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Abstract
Accurate reporting of energy and carbon usage is essential for understanding the potential
climate impacts of machine learning research. We introduce a framework that makes this
easier by providing a simple interface for tracking realtime energy consumption and carbon
emissions, as well as generating standardized online appendices. Utilizing this framework,
we create a leaderboard for energy efficient reinforcement learning algorithms to incentivize
responsible research in this area as an example for other areas of machine learning. Finally,
based on case studies using our framework, we propose strategies for mitigation of carbon
emissions and reduction of energy consumption. By making accounting easier, we hope
to further the sustainable development of machine learning experiments and spur more
research into energy efficient algorithms.

Keywords: energy efficiency, green computing, reinforcement learning, deep learning,
climate change

1. Introduction

Global climate change is a scientifically well-recognized phenomenon and appears to be
accelerated due to greenhouse gas (GHG) emissions such as carbon dioxide or equivalents
(CO2eq) (Crowley, 2000; IPCC, 2018). The harmful health and safety impacts of global
climate change are projected to “fall disproportionately on the poor and vulnerable” (IPCC,
2018). Energy production remains a large factor in GHG emissions, contributing about ∼ 25%
of GHG emissions in 2010 (IPCC, 2018). With the compute and energy demands of many
modern machine learning (ML) methods growing exponentially (Amodei and Hernandez,
2018), ML systems have the potential to significantly contribute to carbon emissions. Recent
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work has demonstrated these potential impacts through case studies and suggested various
mitigating strategies (Strubell et al., 2019; Schwartz et al., 2019).

Systematic and accurate measurements are needed to better estimate the broader energy
and carbon footprints of ML—in both research and production settings. Accurate accounting
of carbon and energy impacts aligns incentives with energy efficiency (Schwartz et al., 2019),
raises awareness, and drives mitigation efforts (Sundar et al., 2018; LaRiviere et al., 2016),
among other benefits.1 Yet, most ML research papers do not regularly report energy or
carbon emissions metrics.2

We hypothesize that part of the reason that much research does not report energy and
carbon metrics is due to the complexities of collecting them. Collecting carbon emission
metrics requires understanding emissions from energy grids, recording power outputs from
GPUs and CPUs, and navigating among different tools to accomplish these tasks. To reduce
this overhead, we present experiment-impact-tracker3—a lightweight framework for consistent,
easy, and more accurate reporting of energy, compute, and carbon impacts of ML systems.

In Section 4, we introduce the design and capabilities of our framework and the issues
with accounting we aim to solve with this new framework. Section 5 expands on the
challenges of using existing accounting methods and discusses our learnings from analyzing
experiments with experiment-impact-tracker. For example, in an empirical case study on
image classification algorithms, we demonstrate that floating point operations (FPOs), a
common measure of efficiency, are often uncorrelated with energy consumption with energy
metrics gathered by experiment-impact-tracker.

In Section 6, we focus on recommendations for promoting energy-efficient research and
mitigation strategies for carbon emissions. Using our framework, we present a Reinforcement
Learning Energy Leaderboard in Section 6.1.1 to encourage development of energy efficient
algorithms. We also present a case study in machine translation to show how regional energy
grid differences can result in large variations in CO2eqemissions. Emissions can be reduced
by up to 30x just by running experiments in locations powered by more renewable energy
sources (Section 6.2). Finally, we suggest systemic and immediate changes based on our
findings:

• incentivizing energy-efficient research through leaderboards (Section 6.1)

• running experiments in carbon-friendly regions (Section 6.2)

• reducing overheads for utilizing efficient algorithms and resources (Section 7.1)

• considering energy-performance trade-offs before deploying energy hungry models
(Section 7.2)

• selecting efficient test environment especially in RL (Section 7.3)

• ensuring reproducibility to reduce energy consumption from replication difficulties
(Section 7.4)

• consistently reporting energy and carbon metrics (Section 7.5)

1. See Section 4.1 for an extended discussion on the importance of accounting.
2. See Section 3 and Appendix B for more information.
3. https://github.com/Breakend/experiment-impact-tracker
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2. Related Work

Estimating GHG emissions and their downstream consequences is important for setting
regulatory standards (U.S. Environment Protection Agency, 2013) and encouraging self-
regulation (Byerly et al., 2018). In particular, these estimates are used to set carbon emissions
reduction targets and in turn set carbon prices for taxes or emissions trading systems.4 A
large body of work has examined modeling and accounting of carbon emissions5 at different
levels of granularity: at the global scale (IPCC, 2018); using country-specific estimates (Ricke
et al., 2018); targeting a particular industrial sector like Information and Communication
Technologies, for example, modeled by Malmodin et al. (2013); or even targeting a particular
application like bitcoin mining, for example, modeled by Mora et al. (2018).

At the application level, some work has already modeled carbon impacts specifically in
computationally intensive settings like bitcoin mining (Krause and Tolaymat, 2018; Stoll
et al., 2019; Zade et al., 2019; Mora et al., 2018). Such application-specific efforts are
important for prioritizing emissions mitigation strategies: without understanding projected
impacts, policy decisions could focus on ineffective regulation. However, with large amounts
of heterogeneity and endogeneity in the underlying data, it can be difficult to model all
aspects of an application’s usage. For example, one study suggested that “bitcoin emissions
alone could push global warming above 2 °C” (Mora et al., 2018). But Masanet et al. (2019),
Houy (2019), and others, criticized the underlying modeling assumptions which led to such
large estimates of carbon emissions. This shows that it is vital that these models provide
accurate measurements if they are to be used for informed decision making.

With ML models getting more computationally intensive (Amodei and Hernandez, 2018),
we want to better understand how machine learning in research and industry impacts
climate change. However, estimating aggregate climate change impacts of ML research
and applications would require many assumptions due to a current lack of reporting and
accounting. Instead, we aim to emphasize and aid systematic reporting strategies such that
accurate field-wide estimates can be conducted in the future.

Some recent work specifically investigates climate impacts of machine learning research.
Strubell et al. (2019) demonstrate the issue of carbon and energy impacts of large NLP models
by evaluating estimated power usage and carbon emissions for a set of case studies. The
authors suggest that: “authors should report training time and sensitivity to hyperparameters”,
“academic researchers need equitable access to computation resources”, and “researchers should
prioritize computationally efficient hardware and algorithms”. Schwartz et al. (2019) provide
similar proposals, suggesting floating point operations (FPOs) as a guiding efficiency metric.
Lacoste et al. (2019) recently provided a website for estimating carbon emissions based on
GPU type, experiment length, and cloud provider. In Section 5, we discuss how while the
estimation methods of these works provide some understanding of carbon and energy impacts,

4. An emissions trading system is a cap on total allowed carbon emissions for a company with permits
issued. When a company emits a certain amount of carbon, they trade in a permit, creating a market for
emissions permits. This is a market-based approach to incentivize emission reductions. See Ramstein
et al. (2019) for a description of such carbon pricing efforts across different countries.

5. See also assorted examinations on carbon accounting, standardized reporting, and policy recommendations
(Stechemesser and Guenther, 2012; Dayarathna et al., 2015; IPCC, 2018; Ajani et al., 2013; Bellassen and
Stephan, 2015; Andrew and Cortese, 2011; Tang and Demeritt, 2018; Cotter et al., 2011; Tol, 2011; U.S.
Environment Protection Agency, 2013; Ricke et al., 2018).
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nuances in the estimation methods may make them inaccurate—particularly in experiments
which utilize combined CPU and GPU workloads heavily. We build a framework aiming to
provide more accurate and easier systematic reporting of carbon and energy footprints. We
also provide additional mitigation and reporting strategies—beyond those discussed by these
prior works—to emphasize how both companies and research labs can be more carbon and
energy efficient.

It is worth noting that prior work has also examined the carbon impacts of research in
other fields, focusing mostly on emissions from conference travel (Spinellis and Louridas,
2013; Astudillo and AzariJafari, 2018; Hackel and Sparkman, 2018). We provide a brief
discussion on ML-related conference travel in Appendix A, but will focus mainly on accurate
accounting of energy and carbon footprints of ML compute.

3. Background

We briefly provide a primer on energy and carbon accounting, which form the basis of our
proposed framework for measuring and reporting the ecological footprint of ML research.

3.1 Energy Accounting

Energy accounting is fairly straightforward. The energy consumption of a system can be
measured in Joules (J) or Watt-hours (Wh),6 representing the amount of energy needed
to power the system. Life-cycle accounting might also consider the energy required to
manufacture components of the system—for example, the production of GPUs or CPUs (Jones
et al., 2013). However, we largely ignore life-cycle aspects of energy accounting due to the
difficulties in attributing manufacturing impacts on a per-experiment basis. Measuring data-
center energy impacts also contain several layers, focusing on hardware-centric and software-
centric analyses. Many parts contribute to the power consumption of any computational
system. Dayarathna et al. (2015) survey energy consumption components of a data center and
their relative consumption: cooling (50%), lighting (3%), power conversion (11%), network
hardware (10%), and server/storage (26%).

The server and storage component can further be broken down into contributions from
DRAM, CPUs, among other compute components. Accurate accounting for all of these
components requires complex modeling and varies depending on workload. In particular,
the efficiency of the hardware varies with utilization—often most efficient near maximum
utilization—making utilization an important factor in optimization (particularly in large
cloud compute systems) Barroso et al. (2018). Since we aim to provide a framework at the
per-experiment software level, we only account for aspects of energy consumption which
expose interfaces for energy metrics (giving us real-time energy usage and compensating for
such workload differences). For the purpose of our work, this is constrained to DRAM, CPUs,
and GPUs. To account for all other components, we rely on a power usage effectiveness
(PUE) factor (Strubell et al., 2019). This factor rescales the available power metrics by an
average projected overhead of other components. With more available software interfaces,
more robust modeling can be performed as reviewed by Dayarathna et al. (2015).

6. One Watt is a unit of power—equivalent to one Joule per second.
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3.2 Carbon Accounting

Carbon accounting can be all-expansive, so we focus on a narrow definition provided by
Stechemesser and Guenther (2012): “carbon accounting at the project scale can be defined
as the measuring and non-monetary valuation of carbon and GHG emissions and offsetting
from projects, and the monetary assessment of these emissions with offset credits to inform
project-owners and investors but also to establish standardized methodologies.” Carbon and
GHG emissions are typically measured in some form close to units CO2eq. This is the amount
of carbon—and other GHG converted to carbon amounts—released into the atmosphere as a
result of the project. Carbon offsetting is the amount of carbon emissions saved as a result
of the project. For example, a company may purchase renewable energy in excess of the
energy required for their project to offset for the carbon emissions they contributed. Since
our goal is to inform and assess carbon emissions of machine learning systems, we ignore
carbon offsetting. Typical carbon offsetting involves the use of Power Purchase Agreements
(PPAs) or other similar agreements which may not reflect the current carbon make-up
of the power draw (as they may account for future clean energy).7 Since carbon effects
contribute to feedback loops, cutting emissions now will improve the likelihood of preventing
further emissions.8. We also do not consider carbon accounting in the financial sense, but
do provide metrics on monetary impacts through the social cost of carbon (SC-CO2). The
U.S. Environment Protection Agency (2013) uses this metric when developing administrative
rules and regulations. According to the EPA, “The SC-CO2 is a measure, in dollars, of the
long-term damage done by a ton of carbon dioxide (CO2) emissions in a given year. This
dollar figure also represents the value of damages avoided for a small emission reduction (i.e.,
the benefit of a CO2 reduction).” We rely on the per-country social cost of carbon developed
by Ricke et al. (2018), which accounts for different risk profiles of country-level policies and
GDP growth in their estimates of SC-CO2.

Carbon emissions from a project can also consider life-cycle emissions (for example,
manufacturing of CPUs may emit carbon as part of the process). We do not consider these
aspects of emissions. We instead, consider only carbon emissions from energy consumption.
A given energy grid powering an experiment will have a carbon intensity: the grams of
CO2eq emitted per kWh of energy used. This carbon intensity is determined based on the
energy sources supplying the grid. Each energy source has its own carbon intensity accounted
for through a full life-cycle analysis (IPCC, 2015). For example, coal power has a median
carbon intensity of 820 gCO2eq/ kWh, while hydroelectricity has a mean carbon intensity
of 24 gCO2eq/ kWh. The life-cycle emissions of energy source take into account not just
emissions from production, but from waste disposal as well. For example, nuclear energy
waste disposal has some carbon emissions associated that would be taken into account in
a life-cycle carbon intensity metric (IPCC, 2018). Carbon emissions for a compute system
can be estimated by understanding the carbon intensity of the local energy grid and the
energy consumption of the system. Similar analyses have been done for bitcoin (Krause
and Tolaymat, 2018). These analyses, however, attempt to extrapolate impacts of bitcoin

7. See discussion in Appendix C for further information.
8. See, e.g., https://www.esrl.noaa.gov/gmd/outreach/info_activities/pdfs/TBI_understanding_

feedback_loops.pdf
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mining in general, while in this work we attempt to examine machine learning impacts on a
per-experiment basis.

3.3 Current State of Reporting in Machine Learning Research

We briefly examine the current state of accounting in the machine learning literature and
review commonly reported computational metrics. Here we look at a non-exhaustive list of
reported metrics from papers we surveyed and group them into different categories:

• Energy

– Energy in Joules (Assran et al., 2019)
– Power consumption in Watts (Canziani et al., 2016)

• Compute

– PFLOPs-hr (Amodei and Hernandez, 2018), the floating point operations per
second needed to run the experiment in one hour

– Floating Point Operations (FPOs) or Multiply-Additions (Madds), typically
reported as the computations required to perform one forward pass through a
neural network (Howard et al., 2017; Sandler et al., 2018; Schwartz et al., 2019)

– The number of parameters defined by a neural network (often reported together
with FPOs) (Howard et al., 2017; Sandler et al., 2018)

– GPU/CPU utilization as a percentage (Assran et al., 2019; Dalton et al., 2019)
– GPU-hours or CPU-hours, the processor cycles utilized (or in the case of the GPU

percentage utilized), times the runtime (Soboczenski et al., 2018)

• Runtime

– Inference time, the time it takes to run one forward pass through a neural
network, (Jeon and Kim, 2018; Qin et al., 2018)

– Wall clock training time, the total time it takes to train a network (Assran et al.,
2019; Dalton et al., 2019).

– Hardware and time together (e.g., 8 v100 GPUs for 5 days) (Krizhevsky et al.,
2012; Ott et al., 2018; Gehring et al., 2017)

• Carbon Emissions

– US-average carbon emissions (Strubell et al., 2019)

Example 1 To get a rough estimate of the prevalence of these metrics, we randomly sampled
100 NeurIPS papers from the 2019 proceedings. In addition to the metrics above, we also
investigate whether hardware information was reported (important for extrapolating energy
and carbon information with partial information). Of these papers, we found 1 measured
energy in some way, 45 measured runtime in some way, 46 provided the hardware used, 17
provided some measure of computational complexity (e.g., compute-time, FPOs, parameters),
and 0 provided carbon metrics. See Appendix B for more details on methodology.
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Some of these metrics, when combined, can also be used to roughly estimate energy or
carbon metrics. For example, the experiment time (h) can be multiplied by the thermal
design power (TDP) of the GPUs used (W)9. This results in a Watt-hour energy metric.
This can then be multiplied by the carbon intensity of the local energy grid to assess the
amount of CO2eqemitted. This method of estimation omits CPU usage and assumes a 100%
GPU utilization. Alternatively, Amodei and Hernandez (2018) use a utilization factor of
33% for GPUs. Similarly, the PFLOPs-hr metric can by multiplied by TDP (Watts) and
divided by the maximum computational throughput of the GPU (in PFLOPs). This once
again provides a Watt-hour energy metric. This, however, makes assumptions based on
maximum efficiency of a GPU and disregards variations in optimizations made by underlying
frameworks (e.g., Tensorflow versus Pytorch; AMD versus NVIDIA drivers).

As we will demonstrate using our framework (see Section 5.2), the assumptions of these
estimation methods lead to significant inaccuracies. However, aggregating all necessary
accounting information is not straightforward or easy; it requires finding compatible tools,
handling nuances on shared machines, among other challenges.

It is worth noting that some metrics focus on the computational requirements of training
(which require additional resources to compute gradients and backpropagate, in the case of
neural networks) versus the computational requirements of inference. The former is often
more energy and carbon intensive in machine learning research, while the later is more
intensive in production systems (the cost of training is insignificant when compared to the
lifetime costs of running inference millions of times per day, every day). We will remain
largely agnostic to this differentiation until some discussions in Sections 6.2 and 7.2.

4. A New Framework for Tracking Machine Learning Impacts

4.1 Motivation

The goal of our experiment-impact-tracker framework is to provide an easy to deploy,
reproducible, and quickly understood mechanism for all machine learning papers to report
carbon impact summaries, along with additional appendices showing detailed energy, carbon,
and compute metrics.

Example 2 A carbon impact summary generated by our framework can be found at the end
of this paper in the Carbon Impact Statement section. In brief, the experiments in our paper
contributed 8.021 kg of CO2eq to the atmosphere and used 24.344 kWh of electricity, having
a USA-specific social cost of carbon of $0.38 ($0.00, $0.95) (Ricke et al., 2018).

Such statements and informational reporting are important for, among other reasons,
awareness, aligning incentives, and enabling accurate cost-benefit analyses.

Awareness: Informational labels and awareness campaigns have been shown to be
effective drivers of eco-friendly behaviors (depending on the context) (Banerjee and Solomon,
2003; Sundar et al., 2018; Newell and Siikamäki, 2014; Byerly et al., 2018). Without consistent
and accurate accounting, many researchers will simply be unaware of the impacts their models
might have and will not pursue mitigating strategies. Consistent reporting also may provide
social incentives to reduce carbon impacts in research communities.

9. This is a rough estimate of the maximum operating capacity of a GPU.
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Aligning Incentives: While current reporting often focuses solely on performance
metrics (accuracy in classification, perplexity in language modeling, average return in
reinforcement learning, etc), standardized reporting of energy in addition to these metrics
aligns incentives towards energy efficient models in research output (Schwartz et al., 2019).
Those who accurately report carbon emissions may have more incentive to reduce their
carbon footprint. This may also drive traffic to low-emission regions, spurring construction
of more carbon-friendly data centers.10

Cost-Benefit Analysis and Meta-Analysis: Cost-benefit analyses can be conducted
with accurate energy metrics reporting, but are impossible without it. For example, the
estimated generated revenue of a model can be weighed against the cost of electricity. In the
case of models suggested by Rolnick et al. (2019), the carbon emissions saved by a model can
be weighed against the emissions generated by the model. Consistent reporting also opens
the possibility for performing meta-analyses on energy and carbon impacts (Henderson and
Brunskill, 2018). Larger extrapolations to field-wide impacts of research conferences can also
be assessed with more frequent reporting.

4.2 Design Considerations

We consider five main principles when designing the framework for systematic reporting:
usability, interpretability, extensibility, reproducibility, and fault tolerance.

Usability: Perceived ease-of-use can be an important factor in adoption of new
technologies and methods (Gefen and Straub, 2000). Since gathering key energy (kWh) and
carbon (CO2eq) metrics requires specific knowledge about—and aggregation of—different
sources of information, there may be a barrier to the ease-of-use in the current status quo.
As a result, a core design consideration in developing tools for these metrics is usability, or
ease-of-use. We accomplish this by abstracting away and distilling required knowledge of
information sources, keeping amount of required action from the user to a minimum.

Interpretability: Along with ease-of-use, a key factor in adoption is perceived useful-
ness (Gefen and Straub, 2000). Since we wish for the reporting of carbon and energy metrics
to become widespread, we consider perceived usefulness through interpretability. We aim to
make reporting tools within the framework useful through simple generation of graphs and
web pages from metrics for easy interpretation. We also provide a mechanism to generate a
carbon impact statement with the social cost of carbon. This dollar amount represents the
projected damage from the experiment’s carbon emissions and helps ground results in values
that may be more interpretable. As seen in our own statement at the end of this work, we
also provide the carbon impact and energy usage directly.

Extensibility: We design the framework in a modular fashion to handle evolving driver
support (see Section 5) and new metrics. To improve the accuracy and accessibility of the
framework, the ML community can add new metrics, carbon intensity information, and other
capabilities easily. For each metric, a central data router stores a description, the function
which gathers metric data, and a list of compatibility checks (e.g., the metric can only be
gathered on a Linux system). New metrics can be added to this router.11 Similarly, new

10. See discussion in Section 6.2 on regional carbon emission differences. See discussion by LaRiviere et al.
(2016) on how more accurate carbon accounting can result in reduced carbon emissions.

11. See https://breakend.github.io/experiment-impact-tracker/contributing_new_metric.html

8

https://breakend.github.io/experiment-impact-tracker/contributing_new_metric.html


Towards the Systematic Reporting of the Energy and Carbon Footprints of ML

carbon region and electricity grid information can be added as needed to similar centralized
locations.12

Reproducibility: Running an algorithm on different sets of hardware has been
shown to affect the reproducibility of algorithmic results (Gundersen and Kjensmo, 2018;
Sukhoy and Stoytchev, 2019). Our framework aides in automating reproducibility by logging
additional metrics like hardware information, Python package versions, etc. These metrics
can help future work assess statistically significant differences in model energy requirements
by accounting for controlled and random variates (Boquet et al., 2019).

Fault tolerance: Mistakes in software are inevitable—as is discussed in Sidor and
Schulman (2017). We try to log all raw information so that accounting can be recreated and
updated based on new information. We also log the version number of the tool itself, to
ensure future comparisons do not mismatch information between versions that may have
changed.

4.3 Proposed Framework

The experiment-impact-tracker requires a simple code change to automatically gather available
metrics and a script to generate online appendices for reporting the data. Currently, on
compatible systems, we gather:

• all python packages and version numbers

• CPU and GPU hardware information

• experiment start and end-times

• the version of the experiment-impact-tracker framework used

• the energy grid region the experiment is being run in (based on IP address)

• the average carbon intensity in the energy grid region

• CPU- and GPU-package power draw

• per-process utilization of CPUs and GPUs

• GPU performance states

• memory usage

• the realtime CPU frequency (in Hz)

• realtime carbon intensity (only supported in CA right now)

• disk write speed

The code change required for immediate logging of metrics can be seen in Listing 1. In
the background, the framework launches a thread which polls system supported tools. For
example, the thread polls psutil (Rodola, 2016) for measuring CPU utilization. All of these

12. See https://breakend.github.io/experiment-impact-tracker/contributing_carbon_region.html.
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metrics are logged in parallel with the main machine learning process as described in Figure 1.
A script13 is provided to generate an HTML web page showing graphs and tables for all
these metrics, meant to serve as an online appendix for research papers.14 Results in the
generated appendix can be aggregated across multiple experiments to show averages along
with standard error as recommended in prior work (Henderson et al., 2018; Colas et al., 2018;
Reimers and Gurevych, 2017).

1 from experiment_impact_tracker.compute_tracker import ImpactTracker
2 tracker = ImpactTracker(<your log directory here >)
3 tracker.launch_impact_monitor ()

Listing 1: Simple code addition required to log experiment details via our framework.

4.3.1 Tracking Energy Consumption

Different hardware vendors provide different tooling for tracking energy consumption. Our
framework hides these complications from users. We currently use Intel’s RAPL tool with
the powercap interface (David et al., 2010) or Intel’s PowerGadget Tool15 (depending on
availability) to gather CPU/DRAM power draw and Nvidia’s nvidia-smi16 for GPU power
draw. We use psutil for gathering per-process CPU utilization and nvidia-smi for per-process
GPU utilization. We found that on a shared machine—as when running a job on Slurm—
using Intel’s RAPL would provide energy metrics for the entire machine (including other jobs
running on the worker). If two experiments were launched with Slurm to the same worker,
using measurements from RAPL without corrections would double count energy usage from
the CPU.

As a result, we assign energy credits on a per-process basis (though we log system-wide
information as well). We track the parent process, and any children spawned. Power credits
are provided based on relative usage of system resources. If a process uses 25% of the CPU
(relative to the entire system’s usage), we will credit the process with 25% of the CPU-based
power draw. This ensures that any non-experiment-related background processes— software
updates, weekly jobs, or multiple experiments on the same machine—will not be taken into
account during training.

We calculate total energy as:

etotal = PUE
∑
p

(pdramedram + pcpuecpu + pgpuegpu), (1)

where presource are the percentages of each system resource used by the attributable
processes relative to the total in-use resources and eresource is the energy usage of that
resource. This is the per-process equivalent of the method which Strubell et al. (2019) use.

13. https://github.com/Breakend/experiment-impact-tracker/blob/master/scripts/create-
compute-appendix

14. Appendices generated by our framework for Figure 7 and Figure 3 are available at:
https://breakend.github.io/ClimateChangeFromMachineLearningResearch/measuring_and_
mitigating_energy_and_carbon_footprints_in_machine_learning/. Experiments in Figure 5
are available at https://breakend.github.io/RL-Energy-Leaderboard/reinforcement_learning_
energy_leaderboard/index.html.

15. https://software.intel.com/content/www/us/en/develop/articles/intel-power-gadget.html
16. https://developer.nvidia.com/nvidia-system-management-interface

10

https://github.com/Breakend/experiment-impact-tracker/blob/master/scripts/create-compute-appendix
https://github.com/Breakend/experiment-impact-tracker/blob/master/scripts/create-compute-appendix
https://breakend.github.io/ClimateChangeFromMachineLearningResearch/measuring_and_mitigating_energy_and_carbon_footprints_in_machine_learning/
https://breakend.github.io/ClimateChangeFromMachineLearningResearch/measuring_and_mitigating_energy_and_carbon_footprints_in_machine_learning/
https://breakend.github.io/RL-Energy-Leaderboard/reinforcement_learning_energy_leaderboard/index.html
https://breakend.github.io/RL-Energy-Leaderboard/reinforcement_learning_energy_leaderboard/index.html
https://software.intel.com/content/www/us/en/develop/articles/intel-power-gadget.html
https://developer.nvidia.com/nvidia-system-management-interface


Towards the Systematic Reporting of the Energy and Carbon Footprints of ML

is_metric_compatible
compatible

gather_metric_info
info

get_metric_from_router

log_gathered_info

check_for_exceptions
exceptions

log_final_info
success

atexit

end_process

launch_monitor
a:main b:experiment-impact-tracker c:other-tools d:log-file

looploop

Figure 1: A diagram demonstrating how the released version of the tool works. The main
process launches a monitoring thread which iterates over a list of metrics associated
with function calls to other tools. For example, if available, we call Intel RAPL
to collect CPU power draw or query caiso.org to get realtime carbon intensity
data for California. Once all the data that is compatible with the current system
is gathered, it is logged to a standardized log file and the process repeats. The
main thread may check in on this thread for exceptions, but the thread will not
interrupt the main process. Once the main thread exits, an atexit hook (which is
called whenever the main process exits, either successfully or through an exception)
gathers the final information (such as the time the experiment ended), logs it, and
then ends both the monitor and main process.
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We assume the same constant power usage effectiveness (PUE) as Strubell et al. (2019) to
be the framework’s default PUE. This value compensates for excess energy from cooling or
heating the data-center. Users can customize the PUE value when using the framework if
needed.

4.3.2 Carbon Accounting

Figure 2: Realtime carbon intensity (gCO2eq/kWh) collected during one experiment using
our framework. As the experiment continued, the sun rose in California, and with
it the carbon intensity decreased.

For calculating carbon emissions, we use the power estimate from the previous section
in kilowatt-hours (kWh) and multiply it by the carbon intensity of the local energy grid
(g CO2eq/ kWh). To gather carbon intensity metrics for energy grids, we build on the
open-source portions of https://www.electricitymap.org and define regions based on
map-based geometries, using the smallest bounding region for a given location as the carbon
intensity estimate of choice. For example, for an experiment run in San Francisco, if the
average carbon intensity is available for both the USA and California, the latter will be
used. We estimate the region the experiment is conducted in based on the machine’s IP
address. Carbon intensities are gathered from the average fallback values provided in the
https://www.electricitymap.org code where available and supplemented with additional
metrics from various governmental or corporate reports. We note that electricitymap.org
estimates are based on a closed-source system and uses the methodology described by Tranberg
et al. (2019). All estimates from electricitymap.org are of the regional supply, rather than
production (accounting for imports from other regions). Since https://caiso.com provides
realtime intensities including imports for free, for experiments run in California, we also
provide realtime carbon intensity information. We do this by polling https://caiso.com for
the current intensity of the California energy grid every five minutes. This helps gather even
more accurate estimates of carbon emissions to account for daily shifts in supply. For example,
experiments run in California during the day time use roughly 2

3 of night-time experiments.
This is because much of California’s renewable energy comes from solar plants. Figure 2 is
an automatically generated graph showing this phenomenon from an experiment using our
framework. We hope that as users find more accurate realtime or average measurements
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of regional supply-based carbon intensities, they will add them to the tool for even more
accurate measurements in the future.

5. The Importance and Challenges of Accounting: Why a New
Framework?

5.1 FPOs Can Be Misleading

Floating Point Operations (FPOs) are the de facto standard for reporting “efficiency” of a
deep learning model (Schwartz et al., 2019), and intuitively they should be correlated with
energy efficiency—after all, fewer operations should result in faster and more energy efficient
processing. However, this is not always the case.

Previously, Jeon and Kim (2018) demonstrated mechanisms for constructing networks
with larger FPOs, but lower inference time—discussing the “Trap of FLOPs”. Similarly, Qin
et al. (2018) show how Depthwise 3x3 Convolutions comprised just 3.06% of an example
network’s Multiply-Add operations, while utilizing 82.86% of the total training time in the
FPO-efficient MobileNet architecture Howard et al. (2017). Underlying optimizations at
the firmware, deep learning framework, memory, or even hardware level can change energy
efficiency and run-time. This discrepancy has led to Github Issues where users expect
efficiency gains from FPO-efficient operations, but do not observe them.17 This has also
been observed by Chen and Gilbert (2018) and Chen et al. (2018).

Example 3 To investigate this empirically, we repeatedly run inference through pre-trained
image classification models and measure FPOs, parameters, energy usage, and experiment
length using the experiment-impact-tracker framework. As described in Figure 3, we find
little correlation between FPOs and energy usage or experiment runtime when comparing
across different neural network architectures. However, within an architecture—relying on the
same operation types, but with different numbers of operations—FPOs are almost perfectly
correlated with energy and runtime efficiency. Thus, while FPOs are useful for measuring
relative ordering within architecture classes, they are not adequate on their own to measure
energy or even runtime efficiency.

5.2 Estimates with Partial Information Can Be Inaccurate

The current state of accounting for energy and carbon varies across fields and papers (see
Section 3). Few works, if any, report all of the metrics that our framework collects. However,
it is possible to extrapolate energy and carbon impacts from some subsets of these metrics.
This can give a very rough approximation of the energy used by an experiment in kWh (see
Section 3 for background).

Example 4 We demonstrate how several such estimation methods compare against the more
fine-grained accounting methods we describe in Section 4.18 As seen in Figure 4, we find

17. See for example: https://github.com/tensorflow/tensorflow/issues/12132 and
https://github.com/tensorflow/tensorflow/issues/12940

18. We also provide a script to do the rough calculation of energy and carbon footprints based on GPU
type, IP address (which is used to retrieve the location of the machine and that region’s carbon
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Figure 3: We run 50,000 rounds of inference on a single sampled image through pre-trained
image classification models and record kWh, experiment time, FPOs, and number
of parameters (repeating 4 times on different random seeds). References for models,
code, and expanded experiment details can be found in Appendix D. We run
a similar analysis to Canziani et al. (2016) and find (left) that FPOs are not
strongly correlated with energy consumption (R2 = 0.083, Pearson 0.289) nor with
time (R2 = 0.005, Pearson −0.074) when measured across different architectures.
However, within an architecture (right) correlations are much stronger. Only
considering different versions of VGG, FPOs are strongly correlated with energy
(R2 = .999, Pearson 1.0) and time (R2 = .998, Pearson .999). Comparing
parameters against energy yields similar results (see Appendix D for these results
and plots against experiment runtime).

14
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significant differences from when we track all data (as through the experiment-impact-tracker
framework) to when we use partial data to extrapolate energy and carbon emissions. Only
using GPUs and the experiment time ignores memory or CPU effects; only using the average
case US region ignores regional differences. More details for this experiment can be found in
Appendix E.

We also note that the possible estimation differences in Figure 4 do not include possible
errors from counting multiple processes at once, as described in Section 4.3.1. Clearly, without
detailed accounting, it is easy to severely over- or underestimate carbon or energy emissions
by extrapolating from partial information.

Figure 4: We compare carbon emissions (left) and kWh (right) of our Pong PPO experiment
(see Appendix E for more details) by using different estimation methods. By only
using country wide or even regional average estimates, carbon emissions may be
over or under-estimated (respectively). Similarly, by using partial information to
estimate energy usage (right, for more information about the estimation methods
see Appendix E), estimates significantly differ from when collecting all data in real
time (as in our method). Clearly, without detailed accounting, it is easy to over-
or under-estimate carbon or energy emissions in a number of situations. Stars
indicate level of significance: * p < .05, ** p < .01, *** p < .001, **** p < .0001.
Annotation provided via: https://github.com/webermarcolivier/statannot.

6. Encouraging Efficiency and Mitigating Carbon Impacts: Immediate
Mitigation Strategies

With experiment-impact-tracker, we hope to ease the burden of standardized reporting. We
have demonstrated differences in more detailed estimation strategies from the current status
quo. In this Section, we examine how accurate reporting can be used to drive immediate
mitigating strategies for energy consumption and carbon emissions.

intensity), experiment length, and utilization factor. https://github.com/Breakend/experiment-impact-
tracker/blob/master/scripts/get-rough-emissions-estimate

15

https://github.com/webermarcolivier/statannot
https://github.com/Breakend/experiment-impact-tracker/blob/master/scripts/get-rough-emissions-estimate
https://github.com/Breakend/experiment-impact-tracker/blob/master/scripts/get-rough-emissions-estimate


Henderson, Hu, Romoff, Brunskill, Jurafsky, and Pineau

6.1 Energy Efficiency Leaderboards

A body of recent work has emphasized making more computationally efficient models (Wu
et al., 2019; Zhou et al., 2020; Reddi et al., 2020; Lu et al., 2018; Coleman et al., 2019;
Jiang et al., 2019), yet another line of work has focused on the opposite: building larger
models with more parameters to tackle more complex tasks (Amodei and Hernandez, 2018;
Sutton, 2019). We suggest leaderboards which utilize carbon emissions and energy metrics
to promote an informed balance of performance and efficiency. DawnBench (Wu et al., 2019),
MLPerf (Reddi et al., 2020), and HULK (Zhou et al., 2020) have done this in terms of
runtime and cost. Ethayarajh and Jurafsky (2020) have recently critiqued leaderboards for
only optimizing for one particular metric. By optimizing for energy and carbon emissions
directly in addition to target performance metrics, baseline implementations can converge
to more efficient climate-friendly settings. This can also help spread information about
the most energy and climate-friendly combinations of hardware, software, and algorithms
such that new work can be built on top of these systems instead of more energy-hungry
configurations.19

6.1.1 A Deep RL Energy Leaderboard

To demonstrate how energy leaderboards can be used to disseminate information on energy
efficiency, we create a Deep RL Energy Leaderboard.20 The website is generated using the
same tool for creating HTML appendices described in Section 4. All information (except for
algorithm performance on tasks) comes from the experiment-impact-tracker framework. We
populate the leaderboard for two common RL benchmarking environments, PongNoFrameskip-
v4 and BreakNoFrameskip-v4 (Bellemare et al., 2013; Brockman et al., 2016; Mnih et al.,
2013), and four baseline algorithms, PPO (Schulman et al., 2017), A2C (Mnih et al., 2016),
A2C with V-Traces (Espeholt et al., 2018; Dalton et al., 2019), and DQN (Mnih et al., 2013).
The experimental details and results can also be found in Figure 5. We find that no algorithm
is the energy efficiency winner across both environments, though the PPO implementation
provided by Hill et al. (2018) attains balance between efficiency and performance when using
default settings across algorithms.

Example 5 To see how such a leaderboard might help save energy, consider a Deep RL
class of 235 students.21 For a homework assignment, each student must run an algorithm 5
times on Pong. The class would save 888 kWh of energy by using PPO versus DQN, while

19. Something to note is that we do not compare carbon efficiency directly—instead focusing on energy
specifically. Since running at different times of day and in different regions can affect carbon impacts,
these may not have anything to do with the algorithm hardware-software stack and increase the number
of confounds when comparing algorithms. While hardware is also immutable to some extent, there may
still be information to be gained by finding combinations of efficient low-level optimizations for specific
hardware. Hardware can also be held relatively constant by using the same machine for all experimental
runs. If comparisons using carbon units are desired, a fixed carbon intensity factor should likely be chosen
for approximate comparisons in a given region (rather than using live carbon intensity metrics). See, also,
Appendix H.

20. https://breakend.github.io/RL-Energy-Leaderboard/reinforcement_learning_energy_
leaderboard/index.html

21. See for example, Stanford’s CS 234.
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Figure 5: We evaluate A2C, PPO, DQN, and A2C+VTraces on PongNoFrameskip-v4 (left)
and BreakoutNoFrameskip-v4 (right), two common evaluation environments in-
cluded in OpenAI Gym. We train for only 5M timesteps, less than prior work, to
encourage energy efficiency and evaluate for 25 episodes every 250k timesteps. We
show the Average Return across all evaluations throughout training (giving some
measure of both ability and speed of convergence of an algorithm) as compared
to the total energy in kWh. Weighted rankings of Average Return per kWh place
A2C+Vtrace first on Pong and PPO first on Breakout. Using PPO versus DQN can
yield significant energy savings, while retaining performance on both environments
(in the 5M samples regime). See Appendix F for more details and results in terms
of asymptotic performance.
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achieving similar performance.22 This is roughly the same amount needed to power a US
home for one month.23

We, thus, encourage the community to submit more data to the leaderboard to find even
more energy efficient algorithms and configurations.

6.2 Running In Carbon-Friendly Regions

We noted in Section 4 that it is important to assess which energy grid experiments are
run on due to the large differences in carbon emissions between energy grids. Figure 6
shows CO2eqintensities for an assortment of locations, cloud-provider regions, and energy
production methods. We note that an immediate drop in carbon emission can be made by
moving all training jobs to carbon-efficient energy grids. In particular, Quebec is the cleanest
available cloud region to our knowledge. Running a job in Quebec would result in carbon
emission 30x lower than running a job in Estonia (based on 2017 averages).

Example 6 To demonstrate this in practice, we run inference on two machine translation
models 1000 times and measure energy usage. We extrapolate the amount of emissions and the
difference between the two algorithms if run in different energy grids, seen in Figure 7. The
absolute difference in emissions between the two models is fairly small (though significant) if
run in Quebec (.09 g CO2eq), yet the gap increases as one runs the jobs in less carbon-friendly
regions (at 3.04 g CO2eq in Estonia).

We provide a script with our framework to show all cloud provider region with emission
statistics to make this decision-making process easier.24 We note that Lacoste et al. (2019)
provide a website using partial information estimation to extrapolate carbon emissions based
on cloud provider region, GPU type, and experiment length in hours. Their tool may also be
used for estimating carbon emissions in cloud-based experiments ahead of time. We’ve also
provided a non-exhaustive list of low emissions energy grids that contain cloud regions in
Table 1.

For companies that train and deploy large models often, shifting these resources is
especially important. ML training is not usually latency bound: companies can run training
in cloud regions geographically far away since training models usually does not require round
trip communication requirements. Contrary to some opinions,25 there is not a necessary need
to eliminate computation-heavy models entirely, as shifting training resources to low carbon
regions will immediately reduce carbon emissions with little impact to production systems.
For companies seeking to hit climate change policy targets, promotion of carbon neutral
regions and shifting of all machine learning systems to those regions would accelerate reaching
targets significantly and reduce the amount of offset purchasing required to meet goals (thus
saving resources).26 It is worth noting that some companies like Google already purchase
offsets (Google, 2016), so it may be unclear why shifting resources is necessary. We provide

22. These rankings may change with different code-bases and hyperparameters.
23. https://www.eia.gov/tools/faqs/faq.php?id=97&t=3
24. See: get-region-emissions-info script and lookup-cloud-region-info script.
25. https://www.theguardian.com/technology/2019/sep/17/tech-climate-change-luddites-data
26. See, for example, Amazon’s goal: https://press.aboutamazon.com/news-releases/news-release-

details/amazon-co-founds-climate-pledge-setting-goal-meet-paris
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Power Grid Cloud Regions Carbon Intensity
(g CO2eq/ kWh)

Quebec, Canada ca-central-1 (AWS), ∼ 30
canadaeast (Azure),
northamerica-northeast1
(GCP)

West Norway norwaywest (Azure) ∼ 35

Ontario, Canada canadacentral (Azure) ∼ 45

France eu-west-3 (AWS), francesouth
(Azure), francecentral (Azure)

∼ 56

Brazil (Central) brazilsouth (Azure) ∼ 106

Oregon, USA us-west1 (GCP), ∼ 127
us-west-2 (AWS)
westus2 (Azure)

Table 1: A non-exhaustive list of cloud regions in low carbon intensity energy grids
(< 150 gCO2eq/ kWh). All estimates pulled as yearly averages from https:
//www.electricitymap.org/map, except for Quebec which utilizes method-
ology from https://piorkowski.ca/rev/2017/06/canadian-electricity-co2-
intensities/ and Oregon which uses data from https://www.eia.gov/
electricity/state/oregon/.

an extended discussion on this in Appendix C. As a matter of total emissions reductions,
running compute in carbon-friendly regions prevents emissions now, while offsets may not
come into effect for several years. Moreover, continuing offset purchasing at current levels,
while shifting resources to green regions would result in a net-negative carbon footprint.

7. Discussion: Systemic Changes

We demonstrated several use cases for accounting which can drive immediate mitigation
strategies. However, the question remains: how can we encourage systemic changes which
lead to energy and carbon efficiency in ML systems?

7.1 Green Defaults for Common Platforms and Tools

Energy leaderboards help provide information on energy efficient configurations for the whole
stack. However, to truly spread energy efficient configurations, underlying frameworks should
by default use the most energy-efficient settings possible. This has been shown to be an
effective way to drive pro-environmental behavior (Pichert and Katsikopoulos, 2008). For
example, Nvidia apex provides easy mixed-precision computing as an add-on which yields
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Figure 6: Carbon Intensity (gCO2eq/kWh) of selected energy grid regions is shown from least
carbon emissions (left) to most carbon emissions (right). Red/unshaded boxes
indicate carbon intensities of cloud provider regions. Blue/shaded boxes indicate
carbon intensities of various generation methods. Oil shale is the most carbon
emitting method of energy production in the Figure. Estonia is powered mainly
by oil shale and thus is close to it in carbon intensity. Similarly, Québec is mostly
powered by hydroelectric methods and is close to it in carbon intensity. Cloud
provider carbon intensities are based on the regional energy grid in which they
are located. Thus, us-west-1, located in California, has the same carbon intensity
as the state. See https://github.com/Breakend/experiment-impact-tracker/
for data sources of regional information. Energy source information from Krey
et al. (2014); International Energy Agency (2015).
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Figure 7: We use pre-trained En-Fr translation models downloaded from PyTorch Hub: a
convolutional network (Gehring et al., 2017) and transformer (Ott et al., 2018).
We generate 1000 random sequences either between 3-50 words in length using the
essential_generators Python package: https://pypi.org/project/essential-
generators/. We repeat with 20 random seeds. Randomly generated sentences are
likely to be difficult to translate, but this difficulty should not be biased in favor of
either algorithm. [Left] We show the true difference in energy consumption. [Right]
We show estimated kgCO2eqreleased if the experiment had been conducted in a
number of increasingly carbon-intensive energy grids. Differences remain significant
throughout, but the absolute difference increases as more carbon-intensive regions
are assumed.
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efficiency gains.27 However, it requires knowing this and using it. Merity (2019) also discusses
the current difficulties in using highly efficient components. Making such resources supported
as defaults in frequently used frameworks, like PyTorch, would immediately improve the
efficiency of all downstream projects. We encourage maintainers of large projects to prioritize
and support such changes.

7.2 How Much Is Your Performance Gain Worth? Balancing Gains With Cost

While training jobs can easily be shifted to run in clean regions, there are often restrictions for
inference-time use of machine learning models which prevent such a move. Many companies
are deploying large machine learning models powered by GPUs for everyday services.28

Example 7 Production machine translation services, can process 100B words per day (Tur-
ovsky, 2016): roughly 4.2 million times our experiment in Figure 7. If all translation traffic
were in Estonia, 12,768 kgCO2eq (the carbon sequestered by 16.7 acres of forest in one
year (Agency, 2008)) would be saved per day by using the more efficient model, yet if all
traffic were in Québec, 378 kgCO2eq would be saved (the carbon sequestered by .5 acres of
forest in one year (Agency, 2008)). Considering the amounts of required compute, small
differences in efficiency can scale to large emissions and energy impacts.

These services are latency-bound at inference time and thus cannot mitigate carbon
emissions by shifting to different regions. Instead, deploying energy-efficient models not only
reduces carbon emissions but also benefits the companies by bringing the energy costs down.
We encourage companies to consider weighing energy costs (both social and monetary) with
the performance gains of a new model before deploying it. In the case of our translation
experiment in Figure 7, the pre-trained convolutional model we use is significantly more
energy hungry across runs than the transformer model we use. When deploying a new energy-
hungry translation model, we ask companies to consider: is the BLEU score improvement
really worth the energy cost of deploying it? Are there ways to route to different models
to balance this trade-off? For example, suppose an energy-hungry model only improves
performance in some subset of the data. Routing to this model only in that subset would
maximize performance while minimizing energy footprint.29.

We note that considering such trade-offs is of increased importance for models aiming
to reduce carbon emissions as described by Rolnick et al. (2019). Deploying a large deep
learning model for, say, improving the energy efficiency of a building, is not worth it if the
energy costs of the model outweigh the gains. We also leave an open question to economists
to help assess the welfare benefits of gains on a particular machine learning metric (e.g., how
much is BLEU score worth in a translation service). This would allow the social welfare of
the metric to be balanced against the social cost of carbon (Ricke et al., 2018) for deployment
decisions.

27. https://github.com/NVIDIA/apex
28. See for example, search which now uses transformer networks at both Microsoft and

Google. https://www.blog.google/products/search/search-language-understanding-bert/ and
https://azure.microsoft.com/en-us/blog/microsoft-makes-it-easier-to-build-popular-language-
representation-model-bert-at-large-scale/

29. Efficient routing of traffic to regions has been considered before by Nguyen et al. (2012) and Berral et al.
(2010). It may be worth considering efficient routing of traffic to particular models as well.
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Similarly, it is important to consider other types of cost-benefit analyses. Perhaps the
carbon impacts of a long (energy-intensive) training time for a large model is worth it if
it reduces the lifetime carbon footprint in production (for example, if the model doesn’t
require expensive fine-tuning procedures in the future). Understanding the tradeoff between
the lifetime deployment costs and training costs is important before moving on to extended
training runs. As such, we also encourage reporting of both estimated training and deployment
energy costs so future adopters have a more comprehensive picture when deciding which
model to use.

Central to all of these cost-benefit analyses are accurate accounting. Our tool provides
one step in consistent and accurate accounting for such purposes.

7.3 Efficient Testing Environments

In Section 7.1 we discuss the adoption of green default configurations and Section 7.2
discusses cost-benefit analyses for deployments. Another consideration particular to research—
especially RL—is the selection of the most efficient testing environments which assess the
mechanism under test. For example, if an RL algorithm solves a particularly complex task
in an interesting way, like solving a maze environment, is there a way to demonstrate the
same phenomenon in a more efficient environment? Several works have developed efficient
versions of RL environments which reduce run-times significantly. In particular, Dalton et al.
(2019) improve the efficiency of Atari experiments by keeping resources on the GPU (and
thus avoiding energy and time overheads from moving memory back and forth). Chevalier-
Boisvert et al. (2018) develop a lightweight Grid World environment with efficient runtimes
for low-overhead experiments. An important cost-benefit question for researchers is whether
the same point can be proven in a more efficient setting.

7.4 Reproducibility

A key aspect to our work is helping to promote reproducibility by aiding in consistent
reporting of experimental details. We encourage all researchers to release code and models
(when it is socially and ethically responsible to do so), to prevent further carbon emissions.
Replicating results is an important, if not required, part of research. If replication resources
are not available, then more energy and emissions must be spent to replicate results—in the
case of extremely large models, the social cost of carbon may be equivalently large. Thus, we
ask researchers to also consider energy and environmental impacts from replication efforts,
when weighing model and code release. We note that there may very well be cases where
safety makes this trade-off lean in the direction of withholding resources, but this is likely rare
in most current research. For production machine learning systems, we encourage developers
to release models and codebases internally within a company. This may encourage re-use
rather than spending energy resources developing similar products.

7.5 Standardized Reporting

We suggest that all papers include standardized reporting of energy and carbon emissions.
We also suggest adding a Carbon Impact Statement at the end of papers (just like ours
below) which estimates the carbon emissions of the paper. This can be reported in a dollar
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amount via the country-specific social cost of carbon (Ricke et al., 2018). We provide a
script30 to parse logs from the experiment-impact-tracker framework and generate such a
statement automatically. We suggest this to spread awareness and bring such considerations
to the forefront. We encourage this statement to include all emissions from experimentation
to build a more realistic picture of total resources spent.

We also emphasize that research, even when compute intensive, is immensely important
for progress. It is unknown what sequence of papers may inspire a breakthrough (Stanley
and Lehman, 2015) which would reduce emissions by more than any suggestion here. While
emissions should be minimized when possible, we suggest that impact statements be only
used for awareness. This is especially true since access to clean energy grids or hardware
may be limited for some in the community.

We also suggest that, when developing features which visualize compute intensity for
cloud or internal workloads, developers consider providing built-in tools to visualize energy
usage and carbon emissions. For example, the Colab Research Environment shows RAM
and Disk capacity,31 but could also show and provide access to these other metrics more
easily. Providing similar informational labels (Byerly et al., 2018) within internal tooling
could mitigate some energy and carbon impacts within companies.

7.6 Badging

Informational labeling has had a long history of being used in public policy (Banerjee and
Solomon, 2003). In the USA, the “Energy Star” label has been used to guide customers to
eco-friendly products. More recently, “badges” rewarded by the Psychological Science journal
were shown to be effective, with a jump from 3% of articles reporting open data to 39% one
year later. ACM has introduced similar reproducibility badges.32 With consistent reporting of
carbon and energy metrics, climate friendly research badges can be introduced by conferences
to recognize any paper that demonstrates a significant effort to mitigate its impacts. For
example, a compute intensive paper, when showing evidence of explicitly running resources
in a clean region can be rewarded with such a badge. Another example badge can be
awarded to papers that create energy-friendly algorithms with similar performance as the
state-of-the-art33. The goal of these badges is to draw further attention to efficient versions
of state-of-the-art systems and to encourage mitigation efforts while, again, not punishing
compute-intensive experiments. Of course this may not apply to conferences such as SysML
which often focus on making models more efficient, but rather as a motivational tool for
other venues where efficiency may not be in focus.

7.7 Limitations and Opportunities for Extensions

The experiment-impact-tracker framework abstracts away many of the previously mentioned
difficulties in estimating carbon and energy impacts: it handles routing to appropriate tools
for collecting information, aggregates information across tools to handle carbon calculations,

30. https://github.com/Breakend/experiment-impact-tracker/blob/master/scripts/generate-
carbon-impact-statement

31. https://colab.research.google.com/
32. https://www.acm.org/publications/policies/artifact-review-badging
33. See, for example, Clark et al. (2020) which creates a more efficient version of text encoder pre-training.
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finds carbon intensity information automatically, and corrects for multiple processes on one
machine. Yet, a few other challenges may be hidden by using the framework which remain
difficult to circumvent.

As Khan et al. (2018) discuss, and we encounter ourselves, poor driver support makes
tracking energy difficult. Not every chipset supports RAPL, nor does every Linux kernel.
Intel also does not provide first party supported python libraries for access to measurements.
nvidia-smi per-process measurements in docker containers are not supported.34 A body
of work has also looked at improving estimates of energy usage from RAPL by fitting a
regression model to real energy usage patterns (Povoa et al., 2019; Kavanagh and Djemame,
2019; Ghosh et al., 2013; Song et al., 2013). The Slurm workload manager provides an energy
accounting plugin,35 but requires administrator access to add. For those without access to
Slurm, Intel’s RAPL supports access to measurements through three mechanisms, but only
one of these (the powercap interface only available on some systems) does not require root
access (see more discussion by Khan et al. (2018)). To promote widespread reporting, we
avoid any tool which requires administrative access or would not be accessible on most Linux
systems. Providing better supported tools for user-level access to power metrics would make
it possible to more robustly measure energy usage. Aggregating metrics and handling the
intricacies of these downstream tools requires time and knowledge. We try to abstract as
much of these challenges away in the experiment-impact-tracker, though some driver-related
issues require driver developer support. However, these issues make it difficult to support
every on-premises or cloud machine. As such, we currently only support instances which
have Intel RAPL or PowerGadget capabilities for Mac OS and Linux.

We also note that carbon intensities for machines in cloud data centers may not reflect
the regional carbon intensities. Some providers buy clean energy directly for some data
centers, changing the realtime energy mix for that particular data center. We were unable
to find any information regarding realtime energy mixes in such cases and thus could not
account for these scenarios. If providers exposed realtime APIs for such information this
would help in generating more accurate estimates. Moreover, customized hardware in cloud
provider regions does not always provide energy accounting mechanisms or interfaces. If
cloud providers supported libraries for custom hardware, this could be used for more detailed
accounting in a wider range of cloud-based compute scenarios.

We further discuss other sources of error and issues arising from these difficulties in
Appendix G.

8. Concluding Remarks and Recommendations

We have shown how the experiment-impact-tracker and associated tools can help ease the
burden of consistent accounting and reporting of energy, compute, and carbon metrics;
we encourage contribution to help expand the framework. We hope the Deep RL Energy
Leaderboard helps spread information on energy efficient algorithms and encourages research
in efficiency. While we focus on compute impacts of machine learning production and
research, a plethora of other work considers costs of transportation for conferences (Holden
et al., 2017; Spinellis and Louridas, 2013; Bossdorf et al., 2010) and compute hardware

34. https://github.com/NVIDIA/nvidia-docker/issues/179#issuecomment-242150861
35. https://slurm.schedmd.com/acct_gather_energy_plugins.html
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manufacturing (Venkatesan, 2015). We encourage researchers and companies to consider
these other sources of carbon impacts as well. Finally, we recap several points that we have
highlighted in mitigating emissions and supporting consistent accountability.
What can machine learning researchers do?

• Run cloud jobs in low carbon regions only (see Section 6.2).

• Report metrics as we do here, make energy-efficient configurations more accessible by
reporting these results (see Section 7.5).

• Work on energy-efficient systems, create energy leaderboards (see Section 6).

• Release code and models whenever safe to do so (see Section 7.4).

• Integrate energy efficient configurations as defaults in baseline implementations (see
Section 7.1).

• Encourage climate-friendly initiatives at conferences (see Sections 7.6 and 7.5).

What can industry machine learning developers and framework maintainers do?

• Move training jobs to low carbon regions immediately. Make default launch configura-
tions and documentation point to low carbon regions (see Section 6.2).

• Provide more robust tooling for energy tracking and carbon intensities (see Section 7.7).

• Integrate energy efficient operations as default in frameworks (see Section 7.1).

• Release code and models (even just internally in the case of production systems)
whenever safe to do so (see Section 7.4).

• Consider energy-based costs versus benefits of deploying new models (see Section 7.2).

• Report model-related energy metrics (see Section 7.5).

We hope that regardless of which tool is used to account for carbon and energy emissions,
the insights we provide here will help promote responsible machine learning research and
practices.

Carbon Impact Statement

This work contributed 8.021 kg of CO2eq to the atmosphere and used 24.344 kWh of electricity,
having a USA-specific social cost of carbon of $0.38 ($0.00, $0.95). Carbon accounting informa-
tion located at: https://breakend.github.io/ClimateChangeFromMachineLearningResearch/
measuring_and_mitigating_energy_and_carbon_footprints_in_machine_learning/ and
https://breakend.github.io/RL-Energy-Leaderboard/reinforcement_learning_energy_
leaderboard/index.html. The social cost of carbon uses models from Ricke et al. (2018).
This statement and carbon emissions information was generated using experiment-impact-
tracker described in this paper.
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Appendix A. Conference Travel

Prior work has also examined conference travel for various fields as a major source of
impact Spinellis and Louridas (2013); Astudillo and AzariJafari (2018); Hackel and Sparkman
(2018). For example, Spinellis and Louridas (2013) found that the CO2eqemissions from
travel per conference participant was about 801 kg CO2eq, Astudillo and AzariJafari (2018)
estimated around 883 kg CO2eq emissions per participant, and Hackel and Sparkman (2018)
estimate around 910 kg of CO2eq emissions per participant. Interestingly, these separate
papers all align around the same carbon emissions numbers per conference participant. Using
this and ML conference participant statistics we can gain some (very) rough insight into the
carbon emissions caused by conference travel (not including food purchases, accommodations,
and travel within the conference city).

Conference participation has grown particularly popular in ML research, attracting
participants from industry and academia. In 2018 the Neural Information Processing Systems
(NeurIPS) conference sold out registrations in 12 minutes (Shead, 2018). In 2019, according
to the AI Index Report 2019 (Shoham et al., 2019), conferences had the following attendance:
CVPR (9,227); IJCAI (3,015); AAAI (3,227); NeurIPS (13,500); IROS (3,509); ICML (6,481);
ICLR (2,720); AAMAS (701); ICAPS (283); UAI (334). The larger conferences also showed
continued growth: NeurIPS showed a year-over-year growth 41% from 2018 to 2019. Given
only these conferences and their attendances in 2019, the lower 801kg CO2eq average emissions
estimate per participant (Spinellis and Louridas, 2013), this adds up to roughly 34,440,597 kg
CO2eq emitted in 2019 from ML-related conferences (not considering co-location and many
other factors).

Appendix B. NeurIPS Sampling on Metric Reporting

We randomly sampled 100 NeurIPS papers from the 2019 proceedings, of these papers we
found 1 measured energy in some way, 45 measured runtime in some way, 46 provided the hard-
ware used, 17 provided some measure of computational complexity (e.g., compute-time, FPOs,
parameters), and 0 provided carbon metrics. We sampled from the NeurIPS proceedings page:
https://papers.nips.cc/book/advances-in-neural-information-processing-systems-
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32-2019. We first automatically check for key words (below) related to energy, compute, and
carbon. We then examined the context of the word to classify it as relating to hardware details
(e.g., Nvidia Titan X GPU), computational efficiency (e.g., FPOs, MAdds, GPU-hours),
runtime (e.g., the experiment ran for 8 hours), energy (e.g., a plot of performance over
Joules or Watts), or carbon (e.g., we estimate 10 kg CO2eqwere emitted). We also manually
validate papers for similar metrics that didn’t appear in the keyword search. If a paper
did not contain experiments we removed it and randomly redrew a new paper. In many
cases, metrics are only provided for some subset of experiments (or for particular ablation
experiments). We nonetheless count these as reporting the metric. Where a neural network
diagram or architecture description was provided, we did not consider this to be reporting a
compute metric.

compute_terms = ["flop", "fpo", "pflop", "tflops", "tflop", "parameters", "params",
"pflops", "flops", "fpos", "gpu-hours", "cpu-hours", "cpu-time", "gpu-time", "multiply-add",
"madd"]

hardware_terms = ["nvidia", "intel", "amd", "radeon", "gtx", "titan", "v100", "tpu",
"ryzen", "cpu", "gpu"]

time_terms = ["seconds", "second", "hour", "hours", "day", "days", "time", "experiment
length", "run-time", "runtime"]

energy_terms = ["watt", "kWh", "joule", "joules", "wh", "kwhs", "watts", "rapl",
"energy", "power"]

carbon_terms = ["co2", "carbon", "emissions"]

Appendix C. Carbon Discussion

But cloud providers claim 100% carbon neutrality in my region, why do I need to shift my
resources?

While we estimate energy mixes based on regional grids, cloud providers sometimes aim
for carbon neutrality through a mixture of mechanisms which may change the energy mix
being provided to a data center in an otherwise carbon intensive energy grid or otherwise
offset unclean energy usage. Data centers draw energy from the local energy grids and as
a result the mix of energy they consume largely depends on the composition of the power
running in the grids. If the local energy grids are powered by a mix of fuel and renewable
energy, a data center will inevitably consume fuel energy as well.

Due to the fact that the consumers do not know the origin of the physical electricity
from the utility grid, it is difficult to assign ownership of the renewable energy consumption.
The Environmental Protection Agency (EPA) uses renewable energy certificates (RECs) to
track the generation and consumption of renewable energy: one REC is issued when one
megawatt-hour (MWh) of electricity is generated from a renewable source and delivered to
the energy grid.36 Consumers can then purchase RECs from a renewable energy provider and
apply them to their electricity usage. This means consumers can claim they run on renewable
energy by purchasing RECs from providers that doesn’t actually power the energy grids
that they draw electricity from. Although this means that the consumers’ realtime carbon
footprints will still be decided by the composition of renewable and fuel energy in their local

36. https://www.epa.gov/greenpower/renewable-energy-certificates-recs
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energy grids, more renewable energy can flow onto the grid by purchasing the RECs and
future development of renewable sources is supported. Google, to offset its carbon emissions,
uses RECs and power purchase agreements (PPAs) with renewable energy providers to ensure
that more renewable energy powers the same electricity grids that its data centers are in.37

Google then sells the renewable energy as it becomes available back to the electricity grids
and strips away the RECs. Over one year, Google applies equal amounts of RECs to its data
centers’ total energy consumption. This method helps green energy provider development
by creating a long term demand. However, PPAs provide RECs for future renewables, not
only current energy on the grid which may remain unchanged. As it states: “While the
renewable facility output is not being used directly to power a Google data center, the PPA
arrangement assures that additional renewable generation sufficient to power the data center
came on line in the area.”38

We can see that even if a cloud provider’s data centers are carbon neutral, the actual
CO2eqemissions can vary largely and depends on the region and even time of the day (solar
energy cannot be generated at night). Since carbon emissions have some long-term or
irreversible impacts (Solomon et al., 2009), avoiding carbon emissions now can help down the
line—a reason why discount rates are used in calculating impacts (Weisbach and Sunstein,
2008). We suggest that cloud providers release tools for understanding the carbon intensity
for each data center region regardless of offset purchasing. While the purchases of PPAs
and RECs are valuable for driving towards renewable energy in otherwise dirty regions, for
machine learning model training, where the resources can be moved, we believe shifting
resources to low intensity regions is more beneficial to long term carbon impacts. Other
cloud-based jobs where latency requirements prevent shifting resources will remain to drive
PPA/REC purchasing, and consequently renewable energy demand.

Appendix D. ImageNet Experiments

We load pre-trained models available through PyTorch Hub (see https://pytorch.org/hub)—
namely AlexNet (Krizhevsky et al., 2012), DenseNet (Huang et al., 2017), GoogLeNet (Szegedy
et al., 2015), HardNet (Chao et al., 2019), MobileNetv2 (Sandler et al., 2018), Shuf-
fleNet (Zhang et al., 2018), SqueezeNet (Iandola et al., 2016), VGG (Simonyan and Zisserman,
2014), and Wide ResNets (Zagoruyko and Komodakis, 2016). We run 50,000 rounds of
inference on a single image through pre-trained image classification models and run similar
analysis to Canziani et al. (2016). We repeat experiments on 4 random seeds.

We count flops and parameters using the thop package (for package version numbers
see automated logs in the online appendix linked above): https://github.com/Lyken17/
pytorch-OpCounter

Code for running the experiment is available at:
https://github.com/Breakend/ClimateChangeFromMachineLearningResearch/blob/master/
paper_specific/run_inference.py

37. We note that this process is likely similar for most cloud providers, but Google is the most open with
their methodology, so we are able to gain more insight from the materials they publish. Information
described here is mainly put together from Google (2016) and Google (2013).

38. https://static.googleusercontent.com/media/www.google.com/en/us/green/pdfs/renewable-
energy.pdf
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An online appendix showing all per-experiment details can be seen here:
https://breakend.github.io/ClimateChangeFromMachineLearningResearch/measuring_
and_mitigating_energy_and_carbon_footprints_in_machine_learning/

The plot of FPOs versus runtime can be seen in Figure 8 and plots against number
of parameters can be seen in Figure 9. Number of parameters similarly have no strong
correlation with energy consumption (R2 = 0.002, Pearson −0.048), nor time (R2 = 0.14 ,
Pearson −.373). We note that our runtime results likely differ from Canziani et al. (2016)
due to the architectural differences in the model sets we use.

For parameter plots, see Figure 9, for extended time and energy Figures, see Figure 8.

Figure 8: We seek to investigate the connection between FPOs, energy usage, and experiment
time, similarly to Canziani et al. (2016). We run 50,000 rounds of inference on
a single image through pre-trained image classification models available through
PyTorch Hub (see https://pytorch.org/hub)—namely (Krizhevsky et al., 2012;
Huang et al., 2017; Szegedy et al., 2015; Chao et al., 2019; Sandler et al., 2018;
Zhang et al., 2018; Iandola et al., 2016; Simonyan and Zisserman, 2014; Zagoruyko
and Komodakis, 2016). We record experiment time and the kWh of energy used
to run the experiments and repeat experiments 4 times, averaging results. We
find that FPOs are not strongly correlated with energy consumption (R2 = 0.083,
Pearson 0.289) nor with time (R2 = 0.005, Pearson −0.074). Number of parameters
(plotted in Appendix) similarly have no strong correlation with energy consumption
(R2 = 0.002, Pearson −0.048), nor time (R2 = 0.14 , Pearson −.373). We note,
however, that within an architecture correlations are much stronger. For example,
only considering different versions of VGG, FPOs are strongly correlated with
energy (R2 = .999, Pearson 1.0) and time (R2 = .998, Pearson .999). See Appendix
for experiment details, code, and data links. Our runtime results likely differ from
Canziani et al. (2016) due to the architectural differences in the model sets we use.
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Figure 9: The same experiments as in Figure 3, plotting parameters as the varying factor
instead. See Figure 3 for correlation values.

Appendix E. Estimation Methods

We use our PPO Pong experiment (see Appendix F for more details) as the experiment
under comparison. For carbon emission estimates, we use three estimation methods: realtime
emissions data for California (collected by our framework from caiso.org) times the power
usage at that time integrated over the length of the experiment; multiplying total energy
usage recorded by our method by the California average carbon intensity; multiplying total
energy usage recorded by our method by the EPA US average carbon intensity (Strubell
et al., 2019). For energy estimates, we use: (1) the experiment time multiplied by the number
of GPUs, a utilization factor of 1/3 or 1, and the Thermal Design Power (TDP)—which can
be thought of as the maximum Watt draw—of the GPU (Amodei and Hernandez, 2018); (2)
the measured GPU-hrs of our tool multiplied by the TDP; a rough calculation of PFLOPs-hr
(following the methodology of (Amodei and Hernandez, 2018) by the PFLOPs/TDP of the
GPU; (3) our tool’s accounting method which tracks energy from GPU readings, accounts
for CPU time/energy, and measures utilization in realtime.

Appendix F. Reinforcement Learning

We investigate the energy efficiency of four baseline RL algorithms: PPO (Hill et al., 2018;
Schulman et al., 2017), A2C (Hill et al., 2018; Mnih et al., 2016), A2C with VTraces (Espeholt
et al., 2018; Dalton et al., 2019), and DQN (Hill et al., 2018; Mnih et al., 2016). We evaluate
on PongNoFrameskip-v4 (left) and BreakoutNoFrameskip-v4 (right), two common evaluation
environments included in OpenAI Gym (Bellemare et al., 2013; Brockman et al., 2016; Mnih
et al., 2013).

We train for only 5M timesteps, less than prior work, to encourage energy efficiency (Mnih
et al., 2016, 2013). We use default settings from code provided in stable-baselines (Hill et al.,
2018) and cule (Dalton et al., 2019), we only modify evaluation code slightly. Modifications
can be found here:
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• https://github.com/Breakend/rl-baselines-zoo-1 (for stable-baselines modifica-
tions)

• https://github.com/Breakend/cule (for cule modifications)

Since we compare both on-policy and off-policy methods, for fairness all evaluation is
based on 25 separate rollouts completed every 250k timesteps. This is to ensure parity
across algorithms. We execute these in parallel together as seen in the cule code: https:
//github.com/Breakend/cule/blob/master/examples/a2c/test.py.

While average return across all evaluation episodes (e.g., averaging together the step at
250k timesteps and every evaluation step until 5M timesteps) can be seen in the main text,
the asymptotic return (for the final round of evaluation episodes) can be seen Figure 10.
Plots comparing experiment runtime to asymptotic and average returns (respectively) can
be seen in Figure 11 and Figure 12.

Our online leaderboard can be seen at: https://breakend.github.io/RL-Energy-
Leaderboard/reinforcement_learning_energy_leaderboard/index.html

We note that while DQN underperforms as compared to PPO here, better hyperparameters
may be found such that DQN is the more energy efficient algorithm. Moreover, we only use
the 5M samples regime, whereas prior work has used 10M or more samples for training, so
DQN results seen here would correspond to earlier points in training in other papers.

Figure 10: Pong (left) and Breakout (right) asymptotic return.
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Figure 11: Pong (left) and Breakout (right) as a function of experiment length and asymptotic
return.

Figure 12: Pong (left) and Breakout (right) as a function of experiment length and average
return.

Appendix G. Possible Sources of Error, Limitations, and Overheads

In Sections 5.2 and 5.1, we compared different methods for estimating energy and carbon
emissions including extrapolating from FPOs. However, we note that our own framework
is not perfect. For transparency, we highlight several such sources here, but we note that
utilizing more information—as we do here—is by definition superior to approximations which
rely on less accurate assumptions (see Section 5.2).

First, we rely on downstream hardware APIs which themselves have errors. Several works
have sought to evaluate the accuracy of RAPL—see for example Desrochers et al. (2016)
and Kavanagh and Djemame (2019)—and Nvidia’s power profiling tool—see for example,
Sen et al. (2018) and Arafa et al. (2020). Errors highly depend on the specific chipset and
even the workload, so we refer the reader to these other works for techniques in assessing
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exact errors. Nvidia’s documentation, however, states that the power reading “is accurate to
within +/- 5 watts.”39

Second, we rely on a polling mechanism due to the constraints of these downstream APIs
(for GPUs typically only power is provided, rather than an energy counter). In particularly
short jobs or highly erratic workloads, the tool may poll at a time that is not representative of
the full workload, estimating energy usage from an outlier power sample. Our assumption is
that workloads are fairly consistent and long enough that such variability will average out. In
the event that comparisons of energy readings across models are needed, we encourage users
to report standard errors across several runs (with n appropriate for the experiment setting).
Furthermore, because we record many auxiliary data sources (such as CPU frequency), more
accurate estimates can further be conducted via mixed effects models to control for sources
of variation and noise in energy readings. For an example of how such an analysis would
work, see for example Boquet et al. (2019), which compare machine learning algorithms
controlling for hyperparameter choice and randomness.

Third, for cloud regions, we do not have access to the exact carbon intensities or PUEs.
For example, if a cloud provider has a direct connection to a clean energy power plant for
100% of its energy, we have no way of accessing this information and using it in our tool.
We encourage companies to report this information per cloud region so that this may be
more accurate. In the case of indirect carbon offsetting, we do not consider this to be an
inaccuracy—see discussion in Appendix C. Moreover, we rely on IP address information and
hand-gathered energy grid information to estimate the energy grid. Either of these may
incur errors. Since we report this information and allow users to override grid regions in
calculations, these may be corrected by users. We also may not be able to access particular
drivers needed on every cloud instance. As such, support may depend on the cloud machine
image being used and the drivers available on that image. Generally, if Intel’s RAPL is
available or PowerGadget can be installed—and nvidia-smi is available—then the system
should be compatible.

Regarding overheads to adding a separate process gathering these metrics, the cost should
be generally fairly low. There are some startup and shutdown costs associated with adding
the tool, so for short-running scripts the absolute percentage of overhead may be he higher.
Additionally, if computational capacity of a chipset is maximally used due to the main
process, there may be some added cost for thread switching to gather metrics. However,
assuming that a core is preserved for the impact tracker there should be minimal overhead.
Note, for the sake of reproducibility we also record disk read/write speeds, but this can be
turned off if the disk is particularly slow or there is too much disk I/O for the user’s liking.
While workload overhead can vary depending on the machine and workload, we found that in
a small experiment of 200 epochs of regression for a one hidden layer neural network, runtime
overheads were less than 1%. For 500 epochs, the overhead was around .5% (indicating that
startup/shutdown are the most intensive). This experiment was run on a CPU-only Mac OS
machine with a 2.7 GHz Quad-Core Intel Core i7 and 16 GB 2133 MHz LPDDR3.

Supporting every driver and hardware combination is difficult. We note that most of the
aforementioned metrics are only supported on Linux systems and we were only able to test
hardware combinations available to us. Mac OS support is limited to machines that have

39. https://developer.download.nvidia.com/compute/DCGM/docs/nvidia-smi-367.38.pdf
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Intel’s Power Gadget40 installed and to CPU-only recordings. We hope that future users will
help identify missing capabilities and expand the framework for new use-cases and machines.
We also note that the tool is limited by driver support in cases that we cannot work around
(see Section 7.7).

Finally, we note that we only record CPU, GPU, and DRAM power draw. We do not
record disk I/O energy usage, power conversion and voltage regulator overhead. As such, we
can expect there to be missing components that contribute to energy that we do not record
here. However, we expect that the PUE re-scaling will correct for some of these missing
components to some extent.

Appendix H. Comparing Models

We note that it may be tempting to use carbon emissions as a comparative tool: model A
is less carbon intensive that model B. However, unless the carbon intensity used for either
model is held constant, this comparison cannot be done. In particular, our tool should not be
used to compare carbon emissions between models without overriding the carbon intensity
used as we sometimes use real-time values. If two models are compared, as in Section 6.1.1,
multiple runs on comparable machines should be used. In the event that a robust conclusion
is to be made (e.g., Algorithm A is more energy efficient than Algorithm B), additional
metrics regarding workload that we record can be utilized to run a mixed-effects regression
analysis. Such an analysis would ensure that there aren’t confounding factors jeopardizing
the conclusion.

40. https://software.intel.com/content/www/us/en/develop/articles/intel-power-gadget.html
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