figure 3). See Figure 2
for further examples.

To summarise, the forbidden projection can be used as follows: First, check in the
original graph if Y C de(X, D). Next, construct the forbidden projection GX¥ and check
for bi-directed edges. If there is a bi-directed edge between a node in X and a node in Y,
then the causal effect of interest is not identified via adjustment (Proposition 6). Else, GX¥
contains all information necessary to determine a valid adjustment set (Proposition 8), and
in particular the O-set, which is then the set of parents of Y (Definition 9, Proposition 10).
If Y contains only one node, then GXY is a causal DAG itself and hence straightforward to
interpret (Proposition 7).

4. Optimal Adjustment in the IDA Algorithm

In Sections 2 and 3, we considered optimal adjustment in DAGs, and in Appendix C we
generalised the results to amenable maxPDAGs, which include amenable CPDAGs. As a
reminder, a maxPDAG is said to be amenable relative to (X,Y) if every proper possibly
causal path from X to Y starts with a directed edge out of X. In this section, we consider
non-amenable CPDAGs and maxPDAGs.

CPDAGs and maxPDAGs are of interest because they are the output of popular causal
search algorithms, i.e. algorithms that attempt to learn a graph from data. Under the
linear model with Gaussian error terms, which we focus on in this section, it is generally
not possible to learn a unique DAG. Even under the additional assumptions of causal
sufficiency and faithfulness (see e.g. Spirtes et al., 2000), one can at best learn a Markov
equivalence class of DAGs, uniquely represented by a CPDAG (see e.g. Andersson et al.,
1997). Given additional knowledge of some causal relationships between variables, access
to interventional data, or other model restrictions, one can obtain a refinement of this class,

10
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uniquely represented by a maxPDAG (Meek, 1995; Perkovi¢ et al., 2017). For a CPDAG or
maxPDAG G, we use [G] to denote the set of DAGs that it represents. The interpretation
of edges in a CPDAG or maxPDAG G is as follows: A directed edge A — B means that
this edge is present in all DAGs in [G]. An undirected edge A — B means that A and B are
adjacent in every DAG in [G] and there is at least one DAG in [G] with A — B and at least
one with A < B.

We suppose in this section that we are interested in a univariate exposure X and a
univariate outcome Y. For a given CPDAG or maxPDAG G, the true causal effect of X
on Y may differ across the DAGs in [G]. In particular, Perkovi¢ (2020) (Proposition 4.2)
showed that assuming Y ¢ pa(X,G), the true causal effect of X on Y differs across DAGs
in [G] if and only if G is non-amenable relative to (X,Y), i.e. there is a possibly causal path
from X to Y that starts with an undirected edge. Hence, when G is non-amenable relative
to (X,Y), we can at best determine a multiset of possible causal effects (7yz(D))peg);
one for each DAG in [G]. (A multiset (7,.(D))pe[g) may contain the same entry multiple
times, e.g. if [G] contains five DAGs, of which three imply an effect of 0 and two imply
an effect of 1.2, then (7,.(D))pejg) = {0,0,0,1.2,1.2}.) While obviously less informative
than a single number, this multiset of possible causal effects may still yield useful statistics.
The minimum absolute value, for example, is a lower bound for the size of the causal
effect. However, enumerating all DAGs in [G] is computationally very expensive even for
moderately sized G when there are many undirected edges.

Maathuis et al. (2009) proposed to reduce the complexity of this problem as follows.
Consider two DAGs D, D’ € [G] such that pa(X,D) = pa(X,D’) =P and Y ¢ P. As the
parents of X form a valid adjustment set (Pearl, 2009, p. 72f.), 7y(D) = Ty2(D’) = 7y (P),
where 7, (P) denotes the coefficient of X in the linear regression of Y on X and P, i.e. Sz p-
Let P = {pa(X,D) | D € [G]} denote the set of all possible parent sets of X compatible with
G. Then (7,.(P))pep contains the same distinct values as (7,.(D))pe|g), While [P| < [[G]].
Maathuis et al. (2009) showed that it is possible to determine P locally from the CPDAG
G without enumerating all DAGs in G. They hence proposed a simple local procedure for
calculating (7. (P))pep, which is called ‘local IDA’ (local Intervention Calculus when the
DAG is Absent). Perkovié¢ et al. (2017) proposed a semi-local generalisation to maxPDAGs
(‘semi-local IDA’).

The semi-local IDA algorithm for a maxPDAG is given in Algorithm 1. Let sib(X,G)
denote the set of nodes sharing an undirected edge with X in G. Semi-local IDA loops
over all subsets S C sib(X,G). It first constructs a graph G’ such that pa(X,G’) = P =
pa(X,G)US. Here the complexity reduction becomes apparent: only the edges adjacent to
X need to be oriented. To verify whether the added orientations are compatible with the
original graph G, the algorithm attempts to extend the graph to a maxPDAG by applying
Meek’s orientation rules (ConstructMaxPDAG algorithm; Meek, 1995; Perkovié¢ et al., 2017;
see Figure 8 in Appendix A). This step is semi-local as edges not adjacent to X need
to be oriented. If successful, ﬁAyx,p is added as a possible causal effect estimate, where

P =pa(X,G) =SuUpa(X,Q).

Nandy et al. (2017) further generalised semi-local IDA to sets X and Y. However, this
procedure does not use regression adjustment for possible causal effect estimation and is
therefore not directly related to our results.

11
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Algorithm 1 Local or semi-local IDA (Maathuis et al., 2009; Perkovié et al., 2017).
When the input is a CPDAG, line 7 can be simplified and the algorithm becomes fully local.
Require: CPDAG or maxPDAG G with node set V = {V,...,V,, X, Y}, ii.d. observa-
tions for V4,---,V,, X, Y

Ensure: multiset of estimates ©

1. O«

2: sib(X,G) «{VeV:X—-VingG}

3: for all S Csib(X,G) do

:  LocalBg + 0

4
5. forall S €8, add {S — X} to LocalBg

6: for all § €sib(X,G)\ S, add {S + X} to LocalBg
7. G’ « ConstructMaxPDAG(G, LocalBg)

8. if G’ # “FAIL” then

9 if Y ¢ pa(X,G’) then

10: regress Y on X Upa(X,G’) and add the estimated coefficient of X to 0
11: else

12: add 0 to ©

13: end if

14:  end if

15: end for
16: return ©

Algorithm 2 Optimal IDA.

Require: CPDAG or maxPDAG G with node set V = {V1,...,V,, X, Y}, ii.d. observa-
tions for V1,---,V,, X, Y
Ensure: multiset of estimates ©
1: ©« 0
2: sib(X,G) «~{VeV:X-VinG}
3: for all S Csib(X,G) do
4:  LocalBg < 0
5. forall S €8, add {S — X} to LocalBg
6: for all § €sib(X,G)\ S, add {S + X} to LocalBg
7. G + ConstructMaxPDAG(G, LocalBg)
8 if G’ # “FAIL” then
9 if Y € possde(X,G’) then

10: regress Y on X UO(X,Y,G’) and add the estimated coefficient of X to ©
11: else

12: add 0 to ©

13: end if

14:  end if

15: end for

16: return ©

12
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4.1 Optimal IDA

HPM19 established that the parents of X, as used for adjustment by semi-local IDA, form
one of the least efficient valid adjustment sets. It therefore seems a good idea to replace
pa(X,D) by the O-set within the IDA algorithm to improve estimation precision. The
key question is, however, whether the possible O-sets can still be determined semi-locally.
More formally, our aim is to estimate the multiset (7,,(O))oco, O = {O(X,Y, D) |D € [G]},
where with a slight abuse of notation we define 7,,(0) = 0if Y ¢ possde(X, D). As before,
for two DAGs D and D’ with the same valid O-set O(X,Y, D) = O(X,Y,D’) = O, we have
Tya(D) = Tya(D') = 72 (O).

At first glance, it appears impossible to determine O locally or semi-locally, as by Def-
initions 1 and 9 the causal nodes, their parents and the forbidden nodes, or the forbidden
projection, are required to find the O-set. However, it turns out that @ can be determined
semi-locally almost in the same manner as P. This is because once the directions of all edges
involving X are given, i.e. for given P, application of Meek’s rules reveals all descendants of
X and, in consequence, all causal nodes, their parents and the forbidden nodes (cf. Lemma
18 in Appendix C). Hence, via Meek’s rules there exists a correspondence between possible
parent sets and possible O-sets. We therefore propose Algorithm 2, which we call optimal
IDA. It is implemented in the R package pcalg (Kalisch et al., 2012, 2019).

Algorithm 2 does not specify whether O(X,Y,G’) is determined from G’ or from the
forbidden projection. We expect this choice to be of limited relevance to the algorithm’s
runtime. In our implementation, we determine O(X,Y,G’) directly from G’. Note also
that different possible parent sets can correspond to the same O-set. Hence, optimal IDA
could be modified to collect all sets in O first, remove duplicates, and only then estimate
regression coeflicients.

In the following, we first state formally what can be said about the efficiency of the
estimates output by optimal IDA, showing that it is worthwhile to replace the parents of X
by the O-set. Subsequently we compare the computational burden of the two algorithms.

Proposition 11 Let X and Y be nodes in a causal CPDAG or mazPDAG G = (V,E),
such that 'V follows a causal linear model compatible with G with Gaussian errors. Let eF
and ©° be the multisets returned by semi-local IDA and optimal IDA, respectively, applied
to X, Y and G, with the subsets of sib(X,G) considered in the same order for both. Then,
forie {1... k}, with k = |©F| = |89,

1. E[(:)P] = E[@?] and

7

2. a.var(@ip) > a.var(@?).

The proof is given in Appendix D. Note that if we do not assume Gaussianity in Proposi-
tion 11, then a.var(Bys.0) < a.var(Bys.,) can only be guaranteed if (i) Z is a valid adjustment
set in the true DAG, and (ii) O is the O-set of the true DAG. This is because in a causal
linear model with non-Gaussian errors, a variable is only required to be linear in its parents,
and is not necessarily linear given another node set (cf. Nandy et al., 2017). However, if
we are willing to assume that all errors in the underlying causal model are non-Gaussian,
alternative causal search approaches exist which output a DAG instead of an equivalence
class, e.g. algorithms such as LINGAM (Shimizu et al., 2006).

13



WiTTE, HENCKEL, MAATHUIS AND DIDELEZ

Remark 12 (1) In terms of the computational burden, semi-local and optimal IDA are
very similar for maxPDAGSs. The key difference is that optimal IDA adjusts for the O-set
instead of the parent set of X (line 10), where the O-set is straightforward to determine
from G'. However, optimal IDA crucially relies on the construction of the marPDAG in line
7 to determine the Q-set, while in semi-local IDA this step can be replaced by a simple local
query when the input is known to be a CPDAG. Hence, for the special case of a CPDAG,
semi-local IDA can be made fully local by simplifying line 7, whereas optimal IDA cannot.
(2) A further minor difference between semi-local and optimal IDA is the i f-statement
in line 9. Semi-local IDA only checks whether Y ¢ pa(X,G’), whereas optimal IDA checks
the stronger condition Y € possde(X,G’). Both conditions ensure that the considered ad-
Justment sets pa(X,G’) and O(X,Y,G’), respectively, are valid adjustment sets. Moreover,
if Y & possde(X,G’), then 7y,(D) = 0 for any D € [G']. The 0 estimate of optimal IDA
in this case is therefore the most efficient estimate. Alternatively, we could also insist on
Y € possde(X,G’) in semi-local IDA and return 0 otherwise. As discussed in the appendix
of Maathuis et al. (2009), this is only recommended if the input graph is thought to be
reliable, but can lead to the amplification of errors if the input graph is not accurate.

Remark 13 Proposition 11 concerns the asymptotic variance when the true CPDAG or
a true maxPDAG is given. When the graph is estimated on the same data as used for
IDA, the naive standard errors from the adjusted linear regressions are invalid. Although
considerable progress has been made in the area of post-selection inference (e.g. Berk et al.,
2013; Belloni et al., 2014; Rinaldo et al., 2019), no method has been proposed specifically
for estimating standard errors of causal effect estimates after causal search.

It is straightforward to extend optimal IDA to situations where X and Y are sets.
However, as noted earlier, in this case joint causal effect estimation via regression adjustment
is not always possible. Optimal IDA will then not return an estimate. The estimation
procedures used by joint IDA (Nandy et al., 2017) provide an alternative.

4.2 Tllustration

We now illustrate optimal IDA (Algorithm 2) using a toy example. Consider the CPDAG G
shown in Figure 4(a) and suppose we are interested in the causal effect of X on Y. Clearly,
G is not amenable relative to (X,Y’) and thus it is sensible to apply optimal IDA.

The set sib(X,G) contains 3 nodes, hence there are 8 potential orientations of the
undirected edges with endpoint X. From these 8, 3 imply new v-structures and are thus not
compatible with G. The other 5 can be extended to the maxPDAGs shown in Figure 4(b-
f), where the bold arrows indicate orientations derived by Meek’s rules (see Figure 8 in
Appendix A). For example, in 4(b) it follows from V; — X — V5 that V; — V3 by Meek’s
Rule 2. By Rule 1, it then follows that V3 — V5. The compatibility check and the application
of Meek’s rules are carried out in line 7 of optimal IDA.

Next, optimal IDA checks for each maxPDAG G’, whether Y € possde(X,G’). Here,
this is the case for all maxPDAGs except 4(c). For the other four graphs, O = O(X,Y,G’)
is determined and used to compute Bymo. We indicate O(X,Y,G’) by boxes in the Figures
4(b) and 4(d)-(f). For (c), an effect estimate of zero is returned.
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Figure 4: A CPDAG G (a) and the five maxPDAGs (b-f) corresponding to the five valid
orientations of the neighbourhood of X. The bold edges have been obtained by
applying Meek’s rules. For each maxPDAG @', the boxes O indicate O(X,Y,G’),
while the diamonds ¢ indicate pa(X,G). In (c), optimal IDA returns 0, as there
is no possibly causal path from X to Y.
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Figure 5: IDA density plot in the style of Maathuis et al. (2009). Shown are density curves
for the estimated possible causal effects returned by local IDA (solid) and opti-
mal IDA (dotted). The true possible causal effects are 0, 1.5 and 2.5 (vertical
lines; height indicates relative frequency: 0 and 2.5 each occur in two of the five
maxPDAGs in Figure 4).
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For comparison, the diamonds in Figures 4(b-f) show the adjustment sets in local IDA
(Algorithm 1), i.e. pa(X,G’). In (b) and (e), pa(X,G’) = O(X,Y,G’). In (c), optimal IDA
returns zero (Algorithm 2, line 12), while local IDA returns Bymp with P = {V1, V3}, which
converges to By, p = 0. The main advantage of optimal IDA becomes apparent in cases (d)
and (f): In (d), O(X,Y,G’) = 0, whereas pa(X,G’) = {V4} which is guaranteed to reduce
efficiency. In (f), pa(X,G’) = {V3} and O(X,Y,G’") = {V3,V5}, where the latter improves
efficiency.

For further illustration, we carried out a small simulation study in which we generated
data according to a causal linear model compatible with Figure 4(b). 1000 datasets with
40 observations each were generated and given as input to local IDA and optimal IDA,
together with the CPDAG in Figure 4(a). The true possible causal effects are 0, 1.5 and
2.5, visualised as vertical lines in Figure 5. The plot shows smoothed density curves for
the estimates returned by local IDA (solid) and optimal IDA (dotted). The density plot
for optimal IDA is clearly narrower around the values 0 and 2.5. The difference between
the algorithms is even more pronounced for graphs with more nodes and longer paths (not
shown). The R-code (R Core Team, 2019) for reproducing Figure 5 is available in the Online
Supplement.

4.3 Simulation

In order to compare the performance of optimal versus local IDA in finite sample settings,
we carried out a more extensive simulation study. The design was chosen to reflect a
typical situation where IDA is used, i.e. interest lies in the causal effect of X on Y in a
(known or estimated) CPDAG G that is non-amenable relative to (X,Y’). Non-amenability
implies that the multiset (7,,(D))pe|g) of possible causal effects of X on Y compatible with
G contains more than one distinct value (for almost all parameters values of the causal
linear model) (Perkovi¢, 2020, Proposition 4.2). A useful summary of (7., (D))pe[g) is the
minimum absolute value, min(abs((7.y(D))pe(g])), because when this value is non-zero, we
know that X has some effect on Y. The aim of our simulation study was to compare
how well min(abs((72(D))pe[g))) is estimated by optimal versus local IDA, in terms of the
Monte-Carlo mean squared error (MSE).

We investigated 24 scenarios by considering all combinations of the following parameters:
number of nodes p € {10, 20,50, 100}, expected number of neighbours per node d € {2, 3,4},
and sample size n € {100,1000}. In each scenario, the following was repeated 1000 times
(R code for reproducing the simulation study is available in the Online Supplement):

A DAG D, with CPDAG G, with p nodes and d expected neighbours per node was
randomly chosen such that G was non-amenable relative to two randomly chosen nodes
(X,Y) and such that min(abs((7z(D))pe[g))) Was non-zero. (Note that the DAG with its
unique ‘true’ causal effect was simulated for convenience only. Conceptually, we drew di-
rectly from the space of CPDAGs, which is why we consider the whole multiset of possible
effects to be ‘the truth’.) The following was then repeated 100 times: A dataset with n
observations was generated from a linear causal model on D where the non-zero coefficients
were randomly chosen from a uniform distribution on [—1,—0.1] U [0.1,1]. Greedy equiv-
alence search (Chickering, 2002) was applied to the data, yielding an estimated CPDAG
G*. Optimal and local IDA were both applied to the true CPDAG G and the estimated
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CPDAG G*. The four output multisets of estimates were summarised by their minimum
absolute values. These were compared on the basis of their Monte-Carlo MSE, i.e. the
squared difference between the estimated minimum absolute value and the true minimum
absolute value, averaged over the 100 repetitions. Specifically, we calculated the MSEs for
the estimated minima using optimal IDA versus local IDA by computing the relative MSE
(RMSE), MSE(optimal IDA)/MSE(local IDA). This was done separately for G and for G*,
and denoted r and r*, respectively. An RMSE of less than one indicates that optimal IDA
is more precise than local IDA in estimating the minimum of the multiset of causal effects.
In light of Remark 13, we did not consider estimated standard errors.

In addition to the above 24 scenarios, we investigated the relative performance of optimal
IDA in a scenario where the graph is sparse (d = 1) and the sample size is moderate
(n = 100). We considered eight setting where the number of nodes was between p = 10 and
p = 1000. Such high-dimensional scenarios occur, for instance, with gene expression data.
As greedy equivalence search is slow for large graphs, we reduced the number of replications
from 1000 to 100 and the number of datasets per graph from 100 to 10.
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Figure 6: Violin plots of the relative mean squared errors (RMSEs) r and r* for the true
and estimated CPDAGs, respectively. Scenario A: p = 100 nodes, d = 4 expected
neighbours per node, sample size n = 1000. Scenario B: p = 10, d = 4 and
n = 100. The dots mark the geometric means, the plus signs the medians.

Figure 6 shows violin plots of the RMSEs r and r* over the 1000 repetitions, together
with the geometric mean and the median. Two scenarios are shown: The one where optimal
IDA showed the best overall performance (scenario A, p = 100,d = 4,n = 1000), and the
worst one (scenario B, p = 10,d = 4,n = 100) of all the simulation settings considered.
The geometric means and medians for all scenarios are summarised in Tables 1 and 2; the
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n =100 n = 1000

d=2 d=3 d=4 d=2 d=3 d=4
p=10 0.70 (0.76) 0.72 (0.79) 0.76 (0.86) 0.69 (0.78) 0.71 (0.78) 0.75 (0.86)
p=20 0.64(0.69) 0.63(0.68) 0.61 (0.66) 0.63 (0.68) 0.60 (0.65) 0.59 (0.65)
p=50 0.60 (0.64) 0.54 (0.57) 0.51 (0.55) 0.55 (0.58) 0.50 (0.54) 0.46 (0.49)
p=100 0.57 (0.61) 0.50 (0.52) 0.44 (0.46) 0.54 (0.58) 0.44 (0.46) 0.40 (0.42)

Table 1: Geometric means (in parentheses: medians) of the relative mean squared errors
(RMSESs) r over 1000 repetitions for scenarios with different numbers of nodes (p),
expected number of neighbours per node (d), and sample sizes (n). Optimal and
local IDA were applied to the true CPDAG G.

n =100 n = 1000

d=2 d=3 d=4 d=2 d=3 d=4
p=10 1.06 (1.01) 1.06 (1.04) 1.06 (1.06) 0.95 (0.99) 0.97 (1.00) 1.01 (1.00)
p=20 0.99 (1.00) 0.99 (1.00) 0.96 (1.00) 0.88 (0.96) 0.89 (0.97) 0.94 (0.99)
p=>50 0.94(0.98) 0.89 (0.93) 0.89 (0.93) 0.81 (0.90) 0.79 (0.85) 0.78 (0.86)
p=100 0.97 (1.00) 0.94 (0.97) 0.90 (0.94) 0.81 (0.91) 0.73 (0.80) 0.72 (0.77)

Table 2: Geometric means (in parentheses: medians) of the relative mean squared errors
(RMSEs) r* over 1000 repetitions for scenarios with different numbers of nodes
(p), expected number of neighbours per node (d), and sample sizes (n). Optimal
and local IDA were applied to the estimated CPDAG G*.

complete set of violin plots is shown in Appendix E. Optimal IDA clearly outperformed
local IDA, in terms of the geometric mean and median of the RMSE;, in all scenarios when
applied to the true CPDAG. When the CPDAG was estimated using greedy equivalence
search, optimal IDA was still superior in the majority of scenarios, but r* was notably larger
than r in all scenarios, i.e. the relative performance of optimal IDA was worse with an
estimated CPDAG than with a known CPDAG. As an estimated graph inevitably contains
some errors regarding the presence and direction of edges, this result may indicate that
estimation adjusting for the O-set suffers more from such errors than adjusting for the set
of parents of X.

Small n and small p do not entail much advantage of using optimal IDA: In graphs with
only a few nodes, the O-set and the set of parents of X are often similar or even coincide,
so that the gain in efficiency when using the O-set is less pronounced. A smaller sample
size leads to more errors in the estimated graph, which affects estimation of the O-set more
than estimation of the set of parents of X, as we conjectured above. However, optimal IDA
seems to have a slight advantage for larger d when p is also larger.
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Figure 7: Violin plots of the relative mean squared errors (RMSEs) r and r* for the true
and estimated CPDAGs, respectively. All graphs have d = 1 expected neighbour
per node and graphs were estimated from n = 100 observations; the number of
nodes p varies. The dots mark the geometric means, the plus signs the medians.

p=10 p=20 p =50 p =100

true CPDAG 0.71 (0.77) 0.69 (0.76) 0.66 (0.69) 0.66 (0.71)
estimated CPDAG ~ 1.04 (1.06) 1.04 (1.01) 0.9 (1.02) 0.93 (1.00)

p = 250 p = 500 p =750 n = 1000

true CPDAG 0.60 (0.68) 0.67 (0.69) 0.67 (0.77) 0.69 (0.75)
estimated CPDAG ~ 0.73 (1.02)  1.16 (1.09)  0.94 (1.04)  0.79 (1.00)

Table 3: Geometric means (in parentheses: medians) of the relative mean squared errors
(RMSEs) r and r* for the true and estimated CPDAGs, respectively, over 100
repetitions for scenarios with different numbers of nodes (p), d = 1 expected
neighbours per node, and sample size n = 100.
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The additional results for the sparse graphs are shown in Figure 7 and Table 3. Optimal
IDA outperformed local IDA regardless of the number of nodes p when the CPDAG was
known. When the CPDAG was not known, the median RMSE was about 1 for all p.
The geometric mean varied around 1 with no obvious pattern, which may be due to the
small number of replications. The results suggest that in the high-dimensional setting, the
primary difficulty is learning the graph, limiting the advantage of optimal IDA over local
IDA.

In summary, based on the simulation results, we recommend using optimal IDA when
there is high confidence in the estimated graph. The advantage over local IDA will be most
pronounced when the number of nodes is at least 20, or better 50 or more.

5. The O-Set and Non-Graphical Variable Selection

We now assume that neither the causal DAG D nor a CPDAG or maxPDAG is known
to us, therefore we wish to select a valid adjustment set in a non-graphical manner. We
restrict our discussion to the case where we have a univariate treatment X and outcome Y
of interest.

In multiple regression analyses, it is common to apply variable selection procedures,
e.g. backward selection, to find a set of relevant predictors for an outcome Y. In high-
dimensional settings, regularisation methods that combine selection and estimation, such
as the Lasso or the Elastic Net, are commonly used (Tibshirani, 1996; Zou and Hastie,
2005). While variable selection for prediction is in general a different task than finding an
efficient or optimal adjustment set for causal effect estimation, we will discuss next under
what assumptions and modifications these tasks coincide. For a general overview of the
relation between variable and confounder selection see Witte and Didelez (2019). A basic
assumption for the validity of a selected adjustment set is that the set Z from which we
select the variables must itself be a valid adjustment set, as defined in Section 2. A number
of selection procedures can then be used to determine different types of valid adjustment
sets as subsets of Z, e.g. a minimal valid adjustment set (Witte and Didelez, 2019; de Luna
et al., 2011).

Consider first Algorithm 3, which shows the template for backward regression selection
(see e.g. Kleinbaum and Kupper, 1978; Montgomery et al., 2012) with the above basic
assumption added at the outset. Under the linear model assumptions with Gaussian errors,
Y 1L Z; | (Z"_,, X) can be tested by comparing the models with regressors Z' ; U{X} versus
Z' U {X}, using a t-test with null hypothesis Byziaz , = 0. ‘Pval’ in line 6 is a function
that outputs the p-value of a test for the null hypothesis specified in the argument. The
maximum p-value is compared in line 9 to a threshold a. For a given «, Algorithm 3
implements the classical ‘p-value method’ (see e.g. Greenland and Pearce, 2015). Denote
by o (.) the distribution function of the y? distribution with one degree of freedom. For a
given sample size n, Algorithm 3 with v =1 — F,2(2) or a« = 1 — F}2(log(n)) is equivalent
to backward selection using the AIC or BIC, respectively (e.g. Murtaugh, 2014; Derryberry
et al., 2018; although the motivation for using them stems from frameworks other than
independence testing, see Akaike, 1974 and Schwarz, 1978). Algorithm 3 can easily be
adapted to work with a measure of conditional independence other than the p-value of the

20



ON EFFICIENT ADJUSTMENT IN CAUSAL GRAPHS

t-test. For example, two non-parametric implementations of Algorithm 3 were proposed by
Li et al. (2005).

If the true independence relations are known, Algorithm 3 can be condensed to its or-
acle version, Algorithm 4. Comparing p-values is then redundant, and every Z; needs to
be visited only once, as it follows from general properties of conditional independence that
the ordering Z1, Zs, ..., Z, does not matter, provided the joint probability of all variables
is strictly positive. Essentially, Algorithm 4 eliminates variables until only the ‘direct pre-
dictors’ of Y are left, i.e. those variables with non-zero coefficients in the oracle regression
of Y on X and Z.

Algorithm 4 is the non-graphical version of the pruning algorithm introduced in HPM19
which uses d-separation relationships to prune a valid adjustment set to a subset such
that the resultant effect estimator has a smaller asymptotic variance. Assume now that
an underlying graph exists. The following Proposition 14 formalises how the O-set can
be viewed as the target set of backward variable selection algorithms and follows from
Proposition 3.6 of HPM19 and Theorem 1 in RS20.

Algorithm 3 Backward regression selection.
Require: i.i.d. observations for variables X, Y and Z, such that Z is a valid adjustment
set relative to (X,Y)
AR/
Pmax < 1
while Pmax > a do
Plist +— empty list of length |Z/|
for all i in 1 to |Z'| do
Plist[i] «+ Pval(Y 1L Z; | (X,Z")))
end for
Pmax « max(Plist)
if Pmax > o then
7' ZLargmax(Plist)
11:  end if
12: end while
13: return Z’

H
e

Algorithm 4 Oracle backward regression selection.
Require: independence relations between variables X, Y and Z, such that Z is a valid
adjustment set relative to (X,Y)
1. 27

2: for all i in 1 to |Z'| do

32 Y 1 Z|(X,Z,) then
4: 7 Z/_Z
5
6
7

end if
: end for
. return Z/
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Proposition 14 Let X and Y be nodes in a causal DAG, CPDAG or maxPDAG G with
node set V and let V follow a causal model with a joint density faithful to G. Let Z be a
valid adjustment set relative to (X,Y) in G and let Z' be the output of Algorithm 4 when
applied to Z.

(a) Z' is a valid adjustment set and does not depend on the order in which the variables
i Z are considered in Algorithm 4.

(b) If O(X,Y,G) C Z, then Z' = O(X,Y,G).

(¢) If V follows a causal linear model, then a.var(ﬁyx_zx) < a.var(ﬁyx,z).

~ ~

(d) For every pair of values x, 2" € X, avar(Ayyy o) < a.var(Dyzy z).

As mentioned earlier, Lasso estimation can also be regarded as variable selection, even
though its original motivation and common usage mostly concerns prediction. Under specific
assumptions, the Lasso asymptotically selects all and only all the ‘direct predictors’ of Y
with probability 1 (Zhao and Yu, 2006; Lounici, 2008). Thus, although Lasso uses a different
principle than backward selection, it follows from Proposition 14 that when the starting set
Z is a valid adjustment set and a superset of the O-set, the O-set can also be viewed as the
target set of the Lasso.

We emphasise again that the O-set cannot be determined in a purely data-driven way.
Neither the assumption that Z is valid nor O(X,Y,G) C Z can be verified empirically.
Hence, prior causal knowledge is essential before any variable selection algorithm can be
applied (Witte and Didelez, 2019). In contrast to (semi-)local or optimal IDA, however,
selection of an adjustment set based on Algorithm 4 allows some latent structures, as long
as the assumption that Z is a valid adjustment set continues to hold. This may be of
advantage when only a subset of the variables have been measured.

The guarantees of Proposition 14 for Algorithm 4 do not translate to the finite sam-
ple version Algorithm 3. Regression selection in finite samples is known to have several
weaknesses (see e.g. Harrell, 2010). Some issues are that the output may only be a lo-
cal optimum, and that valid post-selection inference is difficult (Leeb and Pdtscher, 2008).
There is, however, a growing literature on post-selection inference both in the context of
OLS-based approaches (e.g. Berk et al., 2013; Rinaldo et al., 2019) and of Lasso-based
approaches (e.g. Lockhart et al., 2014; Lee et al., 2016). For causal effect estimation in a
non-graphical context, post-selection inference has been considered by Belloni et al. (2014),
Dukes and Vansteelandt (2020a), Dukes and Vansteelandt (2020b), Chernozhukov et al.
(2018) and others.

6. Conclusions

In this paper, we provided insight into the construction and properties of the O-set intro-
duced by HPM19. We showed that the O-set equals the set of parents of Y in the latent
projection over the forbidden nodes (Proposition 10). This lends formal support to the
intuition that adjusting for all direct causes of Y minimises the residual variance and hence
improves precision when estimating the causal effect of X on Y.
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The forbidden projection is a useful tool in its own right when the aim is to estimate
a causal effect via adjustment. It displays all variables of interest, while the forbidden
variables, which must not be adjusted for, are marginalised out. The forbidden projection
thus reduces the complexity of the causal graph while preserving all information relevant
for choosing an adjustment set (see Propositions 8 and 7).

We further proposed a new modification of the IDA algorithm, called optimal IDA, which
outputs multisets of estimates of possible causal effects by adjusting for the possible O-sets.
We showed that this increases estimation precision also in cases where the causal structure
is a-priori unknown and needs to be estimated. Moreover, this extends the applicability
of optimal adjustment to non-amenable CPDAGs/maxPDAGs. Optimal IDA has been
implemented in the R package pcalg. While causal search methods in general have some
well-known shortcomings, IDA has proved to be a valuable tool for instance for screening
purposes in large datasets (Le et al., 2013; Engelmann et al., 2015; Luo et al., 2018). The
‘optimal’ version can further improve its performance.

Finally, we detailed the prerequisites and assumptions under which non-graphical al-
gorithms for backward variable selection can be viewed as aiming at selecting the O-set.
Essentially, we need to assume that the set of variables to select from consists of all nodes
in the forbidden projection, or a suitable subset thereof. The algorithm then determines
the parents / direct causes of Y based on detected conditional independencies. If the input
contains forbidden nodes, however, or lacks certain confounders, the algorithm might select
an invalid adjustment set. To avoid the latter, sufficient prior knowledge on the set of
variables corresponding to forbidden nodes is therefore a key prerequisite when automated
variable selection is to be used for causal inference. While this prerequisite may not require
full knowledge of the underlying causal DAG, it is important to recognise that such prior
knowledge cannot be established in a purely data-driven way (Witte and Didelez, 2019).

Much research on variable selection in causal graphs has focussed on finding small or
minimal adjustment sets (de Luna et al., 2011; Textor and Liskiewicz, 2011; Kniippel and
Stang, 2010). Small adjustment sets are useful during study planning, for instance when
data collection is expensive and costs are to be minimised. Moreover, they entail desirable
statistical properties e.g. for matching estimators, because suitable matches are more easily
found when matching on a few variables only. In general, the O-set is not minimal, but
instead entails optimality of causal effect estimation by regression adjustment in linear
causal models and non-parametric settings. Simulation results further indicate that the
optimality of the O-set extends to other parametric settings and estimation methods, e.g.
estimation of the marginal odds ratio via standardised logistic regression (Witte and Didelez,
2019). Combining the benefits of small and optimal adjustment sets, RS20 show that the
optimal minimal set, i.e. the set among all minimal adjustment sets yielding the most precise
estimation in the class of regular asymptotically linear estimators, must be a subset of the
O-set, underlining its relevance and importance.

We note that adjustment is only one of several possible ways of identifying causal effects.
While adjusting for the O-set is asymptotically more efficient than adjusting for any other
valid adjustment set, it is possible that an even smaller asymptotic variance can be obtained
by using an alternative identification strategy, e.g. the front-door strategy (Pearl, 2009).
This is further investigated in RS20 and in Guo and Perkovié (2020).
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Finally, we would like to discuss some avenues for future research. First, given the
results by RS20, a natural question is whether a non-parametric version of optimal IDA is
feasible. Those aspects of IDA that relate to finding different possible valid adjustment sets
are obviously not limited to the causal linear model, and estimators such as in RS20 could
also be employed for any given X, Y and adjustment set. The simplifications for graph
search algorithms and IDA under linearity, however, are considerable. For instance, greedy
equivalence search with a Gaussian score has been shown to be consistent (Chickering,
2002), and has the advantage of always returning a CPDAG. Non-parametric graph search
algorithms exist, but often come with large computational burdens and/or a low power
to detect edges (Shah and Peters, 2020; Ramsey, 2014). Further, under a causal linear
model, the causal effect of X on Y is a single value, see Section 2; and the marginal
and conditional causal effects for different valid adjustment sets are all identical. For the
non-parametric case, instead, the causal effect of X on Y is an unspecified function, and
issues of non-collapsibility might also come into play. Solving these conceptual hurdles for
non-parametric optimal IDA remains an open question.

Second, we assumed throughout this paper that all variables are observed. HPM19
have shown that in the presence of hidden variables, an asymptotically optimal set may not
exist. Smucler et al. (2020), however, gave a sufficient condition under which an optimal
adjustment set exists when the underlying DAG includes hidden variables, and showed that
an optimal minimal adjustment set always exists. A necessary and sufficient condition for
the existence of an optimal adjustment set, however, has not yet been formulated.
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Appendix A. Terminology

The following terminology is used throughout this paper. It is consistent with, and extends
HPM19 where needed.

Graphs. A graph G = (V,E) consists of a node set V and a set of edges E. We consider
three types of edges: directed (—), bi-directed (++) and undirected (—). There can be more
than one edge between a given pair of nodes. We only consider loop-free graphs, i.e. an
edge between a node and itself is not allowed. A loop-free graph where there is at most one
edge between a given pair of nodes is called a simple graph. Two nodes joined by at least
one edge are called endpoints of the edge and adjacent. A directed edge A — B is said to
be out of A and into B. A graph G’ = (V' E’) is the induced subgraph of G = (V,E) with
respect to V' if V/ C V and E’ includes all edges in E that are between nodes in V'.

Paths. A path is a sequence of nodes and edges (Vp,e1,V1,...,ex, Vi), K > 1, such
that every node occurs only once and for £ = 1,..., K, e, has endpoints V,_; and V.
In a simple graph, the path (Vp,e1,Vi,...,ex, Vi) can unambiguously be identified by
the sequence of nodes (Vp, Vi,...,Vk) alone. Vy and Vi are called endpoints of the path
(Vo,e1, V1, ..., ex, Vi) and the path is said to be between Vo and Vi or from Vi to Vi,
irrespective of the direction of the edges. For sets of nodes A and B, a path is said to be
between A and B or from A to B if its first node is in A and the last node is in B. A
path from A to B is proper if only its first node Vj is in A. Let p = (Vo e1,Vi,...,ex, Vi)
and k=1,..., K. Then an edge Vi < Vi41 on p is said to point towards Vj, ..., Vi, while
an edge Vi — Vi1 on p is said to point towards Viy1,...,Vk. A path is directed from Vj
to Vi if all edges in the sequence are directed and point towards Vi . A path p is possibly
directed from Vj to Vi if all edges on p are either directed or undirected and there are
no 4,5, 1 <i < j < K, such that V; <= Vj (cf. Perkovi¢ et al. (2017); this definition of
a possibly directed path is non-standard as V; and V; are not necessarily adjacent nodes
on the path, which is required for maxPDAGs later). We define the concatenation of two
paths p = (Vo,e1,Vi,...,ex,Vk) and ¢ = (Vkx,ex+1, ViK1, €x+L0, Vk+L) as pH q =
(Vo,e1,V1,...,ex+r, Vit1), where we require that the nodes Vp, ..., Vg4 are distinct.

Ancestry. If there is a directed path from A to B, or if A = B, then A is an ancestor
of B and B is a descendant of A. If there is a possibly directed path from A to B, or if
A = B, then A is a possible ancestor of B and B is a possible descendant of A. If there is an
edge A — B, then A is a parent of B and B is a child of A. If there is an edge A— B, A and
B are siblings. Note that in our terminology, a node is a (possible) ancestor and (possible)
descendant of itself, but not a parent/child/sibling of itself. For a node V' in a simple graph
G, we denote the set of all ancestors, possible ancestors, descendants, possible descendants,
parents, children and siblings of V' in G as an(V, G), possan(V, G), de(V,G), possde(V,G),
pa(V,G), ch(V,G), sib(V, G), respectively. For a set of nodes W, the set an(W, G) is defined
as Uy ew an(W, G), with analogous definitions for possan(W, G), de(W, G), possde(W, G),
pa(W,G), ch(W, G) and sib(W,G).

Colliders, definite-status paths and v-structures. A non-endpoint node V is a
collider on a path p if both edges adjoining V' on p have arrowheads at V', i.e. > V «,
<V, -V e & Voo A non-endpoint node V is a non-collider on a path p if at
least one of the edges adjoining V on pisout of V, ie. -V —, =V = <V =« V —,
+—V &, V— < V & orif both edges adjoining V on p are undirected edges and the
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two nodes adjacent to V on p are not adjacent to each other. A definite-status path is a
path on which every non-endpoint is either a collider or a non-collider. In a DAG or an
ADMG, all paths are of definite status. Three nodes A, B and C form a v-structure in a
graph G if A — B <« C' is the induced subgraph G’ on {A, B,C}.

ADMGs, DAGs and PDAGs. A directed path from A to B, together with an
edge A « B forms a directed cycle. A graph with only directed and bi-directed edges
and without directed cycles is called an acyclic directed mixzed graph (ADMG). A simple
graph with only directed edges and without directed cycles is called a directed acyclic graph
(DAG). A simple graph with only directed and undirected edges containing no directed
cycles is called a partially directed acyclic graph (PDAG).

Blocking and separation. (Richardson, 2003; Maathuis and Colombo, 2015; Pearl,
2009) A definite-status path p in an ADMG or PDAG G is blocked by a node set C if (i) p
contains a non-collider in C or (ii) p contains a collider that is not in an(C, G). Otherwise
the path p is open given C. Node sets A and B are said to be m-separated given a set C if
every path between an A € A and a B € B is blocked by C. We then write A Lg B | C.
In DAGs, m-separation is called d-separation.

Markov equivalence and CPDAGSs. (Andersson et al., 1997) The (Markov) equiva-
lence class of a DAG D is the set of DAGs that imply the same d-separation relationships as
D. These are all DAGs with the same adjacencies and v-structures Verma and Pearl (1990).
Markov equivalence classes can be represented as completed partially directed acyclic graphs
(CPDAGS), which are simple graphs with directed or undirected edges, without directed
cycles and with certain restrictions regarding the patterns of edges that can occur. The
equivalence class represented by a CPDAG G is denoted by [G]. A directed edge A — B in
G means that this edge is present in all DAGs in the equivalence class [G]. An undirected
edge A— B in G means that A and B are adjacent in every DAG in [G] and there is at least
one DAG in [G] with A — B and at least one with A < B.

Meek’s rules and maxPDAGs. (Perkovi¢ et al., 2017) Certain subsets of equivalence
classes of DAGs can be represented by maximally oriented PDAGs (maxPDAGs), which
are PDAGs with edge orientations that are closed under the orientation rules in Figure 8
(Meek’s rules, Meek (1995)). The set of DAGs represented by a maxPDAG @G is denoted
by [G]. The edges in maxPDAGs have the same interpretation as in CPDAGs. DAGs and
CPDAGS are special cases of maxPDAGs.

Rule 1 Rule 2 Rule 3 Rule 4

L= e NS L=

Figure 8: Meek’s orientation rules. Let G be a simple graph with only directed and undi-
rected edges and without directed cycles. If the graph on the left is an induced
subgraph of G, then orient the undirected edges in G according to the graph on
the right (Meek, 1995). The rules prevent directed cycles and new v-structures.
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Partial topological ordering. Let D be a DAG with node set V and let Vy,...,V,
be a partition of V. Then Vi < --- <V, is a partial topological ordering of V if for every
i > j, there are no directed edges from V; to V.

Independence and faithfulness. For sets of random variables X, Y and Z, if X and
Y are conditionally independent given Z, we write X 1. Y | Z. A joint density f(v) over
a set of random variables V is Markov with respect to a DAG D with node set V if for
disjoint X, Y,ZCV,X 1pY |Z= X 1Y | Z; the density f(v) is faithful to D if also
XU1LY|Z=X1pY|Z

Causal DAGs, CPDAGs, maxPDAGs and ADMGs. Intuitively, a causal DAG is
a DAG where an edge A — B means that A is a direct cause of B (relative to the variables
included). This can be formalised using the intervention operator, denoted by do(-) in Pearl
(2009). For random variables V and X C V, the post-intervention density f(v | do(x'))
is the joint density of V in a (hypothetical) experiment that fixes X to x’ for everyone
in the population by an external intervention. A joint density f(v) is compatible with a
causal DAG D = (V,E) if for all X C V, the post-intervention density f(v | do(x’)) can
be written as

(v do(x)) = 1(x=x) [[ f(v|pa(v.D)),

VeEV\X

where 1(x = x’) is the indicator function that is 1 if x = x” and 0 otherwise. This is known
as the truncated factorisation formula (Spirtes et al., 2000; Pearl, 2009). A CPDAG or
maxPDAG G is called a causal CPDAG or causal maxPDAG if [G] contains a causal DAG.
A causal ADMG is an ADMG that has been obtained by subjecting a causal DAG to a
latent projection, see Definition 4.

(Possibly) causal nodes and forbidden nodes. See Section 2.

Valid adjustment sets and amenability. Let X, Y and Z be disjoint sets of random
variables, where Z is possibly empty. Then Z is a valid adjustment set relative to (X,Y) if
we have

|, f(y|x,2)f(z)dz otherwise.

Relative to a causal DAG, CPDAG, maxPDAG or ADMG G = (V,E), a valid adjustment
set is defined as follows: Let X, Y and Z be disjoint subsets of V, where Z is possibly
empty. Then Z is a valid adjustment set relative to (X,Y) in G if equation (1) holds for
every joint density f(v) compatible with G (Perkovié et al., 2018). Further, G is said to be
amenable for adjustment relative to (X,Y) if every proper possibly causal path from X to
Y starts with a directed edge out of X (Perkovi¢ et al., 2018).

Generalised adjustment criterion. (Perkovié et al., 2017, 2018; Shpitser et al., 2010)
Let X, Y and Z be disjoint node sets in a causal DAG, CPDAG, maxPDAG or ADMG G.
Then Z is a valid adjustment set relative to (X,Y) in G if and only if the following three
conditions hold:

f(y [ do(x)) = { (1)

(a) G is amenable relative to (X,Y),
(b) ZNforb(X,Y,G) =10,

(c) all proper non-causal definite-status paths from X to Y are blocked by Z.
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Causal linear model. Let D be a causal DAG with node set V. = (V4,---,V,). Then
V is said to follow a causal linear model compatible with D if the distribution of each
Vi € V can be described by an equation of the form

Vi= Y agVite,
V;€pa(V;,D)

with a;; € R and €, a random variable with mean 0 and finite variance such that €,,, ..., €,
are jointly independent. For a causal CPDAG or maxPDAG G, V is said to follow a causal
linear model compatible with G if V follows a causal linear model compatible with a DAG
in [G].

Partial variance notation. Consider a random variable S and a random vector T.
We denote the covariance matrix of T by Yt and the row vector of covariances between S
and T by Xs. The partial variance of S given T is defined as 045 = Var(S) — EstEQIE;&.

Asymptotic variance. Consider a sequence of estimators (Bn)neN such that \/E(Bn —
B) converges in distribution to N(0,v). We call v the asymptotic variance of 3 and write
a.var(f) =v.

Appendix B. Proofs for Section 3

In this appendix, we prove our claims about the forbidden projection made in Section 3.

Proposition 6 Let X and Y be disjoint node sets in a causal DAG D such that Y C
de(X, D). Then a valid adjustment set relative to (X,Y) in D exists if and only if there is
no bi-directed edge between any X € X and Y € Y in DXY.

Proof We show that a valid adjustment set relative to (X,Y) in D cannot exist if and only
if there is a bi-directed edge between a X € X and a Y € Y in the forbidden projection
DXY.

Assume first that there is a bi-directed edge in DXY between some X € X andaY €Y.
Then according to Definition 4 of the latent projection there is a path in D between X and
Y on which all nodes are non-colliders and contained in the forbidden set. This constitutes a
non-causal path that cannot be blocked by any sets of nodes that are not forbidden. Hence
no valid adjustment set relative to (X,Y) and D exists.

Assume now that there is no valid adjustment set relative to (X,Y) in D. Then Lemma
15 implies X Nde(en(X,Y, D), D) # 0. Let X* € XNde(en(X,Y, D), D). Then there must
exist a node C* € en(X,Y,D) and a node Y* € Y such that there is a path of the form
X* ¢+ ...+ C* — -+ — Y* where all non-endpoints are non-colliders on the path and in
the forbidden set. It follows from Definition 4 of the latent projection that DXY contains
a bi-directed edge X* <> Y. [ |

Lemma 15 (Corollary 27 in Perkovié et al., 2018) Let X and Y be disjoint node sets
in a causal DAG D such that'Y C de(X, D). Then a valid adjustment set relative to (X,Y)
in D exists if and only if X Nde(en(X, Y, D), D) = (.
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Proposition 7 Let X and {Y'} be disjoint node sets in a causal DAG D such that Y €
de(X,D). Then DXY is a causal DAG if and only if there exists a valid adjustment set
relative to (X,Y) in D.
Proof First assume that DXY is a causal DAG. Then by Proposition 6, a valid adjustment
set relative to (X,Y) in D exists.

Now assume that a valid adjustment set relative to (X,Y’) in D exists. We show that (1)
DXY is a DAG syntactically, i.e. a directed graph without cycles, (2) semantically, applying
the d-separation criterion to sets of nodes in DXY yields the same separations as applying
the d-separation criterion to the same node sets in D, and (3) DXY is a causal DAG for
(V\ forb(X,Y, D)) UX U{Y}.

(1) As we assume that a valid adjustment set relative to (X,Y’) in D exists, it follows
from Proposition 6 together with Lemma 16 that DXY does not contain bi-directed edges.
Acyclicity of latent projections is guaranteed by property 1 of Definition 4 of the latent
projection: every directed edge in D(W) corresponds to a directed path in D, hence if DX
had a directed cycle then so would D. It follows that DXY is acyclic.

(2) The m-separations in a latent projection D(W) correspond to the d-separations
between nodes in W in the original DAG D (Richardson et al., 2017). In our case,
D(W) = DXY is itself a DAG syntactically, and for DAGs m- separatlon and d-separation
are equivalent.

(8) Since D is a causal DAG for the random variables V, the truncated factorisation
derived from D holds for all interventions do(T = t') with T C V:

f(vldo(t)) =1t =¢t) [] fv|pa(V.D)). (2)

VEV\T

We need to show that the truncated factorisation implied by DXY holds for the joint
marginal distribution of (V '\ forb(X,Y,D))UXU{Y }. We distinguish two cases. In the first
case, Y ¢ de(X, D). This case is trivial, as the forbidden set is then empty and D = DXY
For the second case, Y € de(X, D) we define the following sets: A = (V \ forb(X, Y, D))uX
is the node set of DX without ¥, C = en(X,Y,D) \ (X U {Y}) is the set of forbidden
nodes that are ancestors of Y, excluding X and Y, and M = forb(X,Y, D)\ (XU{Y}UC)
is the forbidden set excluding X, Y and C, so that CUM = forb(X,Y, D) \ (X U{Y}) is
the set over which we marginalise when subjecting D to the forbidden projection. Then the
following partial topological ordering holds: A < C <Y < M. (Note that Y cannot have
descendants in X, as otherwise no valid adjustment set would exist by Lemma 15.)
We can now rewrite equation (2) as

fvldot))=1(t=t) [[ flalpa(4,D)) ] f(c|pa(C, D))
AEA\T CeC\T
fy | pa(Y, D)D) T f(m | pa(M,D)).
MeEM\T

Consider now interventions only in nodes T C (V \ forb(X,Y,D)) U X U {Y}, then
C\T =C and M\ T = M. Upon marginalising the above intervention distribution over
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M the last term in the product vanishes but the remaining terms do not change:

fay,cldot)) =1t =¢t) [[ fla|pa(4,D) [] flc|pa(C.D))

AeA\T ceC
f(y | pa(Y, D))*VET).

Further marginalising over C, the partial topological order guarantees that the variables in
A do not have parents in C. This yields

flayldot) =1t =t) J[ flal pa(AvD))/ I1 ftclpa(c, D))

AEA\T ¢cec
f(y | pa(Y, D))" ¥ dc.

A variable is conditionally independent of its non-descendants given its parents. All vari-
ables in AUC are non-descendants of Y, hence Y 1L AUC | pa(Y,D) and f(y | pa(Y,D)) =
fly|pa(Y,D)UaUc) = f(y| aUc). The second equality holds because the parents of Y,
if there are any, form a subset of A U C. Similarly, all variables in A are non-descendants
of all variables in C, hence f(c | pa(C,D)) = f(c | pa(C,D) U a). Further, all parents of
variables in C are in A U C, hence [[occ f(c|pa(C,D)Ua) = f(c|a). We obtain

flayldo)) =1t =t) ] f(a]pa(A,D))/f(c]a)f(y‘auc)l(YﬁfT)dc

AEA\T

=1t=t) H fla| pa(A,'D))/f(C’y | a)l(YgT)f(C | a)l(YGT)dc

AEA\T

—1t=t) [[ flalpa(A,D)f(y]|a) D,

AEA\T

Two things remain to be shown. First, for every A € A, pa(A, D) = pa(A4, DXY) because
A does not have parents in the node set over which we marginalised in the projection.
Second, f(y | a) = f(y | pa(Y,DXY)), which follows from the fact that all conditional
independencies between variables in DXY can be read off DXY using the d-separation
criterion, as we showed in part (2) of this proof. Hence, we have

flay|dot)) =1t =t) J[ fla|pa(4,DXY))f(y|pa(y,D*¥))* T
AEA\T

—1t=t) [[  flpayv, D)),

Ve(AU{Y})\T

which is exactly the truncated factorisation formula implied by DXY. Hence, DXV is a
causal DAG for the random variables A U{Y} = (V \ forb(X,Y, D)) UX U{Y'}. [ ]

Lemma 16 Let D be a DAG with node set V and let X C'V and Y € V \ X such that a
valid adjustment set relative to (X,Y) in D exists. Then any edge that is in DXY but not
in D is a directed edge into Y .
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Proof We only consider the case where Y € de(X, D), as otherwise D = DXY and our
statement follows trivially. Define F = forb(X,Y,D) \ (X U{Y}).

By Definition 5, an edge present in DXY but not in D only occurs if D contains a node
W; € V \ F that has an ancestor in F. We show that the only node in V' \ F that can have
an ancestor in F is Y.

Consider first a W € V \ forb(X, Y, D). W does not have ancestors in F, as otherwise
W would be a forbidden node itself. Consider next a node X € X. X does not have an-
cestors in F either, as every node in F is a descendant of cn(X,Y, D), but we assume that
a valid adjustment set exists relative to (X,Y) in D, implying X Nde(en(X,Y,D),D) = ()
by Lemma 15. Hence, Y is the only node in V' \ F that can have an ancestor in F. |

Proposition 8 Let X, Y and Z be disjoint node sets in a causal DAG D. Then Z is a
valid adjustment set relative to (X,Y) in D if and only if Z is also a valid adjustment set
relative to (X,Y) in DXY.

Proof Throughout, let F = forb(X,Y,D)\ (XUY).

We first suppose that Z is a valid adjustment set in D and show that this implies that
it is also a valid adjustment set in DXY. Hence, Z Nforb(X,Y,D) =P and ZNY = 0, so
that every node in Z is also a node of DXY. Further, forb(X,Y, DXY) C XUY and hence
Z N forb(X,Y,DXY) = (). Amenability trivially holds in both D and DXY by assumption.

It remains to show that every proper non-causal path from X to Y in DXY is blocked
by Z, which we do by contradiction. So suppose that Z is a valid adjustment set relative
to (X,Y) in D and that there exists a proper non-causal path p = (Vy,e1, V1,...,ex, Vi)
from X to Y in DXY that is open given Z. We denote Y/ = Y N forb(X,Y,DXY) =
forb(X,Y,DXY)\ X and note that de(Y?,DXY) C YT,

Let Vi, € Y be the first node on p that is in Y and consider the path segment p’ =
(Vo,e1,Vi,...,er, V). Suppose that L < K and that V;, € Y¥. If p/ is causal, then p must
either be causal or contain a collider in Y¥', contradicting our assumption that it is open
given Z. If V;, € Y \ Y ¥ then p’ cannot be causal. Hence, we can suppose that L = K or
replace p with p’ without loss of generality.

Consider now the case that Vi € Y\YF . This implies that all nodes on p except Vg are
not in forb(X,Y,DXY). Since de(forb(X,Y,G) \ X, D) C forb(X,Y,D) and by definition
of latent projections, this implies that p is also a path in D. As for any node V in DXY,
de(V,D) C de(V,DXY)UF, and ZNF = (), it follows that p is also open given Z in D.

Consider now the case that Vx € YF. The path p cannot be a one-edge path, as the
two possible such paths would require the existence of paths in D implying that no valid
adjustment sets relative to (X,Y) exist in D. By the fact that de(Y*,D) C Y¥, the last
edge of p must be of the form p” = Vi _1 — Vi. By the same argument and the definition
of the forbidden projection, the segment p’ = (Vp,e1,Vi,...,Vx_1) is also a path in D,
which by definition of p and p” must be non-causal. The path p” corresponds to a causal
path ¢” in D, such that all nodes except for Vi _1 on ¢” are forbidden.

The path ¢ = p’ ®¢” is a proper non-causal path from X to Y in D; we now show that it
is open given Z. Since de(V, D) C de(V, DXY)UF, for any node V ¢ F in D, it follows from
the fact that p’ is open given Z in DXY that it is also open given Z in D. Since FNZ = 0,
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q" is also open given Z. The node Vx_1 is a non-collider on p and hence by the assumption
that p is open given Z it follows that Vi ¢ Z. Since Vi _ is also a non-collider on ¢ it
follows that q is open given Z in D.

We now turn to the second part of the proof showing that if a set Z containing no nodes
in F is not a valid adjustment relative to (X,Y) in D then it is also not a valid adjustment
set relative to (X,Y) in DXY,

Suppose that Z N forb(X,Y,D) # 0. Since ZNF = () it follows that ZN (X UY) # 0;
but this clearly implies that Z cannot be a valid adjustment set in DXY .

Suppose now that Z N (forb(X,Y,D) UY) = () and that Z is not a valid adjustment
set relative to (X,Y) in D. This implies the existence of a proper non-causal path p =
(Vo,e1,V1,...,ex, Vi) from X to Y in D that is open given Z.

Consider first the case that p contains no nodes in forb(X,Y, D). Then p also exists in
DXY and by the fact that de(V,DXY) = de(V, D) \ F it follows that p is also open given
Z in DXY. Suppose now that p contains at least one node in forb(X,Y,D). Since p is
open given Z, it cannot contain a collider in forb(X,Y,D). If we suppose that all nodes
on p are in forb(X,Y, D), then its existence implies that no valid adjustment exists in D,
while the corresponding edge in the forbidden projection would imply the same for DXY.
Hence, we can suppose that p contains at least one node not in forb(X,Y, D) and let V7, be
the last such node. Let p' = (Vp,e1,V4,...,er,Vr) and p”" = (Vi,ep41, V1, ..., ek, Vk). By
construction, V41 € forb(X,Y, D) and since forb(X,Y, D)\ X C forb(X,Y, D), it follows
that p” is causal. Thus the forbidden projection will map p” to the path ¢’ =V — Vi.
This also implies that p’ is non-causal.

Suppose first that V5 € XNde(forb(X,Y,D)\X, D). Then no valid adjustment set exists
in D. Further, there must be a bi-directed edge from X to Y in DXY and hence that no valid
adjustment set exists in DXY either. We can hence suppose that Vg ¢ forb(X,Y,D) \ X.
This implies that all nodes on p’ except Vj are not in forb(X,Y, D). Since this implies that
no node on p’ is in de(F, D) it follows that p’ is also a path in DXY. The path ¢ = p’ @ ¢"
is a proper non-causal path from X to Y in DXY. By the usual argument p’ is also open
given Z in DXY and trivially, this is also true for ¢”. Further, V; ¢ Z is a non-collider on
¢" and hence, ¢ is open given Z in DXY . [ |

Proposition 10 Let X and Y be disjoint subsets of the node set V of a DAG D such that
Y Cde(X,D). Then O(X,Y,D) = 0*(X,Y,D).

Proof We first show that O(X,Y,D) C O*(X,Y,D). Let Z € O(X,Y, D). By Definition
1, O(X,Y,D) Nforb(X,Y,D) = () and hence Z is a node in DXY. Furthermore, since
O(X,Y,D) Cpa(en(X,Y,D),D), and en(X,Y, D) C forb(X,Y,D), thereisanodeY € Y
such that D contains a directed path Z — --- — Y on which all non-endpoint nodes are
in forb(X,Y, D). Due to property 1 of Definition 4, this corresponds to an edge Z — Y in
DXY hence Z € O*(X,Y, D).

Next, we show that O*(X,Y,D) C O(X,Y,D). Let Z* € O*(X,Y,D). By Defi-
nition 5, this implies that Z* € V \ (forb(X,Y,D) U X UY). Moreover, by Definition
9, there is an edge Z* — Y* in DXY with Y* € Y. In D, this corresponds to a di-
rected path Z* — --- — Y™ on which all non-endpoint nodes are in forb(X,Y,D), and
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Z* ¢ forb(X,Y, D). Denote the path by p. There are two cases: In the first case, p has no
non-endpoint nodes, i.e. D contains the edge Z* — Y*. Since we assume Y C de(X, D),
Y* must be in ¢n(X,Y, D), hence Z* € O(X,Y, D). In the second case, p has at least one
non-endpoint node. This means that Z* € pa(W, D), where W € forb(X,Y,D)\ (XUY)
and W € an(Y™*,D). Since in a DAG, all forbidden nodes are descendants of X, we also
have W € de(X, D), and hence W € cn(X, Y, D). It follows that Z* € O(X,Y, D). [ ]

Appendix C. Generalisation of the Forbidden Projection and the O*-Set
to Amenable MaxPDAGs

In this appendix, we generalise the forbidden projection (Definition 5) and the O*-set
(Definition 9) to amenable maxPDAGs and show that Propositions similar to 6, 8, 7 and
10 still hold for the more general definitions.

The latent projection in general (Definition 4) cannot be generalised to (amenable)
maxPDAGs as marginalising does not generally result in an ADMG. As an example, consider
the maxPDAG W, — L — W5 with latent node L. It is not clear how the projection should
be constructed in this case: Wi — W, would give the wrong impression that Wi is an
ancestor of Wy (instead of a possible ancestor), while Wi — Wy would imply that Ws is a
possible ancestor of Wi. As we will show in the following propositions, however, the latent
projection can be meaningfully generalised to amenable maxPDAGs when projecting over
the special case of a forbidden set.

Definition 17 (Forbidden projection for amenable maxPDAGs) Let G be a maz-
PDAG with node set V, and let X C V and Y € V \ X such that G is amenable relative
to (X,Y). Define F = forb(X,Y,G) \ (X U {Y}). The forbidden projection GX¥ of G is a
graph with node set V\ F and edges as follows: For distinct nodes Wi, W; € V\ F,

1. GXY contains a directed edge W; — W; if and only if G contains a directed path
Wi — - — W; on which all non-endpoint nodes are in F,

2. GXY contains a bi-directed edge W; < W; if and only if G contains a path, with at
least one non-endpoint node, of the form Wj < --- — W; on which all non-endpoints
are non-colliders and in F,

3. GXY contains an undirected edge W; — W; if and only if G contains W; — Wj.

Note that we restrict the definition to singleton Y. This is because with a set Y, we
run into similar construction/interpretation problems as described above. Consider, for
example, an amenable maxPDAG with node set {X, F,Y7,Y2} and edges X — Y1 —F — Y5
as well as X — F. None of Y7 — Y5, Y] < Y5 or Y7 — Y5 are correct representations of the
marginal distribution.

Before generalising the O*-set, we now describe the properties of the forbidden projec-
tion for maxPDAGs. A key property is that if a valid adjustment set exists, the forbidden
projection of a maxPDAG is itself a maxPDAG (Proposition 22). This is analogous to
Proposition 7 for DAGs. Proposition 19, in analogy to Proposition 6, states that if X has
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a causal effect on Y, then the forbidden projection can be used to check whether a valid
adjustment set exists. In Proposition 25, we show that a set Z is a valid adjustment set
in the forbidden projection if and only if it is a valid adjustment set in the original graph,
which is analogous to Proposition 8.

We begin with a lemma that will allow us to use possde(X, G) and de(X, G) interchange-
ably when G is an amenable maxPDAG.

Lemma 18 Letp = (V1,Va,..., Vi) be a possibly directed path in a marPDAG G such that
no node on p shares an undirected edge with V1. Then a subsequence of p forms a directed
path from Vi to Vi in G.

Proof We show this by induction. By assumption, (7, V3) is a subsequence of p and forms a
directed path from V; to V5. Now assume that a subsequence of p forms a directed path from
Vi to Vj—1, for 2 < k < K. Denote this subsequence by (Vi = Wi, Wa,...,Wg = Vi_1).
Clearly, if Vi1 — Vi then (Vi = Wy, Wa,...,Wg = Vj_1, Vi) is a subsequence of p and
forms a directed path from V; to Vi in G, which is what we wanted to show. If, on the other
hand, if Vj_1 — V}. then there are four cases, three of which lead to a contradiction:

(1) The induced subgraph of G on {Wg_1,Wg = Wj_1,Vi} is Graph 1 in Figure 9.
Then G is not closed under Meek’s Rule 1 (see Figure 8), which is a contradiction.

(2) The induced subgraph of G on {Wg_1,Wg = Wj_1,Vi} is Graph 2 in Figure 9.
Then G is not closed under Meek’s Rule 2, which is a contradiction.

(3) The induced subgraph of G on {Wg_1,Wg = Wy_1,V;} is Graph 3 in Figure 9.
This implies the induced subgraph of G on {Wg_2, Wo_1,Vs} would also be graph 3
(with the same reasons as above excluding graphs 1 and 2). Repeating the argument
for Wg_3,Wg_4, ... implies an undirected edge between W7 = V; and V},, which is a con-
tradiction.

(4) The induced subgraph of G on {Wg_1,Wg = Wj_1,Vi} is Graph 4 in Figure 9.
Then (Vi = Wi, Wa,...,Wg_1,V}) is a subsequence of p and forms a directed path from

Vi to Vi, which is what we wanted to show. [ ]
Graph 1 Graph 2 Graph 3 Graph 4
W1 — Vi W1 — Vi W1 — Vi W1 —> Vi

IR NERRNERN

Vi
Figure 9: Graphs for the proof of Lemma 18.

Proposition 19 Let G be a causal maxPDAG with node set V, and let X C 'V and Y €
V \ X such that Y € possde(X,G) and G is amenable relative to (X,Y). Then a valid
adjustment set relative to (X,Y) in G exists if and only if there is no bi-directed edge
between any nodes in the forbidden projection GXY .
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Proof By Lemma 18, Y € possde(X, G) implies Y € de(X,G). The proof is now analogous
to the proof of Proposition 6, with Lemma 15 replaced by Lemma 20. |

Lemma 20 Let G be a causal maxPDAG with node set V, and let X CV and Y € V\ X
such that Y € de(X,G) and G is amenable relative to (X,Y). Then a valid adjustment set
relative to (X,Y) in G exists if and only if X Nde(en(X,Y,G),G) = 0.

Proof We show that no valid adjustment set relative to (X,Y) in G exists if and only if
X Nde(en(X,Y,G),G) # (. The proof is similar to the proof of Corollary 27 in Perkovié
et al. (2018).

Assume first that no valid adjustment set relative to (X, Y') in G exists, then by Lemma
21, there is a proper non-causal definite-status path from some X € X to Y that is open
given adjust(X,Y,G) = possan(X U {Y'},G) \ (X U forb(X,Y,G)). Denote one such path
by p. Assume for contradiction that p contains a collider and denote the collider by C. As
p is open given adjust(X,Y,G), a descendant of C is in adjust(X,Y,G). This implies that
an(C, G) Nforb(X,Y,G) = 0, as otherwise all descendants of C' would be in forb(X,Y,G)
and could not be in adjust(X,Y,G). As Y € forb(X,Y,G), it follows that at least one of
the nodes adjacent to C on p must be a non-endpoint non-collider on p. Denote one such
node by B. As B € pa(C,G), B ¢ forb(X,Y,G) and B € adjust(X,Y,G). But then p is not
open given adjust(X,Y,G), which is a contradiction. Hence, p does not contain a collider.
As p is non-causal, p cannot be directed towards Y, and as we assume that Y € de(X, G),
p cannot be directed towards X. Hence, p is a path of the form X + -+ -+ A — --- > Y,
where every non-endpoint is a non-collider not in adjust(X,Y,G). It follows that A is in
forb(X,Y,G) and thus is a descendant of X, which implies that X € de(en(X,Y,G),G) and
hence X Nde(en(X,Y,G),G) # 0.

Assume now that X Nde(en(X,Y,G),G) # 0. Pick a node from X Nde(en(X,Y,G),G)
and denote it by X*. Then there must exist a node Cx € cn(X,Y,G) such that there is a
path of the form X* < --- < C* — ... — where that all non-endpoint non-colliders on
the path are in the forbidden set. This path cannot be blocked by any set of non-forbidden
nodes. |

Lemma 21 (Theorem 5.6 in Perkovié et al., 2017) Let X andY be disjoint node sets

in a causal maxPDAG G such that G is amenable relative to (X,Y), and let adjust(X,Y,G) =
possan(XUY,G)\ (XUY Uforb(X,Y,G)). Then a valid adjustment set relative to (X,Y)

in D exists if and only if all proper non-causal definite-status paths from X to Y are blocked
by adjust(X,Y,G) in G.

Proposition 22 Let G be a causal maxPDAG with node set V, and let X C V and
Y € V\ X such that G is amenable relative to (X,Y') and there exists a valid adjustment set
relative to (X,Y) in G. Denote the set of DAGs represented by G by [G] = {D1,D2,...,Du}.
Then the forbidden projection GXY s the causal mazPDAG representing the DAGs in
(DXY XY DXY).
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Proof We only consider the case that Y € possde(X,G), as otherwise the proposition
follows trivially from the fact that GX¥ = G. By Lemma 18, Y € possde(X,G) implies
Y € de(X,G). We know from Propositions 6 and 19 that none of GXY, DXY DXY . . DXY
contain any bi-directed edges. Consider edges present in the latent projections but not in
the original graphs: For the maxPDAG G, denote the set of edges in GX¥ but not in G
by e(G), and define analogous sets e(D1), e(D2),...,e(Dyr) for the DAGs Dy, Da, ..., Dy.
None of €(G),e(D;),e(Ds),...,e(Dys) contain any undirected edges. Further, any directed
edges in any of e(G),e(D),e(Ds),...,e(Dys) are into Y. This is because for every G’ €
{G,D1,Ds,...,Dy}, an edge in e(G’) corresponds to a directed path with at least one
forbidden non-endpoint node in G’. If an edge in e(G’') was into a node V € V\ (XU{Y}),
then V' would itself be forbidden, which is a contradiction. If an edge in e(G’) was into
a node X € X, then X would be in de(cn(X,Y,G’),G’), which by Lemma 20 contradicts
our assumption that a valid adjustment set exists relative to (X,Y) in G’. Hence, all
edges in all of e(G),e(D1),e(D2),...,e(Dys) are into Y. In fact, by Lemma 23 below,
e(G) = e(Dy) = e(D3) = --- = e(Dy) = e. The graphs GXY, DXY DXV .. DXY can
thus be constructed by copying the induced subgraphs of G, D1, Do, ..., Dy with respect to
(V\ forb(X,Y,G)) U (X,Y) and adding the edges in e. Hence, GXV represents the DAGs
in {DXY DXY ... DXY} in the sense that every directed edge in GXY is also present in all
DAGs in {DIXY, DXV ... DXY}, and for every undirected edge V; — V; in GXY| there is at
least one DAG in {DFY, DXY, ..., D"} with V; — V; and at least one with V; « V;.

In order show that GXY has all the characteristics of a maxPDAG, we show that GXY is
closed under Meek’s rules. Referring to Figure 8, we argue that the graphs on the left-hand
sides of Rules 1 — 4 cannot be induced subgraphs of GXY | Assume for contradiction that
the left-hand graph of Rule 1, — —, was an induced subgraph of GXY. As this graph is not
an induced subgraph of G by assumption, and all of e(G),e(D1),e(Ds2),...,e(Dys) consist
of only directed edges into Y, we can conclude that the directed edge in — — is into Y, i.e.
— Y —. Hence, Y shares an undirected edge with some node V in G, but this means that
V is a forbidden node in some D € [G], which is not allowed according to Lemma 24. By
similar arguments, none of the graphs on the left-hand sides of Rules 1 — 4 in Figure 8 is
an induced subgraph of gxXY, [ |

Lemma 23 Let G be a causal maxPDAG with node set V, and let X CV and Y € V\ X
such that G is amenable relative to (X,Y) and there exists a valid adjustment set relative
to (X,Y) in G. Define F = forb(X,Y,G) \ (XU{Y}) and pick a node Vi € V\ F. Then
the following two statements are equivalent:

(i) A DAG D € [G] contains a directed path p = (Vi,Va,...,Vk = Y) such that all

non-endpoint nodes on p are in F.

(i) The maxPDAG G contains a directed path ¢ = (Vi = Wi, Wa,...,Wg =Y) such that
all non-endpoint nodes on q are in F.

Proof Statement (ii) implies that the directed path p is present in all DAGs in [G] by the
defining properties of a maxPDAG. Hence, we only show that (i) implies (ii). Again by
the properties of maxPDAGs, the sequence of nodes (Vi,Va,...,Vk =Y) forms a possibly
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directed path from V; to Y in G. We first show that no node in {V,..., Vg = Y} shares
an undirected edge with Vi. Suppose, for contradiction, that node Vj,2 < k < K shares
an undirected edge with V; and distinguish two cases: (1) V1 € X, (2) V4 € V\ X. The
first case contradicts our assumption that G is amenable relative to (X,Y). The second
case implies that Vi, as a possible descendant of Vi, is in F, but we chose V; such that
Vi € V\ F. Hence, no node in {V5,..., Vg = Y} shares an undirected edge with V;. We
can thus apply Lemma 18 and conclude that a subsequence of (Vi,Va,...,Vkx =Y) forms
a directed path from V; to Y in G, which implies that statement (ii) holds. |

Lemma 24 (Lemma E.8 in HPM19) Let X and Y be disjoint node sets in a maz-
PDAG G, such that G is amenable relative to (X,Y), and let D be a DAG in [G]. Then
forb(X,Y,G) = forb(X,Y, D).

Proposition 25 Let G be a causal marPDAG with node set V and let X C V and Y €
V \ X such that G is amenable relative to (X,Y). Then a set Z is a valid adjustment set
relative to (X,Y) in G if and only if it is a valid adjustment set relative to (X,Y) in the
forbidden projection GXY .

Proof Let D € [G] and DXY its forbidden projection. By Proposition 8, a set Z is a valid
adjustment set relative to (X,Y') in D if and only if it is a valid adjustment set relative to
(X,Y) in DXY. By Proposition 22, the set [GXY] contains exactly the forbidden projections
of all DAGs in [G]. Hence if Z is a valid adjustment set in all D € [G], then it is a valid
adjustment set in all DXY € [GXY] and vice versa. |

To summarise, the forbidden projection for amenable causal maxPDAGs has very similar
properties as the forbidden projection for causal DAGs, as long as we consider a singleton
outcome node Y: Bi-directed edges in the projection indicate the lack of a valid adjustment
set; if a valid set exists, the forbidden projection is a maxPDAG itself, preserving all the
information relevant to causal effect identification via adjustment; in particular, all valid
sets can be read off the forbidden projection as well as the original graph.

Finally, we now generalise Definition 9 of the O*-set and its optimality property in
Proposition 10 to amenable maxPDAGs with singleton Y.

Definition 26 Let G be a causal mazrPDAG with node set V, let X C V and Y € V\ X
such that G is amenable relative to (X,Y), and let GXY be the corresponding forbidden
projection. We define O*(X,Y,G) as:

0*(X,Y,G) = pa(Y,G*Y) \ X.

Proposition 27 Let G be a causal maxPDAG with node set V, let X CV andY € V\ X
such thatY € possde(X, D) and G is amenable relative to (X,Y), let Z be a valid adjustment
set relative to (X,Y) in G and let O* = O*(X,Y,G). Then O* is a valid adjustment set
relative to (X,Y) in G and if the variables V follow a linear causal model compatible with
G, then, for every X; € X, G-UGT(Bymi.x,io*) < a.var(ﬁywxfﬂ).
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Proof We prove this by showing that O(X,Y,G) and O*(X,Y,G) are equal and invoking
Propositions 2 and 3. By Lemma 18, Y € possde(X,G) implies Y € de(X,G). Then the
equivalence follow directly from Lemma 28 in combination with Proposition 10: For every
DAG D € [G], O(X,Y,G) = O(X,Y,D) = O0*(X,Y,D) = O*(X,Y,G). [ |

Lemma 28 (Lemma E.7 in HPM19) Let X andY be disjoint node sets in a maxPDAG
G such that G is amenable relative to (X,Y) in G, let Y C possde(X,G), and let D be a
DAG in [G]. Then O(X,Y,D) =0(X,Y,G).

Appendix D. Proof for Section 4

Proposition 11 Let X and Y be nodes in a causal CPDAG or mazPDAG G = (V,E),
such that 'V follows a causal linear model compatible with G with Gaussian errors. Let er
and ©° be the multisets returned by semi-local IDA and optimal IDA respectively, applied
to X, Y and G, with the subsets of sib(X,G) considered in the same order for both. Then,
forie{1... k}, with k = |©F| = |69,

1. E[OF] = E[O°] and
2. a.var(@ip) > a.var(@?).

Proof Consider any set S; C sib(X,G). Perkovié¢ et al. (2017) showed that there exists
a DAG D € [G], such that P; = pa(X,D) = S; Upa(X,G), if and only if directing the
edges in the neighbourhood of X according to P; and applying Meek’s orientation rules
results in a valid maxPDAG G!. If this is not the case for S;, both algorithms discard S; at
their respective line 8. We can hence suppose that there exists a DAG D € [G], such that
P; = pa(X,D) = S; Upa(X,G). R )

Suppose that Y € possde(X,G!). In this case OF = Byz0,, where O; = O(X,Y,G!).
As G! is amenable by construction, it follows from Lemma 28 in Appendix C that O; =
O(X,Y, D). Further, Y € possde(X,G!) implies that Y ¢ pa(X,G/) and thus (:)ZP = Byx,pi.
By Proposition 2, O; is a valid adjustment set relative to (X,Y’) in D, and clearly the same
holds for P;. Since we suppose multivariate Gaussianity, this implies that both Byx,oi and
Bym,pi are consistent estimators of 7,,(D), and E[Byx.oi} = E[Byx,pi} = Ty (D).

Further, by Lemmas E.4 and E.5 of the Supplement of HPM19, P; \ O; is conditionally
independent of Y given {X} UP;, and O; \ P; is conditionally independent of X given
P;, respectively. These two independencies allow us to invoke Lemma C.2 of HPM19 and
conclude that oyy zo; < Oyyup; 8 Well as 0yp0;, > Ozep;- As we assume a multivariate
Gaussian distribution, it follows that

- Ouyzo: . Ouy.zp:
(6yz01) — Yy.xo; < Yy.zp;

a.var = a.var(,@’ym,pi).

zT.0; Ozz.p;

Suppose now that Y ¢ possde(X,G!). Then Y ¢ de(X,D), hence 7,,(D) = 0. As

Y ¢ possde(X, G;), (:)lo = 0 and as a result a.var((:)?) =0. If Y € pa(X,G)), then OFi =0
and as a result a.var((:)ip) =0. If Y ¢ possde(X, G/) Upa(X,G;), then @ZP = Bya.p; and by
nature of parent sets E[3,.p,] = 0. Clearly, a.var(C:)zP) > 0 in this case. [ |
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Appendix E. Violin Plots
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Figure 10: Violin plots of the relative mean squared error (RMSE) r over 1000 repetitions
for scenarios with different numbers of nodes (p), expected number of neighbours
per node (d), and sample sizes (n). Optimal and semi-local IDA were applied
to the true CPDAG G. The dots mark the geometric means, the plus signs the
medians.
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Figure 11: Violin plots of the relative mean squared error (RMSE) r* over 1000 repetitions
for scenarios with different numbers of nodes (p), expected number of neighbours
per node (d), and sample sizes (n). Optimal and semi-local IDA were applied to
the estimated CPDAG G*. The dots mark the geometric means, the plus signs
the medians.
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